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ABSTRACT 

This dissertation addresses the nccd for a formal method to snpport the merging of 

changes in independently developed versions of a prototype in a computer-aided rapid pro

totyping system. The goal is to provide the prototype developer with the ability to: combine 

independently developed enhancements to a prototype, check for consistency, and automat

ically update all derived versions of a prototype with changes made to the base versiun. 

A useful semantics·bru;e<i method is provided for change-merging that is guaranteed to 

detect all conflicts. Prototype slicing is used to capture the affected parts of each variation 

and the preserved part of the hase in hoth variations. We t hen combine the affected parts 

with the preserved part using our model, which includes the first use of Brouwerian Algebras 

to formalize the merging of hard real time constraints. Our Slicing Theorem guarantees that 

this method produces a prototype that correctly exhibits the significant behavior of each of 

the input versions, provided the changes do not confiict. The method achieves correctness 

by comparing t he slice of the change-merged ven;ion with respect to each affected part 

against the same slice of the appropriate changed version. If the slices arc the same, the 

change-merge is correct, otherwise a diagnostic message results. A preliminary conditional 

method for change-merging while programs is also provided that is strictly more accurate 

than previous methods. 

This dissertation contributes to computer-aided software maintenance by providing a 

model, algorithm and implementation for an automated change-merging tool for PSDL pro· 

totypes. Preliminary testing shows that this tool will enhance the ability of t he prototype 

developer to deliver a prototype in less time by enabling more concurrency in the develop

ment effort. 
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I. INTRODUCTION 

During iterative development of software prototypes, different variations are generally 

developed where each of the versions contains a portion of the desired capability. Because 

these prototypes can be very large, tools that automatically determine the differences be-

tween these versions and produce a new version exhibiting significant behavior from each 

arc desirable. This dissertation defines a change-merging method that is semantics-based 

and guarantce5 that if a conflict-free result is produced, it is semantically correct, and pro

vides a working cbange-merging tool to he integrated into the Computer-Aided Prototyping 

System (CAPS). Traditional syntax-based merging tools fall short of providing results guar-

anteed to he Aemantically correct, and earli~r semantics-based change-merging or integration 

methods concentrated on combining changes to simple imperative or while programs. We 

explore a domain of wlianctd data flow programs, written in PSDL, which arc inherently 

non-deterministic and parallel. Our change-merging method provides the first real change

merging capability for this domain of programs. 

Software change-merging is also applicable to software maintenance activities. As

sUIning that a software system has been developed using the computer-aided prototyping 

paradigm, or can he translated into the prototyping language, different versions of that soft

ware can be automatically updated with changes made to the base version by applying our 

method. The fielded version would be one variation and the updated base version would 

he the other variation. If all of the changes made to the base version are compatihle with 

the fielded version, applying our method ff~sults in a new fielded version updated with the 

changes made to the base version. If the changes are not compatible, this information is pro

vided automatically by our method. Using this technology eliminates the need for software 

designers to manually check if changes are compatible before performing updates. It also 



allows fewer designers to make cbanges to existing software systems , as well as prototypes 

in development. In all industry witb projected costs in tbe billious of dollars [Ref. 40), this 

translates into significant savings to both the software developer and the customer. 

Other uses of this technology are found in the areas of software reuse and reengineering. 

In software reuse, complex reusable components can be retrieved from tbe software repository 

that contain more functionality than is required for the application. The desired functionality 

can be isolated using prototype slicing by taking the slice of the complex component with 

respect to the output strea.m.s desired. The resultant slice will contain any part of the complex 

component that affects the output stream. In reengineering, if a program written ill some 

high-level language can be translated into the prototyping language, PSDL, then changes 

made to the prototype version of the base program can be automatically incorporated into 

the prototype versions of the target programs, and the resultant prototype can then be used 

to generate new production code for the reengineered program. 

A. RAPID PROTOTYPING 

Rapid prototyping is an approach to software development that was introduced to 

overcome the following weaknesses of traditional approaches: 

1. Fully developed software systems that do Dot satisfy the customer's needs, or are 
obsolete upon release. 

2. No capability for accurately evaluating real-time requirements before the software 
system has been built. 

To overcome these weaknesses, computer-aided software development met hods must be 

developed which ensure accurate requirements engineering and emphasize efficient change 

incorporation both during development and after fielding of the software system. Computer

Aided Rapid Prototyping is one such methodology. Rapid prototyping overcomes these 

weaknesses by increasing customer interaction during the requirements engineering phase 



of development, providing executable specifications that can be evaluated for conformaucc 

to real-time requirements, and producing a production software system in a fractiou of the 

time required using traditional methods , Rapid prototyping allows the user tu get a bet-

ter understanding of requirements early in the conceptual design phase of development. It 

involves the use of software tools to rapidly create concrete executable models of selected 

aspects of a proposed system to allow the user to view the model and make comments early. 

