
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1994-06

A formal method for semantics-based

change-merging of software prototypes

Dampier, David A.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/30841

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Thes1 5
D1475Jt3

DISSERTATION

A FORMAL METHOD FOR SEMA...~TlCS-BASED
CHANGE-MERGING OF SOFTWARE PROTOTYPES

by

David Anthony Dampier

June 1994

Dissertation Supervisor: ValdisBcrzins

Approved for pubbc release; dlstnbut!on IS unlimited.

DUDLEY KNOX LIBRARY
NAVAl PC.>TGRADUATE SCHOOl
MONTEREY CA 9394~5101

REPORT DOCUMENTATION PAGE

,_IIEPQIITOATE
June 1994

3 SOli 0
Doctoral Dissertation

A Fannal Method for Semantics-Based Change-Merging of
Sofm-are Prototypes(U)

6. AUTHOR(S)

Dampier, David Anthony

7. PERFORMING ORG.lHlZAnON IiAME(S) -".NO AODRES$(ES)

Naval Postgraduate School
Monterey. CA 93943-5000

~. SPONSORING! MONITORING AGlONCY NAME(S) AND AODRESS(ES) 10. SPONSORING/MONiTORING
AOEI<CY REPORT NUMBER

, • . SUPPLEMeNTARYNOTES

The views expressed in this dissertation are those of the author and do not reflect the official policy or
position of the Depanment of Defense or the United States Government.

Approved for public release; distribution is unlimited.

,3.,I,8STRACT (Mtui",.",,200 WOIrJ'J
lhis dissenation addresses lhe need for a fonnal method to support the merging of changes in independently developed

venions of a protOtype in a computer-aided rapid prooxyping syslem. The goal is 10 provide the prototype developer with the
ability to: combine independently developed enhancements to a prototype. dlCdr.; for consislency. and automatically UpdalC all
derived versions of a prototype with changes made to the base ven;ion.

A useful semantics-based method is provided for change-merging that is guarnnt«il 10 detect all conftiCts. Prototype slicing
is used to capnue the affected partS of each varialioo and the JRsenred part of the base in both variations. We then combine
the affected pans with the preserved pan usingOllTmodc1. which includes the first use ofBrouwerian Algebras to formalize the
merging of hard real time constraints. Our Slicing 'Ihcon:m guarantees that this method produces a prototype that COlT'tCtly
exhibits the significant behavior of Cll:h of !he input versions, provided the changes do not conflict The method achieves
cmecmess by comparing the slice oftbechange-merged ver.;ion with ~t to each affected part against the same slice of the
appropriate changed vernon. U the slices are the same, the change-merge is correct, otherwise adiagnostic message results. A
preliminary condJtional method for change-merging while prognuns is also provided that is strictly more accurate than previous

~-. Th.ls dissertation contributes to computer-aided software maintenance by providing a model. algorithm and implementation
foran automalcd change-merging tool for PSDL prototypes. Prdiminary testing sliows that this tool will enhance the ability of
the prototype developer 10 deliver a prototype in less time by enabling m~ cOllClIlTCl'ICy in the development effort.

14. SUIIJECT TERMS
FORMAL METI-IODS, PROGRAM MERGING. CHANGE-MERGING,
PROTOTYPING, SUCING

17.SECUIII YC
OfREPOIlT

Unclassified

NSN7~1280-5500

I'll. SECURITY CI.ASSlflCATlOH
OFTHISPAQE

Unclassified
I
:~. ECURI CLASSIFICA ION

OI'ABSTRACT

Unclassified

225

Unlimited

Standard Form 298 (Rev. 2_89)
I'!uc:nbodby '1S1S<d.Z:w.l .

Approved for public release; distribution is unlimited

A FORMAL METHOD FOR SEMANTICS·BASED
CHANGE·MERGING OF SOFTWARE PROTOTYPES

by

David Anthony,Pampier
Captain, United States Army

B.S., University of Texas at El Paso, 1984
M.S., Naval Postgraduate School, 1990

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

Author:

Approved by:

Approved by:

from the

NAVAL POSTGRADUATE SCHOOL

IIIIIIIIIIiIiL-
DdVid Anthony Dampier

-- • . ValdisB£I'Zin,V
Professor of Computer Sc"ience

. tionS .

T Le ·s. Ch . • e ent of Computer Science

Richard S. E~ster. Dean of Instruction

ABSTRACT

This dissertation addresses the nccd for a formal method to snpport the merging of

changes in independently developed versions of a prototype in a computer-aided rapid pro

totyping system. The goal is to provide the prototype developer with the ability to: combine

independently developed enhancements to a prototype, check for consistency, and automat

ically update all derived versions of a prototype with changes made to the base versiun.

A useful semantics·bru;e<i method is provided for change-merging that is guaranteed to

detect all conflicts. Prototype slicing is used to capture the affected parts of each variation

and the preserved part of the hase in hoth variations. We t hen combine the affected parts

with the preserved part using our model, which includes the first use of Brouwerian Algebras

to formalize the merging of hard real time constraints. Our Slicing Theorem guarantees that

this method produces a prototype that correctly exhibits the significant behavior of each of

the input versions, provided the changes do not confiict. The method achieves correctness

by comparing t he slice of the change-merged ven;ion with respect to each affected part

against the same slice of the appropriate changed version. If the slices arc the same, the

change-merge is correct, otherwise a diagnostic message results. A preliminary conditional

method for change-merging while programs is also provided that is strictly more accurate

than previous methods.

This dissertation contributes to computer-aided software maintenance by providing a

model, algorithm and implementation for an automated change-merging tool for PSDL pro·

totypes. Preliminary testing shows that this tool will enhance the ability of t he prototype

developer to deliver a prototype in less time by enabling more concurrency in the develop

ment effort.

iii

TABLE OF CONTENTS

I. INTRODUCTION.

A. RAPID PROTOTYPING

B. PROTOTYPING SYSTEM DESCRIPTION LANGUAGE

C. OVERVIEW.

n. ALGEBRAIC FOUNDATION FOR MERGING ..

A. WHAT IS CHANGE-MERGING

B. SETS AND POSETS .

C. LATTICES

D. BOOLEAN AND BROUWERIAN ALGEBRAS. 10

E. SUMMARY 12

III. RELATED WORK 13

A. TEXT BASED MERGING. 13

B. MERGING OF PROGRAM EXTENSIONS 14

1. Functions, Specifications and Programs • . . 15

2. Data Types 15

3. Analysis 16

C. INTEGRATION OF CHANGES TO WHILE-PROGRAMS. 16

i,

DUDLEY KNOX LIBRARY

Program Dependence Graphs ..
NAVAl POSTGRADUATE SCHOOl

... .f,IONTERI'Y .CA. 93~l-M01

2. Program Slicing .

3. Integration Algorithm.

4. Meaning Fllllctions

5. Analysis

D. CHANGE-MERGING OF PSDL PROGRAMS.

L Change-Merge Operation.

2. Interfaces.

3. Functionality

4. Data Flow Graphs ..

5. Data Streams and Control Constraints

6. Analysis

E. CHANGING PSDL PROTOTYPES•.

Prototyp~s as Graphs.

2. Changes to Graphs

F. AN APPROXIMATE :\1ETIIOD FOR CHANGErMERGINC PSDL PRO

TOTYPES .

1. Method.

2. Analysis

G. CONDITIONAL MERGING OF WHILE-PROGRAMS.

17

18

19

21

21

22

23

29

29

31

33

33

34

37

37

44

45

Conditional Flow Dependencies

2. Conditional Slices .

3. Conditional Program Merging

TV. SEMANTIC MODEL.

A. PROTOTYPING SYSTEM DESCRIPTION LANGUAGE

1. Overview of PSDL Semantics

2. Traces

3. Trace Tuples and Prototype Behaviors

4. Possibility Functions

B. SLICING OF PSDL PROTOTYPES

L Prototype Dependence Graphs . .

2. Slicing Theorem.

45

50

51

56

56

56

57

60

64

67

68

69

C. A SLICING METHOD FOR CHANGE-MERGING PSDL PROTOTYPES 73

V. CHANGE-MERGE ALGORITHM

A. EXTRACTING THE COMPONENTS

B. CHANGE-MERGING THE SPECIFICATIONS.

Change-Merging the State Declarations

80

82

83

83

2. Change-Merging the Maximum Execution Times. 85

3. Change-Merging the Exception Declarations and Keyword~ . 86

4. Change-Merging the Descriptions

5. Analysis uf Specificatiun Change-Merge

C. CHANGE-MERGING THE IMPLEMENTATIONS

Change. Merging the Graphs

2. Change-Merging the Stream and Timer Declarations .

3. Change-Merging the Control Constraints

86

87

88

88

98

99

4. Analysis of Implementation Change-Merge 106

D. CREATING THE CHANGE-MERGED PROGRAM lOR

E. ANALYSIS OF THE CHANGE-MEHGING ALGORITHM. 109

VI. CAPS MERGE TOOL

A. REQUlREMENTS

Interface Requirements

2. Functionality Requirements

3. Conflict Reporting Requirements ..

B. USING CAPS MERGE TOOL.

1. Selecting Prototypes and Versions .

2. Performing the Merge Operation.

3. Commit Merge

C. TESTING

vii

110

110

110

111

112

113

114

114

116

116

VII. CONCLUSION .. 118

A. WHAT WE HAVE ACCOMPLISHED AND WHY IT IS IMPORTANT. 118

B. WHAT STILL NEEDS TO BE DONE

APPENDIX A. FORMAL DEFINITIONS

1. TYPE DEFINITIONS

2. INVARIANT DEFINITIONS

3. FUNCTION DEFINITIONS AND PROPERTIES .

Merging Traces

h. Other Functions . .

APPENDIX B. EFFECTS OF CONTROL CONSTRAINTS ON POSSI

BILITY FUNCTIONS

1. Triggers & Input Guards • • ..

"by all".

h. "by some"

119

121

121

121

122

122

12i

129

130

130

130

Input Guards 131

2. Period 131

3. Finish Within, Minimum Calling Period & Maximum Response Time. 131

4. Constraint Options 132

APPENDIX C. PROOFS OF THEOREMS 133

viii

<I): Traces -----> FUTIctionRcprescfltatioTis IS WELL-DEFINED AND A

BIJECTION

2. SLICING THEOREM FOR PSDL PROTOTYPES 134

APPENDIX D. PSDL Grammar 139

APPENDIX E. Ada Implementation Code. 144

1. mergeJIlaitLpkg. 145

153

3. proto...spec...merge_pkg. 170

4. protojmpLmerge..pkg. 177

5. prototype_depeodencY-STil.ph_pkg 191

LIST OF FIGURES

1.1 Rapid. Prototyping Lif~-Cycle Modd

2.1 An Example of a. Lattice . .

3.1 Definitions of Relevant Domains.

3.2 Example of a Program Dependence Graph

3.3 Example of a Slice of a Program Dependence Graph.

3.4 A Program and Two Variations

3.5 A Lattice of Program Extensions

3.6 A Flat Lattice Representation for a Sequence ..

3.7 Example of a Change-Merge on Input Sets .

3.8 Example of a Change-Merge on Generic Parameters.

3.9 A Powerset Lattice Representation for a Set

3.10 Example of a composite operator in PSDL .

3.11 Example of a change made to a composite operator in PSDL . .

3.12 Example of t he changed operator

3.13 Fish Farm Control System, Fishies .

3. 14 Example of cbange ~A applied to Fishies .

10

15

17

18

21

22

24

25

26

27

35

36

36

39

40

3.16 Example of cLange ilB applied to Fi$hies .

3.17 FishiesB

:UB Performing the Change-Merge Operation .

3.19 FishiesM

3.20 Undecidahility of Disjointness for Guard Conditions.

3.21 While Program Grammar

3.22 An Example of a Conditional Dependency Graph

3.23 Slice Base/{Final(y), P} .

3.24 Version A

3.25 Version B

3.26 Preserved Part of all Three Versions ..

3.27 Affected Part of Version A .

3.28 Affected Part of Version B

3.29 Merged Version ..

4. 1 cI>: Traces _ FundionRepresentatiOfis

4.2 Example of prototypes with generated stream behaviors.

4.3 Summary of Model Constructs.

4.4 Fish Farm Control System, Fishiesl.l .

xi

41

11

42

42

43

47

18

49

50

52

53

53

54

54

55

59

61

64

71

4.5 SFi.hi" ,_1 (02, N H3, 1120)

4.6 SFiohi •• ,.1 (DruinSetting)

4.7 SF;''';~''_J (DruinSetting, InleLSetting)

4.8 Fishiesl.2

4.9 Fishieh~

4.10 SFi.hiul.l(Activate...Drain) .

4.11 SFiohi<.,..,{Activate...Dnlin) .

4.12 Preserved Parts of Fishiesl.l in Both Modifications.

4.13 Affected Part of Fishie~1.1 .

4.14 Affected Part of Fishies1 .~ .

4.15 The Change-Merged Version of the Fishies Prototype ...

5.1 Algorithm change..merge .

5.2 Algorithm Fragment for Extracting the Component .

5.3 Algorithm T1lerge...states

5.4 Algorithm merge-ffiet

5.5 Algorithm mergejd...set" .

5.6 Algorithm merge_text

5.7 Algorithm buildYDG

5.8 Algorithm affected_part.

xii

71

72

72

73

74

75

76

76

77

77

79

81

82

84

85

8fi

89

92

5.9 Algorithm preserved.part

5.10 Algorithm create-slice

5.11 Algorithm .graph.merge

5.12 Algori thm graph.union

5.13 Algorithm merge-streams

5.14 Algorithm merge.timers

.'i.15 Algorithm m erge-trigger.maps

5.16 Algori thm merge.triggers .

5.17 Algorithm merge....exec-guard.maps .

5.18 Algorithm m erge.expressions

5.19 Algorithm m erge..outpuLguard.maps .

5.20 Algorithm m erge.excep.trigger Jrlaps .

5.22 Algorithm m erge-tim er.op..sets .

5.23 Algorithm m erge.period .

5.24 Algorithm merge-fw.or.mrt.

5.26 Algorithm mergeJ7lcp

5.27 Algorithm build...prototype

xiii

94

95

97

98

99

99

100

101

101

102

102

103

103

104

105

105

106

107

108

6.1 CAPS Prototype Merge 'I'oollnterface]]3

6.2 CAPS Prototype Merge Tool Interfa.ce with List of Versions 114

6.3 Assignment of Para.meters 115

6.4 Merge Complete. llS

6.5 Notification of Conffict]]6

xiv

ACKNOWLEDGEMENT

First of all, I have to thank my very loving and understanding wife Caryn for the

sacrifices she made to make this pOHsible for me. Her unending support through tuugh times

gave me the energy to continue when I wanted to give up. Next, I m ust thank my boys

David, Michael and Nicholas for understanding why Dad cauldn't play with them as much

as he might like. Without a loying family, I never would have made it through the last six

years.

I also have to thank my committee for helping me along the way, especially Dr. Berzins

for his patience in dealing with my questions and problems, and Dr. Luqi for suggesting

five years ago that I might try something a lit tle morc challenging for my Master's Thesis.

Without that prompting, I would probably never have tried to get my Ph.D.

Last, but certainly not least, J need to thank my father for teaching me that a person

has to be willing to work for what they want, and anything worth doing is worth doing right

the first time.

I. INTRODUCTION

During iterative development of software prototypes, different variations are generally

developed where each of the versions contains a portion of the desired capability. Because

these prototypes can be very large, tools that automatically determine the differences be-

tween these versions and produce a new version exhibiting significant behavior from each

arc desirable. This dissertation defines a change-merging method that is semantics-based

and guarantce5 that if a conflict-free result is produced, it is semantically correct, and pro

vides a working cbange-merging tool to he integrated into the Computer-Aided Prototyping

System (CAPS). Traditional syntax-based merging tools fall short of providing results guar-

anteed to he Aemantically correct, and earli~r semantics-based change-merging or integration

methods concentrated on combining changes to simple imperative or while programs. We

explore a domain of wlianctd data flow programs, written in PSDL, which arc inherently

non-deterministic and parallel. Our change-merging method provides the first real change

merging capability for this domain of programs.

Software change-merging is also applicable to software maintenance activities. As

sUIning that a software system has been developed using the computer-aided prototyping

paradigm, or can he translated into the prototyping language, different versions of that soft

ware can be automatically updated with changes made to the base version by applying our

method. The fielded version would be one variation and the updated base version would

he the other variation. If all of the changes made to the base version are compatihle with

the fielded version, applying our method ff~sults in a new fielded version updated with the

changes made to the base version. If the changes are not compatible, this information is pro

vided automatically by our method. Using this technology eliminates the need for software

designers to manually check if changes are compatible before performing updates. It also

allows fewer designers to make cbanges to existing software systems , as well as prototypes

in development. In all industry witb projected costs in tbe billious of dollars [Ref. 40), this

translates into significant savings to both the software developer and the customer.

Other uses of this technology are found in the areas of software reuse and reengineering.

In software reuse, complex reusable components can be retrieved from tbe software repository

that contain more functionality than is required for the application. The desired functionality

can be isolated using prototype slicing by taking the slice of the complex component with

respect to the output strea.m.s desired. The resultant slice will contain any part of the complex

component that affects the output stream. In reengineering, if a program written ill some

high-level language can be translated into the prototyping language, PSDL, then changes

made to the prototype version of the base program can be automatically incorporated into

the prototype versions of the target programs, and the resultant prototype can then be used

to generate new production code for the reengineered program.

A. RAPID PROTOTYPING

Rapid prototyping is an approach to software development that was introduced to

overcome the following weaknesses of traditional approaches:

1. Fully developed software systems that do Dot satisfy the customer's needs, or are
obsolete upon release.

2. No capability for accurately evaluating real-time requirements before the software
system has been built.

To overcome these weaknesses, computer-aided software development met hods must be

developed which ensure accurate requirements engineering and emphasize efficient change

incorporation both during development and after fielding of the software system. Computer

Aided Rapid Prototyping is one such methodology. Rapid prototyping overcomes these

weaknesses by increasing customer interaction during the requirements engineering phase

of development, providing executable specifications that can be evaluated for conformaucc

to real-time requirements, and producing a production software system in a fractiou of the

time required using traditional methods , Rapid prototyping allows the user tu get a bet-

ter understanding of requirements early in the conceptual design phase of development. It

involves the use of software tools to rapidly create concrete executable models of selected

aspects of a proposed system to allow the user to view the model and make comments early.

The prototype is rapidly reworked and redemonstrated to the user over several iterations

until the designer and the user have a precise view of what thc system should do. This pro-

cess produces a validated set of requirements which become the basis for designing the final

product [Ref. 361. The prototype can also be transformed into part of the final product. In

some prototyping methodologics, prototypes arc dcveloped, demonstrated and then thrown

away before the production system is dcveloped. In prototyping methodologies like the one

used in CAPS, the prototype is an executable shell of the final system, containing a subset

of the system's ultimate functionality. After the design of the prototype is approved by the

customer, the missing functionality is added and the system is delivered. In this approach

to rapid prototyping, Boftware systems can be delivered incrementally as parts of the sys

tem become fully operational. Figure 1.1 shows the life-cycle model for this prototyping

methodology.

In this model, the customer provides a set of initial goals to the designer. The designer

takes those initial goals and formulates a set of requirements from which the first version of

the prototype is designed. This prototype is then demonstrated to the user, with the user

providing feedback to the designer. The designer takes the feedback, adjusts the requirements

to reflect the adjusted goals and makes whatever changes to the prototype necessary to

satisfy the requirements. It is then rooemonstrated to the user for more feedback. This

iterative process continues until a validated set of requirements is accepted by the user. The

designer then takes the prototypc and implements the remainder of the functionality needed

to produce the operational system. The result is an operational software system that satisfies

Figure 1.1: Rapid Prototyping Life-Cycle Model. [Ref. 20]

the customer's requirements and that is delivered in only a fraction of the time it would take

using traditional software development methods

Change-merging is an integral part of the rapid prototyping methodology. During the

Design Prototype System phase of prototype development, multiple variations of a large pro

totype are likely to be developed. This can happen when different development teams are

working on different aspects of a system, or when different possible solutions to a problem

are explored in different ways. In the first example, it will certainly be necessary for the sepa

rately developed pieces of the prototype to be combined into a single system before execution

for the customer. In the second example, the customer may desire a system containing some

or all of the aspects contained in each solution. In this case, these different prototypes must

be change-merged to capture the significant parts of each variation. Our change-merging

method will allow these combinations to be done automatically, ensuring that the resultant

prototype is semantically correct, with respect to all of the input variations. If the pieces are

not compatible with regard to the semantics of the prototype, then our method will identify

the parts of the prototype containing the conflicts. This technology encourages the designer

to explore different solutions to a problem, and to spread the development workload in a

large project without concern for the sub~equent integration of the~e independent efforts'.

B. PROTOTYPING SYSTEM DESCRIPTION LANGUAGE

Our method has been implemented for use in the CAPS development system. It is

designed to operate on programs written in the Prototyping System Description Language

(PSDl.), associated with CAPS. PSDL is a high level specification and design language which

can be translated into executable code.

PSDL is a generalization and extension of a data flow language, with the addition

of control constraints and timing operations [Ref. 35). A PSDL prototype consists of two

parts: a specification and an implementation. The specification of a prototype contains

the interface, and the implementation contains either a PSDL graph implementation, or a

programming language implementation. The PSDL graph implementation contains a set of

operators, a set of data streams through which the operators communicate with one another,

and a set of control and timing constraints which specify restrictions on the execution of the

operators or data streams. The programming language implementation is written in any

high-level programming language like Ada or C that is supported by the environment.

All operators in PSDL prototypes are state machines. Since PSDL is, by definition,

non-deterministic, the meaning of an operator in PSDL is a mathematical relation. PSDL

operators with only one state, or an empty set of state variables, and only one possible out

come are functions. This meaning is defined by the operator's possibility function discussed

in a later section.

A data stream in a PSDL prototype is a commuuications liuk between operators. Each

data stream is either a data flow stream or a sampled stream. Data flow streams are FIFO

buffers of lengths at least one. Wben a new value is written to the stream, it is appended

to the buffer. Values are removed from a data flow stream only when they arc read by the

consumer. Values on data flow streams can be read only once. Sampl~d streams are not

traditional data flow streams. They have buffers of size one. When a value is written to the

stream, it remains on the stream until a new value i~ written to the stream, at which time

the old value is overwritten. A value is not removed from the sampled stream when read.

Data streams can be written by more than one operator, and they can be read by more than

one operator. A complete listing of the PSDL grammar is contained in Appendix D.

C. OVERVIEW

In the chapters that follow, we provide background information which we used to pro·

duce a working change-merging tool. Chapter II provides definitions of mathematical COll

structs used in later chapters. Chapter III provides information about relat ed work, some of

which was accomplished by others before our effort was started, and some we have accom

plished during the course of the research effort. Chapter IV provides a semantic model for

the PSDL computational model which we used to develop our algorithm, and it contains the

discussions about this dissertation's primary contributions to the state of the art. Chapter

V contains the algorithms used to implement our tool, along with a discussion of their cor

rectness and complexity. Chapter VI outlines the development of the change-merging tool

and Chapter VII provides our analysis of what we accomplished in this effort, and some

future research options in this area. There arc five appendices: Appendix A contains formal

specifications for the constructs used in our model, Appendix B contains details about the

effect of PSDL control constraints on our model, Appendix C contains proofs considered too

lengthy to be included in the text of the dissertation, and Appendix D contains a listing of

the PSDL grammar, and Appendix E contains the program listings of our implementation.

II. ALGEBRAIC FOUNDATION FOR MERGING

A. WHAT IS CHANGE-MERGING

Change-merging is a process that allows different changes to a software product to

be combined using computer-aided tools. The result of this change-merge must contain the

differences between the base version and each input version, and must be correct with respect

to the method used; syntactic or semantic. Syntactic change-merging is performed on the

source code of the the input versions with respect t o the differences in the syntax of each

version. Semantic change-merging is performed on the functions computed by the software

product wit h respect to the behavior associated with each input version. Semantic change

merging requires a solid mathematical foundation to provide some guarantee of correctness

and engender confidence in a working change-merging system. As has been pointed out in

much of the previous work on merging, there is a solid foundation for representing program

variations in algebra [Ref. 6, 28, 42]. This cilapter introduces and explains the mathematical

concepts needed to understand the work presented in later chapters. Section B descrihes

the sets and partially ordered sets, and their relation to change-merging. Section C extends

the discussion to Lattices and describes how lattices are used in change-merging. Section D

bui lds up to Boolean and Brouwerian Algebras which are very useful in performing change

merge operations.

B. SETS AND POSETS

A set is a collection of objects, called elements. Operations on sets include E (memher

ship test), U (union), n (intersection) and - (difference). A partially ordered set , or posd,

is defined as follows [Ref. 16]:

Definition 1 Partially Ordered Sets

A nonempty set X is said to be a partially orden:d set, or posct, provided that a relation

!: is defined on X, satisfying the following:

L !: is reflexive: x!: x for all x E Xi

2. !: is anlisymmetric: x !: y and y !: x imply that x = Yi

3. !: is transitive: x!: y and y!: z imply that x!: z.

Such a relation!: is called a partial ordering of the set X.

Our method of change-merging is performed on variations of a PSDL program. Changes

to PSDL programs are not always extensions of a previously defined program. Different

variations can change a previous program in different ways. Since these different variations

are not always compatible extensions of earlier versions, the set of all program variations

does not form a completely ordered set. But since some program variations are compatible

extensions of other programs , the set of all program variations forms a partially ordered set,

with respect to an approximation relation, !:.

Definition 2 Approximation Relation for PSDL Prototypes

If x and yare two PSDL prototypes, x approximates y, writtw x !: y, if Y exhibits any
bdl(lvior that x exhibits.

Proposition 1 The set of all possible PSDL prototypes is a pose/.

Proof:

If x and yare PSDL prototypes, let!: be the approximation relation defined in Defini-

tion 2.

By Definition 1, for the set of all possible PSDL prototypes to be a poset, it must satisfy

the three conditions, n:jlezivity, antisymmetry, and transitivity.

(a) Clearly x ~ x, as x certainly exhihits its own behavior.

(b) Let x ~ y and y ~ x. Then y exhihits allY behavior that x cxhihits, alld x exhibits

any behavior that y exhibits. Thus x = y.

(e) Let x ~ y and y ~ z. Then y exhibits allY behavior that x exhibits and possibly

more, and z exhibits any behavior that y exhibits, so z exhibits any behavior that x exhibits.

Thus x ~ z.

Therefore hy (a), (b) and (c) , t he set of all p ossihle PSDL prototypes is a poset. 0

C. LATTICES

A lattice ordered poset is a partially ordered set (L,!;) such that for every pair of

elements, x , y E L, the supremum, .'lUp(x,y), and the infimum, inf(x ,y), exist [Ref. 31]. An

example of a lattice is shown in Figure 2.1.

An algebraic lattice is a nonempty set L together with two binary operations, meet (n)

and join (U), which satisfy the following conditions for all x ,y,z E L [Ref. 34] ;

(I) Commutativity: x ny= ynx and xU y =y U x.

(2) Associativity; x n (y n x) = (x n y) n x and xU (y U z) = (x U y) U z.

(3) Absorption : x n (x U y) = x and x U (x ny) = x.

(1) Idempotence: x n x = x and x U x = x.

In the context of merging pure program extensions, the meet (n) operation represents

the greatest common approximation of two programs, and the join (U) operations repre-

sents the least common extension. The greatest common approximation of two programs

represents the functionality common to both programs, and the least common extension

represents the union of both of their fUDctionalities.

____ T ____
C D E ---- /'-... ---A B

".../
Figure 2.1; An Example of a Lattice.

According to [Ref. 34], every lattice ordered set is an algebraic lattice if we define

x n y = inf(x,y) and x U y = sup(x,y).

A distributive lattice is an algebraic lattice for which at least one of the following

properties holds:

1. xn(yUz)=(xny) u(xnz).
2. xU(ynz)=(xUy)n(xuz).

An algebra.ic lattice £. is complemented if for every x E C there is at least one element

y E C such that xU y = T and x n y = 1.. We say that y is the i complement of x.

D. BOOLEAN AND BROUWERIAN ALGEBRAS

A Boolean Algebro is a complemented, distributive lattice [Ref. 341. Change-merging

over Boolean algebras is done very simply using set operations. A very rich and well under

stood set of laws is available for the use of Boolean Algebras.

A Brouwerian Algebm is a distributive lattice with a pseudo-difference operation, ..:...,

characteIi:z.ed by the property x ..:... y ~ z ¢::::> x ~ y U z. This property states that the

pseudo-difference of two sets x and y is contained in the set z if and only if x is contained

in the supremum of y and z. A formal definition of Brouwerian algebras follows [Ref. 39]:

10

Definition 3 Brouwcrian Algebras

A Brouwerian alg~bra is an algebra (L, u, n, -.:..., T) thai satiHjies the following propcrti'e.<;;

(i) (L, U, n) is a laUice with a greatest clement, T.

(ii) L is closed under -.:....

(iii) For all ehments x, y, Z E L , the formulaH x ...:.- y ~ z and x :;; y U z are equivalent.

[Ref. 39] also provides the following properties of Brouwerian algebras:

Theorem 1 Let L be a Hrouwcrian algebra under u, nand":' . Then:

(i) L has a zero d ement, 1- determined by the formula .1 = T - T.

(ii) L is a distributive lattice.

(iii) If x:;; y, then x ":'" z ~ y - z, z - y:;; z":'" x, and T - y <;;; T ":'" x.

(iv) x <;;; y {::::} x ..:... y = L

{v} x <;;; yU(x":'" y).

(vi) (x U y)x ':"" y c:::;: x.

(vii) x":'" z <;;; (xUy) ":'" z.

(viii) z U (x :"" y) = z+ [(zUx)":'" (zUy)].

(ix) z":'" (x n y) = (z - x) U (z ":'" y).

(x) (xU,) ~ x ~ (x - x) U(,~x).

(xi) T":'" (T":'" x) <;;; x.

(xii) T ":' (T":'" (T":'" x)) = T ..:... x.

(xiii) T":"' .l = T and T - T = .1.

The proof of this theorem is contained in [Ref. 39].

Brouwerian algebras arc very useful in the study of sets in which the true difference

between two elements is not guaranteed to exist.

II

E. SUMMARY

It turns out that every component of PSDL programs that can he change-merged can

be modeled using lattices or algebras. Many of the different parts of PSDL prototypes which

are merged separately do not fit nicely into Boolean algebras. with the exception of some

control constraints, so we introduced the concept of Broliweriau algebras. Througholll this

dissertation, the concepts discussed in this chapter are used to prove different parts of the

change-merging model contained in Chapters III and IV, and considered in the development

of the algorithm and implementation.

12

III. RELATED WORK

This chapter reviews and a.~sesses some of the work related to the change-merging

problem which has already been accomplished. Since change-merging is a relatively new

problem, there have been a number of research efforts aimed at defining the theoretical

foundations for the problem, hut not much effort ha.<; been placed on implementing a solution

for real programs. Our research effort is the first to tackle a real-world problem and succeed

in providing a working solution. This effort would have been nearly impossible, however,

had it not been for the pioneering work reviewed in this chapter.

A. TEXT BASED MERGING

The earliest work on program merging relied on combining cbanges made to the text

files containing the source code for the program [Ref. 43, 45J. These early systems certainly

provided an a.dvance to the then-current state of the art, but syntax-based merging did not

prove useful in the general case, as syntax-based merging proved insufficient to provide any

guarantee of semantic correctness [Ref. 61.