The prototype is rapidly reworked and redemonstrated to the user over several iterations 

until the designer and the user have a precise view of what thc system should do. This pro-

cess produces a validated set of requirements which become the basis for designing the final 

product [Ref. 361. The prototype can also be transformed into part of the final product. In 

some prototyping methodologics, prototypes arc dcveloped, demonstrated and then thrown 

away before the production system is dcveloped. In prototyping methodologies like the one 

used in CAPS, the prototype is an executable shell of the final system, containing a subset 

of the system's ultimate functionality. After the design of the prototype is approved by the 

customer, the missing functionality is added and the system is delivered. In this approach 

to rapid prototyping, Boftware systems can be delivered incrementally as parts of the sys

tem become fully operational. Figure 1.1 shows the life-cycle model for this prototyping 

methodology. 

In this model, the customer provides a set of initial goals to the designer. The designer 

takes those initial goals and formulates a set of requirements from which the first version of 

the prototype is designed. This prototype is then demonstrated to the user, with the user 

providing feedback to the designer. The designer takes the feedback, adjusts the requirements 

to reflect the adjusted goals and makes whatever changes to the prototype necessary to 

satisfy the requirements. It is then rooemonstrated to the user for more feedback. This 

iterative process continues until a validated set of requirements is accepted by the user. The 

designer then takes the prototypc and implements the remainder of the functionality needed 

to produce the operational system. The result is an operational software system that satisfies 



Figure 1.1: Rapid Prototyping Life-Cycle Model. [Ref. 20] 

the customer's requirements and that is delivered in only a fraction of the time it would take 

using traditional software development methods 

Change-merging is an integral part of the rapid prototyping methodology. During the 

Design Prototype System phase of prototype development, multiple variations of a large pro

totype are likely to be developed. This can happen when different development teams are 

working on different aspects of a system, or when different possible solutions to a problem 

are explored in different ways. In the first example, it will certainly be necessary for the sepa

rately developed pieces of the prototype to be combined into a single system before execution 

for the customer. In the second example, the customer may desire a system containing some 

or all of the aspects contained in each solution. In this case, these different prototypes must 

be change-merged to capture the significant parts of each variation. Our change-merging 

method will allow these combinations to be done automatically, ensuring that the resultant 

prototype is semantically correct, with respect to all of the input variations. If the pieces are 

not compatible with regard to the semantics of the prototype, then our method will identify 

the parts of the prototype containing the conflicts. This technology encourages the designer 



to explore different solutions to a problem, and to spread the development workload in a 

large project without concern for the sub~equent integration of the~e independent efforts'. 

B. PROTOTYPING SYSTEM DESCRIPTION LANGUAGE 

Our method has been implemented for use in the CAPS development system. It is 

designed to operate on programs written in the Prototyping System Description Language 

(PSDl.), associated with CAPS. PSDL is a high level specification and design language which 

can be translated into executable code. 

PSDL is a generalization and extension of a data flow language, with the addition 

of control constraints and timing operations [Ref. 35). A PSDL prototype consists of two 

parts: a specification and an implementation. The specification of a prototype contains 

the interface, and the implementation contains either a PSDL graph implementation, or a 

programming language implementation. The PSDL graph implementation contains a set of 

operators, a set of data streams through which the operators communicate with one another, 

and a set of control and timing constraints which specify restrictions on the execution of the 

operators or data streams. The programming language implementation is written in any 

high-level programming language like Ada or C that is supported by the environment. 

All operators in PSDL prototypes are state machines. Since PSDL is, by definition, 

non-deterministic, the meaning of an operator in PSDL is a mathematical relation. PSDL 

operators with only one state, or an empty set of state variables, and only one possible out

come are functions. This meaning is defined by the operator's possibility function discussed 

in a later section. 

A data stream in a PSDL prototype is a commuuications liuk between operators. Each 

data stream is either a data flow stream or a sampled stream. Data flow streams are FIFO 

buffers of lengths at least one. Wben a new value is written to the stream, it is appended 

to the buffer. Values are removed from a data flow stream only when they arc read by the 



consumer. Values on data flow streams can be read only once. Sampl~d streams are not 

traditional data flow streams. They have buffers of size one. When a value is written to the 

stream, it remains on the stream until a new value i~ written to the stream, at which time 

the old value is overwritten. A value is not removed from the sampled stream when read. 