The first of the text-based merging systems was introduced as part of a software man

agement toolkit called the Revision Control System or (ReS) [Ref. 451. This system was

developed as a way to maintain the update history of a file. The system saves the initial

version of the file when invoked for the first time and, in subsequent invocations, saves only

the changes made to the previous version. Merging is accomplished through the use of the

command RCSMERGE. RCSMERGE tries to combine the differences between two differ

ent changes to the same base document based on the assumption that changes to disjoint

portions of the text arc independent. ""'here it is able to combine the changes, it makes

!3

the change to the output file. When it is not able to combine the differences, it prints the

respective piece of each version as a conflict in the output file, so the author can resolve it

manually.

These systems work well for most text files with small individual changes. For programs,

however, they do not provide even a guarantee of syntactic correctness, and in some cases

when the changes are significant, the tool is unable to matciJ even the parts that did not

change.

B. MERGING OF PROGRAM EXTENSIONS

In [Ref. 6), Berzins presents the first definitive work on semantic-based program merging.

This work is limited to considering program extensions, and does not consider changes that

remove functionality from the base program. It recognlzes that program extensions can be

ordered using an approximation relation !;. If p is a base program, and q is an extension of

p, then p !; q. That is to say that the functionality of q agrees with the functionality of p

everywhere p is defined, but q may be defined where p is not.

With this ordering in mind, two programs p and q can be merged by finding the least

rommon extension of p and q, written pUq, where p and q are base programs and pUq is the

merged program. He also recognizes that the exact least common extension of two programs

is not computable in the general case, but a safe approximation is sufficient in practice.

Berzins considers four software domains: specifications, functions, programs and data

types. These domains are defined in Figure 3.1. All of these domains are represented using

lattices. The following sections describe the representa.tion of these domains.

14

Specification
FUlIction:

Pro9ram:
Data Type:

Defines Acceptable Range of 13ehavior
Models Adual Behavior
Algorithms Defining Pa.rtial Functions
Set on which Programs Operate

Figure 3.1: Definitions of Relevant Domains

1. Functions, Specifications and Programs

Functions, specification and program domains can all be viewed ~ lattices with

respect to the approximation ordering ~. Each lattice contains the elements of the domain

together with a top element, T, representing an overconstrained element, and a bottom

element, ..l, representing an undefined element. The least common extension of two elements,

x and y can then be defined in terrus of lattice operations as the least upper bound of x and

y, denoted x Uy. If x and y are compatible, then xUy =IT, otherwise xUy = T .

2. Data Types

The lattice for a domain representing a conventional data type, Do, can be defined

as a set 'D = DoU{.1., T}, where .1. approximates everything and T is an extension of

everything. The definition of the extension relation for 'D is:

x ~ y ¢:::::> (.1.::::: x) V (x == y) V (y ='= T)

The least upper bound of any two unequal elements in this domain is T, the overeonst rained

element . This model applies to data types whose elements are either completely defmed or

completely undefined. An example of a type that is not covered by this construction is a list

with a component selector implemented using lazy evaluation. Some components of such a

list may be well defined, while other components may be undefined (i.e. cause inflllite loops

if they are accessed).

IS

3. Analysis

The work presented in [Ref. 6J provides a fUlldamental basis for most of the current

work in semantics-based program integration and merging. It looks at programs in terms of

their semantic building blocks and provides a theory describing how merging occllrs at the

building block level. This work shows that computing a useflll approximation to an ideal

merge is both achievable and sufficient.

C. INTEGRATION OF CHANGES TO WHILE-PROGRAMS

In [Ref. 28], the first semantics-based algorithm for integrating two non-interfering

modifications of a base program is described. This integration algorithm produces a third

program which reflects both modifications, and uses program dependence graphs (PDGs) to

abstractly represent the programs. Using program slicing, it then determines which portions

of the two modifications are different from the base program. Based on this information,

the algorithm uses a conservative approximation to determine if the changes can interfere.

If they can not, the program slices are combined into one integrated POG, which is then

transformed into a final version of the integrated program.

L Program Dependence Graphs

A POG for a program P, as described in [Ref. 28J, is a directed graph, Gp , with

vertices representing statements in the program, and edges representing control and data

dependencies between the vertices. There are also two special types of vertices in the POG

which are not program statements; an entry vertex and a final-use vertex for each output

variable. A complete Jist of the types of vertices is contained in [Ref. 28).

Using these components, a POC can be constructed for any willIe-program [Ref. 33].

Figure 3.2 shows an example of a simple program and its associated POGo By analyzing the

16

parts of this graph that affect a certain \~<l.riable , we arc able to obserVf~ the effects of a r.hangc

to the program with respect to that variable. T his is clone using program slicing [Ref. 47).

program
sum ::::0;
x:= I;
whilex< 11 do

slIm:= sum + Xi
x:= x+ 1; 0.

end(x,."um)

Figure 3.2: Example of a Program Dependence Graph [Ref. 28]

2. Program Slicing

The program slice of a graph G with respect to a vertex s is the subgrapb of G

induced by all vertices that can reach s by way of control (-c) or flow (_ ,) dependence

edges, along with the edges that conoect the vertices.

V(C!,) ~ (w E V(C) I w~. 'l

To get the slice of a grapb G with respect to one of the output variables, say x,

merely take the slice with respect to the vertex labeled FinllLUse(x). The slice is COD

structed backward from the final-use vertex, and includes all control or flow edges which

17

can contribute to the final value of x. Def-order edges are contained in the slice only if the

vertex which observes the dependency is also included in the slice. This construction 'can

be extended to a set of vertices S = {SI' S2, "', Si} by taking the union of the vertex and

edge sets of all of the individual program slices. Figure 3.3 shows an example of the slir.e

of the previous program taken with respect to the variable x at the final-use node and the

corresponding PDG.

program

~,~i,:;x < 11 do
x := x + 1;

od
end (x)

~ CONTROL
_ LOOP INDEPENDENT
--e- DEF-ORDER

LOOP CONTROLLED

Figure 3.3: Example of a Slice of a Program Dependence Graph [Ref. 28]

3. Integration Algorithm

The integration algorithm presented in [Ref. 28] starts by ereating program depen

dence grapbs for each program and, using program slicing, identifies the part of the base

program which is preserved in all three versions and the parts of the variations which are

different from the base. The common part of all three versions is called the preserved part,

18

and the part of each variation that is differeDt from the base is called the affected part of

that variation.

These three slices are then combined into an integrateil PDG. If the integrated

PDC is feasible l and the two variants do not interfere with each otLer, then the integration

is successful. One major problem identified in this work is that determining wbether a PDG

is feasible is NP-Complete [Ref. 28]. The other criterion for determining success is more

tractable, that of determining inte,jerenct. This is done by comparing the slices of each of

the throe original versions against slices in the merged version. 1f the slice of the merged

version with respect to the affected parts of each modification is the same as the slice of that

modification with respect to its affected parts, and the slice of merged version with respect

to the preserved part is the same as the base version with respect to the preserved part, then

the versions do not interfere, and a successful integration is possible.

The work in [Ref. 28J is supported by three theorems; the slicing theorem, the

equivalence theorem and the integration theorem. The slicing theorem states that when

given the same input and starting state, a slice of a program that halts produces precisely

the same output as the program. The equivalence theorem states that if two programs have

equivalent PDGs, then the programs are themselves equivalent. The integration theorem

states that if M is the result of a successful integration, then M halts on any initial state

on which the three input versions halt, and M correctly preserves the meaning of each

modification to the base.

4. Meaning Functions

Meaning functions [Ref. 33J represent the ~emantic meaning of a program as map

pings from states to states. Tbese state changes are represented as sets of pairs including an

initial state and the corresponding final state(s). In [Ref. 10], Berzins provides a theoretical

1 A program dependwce gr"ph is fe""ible if it is a PDG for a program.[Ref. 28}

19

foundation for merging simple, imperative programs using their meaning fun ctions. This

theory uses the notion that program variations can be viewed as partial fun ctions modeied

using a powerset lattic.e. Since a powersct lattice is equivalent to a Boolean algebra, normal

set operations, U, nand - can be used to reason about these program variations.

This theory shows that a change transfonnalions from a base program f to a

variation 9, A[J,9], can be applied to a second variation h, t:..lf,9](h) with precisely the

same results as if the change from f to h were applied to 9, AU, h](9). This is very useful

in change-merging, as it demonstrates that independent updates to a common base version

9 of a software product and subsequently change-merged without regard for the order in

which they were accomplished. As long as the changes made are compatible, the results in

terms of the meaning functions are the same. It does show, however, that the change-merged

program does not necessarily have to be similar to the input programs.

The meaning functions for the programs shown in Figure 3.4 are as follows:

m(B) ~ (x > 0 _ {((x,y),(x, I))) I x ~ 0 _ (((x,y), (x,-ll1l)

m(A) ~ (x > 0 _ (((x,y),(x, 1))) I x ~ 0 _ (((x,y), (x, 0))))

m(C) ~ (x > 0 - (((x,y), (x, x))) I x ~ 0 _ (((x,y), (x,-l))))

These three versions are merged using their meaning functions as follows [Ref. 10J:

miMI ~ m(A(B[C) ~ m(A)[m(B)[m(C) '

~ (m(A) - m(B)) U (m(A)nm(B))U(m(C) -m(B))

~ (x > 0 _ (((x,y), (x, I))) - {((x,y), (x, I))) [

x ~ 0 _ (((x,y), (x, 0))) - {((x,y),(x,-l))))

U(x > 0 _ (((x, y), (x, I))) n {((x,y), (x,x))) [

x ~ 0 _ (((x,y), (x,O))) n (((x,y), (x, -111l)

U(x> 0 _ {((x,y), (x,x))) - {((x,y), (x, 1))) [

x ~ 0 - (((x,y), (x,-l))) - {((x,y), (x, -I))))

----;c'T"'h-, -.o"-.. ""tio-.-:-A"'[B"']CC-."'m-:-b-', i--.,-wc-,.-Oced in Section D.l

20

:00 (x> 0 {} I xs;o-... {((x,y),(x,O))}

U(x > ° _ {(ix,y), (1, I))) 1 x s 0 - {))

U(x > 0-+ {((x,y),(x,x)) Ix#l} I x::;: 0-+ {J)

~ (x > 0 - {((x,,), (x,x))) 1 x s 0 _ ((ix,,), (x,O))})

= m(if x> 0 then y;+= x else y:= 0) = m(M)

Balle versioo B: if x > 0 then y := 1 else y := - 1 fi
First change version A: if x > 0 then y := 1 else y ;= 0 fi
Second change version C: if x > 0 then y ;= x else y := - I fi

Figure 3.4: A Program and Two Variations [Ref. 10]

5. Analysis

The work presented in this sectioo shows that a method can he developed for

integrating real programs. The work contained in [Ref. 28, 29, 48] illustrates a method for

integrating programs in a simple imperative programmlng language that has heen developed

and works. This demonstrates that a practical method is possible for imperative programs,

hut falls short of providing a method which is useful to solve any real world problems. In

particular, the method fails to provide any sort of conflict location or resolution. If a conflict

is detected, then it is reported to the user, and the integration fails. It is up to the user to

determine the nature of the conflict and how it should be resolved. Our methods a.ddress

these problems as shown in the next section and in Chapter IV.

D, CHANGE-MERGING OF PSDL PROGRAMS

In [Ref. 20J, an initial attempt at developing a model for change· merging PSDL pro·

grcuns is presented. Although crude, this model provides us with an important part of the

21

~pecification change-merging model, and insight into the current effort defined in subsequent

chapters,

1. Change-Merge Operation

This change-merge operation is defined by the operation A[BJC, where A, Band C

are sets of pairs representing the functionality of three different versions of a P5DL program.

The operation A[BJC was initially introduced by Berzins in [Ref. 9J and is defined as:

A[B)C~ (A - B) U (An C) U (e - B)

where n, U and - represent the grrotest common approximation, least common extwsion,

and semantic difference respectively, between two programs.

The set of all PSDL programs, together with a T and .1, forms a lattice using the

relation approximates [Ref. 20]. If A is an extension of B , then we say that B approximates

A, written B t; A. The T element in the lat tice is an extension of every PSDL program,

and the .1 element approximates all PSDL programs. For example consider the lattice in

Figure 3.5. In this example, 0 and P are extensions of A and A approximates both 0 and

P. P and Q are both extensions of Band B approximates both P and Q. P is a common

extension for both A and B. In fact, P is the least common extension of A and B.

Figure 3.5: A Lattice of Program Extensions

22

The least common extension of two PSDL programs, AUB, is the smallest possible

1'5DL program P such that A r;;; P and B !; P, and represents the union of the functionalities

found ill both A and B. In Figure 3.5, P is the least common extension of A and B. The

greatest common approximation of two PSDL programs, pnQ, is the largest possible PSDL

program B such that B [;;; P and B I: Q, and represents the common functionality found in

both P and Q. In FigHTe 3.5, B is the least common extension of P and Q. The semantic

difference between two programs, A - B , represents the functionality found in A, but not in

B. The semantic difference exists if the lat tice is a Boolean algebra, and a pseudo-difference

can be defined if the lattice is a Brouwerian algebra.

It has been shown that the least common extension of two programs is not com

putable in the general case [Ref. 6]. In [Ref. 20], we demonstrated that an approximation that

is computable is sufficient to provide a useful change-merge for most cases. The following

sections outline the model defined in [Ref. 20J.

2. Interfaces

The interface of a PSDL operator P is the definition of the operator's external

contacts. It defines Ip , the set of inputs expected by the operator, Op, the set. of outputs

that can be expected, and in the case of generic templates, GNp, the set of generic param

eters used to instantiate the prototype. Ip, Op, and GNp are all ordered sets (sequences).

The interface may also contain a set Stp, of internal state variables, a ~et Ep, of possible

exceptions , and a maximum execution time constraint that is met by the program. Stp and

Ep are sets.

a. Sequences

Sequences are a significant building block for many programming langllil.ges,

including PSDL. A sequence is a totally ordered collection. Since t he order of the collection

23

is significant, any change made to the sequence is an incompatible change and creates a

sequence which is neither an approximation nor an extension of the original sequencp':· A

correct mathematical representation for a sequence would be a flat lattice, like the one in

Figure 3.6. This means that the only approximation for the sequence is the undefined

sequence, .1, and the only extension of the sequence is the unconstrained set, T, and the

greatest common approximation of any two sequences is the undefined element, .1.

____ T ____
[1] [3] [1,3] ----1----l.

Figure 3.6: A Flat Lattice Representation for a Sequence

(1) Input and Output. Input and Output interfaces are sequences of input

and output streams. The order of these sequences is significant because actual parameters

are associated with formal parameters based on the order in which they appear. In change

merging lA, lB, and lB~.o into 1M , any change between the interfa.ce sequence of the base

version and the two modified versions is significant, and must be preserved in the change

merged version. The change-merged sequence of inputs, or outputs, is determined by the

following rules:

1. If both of the modified versions have the same interface sequence as the base,

then: 1M = lBu •.

2. If one of the two modified versions, say lA, is the same as the base, and lB is
not, then: 1M = lB.

3. If all three versions are different from each other, then: 1M = T.

24

The first situation is the case in which no changes were made between the

inputs of the Base and the two modifications. In this case, the change-merged version ~h6'uld

have all of the same inputs, or outputs. The second situation is the case in which only one of

the modifications changed from the base. fn this case, the change from the base is significant

and mast be preserved in the change-merged version. The third situation is the case where

uoth of the modifications changed from the base. The result is a conflict because there

is no proper PSDL specification that is consistent with both modifications. The result of

a change-merge which produces a conflict for this situation would he an input declaration

which contains a T where the input stream declarations would be.

The type declarations of the streams also have to be merged. Bccallse the

types are significant, any change to the type declaration must be preserved in the merged

version. Types are also change-merged using a flat lattice structure. Figllre 3.7 contains an

example of a change-merge on Inpllt Sets.

SA = INPUT
x; integer

OUTPUT
w; integer,
t; integer,
z : string

SB,m = INPUT
x; integer,
y: real

OUTPUT
w; integer,
z ; string

SM = INPUT
x: integer

OUTPUT
T

BB = INPUT
x ; integer,
y: r eal

OUTPUT
w: integer

Figure 3.7: Example of a Change-Merge on Input Sets [Ref. 20]

25

(2) Generic Parameters. The Generic interface is contained only in template

operators and PSD L type specifications. Template operators are operators in the Soft~~re

Base used to instantiate software components. Change-merging generic parameters is similar

to change-merging input and output parameters with the exception that, in addition to

value parameters , generic parameter sequences may also contain operator parameters and

type parameters. Changes to generic sequences follow the same rules as Input and Output

sequences. Figure 3.8 shows an example of a change-merge operation on generic parameters.

GNB".. = GENERIC
tI: type,
t2: type,

GENERIC
tl : type,
t3: type,

01: operution[il,i2: tI,oI: t2j,
vI : integer

GNB = GENERIC
tl : type,
t2: type,

02: operution[iI: n,ol: t3],
vI: integer

01 : operution[il, i2 : tl, 01 : t2],
vI: integer

GNM =: GENERIC
tl: type,
t3: type,
02: aperution [iI: tl,al: t3],
vI: integer

Figure 3.8: Example of a Change-Merge on Generic Parameters [Ref. 20]

b. Sets

Sets are modeled using a "Powerset Lattice" as shown in Figure 3.9, and thus

more freedom can be exercised in change-merging them. Change-merge operations do not

follow the same rules for sets as for sequences.

26

{a,b,c)

------,-~--
{a;j {b,c) }il:c)
,- ::::::J=- :::::::.r

{al... ..j __ 1 _---.JII
{I

Figure 3.9: A Powcrsd Lattice Repre~entation for a Set Containing Three Elements

(1) States. State variables differ from input and output variables in that,

abstractly, they are tuples, containing a name, a type and an initial value. As the set

of stale variables is unordered and invisible to the re.~t of the program, the state set can

be increased or decreased without affecting the parts of the program outside the modified

component . In change-merging state variable sets, the operations n, U, and - are equivalent

to the corresponding set operations, U, nand -. The third part of the tuple, the initial

value, requires an additional check in the change-merging process. These initial values are

ordered using a flat lattice, because they are ordinary data values. The initial value of a

change-merged state variable follows the same change-merging rules as input and output

variables. If all three ver.oions have different initial values for the same state variable, then

the change-merged version contains a T in the place where the initial value is assigned. If

only one of the modifications assigns a different initial value than the base version, then the

change-merged version contains the initial value of the one that was diffcrent.

(2) Exceptions. The exceptions interface is a list of identifiers which denote

exception values which may be returned by the operator. Consequently n, U, and - can be

interpreted as the corresponding set operations, U, nand -. Exceptions that appear in one

or both of the modified versions, and not in the base, appcar in thc change-merged program.

Exceptions that appear in the base and do not appear in at least one of the modifications

are not included in the change-merged program.

27

(3) Maximum Execution Time. Maximum Execution Time (MET) is the

only timing constraint that appears in PSDL specifications.)'IET is the maximum CPU

time that an operator can use to perform its assigned task. Change-merging two l\IET

constraints, t, and t2 , can be done as follows:

t1 U t2 min(t"t2)

t,nt2 max(t"t2 J

t, ..:. t2 if t 2 :::; I, then 00 else I,
T 0
.1

Proposition 2 The set of METs form a Brouwerian Algebra

Proof;

Let M be the set of all possible METs.

We must show that M, u,n is a distributive lattice, that M is dosed under':", and

that

Va,b,c E M,a ":' b:::; c {:::::> a:::; (b U c).

1. (M,U, n) is a distributive latt ice:

Clearly, aU b and an b exist for any a, b E M, and the reflexive, antisymmetric, and

transi tive properties hold, so (M, u, n) is a lattice.

M is distributive: Let a,b,c E M. We use a table to illustrate:

an (b Uc) (anb)U(anc)
a<b<c b
a<c<b ,
b<a<c a
b<c<a a
c<a<b a
c<b<a a

From the table it is easy to see that M is distributive.

2. M is closed under ..:.:

b
,
a
a
a
a

Since a .:.. b is always either a or 00 for any a and b, M is certainly closed under .:...

28

3. For any a,b,cEM, a":' b:S: c{==} a.:<:; (bUe) :

Assnme a ~ b ~ c. Then, a :S b, since otherwise, a - b == 00. Since a :S b, then" .j:. c.

Thus, a :s: (b U c).

Now , assume a :s: (bue) . Then a:S: band a:S: c, and a - b= a. Thus a - b:S c.

Therefore, M is a Brouwerian Algebra.

3. Functionality

The functionality of an operator specification is a description of the hehavior of an

operator. It consists of a set of keywords, an informal description, and/or a formal descrip.

tion. Through the use of keywords, the operator can be distinguished from other operators

in the database during the retrieval process. Informal text descriptions are provided for use

by the engineer. Formal axiomatic descriptions are provided to support automatic retrieval.

The set of keywords can be change-merged using the appropriate set operations,

u, n, and -. The informal description is a sequence and must be changed-merged using

the same method described for input and output parameters. Formal descript ions can be

change-merged using the Boolean algebra structure of the logic in which they are expressed:

xUy xVy
xny xAy
x-y xA...,y

4. Data Flow Graphs

In [Ref. 20], a PSDL implementation graph for an operator A is viewed as a graph

DA. = {O,L}, where 0 is a set of vertices that represent the component operators of A,

including the constant operator EXT representing external contacts, and where L is a set of

links (labelled edges) which represent the data streams entering and leaving the elements of

O. The labels for the links arc the names of the data streams they represent.

29

The change-merging operation on PSDL data flow graphs is defined in terms of a

bipartite graph BA = {V, 5, LI, LO} , where V is the set of operators in D"" S is a set' of

vertices which represent the data streams of operator A, LJ is a set of edges from a stream

vertex to an operator vertex, representing input links, and LO is a set of edges from an

operator vertex to a stream vertex, representing output links.

Change-merging the data flow diagrams is done by change-merging the graphs

GB~.e, GA and GB by subsets V, S, L1 and LO. Tbe operations U, n, and - can be

interpreted as the corresponding operations U, n, and -. This change-merge is accomplished

using the following equation:

This equation clefines a structural or syntactic change-merging operation that does not nec-

essarily correspond to a semantic change-merging operation.

The greatest common approximation is obtained for the Ba:;e and the two mod

ifications by taking the intersection on all components of the graph. Then these common

components are added to the disjoint components of each modification by subtracting out

the parts of the two modifications wbich are also in the ba:;e. This operation preserves the

parts of the program common to all the versions , while ensuring that significant changes

made by the two modifications are included in the change-merged graph.

This method of change-merging the implementation graph of a PSDL program

fails to adequately consider the semantic effects of the changed modifications, a..~ does the

approximate method shown later in this chapter. Although these methods produce a change

merge that is useful in some cases, they are not nearly as useful as the slicing method

described ill Chapters IV and V.

30

5. Data Streams and Control Constraints

a. Data .';t~ams

A set of data stream declarations DS ... , defines local data streams that are used

only within th~ implementation of a composite operator, A, and that are not defined in the

specification. The order in whicll the d~clarations appear is not significant. They have the

same structur~ as exc~ption declarations, and can b~ change-merged using the same rules .

If a stream appears in DSB~ •• , then it appears in DSM if and only if it appears in both DS ...

and DSs . 1f a stream does not appear in DS8u., then it appears in DSM if and only if it

appears in at least one of the sets DS ... and DSB . These rules ar~:

x E DSB40~
X E DSB~.e

--.(x E DSBuo)
...,(x E DSBu.)

x E DS ... A z E DSB
...,(x E DS ... AxE DSB)
(x E DS ... V z E DSB)

-.(x E DS ... V x E DSB)

zEDSM

...,(x E DSM)

zEDSM

---.(x E DSM)

The type declarations of data streams are also significant, as with Input and

Output Streams, and changes to those declarations must be preserved in the merged version.

The type declarations can be merged using a flat lattice structure just as the Input and

Output streams are merged.

h. Control Constroinis

Control constraints are a set of pre-conditions, which control the firing of par

ticular components, and post-conditions, which filter the output provided by those compo-

nents. The control constraints appear in the change-merged operator according to the same

rules as the data stream definitions. Any control constraint that appears in al l three input

versions in exactly the same way appears in the change-merged operator without change.

Any constraint which appears in one or both of the modifi·cations, but not in the ba.<;e,

31

appears unchanged as long as the conditions of the constraint are the same. Changes in COD

ditions are handled different ly depending on the type of constraint. Input and output gua;ds,

conditional exceptions, "TRIGGERED IF~, "OUTPUT TF M
, "EXCEPTION IF", and timer

operations have logical predicates as conditions. Timer operations are not change-merged

as straightforwardly as other predicate constraints. Different operations exist for different

activities. Start, stop, and reset are tbe three timer operations used in PSDL. The timer

operations affect the state of the timer. The start and stop operations affect the run state of

the t imer, and the feset operation affects the value state of the timer. The reset operation

is thus independent of the others, and can be merged independently. If a reset operation

appears in all three versions, or appears in at least one of the modifications , but not in the

base, then it appears in t he changed merged version as well. The start and stop operations

must be change-merged using a flat lattice ordering relation, as with inputs and outputs.

The predicates that accompany the control constraints are change-merged according to the

usual rule, A[BalJe]B = (A~ BalJe)U (An B)U(B- BalJe), where the operations n, U, and

- are interpreted as follows:

aub avb
a nb a/\ b
a -b a/\--.b

The constraints "PERIOD", ~FINISH WITHIN", "MAXIMUM RESPONSE

TIME", and "MINIMUM CALLING PERIOD" have integer values as conditions. These

values are ordered using a flat lattice and can he change-merged as follows. For "PERIOD"

constraints, if the value is the same in all three input versions, t hen it appears unchanged

in the merged version. If it is different from the base in one of the modifications and the

same as the base in the other modification, then the change must be preserved and the value

appearing in the modification where it is different appears in the merged version. If all three

versions have different values for the period, then a .1 or undefined value appears in the

merged version, indicating an unresolvable conflict. "FINISH WITHIN" and "MAXIMUM

RESPONSE TIME" constraints are upper bounds and can be change-merged using tbe

32

same method described for ~MAXIMU:\1 EXECUTION TIME". uMINIMUM CALLING

PEIUOD~ is a lower bound lind two Mep constraints, t] and 12 , caD he change-merged

using the equations shown below:

tl Ut2 max(t] ,t2)

t]nt2 min(t j ,t2)

t1 - t2 if 12:? t} then 00 else t1

T 0
1.

Proposition 3 The set of all MCPs form a Brouwerian Algebra

Proof: See the proof of Proposition 2.

6 . Analysis

Tbe work presented in [Ref. 20] was a first look at providing a change-merging r.a

pability for PSDL prototypes. It explored some critical issues in the problem and provided

valuable information for work presented later in this dissertation. The work on change

merging specifications has proven to be very valuable and remains virtually unchanged ill

the current model. Only the parts of the model concerning timing constraints have been

improved in the current model. The work on change-merging: implementations was unsuc

cC$sful in providing a useful method. The next sections provide a look at an improvement

over this method.

E. CHANGING PSDL PROTOTYPES

1n [Ref. 21), another attempt at formulating a model for representing PSDL implemen

tations is explored. In this model, PSDL prototypes can be considered iterative versions

of a software system. If S is the intended final version of the software system, then each

successive iteration of tbe prototype can be viewed as an element of a sequence Si wbere

limi ""Si=S.

33

1. Prototypes as Graphs

Each prototype implementation Sj is modeled a:; a graph G j = (Vi, Ei,ei) , where:

• Vi is a set of vertices. Eacb vertex can be an atomic operator or a composite
operator modeled as another graph.

• Ej is a set of data streams. Earl! edge is labelled with the associated variable
name. There can be more than one edge between two vertices. There can also
be edges from an operator to itself, representing state vari able data streams.

• C j is a set of timing and control constraints imposed on the operators in version
i of the prototype.

2. Changes to Graphs

The prototype designer repeatedly demonstrates versions of the prototype to users,

and designs the next version based on user comments. The change from the graph repre

senting the ith version of the prototype to the graph representing the (i + 1 }st version can

be described in terms of graph operations by the following equatioDs:

• LlSj = (VA;, VR;,EAj,ERj,CA;,CR;) where:

.. Vi+! - Vi = VAj : The set of vertices to be added to S; .

•• Vi - 11+1 = V Rj: The set of vertices to be removed from Sj .

•• E;+I - Ej = EA;: The set of edges to be added to Sj .

•• Ej - Ej+J = ERj: The set of edges to be removed from Sj .

•• q+! - C; = CAj : The set of timing and control constraints to be added to
5; .

.. Cj - C;+l = CRj: The set of timing and control constraints to be removed
£rOmS\.

34

5;+1 = 5j + ll.5 j is defined iu terms of the individll al compouents of S';+! as follows:

V;+! = Vi U VA i - VRj

Ei+l = Ej U EAi - ERi

Tue following figures suow an example of a change made to a composite operator in

PSDL. Figure :1.10 contains a graph representation for a composite operator Opl consisting

of 4 vertices and 6 data streams. Figure 3.11 shows a change to be applied to Opl to produce

Op2. Fignre 3.12 shows a graph representation of Op2, the result of applying the r.hange to

Op1.

~ ~.

Opl {Vi.,EJ,Cd
V, {A,B,C,Dj

100

E, {(Xl, EXT _ A),{X2, A _ B), (X" ,A _ C), (X, ,B_ D),
(X5, C - D), (X6 , D _ EXT))

C1 {max _ezec...time(B, 100m3)}

Figure 3.10: Example of a composite operator in PSDL

35

t:.A,Opl {VRA,VA ,EAA,ER,."CA,." CR,d
VAA {E}
VR, (C)
EA, {(X3, A ~ E), (XL E ~ D))
ER, {(X3 , A ~ C), (X5 , C ~ D))
CA A {latency(X7 ,E,D,50ms)}
CR, {}

Figure 3.11: Example of a change made to a composite operator in PSDL

Operator Op2 = Opt +.o.AOpl

Op2 {V2 ,E1 ,C2 }

V2 {A,B,D,E}
E, {(Xl, EXT ~ A),(X2, A ~ B),(X3, A ~ E),(X4' B~ D),

(Xl, E ~ D),(X6, D ~ EXT))
C2 {max_exec..time(B, 100m.'!), latency(X7, E, D, 50ms)}

Figure 3.12: Example of the changed operator

36

F. AN APPROXIMATE METHOD FOR CHANGE-MERGING
PSDL PROTOTYPES

1. Method

In [Ref. 21, 23, 25]. an approximate method for change-merging PSDL prototypes

is explored. This method is useful in providing a rough approximation to the ideal change

merge, but was abandoned in favor of the more useful (and provably correct) slicing method

[Ref. 23, 24]. It is included to record the effort expended in this endeavor.

Recall the merging function introduced in [Ref. 9j, and reintroduced in section D:

M ~ AlBIC ~ (A -B) U (An C) U IC - B).

If the semantic function of a program is represented as a set of pairs, then two compatible

modifications of a semantic function can he merged using this equation.

In this equation, the union, intersection and difference operations are defined as

normal operations on sets. The difference operation, (A - B) for example, yields the part

of the function present in the modification, but not in the base version. The intersection

operation yields the part of the function preserved from the base version in both modifi·

cations. This model preserves all changes made to the base version, whether extensions or

retractions. In this model, two changes conflict if the construction produces a relation that

is not a single valued function.

In this section, we outline an approximate method for merging prototypes using

the change model described in the previous section and the above definition. This method is

approximate, in the sense that the change merging construction is applied to the structure

of a PSDL program rather than to the mathematical function it computes. This method

is simple, corresponds to c-Ommon programmer practice, and produces semanticaHy correct

results most of the time.

37

The approximate method call be understood as follows. All PSDL implementations

are graphs, whose structure roughly models their functionality. \Ve have n :prescilted these

graphs using sets. Different variations of a prototype are the results of different changes

being applied to a common base version. \Vc can merge the two new versions A and C by

applying the change that produced A from B to version C, or by applying the change that

produced C from B to version A. The result is the same in either case. Earlier, we expressed

the (i + 1)5t iteration of a software prototype as 5i+l = Si + 85; . Let us consider an ith

version which has been changed in two different ways, via 8A and LlB. The results of the:se

two changes are denoted as SA and 5B• respectively. Now let us consider a case where the

(i + l)st iteration is the result of merging these two changes:

T he components of 5i+1; \1;+1> Ei+1 and Gi+l can be computed similarly:

(VA - \1;) U (VA n VB) U (VB - \1;)

(EA - Ei) U (EA nEB) U (EB - Ed

(GA - Gi) U (GA n GB) U (GB - Gi)

To demonstrate the concept of the merging operation, we provide the following

example: The base prototype is as in Figure 3.13. Change A is outlined in Figure 3.14, with

the result shown in Figure 3.15. Change B is outlined in Figures 3.16 and 3.17. The merging

operation is performed in Figure 3.18 and the result is shown in Figure 3.19.

The merge operation outlined in Figure 3.18 involves determining the real effect of

changes made to the base, and any conB.ict that may arise due to similar changes between the

two variations. This is a simple example illustrating the merging of two changed prototypes

which do not conB.ict with one another. In some cases, two changes to a prototype can

conflict with one another, and the result of their merging can be an inconsistent program.

In such cases, the engineer must resolve the conflict off· line.

38

Figure 3.13: Fish Fann Control System, Fillhiell

39

L::.. ,. Fishi es = VA A,VRA" EA,."ERA,CA ,.. ,CRA

V A.... {M anitor JJaderia-Levei, ControLWater ..Flow-.2, Display..status..2}
V RA {Control.Water ..Flow, DispiayStatu3}
EAA {(Bacter ia..5tatus : Monitor -Baderia-.Level --+ ControLW ater ..Flow..2),

(Bacteria: MonitorJiacteriaLeveI Display...status.2)
(02 s tatus: MonitoT_02 L evel-+ ControLWater ...Flow.2) ,
(N H3..5tatus : Monitor...l'l H3..Level -+ ControLW ater ..Flow.2),
(H20..status: Monitor J/20..Level_ ControLWater ...Flow...2) ,
(02: Monitor.02-Level_ Display...status.2),
(N H3: Monitor flH3...Lwel_ Display..status--'2),
(H20: MonitorJ/20...Level_ DispiayStatus...2),
(ActivateJnlet: ControLWater..Flow--.2 --I AdjustJnlet),
(Activat e.Drain: ControLWater..Flow..2 -+ AdjusLDrain),
(InleLSetting: AdjustJnlet -+ Display...status..2),
(Drain..5etting: Adjust...Drain DisplayStatus~),
(Feeding: Control...Feeder DisplayStatus~) }

ERA {(02Status: Monitor_02-.Levd ControLWater...Flow),
(/1/ H3Status : Monitor..N H3-.i-evd Control_Water ...Flow),
(H20 Status : Monitor -.R20...Leve/ ControLWater...Flow),
(02: Monitor_02-.Levd DisplayStatus),
(N H3: Monitor..NH3-.Levd DisplayStatus),
(H20: Monitor -.R20...Leve/ DisplayStatus),
(ActivateJnlet: ControLWater...Flow AdjustJnlet),
(Activate...Drain: ControLWater...Flow Adjust...Drain),
(InletSetting: AdjustJnlet DisplayStatus),
(DrainSetting: Adjust...Drain DisplayStatus) ,
(Feeding: Control...Feeder DisplayStatus)}

CA A {max_exec..lime(Monitor-Bacteria_Levd, lOOms),
max_exec..time(DisplayStatus~, lOOms),
max_exec..time(ControLW ater ...Flow.2, 200m3),
period(Control_Water ...Flow..2, 2000ms)}

CRA {max_exec..time(DisplayStatus, lOOms),
max_euc..time(C ontroLW ater ...Flow, 2ooms),
period(ControLW ater -Flow, 2000ms)}

Figure 3.14: Example of change AA applied to Fishies

40

tlBFishies
VA.
VR.
EA.
ER.

Figure 3.15: FishiesA

{VR8, VA B , EAs , ERB, CAB, CRB}
{}
{GeLF'eedingJ'ime}
{}
{(Feed~SchedlJ.l e: EXT -+ Gd..Feeding:fime),
(Feed_Schedule: GeLFeeding..Time --+ EXT)}

{}
{}

Figure 3.16: Example of change 6,B applied to Fishies

41

Figure 3.17: FishiesB

FishieSM = FishiesA[Fishies]FishiesB =
(FishiesA - Fishies) U(Fishi esAnFishiesB)U(FishicSB - Fishies)

VF;.h = V F •• hie [VFi.h'<o]VFi.hiooll =
(VFi.,,;~ ... - VPi.hi".)U(VFi.hie,,, n VPi''''eoB)U(VFi. hieoB - Vn •hiu)

B pi• hi = EFi.hie." [EFi.hi ..]EFi.hioos =
(BFi •hi - Bpiohi ..) U(EFi.hie ... nEFi.hi<OB)U(EFi.hieoB - EFi'hi")

CFiohi = CFi• hi [CFi.hi .. 1CFi'h;"'B =
(CFi •hi .. " - CFi.hi ..)U(CFi.hieo .. nCFi.hi"8)U(CFi.hi"'B - CFi.hie.)

Figure 3.18: Perlorming the Change-Merge Operation

"

Figure 3.19: Fishies M

43

There are a number of possible conflicts that can arise during the m~rging operation.

Conflicts arise when different changes applied to the prototype affect the same portion- of

the prototype in different ways. Some examples of conflicts are as follows:

1. One change adds an output edge to a vertex A, while another change removes

vertex A from the prototype. In this case, automatic resolution of the conflict is not yet

possible, so the system would have to announce that a conflict has occurred and give the

designer the opportunity to resolve it. In the case of such a conflict the construction produces

a graph that is nol well formed, in the sense that it has edges whose endpoints do nOl belong

to the vertex set of the graph and are distinct from the artificial node EXT that serves as

an endpoint for external flows.

2. The two changes assign different timing constraint values to the same operator,

i.e., (max_exec..time, F, 50ms) and (max_exec..time, F, 40ms). In this case, the conflict can

be handled automatically, since any operator that executes in under 40ms must also execute

in under 50ms. In situations where different maximum execution times have been assigned,

the minimum value can always be chosen. T his is also true oftwo different values for latency,

maximum response time, and finish within timing constraints. The minimum calling period

timing constraint would have to be merged using the maximum of the different values.

Different period values for the same operator io different changes result in a conflict that

would have to be resolved by the designer. Different control constralnts for the same part of

the prototype in different changes can also result in a conflict. Some of these conflicts can

be resolved automatically.

2. Analysis

The approximate method described above provides a method of cbange-merging

PSDL implementations that is closer to the semantically correct version than the first at

tempt, but impossible to prove correct. The next two chapters detail a slicing method for

44

change-merging which is easily prov~n correct. Chapter IV details a semantic morlel of PSDL,

a method of slicing PSDL programs, and a change-merge model which utilizes these slic~ to

create a merged version which preserves the significant changes in each of the two modified

versions. Chapter V detai ls the algorithm developed to implement this slicing method for

change-merging. This new slicing method has been implemented and integrated into the

CAPS development system.

G. CONDITIONAL MERGING OF WHILE-PROGRAMS

One of the main weaknesses of traditional approaches to data flow analysis and slicing is

insensitivity to the conditions under which data flows actually take effect. This problem has

prevented conflict-free merging of software changes that affect the same output variable, even

in cases where the changes affect disjoint portions of the input space. One way to improve on

this is to augment the dependency graphs with flow guards, so that disjoint partial flows can

be distinguished, and successfully merged. A software merge technique hased on conditional

slices captures a finer-grain picture of the threads in a program than merging based on

unconditional slices, and hence can produce more accurate program merges.

1. Conditional Flow Dependencies

There is a flow dependency between two statements in a while-program if a value

assigned by the first statement can be read by the second statement. Determining flow

dependencies exactly is undecidable in the general case [Ref. 13]. Conventional data flow

analysis calculates a weak approximation to the exact flow dependencies by assuming that

all paths in the control flow graph of a program are feasible. This method ignores the

possibility of infeasible paths and non-terminating loops because of its assumption that all

control predicates are satisfiable along all possible paths through the control flow graph.

45

Conventional flow analysis is guaranteed to find all flow dependencies, but it may report

som~ dependencies that are not really there.

In [Ref. 13], Berzins introduces conditional flow dependencies to provide Illore ac

curate computable approximations to exact data flow dependencies. A conditional flow

dependency is a conventional flow dependency augmented with a predicate describing the

conditions under which the data flow can take place. The predicates associated with the

data flows enable us to recognize disjoint flows and hence provide a more discriminating

model of the data flow dependencies in a program.

a. Flow Guards

The predicates associated with each conditional flow dependency are called

flow guards. The exact flow guard associated with a flow dependency carried by a variahle

v from a program statement .51 to another program statement .52 is true in a program state

S if and only if all of the following conditions hold:

1. Statement.'ll assigns a value to variable v when executed in state S.

2. Program execution will subsequently reach the statement 32.

3. Statement 52 will read the value assigned by statement 0$1 to variable v.

An approximate flow guard must be true whenever the exact flow guard is

true, and can be true in some cases where the exact flow guard is false. The set of all

approximate Bow guards forms a lattice with respect to the ordering defined by the logical

implication relation. The weakest approximate flow guard is true for all states, and the

strongest approximate Bow guard is the exact Bow guard. Conventional data Bow analysis

is equivalent to using the weakest approximate flow guards.

Checking whether C)::act flow guards are disjoint is undecidable in the general

case, as demonstrated hy the program shown in Figure 3.20. Statements are identified by the

46

line numbers shown on the left margin. The flow guard fOT the flow of:r from statement 1 to

statement 4 is disjoint from the Bow guard for the flow of y from statement 2 to statemel~t 4

if and only if the program fragment P shown on line 3 terminates, wbir.h is an undecidable

question. Since program merging algorithms based on conditional flow dependencies need to

check whether flow guards are disjoint , we seek representations for which disjointness cbecks

are decidable.

x:= 1
y:= 2
p

4 z;=:r+y

Figure :1.20: Undecidability of Disjointness for Guard Conditions

We can get approximate flow guards with decidable disjointness relations by

using a logic with restricted expressive power to represent the flow guards. One way to do

this is to use propositional guard predicates.

Propositional guard predicates are constructed from the Boolean constants true

and false, Boolean condition variables associated with the control predicates, the Boolean

connectives &, 1, and , and the modal operators of the form (P), where P is the condition

variable associated with the control predicate of a while loop in the program.

Propositional guard predicates are interpreted as follows. Condition variables

represent the value produced by the most recent evaluation of the associated control predi-

cate. The connectives &, I, and represent the "and", "or" and "not" operators of standard

propositional logic.

47

p = (V.) "begin" (V.) "is" 5 "end" (V.)
s= V:= E

15;5
I "if" E "then" S "else" SUfi"
I "while" E "do" S "ad"

Figure 3.21: While Program Grammar

h. Conditional Dependency Graphs

Conditional flow dependencies are represented by a conditional program de

pendency graph. A conditional program dependency graph consists of a set of vertices and

a set of edges. The set of vertices contains a vertex for each assignment statement, an

initiaL,!;tate vertex, and a final vertex for each output variable. The set of edges repre

sent conditional flow dependencies and control dependencies. Control dependency edges are

needed to provide a flow path between two sequential parts of a program which do not share

any variables. Control dependency edges are identical to flow dependency edges that do not

carry a variable.

We illustrate the construction of a conditional flow graph in terms of a simple

imperative programming language that provides assignments to scalar variables, sequencing,

conditionals, and while loops. This language of while-programs does not have any explicit

input or output statements, and is defined by the grammar shown in Figure 3.21.

The nonterminals P, 5, E, and V represent while-programs, sta.tements, ex·

pressions, and variables, respectively. The Kleene star (*) denotes zero or more instances of

the preceding symbol.

The input variables of a while-program are listed before the "begin", and the

output variables are listed after tbe "end". All other program variables are listed between

the keywords "begin" and "is". The meaning of a. program is characterized by the final values

of its outrut variables. The meaning of a program statement is characterized by its effect

48

on the program state. The program statl:: cor.sists of the valul::s bound to all of the prog;am

variables. The meaning of a~ expression is characterized by t!le va\t!e of the expression in

the current program stak. The evaluation of an expressiou ca:lllot affect the program s~ate.

An attribute grammar is provided in [Ref. 13) for constructing the conditional

flow graph for a while-program. The noaes of the flow graph correspond to the assignment

statements in the program, along with an extra initial vertex and a final vertex for each

output variable. Each node is associated with an ~ucution guard. The execution guard is a

predicate that represents the set of program states in which the statement can be exeC11ted.

Each edge of the flow graph is associated witb a variable name and a flow guard. The

variable name identifies the data carried by the edge. The flow guard is a predicate tbat

represents tbe set of program states in which the valne of the variable flows along the edge

Tbe flow guard is the conjunction oi the conditions that the source node is executed, that

the destination node is executed, and that all loops on the control path from the source

node to the destination node terminate. Since each node can define the value of at most one

variable, there can be at most one edge between any pair of nodes in the flow graph. An

example of a Conditional Flow Graph is shown in Figure 3.22.

Basc(x)

begin
y:"O:
ifx>O

whilex>Odo
y:- y +~;
x:=x-l;

<XI

whilex<Ooo
y:=y_x:
x :_x+ 1;

<XI
end if:

cnd(y):

Figure 3.22: An Example of a Conditional Dependency Graph

49

2. Conditional Slices

A slice of a program isolates that portion of the code which affects the program

behavior with respect to some program statement. A conditional slice must differeutiate

between portions of the code that affect the meaning of that program statement, but under

different conditions. We define a condit ional slice of a while·program, with respect to a

program statemeut and a flow guard, on the program's conditional dependence graph, G

For program st atement, S and flow guard, P, the slice of G with respect to Sand

P, G/{S, P} is a suhgraph of G and contains all vertices IIi E G, such that there is a path

from v; to S along control dependence edges or flow dependence edges not labeled with the

flow guard,," P. The edges in the slice are all of the edges that connect t he vertices in the

slice. An example of a. conditional slice is shown in Figure 3.23.

SliceslJ..;x)(FinaJ(y).p)

tJ,o,gin
y:=O;
if;\;> 0

Q while;\; >0 do
y: .. y+ ;\;;

od
end if;

end(y);

t

Figure 3.23: Slice Base/{Final(y),P}

50

A conditional slice of a orograffi is itself it. pro~dm, as i t contains a ll of the orig

inal program coae whic~ alTeets the values computed at the fi nal vertex when t~e input is

restricted to only those :nputs wh ich satisfy the given con dit ions

3. Conditional Program Merging

Other approaches to merging while-programs use pieces of each of the input versions

to perform the merge[Ref. 28, 48]. One oi these program pieces is the part of the two modified

versions which is the same. This part is known as the preserved part. The remainder of the

merged program comes from that part of each of the modified versions which is different

from the base. These parts are called the affected parts of each modification. Construction

of these program pieces is done using program slicing.

The preserved part is constructed by comparing slices of each of the modified

versions with respect to subsets of the program statements. The largest subset of program

statements that h1l.'l the same slice in all three versions defines the preserved part. The

affected part oi each of the modified versions is constructed by comparing the slice of the

modification with respect to each of its vertices against the same slice oi the b1l.'le version.

If the slices are different in the modification and the base, then that slice is in the affected

part.

One of the problems inherent in this method of program merging is its inability to

distinguish between different changes to the same slice which cannot interfere. Conditional

slicing alleviates this problem by allowing the different computation paths which can never

be executed for the same input to be considered separately.

Using conditional slicing, we calculate the affected part of a modified version by

comparing slices of the modified version with respect to the program statements and the set

of all possible truth values of the conditional gllard predicates at that statement. In this

way, two different paths to the same statement which cannot be taken on a single input are

51

not contained in the same slice, thus changes to one path do not necessarily affect the slice

containing the other path.

The merged program is then constructed in the same way as the unconditional

method, by taking the graph union of the preserved part and the affected parts of both

modifications.

Consider the example outlined in Figures 3.24 through 3.29 . in this example, the

base version is the same as that shown in Figure 3.22 and contains a conditional expression

that partitions the input space into positive and negative integers. If the input value of x

is negative, then one set of statements is executed and if it is positive, then another set of

statements is executed. In Figure 3.24, you see a change made to the then branch of the

conditional expression. In Figure 3.25, you see a change to the else branch of the conditional.

Since both of these branches affect the same output variable, y, the traditional approach to

merging would report a conflict and the merge would fail. This should not be the case,

however, since these two changes can never interfere.

begin
y:=O;
ifx>O

whilex>Odo
y:z y* x;
c,;x - l:

""
whilex<Odo

y:'" y-x:
x:=x+ 1;

"" end if:
end(y):

Figure 3.24: Version A

52

B(x)

begin
y:=O;
ifx:>O

then
whilex:>Odo

Y :=Y + x:
x:"'x-I:

whilex<Odo
y :=y Ix;
x:=x+ 1:

'" end if:
end(yJ;

Figure 3.25: Version 8

Figure 3.26: Preserved Part of all Three Versions

53

Figure 3.27: Affected Part of Version A

Figure 3.28: Affected Part of Version B

Merge(x)

begin
y~O;

ifx>O

whilex>Ooo
y:=y" r.
x:=x -1;

od

wh.ile x<:Odo
y:-y!r.
x:",x+ I:

od
end if;

end(y);

Figure 3.29: Merged Version

55

IV. SEMANTIC MODEL

in this cbapter we describe our model for the behavior of prototypes, present our slicing

method for change-merging prototypes, and present an invariance theorem that guarantees

our method is correct.

A. PROTOTYPING SYSTEM DESCRIPTION LANGUAGE

The Prototyping System Description Language (PSDL) is an enhanced da.ta flow Ian·

guage that can be used to specify and implement prototypes of real-time embedded software.

PSDL programs are inherently non-deterministic and can he executed in parallel [Ref. 32J.

This section describes a semantic execution model for F5DL programs.

1. Overview of PSDL Semantics

OUT change-merging method is based on the behavior of the input programs and not

on their syntax. In this section we define a behavior model for PSDL that we can use to prove

our invariance theorem. The semantics of PSDL have been modeled using algebraic high-level

Petri nets [Ref. 3~. We chose a different model which is more applicable to our problem. We

chose to model the behavior of a prototype by observing the data fiow history over its data

streams. A prototype's behavior is represented by sets of possible histories over the streams

we call trace....tuples. These trace_tuples are composed of sequences of data-tuples called

trncl!.5. Each trace_tuple contains precisely one trace per stream. Since PSDL prototypes are

non-deterministic, one trace.tuple does not necessarily reflect the set of possible histories

associated with a prototype, thus we must consider the behavior of a prototype to be the

set of all possible tra.ce..tuples over its data streams. Since PSDL prototypes are intended

56

to prototype embedded real-time systems, which may never be turn~d off, this behavior is

likely to be of infinite length . We llse trace_tuples as the base uDit for our inductive proof of

the invariancc theorem in Sectiou B.2 of this chapter. The following subsections describe the

model starting wi th traces and huilding up to the hehavior of a prototype, and the possibility

functions we usc to construct the behaviors.

2. Traces

The rustory of a PSDL computation can he described by the histories of all the

data streams, called traces. A trace on a data stream x, denoted Too, is the sequence of all

data tuples on the stream. Each data tuple contains a data element :1:;' the name 0i of the

operator responsible for writing Xi to the stream, the time tw; that Xi was written to the

stream, and the time IT; at which OJ read its input streams to start the computation that

produced Xi. A data tuple represents the assertion that the value X; was produced by an

execution of OJ that started at time tr; and finished at time tWi.

Example 1 Truce on a stn:am *

Since PSDL was designed for writing prototypes of real-time embedded software

systems that may never be turned off once started, traces can be finite or counlably infinite.

The initial data tuple on a data stream is [x(J -+ 1.,00 -+ 1., two -+ 0, tro -+ OJ, where

.1 represents an undefined value, unless the stream is declared as a stale variable with an

initial value, in which case t he initial data tuple would be [xo -+ U,Oo -+ DECLOP, two -+

0, tro -+ OJ . DECL_OP is the operator in which the state declaration appears, and v is the

initial value assigned in that declaration. For example, if the state stream is declared in an

operator p by the declaratioll statement STATE X INITIALLY 3, then the initial data

tuple on the stream would he [3,p,0 ,Oj. Since every trace contains an init ial data tuple,

we see that all traces are non-empty and that the minimum length of a trace is one. In a

57

data flow stream, when a data clement is removed from the stream and there is not another

clement on the stream, the value and the operator name elements are replaced by .i.

The write times tWj for a given stream form a monotonically increasing sequence

of numbers that represent the amount of time elapsed between when the prototype began

execution and when the value was available on the stream. The read times trj for a given

stream form a monotonically increasing sequence of numbers; the ith element in the sequence

represents the amount of timeeiapsed between when the prototype began execution and when

the operator OJ read its input streams at the start of the computation responsible for Xj.

If an operator fails to terminate on any firing, t hen the trace on any of its output

streams contalns only the values which were written to the stream before the firing in which

the operator fai led to terminate. If the fallure to t erminate occurs during the first firing and

no other operator can write to the stream, the trace contains only the data tuple representing

the initial value.

A trace, T", can also be represented by a stream function from a write time to a

triple containing the ualue, the id of the operntor which wrote the value and the read time:

q, : TIME --+ TYPE(x) x OPJD X TIME, where TYPE(x) denotes the set of all

possible values that can be written to the stream x , OPrD is the set of all possible operators

that can write to the stream, and TIME is a non-negative real number. We chose time to

be a cont inuous value since prototypes can be executed in parallel, and we cannot guarantee

that different processors will execute a precisely the same speeds.

Example 2 Stream Function Representation jor a Tra ce

A trace jor a stream x is:

58

The stream function ~pJ"/:s entation for this trace t/'Quld be:

{
[0,3) - [~ ,~ , Ol

IV r = [3,7) - [x l ,0,2]
[7,00) ---+ [x2,p ,6]

In order to use these different representations interchangeably, we need to show

that they are equivalent. Consider the function, $, shown in Figure 4.1. 4> is a bijection

that maps a sequence of data tuples into a step function, IV, which is continuous only from

the right.

llI(t) =)~~, Vt

Limits from the left are not preserved at the boundaries between the data tuples, however.

Theorem 2 $ is well-defined and a bijection when rtstricted to right continuous st~p func
tions with countable range sets.

fu.cl: Sec Appendix C.

41(7,.-) = IV"" where \I1",(t) = [xn,On, trnl
whert'~ [xn, On, twIl , trnl E 'Tr, n E N & tWn ::; t & (n = length(T~) or tWn+! > t)

q,-l(W r) = 1"", where [x;, 0, tWi, trj] E To: iff

(~.,(tWj) = [x;,o,tril & tWi = mint(qi.,{t) = [x;,o,triD)

Figure 4.1: cf!: Traces -----> FunciionRepre.!ientations

The meaning of an operator is characterized by a relation between the traces on

the input streams and the traces on the output streams. If a data stream receives input from

more than one producer, then we must have a method for merging multiple traces into one

to determine the behavior of the entire system. The merge function, defined in Appendix

A, Section 3, provides this method for two traces, A and B. It can easily be generalized to

any finite number of traces.

59

A strw.m behavior for a stream x, flr' is the set of all possible traces for :x. Since a

PSDL computation can be non-deterministic, the history of a computation is represented by

the set of all possible traces for a given PSDL stream. Since the complete stream behavior

for a data stream in a PSDL prototype may not be visible from outside the prototype, it

is necessary for us to consider both visihle and generated stream hehaviors for a stream. A

visible stream behavior for a stream x is a set of traces written to x by an external producer.

Each trace in the visible stream behavior of x is a subsequence of some trace in the complete

stream behavior for x. The part of the stream behavior which is not produced externally,

we call the generated stream behavior. The traces in the generated stream behavior for .T

are also subsequences of traces in the complete stream behavior for.T. For example, consider

either of the prototypes in Figure 4.2. Each trace in the stream behavior of x, is a sequence

which contains as subsequences the traces on the hidden and visible parts of x. Thus the

visible behavior and the generated behavior are both projections of the complete stream

behavior.

A truncated trace for a stream x, 'Tr I k, is a finite prefix of'T", for which length('Tr I
k = min(length('T,,),k) A tntncated stream behavior for a stream x, {3., I k is the set of all

possible truncated traces, 'Tz; I k.

3. Trace Tuples and Prototype Behaviors

A trace tuple is a tuple containing a trace for each stream in a prototype. A trace

tuple can be projected downward to any subset of the streams in a prototype, say X, by

including in the projected trace tuple only those traces on the streams in X. A trace tuple,

T, projected downward to a subset X of the streams of the prototype is represented as Tx.

60

HE - Hidden Behavior
GB -Given Behavior
SB .Stream Behavior

Figure 4.2: Example of prototypes with generated stream behaviors.

61

An example of a trace t uple over the set of data streams in a prototype E{P) is

(7r " 1'""" .. " 7"r.), Ij E E(P). A visible trace tuple is a tuple of visible traces for each stream

in the prototype. A tMJ1Icatrd trace tuple is a trace tuple containing only truncated traces:

A trace tuple can also be viewed as a vector-valued stream function by extending

the function 4> to trace tuples according to the rule:

$(("<;"","<))(,) = ($("<,)(,), ... ,$("<){,)) = "(t)

w(t) is a vector containing ODe data tuple from each trace in the trace tuple, the value

present on each stream at time t. Using ¢I, we can also view a trace tuple as a sequence of

vectors, where each vector contains the data tuple present on each stream at a write time t

for one of the streams in the tuple.

Example 3 Example of a Trace Tuple on two streams.

For a set of streams X = {x, y} with Tr = [[.1,.1,0, OJ, [x" 0, 2,3], [x~,p, 6, 7]] and

T~ = [[.1,.1,0,0], [y), 0,3, 5]. [Y2, 0, 7, 9]], the resulting trace tuple is:

([[.L,.L, 0, 0], [x" 0, 2, 3], [x"p,6, 7]J, [[.L,.L, 0, 01, [y" 0, 3, 5[, [y" 0, 7, 9J[)

and the corresponding function representation is:

[0,3) ([.L,.L,01,[.L,.L,01l
[3,5) ([x,,0,2],[.L,.L,01l
[5,7) ([x"0,2],[,,,0,311
[7,9) ([x"p,6],[,,,0,311
[9,00) ([x"p, 6], [",0,711

Since PSDL is non-deterministic, there may he many possible trace tuples for a

prototype P. We call the set of all possible trace tuples for the data streams in P, the

prototype behavior of P, and we represent it as B .

62

A prototype behavior can also be projected downward to any suuset of the streams

in a prototype, say X, by including ill the projected data flow history only the possible

projected trace tuples over X. A projected data flow history over a sct of streams X is

represented as Ex. An input prototype behavior for a prototype P is the set of all possible

visible trace tuples over the streams ill P.

Example 4 Example of a projected prototype behavior 0'1 a set containing two streams.

Consider the following set X = {x,y}, where the stream behavior for x is a single

trace, [[1.,.1,0,0], [x!, 0, 2, 3], [X2,P, 6, 7JJ and the stream behavior for y contains two dif

ferent traces, {[[.l, 1., 0,0]. [YI. 0, 3,5], [Y1, 0, 7, 9]], [[.1.,.1.,0,0], [Yl, 0, 4, 6), (Y2, 0, 6, 8)]). Then

the resulting prototype behavior, Ex is:

({[[.L,.L, 0, 0), [x" 0, 2, 3), [x"p, 6, 7[[, [[.L,.L, 0, 0), [",0, 3, 5[, I"~, 0, 7, 9[[),

([[.L,.L, 0, 0), [x"o, 2, 3[, [x"p, 6, 7[[, [[.L,.L, 0, a), [,,, 0, 4, 6), [",0, 6, 8[[)}

The function representation corresponding to Ex is:

)0,3} ([.L,.L,O), [.L,.L,01l
[3,5} ([x" 0, 2), [.L,.L, all
[5,7} ([x"o,2),[,,,o,311
[7,9) ([x"p,6),[",o,3))
[9,00) ([x"p,6), I"~, 0, 7)),

[0,3} ([.L,.L,O), [.L,.L,O))
[3,5} ([x" 0, 2), [.L,.L,01l
[5,6) ([x"o,2),[,,,o,4))
[6,S} ([x"p,6),),,,o,411
[S,oo) ([x"p,6),[",o,6)) }

A truncated prototype behavior, B I k is the set of all possible truncated trace tuples, up to

length k.

To prove our slice behavior invariance theorem, we also need to extend truncated

trace tuples of length k to length k + 1 hy adding one data tuple onto selected traces in

63

the trace tuple. We define an incremental trace tuple to be a vector of sequences of data

tuples over a set of streams, where the length of each sequence is either zero or one, and the

write times fOT all of the data tuplc~ arc the samc. An incremental trace tuple represents the

output caused by one firing of a set of zero or more operators writing to different streams of

tbe prototype. We Deed a functioD ffi for appending sets of possible incremental trace tuples

on to the end of a truncated trace tuple. The e function is defined in Appendix A. This

function lakes as operands, a truncated trace tuple over the streams in a prototype and a

set of possible incremental trace tuples over the streams in the prototype, and it produces

the set of all possible trace tuples resulting from adding each of the incremental trace tuples

onto the end of the corresponding sequence in the original trace tuple, for each data stream.

Figure 4.3 shows a summary of the constructs defined in the semantic model of PSDL.

time
dataJuple{t: type}
trace
str eam..behavior
trace..tuple
incrementalJraceJuple
prototype_behavior

{xE~lx:::O}
tuple{x: t,o: op-id,tr,tw: time}
sequence{ data.Juple}
set{trace}
tuple{ stream, : trace}
vedor{t: trace} :: length(t) :$ 1
set{traaJuple}

Figure 4.3: Summary of Model Constructs

4. Possibility Functions

Each operator in a PSDL prototype has an input history and an output history.

The input history of an operator 0 is defined as the prototype's behavior projected over the

input streams of 0, B[(oh and the output history of 0 is the set of all possihle trace tuples

written by 0 to its output streams.

In a PSDL prototype, when an operator fires, it reads one data value from each of

its input streams and writes at most one output value to each of its output streams. The data

64

values written and the streams they are written to are determined by the semantic meani ng

of the PSDL operator and the associated control constraints. Since PSDL op~rators~re

non-deterministic, their meanings are possibility functions . For every possible input, there

is a set of possible outputs.

To define the possibility function for an operator 0, Y;C luok at a trace tuple pro

jection of the behavior tY E B/(o) as a sequence of input vectors to o. For every finite prefix

of cr applied to 0, the result is a set of possible incremental trace tuples over the output

streams of o. This is the possibility function for 0, :To : B/(e) -. Bo(o}_ :;:0 takes as input

a projected trace tuple over the input streams of 0 and a read time, and produces a set of

possible behavior projections over the output streams of o. The read time is the time at

which the last read operation was performed by 0 on its input streams, and defines which

values were read by 0 to perform this computation.

Example 5 Possibility function for an operator p which implements the function:

F, ~ {({3}, 9), ({3, -4), 16), ({3, -4, 9), 81), ", ({3, -4, 9, ... ,x.), x.'), ... }

Example 6 Possibility function for an operator q which implements the state machine:

F, ~ {({3},3), ({3,-4},-1),({3, -',9},8), ... , ({3, -4,9, .. ,xd, (~x,) + x.) , ...)

In example 5 you will notice that the y value of each pair is dependent only on the

most current value written to the input stream x. In example 6 the y value of each pair is

dependent not only on the most current value written to the input stream x, but also on the

previolls value of y.

65

The effccb oC all PSDL control constraints can be expressed a.'l transfo~mat ions

on the possihility function of a. bare primitive operator. The effect of each type of <"-Outro]

constraint OIl a possibility funct ion is defined explicitly in Appelldix B. In the rest of this

chapter, we assume that the possibility function for each operator includes the effects of any

associated control constraints.