Data streams can be written by more than one operator, and they can be read by more than 

one operator. A complete listing of the PSDL grammar is contained in Appendix D. 

C. OVERVIEW 

In the chapters that follow, we provide background information which we used to pro· 

duce a working change-merging tool. Chapter II provides definitions of mathematical COll 

structs used in later chapters. Chapter III provides information about relat ed work, some of 

which was accomplished by others before our effort was started, and some we have accom

plished during the course of the research effort. Chapter IV provides a semantic model for 

the PSDL computational model which we used to develop our algorithm, and it contains the 

discussions about this dissertation's primary contributions to the state of the art. Chapter 

V contains the algorithms used to implement our tool, along with a discussion of their cor

rectness and complexity. Chapter VI outlines the development of the change-merging tool 

and Chapter VII provides our analysis of what we accomplished in this effort, and some 

future research options in this area. There arc five appendices: Appendix A contains formal 

specifications for the constructs used in our model, Appendix B contains details about the 

effect of PSDL control constraints on our model, Appendix C contains proofs considered too 

lengthy to be included in the text of the dissertation, and Appendix D contains a listing of 

the PSDL grammar, and Appendix E contains the program listings of our implementation. 



II. ALGEBRAIC FOUNDATION FOR MERGING 

A. WHAT IS CHANGE-MERGING 

Change-merging is a process that allows different changes to a software product to 

be combined using computer-aided tools. The result of this change-merge must contain the 

differences between the base version and each input version, and must be correct with respect 

to the method used; syntactic or semantic. Syntactic change-merging is performed on the 

source code of the the input versions with respect t o the differences in the syntax of each 

version. Semantic change-merging is performed on the functions computed by the software 

product wit h respect to the behavior associated with each input version. Semantic change

merging requires a solid mathematical foundation to provide some guarantee of correctness 

and engender confidence in a working change-merging system. As has been pointed out in 

much of the previous work on merging, there is a solid foundation for representing program 

variations in algebra [Ref. 6, 28, 42]. This cilapter introduces and explains the mathematical 

concepts needed to understand the work presented in later chapters. Section B descrihes 

the sets and partially ordered sets, and their relation to change-merging. Section C extends 

the discussion to Lattices and describes how lattices are used in change-merging. Section D 

bui lds up to Boolean and Brouwerian Algebras which are very useful in performing change

merge operations. 

B. SETS AND POSETS 

A set is a collection of objects, called elements. Operations on sets include E (memher

ship test), U (union), n (intersection) and - (difference). A partially ordered set , or posd, 

is defined as follows [Ref. 16]: 



Definition 1 Partially Ordered Sets 

A nonempty set X is said to be a partially orden:d set, or posct, provided that a relation 

!: is defined on X, satisfying the following: 

L !: is reflexive: x!: x for all x E Xi 

2. !: is anlisymmetric: x !: y and y !: x imply that x = Yi 

3. !: is transitive: x!: y and y!: z imply that x!: z. 

Such a relation!: is called a partial ordering of the set X. 

Our method of change-merging is performed on variations of a PSDL program. Changes 

to PSDL programs are not always extensions of a previously defined program. Different 

variations can change a previous program in different ways. Since these different variations 

are not always compatible extensions of earlier versions, the set of all program variations 

does not form a completely ordered set. But since some program variations are compatible 

extensions of other programs , the set of all program variations forms a partially ordered set, 

with respect to an approximation relation, !:. 

Definition 2 Approximation Relation for PSDL Prototypes 

If x and yare two PSDL prototypes, x approximates y, writtw x !: y, if Y exhibits any 
bdl(lvior that x exhibits. 

Proposition 1 The set of all possible PSDL prototypes is a pose/. 

Proof: 

If x and yare PSDL prototypes, let!: be the approximation relation defined in Defini-

tion 2. 

By Definition 1, for the set of all possible PSDL prototypes to be a poset, it must satisfy 

the three conditions, n:jlezivity, antisymmetry, and transitivity. 



(a) Clearly x ~ x, as x certainly exhihits its own behavior. 

(b) Let x ~ y and y ~ x. Then y exhihits allY behavior that x cxhihits, alld x exhibits 

any behavior that y exhibits. Thus x = y. 

(e) Let x ~ y and y ~ z. Then y exhibits allY behavior that x exhibits and possibly 

more, and z exhibits any behavior that y exhibits, so z exhibits any behavior that x exhibits. 