To analyze the effects of various approaches to change merging, we assume that

the possibility function for a network of PSDL operators can be derived from the possibility

funct ions for the individual operators in the network. This can be done as follows .

We consider a prototype P to be a network of operators connected by the data

streams of P, with behavior B. B is the behavior of the entire prototype. Each operator

contributes to this behavior by reading from its input streams and writing to its output

streams. The values written are determined by the possibility function of the operator. We

can derive the possibility function for the prototype P from the possibility functions of the

individual operaturs using the following construction:

Fp~ U [U (EB (U (U !:.(t,Jal(E(P),Fo(T"o),tC))))))]
TED Sep(v(P)) oES p(T,o)<jr jr<!

This construction produces a set of iocremeotaLtrace..tuples over all of the streams

in P. The pussibility function for each individual operator Fo is at the heart of this coo

·struction. It produces a set of incrementaltrace..tuples over its output streams. This incre·

mentaltrace..tuple is extended to cover all of the streams in the prototype by the function

fill. The function l!. is then used to isolate each incrementaLtrace..tuple attributable to a

particular read time tr and these are combined over all possible read times up to the current

time t. These incrementaltrace..tuples are then combined using the function p to pick out

the latest possible write time or read time depending on whether the operator contains a

feedback loop. Each of these sets of incrementaltrace..tuples for individual operators are

then combined with sets produced by other operators in the subset S using the function ffi.

This is done for every possible subset S in the powerset of the vertices of P. Finally, these

66

sets of incrementaLtrace_tuples are combin~d for every possible trace..tuple in the behavior

Bof P.

To constrnct the truncated behavior of P of size k, we have to not only produce

the set of incrementaLtrace_tuples, we have to append them to the set of truncated trace

tuples of siz~ k - 1. That can be done as follows:

Blk~ U [U [T<ll(EfJ(U (Ut.("/ill(E(P),Y.(T,,o,,'"))))))]]
TEBI(k-i) 5EP(V(P)) 0(5 p(T,o)<tr "<I

This construction is identical to the previous construction up to the point where the combina-

tion over subsets occurs. At this point, we must append the set of incrementaLtrace...tuples

produced by the ffi func tion for each subset of the operators to the trace_tuple T in the

truncated behavior B I (k - 1). This guarantees us that we have considered every possible

combination of operators firing a t precisely the same time. The result of this construction

is then a set of possible trace tuples truncated at length k. This construction assumes that

the truncated B of size k - 1 is known. Precise definitions for the functions ffi, ~, p and fill

can be found in Appendix A.

In our work, we assume that execution of the prototype is ~fair~, in the sense

that, any operator which terminates in isolation will terminate when executed as part of

a prototype. Failure of an operator to terminate is represented by a possibility function

that gives the same set of possible output sequences for aU possible extensions of an input

sequence that fails to terminate.

B. SLICING OF PSDL PROTOTYPES

As we saw in Chapter III, Section C.2, a portion of a program's behavior can be

captured by a slice of the program with respect to a single point in the program. We

have deVeloped a similar method that is also valid for isolating a portion of the behavior of

a prototype. This section describes our method for taking slices of PSDL prototypes. One

of the differences be tween slicing for PSDL prototypes and slicing for whi le programs is that

PSDL programs are inherent ly concurrent and non·determini~tic. \Vhile programs repre~~nt

individual deterministic sequential processes. This represents a major contribution of this

work.

1. Prototype Dependence Graphs

Since PSDL implementations are grapbs, we do not need a deep transformation to

translate our prototypes into graphs as is the case for while programs. The only information

we need to add to the current PSDL implementat ion graph are dependencies resulting from

timer interactions, and an external vertex. The external vertex is added to allow slices of

prototypes with vertices that have no outputs to include those vertices. The following defines

our Prototype Dependence Graph (PDG):

Definition 4 PSDL Prototype Dependence Graph:

A Prototype Dependence Graph (pDG) for a prototyp~ P is a fully ~xpand~d 1

PSDL impl~m~ntation graph G p . In the PDG, G p = (\I, E, e), th~ set of v~rtic~s has been
augmented with an etiernalvertez, EXT, and the set of ooges, E, ha3 been augmented with
a timer dependency edge from 01 to OJ, for fflch pair of vertices OJ, OJ E V such that the
control constraints of OJ contain timer operations which affect the state of a timer read by
the control constraints of OJ •

Values on a timer dependency edge can be modeled precisely in the same way as

values on a data stream. A data_tuple on a timer dependency edge can be viewed as a tuple

containing the following for each of the tuple components:

v: A pair (c, t) containing the operation c E (Start, Stop, Reset) that last changed
the state of the timer and the value t of t he timer at the time of the state change.

op: The id of the operator which last changed t he state of the timer.
tw: The time of the last state change.
tr: The time that op read its input streams before the firing

that produced the state change in v .

I A fully exp&lIded PSDL implemelltation graph is aile i ll which every vertex represents all atomic operator .

68

For example, cOIlsider the data_tuple [(start,25),p,36,34] on the timer stream

Timerl. In this example, the v element of the data tuple is the pair (start,25), the'op

element is p, the write_time is 36, and the read_time is 34. This means that th", operator p

read its streams at time 34, started the timer Timerl at time 36, and the current valae of

the timer when the state change was executed was 25. This view of timer dependency edges

allows us to treat them the same as allY uther edge in the graph.

Top level prototypes do Dot contain inpllts or outputs, so there will always be

vertices which do not write to a stream. Since we constnlCt our slices from sets of streams

and not from vertices, as in slicing of while programs, these vertices could never be included

in a slice. The external vertex is added to provide a way t o capture thesc vertices during

slicing. During construction of the PDG for a prototype, an artificial edge is added to the

graph from any vertex which does not write to an output stream to the external vertex

EXT. These edges are then considered in the construction of the slices of the prototype,

thus allowing tllOse terminal vertices an opportunity to be included. Only one external

vertex is needed for this graph, because each artificial edge added is given a unique name,

and considered separately in the construction of the slice.

2. Slicing Theorem

A slice of a PSDL prototype is defined in terms of the prototype's dependence

graph. It contains the portion of the prototype which affects the bistory of a set of streams.

This is useful in isolating changes made to a base version of a prototype in a modification.

If the slices of two versions with respect to the same set of streams are different, then there

are significant changes that have been made to one version and not the other.

Informally, a slice is an upstream closure of a set of edges in the graph that includes

all the source nodes for the edges in the slice. A formal definition of a slice follows:

69

Definition 5 Slice of a PSDL Prototype:

A slice Sp(X) of a PSDL prototype P with respect to a set of data strMms X i~

the subpraph (V, E, C j of th ~ PDG Gp when:

(lJ V i.~ th ,. smallest sd thai coniuin.s all vertices OJ E G p that satisfy at I~ast one

of the following conditions:

a) 0i writes to one of the data streams in X.

b) OJ precedes OJ in G p , and OJ E V.

(2) E is the smallest set that contains all of the edges Xk E G p which satisfy at
l=~t one 0/ th e following conditions:

a)XkEX.

b) Ik is direded to some OJ E V.

(9) C is the smallest set that contains all of th e timing and control constraints
associated with cuch operator in V and each data stream in E.

Example 7 Figure ,f.,f shows a prototype for a fish farm control system called Fishi es.
Figures .f .5, .f. 6 and ,f. 7 display different slices oj Fishies.

Theorem 3 Slicing Theorem for PSDL Prototypes:

Let Sp{X) be th~ slice of a prototype P with r~spect to a set of streams X. Then

Sp(X) and P have the same behavior on any subset of the streams in Sp{X) .

The proof of this theorem is contained in Appendix C, Section 2. The significance

of this theorem is that a slice captures a fragment of the semantic behavior of a prototype,

and the behavior captured by that slice remains the same even if that slice is made a part of

a different prototype, provided that it is also a slice with respect to that new prototype. This

property is the basis for constructing a change merging operation that can provide semantic

guarantees of correctness.

70

Figure 4.4: Fish Farm Control System, Fishiesl.l

Figure 4.5: SF;,hi .. ,., (02, N Jl3, H20)

71

Figure 4.6: SFi.hiu" (DrainScttin.q)

Figure 4.7: S Fuhi .. ,., (DrainSctting , JrtlcLSetting)

C. A SLICING METHOD FOR CHANGE-MERGING PSDL
PROTOTYPES

O,IT change-merging method for PSDL prototypes, illustrated in Figur.,~ 4.12 through

1.,15 on the prototype ,'ersiolls originally introduced in Chapter III and shown again in

Figures 4.4, 4.8 aod 4.9 uses prototype slicing to determine automatically which parts of the

prototype bave heen affected by a change and which parts have b.,eo preserved.

Figure 4.8: Fishies1.2

If the slice of a changed version of a prototype with respect to a stream present in

both the base versioo and the modified version is different than th e same slice of the base

version, then the behavior on that slice is likely to be different. Therefore that change is

significant, and must he preserved in the merged version. For example, consider t he slice

of Fishi esl.l with respect to the stream Activat~rain, illustrated in Figure 4.10 , and the

73

Figure 4.9; Fi8hies~.~

74

same slice of Fi.,hieS1.2, illustrated in Figure 4.11. It is easy to see .. purtion of the effect of

the change wbich produced Fishie.,l.2 from Fi.,hiesl.l' If we ""'''re to take the same slic~ of

Fishies2.2, we would discover that it is identical to the slice of the base versiun of Fishies.

This illustrates that this part of the Fishics prototype is not affected by the change which

produced Fi$hies~.l' Since this change is significant, it must be reflected in the merged

version.

Figure 4.10: SF;.M .. l.l(Adivate-Drain)

Slices are important because they capture all of the parts of a program that can affect

the behavior visible in a set of data streams. If two different programs bave the same slice for

a set of streams, they also bave the same behavior over that set of streams. The preserved

part of a prototype is then the largest set of streams that have the same single stream slice

in aU three versions, and the affected streams of each modification are those that have a

different single stream slice in the modified version than in the base version. Performing

a chaDge-merge using Fi.shiesl.l as the base version, and Fi.shie.s1.2 and Pishies1.2 as the

modified versions, we get the preserved part as shown in Figure 4.12 and affected parts as

shown in Figures 4.13 aDd 4.14.

75

Figure 4.11: SFi~h; •• l.' (Activate-.Drain)

Figure 4.12: Preserved Parts of Fishiesl .l in Both Modifications

76

Figllrc 4.13: Affcctpd Part of Fishiesl_2

Figure 4.14 : Affected Part of Fishie.';2.2

77

~~.'
Feed sm.dul.

COOIl<ol
,~"

In constructing the preserved part, we con~ i der each stream individually, taking the

slice of each version with respect to that stream. If the slices afC the same, then that slice

is added to the preserved part. After all streams have been checked , the preserved part is

complete.

The affected parts are constructed by comparing the slices of each stream in the IIlodified

version against the same slice of the base version. The stream is included in the affected

part if the slices afC different.

The merged version is formed by taking the union of the preserved part of all three

versions and the affected parts of the two modified versions. If the slice of the merged version

with respect to the streams affected by each modification is the same as the corresponding

slice of the modified version, then semantic correctness of the merged version with respect

to the modifications is established. The result of change-merging Fishiesl.l, Fishiesl.2 and

Fishies2.1 is shown in Figure 4.15.

Our slicing method h~ the advantage of a dear semantic criterion for correctness, and

the disadvantage of reporting conflicts whenever two changes can affect the same stream,

regardless of whether there exists a computation history in which the two changes actually

interact or conflict with each other.

78

Figure 4.15: The Change-Merged Version of the Fishies Prototype.

79

V. CHANGE-MERGE ALGORITHM

From the change-merging models for both the specification, shown in Chapter III, and

the implementation, shown in Chapter IV, we developed a change-merging algorithm. This

change-merging algorithm takes advantage of the fact t hat the specification and implemen

tation can he change-merged separately to create a correctly change-merged program. This

chapter outlines the change-merging algorithm in detail and provides a piece by piece analy

sis of the algorithm for correctness, complexity and coverage. This algorithm was written to

accept a base version and two modifications as input. It is easily extended to change-merge

the resul t of n modifications to a base version by applying the algorithm iteratively using

the result of the most recent application as one input and the next modification as the other.

The result of a successful iterative application on n versions is a merged version containing

the significant behaviors of each of the inputs.

The algorithm changeJnerge accepts three expanded versions of a PSDL program as

input. It then extracts all of the PSDL components from each version of the program.

The atomic components are held in storage to be included in the change-merged version

of the program if needed, and the composite component of each program is divided into a

specification part and an implementation part.

Each of these parts are change-merged separately and the results are recombined to cre

ate the change-merged composite component. From the implementation part of the change

merged composite component, the algorithm can deduce which of the atomic components

need to he included in the change-merged program. The change-merged program is then re

turned. If a conBict is detected during the change-merging process , the CONPLICTvariahle

is set to true, and a Bag is placed into the change-merged program at the locat ion of the

conBict to aid the designer in locating and resolving it. Figure 5.1 shows the change-merge

algorithm.

80

Algorithm changc...rncrge(BAS£',A,B: in psdLprogram; CONFLICT: out boolean)
return psdLprogram

begin
1. Extract the psdLcomponeots from each of the input psdLprograms.
2. Change-merge the specification parts for the three input composite components.

a. Change-merge the state declarations.
h. Change-merge the exception declarations.
c. Change-merge the maximum execution times.
d. Change-merge the fonnal and infonnal descriptions.

3. Change-merge the implementation parts for the three input composite components.
a. Create the prototype dependency graphs for each version.
h. Create the affected parts of each modified version.
c. Create the preserved part of the base in aU three versions.
d. Change-merge the graphs.
c. Change-merge the stream declarations.
f. Change-merge the timer declarations.
g. Change-merge the control constraints.

(1) Change-merge the trigger constraints.
(2) Change-merge the execution guard constraints.
(3) Change-merge the periods.
(4) Change-merge the finish_withins.
(5) Change-merge the minimum calling periods.
(6) Change-merge the maximum response times.
(7) Challge-merge the output guard constraints.
(8) Change-merge the exception trigger constraints.
(9) Change-merge the timer operations.

4. Create the change-merged program.
a. Combine the change-merged specification and implementation.
b. From the resulting implementation, deterrillne which of the atomic components

from each of the input versions is to be included in the change-merged program.
5. Return the change-merged progra.m.

end Change..Merge;

Figure 5.1: Algorithm change.ITlerge.

81

A. EXTRACTING THE COMPONENTS

Extracting the components from each of the input PSDL programs is clone using a

map f etch operation . The algorithm loops through each of the input programs and retrieves

the set of components each one contains. The atomic components arc placed in a holding

program so they can be retrieved later if needed for the merged program, and the composite

component is extracted for change-merging. Tbe algorithm fragment used to extract the

components is shown in Figure 5.2.

a. For every component in the Base Version loop
(1) Fetch the component;
(2) If the component is atomic then bind to holding program for base version;
(3) else extract the component; end if; end loop;

h. For every component in the A Version loop
(1) Fetch the component;
(2) If the component is atomic then bind to holding program Cor base version;
(3) else extract the component; end if; end loop;

c. For every component in the B Version loop
(1) Fetch the component;
(2) If the component is atomic then bind t o holding program for hase version;
(3) else extract the component; end iC; end loop;

Figure 5.2: Algorithm Fragment for Extracting the Component.

The extraction part of the algorithm requires a loop through t he components of each

version to perform the fetch. The correctness of this algorithm fragment can be shown using

simple induction. Since the operations inside the loop are constant and the loop is executed

only once for each component of each program, the worst-case complexity of this part of the

algorithm is O(n), where n is the number of components in the program. This algorithm

fragmcnt can be used for all fully expanded PSDL programs, since they contain only onc

composite component.

82

B. CHANGE-MERGING THE SPECIFICATIONS

Change-merging the specification of the top level component requires five operations.

The five operations are responsible for change-merging the components of the specification:

the state declarations, the maximum execution times, the exception sets, and the informal

and formal descriptions.

1. Change-Merging the State Declarations

Change-merging the state declarations is done with the procedure merge....5totes .

Since the state declarations are a set, normal set operations may be used to merge the state

declarations themselves, but the initial values of the state variables conform to a flat lattice

structure and any change must be preserved. The algorithm m ergc....5 loles is sbov.'o in Figure

5.3.

To show correctness of merge-'3tates, we must show that it correctly implements

the equation (A - Base) U (An B)U (B- Base). Two internal loops con~truct this equation.

The first loop captures any state variable declaration which appears in A, but not in BASE;

the (A - Base) part of the equation, and then captures any state variable declaration which

appears in both of the modified versions; the (A n B) part of the equation. The second

loop captures any state variable declaration which appears in B, but not in BASE; the

(B-Base) part. Since both loops add state variable declarations to the same set MERGE,

the union part of the etjuation is satisfied.

The execution of merge..state.o; retjuires a membership test and add operation for

every state declared, and these are both linear time operations with the current linked-list

implementation of sets. Thus the entire algorithm requires O(S2) time, where s is the number

of states declared. This can be improved to O(.o;logs) if balanced trees are used for the sets.

83

Algorithm merge..1Jtates(MERGE: in out type_declaration;
BASE, A, B: in type_declaration;
MERGEJNIT: in out init.map;
AJNIT, BJNIT: in init.map)

begin
for every state variable, s, declared in A

if s is not in BASE, and s is not in B then
add s to MERGE; add initial value to MERGEJNITj

end if;
if s is in B then

add to MERGE;
if t he initial values are the same in A..1 N IT and BJ N IT then

add initial value to MERGEJNIT;
else add conflicLexpression to MERGEJNITj

end if;
end if;

elld loop;
for every state variable, $, declared in B

if s is not in BASE and s is not in A then
add to MERGE; add initial value to MERGEJNITj

end if;
end loop;

end merge....stutes j

Figure 5.3: Algorithm merge....states.

84

2. Change-Merging the Maximum Execution Times

Change-merging the maximum execution time constraints is done with the fuuction

m erge..met, shown in Figure 5.4. Maximum execution times foll ow a Brouwerian Algebra

structure as shown by Proposition 2 in Chapter III, Section D.2, and must be merged ac

cording to those rules .

Algorithm merge.md(BASE,A, B: millisec) relurn millisec
AJ)IFF.BASE,BJJIFF.BASE,AJNT..8: millisec;

begin
ifA~B then

AJNT.B:= Bi
else AJNT.B:= A;

end if;
if BASE < A then

A...DIFF.BASE:=l.;
else AJJIFF...BASE:= Ai

end if;
if BASE < B tben

B...DIFFJJASE:= .1;
else BJJIFF .BASE:= Bi

end if;
if A.J)IFF..BASE:£ AJNT..B then

if AJJIFPJ3ASE:::; BJJ/FF.BASE then
return A..DIFF..BASE;
else return B..DIFF..BASEj

end if;
else if AJNT J3::5 B..DIPF ...BASE then

return AJ NT ...B;
else return B..D1FF ..BASE;

end if;
end if;

end merge...met;

Figure 5.4: Algorithm mergeftlet .

The algorithm for cbange-merging maximum execution times must also satisfy tbe

cbange-merging equation (A - BaJe)U{An B) U (B- Baa e). It uses a series of conditional

expressions to calculate tbe values of AJJIFFJ3ASE, B..D1FF..BASE, and A-'NT..B,

85

which represent the (A - Base), (B - Bas e) and A n B parts of the equation shown above.

It then combines them according to the rules outlined in Chapter Ill, Section D.2. this

adherence to the mathematical model guarantees the correctness of the algorithm. Since

this algorithm contaiIlS no loops, it requires constant time to execute, so the worst·case time

(".omplexity of mergu nd is 0 (1).

3. Change-Merging the Exception Declarations and Keywords

Change-merging the exception declarations and the keyword sets is dODe using

the merge_id_sets (unction shown in Figure 5.5. This algorithm calculates the equation

(A - Base) U (A n B) U (B - Base) in precisely the same way as merge-stat es calculates

the merge of the state declarations without the initial values.

Algorithm merge.. ili.sets(BASE,A,B id~d) return id~et
begin

Calculate A - BASE.
Calculate B - BASE.
Calculate An B.
Return (A - BASE) U(AnB) U(B - BASE).

end merge_id~ets;

Figure 5.5: Algorithm merge_id..sd s.

The correctness and complexity analyses of m erge...id..sets are identical to t hose of

m erge..states, so merging id~ets requires worst case O(x2) time for exception declarations

and O(P) time for keywords.

4. Change-Merging the Descriptions

Change-merging both the informal and the formal descriptions is accomplished

using the funct ion mergLte:r' shown in Figure 5.6. merge_t ext implements a flat lattice

change-merge, and any change ;rom t he base version in one modification must be identi cal to

86

any change in the other modification or a conflict is produced. This function has a constant

time complexity.

Algorithm meT"gr...iext(BASE,A, B: text) return text
begin

if BASE =: A
then return B
else if BASE = B

then re turn A
else if A= B

then return A
else return (~Conflict in text. Must be change-merged manuany!~)

eod if;
end if;

end if;
end mergej~xt;

Figure 5.6: Algorithm merge.-text.

5. Analysis of Specification Change-Merge

Correctness of the specification change-merge part of the algorithm is guaranteed

by the correctness of the individual algorithms which make up the specification change

merge. The worst-case time complexity of the specification part of the algorithm is obtained

by adding the complexities of the individual parts as follows:

where s is the number of state declarations, z is the number of exception declarations, and

k is the number of keywords.

This algorithm is capable of performing change-merge operations on all PSDL

operator specifications.

87

C. CHANGE-MERGING THE IMPLEMENTATIONS

Change-merging the implementation parts is also accomplished by change-merging the

individual parts of the implementation separately. It requires five main operations; change

merging the graphs, change-merging the stream declarat ions, change-merging the timer dec

larations, change-merging the control constraints, and change-merging the informal descrip-

lions.

1. Change-Merging the Graphs

To change-merge the PSDL implementation graphs, we must first convert them to

prototype dependency graphs that accurately reflect all of the timer dependencies between

operators in the prototype as well as the data dependencies. We do this with the buildY DG

function shown in Figure 5.7. Next we must construct the preserved and affected parts of

the three input graphs according to the slicing rules defined in Chapter IV. The algorithms

for these constructions are contained in Figures 5.9 and 5.8, respectively. Finally, we must

combine these three parts into a change-merged prototype dependency graph using a graph

union operation, shown in Figure 5.12.

In building the prototype dependency graph, lroildYDG adds an external vertex,

EXT, to the prototype implementation graph, then for every vertex with no outputs, it

creates an edge from that vertex to EXT. This is necessary to ensure that these terminal

vertices are included in the slices, since slices are constructed based on edges not vertices.

Then for every timer declaration in the prototype implementation, buildY DG creates an

edge from every vertex which affects the state of that timer to every vertex which reads its

value.

The algorithm bui/cLPDG contains two loops. The first loop iterates through the

vertices in the graph, and determines if the vertex has any outputs. For every vertex with

no outputs, the algorithm then Mlds an edge to the graph from that vertex to the artificial

88

Algorithm /mildY DG(P : psdLcomporll~.Tlt) return prototypeJiel'mdmcy_graph
G: prototype_depcndenC1J _graphj
0: vertex;
source, dest : id....'Jet;
begin

G::= graph(P)j
add external vertex, EXT;
for every terminal vertex, 0, add an edge from 0 to EXT;
for every timer declaration in the implementation of P loop

initialize source and dest to empty.
add every vertex which affects the stale of the timer to SOllrCCj

add every vertex which reads the timer tu des t;
add all edge to G from every vertex in 5QUrt::e to every vertex in dc.s!;

end loop;
return Gj

end /mifaY DC;

Figure 5.7: Algorithm bui/dYDG.

vertex EXT. The correctness of this loop can be established by showing that at the end of

the loop, there are no vertices in the graph without output edges, except EXT. Since the

loop cycles through all vertices in the graph and adds an output edge to the graph from any

vertex which does not have one to EXT, this proof is trivial.

The second loop iterates through the set of timer declarations, and builds two

sets for each timer, .source and de~t. It then adds an edge to the graph from every vertex

in ~ource to every edge in de~t. The ~ource set contains all of the vertices using timer

operations that affect the state of the t imer. The de~t set contains all of the vertices that

read the value of the timer.

To show correctness of this loop, we must show that at the end of each iteration

through the loop, the graph contains all timer dependency edges associated with the timer

declarations thus far encountered, and at the end of the loop, the graph contains all timer

dependency edges associated with the timer declarations in the implementation. We do this

by the following induction proof:

89

~:

Basis: Since SOUTce and dest are initialized at the beginning of each iteration

through the loop, tucy are empty before the first iteration, thus the graph contains no t imer

dependency edges before the first iteration.

Induction Hypothesis: At the end of the kth iteration, all timer dependency

edges associated with the first k timer declarations are included in the graph.

Induction Step: At the beginning of the k + lst iteration of the loop, the laura

and dest sets are reinitialized to empty. The vertices that affect the state of the k + 1st

timer are added to source, and the vertices that read the value of the k + 1st timer are

added to dest. Now, for every vertex in SQUTce, the algorithm adds an edge to every vertex

in dest. Thus at the end of the k + 1st iteration, the graph contains all timer dependency

edges associated with the first k timer declarations, by the induction hypothesis, plus it now

contains all timer dependency edges associated with the k+ 1st timer declaration. Thus, we

can conclude that for any number n of timer declarations, at the end of the nth iteration

of the loop, the graph contains all timer dependency edges associated with the first n timer

declarations. 0

The complexity of this algorithm is determined by the sum of the complexities

of the two loops. Since the first loop iterates through all vertices in the graph, performing

worst-case linear operations on each iteration, its worst case time complexity is 0(n2), where

n is the number of vertices in the graph, excluding EXT. The second loop contains three

inner loops that iterate through the vertex set of the graph. The first two of these inner

loops contain worst-case linear operations. The third inner loop contains another inner loop

that could also possibly iterate through all vertices in the graph, making its worst case

time complexity O(n~). Thus, the worst case time complexity of the second outer loop is

O(tn2), where t is the number of timer declarations contained in the implementation and

n is the number of vertices in the graph. The algorithm then contains two loops, one with

90

complexity O(n2), and one with complexity O(tIl2), therefore, the worst case time complexity

of build.PDG is O(tn2).

The next step in chauge-merging the graphs is finding out the parts of the mod

ified versions which are different frolll the base. T his is accomplished using the algorithm

af J ectecLpart, shown in Figure 5.8. This algorithm returns the set of edges in the modified

version for which the slice of the modified version is different than the slice of the base ver-

sian . First, each edge in the modified version is checked to see if it is the base version. If it

is not, then it is added to the affected part. Next, the algorithm checks to see if the edge

recieves input from different sources in the modified version than in the base version. If the

sources arc different, then the edge is added to the affected part. Finally, the algorithm adds

any edge to the affected part which receives input via an edge already in the affected part.

It is sufficient to include in the affected part of modified version, only those edges

which are different in the modified and base versions of the graph, and the edges which follow

them. Any edge which precedes an affected edge will produce the same slice in both versions

since slices are constructed backward from the edge. The correctness of af f ec:ted_purt is

established by showing that, every in edge in Slice produces a slice which is different in both

G and B. We prove this by an induction over the wbile loop.

Basis: At the beginning of the first iteration of the loop, Slice gets one edge from

E which is either in G and not in B, or is written to by a different set of vertices in G and

B. Tills edge wiIl certainly produce a different slice in the two graphs, so Slice contains only

edges which produce different slices in G and B.

Induction Hypothesis: After the first k iterations of the loop, every edge in

Sliee produces a different slice in G than in B.

91

Algorithm (If fed ed_part(G, B prototypfuiependcncy_graph)
return edge....set
Shee,C, D, E: edgc...3et;
x,y: edge;
begin

C;: edges(B);
D:= edges(G);
E:= difference(D,C);
for every edge x in D loop

if sources(z) in G are different from the
souTces(:r) in B then
add x to E;

end if;
end loop;
while E not empty loop

select and remove an edge x from E;
add:r to Slice;
for each edge II E D loop

if x.destination E sourlZs(y, G) then
add y to E;
remove II from D;

end if;
end loop;

end loop;
return Slice;

end affeded...p<lrt;

Figure 5.8: Algorithm o.j f eded...part

92

Induction Step: During tLc kth iteration of the loop, eve:), edge in G which

follows the kth edge added to Slice in the data flow of G is added to E. At the beginning

uf the k + 1st iteration of the loop, one of the edges in E is removed from E and added

to Slice . Since we know that any edge which fonows an affected edge in the data flow will

certainly produce a different slice in G and B, we know that thi$ edge win as well. Thus by

the induction hypothesis, all of the elements in Slia before this iteration produced different

slices ill G and B, and the current iteration adds an edge which produces a different slice

in G and B, therefore after the k -'-1st iteration of the loop, every edge in Slice produces a

different slice in G and B. Since E is a finite set, and no edge already in Slice ran be added

back into E, the loop will terminate. 0

The complexity of affecterLparL is determined by the complexity of the loops

inside. The first for loop iterates over all of the edges in the input graph, G, and adds any

edge to E which is different in G and B or recieves input from different sources in G and

8. The worst-case time complexity of this loop is O(e * n), where e is the number of edges

in G and n is the number of vertices in G. The second while loop iterates over all of the

edges in E, which we know to contain at most the edges of G, and any edge which follows

this edge in G is added to E. This makes the worst-case time complexity of this loop, O(c~).

Therefore the worst-case time complexity of affecielipart is O(e2), where e is the number

of edges in G.

The next step in change-merging the graphs is constructing the part of the base

version that is preserved in both of the modifications. This is done using the algorithm

preserved..part shown in Figure 5.9. This algorithm loops over all of the edges in Base and

checks to see if they are in the affected parts of either modification, or have been removed

in one of the modifications. If the edge is not in either affected part and it is in both

modifications, then the slice it produces is the same in all three versions and it is added to

the preserved part.

93

Algorithm preserved_part(BASE, A, AP A, B, AP B prototype...ncpwdency_graphj
return edge--sd
PP: edge.-st,.! := empty-setj
e: edge;
begin

for every edge E ill ed,qes(BASE) loop
if not e E APAuAPB and e E edges(A)nedge3(B)

then add e to P Pj
endif;

end loop
return PPj

end pre.'lerved-portj

Figure 5.9: Algorithm preserved_part

Only those edges which appear in all three versions and are not part of either

affected part are added to the preserved part. The correctness of this algorithm is established

by showing that after each iteration of the for loop, PP only contains edges which will

produce the same slice in all three versions. We offer the following proof:

~:

Basis: Before the first iteration of the loop, P P is empty. Since the slice with

respect an empty edge is aD empty graph, this slice is certainly the same in all three versions.

Induction Hypothesis: After the first k iterations of the loop, every edge in P P

produces the same slice in all three versions of the graph.

Induction Step: During the k + lst iteration of the loop, if the edge e is in the

edge sets of all t hree versions, and it is not contained in an affected part, then it was not

affected nor removed by either version, thus it is preserved in all three versions. Since after

the kth iteration of the loop, all of the edges in PP produced slices which were the same

in all three versions, and the k + lst iteration a.dds another which produces the same slice

in all three versions, after k + 1 iterations, every edge in P P produces the same slice in all

three versions. Therefore the correctness of pre~erved...part is established. 0

94

The complexity of pr escrvccLpart is determined by the complexity of the for loop .

SiDce all of the operations illside of the loop are at worst G(e) operations, and the l~op

iterates once for every edge in the base version of the graph, the worst-cast time complexity

of IJrc.'JcTved..pari is 0(e2), where c is the number of edges in BASE.

Once the preserved part of the base and the affected parts of both modified versions

have been calculated, the slices produced by these sets caD be change-merged iota a single

graph. The slices are CODstrllcted llsing the algorithm create...slice shown in Figure 5.lD.

This algorithm takes a graph and an edge as input and constructs the slice backward from

the edge, according to the definition for a slice given in Chapter IV, Section B.2.