Thus x ~ z. 

Therefore hy (a), (b) and (c) , t he set of all p ossihle PSDL prototypes is a poset. 0 

C. LATTICES 

A lattice ordered poset is a partially ordered set (L,!;) such that for every pair of 

elements, x , y E L, the supremum, .'lUp(x,y ), and the infimum, inf( x ,y ), exist [Ref. 31]. An 

example of a lattice is shown in Figure 2.1. 

An algebraic lattice is a nonempty set L together with two binary operations, meet (n) 

and join (U), which satisfy the following conditions for all x ,y,z E L [Ref. 34] ; 

(I) Commutativity: x ny= ynx and xU y =y U x. 

(2) Associativity; x n (y n x) = (x n y) n x and xU (y U z) = (x U y) U z. 

(3) Absorption : x n (x U y ) = x and x U (x ny) = x. 

(1) Idempotence: x n x = x and x U x = x. 

In the context of merging pure program extensions, the meet (n) operation represents 

the greatest common approximation of two programs, and the join (U) operations repre-

sents the least common extension. The greatest common approximation of two programs 

represents the functionality common to both programs, and the least common extension 

represents the union of both of their fUDctionalities. 



____ T ____ 
C D E ---- /'-... ---A B 

".../ 
Figure 2.1; An Example of a Lattice. 

According to [Ref. 34], every lattice ordered set is an algebraic lattice if we define 

x n y = inf(x,y) and x U y = sup(x,y). 

A distributive lattice is an algebraic lattice for which at least one of the following 

properties holds: 

1. xn(yUz)=(xny) u(xnz). 
2. xU(ynz)=(xUy)n(xuz). 

An algebra.ic lattice £. is complemented if for every x E C there is at least one element 

y E C such that xU y = T and x n y = 1.. We say that y is the i complement of x. 

D. BOOLEAN AND BROUWERIAN ALGEBRAS 

A Boolean Algebro is a complemented, distributive lattice [Ref. 341. Change-merging 

over Boolean algebras is done very simply using set operations. A very rich and well under

stood set of laws is available for the use of Boolean Algebras. 

A Brouwerian Algebm is a distributive lattice with a pseudo-difference operation, ..:..., 

characteIi:z.ed by the property x ..:... y ~ z ¢::::> x ~ y U z. This property states that the 

pseudo-difference of two sets x and y is contained in the set z if and only if x is contained 

in the supremum of y and z. A formal definition of Brouwerian algebras follows [Ref. 39]: 
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Definition 3 Brouwcrian Algebras 

A Brouwerian alg~bra is an algebra (L, u, n, -.:..., T) thai satiHjies the following propcrti'e.<;; 

(i) (L, U, n) is a laUice with a greatest clement, T. 

(ii) L is closed under -.:.... 

(iii) For all ehments x, y, Z E L , the formulaH x ...:.- y ~ z and x :;; y U z are equivalent. 

[Ref. 39] also provides the following properties of Brouwerian algebras: 

Theorem 1 Let L be a Hrouwcrian algebra under u, nand":' . Then: 

(i) L has a zero d ement, 1- determined by the formula .1 = T - T. 

(ii) L is a distributive lattice. 

(iii) If x:;; y, then x ":'" z ~ y - z, z - y:;; z":'" x, and T - y <;;; T ":'" x. 

(iv) x <;;; y {::::} x ..:... y = L 

{v} x <;;; yU(x":'" y). 

(vi) (x U y)x ':"" y c:::;: x. 

(vii) x":'" z <;;; (xUy) ":'" z. 

(viii) z U (x :"" y) = z+ [(zUx)":'" (zUy)]. 

(ix) z":'" (x n y) = (z - x) U (z ":'" y). 

(x) (xU,) ~ x ~ (x - x) U(,~x). 

(xi) T":'" (T":'" x) <;;; x. 

(xii) T ":' (T":'" (T":'" x)) = T ..:... x. 

(xiii) T":"' .l = T and T - T = .1. 

The proof of this theorem is contained in [Ref. 39]. 