Algorithm create-slice{G : protolypeJiependency_graph; E : edge)
return prototypeJiependency _graph
S : prototypeJiependency-sraph;
V: vertex-set;
w: vertex;
begin

ifeinG
then a.dd eta S;
else return emlJty_graph;

end if;
for every vertex w in G loop

if w writes to e
then add w to V;

end if;
end loop;
while V not empty loop;

select and remove vertex w from V;
a.dd w to S;
add parents of w to V if not in S;
add edges between parents and w to S;

end loop;
return S;

end creat e-slice;

Figure 5.10: Algorithm create-s/ice

95

The correctness of creatc-5iice is established by showing that the algorithm pro

duces a correct slice of G with respect to E, according to our defmition of a slice give~' ill

Chapler IV.

If e is not an edge in G, then creatc..slice returns an empty graph, which is the

correct slice of G with respect to c. If e is an edge in G, then e is added to the slice, and auy

vertex which writes to e is added to the set ofverlices V.Then the algorithm iterates over a

while loop as long as V is not empty. The correctness of the while loop is established by

showing that at the end of every iteration of the loop, the slice S contains only the vertices

ana edges which affect the edge e, and after the last iteration of the loop, S contains all of

the vertices and edges in G which affect the edge e.

Basis: Before the first iteration of the loop, the only edge in S is e., and certainly

every edge in S affects e.

Induction Hypothesis: After the kth iteration of the loop, all of the edges and

vertices in S affect the values written to t. .

Induction Step: During the k + 1st iteration of the loop, a vertex til is removed

from V and added to S. Since only those vertices which write to an edge in S are in V, and

only edges which affect the values written to e are in S by the Induction Hypothesis, we are

guaranteed that w is a correct addition to S. So after the k + lst iteration of the loop, S

contains only edges and vertices which affect values written to e.

Since V contains at most the number of vertices in G, and one vertex is removed on

every iteration of the loop, we are assured that the loop will terminate. Since during evcry

iteration, any edge which provided input to a vertex in S is added to S and every iteration

adds any vertex which writes to an edge in S, we are a..ssured that after the la..st iteration of

the loop, all of the vertices and edges which affect the values written to e. will be in the slice.

o

96

The time complexity of create..slice is determined hy the two inner loops. The

for loop iterates over the vertices of the graph ar.e time. This makes the worst-case ti~e

complexity of this loop, O(n), where n is the number of vertices in the graph . The while

loop iterates over a set of Vf~rtices, however through all of the iterations of the loop at most

each edge is visited once, making the worst-ca..~e time complexity of this loop O(e), where

e is the Dumber of edges in the base version of the graph. Therefore, the worst-ca..~e time

complexity of crelltc-~lice is O(n + e).

Once the slices are constnlcted, they are merged llsing the function graph_merge,

shown in Figure 5.11. This is a vcry simple grapb merging algorithm which uses successive

calls to graplLunioll, shown in Figure 5.12 to combine the preserved part of the base with

the affected parts of both modifications into a change-merged prototype dependency graph.

Algorithm graph_merge(GI, G2, G3 : prototype.Aependency_graph)
return prototype..Jiependency_graph
G : prototype_dependenCY-9raph := empty.:psdLgraphj
begin

G:= graph_tmion(Gl,G2);
G:= graph_union(G,G3)j
return G;

end graphJnerge;

Figure 5.1 1: Algorithm graph~mcrge

The graph_union algorithm is used to combine two graphs into one. It 1I(;cepts two

prototype dependency graphs as input and adds the edges and vertices of onc to the other.

The algorithm graph_union makes use of two successive union operations, and

union operations are vcry well defined. Therefore, the correctness of graph_union is easily

established.

The complexity of graph_union is determined solely by the complerities of the

set union operations, which are linear in the worst case. Therefore, the ,orst case time

97

Algorithm graph_tmion(Gl, G2; prototype_depcndency_graph)
return prototypc.nependencv_yraph
G: prototype_dependency_graph := empty..psdLgraph;
begin

G.vertices:= vcrtices(Gl) U vcdices(G2)j
G.edges := edgcs(Gl) U edges(G2) j
return G;

end graph_union;

Figure 5.12: Algorithm graph_union

complexity of graph_union is tbe sum of the complexities of the two union operations , or

0(1'. + nl, where e is the number of edges in the largest of GI and G2, and n is the number

of vertices in the largest of Gl and 02.

The correctness and complexity of graph_merge depend solely on the correctness

and complexity of graph-union, which have previously been established. Thus, graphJnergc

is a correct algorithm with worst-case time complexity of 0(1'. + nl, where e and n are the

number of edges and vertices in the largest input graph.

Once the graphs have been change-merged, the remainder of the implementation

parts must be change-merged. The stream declarations and the timer declarations are

change-merged using the functions m~rg~tr~ams and ml':rge..timl':rs, shown in Figures

5.13 and 5.14, respectively. Then the control constraints are change-merged using functions

appropriate to their map type. These algorithms are shown in Figures 5.15 through 5.26.

2. Change-Merging the Stream and Timer Declarations

The stream and timer declaration parts are modeled as sets, so change-merging

them is done using common set operations. In ml':rgl':..strl':ams, the two for loops construct

the three pieces of the change-merging equation for sets, (A -Base), (AnB), and (B-Bas~).

The correctness and complexity of ml':rg~treams are ident ical to those of ml':rge..stat I':S. In

merge..timers, the three pieces of the change-merging equation are constructed separately

98

and com billed to provide the result. T he correctness and complexity of this a lgorithm is

identical to that of meryt:_i<Lsets.

Algorithm merge...streams{ BASE, A, B . lype_declaration.) rdurn iype...dedara[ion
MERGE: type_declaration;
begin

MERGE:= empty_type_declaration;
for every stream s in A loop

if s is not in BASE and s is Dot in B then
add s to MERGE;

end if;
if s is in B then

add to MERGE;
end if;

end loop;
for every stream s in Bloop

if.s is not in BASE and s is not in A then
add to MERGE;

end if;
end IOOPi
return MERGE;

end merge...stnams;

Figure 5.13: Algorithm m ergeJtreams

Algorithm mergeJimcrs(BASE, A, B id....set) return id_sd
begin

Calculate A - BASE.
Calculate B - BASE.
Calculate An 8.
Hetmn (A - BASE)U(AnB)U(B- BASE).

end mergeJimers;

Figure 5.14: Algorithm merge_timers

3. Change-Merging the Control Constraints

Change-Merging the Control Constraints i~ accompli5h~J by a series of algorithms

that implement the moJels defined in Chapter III, Section D. Their correctness is established

99

by their conformance to the mathematical models. Each one of these algorithms has wor5t

CMe time complexity of O(n), except mCT"gcJriyger _maps and mergfdimcropJnaps, wh~re

7l is the number of vertices in the largest input prototype. merge_trigger J71aps has wor5t-

case time complexity of 0(ns2), where fl is the number of vertices in the largest input

prototype and s is the largest number of streams read by an operator in the prototype.

meT9E..timerops has worst-case time complexity of O(nt2), where r. is the number of vertices

in the largest input prototype and t is the largest number of timer operations in the prototype.

Since these algorithms all execute independently, the worst-case time complexity for the

entire control constraints section is O(ns2 + nt2).

Algorithm m erge.trigger _maps(V ER:I'S : id...aet; BASE, A, B trigger _map)
return trigger JTlap
MERGE: trigger_map;
opid : psd/...jdj
base_trig, a_trig, b_trig, merg e-trig trigger:
begin

for every opid in VERTS loop
retrieve base.trig from BASEj
retrieve a.trig from A;
retrieve b.trig from B;
merge..trig := merge..triggers(base.trig,a.trig, b..trig);
bind merge_trig to op_id in MERGE;

end loop;
return MERGE;

end m erge..trigger JTlapSj

Figure 5.15: Algorithm merge.trigger _maps

There is also an informal description of the implementation part that must be

change-merged. The implementation descriptions are change-merged using the merge..iext

function shown in Figure 5.6.

100

Algorithm merge-1riggers(BASE, A , B: trigger) return trigger
MERGE; trigger;
.streams: id.et;
begin

if BASE = A then
jf BASE = B then

MERGE.tt:= BASE.tt
M ERGE.streams := merge-id_sets(BASE.streams, A.streams, B.streams);

return MERGE;
else return B;

end if;
else if BASE = B then

return A;
else if A = B then

return A;
return conflict;

end if;
end if;

end if;
end merge_triggers;

Figure 5.16: Algorithm merge_triggers

Algorithm merge..exe:c..guard_map.~{V ERTS id....sel; BASE, A, B: exec_9uard_map)
return exec_9uard.rnap
MERGE: exee-guard_map;
opjd: psdl....id;
base_fg, a_eg, b_eg, merge....eg: expression:
begin

for every op_id in V EJU'S loop
retrieve ba.se_eg from BASE;
retrieve a..eg from A;
retrieve bJ:-g from B;
merge_c g := mergt!_expresJions(base_eg, (Leg, b_eg);
bina merge_eg to opjd in MERGE;

enaloopj
return MERGE;

end merge_ex ec..guard_maps;

Figure 5.17: Algorithm mergt!-exec..guard_maps

!Ol

Algorithm merge....expressions(BASE, A, B : expression) return expression;
begin

if eql.lal(BASE, A) then
if equal(BASE, B) then return BASE else return Bi end if;
else if equal(BASE,B) then return A;

else if equal(A, B) then return A;
return conflict;

end if;
end if;

end if;
end merge..expres3ionsj

Figure 5.18: Algorithm m erge-expressions

Algorithm merge_outpuLguard_map8(VERTS: id....setjBASE,A,B: ouLguard_map) re
turn ouLguardJnap

MERGE: ouLguardJ1lupj
opid : psdLid;
base_og, a_09, b_og, m erge..og expression:
begin

for every op.id in VERTS loop
retrieve base-og from BASE;
retrieve aJJg from Aj
retrieve bJJ9 from Bj
merge_og := merge_expression.s(ba$e_og, a_og, b_og)j
bind merge..og to apid in MERGE;

end loop;
return ME RG Ej

end merge_outpuLguard_mapsi

Figure 5.19: Algorithm merge_QutpuCguard_maps

102

Algorithm merge_exr:ep_tri9ger~maps(VERTS id.1>ct; BASE, A, B: exccpJrigger_map)
return ~xcep~triggcT JnCp

MERGE: exct'-p.Jri9ger _map;
opid : psdLid;
base~d, a_d, b..et, mer,qc...et : expression:
begin

for every op_id in VERTS loop
retrieve basl'!_et from BASE;
retrieve a_et from A;
retrieve fut from B;
merge_et := m erge..expressiofls(base..ei, (Let, b...et);
bind m ergc_ei to apid in MERGE;

end loop;
return MERGE;

end merge_excep_trigger JTlOpSj

Algorithm merg c timer..opJnops(VER:rS : id--5etjBASE,A,B ; timer..op_map) return
timer ..op..rnap

At ERGE : excep..irigger ..map:
opid; psdLidj
base...set, a..llet, ~set, mergr...se/ ; expression:
begin

for every apid in VERTS loop
retrieve base-set from BASE;
retrieve o.-Set from A;
retrieve b...s et from B;
merge....set := merge_timer_op...set(base~et, a_set, b_set)j

bind merge....5et to op...id in MERGE;
end loopj
return MERGE;

end merge_timer -OpJnapsj

Figure 5.21: Algorithm merge_timer..opJnaps

103

Algorithm merge..timer_op_sets(BASE, A, B timer _op..set) return timer _op...5e/
MERGE: tim!':T_op....s et;
tJJP: timer-Op;
begin

for every t...£)p in BASE loop
if member(Lop, A) then

if m ember(Lop, B) then
add(t...Dp, MERGE);

end if;
end if;

for every tJJp in A loop
ifnotmember(Lop,MERGE) then

if m ember(t..op, B) then
add(t...op,MERGE);

end if;
end if;

[or every tJJp in Bloop
if notmember(Lop, M ERG E) then

if member(t...op, A) then
add(Lnp, M ERG E)j

end if;
end if;

end loop;
return MERGE;

end merge_timer ..op .. :Hds;

Figure 5.22: Algorithm mergl':_timer ..op..sets

104

Algorithm mCT"gc_pcriod(V ERTS : jd_~et; BASE,A,B. timing_map) retllrn timing_map
MERGE: timing_map;
opjd : pildLidj
ba8l'._val, a_val, kval, merge..vaI; millist c:= 0;
begin

for every op_id in VERTS loop
retrieve base_val from BASE;
retrieve a_val from A;
retrieve b_val from Hi
merge_val;= merge_limiTlg.-daia(base..val, a..val, 6..ual);
bind merge_val to op_id in MERGE;

end loop;
return MERGE;

end merge_period;

Figure 5.23: Algorithm merge..period

Algorithm merge_fw...DT Jrlrt(V ERTS id...setj BASE, A, B : timingJnap)
return timing..map
MERGE: timing..map;
opjd : psdlJd;
base_val, ILual, b...val, merge-val: millisec:= 0:
begin

for every op..id in VERTS loop
retrieve base_val from BASE;
retrieve a_val from A;
retrieve b_val from Bj
merge_val := merg/!Jnet(basc_val, a...val, It-val)j
bind mt:rgt:_val to op_id in AI ERGE;

end loop;
return ME RG Ej

end m ergt:_!w...DrJnrtj

Figure 5.24: Algorithm mt:rgt'-!w..nr..=rt

105

Algorit.hm m erge_min_cn.ILper(V ERTS : idH:t; B.15 E, A, B : timingfltup)
return timingJnap
MERGE: timing_map;
Qp..id : psdLid;
base_val, a_val, !Lval, merge...val: millisec ;-=: 0:
begin

for every op_id in VERTS loop
retrieve base_val from BASE;
retrieve a_val from Aj
retrieve b_val from B;
merge_val :;: mergeJncp(base_val, <Lval, b..val);
bind merge_val to op_id in M ERGEj

end loop;
return MERGE;

end mergf_min_caILper;

Figure 5.25: Algorithm m erge_miTLcall..per

4. Analysis of Implementation Change-Merge

Change-merging the implementation of the top level component requires four main

operations; change-merging the graphs, change-merging the stream decla.rations, change

merging the timer declarations, and change-merging t he control constraints.

Change-merging the graphs requires that each graph be converted to a poe using

build..PDG which requires O(tn') time, where n is the number of vertices in the graph and

t is the number of timers declared in the implementation.

After the prototype dependency graphs are constructed, the a.fIected parts of each

modification are constructed using affected..parl wbich has worst-case time complexity

O(e'), where e is tbe number of edges. Then the preserved part is constructed, and it

has worst-case time complexity O(e2).

106

Algorithm merge..mcp(BASE,A, B: milli.sfc) return millisec
A..IJIFF JJASE,B...Dl FFJiASE, AJNT JJ: millisecj
begin

if A?: B then
AJNT J3:= Bj
else AJNT...B:= Ai

end if;
if BASE?: A then

A...DIFFJ3ASE:= Tj
else A...DIFFJJA$E:= A;

end if;
if BASE?: B then

BJ)IFFJ3ASE:= Tj
else BJ)IFFJ3A$E:= Bi

end ifi
if AJ)JFF...BASE?: AJNT...B then

if AJ)IFF-BA$E?: B...DIFF...BASE then
return A..IJIFF-BASE;
else return B...DIFF ...BASE;

eod if;
else if AJNT...B?: BJ)IFF..BASE then

return AJ NT .13;
else return BJJIFF...BASE;

end if;
end if;

end m ergf mcp;

Figure 5.26: Algorithm merge.mcp.

107

After all three of the pieces required for cbange-merging the graphs have been built,

then they must be cbange-merged using graphJnergc, which contains two successive c~lls

to graph _union, wbic:h we already know requires worst-case O(n + e) time. Therefore, the

worst-case time c:omplexity of change-merging three graphs is:

The edges in the graph almost always outnumuer the Vertices, so we call this 0(e2).

The correctness of the Implementation Change-Merge is established by the COT

rectness of the individual parh. The complexity of the Implementation Change-Merge is

dominated by the complexity of the change-merging of the graphs, so the worst-case time

complexity of the Implementation Change-Merge is O(e') .

D. CREATING THE CHANGE-MERGED PROGRAM

The last algorithm used in this change-merging tool is build-PTototype, shown in Figure

5.27. This algorithm takes the change-merged graph and removes the artificial timer edges

and external vertex. It then sets the change-merged graph in the change-merged prototype.

Algorithm build...prototype(P: in out psdLcomponentj G: prototypeJiependency_graph)
A : psdLgraphj
begin

assign G to A;
remove external vertex;
remove timer dependency edges;
seLgraph(A, P)j

end build.prototype;

Figure 5.27: Algorithm build_prototype

The timer dependency edges are removed by iterating through the edges of the graph

and removing the appropriate edges. This requires iteration over the edges of the change

merged graph, making the worst-caae time complexity of this algorithm O(e).

108

E. ANALYSIS OF THE CHANGE-MERGING ALGORITHM

The correctness of the algorithm changeJncrge is established by the correctness of

the individual parts. Since these individual algorithms are executed independently of one

another, there are no dependencies between them, other than those already discussed. The

complexity of this algorithm is calculated by adding the complexitie; of the individual parts.

It is easy to see that the complexity is dominated by change-merging the graphs in the

implementation part, which requires 0(e1) time, where e is the Dumher of edges in the

largest graph. T herefore, the worst-case time complexity of the entire algorithm is 0(e1) .

109

VI. CAPS MERGE TOOL

10 this chapter we describe an implementation for a change-merging tool resulting from

this effort. The tool has been almost fully implemented and can easily be integrat ed iuto the

CAPS Prototyping Environment. It is invoked through the Manager's Interface and provides

a substantially beneficial tool for effective management of large software prototypes. Section

A of this chapter describes the reqillrements for the tool. Section B provides the instructions

for using the tool. Section C describes the testing performed on the tool.

A. REQUIREMENTS

The requirements for this tool are divided into three parts; interface, functionality and

conflict reporting. Ea.ch of these parts are discussed separately in the subsections that follow:

1. Interface Requirements

a.' Interface must be CtJnsistent with other CAPS interfaces: CAPs uses a menu

driven interface at the top level and windows with selection lists and pushbuttons at lower

levels. To be consistent, a pushbutton type interlace was required for the change· merge tool

as welL

b. User must be able to choose any prototype currently in the working directory;

The interface should provide a list of the prototypes currently in the user's working directory,

and the ca.pability for the user to select one of these prototypes.

c. User must be able to select different versions and assign them to the different

merge parameters by pushbutton: After the prototype has been selected, the interface should

110

provide a list of the current versions of the prototype. The Ilser shollid then be a ble to select

each version by clicking with the mouse, and assign the selected version to one of the mc~gc

pnrameters, base, vcrsioTLG or version_b, by pushing an assign buttoD.

d. U.~er .~hould be sati.sfi~d that the sdedion made has been as.~ign ed to the correct

parameter. The interface should provide visual reinforcement that the selection made has

been assigned to the COITect parameter by showing the selected version in a window labeled

with the parameter name.

e. User should be able to initiate the merge tool by pu.~hing a button: The interface

should provide a button labeled "merge" which, when pushed, will call the merge tool for

the parameters given.

f. User should be notified when merge is complet~: The interface should provide

a pop-up window that alerts the user that the merge is complete. The result of the merge

should be printed in a window labeled "result~.

g. User should be notified if a ronjlict occurs: The interface should provide a pop-up

window that alerts the user that a conflict has occurred during the merge.

h. User should be able to commit the result to the design database directly from the

merge interface: A pushbutton should be provided that a\lows the manager using the tool

to commit the result of the merge to the database, even if conflicts have occllrred.

2. Functionality Requirements

a. Tool must be able to retrieve the three versions of the prototype when provided

only the path.s to thdr forotions: The interface will provide the full directory names for each

of the input versions as input to the tool. The tool mllst be able to combine all of the PSDL

source files in each of the version directories into one single file and call the PSDL parser to

convert the text version of the prototype into an ADT representation of the prototype.

III

b. Tool must (Gil the PSDL e;t;pander to provide fully expanded PSDL programs

as input to the change. mnye procedure: The P$DL expander i~ a tool which takes a m~lti.

leveled prototype aDd converts it into a flat prototype with only onc composite component.

c. Tool must change-m erge the thne versions of the prototype according to the

models provided by this dissertation: The change-merge tool must be able to retrieve the

composite component of each version, and perform the change-merge operation using these

t hree components as input. It then must provide a ncw composite component for the merged

prototype. The atomic components will then be added to the merged prototype according

to which version supplied those components to the merged implementation graph.

d. Tool must split the final version of the prototype into separate files for each of

the component implem entations and specificatioTl$: The tool must be able to take the merged

prototype and output it into separate files in the result directory. Each file should contain

either the specification part or implementation part of one component. If the component

is the composite component, then the name of the file will be "prototype..name.imp.psdl~

or "prototype_name.spec.psdl", depending on whether it contains the implementation or

specification part of the component, and where "prototype_name" is the name of the com

posite component. If the component is an atomic component, then the name of the file

will he "prototype..name.componenLnamel.imp.psdl" if it contains an implementation or

"prototype..name.componenLname.spec.psdl" if it contains a specification, where "compo-

nenLname" is the name of the atomic component.

3. Conflict Reporting Requirements

a. Tool must report to the user where in the merged component a conflict has

occurred: In each piece of the change-merged program where a conflict has occurred, the

tool must pla.ce a fl ag indicating to the designer where the conflict occurred. This will

prevent the user from having to search for the conflict in order to resolve it.

112

b. Tool must provide at leasl a partially chaTlge-merged "rogram ill !fn ca$(of

ali confhcts, The tool will provide tht> most cnangf' merged program possible wherJeve'l· iI

conflict has occurred. Conflicts in one part of the p:ograTIl should not afft>cl other pc.rt., of

the program which are not dependellt on t he part with the conflict

B. USING CAPS MERGE TOOL

To invoke the CAPS merge tool, select the merge prototypes option from the man<tger's

interface. The CAPS merge tool window will be displayed as ~hown in Figure 6.1. The list

of currently avai lable prototypes will he displayed in the prototype5 box at the lower left of

the window.

Figure 6.1: CAPS Prototype Merge Tool Interface

113

1. Selecting Prototypes and Versions

To select a prototYl-'e, dick the left mouse button over the llalJW of thE" prototype

to be sel t cted. Clicking twice on the same prototype will deselect the prototype. After

select ing a prototype name, a li st containing all of the versions of the selected prototype will

appear ill the versions box at the lower right of the merge tool window , as shown in Figure

6.2. To select a versioll , cl ick the left mouse button on top of one of t he versions. Again.

douhle clicking on the same version will deselect t he version.

Figure 6.2: CAPS Prototype Merge Tool Interface with List of Versions

2. Perfor ming the Merge Operat ion

To perform a merge, three versions must be selected and assigned to the merge

parameter hoxes. To assign parameters, first select the version, tb en click the left mouse

button on the ~assign" button uext to the parameter to be assigned . F igure 6.3 shows t he

window after all three parameters have been assigned. Changiug a paramP.ter assignment is

114

done by selecting the correct version and clicking on the "assign" button again_ E\"er~' push

of the "assign" button reassigns the parameter to the selected version. To clear all of lht'

parameter assignments, use the clear button located aD the right center of tht> window

Figure 6.3: Assignment of Parameters

When all of the parameters have been assigned, the ~merge" hutton located on the

right s ide of the wiDdow must he pushed. Tbis will invoke the cha!lge~merge tool. When the

change-merge tool has completed its execution, ODe or two windows will appear on the screen.

The ~merge complete" window, shown in Figure 6.4, will always appear after execution of the

tool. If a conflict was detected during the change-merge, the "conflict notification~ win dow,

as shown iD Figure 6.5, will also appear. The manager caD either choose to keep the result

and manually resolve the conflicts or abandon the result and start again.

Figure 6.4: Merge Complete

llS

Figure 6.,,): Notification of Conflict

3. Commit Merge

Once the merge has been completed, the manager has to specifically c.oll1rnit the

result to the design database. To commit the merged result, the manager clicks the left

mouse button on the "commit merge~ button Oil the right side of the CAPS Merge Tool

window . A liew version number will be assigned to result and it will be added to design

database as a permanent part of the prototypes configuration.

At this point, the manager can dlOOSC to perform another merge operatiolJ or exit

the tool. If another merge is desired repeat the process described above as many times as

desired. To exit the CAPS Merge Tool, click the left mouse button on the ~exit" hutton at

the bottom of the window, and control will he returned to the CAPS Manager Interface.

C. TESTING

\Ve tested the change-merging tool by applying it to a series of sample prototype projects

each testing a different part of the tool. These projects included real prototypes which

were developed by students in the CAPS Research Team as well as examples constructed

specifically for this test. The largest of these prototypes is the Command and Control System

described in [Ref. 38]. The implementatioll for this prototype contains 27 vertices and 35

edges with a full range of control COllstraints. Four modified versiolls of this prototype were

116

prototype were created, and the chang merge tool was applied to different combinations of

the four, each testing a different part of the tool.

Timing tests were conduded to provide a realistic. assessment of the speed with which

the tool would operate. During the kst it was determined that the time required to process

each of the input files (combining the multiple files into one, parsing the input files, and

expanding the prototype to a flat graph) took a significant amount of the time for the

system to run. In the case of the Command and Control prototype, the system took on

average six sec:onds to process each file and 25 seconds to change-merge them. In the cas"

of the smaller prototypes, the times were significantly less.

Since the current implementation is not as efficient as an optimal one outlined by tbe

algorithms in Chapter V, we can expcct a significant speedup for thc optimal implementation.

In each test of the change-merge tool, the results were exactly as expected. The tool produced

conflicts whenever expected and correct results when they were possible.

117

VII. CONCLUSION

A. WHAT WE HAVE ACCOMPLISHED AND WHY IT IS IM
PORTANT

The purpose of this research was to provide a computer-aided method for combining

a.nd integrating the contributions of different people working on the same prototype. 1t is

commonly known that one of the most time consuming and problematic parts of developing

large software systems is combining independently developed pieces of the system and en

suring they do not conBict. We developed a computer-aided method for merging changes to

a prototype which will always produce a correct result or report a potential conflict. Using

this method provides a prototype development manager with the ability to assign different

development tasks for the same prototype to different members of the development team

and be assured that the pieces can be integrated together after their completion in a safe

manner. This method will either produce a change-merged prototype that is correct with

respect to the different updates or it will notify the manager that a conflict has occurred .

We found a solution to an analog of this problem in previous work done on integrating

different versions of while programs at the University of Wisconsin [Ref. 28, 42, 29J. The

main difference between their method and ours is that while programs are very different

from data flow programs. Data flow programs are inherently parallel and non-deterministic,

and the class of enhanced data flow programs used in PSDL also include hard real-time

constraints.

We proved our method correct by observing that slices of prototypes which isolate a

portion of the prototype's behavior will always behave the same in any prototype where

they are well defined slices. Using the Slicing Theorem in Chapter IV, we were able to show

118

that as long a.~ the slice of the merged version of the prototype with respect to the affected

parts of each modification WaI; the same !1.1; the same slice of the II1oJifir.ation, the changes

introduced by that modification were preserved by the method.

To prove this theorem, we had to develop a computational model urtbe PSDL language.

Chapter IV provides a detailed development of the model of the language from defining

the behavior on a single stream in the prototype to constructing the behavior of the entire

prototype from the behaviors of the individual operators in the prototype. This construction

is possible because we showed in the Independent Operator Lemma in Appendix B that the

possibility function for an operator is not determined by the context in which it is placed.

As long as the operator is given the same input, it will behave in precisely the same way in

any prototype.

From the model, we developed an algorithm which can perform the change. merge in

O(e1) t ime and O(n~) space, and an implementation which provides a working change

merge tool to be used in the Computer-Aided Prototyping System. The algorithm and tool

demonstrates the feasibility of our method for problems of practical size.

During the course of this research, we also proposed an improved method for slicing

and merging while programs which provides a strictly more accurate method than previously

defined methods. No proof of this method is provided however. That will be left to future

work.

B. WHAT STILL NEEDS TO BE DONE

We couldn't possibly solve all of the world's problems in the short amount of time pro

vided, so there are still many out there to be tackled. Some of the problems that we intend

to continue working on are providing a method for change-merging different versions of an

abstract data type written in PSDL. Our method will currently handle the operator imple·

mentations for ADTs, but fails to provide a method for integrating the data representations.

ll9

Another area which needs consideration is the area of merging programs in high level

programming languages, like Ada. In prototyping large systems, it is very important to al;to-

mate as many of t he development tasks as possible to minimize the drain on resources caused

by monotonically decreasing budgets. One of the first tasks to be finished is completing the

formalization of the condi t ional program merging we proposed in Chapter III.

Another area that warrants further study is in further improving t he conflict detect ion

methods used in change-merging. Automatic conflict resolution tools would provide project

managers with an even greater degree of confidence in the change-merging tools.

120

APPENDIX A

FORMAL DEFINITIONS

This appendix contains forma.l definitions of the types, properties, and functions used

in our behavioral model of PSDL.

1. TYPE DEFINITIONS

a. datB_tuple{t: type} =

tuple{ value : t, operator: op....id, writeJime : reaJ, read...time : real)

h. trace{t: type} = sequence{data..tuple{t}}

c. stream_behavior{t: type} = set{trace{t}}

d. trace_tuple{P: prototype) = tuple{trace{type{s}:: S E E(P)}}

e. prototype_behavior{?: prototype} = set{trBce_tuple{P}}

f. incrementaLtrace_tuple{ t : write...time} =
tuple{datB_tupJe{type{s} SUCH THAT s E E(P)}

:: data_tuple.write...time = t}

2. INVARIANT DEFINITIONS

We assume that the implementation of an operating system where a PS DL prototype

is being executed will guarantee mut ual exclusion when two operators executing in parallel

wish to write t o the same stream at the same time. Because we assume this control on write

access for data streams, we can guarantee the following invariant is true for all data streams

in a PSDL implementation.

121

il.. monotonictime(t : trace)
ALL (i, j: nat SUCH THAT 1:$ i <j:$ length(t)

:: t[i].writ e_time < tfj].wrile..time
-- The write times in a. trace arc monotonically increasing.

Since an operator writing to a data stream had to read from its input streams before

it completes execution, we can guarantee that any data tuple in a trace will satisfy the

following invariant:

h. frringjnvariant(t: trace)
ALL (i: nat SUCH THAT 1 :$ i:5 length(t)

:: (t[i].readJime < t[iJ.writr-time) ,(t[i].read_lime = t[i].write..time = 0))
-- The write time in any data tuple is strictly greater than the read time
-- in that data tuple, unless it is the irutial data tuple.

If an operator receives input from a feedback loop, then the vertex associated with that
operator is on a cycle in the PSDL implementation graph. It is necessary to know that
an operator is on a cycle because this information affects the possibility function of that
operator.

c. on..a_C)·cle(o: op.Jd)
_. 0 provides output to a feedback loop which in turn provides input to o.

3. FUNCTION DEFINITIONS AND PROPERTIES

Merging Traces

In PSDL, it is possible for more than one operator to write into the same stream.

If this is the case, each of these operators independently writes a sequence of data tuples

to that stream. These sequences merge to form a single trace for the stream. The function

merge specified below shows that this combination of sequences is well-defined. Propositions

4 through 8 state properties about the function merge which are needed for our discussion

of possibility functions in chapter IV.

122

m~rg~(tl, t2: trace SUCH THAT ALL (i,j: nat:: tl[i].write..time i- t211 !.write..time)
REPLY (t3: trace)

WHERE monotonic_tlme(t3) & firingjnvari1l.nt(t3) &
length(t3) = lcngth(tl) + length(t2) - 1 & tl [O] == t2[0] = t3[01
.. Every trace contains an initial data.tuple with index zero.

ALL (i: nat SUCH THAT 1 S; i S; Jength(t3)
:: SOME(j: nat:: (t3[i] == tlli] & I S; j:; lengtb(tl))

I (t31i] == t2li] & 1 :; j:; Jength(t2)))),

ALL (i: nat SUCH THAT 1:-; i S; Jength(tI)
:: SOME(j: nat:: t3[j] = tIli] & 1 :::; j S; length(t3))),

ALL (i: nat SUCH THAT 1 :::; i S; length(t2)
:: SOME(j: nat:: t3li] = t2[i] & I S; j:; length(t3»)

Proposition 4 merge is well-defined

merge is a total, singl~'1!alutd function O1!er the specified domain.

Let 11 and t2 be traces on a stream SUCH THAT

Vi,j E N,t1[i].writc_time I- t2[j].writdimc.

Suppose 13 = merge(tI, t2) and t4 = merge(tl,t2) SUCH THAT t3 I- t4.

Since t3 and t4 are both valid results of merge(tI, t2), we conclude that they both

satisfy monotonic.time and length(t3) = Icngth(t4) = length(tl) + lenglh(t2) - 1.

Since t3 I- t4, 3i E N I i < length(t3) SUCII THAT

taliJ.ualue I- t4[i].1!alue or t3Ii].operator I- t4[i].operutor or

t3[i].write.Jimc t- t4Ii].write.time or t3[iJ.reatLtim~ t- t4[i].read..time or

But, by the definition of merge, every element in both t3 and t4 are elements

of either tl or t2, which have no common write...times, and since both t3 and t4 satisfy

123

morwtonictime, there is only one way to combine the elements of il and t2 into a single

t race that satisfies monQtonic.Jime. Thus t3 :=: t4, and we have a contradiction. merg; is

well-defllled. 0

Proposition 5 merge satisfies monotonic_time

Ifmonotonic.1ime(tl) and monotonic..time(t2) then monotonic_time(merge(tl, 12)).

We assume that tl and t2 have no common write times, and that monotonic...time

is satisfied for both tl aDd t2. Let t3 = mergc(tl,t2). We show t3 satisfies monotonic_time

by induction.

Basis: length(t3) = 1

Since every trace has a data..tupie with index zero, then t3 is the trace with only

an initiaLdata..tupie, and monotonic_time is satisfied.

Induction Step: Assume that t3 I k satisfies monotonic_time. Since tl and 12

satisfy monotonic_time, and they do not contain data_tuples with the same write times, we

know that no matter which of tl and t2 the k + 1st element of t3 comes from, its write

t ime will be greater than tWI:. So, we can conclude that the k + 1 element of t3, when

added will have write.Jime greater than t3[k]. Since t3 I k satisfies monotonic_time, and

t3[k + l].write.time > t3[k].write-time, we conclude that monotonic_timc(t3) is satisfied.

124

Proposition 6 rrurge satisfies jirirlgJnvarianl

If firing_invariant i$ satisfied jor both tl and t2 then jiringJnvnriant is satisfied
for mergc(il, t2).

Vie assume that tl and 12 have DO common write times, and that fi ring_invarian t

is satisfied for both tl and t2. Let 13 "" mCTgc(tl,12). We show /irill9_invariant(t3) by

induction.

Basis: /ength(t3) = 1

Since every trace has a data.-tuplc with index zero, then t3 is the trace with

only an initial data tuple, and two = tro = 0 by the definition of initial data tuples. So

firing_invariant(t3) is satisfied.

Induction Step: Assume that 13 I k satisfies firing..invariant. Since tl and t2

satisfy firing..invariant and each clement of t3 is also an element of t 1 or 12, we know that

no matter which of II and t2 the k + 1st element of t3 comes from, tWk+l > trk+!. We can

conclude therefore that firing.invariant(t3) is satisfied. 0

Proposition 1 merge is commutative.

merge{tl , t2) = m erge{t2, t1)

We assume that t1 and t2 have no common write..tirncs. We further assume that

since t1 and t2 are traces, they both satisfy the trace invariants monotonic_time and fir-

ing_invariant.

We show that the merge function applied to t1 and t2 satisfies these conditions and

the length of the result is exactly the same regardless of the order of the parameters.

125

Let t3 = merge(tl,t2).

Then lcngth(t3) = length(merge(tl, t2)) = length(t l) + length(t2) - 1.

But, since + is commutative, then

Iwgth(t!) + Iength(t2) - 1 = length(t2) + length(t l) - I = length(merge(t2, tIl)

We know by Proposition 5 that monotonicJime is satisfied for both m erge(tl , t2)

and mcrge(t2,tl). We know by Proposition 6 that firing_invariant is satisfied for both

merge(tl,12) and mcrge(t2,tl). Therefore merge is commutative. 0

Proposition 8 merge is associative.

If tl, t2 and f3 each satisfy monotonic_time and firing..invariant, and they have
no common times, then merge(!l, merge(t2, t3)) = merge(mcrge(tl, t2), t3).

We assume that tI, t2 and t3 have no common write..times. We further assume

that since tI, t2 and t3 are traces, they all satisfy the conditions monotonic..time and

firingjnvuriant.

Let t4 = merge(tl,merge{t2,t3)).
Then length{(4) = length(merge(t1, merge(t2, t3))) =

length(tl) + length(merge(t2,t3)) -1 =
length(tl) + (length(t2) + length(t3) -1) -1 =
length(tl) + length(t2) + length(t3) -1 -1 =
(length(tl) + length(t2) - 1) + length(t3) - 1 =
length{merge(tl, t2)) + length(t3) - 1 =
length(merge(merge(tl, t2), (3)).

So the lengths of m erge(t1,merge(t2,t3)) and m erge(merge(tl,t2),t3) are the

same. We know by Proposition 5 that monotonic..time is satisfied for both merge(t2, t3) and

mcrgc(tl, (2). Thus using the same logic, we can conclude that monotonic_time is satisfied

for merge{tl,merge(t2,t3)) and for merge(merge(t1,t2),t3). We know by Proposition 6

that jiring-.invariunt is satisfied for both merge(t2, t3) and m erge(t1, t2). Tbus using the

126

same logic, we can conclude that firingjrwariant is satisfied for mcrge(tl,merg e(t2,/3))

and for m~rge(merge(tl,l2),t3) . Therefore merge is associative. 0

b. Other Functions

This section contains definitions for other functions used to construct the possibility

functions for prototypes.

(1) '"

The uffi" function extends trace_tuples by appending incrementaLtracc-tuples

to them. It takes as input a trace_tuple T and an incrementaLtrace_tuple..set S. The output

of the function is a set of trace_tuples where the prefix of each element in the set is T, and

the remainder of each element is an element of S.

"@"(T: trace_tuple, S: incrementaLtrace..tuple..set)
REPLY (D: trace_tuple~et)

ALL (tt: trace_tuple SUCH THAT tt E D
': SOME(d: incrementaLtrace...tuple SUCH THAT dES

:: tt = append(T, d)))

(2) "

Tbc 8 function is used to select incrementaLtrace...tupks wbich bave a partic-

ular write_time,

8(t: time, S1: incrementaLtrace...tuple...set)
REPLY S2: incrementaLtrace...tuple...set

ALL (D: incrementaLtrace_tuple SUCH THAT DE 82
': ALL(d: data_tuple SUCH THAT d E D

'; d,write-.time = t))

127

(3) P

The p function providct; the earliest possible time that an operator can read.

its input streams based on its output history. If the operator is on a cycle in the grapb,

then it must complete every firing to include wri t ing its output streams before it can read

its input streams. If it is not on a cycle, then it does not have to wait for a previous firing

to be complete before it can read its input streams again.

p(T: trace_tuple, 0: op....id) REPLY t: time
SOME(s: stream-sct SUCH THAT s ~ 0(0)

:: ALL(T: trace SUCH THAT rET.
:: WHEN on...a_cycle(o) t ;:: r [lcngth(r) - l].writuime
:: OTHERWISE t ;:: 7[lcngth(T) - lj.rco.d.iime

The fill function takes as input all incrementaLtracc_tuplc..set from the output

streams of an operator and for each incrementaL trace... tuple in the set, it creates an empty

data_tuple for all other streams in the prototype.

128

APPENDIX B

EFFECTS OF CONTROL CONSTRAINTS ON
POSSIBILITY FUNCTIONS

This appendix defines the effect of each form of constraint contained in the PSDL

grammar on the possibility function of an operator. The possibility function for an operator

{) is a function of the form, :F~(Jo, rt), where 1" is the input history of the operator 0, and rt

is the last possible time that 0 could have read its streams for the currenl firing. The output

of the possibility function is a set of possible incrementaLtracc..tuples written to the output

streams of {) by the current firing of o. Examples of possibility functions can be found in

Chapter IV, Section A.3, Examples 5 and 6.

The main result in this appendix is Lemma 1, the Independent Operator Lemma,

which states that the possibility fUDction of an operator is not dependent Oll the context in

which it is placed.

Lemma 1 Independent Operator Lemma

Given the same input history and an unlimited number of processors, an operator has
the same possibility function regardless of whether it is contain ed in a larger prototype, as
long as the larger prototype does not introduce input to the operator from a feedback loop.

This proof is a structural induction over all of the different control constraints in the

PSDL grammar. First, let us look at the possibility function for an operator 0, Fo> This

possibility function produces a set of possible incrementa.! trace tuples for every finite prefix

of input vectors written to the operator's input streams.

129

Eacb of the follow ing sections discusses how each of the control constraints available in

PSDL affects the possibi lity function for o.

1. Triggers & Input Guards

The "Triggered" control constraint defines the conditions which trigger the execution

of o. The two options, "by all" and "by some" identify any input streams listed after them

as data flow streams or sampled streams respectively, and any time a value is written to one

of those streams, it can only be removed from the stream by a firing of the operator 0 for

data flow streams, and a producer operator for sampled streams. Another option which may

appear in a triggering constraint is an input guard. These appear as boolean expressions

that, if satisfied, allow the operator 0 to fire .

"by all"

The "by all stream..sef' trigger appearing in a control constraint limits the execution

of the operator Q to fire only when there is a new value on each of the streams in stream.set.

The effed of t his on :Fo is that it limits the reM times for which Q can produce a set of

non-empty incrementaLtrace...tuples. Since the output of:Fo is determined only by the input

history of 0, which we have assumed to be the same in any context, this only serves to limit

the possible output histories. These output histories are the same regardless of whether 0 is

contained in a larger prototype or functions independently.

h. "by some"

A similar argument can be made for the "by some stream.set" trigger. The input

sequences processed by 0 are limited to only those sequences of vectors in which at least one

of the streams listed in stnam.set contains a new value. The erred of this limitation is the

same as in the previous sect ion.

130

Input Guards

Input g\lard~ in the triggering condition of an operator, 0, define which input values

can tTigg~r the execution of I). Their effect is to limit the rcad times at which the operator

can frre. Since that effect only serves to limit the execution of 0, it is the same whether or

not the operator is contained in a larger prototype or not.

2. Period

Operators with a period constraint are declared with a time t. After an initial delay of as

much as t time, the operator is given a window of t amount of time in which to fire. As long

as the operator fires early enough to complete its execution before the end of the period, a

set of possible outputs will he written to its output streams, This set of outputs is produced

non-deterministically because of the flexibility the operator has in starting its execution.

This non-deterministic start time will change the time that the operator reads its input

streams, thereby changing the possible outcome. Since, we are assuming that the number of

processors is unlimited, we conclude that no matter whether the operator is contained in a

larger prototype or not, all choices for read times are possible, thus the possibility function

for the operator will be the same in either case.

3. Finish Within, Minimum Calling Period & Maximum Response
Time

Operators with a finish within, minimum calling period or maximum respons e time

constraint are declared with a time, t. The minimum calling period constraint serves to

limit the possible read times of the operator, and the finish within and maximum response

time constraints limit the possible write times of the operator, however these constraints

are not dependent on the context in which the operator is placed as long as the number of

!3!

processors is not limited. Therefore, the possibility function for the operator is the same

whether it is contained in a larger prototype or not.

4. Constraint Options

Constroint options include outpnt guard.s, exceptions and timer opemtiQ~~ Output

guards can affect the possibility function of an operator, but these are part of the definition

of the operator. Thus, the effect of these output guards on the possibility function for the

operator is the same regardless of whether the operator is contained in a larger prototype.

Exception triggers contained in the implementation of an operator can affect outputs on

streams of type exception, and their triggering is affected only by the inputs provided to

the operator, so the exception outputs resulting from possible inputs to the operator would

be the same regardless of whether the operator is contained in a larger prototype. Timer

operations affect the outputs on timer dependency edges only. These timer opera.tions affect

the state of a timer if some predicate evaluated on the inputs to the operator is satisfied.

Since the inputs to the operator are the same when the operator is contained in a larger

prototype, the resultant timer state change operations will he the same if the operator is

contained in a larger prototype.

Since the control constraints and the output history of an operator can only depend on

the input received from the data streams and timer dependency edges, and we know these

to be the same, putting the operator in the context of a larger prototype can not affect its

possihility function. 0

It is important to note that Lemma I applies equally to operators which are components

of larger operators, or operators which implement some operation in an abstract data type.

From our perspective, there is no difference.

132

APPENDIX C

PROOFS OF THEOREMS

1. 1ft: Traces - FunctionRepresentations IS WELL-DEFINED
AND A BIJECTION

THEOREM 2:

L Show 4> is single-valued and a total fUllction. Let r he a trace on a stream, and let
WI and 1112 be two functional representations for r SUCH THAT WI f:. '11 2 ,

Since 1111 t- W2, 3 a time t E [0,00) SUCH THAT 1JI\(t) f:.1!I 2(t).

But, then by the definition of 4>-1 3n.$ min(iength(41- I (lJI d),iength(Ifl-'(W2)))

SUCH THAT

41- 1(lJId[nj.vaiue #- $-I(w2)[nj.valuc or

4>-'(w1)[nj.operator::f. 4o-'(w2)[nj.operator or

$-I(IJIJHn).wriktime #- oIl-I(1JI2)[nj .writdime or

cJl-1(lJId[n].readJime ¥ 4l-1 (1JI 2){nj.rcadJime.

Thus, cll-1(wd of. $-I(W2), but we know that $-I(wd = $-1(1Jr2) = T, and

we have a contradiction.

Therefore, 4> is well defined.

2. Show 4> is onto. Let

M_ [O,t.)
[t"t,)

he a mapping in w.

133

[-'-, -'-,OJ
[Zl, VI, tTl]

Then by definition of 4>,

Therefore, <l> is onto.

3. Show r f:. s ~ $(r) ¥- 4>(5)

Let r and s he two traces on a stream, where r 1: s.

Then 3n::; max(length(r),length(s)) SUCH THAT

TlnJ.value =f. s[n].value or T[n].operator #- s[nJ.operator or

r [n].write_time #- s[nJ.writdime or r[nJ.read_time ¥- s[n].read-.lime.

If r[n]. write..time:f- s[nJ.write..time

then 3t::; min(r[n].writeJime,s[n].write..time) SUCH THAT

If (r(n].read_time =f. s[n].reatLtime or Tln].value =F s[n].value)

and r[n].write.Jime = s[n].writeJime

then 3t = r(n].writeJime = $[n].write...time SUCH THAT

Therefore, <l>(r) ¥- $(.5), and 4> is one-to-one.

By 1, 2 &: 3, 4> is a Bijection. 0

2. SLICING THEOREM FOR PSDL PROTOTYPES

THEOREM 3: Slicing Theorem

Let Sp(X) be the slice of a prototype P with respect to a set of streams X . Then

Sp(X) and P have the same prototype behavior on any subset of the streams in Sp(X).

134

Let Sp(X) be an arbitrary slice of a prototype P. We show that at any point during

the executiOll of Sp(X), both P and Sp(X) have the same truncated prototype behavior

over the data streams in Sp(X). From this, we conclude that the prototype behavior over

any subset of the data streams in Sp(X) is the same in both the slice and the prototype.

Using 41, we view each of the trace tuples in Bs(sp(x)) I k as a sequence of vectors, each

vector containing a data tuple from each data stream in E(Sp(X)) and do an induction over

the length of the longest sequence.

Induction Hypothesis:

If the length of the longest sequence of vectors in Bs(sp(x)) is no more than k, then

Bs(s,.{x)) is the same in both P and Sp(X).

~: (Sequence of length one)

The semantics of PSDL determine an initial data tuple for each stream. The read

time and write time of this initial data tuple are both O. If the stream is declared as a

state variable, then the initial data tuple contains a data value specified by the STATE

declaration, and otherwise it contains the undefined data value .i. The operator field of the

data tuple contains either the id of the operator containing the state variable declaration

for the stream, if one is declared, or .i. Since the state variable declarations are the same in

both P and SI'(X), the B over aU of the streams in SJ'(X) is the same in both, when the

length of the longest sequence of vectors is one.

Induction Step: (B E / Sp /X » is a sequence of length k + 1)

Equation 1 shows us that BE(sp(x» I (k + 1) is completely determined by BE(sP{xl) I k.

135

Bs(s.-(x)) I (k + 1) =

U [Tif! U (EEI(U (U6(t,/ill(EIP1,FoIT"o"t'1)))))]
TEBE(S,.(X»lk SEP(V(Sp(X))) ~ES p(T,o)<tr ,.<,

II)

Since BE(S,. (Xj) I k is the same in the slice and the entire prototype by the induction

hypothesis, BE(sp(x)) I (k + I) must also be the same in the slice and the entire prototype.

Consider the main suhexpression of the right hand side of Equation 1:

Tif! U (EEl (U (U 6 (t,JilI(EIP),FoiT,to"t,))))))
seP(V{Sp(X))) oES o(T,o)<" ,r<;,

This construction defines a set of trace tuples of length k + I in terms of a trace tuple r

of length k and a set of incremental trace tuples of length one that is derived from T and

the properties of the slice. This set of trace tuples is a subset of BE(s,.(xj) I (k + 1). The

EEl operation is a function, so, providing the trace tuple, T, and the set of incremental trace

tuples are the same in both P and Sp(X), the resultant subset of BE(sl' (x» I (k + 1) is the

same in both P and Sp(X).

The set of trace tuples, BE(sl' (x)) I k is the projected B of P over the streams in Sp(X), so

any trace tuple, T E BE(Sp(X)) I k is certalnly the same in both P and Sp(X), as Sp(X) is

a suhgraph of P.

The set of possible incremental trace tuples, D, used in the above construction is constructed

using tbe following equation:

D ~ U (EEI(U (U6(t.Jill (Ei Pl,FoiT"o"t'1)))))
SEP(V(Sp(X))) oES p(T,o)<t>" Ir<!

D is constructed by looking at every possible subset of the operators in Sp(X), building the

set of possible incremental trace tuples for the output streams of that subset and finding the

union over all subsets. Since the powerset ofthe the set of operators in Sp(X), P(V(Sp(X))),

136

is the same ill hoth P and Sp(X), then the union over all of the subsds is the Shffie in both

P and Sp(X) provided that the incremental trace tuples produced for each suhset are the

same in both.

Pick an arbitrary St E P(V(Sp(X))). We want to construct the set of possible incremental

trace tuples over the output streams of the operators in S', To do t his, we must look at

each operator, and construct the set of possible incrementa.! trace tuples over theiT output

streams. Then, we take ea.ch of those and combine them using the ffi function. Since an

incremental trace tuple is simply a trace tuplc of length one, the function e can be overloaded

to accomplish this task as well. The operator EB is a commutative function, so as long as the

incremental trace tuples produced by each operator are the same in both P and Sp(X), their

combination using EEl is the same in both P and Sp(X). Accordingly, we pick an arbitrary

operator, v. Constructing the set of possible incremental trace tuples for Q is accomplished

using the following:

u (U" (t,f;II(E(P),:r.(T".)",))))
p(T,o)<fT Ir<t

By Lemma 1, we know t hat the set of incremental trace tuples produced by Q is the same in

both P and Sp(X) . Now since we already knew that T is the same in both P and Sp(X),

and we know that ffi is a function, we conclude that the resultant set of trace tuples is the

same in both P and Sp(X), for each T E BE(sp(x» I k. Further, we conclude that the union

over all possible trace tuples in BE(sp(x» I k is the same in both P and Sp(X). Therefore,

BE(sp(x» I (k + 1) is the same in both P and Sp(X).

Since any finite prototype behavior over the set of streams in the slice is the same in both

P and Sp(X), we conclude that any finite behavior over a subset of the streams in the slice

is the same in both P and Sp(X).

Now, we want to show that any countably infinite prototype behavior is the same in

both P and Sp(X). Assume not . If any countably infinite prototype behavior is not

137

the same in both, then there must be a finite prefix which is not the same in both P and

Sp(X). However, according to our induction above, all finite subsequences of BE(sp(x))'are

the same in both, thus we have a contradiction. T herefore, any countably infinite prototype

behavior over a subset of the streams in Sp(X) is the same in both P and Sp(X). 0

The construction shown in Equation 1 defines the behavior of a prototype in PSDL. Since

PSDL is non-deterministic and can be executed in parallel, it is necessary for us to consider

all possible execution circumstances. What the construction really does is lengthen the

prototypes behavior one incrementaLlrace...tuple at a time. This incrementaLtrace..tuple

added to the eild of the behavior at some time t is the output of every operator in the

prototype tha.t is writing to its output streams at precisely time t. This can be every

operator in the prototype or only one operator in the prototype.

138

APPENDIX D

PSDL Grammar

The following is the grammar listing for the Prototyping System Description Language

(PSDL) as of 14 November 1991. This version corresponds to the implementation of our

merging tool. Optional items arc enclosed in [square brackets J. Items which may appear 7.ero

or more times appear in { braces }. Terminal symbols appear in BOLDFACE. Groupings

appear in (parentheses).

psdJ

= {component}

component
= data_type
I operator

data~type

= type id type..spec typejmpi

type...spec

= specification [generic type..declJ [type..ded]
{operator id operator..spec}
[functionality] end

operator
= operator id operator..spec operatorjrnpl

operator..spec
= specification {interlace) [functionality] end

interface
= attribute [reqrnts-traceJ

139

a.ttribute
= generic type_decl
I input type_decI
I output type-tlecl
I states typ~ded initially initiaLexpressiolLlist
I exceptions idJist
I maximum execution time time

type-decI
= idJist: type....name {, id.J.ist : type..name}

type..name

= id
I id [type_decl 1

idJist
= id {, id}

reqrntLtrace
= required by idJist

functionality
= [keywords] [informaLdesc] [formaL-desc]

keywords

= keywords idJist

informaLdesc
= description { text}

fonnaLdesc
= axioms { text}

type..imp\
= imp lementation ada id end
I implementation type..name {operator id operatorJrnpl} end

operatorJmpi
= im p lementation ada id end
I implementation psllirnpi end

psdLimpl
= data..6.ow...diagram [streams] [timers] [cont roLconstraintsJ [informaLdesc)

data.Jlow _diagram
= graph {vertex} {edge}

140

vertex:

edge

= vertex opjd [: time]
~ time i~ the maximum execution time

= edge id [: time] opJd -+ opJd
- time is t he lateD C:Y

= id [([idJistll [id.Jist])]

streams
= data stream type..decl

timers
= timer idJist

controi...cODstraints
= control constraints constraint {constraint}

constraint
= operator opjd

[triggered [trigger] [if expression] [reqrnts..traceJ]
[period t ime [reqmts..tracell

[finish within time [reqrnts..tracell
[minimum calling period t ime [reqmts..tracelJ
[maximum response time time {reqrnts..traceJ]
{constraint ..options}

constraint_options

trigger

= output idJist if expression [reqmts..trace]
I exception lei. [if expression] [reqmts..traceJ
I t imer_op id [if expression] {reqmts.. trace]

= by all idJist
I by some idJ.ist

timer.»p
= reset timer
j start timer
j stop timer

initiaLexpressionJ ist
= irutiaLexpression , ini t iaLexpression

141

initiaLexpression
= true

false
integerJiterai
realJitera!
stringJiterai
id
typcJlame. id [(initiaLexpression.Jist)]
(initiauxprcssion)
initiaLexpression binary_ap initial_expression
unary....op initiaLcxpression

binary_oJ>
= and

i.=
j=

/=
+

&

mod

unary..np

time

unit

= not I abs I - I +

= intcgerJitcral unit

= microsec
1m.
I sec
I min
I hOUTS

142

exprcssionJist
== expression {, expression}

expression
= true

false
integerJiteral
time I realJitcral
stringJiteral
;d
type...name. id [(exprcssionJist)1
(expression)
initiaLexpression binary_op initiaLexpression
unary _op initial_expression

;d
= letter {alpha..numeric}

reaUiteral
= integerJiterai . integerJiterai

intcgerJiteral

= digit {digit}

stringJiteraJ

digit

letter

= " {char}"

= any printable character except}

= 0 .. 9

1 A .. Z
1-

alpha...numberic
= letter

I digit

,~,

143

APPENDIX E

Ada Implementation Code

On the following pages are contained the implementation code for the current version
of the Change-Merge Tool. This tool used the P$DL Abstract Data Type developed n Ada
by other members of the CAPS Research Team, a.s well as the PSDL Expander developed
and implemented by Dr. Berzins. The code for these systems are not included in this
dissertation.

The code contained in this appendix is broken up into different files. Each section of
this appendix will contain a different file. All code was implemented in Ada and compiled
using the Sun Ada Compiler Version 1.0.

144

-- USAGE

-- INPUT/OUTPUT

-- AUTHOR

: Used to perform all of the housekeeping and interface

between the CAPS interface and the change-merge system
developed by Dave Dalllpier.

: Jim Brockett

-- DATE OF CREATION : 28 NOVEMBER 1993

-- LANGUAGE USED : Ada

-- COMPILER USED : Sun Ada 1.0
-- PURPOSE : Provides three functions used by the Merge Interface;

-- FILES USED

-- NOTES

-- MODIFICATIONS

merge, find_Base, and commit_merge.

: This is the module to which the TAE interface code for

the CAPS merge tool connects. Calls are made from the

merge interface to this package. It is TBD whether or

not the actual merge softvare is integrated into this
package or put separately elsewhere. Either way will

work. The purpose of this packaage is integration

specification.

DATE : 19 APRIL 1994
AUTHOR : Dave Dampier
PURPOSE : Completed Integration with Ch1Ulge_Merge_Pkg.

-- AFFECTED MODULES : All

145

!lith unix_prcs; use unix_pres;
!lith unix_dirs; use unix_dirs;

with te1:t_10; use text_lO,
'\lith a_strings; use a_strings;
vi tb psdl_program_pkg; use pSdl_program_pkg;
\lith psdl_ioj use psdl_io;

vith expaader_pkg; use expander_pkg;

!lith change_merge_pkg; use change_merge_pkg;

packllge merge_main is

procedure merge (BASE_VERSION,

VERSION_B : in a_string;
RESULT : in out a_string;
CONFLICT : in out boolean);

procedure find_Base (VERSION_A,

VERSION_B : in a_string;
BASE_VERSION: in out a_string;
ERROR . in out boolea.n);

procedure commit_merge (BASE_VERSION,

VERSION_A,

VERSION_B ; in a_string;

RESULT : in out a_string);

end merge_main;

146

with unix; use unix;

with system; use system;

package body merge_main is

prototype_path_error: exception;

procedure system_call(command . in string) is

procedure system_C(command :address);

pragma INTERFACE(C, sYlltem_C);

pragma INTERFACE_NAME(system_C. "_system");
temp; constant STRING :- command&:ASCILNUL;

error: integer;
begin

system_C(TEMP'ADDRESS) ;
end system_call;

147

-- Local function to extract the name of the prototype from the
-- version string. Raises PROTOTYPE_PATH_ERROR if an a_string ~ithout

-- the substring "I.caps/" is received as P.

pname string(1 .. P.len);
index1 integer:; P.len;

index2 : integer :- 1;

slash_not_found : boolean :"' true;

begin
for i in 1 .P.len loop

pname(i) :'" ascii-nul;

end loop;

for i in 1 .2 loop
while slash_not_found loop

index1 :"" index1 - 1;

if index1 < 1

then raise prototype_path_error;
end if;

if P.s(indexl) .. 'I'
then

slash_not_found :- false;

end if;

end loop;
slash_not_found ;- true;

end loop;

inde:x1 :- index1 + 1;

while slash_not_found loop
if P.s(indexl) .. 'I'

then
slash_not_found :"" false;

else

pname(index2) ;- P.s(indexl);

index1 :'" index1 + 1;
indlilx2 ;"" index2 + 1;

end if;

end loop;
return truncatlil(to_a(pname) ,inde:x2);

end na.me_of_prototype;

148

-- to hold prototype name.
-- to iterate through P.

-- Procedure merge reads in three prototypes and change-merges them,
-- returning a tile name holding the resultant prototype trom the
-- change-merge.

procedure merge (BASE_VERSION,
VERSION_A,
VERSION_B : in a_string;
RESULT . in out a_string;
CONFLICT in out boolean) is

PROTOTYPE_NAME , a_string;
FILE_STRING , a_string;

BASEFILE tile_type; -- Used to hold expanded tile.
AFILE , tile_type;

BFILE , tile_type;

MERGEFILE tils_type;

BASE , psdl_program; -- Used to hold base program.

OPA psdl_program ; -- Used to hold tirst modificat i on.
OPB psdl_program ; -- Ueed to hold second modification.
MERGE , psdl_program ; -- Used to hold merged program.
TEMP , status_code;

begin

-- reada in Base prototype and puts in ADT.
put_line (llchange-merging prototypes ") j

put_l ineC"reading base version");
PROTOTYPE_NAME :- name_of_prototypeCBASE_VERSION);
system_call ("merge .acript -p "ltBASE_VERSION .st" lilt

PROTOTYPE_NAME. st"> "l"/tmp/temp_baae_file .psdl");
-- builds single tile input!

open{BASEFILE, in_tile, "/tmp/temp_base_tile.psdl");
assign CBASE. empty _psdl_program);
get (BASEFILE, BASE) ;
close(BASEFILE) ;
system_call("rm /tmp/temp_base_tile.psdl");
expand(BASE) ;

149

-- reads in firs t modified version of prototype and puts in ADT .

put_l ine ("reading 1st modi fi ed version") ;

system_call ("merge. scri pt -p "&VERSION_A. s t " "l
PROTOTYPE_NAME. st"> "l"/tmp/temp_a_file. psdl ") ;

-- builds singl e file input I

open(AFILE, in_file, "/tmp/temp_a3il e .psdl ,,) ;

assign(OPA ,empty _psdl_program) ;
get CAFILE,OPA);

close(AFILE) ;

system_call ("rm Itmp/temp_a_file .psdl tl);

expand(OPA) j

-- reads in second modified version of prototype and puts i n ADT.
put_line(IIreading 2nd modified version");

system_call ("merge. script -p "&VERSIDN_B.51" "1
PROTOTYPE_NAME.st"> "&:"/tmp/temp_b3ile.psdl");

-- bui l ds single file input!
open(BFILE, in_file, "/tmp/temp_b3ile.psdl ");

assign(OPB,empty_psdl_progratll) ;
get(BFILE, OPB);
close(BFILE) ;
system_call("rm /tlllp/temp_b_file .psdl");
n pand(OPB) ;
-- puts result of performing the merge into the directory result.
change_merge(BASE, OPA, OPB, HERGE, CONFLICT);
temp ;"" mkdir(result.l'I);
split(resul t ,PROTOTYPE_NAME,HERGE);

exception
when use_error "'>

put_line (standard_error ,
"error: can't create output file. permission denied.");

when syntax_error .. >
put_line (l'Itandard_error,

" parsing aborted due to syntax error. It) ;
when semantic_error ->

put_line (standard_error.

" semantic error, parsing aborted.");
when expander_pkg.no_root ->

put_line (standard_er ror.
" semantic error - no top level operator, expansion aborted.");

put_line (standard_error,

.. check for recursive use of the prototype nallla in an expanl'lion. ");

150

when expander_pkg.multipl e_roots =>
put _line{standard_ error,
" semanti c error - more than one top level operator,

expansion aborted. ,,) ;
put_line (standard_error,

" check for operators that are not used or");
put_line (standard_error,

" add an extra top-level operator that decomposes");
put_line (standard_error,

" into the current set of top-level component s ");
put_line(standard_error,

" i f your design has several top-level components. ,,) ;
--when undefined_component "'>

put_line (standard_error,
" semantic error - an operator without a PSDL definition has
been used.");

when prototype_path_error .. >
put_line("from merge_main_pkg.merge");
put _line(standard_error.

" path to merge inputs provided by top-level interface was
incorrect. ,,) ;

when constraint_error ->
put_l ine (standard_error,

" constraint_error - merger not working properly. ,,) ;
when numeric_error .. >

put_line (standard_error,

" numeric_error - merger not working properly . ");
when program_error .. >

put_line (standard_error,
" program_error - lI1erger not working properly. ,,) ;

when storage_error ->
put_line (standard_error.

" storage_error - merger not working properly. ");
when tasking_error =>

put_line (standard_error,
" tasking_er ror - merger not working properly . ") ;

when others ->
put_line(standard_error,

" unexpected exception - merger not working properly.");

end lI1erge;

151

procedure find_Base (VERSION_A,

VERSION_B : in a_string;
BASE_VERSION: in out a_string;

ERROR : in out boolean) is

begin
text_io. put_line("this procedure is not yet implemented");
BASE_VERSION : .. to_a("You must select a base version manually! ,,) ;

ERROR : so true;

end find_Base;

procedure commit_lIIerge (BASE_VERSION,
VERSION_A,

VERSION_B : in a_string;

RESULT : in out a_string) is

in_result : a_string :- copy(RESULT);
temp_string: a_string;

temp : status_code;

: a_string;

index: integer :- x.len;

begin

"hila x.s(index) /- 'I' loop
index :., index - 1;

end loop;
vnum :"' to_a(x.s(index+l .. x.len»;

return vnum;
end version_Dum;

begin
temp_string :- (in_result J: to_a("-") 1 versiOIl_nu.m(VERSION_A)

l to_a(" _") .t versioIl_nu.m(BASE_ VERSION}

.t to_a("_It} .t version_num(VERSION_E});
temp ;""' mkdir(temp_string.s);
system_call("mv " .t in_result.s .t "/*.psdl ".t temp_string.s);
temp ;- I1!tdir(in_result.s);
RESULT := copy(tEllllp_Btring);

end co_it_merge;

152

2. changeJIlerge_pkg

-- USAGE

-- INPUT/OUTPUT : BASE, A, B: in psdl_program
MERGE: in out pSdl_program
CONFLICT: out boolean

-- AUTHOR : Dave Dampier
-- DATE OF CREATION : 19 April 1994

-- LANGUAGE USED : Ada

-- COMPILER USED : Sun Ada 1.0

-- PURPOSE : Contains tbe procedure bich petionns the change-merge
operation on PSOL programs.

-- FILES USED : pSdl_type_s.a. psdl_ct_s.a. psdl_prog_s.a,
psdl_graph_s.!l. prototype_dependency _graph_pkg_s. a,

-- NOTES

.... ith a_strings; use a_strings;
with psdLcomp0nlimt_pkg; use psdl_component_pkg;
vith psdl_concrete_ type_pkgj use psdl_concrete_type_pkg;
with pSdl_program_pkg; use pSdl_program_pkg;
with psdl_graph_pkg; use psdl_graph_pkgj
with prototype_dependency _graph_pkg j USB prototype_dependency _graph_pkg;
with proto_spec_merge_pkg; use proto_spec_merge_pkg;
with proto_illlpl_merge_pkg; use proto_impl_lIIerge_pkg;
with tell:t_io; 'Use tell:t_io;
with Bli:pression_pkg; use ell:pression_pkg;

153

-- This function performs the change_merge operation on PSDL prototypes.
-- Given three prototypes, BASE, A and E, the function creates
-- prototype dependency graphs for the three prototypes, and using
-- prototype slicing, it identifies the preserved part of the base

-- in all three versions, and the parts of the changed versions which

-- are different from the base. It then combines the three pieces into

-- a merged graph. If the graph correctl y represents the semantic merge --

-- of the three versions, and there are no conflicts, then the merged
-- prototype is reconstructed from the merged graph. In the case of a
-- conflict, the exception "merge_conflict" is raised.

procedure change_merge(BASE, A, B: in psdl_program;
MERGE: in out psdl_program;
CONFLICT: out boolean);

procedure build_prototype(P: in out pSdl_component;
G: in prototype_dependency_graph);

154

package body change_merge_pkg i s

This f'llnct ion perfonrls the change_merge operation on PSDL prot otypes .
Given three prototypes, BASE, A and B. the function creates

prot otype dependenc y graphs fo r the three prototypes, and using

prototype slic ing. it identifies the preserved part of the base
i n all three versions, and the parts of the cbanged versions wbi c h

are different from the base. It then combines the three pieces into a

merged graph. If the graph correctly represents the semant ic llIerge
of the three versions. and there are no conflicts. t hen the merged

prototype is reconstructed from the merged graph.

procedure change_merge(BASE, A, B: in psdLprogr<Ul;
MERGE: in out psdl_program;

CONFLICT: out boolean) is

BASEHOLD, AHOLD. BHOLD: psdl_program :- empty_psdl_program;
BASETYPE, ATYPE, BTYPE: psdl_program :- empty_psdl_program;

BASECOHP, ACOHP, BCOMP, HERGECOHP: composite_operator;

GBASE, GA, GB, GH, PP, APA, APB: prototyp8_dependency_graph;

BASESTREAMS, ASTREAHS, BSTREAMS, HERGESTREAHS; type_dec1ouation;
HERGESTATES: type_dec1ouation;

HERGEINIT: init_map ;"" empty_init_map;

MERGEEXCEPTIONS, HERGEJ(EYIIDRDS: id_set;

HERGEHEr: millisec :'"' 0;
HERGE_INF _DESC, MERGE_AX: text;

BASETRIG, ATRIG, BTRIG, HERGETRIG; trigger_map :- empty_ trigger_map;

BASEEG, AEG, BEG, HERGEEG; eXElc_guoud_map ;'" empty_exec_guard_map;

BASEOG, AOG, BOG, HERGEDG: out_guoud_map :"' empty_out_guoud_map;

BASEEr, AEr, BET, HERGEET: excep_trigger_map :'" empty_ucep_triggElr_map;
BASETO, ATO, BTO, HERGETO: timer_op_map :'" empty_timElr_op_map;

BASEPER, APER, BPER, HERGEPER: timing_map :"' eJIIPty_timing_map;

BASEFW, AFW', BFW', HERGEFW': timing_map ;- empty_tiMing_map;

155

BASEJiCP, AMCP, BMCP, MERGEMCP: timing_map :'" empty_timing~map;
BASEMRT, AMRT, BMRT, MERGEMRT: timing_map :., empty_ timing~map;
BASEDESC, ADESC, BDESC, MERGEDESC: tert;
MERGEID: psdLid;
BASETIMERS, ATIMERS, BTIMERS, MERGETIMERS, V: id_set;

tempexpression: expression;

tempoutid: output~id;
tempel:id: ex(:ep_id;

begin

(:onfli(:t := false;

This se(:tion of (:ode is used to extra(:t the psdl (:omponents from ea(:h

-- of the three progral!ls. It assigns the parent (:omposite operator to its

-- ovn (:omponent variable, and it assigns the atomi(: operators to holding

-- components, so they (:an be retrieved later.

-- BASE

for id: psdl_ id, (: :psdl_(:omponent in psdl_program_map_pkg. s(:an (BASE) loop

if (:omponent_(:ategory«(:) ., psdl_typa

then

bind(id,(:,BASETYPE) ;
else

if (:omponent_gr anlllarity«(:) ., (:omposite

then
BASECOKP :., (:;

else

bind(id, c, BASEHOLD);
end if;

end if;
end loop;

156

-- ,

for id:psdl_id, c :psdl_component in psdLprogram_map_pkg. scan (A) loop
if component_categoryCc) " psdl_type

then

bind(id,c,ATYPE) ;

else
if component_granularity(c) .. composite

then

ACOMP :" c;

else
bind(id, c. AHOLD);

end if;

end if;
end loop;

-- B

for id:psdl_id.c:psdl_component in psdl_program_map_pkg.scan(B) loop
if component_categoryCc} "' psdl_type

then

bind(id,c,BTYPE) ;

else
if component_granularity(c) .. composite

then

BCOMP :'" c;

else

bind(id, c, BHOW);

end if;
end if;

end loop;

157

-- Create the Merged Specification

-- Merge the states

merge_states(HERGESTATES ,states(BASECOMP) ,states (ACmo{P), sh.tes(BCOMP),
MERGEINIT, get_lnit_map{BASECOMP), get_init_mapCACOMP),

get_init_mapCBCDHP» ;

-- Merge the Exceptions

as sign (HERGEEXCEPTIDNS, merge_id_sets (exceptions (BASEeDHP) ,
exceptions (ACOHP). exceptions (BCaMP»);

-- Merge the Keyvords

assign (MERGEKEYWORDS. merge_id_sets (keywords (BASEeDM?) •
keywords (ACOMP) , keywords (BCOMP»);

-- Merge the InfoIlllal Description

HERGE_INF _DESC : .. merge_text(infoIlllal_description(BASECOMP).

informaJ._description(ACOMP) •
informal_description(BCOHP» ;

-- Merge the Formal Description

MERGE_AX :. merge_text(a:xioms(BASECOMP).
a.%ioms(ACOMP) •

uioms(BCOKP» ;

158

- - Merge the Maximum Execution Times

MERGEMET :"' merge_met (specifieQ_maximum_execution_time(BASECOMP) ,
specif ied_maximum_execution_time (ACOMP) ,
specif ieQ_max imutll_execution_ time (BCOMP)) ;

-- Merge the Implementation

-- Extract the prototype QepenQency

-- graphs frbm the psdl components.

assign(GBASE, build_PDG(BASECOMP));

assign(GA, build_PDG(ACOMP));

assign(GB, build_PDG(BCOMP));

-- Create the Preserved Part

assignCPP, preserved_part(GBASE, GA, GB));

-- Create the Affected Parts of each

-- modification graph.

-- put_lineC"Affected Part: A");

assign(APA, affected_part(GA, GBASE)); -- First Modification

-- put_line("Affected Part: B") j

assign(APB, affected_part(GB, GBASE)); -- Second Modification

159

Greate the Merged Graph using the
Preserved Part of the Base and

-- the Affected Parts of both
-- modifications.

assign(GH, graph_merge ePP. APA. APB » ;

-- Merge the streams

assign(BASESTREAMS, streams(BASECOMP»;

assign (ASTREAMS, streams(ACOMP»;
assign(BSTREAHS, streams(BCOMP» j

assign(liERGESTREAMS, merge_streams (BASESTREAMS, ASTREAMS, BSTREAMS»;

-- Merge the timers

assign(BASETIKERS, timers(BASECOHP» j

assign(ATIMERS, timers (AeOHP»;
assignCBTlMERS, timers(BCDMP»;
ass i gn(HERGETIMERS. merge_timers (BASETIMERS. ATIHERS . BTlMERS»;

-- Merge the triggers

for id: psdl_id in id_set_pkg.sca.n(vertices(GBASE» loop
if not eq (id, EXT)

then

bind(id. get_trigger(id, BASECOHP). BASETRIG);

end if;
end loop;
for id: psdl_id in id_set_pkg.scan(vertices(GA)) loop

if not eq(id, EXT)
then

bind(id, get_trigger(id, ACOHP), ATRIG);

end if;

end loop;

160

for id: psdl_id in id_set_pkg.scan(verticel'l (GB» loop
if not eq (id, EXT)

then

bind(id, get_triggerCid, BCOMP), BTRIG);

end it;
end loop;

assign(MERGETRIG. lIIerge_ trigger _maps(vertices(GM) •

BASETRIG, ATRIG, BTRIG»);

-- Merge the execution guards

for id: pSdl_id in id_set_pkg.scan(vertices(GBASE» loop

if not eq(id, EXT)

then

bind(id, execution_guard(id. BASECOMP), BASEEG);

end if;

end loop;
for id: pSdl_id in id_set_pkg.scan(vertices(GA» loop

if not eq(id, EXT)

then

bind(id, execution_guiU"d(id, ACOMP) , AEG);

end if;

end loop;

for id: psdl_id in id_set_pkg.sca.n(vertices(GB» loop

if not eq(id, EXT)
then

bind(id. execution_guard(id. BCOMP), BEG);

end if;
end loop;
assign(MERGEEG, lIlerge_eJ:ec_guard_maps (vertices(GM),

BASEEG, AEG, BEG));

161

-- Merge the output guards

for e: edge in edge_set_pkg.scan(edges(GBASE» loop

assign (temp expression. output_guardCe. x, e. stream_name, BASECOMP» ;

if not(tempexpression = true_expr ession}

tben

tempoutid.op :'" copy(e,x);

tempoutid. stream : = copy(e. stream_nll.lIUi!) ;

bind(tempoutid , tempexpressi on, BASEOG);

end if;

end loop;
for e: edge in edge_set_pkg.scan(edges(GA» loop

assign{tempexpression, output_guard(e .x,e. stream_name ,ACOMP» ;

if not(tempexpression .. true_expression)
then

tempoutid.op :"' copy(e.x);
tempoutid.straam :. copy (e. stream_name) ;

bind(tempoutid, tempexpression, ADG);

end if;
end loop;

for e: edge in edge_set_pkg.scan(edgesCGB» loop

assign (tempexpression. output_guard(e. x, e. stream_name ,BCOMP)} j

if not(tempexpression .. true_expression}
then

tempoutid.op : .. copy(e.x);
tempoutid. stream : .. copy(e . stream_name} j

bind(tempoutid, tempexpression, BOG);
end if;

end loop;

assignCMERGEOG, merge_output_suard_maps(BASEOG ,AOe ,BOG» ;

-- Merge the exception triggers

162

tor id: pSdl_id in id_set_pkg.scan(vertices(GBASE» loop
it not eq(id, EXT)

then
tor e: pSdl_id in id_set _pkg.scan(e.xceptions(BASECOI'!P» loop

assign(tempexpression, exception_trigger(id, e, BASECOMP» ;
if not eq(tempexpression, false_expression)

then
tempedd.op :'" copy(id);
tempexid. e.xcep := copy(e);

bind(tempe.xid, tempexpression, BASEET);

end if;

end loop;

end if;
end loop;
for id: pSdl_id in id_set_pkg.scan(vertices(GA» loop

it not eqCid, EXT)

then
tor e: psdl_id in id_set_pkg. scan(exceptions (ACOMP» loop

assign(tempexpression, exception_trigger(id,e ,ACOMP» ;
it not eq(tempexpression, false_expression)

then
tempexid.op :- copy(id);

telIlpexid.excep := copy (e) ;

bind(tempexid, tempexpressi on, AET);
end it;

end loop ;

end if;

end loop;
for id: psdLid in id_set_pkg.scan(vertices(GB» loop

it not eq(id, EXT)

then

for e; pSdl_id in id_set_pkg. scan(exceptions(BCOMP» loop
assign(tempexpression, exception_trigger(id,e,BCOMP»;

if not eq(tempexpression, false_expreSsion)

then
tempexid.op :'" copy(id);

tempexid.excep :"' copy(e);
bind(tempexid, tempexpression, BET);

end it;
end loop;

end if;

end loop;
llssign(MERGEET, (merge_excep_ trigger_maps(BASEET, AET, BET»);

163

-- Merge the timer operations

for id: psdLid in id_set_pkg. scan(vertices(GBASE» loop

if not eq(id, EXT)

then

bind(id, timer_operationsCid, BASECOMP), BASETD);

end if;
end loop;
for id: psdl_id in id_set_pkg.scan(vertices(GA» loop

if not eq(id, EXT)
then

bind(id, timer_operations(id, ACDMP). ATD);

end if;

end loop;

for id: pSdl_id in id_set_pkg.scan(vertices(GB» loop
if not eq(id. EXT)

then

bind(id, timer_operations(id, BCOMP), BTO) j

end if:
end loop;

assign(MERGETO, merge_timer_op_maps(vertices(GM), BASETO. ATD, BTO»;

-- Merge the periods

for id: psdl_id in id_set_pkg.scan(vertices(GBASE» loop

if not eq (id, EXT)

then

bind(id. period(id, BASECDMP), BASEPER);
end if;

end loop;
for id: psdl_id in id_set_pkg.scan(vertices(CA)) loop

if not eq(id. EXT)

then

bind(id. period(id. ACOMP). APER);

end if;

end loop;

164

for id: psdl_id in id_s9t_pkg.scan(vertices(GB» loop

if not eq(id, EXT)

then

bind(id, period(id, BCOMP), BPER);

end if;

end loop;

aasign(MERGEPER, merge_period(BASEPER, APER, BPER»;

-- Herge the finish_withins

for id: psdl_id in id_set_pkg. scan(vertices(GBASE» loop

if not eq(id, EXT)

then

bind(id. finish_,.rithin(id, BASECDMP). BASEfW);

end if;

end loop;

for id: psdl_id in id_set_pkg.scan(vertices(GA» loop
it not eq (id, EXT)

then

bind{id. finish_within(id. ACOMP), AFW);
end if;

end loop;
for id: pSdl_id in id_set_pkg.scan(vertices(GB» loop

if not eq(id, EXT)

then

bind(id, finish_vithinCid, scaMP), BF.,,);

end if;

end loop;
assign(MERGEFW. merge_fw_or_mrt(BASEF1rI, AFW. BFW»;

-- Merge the lIIax response times

for id: psdl_id in id_Bet_pkg.scan{vertices(GBASE» loop

if not eq(id, EXT)

then

bind(id, lIlaximwn_response_ time(id, BASECOMP), BASEMRT);

end if;

end loop;

165

tor id; psdl_id in id_set_pkg.sc:an(vertices(GA)) loop

it not eq(id, EXT)
then

bind(id, muimum_response_time(id, ACDMP), AMRT);
end if;

end loop;
for id; pSdl_id in id_set_pkg.scan(vertices(GB)) loop

it not eq(id, EXT)

then
bind(id, maximum_response_time(id, BCOMP), BMRT);

end if;

end loop;

assign(HERGEMRT, merge_h'_or_mrt(BASEMRT. AHRT. BHRT)) j

-- Herge the minimum calling periods

for id; psdl_id in id_set_pkg.scan(vertices(GBASE)) loop

if not eq(id, EXT)
then

bind(id. minimum_calling_period(id, BASECOHP), BASEMCP);

end if i
end loop;

for id; pSdl_id in id_set_pkg.scan(vertices(GA» loop
if not eq (id, EXT)

then

bind(id, minimum_calling_period(id. ACOMP) , AHCP);

end if;

end loop;

for id; psdl_id in id_set_pkg.scan(vertices(GB» loop

if not eq(id. EXT)
then

bind(id. minimum_calling_period(id. BCOMP) , BHCP);
end if;

end loop;

assign(HERGEMCP. lIIerge_lIIin_call_per(BASEMCP. AMCP. BHCP);

166

-- Herge the implementation descriptions

BASEDESC : .. implel!lentation_description(BASECOHP);
AOESC : .. implementation_description(ACOMP);
BOEse :- implemenu,tion_description(BCOHP);

KERGEDESC :- merge_implementation_description(BASEDESC, AOESC, BOESe);

-- Construct the merged progrl'l.lll.

KERGEID : .. copy(nallle(BASECOMP»);

MERGECOHP :- make_composite_operator(M£AGEID.

keywords -> MERGEKE'fliORDS,

uioms ..) MERGE_AX.,

state -> HERGESTATES.
ini tia.lization_map -) HERGEINIT,
exceptions .. > MERGEEXCEPTIONS,
speciUed_Jlet -> MERGEHET.

streams .) HERGESTREAMS.

timers -> MERGETlHERS.
trigger -) HERGETRIG.
exec_guard -> HERGEEG.

out_guard -) MERGEOG.

exeap_trigger -> MERGEET.
ti.er_op -> MERGETO,
per -> H£RGEPER,
fv -> MERGEFW.

mcp -> HERGEKCP,

IIlrt -> HERGEKRT.
impl_desc -> HERGEDESC);

167

Compare the the Merged Graph \lith the Graph of each modification by'

comparing the slices of each with respect to their a.:ffected p a rts.

-- If the slices are the same, then the merged graph is correct and the

-- program can he rebuilt. Otherwise, there is a conflict that must be
-- resolved.

build_prototype(MERGECOMP, GM);

conflict_free_a :"' compare_graphs(GM, GA, APA);

conflict_fres_b :" compare_graphs (GM. GB, APB);

then
put_lineC"Conflict found in Version_A");
conflict :- true;

end if;
if not conflict_free_b

then
put_line("Conflict found in Version_B");
conflict : .. true;

end if;

-- Returu the Herged Program.

bind (HERGEID. MERGECOMP ,MERGE) ;

assign(V. vertices(PP» j

for id: pSdl_id in id_set_pkg.scan(V) loop
bind(id ,fetch(BASElIDLD, id) ,MERGE);

end loop;
assign(V, verti(;es(APA»;

for id; psdl_id in id_set_pkg.s(;an(V) loop
if not lRember(id,MERGE)

then

bind(id ,fet(;h(AHDLO, id) ,MERGE);

end if;
end 100F ;
assign(V. Verti(;l!s(APB»;

168

for id: psdl_id in id_set_pkg.scan(V) loop

if not member(id,MERGE)

then

bind(id ,fetch(BHOLD, id) ,MERGE) ;

end if;

end loop;

end change_merge;

-- This procedure is used to build the merged prototype vhen the change-

-- merge operation is successful.

procedure build_prototype(P: in out psdl_component;
co: in prototype_dependency _graph) is

begin

assigu(A, psdl_graph{G»;
remov&_vertex(EXT. A);

set_graph(A,P) ;
end build_prototype;

169

3. proto..specJnerge_pkg

-- COMPONENT NAME : PACKAGE PRDTO_SPEC_MERGE_PKG(proto_spec_merge_pkg_s. a)

-- AUTIiDR : Dave Dampier

-- DATE OF CREATION: 19 April 1994

-- LANGUAGE USED : Ada

-- COMPILER USED : Sun Ada 1.0

-- PURPOSE ; Thi s package provides specifications for the functions
used to petioIl!l change-lllerges on padl operator

specifications.
-- FILES USED : psdl_ct_s.a, psdLct_h.a, psdLtype_s.a, psdl_type_h.a,

set_s.a, set_b.a, map_s.a, map_b.a. exp_s.a, exp_b.a.

vith system;

vith generic_map_pkg;
';litb generic_set_pkg;
with TEXT_ID;

vith a_strings;

with psdl_concrete_type_pkg;
with psdl_component_pkg;
with expression_pkg;

use TEXT_IOj

use a_strings;

use psdl_concrete_type_pkg;
use psdl_component_pkg;

use expression_pkg;

function MERGE_SEQUENCES(BASE, A, B: type_declaration)
return type_declaration;

procedure MERGE_STATES (MERGE: in out type_declaration;

BASE, A, B: in type_declaration;
MERGEINIT: in out init_map;
BASEINIT, AINU. BINIT: in ini t_map);

function MERGE_MET(BASE, A, B: millisec) return millisec;

function MERGE_TEXT(BASE, A. B: text) return text;

170

function merge_seq1lences(BASE, A. B; type_declaration)
return type_declaration is

MERGE; type_declaration;

TOP ; constant psdl_id :'" to_a("TOP");

begin

assign(MERGE, empty_ type_deClaration) ;
it equal (BASE, A)

then if equal(BASE, B)

then assign(MERGE, BASE);
else assign(MERGE, B);

end it;
else it equal(BASE, B)

then assign(MERGE, A);
else if equal(A, B)

then assign(MERGE, A);

else bind(TOP, null_type, MERGE);
end it;

end if;

end if;

ret1lrn MERGE;

end merge_sequences;

begin

if equa1(t_base, t_a)

then

if equal(t_base. t_b)
then

else

return(t_b) ;
end if;

171

else

if equal(t_base, t_b)

then

else

if equal(t3, t_b)

then

else

return null_type;
end if;

end if;

end if;

end merge_types;

procedure merge_statesCMERGE: in out type_declaration;

BASE, A, B: in type_declaration;

MERGEINIT: in out init_map;
BASEINIT, AINIT, BINIT: in init_map) is

init_value : expression;

base_type, a_type, b_type : type_nallla;

begin
assign(init_value, 6lIlpty_expression);

assign(MERGE, empty_ type_declaration);
for id: psdl_id, t: type_name in type_declaration_pkg. Bcan(BASE) loop

if member(id, A) and member(id. B)

then

a_type :'" type_declaration_pkg.fetch(A, id);
b_ type : .. type_declaration_pkg.fetch(B, id) ;

bind(id. merge_typeset I a_type, b_ type). MERGE);
assign<init_value, init_map_pkg.fetch(BASEINIT ,id);

if eq (ini t_ value, ini t_lIlap_pkg. fetch (AINIT • id))

then

if eq(init_value, init_map_pkg.fetch(BINIT, id»

then

bind(id,init_value,HERGEINIT) ;

bind(id, init_map_pkg.fetch(BINIT, id) ,HERGEINIT) ;

end if;

172

else
i1' eq(init_value , init_map_pkg. 1'etch(BINIT ,id))

then
bind(id, init_map_pkg. fetch(AINIT, id) ,MERGEINIT);

else
i f eq(init_map_pkg. fetch(AINIT, id) ,

init_map_pkg .1'etch(BINIT, i d))

then
bind(id, init_map_pkg.:tetch(AINIT, id) ,MERGEINIT) ;

else
bind(id,conflict_expression ,MERGEINIT);

end if;

end if;

end if;

end if;

end loop;
for id: pSdl_id, t: type_name in type_declaration_pkg.sca.n(A) loop

if not member(id, BASE) and member(id, B)

then
base_type :" null_type;
b_type :- type_dec1aration_pkg.fetch(B,id);

bind(id, merge_ types (base_type , t, b_type), MERGE);
assignCinit_va.1ue, init_map_pkg. fetc.h(AINIT, id));
if eq(init_value, init_map_pkg.fetch(BINIT ,id))

then

bind (id, init_ value,MERGEINIT);

else

bind C id, conflict_expression ,MERGEINIT) ;

end if;

end if;
end loop;

173

for id: psdl_id, t: type_name in type_declan.tion_pkg.scanCB) loop
if not member(id, BASE) and member(id, A)

then

base_type :'" null_type;

a_type : .. type_declaration_pkg. fetch(A, id);

bind(id, merge_types (basl!_type, a_type, t), MERGE);

assignCinit_ value, init_map_pkg. fetch(BINIT, id» ;
if eq{init_value, init_map_pkg.fetch(AINIT. id»

then

bind(id, ini t_value,MERGEINIT);

else

bind (id. conflict_expression ,HERGEINIT) ;

end if;
end if;

end loop;
end merge_states j

function merge_met(BASE, A, B: millisec) return millisec is

A_DIFF_BASE. B_DIFF_BASE, A_INT_B: millisec;

begin

1fA<-a
then A_INT_B :- H;

else "_INT_B :- A;

end if;

if BASE < .. A

end if;
if BASE (.. B

then B_DIFF _BASE :- system.mu_int;
else B_DIFF_BASE :-= B;

end if;
if A_DIFF _BASE <c A_INT_B

then if A_DIFF _BASE <- B_DIFF _BASE
then return A_DIFF_BASE;

else return B_DIFF_BASE;

end if;
else if A_INT_B <- B_DIFF_BASE

then return A_INT_B:
else return B_DIFF _BASE;

end if;

end if;

174

begin

assign(A_DIFF_BASE, empty_id_set);

assign(B_DrFF _BASE, empty_id_set);

assign(MERGE, empty_id_set);

difference(A, BASE, A_DlFF _BASE);

difference(S, BASE, B_DIFF _BASE);

for id: psdl_id in id_set_pkg.sc::an(A) loop
if member(id, B)

then

add(id, HERGE);

end if;

end loop;

for id: psdl_id in id_set_pkg. scan(A_DIFF _BASE) loop
if not member(id. MERGE)

then

add(id, MERGE);
end if;

end loop;

for id: psdl_id in id_set_pkg.scanCB_DIFF_BASE) loop
if not member(id, MERGE)

then

add(id, MERGE);

end if;
end loop;

return MERGE;

175

fUllction merge _text(BASE, A, B: text) return text is

begin

if eq(BASE, elllpty_tert) and eq(A, el!lpty_text) and eq(B, empty_text)
then return empty_text;
else if eq(BASE. A)

then if not eq(BASE, B)
then return B;

alse return BASE;

end if;

else if eq (BASE, B)
then return A;

else if eq(A , B)

then return A;

else return to_a(n •• Text Conflict •• "};
end if;

end if;

end if;

end if;

end merge_ t81:t;

176

4. proto.JrnpLmerge_pkg

-- COMPONENT NAME : PACKAGE PROTO _I1oiPL_MERGE_PKG(proto_impl_merge_pkg_s. a)
-- USAGE : Used to perform change-merging on PSQL program

implementations.
-- AUTHOR : David A. Dampier
-- DATE OF CREATION : 19 April 1994

- - LANGUAGE USED : Ada

-- COMPILER USED : Sun Ada 1.0

-- PURPOSE : Provides specifications for the functions necessary

to merge PSDL Implementations.

with system;

\lith TEXT_ID; use TEXT_IO;

with a_strings; use a_strings;
with generic_map_pkg;

vith generic_set_pkg;
vith psdl_concrete_ typB_pkg; use psdl_concrete_type_pkg;

with psdLcomponent_pkg; use psdl_component_pkg;

with proto_spec_merge_pkg; use proto_spec_merge_pkg;
with expression_pkgj use expression_pkgj

function merge_streams(BASE, A, B; type_declaration)

return type_declaration;

function merge_timers(BASE, A, B: id_set) return id_set
renames proto_spec_merge_pkg .merge_id_sets;

function merge_trigger_maps(VERTS: id_set; BASE, A, B: trigger_map)

return trigger _map;

function merge_exec_guard_maps(VERTS: id_set; BASE, A, B: lU.ec_guard_map}
return exec_guard_map;

177

function merge_output_guard_mapsCBASE. A, B: ollt_guar d_map)
return out_guard_mapr

function mergll_i!xcep_trigger_mapsCBASE, A, B: excep_trigger_lIlap)

return excep_ trigger _map;

function mergi!_timer_op_mapseVERTS: id_set; BASE, A, B: timer_op_map)

return timer_op_map;

function merge_period(BASE, A, B: timing_map) return timing_map;

fun<;tion merg8_implementation_description(BASE. A. B: text) return text

renames proto_sp8c_merge_pkg .merge_ text;

178

begin
if equaHt_base, t_a)

then
if equalCt_base, t_b)

then

end if j
else

if equalCt_base, t_b)

t hen

else
if equal(t_a, t_b)

then

else
re'turn null_type;

end if;

end if;

end if;

end lIIerge_ types;

function merge_l'ItrealllsCBASE, A, B: type_declaration)

return type_declaration is

MERGE: type_declaration;
base_type, a_type, b_type : type_nallle;

begin
aSl'lignCHERGE, empty_ type_declaration);

for id: psdl_id, t: type_nallle in type_declaration_pkg.sca.n(BASE) loop
if memblilr(id, A) and member(id, B)

then
a_type :- type_declaration_pkg.fetch(A, id);
b_ type : .. type_declaration_pkg .fetch(B, id) ;

bind(id, merge_typeset, a_type, b_type), MERGE);

end if;

end loop;

179

for id: psdl_id. t: type_name in type_declaratioD_pkg.scan(A) loop
if not member(id, BASE) and member(id, B)

then

base_type :- null_type;
b_type : - type_declaratioD_pkg.fetch(B,id);
bind(id,merge_types(basB_type, t, b_type), MERGE);

end if;

end loop;

for id: pSdl_id, t: type_name in type_declaratioD_pkg. seanCB) loop
if not member(id, BASE) and roemher(id, A)

then

base_type :'" null_type;
a_type := type_declaratioD_pkg.fetch(A,id);

bind(id,merge_types(hase_type ,a_type, t), MERGE);
end if;

end loop;

return MERGE;
end merge_strea.ms;

function merge_triggers(BASE, A, B: trigger) return trigger is

KERGE: trigger;
confl ict_trigger: trigger :'" (tt -> by_all,

begin
if eq(BASE, A)

then
if eq(BASE, B)

then

MERGE.tt :- BASE.tt;
assign(MERGE.streams,

streams -> id_set_pkg.add(to_a("TOP"),
id_set_pkg. empty»;

merge_id_sets(BASE.streams, A. streams, B. streams» ;

return MERGE;
else

return B;
end if;

180

else
if eq(BASE, B)

then
return A;

else
if eq (BASE, B)

then
return A j

else

return conflict_trigger;

end if;

end if;
end if;

end merge_triggers;

function merge_trigger_lIlaps(VERTS: id_slilt; BASE, A, B: trigger_map)

MERGE: trigger_map;
base_trig, a_trig, b_trig, merge_trig: trigger;

begin
assign(MERGE, empty_trigger_map);
for id : psdl_id in id_set_pkg.scan(VERTS) loop

base_trig :- fetch(BASE,id);
a_trig :- fetch(A,id);

b_trig : .. fatch(B,id);

return trigger_map is

merge_trig :- merge_triggers(baSQ_trig, a_trig, b_trig) j
bind(id. merge_trig, MERGE);

end loop;
return MERGE;

end merge_ trigger_maps;

function merga_expressions(BASE, A, B :eJ:pression) return expression is

local_base: expresslon;

local_a : exprellsion;
local_b : e:zpression;
c:onflict_e:zpression ; constant expression : ..

c:reate_identifier(to_a(" •• CONFLICr •• ")) ;

181

begin
ilssign(local_base. BASE);

!l.ssign(locaLa, A);

!l.ssign(locaLb, B);

if eq(local_BASE, locaLa)

then

if eq(local_BASE, local_B)

then

returu(local_BASE) ;

else

return(local_B) ;

end if;

else
if eq(local_BASE, local_B)

then

else
if eq(local_A. local_B)

then
return (local_A) ;

else

return conflict_expression;

end if;
end if;

end if;
end merge_expressions;

MERGE: exec_guard_=ap;

base_eg, a_eg, b_eg, merge_eg : expression;

begin
assign{HERGE. eJIIPty_e:uc_guard_Dlap);

for id : psdLid in id_set_pkg.scaneVERTS) loop
assign(base_eg, fetch(BASE, id» j

assign(a_eg, fetch(A,id» j

assign{b_eg, fetch(B,id»;

assign(merge_eg, marge_sxpressions{base_eg, a_ag, b_sg»;

bind(id. merge_eg, MERGE);

end loop;
return MERGE;

182

function merge_output_guard_maps(BASE, A, B: out_guard_map)

MERGE: out_guard_l!Iap :'" empty _out_guard_map;
base_og, a_og. b_og, merge_og : 8xpresslon;

begin

return out_guard..,map is

for id : output_id, e: expression in out_guard_map_pkg.scan(BASE) loop
if member(id,A) and member(id,B)

then
assignCa_og, fetch(A, id»;

assign(b_og, fetcheB, id»;
assign(merge_og, merge_8xpressions(e, .!I._og, b_og»;
bind(id, merge_og, HERGE);

end if;
end loop;
for id : output_id, II : expression in out_guard_map_pkg.scan(A) loop

if not member(id. MERGE)
then

if member(id, B)
then

assign(bas8_og, empty_expression);

assign(b_og, fetchCB.id»;
assignCmerge_og, merge_expressions(ba.se_og. e, b_og»;
bind(id, merge_og, MERGE);

else
if not mamber(id, BASE)

then
bind(id, e, MERGE) j

end if;
end if;

end if;
end loop;
for id : output_id, e ; expression in out_gua.rd_map_pkg.sca.n(B) loop

if not lIIember(id, MERGE) and not lIIember(id. BASE)

then
bind(id, e, MERGE);

end if;
end loop;
return MERGE;

end merge_output_guard_lIIaps;

183

function merge_excep_trigger_maps (BASE, A, B: excep_ trigger_map)

retUrIl excep_trigger..,map is

MERGE: ell:cep_ trigger _map;

base_et, a _et, b_et, merge_~rt : expresslon;

begin

assign(MERGE, empty_excep_ trigger_map);

for id: excep_id,e :expression in excep_ trigger_map_pkg. scan (BASE) loop
if melllher(id,A) and lIlemher(id,B)

then

assignCa_et, fetch(A,id));
assignCb_et, fetch(B,id));

assign(merge_et. merge_expressions(e. a_et, b_et));
bind(id, merge_et, MERGE);

end if;

end loop;

for id: excep_id,e :expression in excep_ trigger_map_pkg. scan (A) loop
if not member(id, MERGE)

then
if member(id, B)

then
assign(base_et, empty _expression) ;
assign(b_et, fetch(B, id));
assignCmerge_et, merge_expressions{base_et, e, b_et));
bind(id, merge_et, MERGE);

else
if not member(id, BASE)

then
bind(id, e, MERGE);

end if;
end if;

end if;
end loop;
for id: exeep_id,e: expression in exeep_ trigger_map_pkg. scan (B) loop

if not memberCid, MERGE) and not member(id, BASE)

then
bind(id, e, MERGE):

end if;
end loop;
return MERGE;

end merge_exeep_ trigger_maps;

184

function merge_timer_op_sets{BASE,A,B:timer_op_set) return timer_op_set is

MERGE; timer_op_set;

begin

for t_op : timer_op in timer_op_set_pkg.sc:an(BASE) loop
if member(t_op,A)

then

it member(t_op,B)

then

add(t_op ,MERGE);

end if;

end if;

end loop;

for t_op : tiUler_op in timer_op_set_pkg.scan(A) loop
if not member(t_op,KERGE)

then
if IIlBlIlber(t_op,B)

then
add(t_op ,MERGE);

end if ;

end if;

end loop;

for t_op : timer_op in timer_op_set_pkg.scan(B) loop
if not member(t_op,KERGE)

then

if member(t_op,A)
then

add(t_op,MERGE) ;

end if;

end if;
end loop;

return MERGE;
end merge_ timer_Op_lIBtB;

185

function merge_timer_op_mapseVERTS: id_set; BASE, A, B: timer_op_map)
return timer_op_map ~fF

MERGE: timer _op_map;
base_set, a_set, b_set. merge_set : timer_op_set;

begin

assign(HERGE, empty_timer_op_map);
for id : pSdl_id in id_set _pkg.scan(VERTS) loop

assign(base_set, fetch(BASE, id));

assign(a_set, fetch(A,id));

assignCb_set. fetch(B, id)) ;
assignCmerge_set, merge_timer_op_setsCbase_set, a_set, b_set));

bind(id, merge_set, MERGE);
end loop;

return MERGE;

end merge_ timer_op_maps;

function merge_timing_data(BASE, A, B: mi11is8c) return millisec is

begin

if BASE" A

then if BASE. B

then return BASE;
else return B;

end if;

else if BASE. B

then return A;
else if A • B

then return A;
else return system.mu:_int;

end if;

end if j

end if;

end lIlerge_ timing_data;

186

function lnerge_period(BASE, A, B: timing_map) return timing_map is

MERGE: timing_map;

BASEVAL. AVAL, BVAL: millisec :'" 0;

begin
assign(MERGE, empty_ timing_map);
for id: pSdl_id. m: millisec in timing_map_pkg.scan(BASE) loop

if member(id, A) and member(id,B)

then
AVAL :- fetchCA, id);

BVAL :: fetch{B, id) ;

bind(id, merge_timing_data.(m,AVAL,BVAL), MERGE);

end if;
end loop j
for id: pBdl_id, m: millisec in timing_map_pkg.scan(A) loop

if not memher(id, MERGE) and not member(id,BASE)

then
if memher(id, B)

then

BVAL :- fetcheB, id);

if m I"' BVAL then

bind(id, system.mu_int, MERGE);

end if;
else

bind(id. m. MERGE);
end if;

end if;
end loop;
for id: psdl_id. m: millisec in timing_map_pkg.scan(A) loop

if not mel!lber(id. A) and not memher(id,BASE)

then
bind(id, m, MERGE) j

end if;

end loop;

return MERGE;
end merge_period;

187

MERGE: timing_map;
BASEVAL, AVAL, BVAL: millisec :'" 0;

begin
assign(MERGE. empty_timing_map) j
for id: psdl _id. m: millisec in timing_ma.p_pkg.sca.n(BASE) loop

if member(id, A) and member(id,B)

then
HAL :"' fetch(A, id);

BVAL :'" fetcheB, id) j

bind(id, merge_met(m,AVAL,BVAL). MERGE) ;
end if;

end loop;
for id: psdl _id. m: lIIillisec in timing_map_pkg.scan(A) loop

if not member(id, MERGE) and not member(id,BASE)

then
if member(id, B)

then
BVAL :- fetch(ll. id);

if m / .. BVAL then
bind(id, system.mU:_int. MERGE) j

end if;

else
bind(id. m, MERGE) j

end if;

end if;

end loop;

for id: psdl_id. III: millisec in dming_map_pkg.scan(A) loop

if not member(id, A) and not member(id,BASE)

then

bind(id. m, MERGE);
end if j

end loop j
return MERGE j

end merge_fw_or_mrt;

188

function merge_mcp(BASE, A, B: lIIillisec) return mill i sec is

begin

it A >'" B
then A_ I KLB : .. H;

else A_INT_B :'" A;
end if;

if BASE <- A

end if;
if BASE (- B

else B_DIFF_BASE :'" system.max_int;
end if;
if A_OIFF_BASE > .. A_IHT_B

then return A_DIFF _BASE;

else return B_DIFF_BASE;

end if;

else if A_INT_B >-= B_DIFF _BASE

then return A_INT_B;
else return B_DIFF _BASE;

end if;
end if;

189

function merge_min_call_per(BASE, A, B: timing_map) returIl. tillling_map is

MERGE: timing_map;

BASEVAL. AVAL, BVAL: millisec :- 0;

begin

assign(MERGE, empty_timing_map);
for id: psdl _id, m: millisEic in timing_map_pkg.scan(BASE) loop

if member(id, A) and member(id,B)

then
AVAL := fetch(A, id);

BVAL :" fetcheB, id);

bind(id, merge_mcp(m,AVAL,BVAL). MERGE);

and if;

end loop;

:for id: psdl_id, m: millisec in timing_map_pkg.scan(A) loop
if not member(id, MERGE) and not member(id,BASE)

then
if member(id, B)

then
BVAL :'" fetcheB, id);

if m / .. BVAL then

bind(id, system.ma.x_int. MERGE);
end if;

else

bind(id, m, MERGE);

end if;
end if;

end loop;
for id: pSdl_id, m: millisElc in timing_map_pkg.scan(A) loop

if not member(id, A) and not member(id,BASE)

then

bind(id, m, MERGE);

end if;
end loop;

raturn MERGE;

and proto_impl_merge_pkg;

190

5. prototype_d ependency _graph_pkg

-- COMPONENT NAME : PACKAGE PROTOTYPE_DEPENDENCY _GRAPH_PKG

(prototype_dependency_graph_pks_s. a)

-- USAGE : Used to perform change-merging OIl prototype

dependency graphs.
-- AUTHOR : David A. Dampier

-- DATE OF CREATION : 19 April 1994

-- LANGUAGE USED : Ada

-- COMPILER USED : Sun Ada 1. 0

-- PURPOSE ; Provides specifications for the funct i ons necessary
to merge PSDL prototype dependency graphs.

with TEXT_IO; use TEXT_IO;

with a _strings; use a_strings;
\lith generic_map_pkg;
with generic_set_pkg;
with psdl_cOllcrete_type_pkg; use psdl_cOIlcrete_type_pkg;
with psdl_graph_pkg; use psdl_graph_pkg;

with psdl_component_pkg; use psd130mponent_pkg;

package prototype_dependency_graph_pkg is

procedure assign(x: in out edge_set; y: in edge_set) renames
edge_set_pkg. assign;

type prototype_dependency_graph is new psdl_graph;

function build_PDG(P: in psdLcomponent)
return prototype_dependency _graph;

function preserved_pllXt (Base, A ,B: in prototype_dependency _graph)
return prototype_dependency _graph;

function create_slice(G: in prototype_dependency_graph;E: in edge)
return prototype_dependency_graph;

function create_slice(G: in prototype_dependency_graph ;E: in edge_set)
return prototype_dependency_graph;

191

192

function compare_slices (S1 ,S2: in prototype_dependency_graph)
return baolear.; ,

function graph_union(Gl ,G2: in prototype_dependency_graph)
return prototype_dependency _graph;

function grapb_mergeCG1.G2 ,G3: in prototype_dependency_graph)

return prototype_dependency_graph;

function affected_part (G ,B: in prototype_dependency_graph)

return prototype_dependency _graph;

function compare_graphs (Gl,G2 ,S: in prototype_dependency_grapb)
return boolean;

end prototype_dependency_gn.ph_pkg;

193

package body prototype_dependency_graph_pkg is

function empty_POe; return prototype_dependency_graph is

begin

return empty_psdl_graph;
end;

-- This function takes a PSDL component and creates from the

-- implementation gn.ph. a prototype dependency graph.

function build_PDGep: in psdl_component)

G: prototype_dependency_graph;

0: psdLid;
VERTS: id_set;
OUTEDGE: a_string;

begin

assign{G, empty_PDG);

return prototype_dependency_graph is

assignee;. prototype_dependency_graph(graph(P»);

ass ign (VERTS • vertices (G));

for id: psdl_id in id_set_pkg.scan(VERTS) loop
if equal(successors(id, G), empty_id_set)

then
OUTEDGE :- copy(idI:EXT);

I'lSsignCG. add_edgeCid, EXT, OUTEDGE, G, 0»;
if not hi'ls_ vertex(EXT, G)

then

assign(G, add_v6rtex(EXT, G»;

end if;

end if;

end loop;
return G;

end build_PDG;

194

- - This :function calculates the part o:t Ease,A,and B which are identical!

function preserved_part (Base,A,B: in prototype_dependency_graph)
return prototype_dependency_graph is

PP, S1, 52, 53: prototype_dependency_graph;

E: edge;

begin
assignepP, empty_POG);

assign(S1. empty_POG);
assign(S2, empty_POG);

assign(S3, empty_PDG);

assigneD, edges (Base)) ;
for E:edge in edge_set_pkg.scan(D) loop

assign{S1, create_slice(Base, E»;
assigu(S2, create_slice(A, E»;
assign(S3, create_sHea(B, E»;

if compare_slices(Sl, 52) and then compare_slices(S1, 53)

then

assign(PP, graph_unian(S1, PP»j

end if;

recycle(S1) ;

recycle(S2) j
recyc1e(S3) ;

end loop;
return PPj

end preserved_part;

195

-- This function creates a graph which contains only the part of G which-

-- affects the output values written to the edge E.

function create_slice(G: in prototype_dependency_graph;E: in edge)

return prototype_dependency_sraph is

51, 52: prototype_dependency_graph;

0: edge;
C: edge_setj

begin
assign(S1, empty_PDG);
<'I.Ssign(S2. empty_PDG);
if has_edge(E.x, E.y. G) then

assign(S1, add_edge(E.x,E.y,E.streatLnarne,
51, latency(E. x ,E.y ,E.streaJII_name,G)));

assign(S1, add_vertex(E.x. 51, lI1aximUJn_execution_tiJlle(E.x,G)));

if eq(E.y, EXT)
then

assign(S1. add_vertex(E.y, 51));
end if;

assignee, edges(G));
"'hile not compare_slicas(S1, 52) loop

assign(S2, 51);

for D:edge in edge_set_pkg.scan(C) loop
if (has_vertex(D.y, Sl) and not eq(D.y, EXT))

then
assign(Sl, add_edge(D.x,D.y.

D. stream_name,Sl, latency(D .x,D.y ,D. stream_name,G))) ;

assign(Sl, add_vertex(D.x. Sl,

end if;

end loop;
end loop;

end if;
return Sl;

end create_slice;

maximum_execution_time(D.x ,G))) ;

196

-- This fW'lction calculates the W'lion of the graphs Gl and G2.

fW'lction graph_W'lion(Gl ,G2: in prototype_dependency_graph)

return prototype_dependency_graph is

G; prototype_dependency_graph;
V; psdl_id;

W: id_set;

E: edge;
D: edge_set;

begin
assign(G, empty_PDG);

assign(G,G1) ;

assign(W, vertices(G2»;

assigneD, edges(G2»:
for V:psdl_id in id_set_pkg.scan(W) loop

if not (has_verteJ:(V, G»

then
assign(G, add_verteJ:(V, G,maximum_eJ:ecution_tima(V ,G2») ;

and if:
end loop;

for E:adge in edga_set_pkg.scan(D) loop
if not (edge_set_pkg.member(E, edges(G»)

then
assign(G, add_edge(E.J:,E.y,

E.strellJD._name, G ,latency(E.J:,E.y ,E. strellJD._name ,G2)) ;
end if;

end loop;
return G;

end graph_union;

197

-- This "function merges three graphs using the fUnction graph_union.

function graph_merge(Gl,G2,G3: in prototype_dependency_graph)

return prototype_dependency_graph is

G: prototype_dependency _graph;

begin

assignee, empty_POG);

assignee, graph_UIlion(Gl, G2»;

assignee, graph_unionCG, G3»;

return G;
end graph_merge;

-- This function calculates the part of G whicb is not contained in P.

function affected_part (G ,5: in prototype_dependency_graph)
return prototype_dependency_graph is

A, SC. SB: prototypl!_dependency_graph;
E: edge;
0: edge_set;

begin
assign(A, empty_POG);
assign(SG, empty_POG);
assign(SB, empty_POG);

assigneD, edges(G»;

for E:edge in edgtl_set_pkg.sce.nCO) loop
assign(SG, create_slice(G, E));

assign(SS, create_slice(S, E));
if not compare_slices(SG, sa)

then
assign(A, add_edge(E.x,E.y,

E. strea.rn_n!Ule, A, latency(E.x,E.y ,E. stre!Ul_name ,G))) ;
assign(A, add_vertex(E.x, A, lIIaximum_execution_time(E.x, G)));
assign(A, add_vertex(E.y, A, mui IllUDI_execution_time(E.y, G)));

end if;
end loop;
return A;

end affected_part j

198

- - This t'unct i on coc:pares the graphs Gl and G2 \lith respect to the
-- slice S . It' each ot' Gl and G2 are the same \li t h respect to S, then
-- it ret urns TRUE.

function compare_graphs(Gl ,G2, S: in proto t ype_depEndency_graph)

return boolean is

E: edge_set ;
T, V: prototype_dependency_graph;

begin
assign(T, empty _PDG) ;
ass i gn(V J empty_PDG);

assigneE, edges(psdl_graph(S»);

assign(T J create_slice(Gl, E));

assign(V, create_slice(G2. E»;

return(compare_slices(T, V»;
end compare_graphs;

end prototype_dependency_graph_pkg;

199

LIST OF REFERENCES

[l J Agrawal, 11 . and Horgan, J ., "Dynamic Program Slicing", Proceedings of the ACM SIC
PLAN '90 Conference on Programming Language Design and Implemmtation, ACM,
June 1991.

[2] Agrawal, H., Towards Automatic Debugging of Computer Programs, PhD Dissertation,
Purdue University, September 1991.

13j Altizer, C. and Berzins, V., "Role of Translation Mechanisms in Software Compre.
hension" , CSM-92 Program Comprehension Workshop Nofes, IEEE Computer Society,
November 1992.

[4] Naval Postgraduate School Technical Report CS·92-020, A Design Management and
Job Assignment System, Badr, S. and Berzins, V., 1992.

[5] Badr, S. and Luqi, "A Version and Configuration Model for Software Evolution" , Pro
ceedings of the 5th International Conference on Software Engineering and Know/,dg~

Engineering, KSI, June 1993, pp. 225-227.

[6] Berzins, V., ~On Merging Software Extensions", Acta Informatica, Springer-Verlag,
1986, pp. 607-619.

[7] Naval Postgraduate School Technical Report 52-87-032, The Semantics of Inheritance
in SPEC, Berzins, V. and Luqi, 1987.

[8] Berzins, V. and Luqi, "Semantics of a Real-Time Language", Proceedings of the Rea/
Tim , Systems Symposium, December 1988.

[9] Berzins, V., "Software Merge: Semantics of Combining Changes to Programs", to ap
pear in ACM Transactions on Programming Languages and Systems, 1994.

[10] Berzins, V., "Software Merge: Models and Methods for Combining Changes to Pro
grams", Journal of Systems Integroti07l, Vol. 1, Num. 2, Kluwer, August 1991, pp.
121-14 1.

[11] Berzins, V. and Luqi, Software Engineering With Abstractions, Addison-Wesley, 1991.

[12] Berzins, V., Luqi and Yehudai, A., "Using Transformations in Specification-Based Pro
totyping", IEEE Transactions on Software Engineering, Vol. 19, Num. 5, IEEE, May
1993, pp. 436-452.

[13] Naval Postgraduate School Technical Report CS 94-009, Software Merge : Conditi07wl
PlowgrapM and Progrnm Slices, Berzins, V. and Dampier, D., 1994.

200

[14J Birkhoff, G., Lat/ice Theory, American Mathematkal Sodety, 1948.

[15] Birkhoif, G. and Bartee, T., Modern Appli~d Algebra, McGraw Hill, 1970.

[16J Bloch, !'I., A bstract Algebra with Applications, Prelltice Hall , 1987.

!I 7] Borisoll, E., "A Model of Softwartl1Ianufacturc~, Procu dings 0/ un luteN/ational Work
shop, Trondheim, .~'QMJ)ay, Springer-Verlag, June 1986, pp. 197-220.

[18] Boudriga, N., Elloumi, F., and Mili, A., "On the Lattice of Specifications: Applications
to a Specification Methodology", Formal ASPfcts of Computing, Vol. 4, Springer-Verlag,
1991, pp. 544-571.

[I9] Brock, J. and Ackerman, W., "Scenarios: A Model of Non-determinate Computation" 1

"Formalization of Programming Concepts", 1981.

[20] Dampier, D., A Model jor Merging Different Version.s of a PSDL Program, Master's
Thesis, Naval Postgraduate School, Monterey, California, June 1990.

[21J Naval Postgraduate School Technical Report CS-92-014, A Model for M erging Software
Prototypes, Dampier, D. and Luqi, 1992.

[22] Dampier, D. and Luqi, "Automated Software Maintenance Using Comprehension and
Specification", CSM-9!! Program Comprehension Workshop Notes, IEEE Computer So
ciety, November 1992, pp. 24--26.

[23J Dampier, D., Luqi, and Berzins, V., "Automated Merging of Software Prototypes",
Proceedings of the 5th Int ernational Conference on Software Engin eering and Knowledge
Engineering, KSI, June 1993, pp. 604-611.

[24J Dampier, D. and Berzins, V., wA Slicing Method for Semantic Based Merging of Soft
ware Prototypes", Proceedings of the AROjAFOSRjONR Workshop on Increasing the
Practical Impact of Formal Methods for Computer-Aided Software De1!e/opment: Soft
ware Slicing, M erging and Integration, NPS, October 1993, pp. 22-24.

[25] Dampier, D., Luqi, and Berzins, V., WAutomated Merging of Software Prototypes",
Journal of Systems Integration, Vol. 4, Num. 1, KJuwer, January 1994.

[26J Fountain, H., Rapid Prototyping: A Suroey and Evaluation of Methodologies and Models,
Master's Thesis, Naval Postgraduate School, Monterey, California, March 1990.

[27J Halmos, P., uctures on Boolean Algebras, Van Nostrand, 1963.

[28J Horwitz, S., Prins, J., and Reps, T., WIntegrating Non- Interfering Versions of Pro
grams", Conference Record of the Fifteenth ACM Symposium on Principles of Pro
gramming Languages, Association for Computing Machinery, New York, New York, 13
- 15 January 1988.

201

[29J Horwitz, S., Reps, T., and Binkley, D., "Interprocedural Slicing Using Dependence
Graphsn, ACM Tran.~actions on Programming Lan,ql1.uges and Design, ACM , January
1990.

[30] Keller, R., ~DeDotational Models for Parallel Programs with Indeterminate Operators",
Formal Description of Programming Concepts, North Holland, August 1977, pp. 337-
366.

[31] Kosinski, P., "A Straightforwad Denotational Semantics for Non-Determinate Data
Flow Programs" 1 "Conference Record of the Fifth Annual ACM Symposium on Princi
ples oj Programming Languages, ACM, January 1978, pp. 214-219.

[32J Kramer, B., Luqi, and Berzins, V., "Compositional Semantics of a Real-Time Prototyp.
iug Languagen , IEEE Transactions on Software Engineering, Vol. 19, Num. 5, IEEE,
May 1993, pp. 453·477.

[33J Linger, R., Mill, H., and Witt, B, Structured Programming; Theory and Practic~, Ad·
dison Wesley, 1979.

[34] Lidl, R. and Pilz, G., Applied Abstract Alg~bra, Springer-Verlag, 1984.

[35] Luqi, Berzins, V., and Yeh, R., "A Prototyping Language for Real Time Software",
IEEE Transactions on Software Engineering, October 1988, pp. 1409-1423.

[36J Luqi, "Software Evolution Through Rapid Prototyping", IEEE Comput~r, May 1989.

[37J Luqi, "A Graph Model for Software Evolution", IEEE Transaction on Software Engi
nfering, Vol. 16, Num. 8, August 1990.

[38] Luqi, "Computer-Aided Prototyping for a Command And Control System Using
CAPS", IEEE Software, January 1992.

[39] McKinsey, J. and Tarski, A., "On Closed Elements in Closure Algebras", Annals of
Mathematics 47(1), January 1946, pp. 122·162.

[40J Piersall, J., Army Resrorch, Development, and Acquisition Bulletin, January·February
1994, pp. 37-40.

[41] University of Wisconsin-Madison Technical Report CS-777, "The Semantics of Program
Slicing", Reps, T. and Yang, W., 198B.

[42] University of Wisconsin-Madison Technical Report CS-856, "On the Algebraic Proper
ties of Program Integration", Reps, T., June 1989.

[43} Siverberg, 1, Source File Management with secs, Prentice Hall, Englewood Cliffs, KJ,
1992.

[44J Tanik, M. and Yeh, R., "Rapid Prototyping in Software Development", IEEE Computer,
Vo\. 22, May 1989, pp. 9·10.

202

(45] Tichy, W., "Design, Implementation, and Evaluation of a Revision Control System",
Proceedings of th r: 6th Inkrnational Con!n'rncr: on Software EngiTluring, IEEE, Tokyo,
September 1982, pp. 58-67.

[46] Vcnkatesh , G., "The Semantic Approach to Program Slicing", Proceedings of th e
ACM SIGPLAN '91 Conference on Programming Language Design Imd Implementa
tion, ACM, June 1991.

[17] Weiser, M., "Program Slicing" , IEEE Tronsaditms on Software Engina nng, IEEE ,
July 1984, pp. 352-357.

[48J University of Wisconsin-Madison Technical Report CS-962, uA New Algorithm for
Semantics-Based Program Integration", Yang, \"i., 1990.

203

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304- 6145

2. Dudley Knox Library
Code 52
Naval Postgraduate School
Monterey, CA 93943- 5002

3. Chairman, Computer Science Department
Code CS
Naval Postgraduate School
Monterey, CA 93943

4. Professor Valdis Berzins
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

5. Professor Daniel Dolk
Department of Systems Management
Naval Postgraduate School
Monterey, CA 93943

6. Professor Luqi
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

7. Professor Mantak Shing
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

8. Professor Craig Rasmussen
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943

204

9. Dr. Hiralal Agrawal
Dellcare, MRE2D-388
445 South Street
Morristown, NJ 07960

10. Dr. Sergio Autoy
University of Portland
Computer Science Department
Portland, OR 97207

11. Colonel Salah EI-Din M. Badr
101 EI-Tyaran Street
Nasser City, Cairo
EGYPT

12. Dr. Alfs 8erztiss
University of Pittsburgh
Computer Science Department
Room 321, Alumni Hall, University Drive
Pittsburgh, Pennsylvania 15260

13. Colonel Jam~ T. Blake, Ph.D.
U.S. Army Research Laboratory
ATTN; AMSRL-CI
Aberdeen Proving Ground, MD 21005-5067

14. Dr. Dan Cooke
Department of Computer Science
University of Texas at El Pa.~o
El Paso, Texas 79968-0518

15. Dr. Bill Griswold
Department of Computer Scieoce and Eng.
University of California San Diego
9500 Gilman Drive
La Jolla, CA 92093

16. Dr. David Hislop
U .S. Atmy RCIlearch Office Elec Div
4300 S. Miami Blvd
Research Triangle Park, North Carolina 27709-2211

205

17. Dr. Susan Horwitz
Department of Computer Science
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, Wisconsin 53706

18. Dr. J.e. Huang
Department of Computer Science
University of Houston
Houston, TX 77204-3475

19. CPT Kevin Jones
Department of Electrical and Computer Eng.
Royal Military College of Canada
K ingston, Ontario
CANADA
K7K-3LO

20. Dr. Deepak Kapur

Department of Computer Science
State University of New York
Albany, New York 12222

21. Dr. Arun Lakhotia
Center for Advanced Computer Studies
University of Southwestern Louisiana
Lafayette, LA 70504

22. Dr. Karl Levitt
Department of Computer Science
University of California at Davis
Davis, California

23. Dr. David Luckham
Department of Computer Science
Stanford University
Palo Alto, California 94305

24. Dr. A. Mili
Computer Science
Faculty of Science
University of Ottawa
150 Louis Pa.steur/Priv.
OTTAWA, Ontario KIN fiN5
CANADA

206

25 . Dr. Roland Mitterrneir
University Klagenfurt, Inst F Illformatik
Universita.ctsstr 63, A-9022
Klagenfurt
Austria

26. G. Ramalingam
IBM Hawthorne Iksearch Center
P.O. Box 704
Yorktown Heights, NY 10598

27. Dr. Thomas Reps
Department of Computer Science
University of Wisconsin-Madi~on
1210 W. Dayton Street
Madison, Wisconsin 53706

28. Dr. John Salasin
SEI
801 N. Randolh St. Suite 405
Arlington, Virginia 22203

29. Dr. Alan Shaw
Department of Computer Science
University of Washington
Seattle, Washington 98195

30. Dr. Douglas Smith
Kestrel Institute
32(;0 Hillview Avenue
Palo Alto, California 94304

31. Dr. M. K. Srinivas
Artificial Intelligence Center,
SRl International
Menlo Park, Califomia 94025

32. Dr. David Stemple
Department of Computer Science
University of Massachusetts at Amherst
Amherst, MA 01003

33. Dr. Leon Sterling
Case Western Reserve University
Cleveland, OH

207

34. Prof. Murat Tanik
Department of Computer Science and Eng.
Southern Methodist University
Dallas, Texas 75275-0122

35. Dr. Douglas Waugh
SEI
801 N. Randolb St. Suite 405
Arli ngton, Virginia 22203

36. Dr. Mark Wegman
IBM Hawthorne Research Center
P.O. Box 704
Yorktown Heights, NY 10598

37. Captain David Anthony Dampier 10
8508 Hopewell
E1 Paso, TX 79925

208

L

DUDLEY j(~.!OX LIBRARY
NAVAl. POSTGRADUATE SCHOOl
MONTEREY CA 93943-510'