Brouwerian algebras arc very useful in the study of sets in which the true difference 

between two elements is not guaranteed to exist. 
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E. SUMMARY 

It turns out that every component of PSDL programs that can he change-merged can 

be modeled using lattices or algebras. Many of the different parts of PSDL prototypes which 

are merged separately do not fit nicely into Boolean algebras. with the exception of some 

control constraints, so we introduced the concept of Broliweriau algebras. Througholll this 

dissertation, the concepts discussed in this chapter are used to prove different parts of the 

change-merging model contained in Chapters III and IV, and considered in the development 

of the algorithm and implementation. 
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III. RELATED WORK 

This chapter reviews and a.~sesses some of the work related to the change-merging 

problem which has already been accomplished. Since change-merging is a relatively new 

problem, there have been a number of research efforts aimed at defining the theoretical 

foundations for the problem, hut not much effort ha.<; been placed on implementing a solution 

for real programs. Our research effort is the first to tackle a real-world problem and succeed 

in providing a working solution. This effort would have been nearly impossible, however, 

had it not been for the pioneering work reviewed in this chapter. 

A. TEXT BASED MERGING 

The earliest work on program merging relied on combining cbanges made to the text 

files containing the source code for the program [Ref. 43, 45J. These early systems certainly 

provided an a.dvance to the then-current state of the art, but syntax-based merging did not 

prove useful in the general case, as syntax-based merging proved insufficient to provide any 

guarantee of semantic correctness [Ref. 61. 

The first of the text-based merging systems was introduced as part of a software man

agement toolkit called the Revision Control System or (ReS ) [Ref. 451. This system was 

developed as a way to maintain the update history of a file. The system saves the initial 

version of the file when invoked for the first time and, in subsequent invocations, saves only 

the changes made to the previous version. Merging is accomplished through the use of the 

command RCSMERGE. RCSMERGE tries to combine the differences between two differ

ent changes to the same base document based on the assumption that changes to disjoint 

portions of the text arc independent. ""'here it is able to combine the changes, it makes 
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the change to the output file. When it is not able to combine the differences, it prints the 

respective piece of each version as a conflict in the output file, so the author can resolve it 

manually. 

These systems work well for most text files with small individual changes. For programs, 

however, they do not provide even a guarantee of syntactic correctness, and in some cases 

when the changes are significant, the tool is unable to matciJ even the parts that did not 

change. 

B. MERGING OF PROGRAM EXTENSIONS 

In [Ref. 6), Berzins presents the first definitive work on semantic-based program merging. 

This work is limited to considering program extensions, and does not consider changes that 

remove functionality from the base program. It recognlzes that program extensions can be 

ordered using an approximation relation !;. If p is a base program, and q is an extension of 

p, then p !; q. That is to say that the functionality of q agrees with the functionality of p 

everywhere p is defined, but q may be defined where p is not. 

With this ordering in mind, two programs p and q can be merged by finding the least 

rommon extension of p and q, written pUq, where p and q are base programs and pUq is the 

merged program. He also recognizes that the exact least common extension of two programs 

is not computable in the general case, but a safe approximation is sufficient in practice. 

Berzins considers four software domains: specifications, functions, programs and data 

types. These domains are defined in Figure 3.1. All of these domains are represented using 

lattices. The following sections describe the representa.tion of these domains. 
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Specification
FUlIction: 

Pro9ram: 
Data Type: 

Defines Acceptable Range of 13ehavior 
Models Adual Behavior 
Algorithms Defining Pa.rtial Functions 
Set on which Programs Operate 

Figure 3.1: Definitions of Relevant Domains 

1. Functions, Specifications and Programs 

Functions, specification and program domains can all be viewed ~ lattices with 

respect to the approximation ordering ~. Each lattice contains the elements of the domain 

together with a top element, T, representing an overconstrained element, and a bottom 

element, ..l, representing an undefined element. The least common extension of two elements, 

x and y can then be defined in terrus of lattice operations as the least upper bound of x and 

y, denoted x Uy. If x and y are compatible, then xUy =IT, otherwise xUy = T . 

2. Data Types 

The lattice for a domain representing a conventional data type, Do, can be defined 

as a set 'D = DoU{.1., T}, where .1. approximates everything and T is an extension of 

everything. The definition of the extension relation for 'D is: 

x ~ y ¢:::::> (.1.::::: x) V (x == y) V (y ='= T) 

The least upper bound of any two unequal elements in this domain is T, the overeonst rained 

element . This model applies to data types whose elements are either completely defmed or 

completely undefined. An example of a type that is not covered by this construction is a list 

with a component selector implemented using lazy evaluation. Some components of such a 

list may be well defined, while other components may be undefined (i.e. cause inflllite loops 

if they are accessed). 
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3. Analysis 

The work presented in [Ref. 6J provides a fUlldamental basis for most of the current 

work in semantics-based program integration and merging. It looks at programs in terms of 

their semantic building blocks and provides a theory describing how merging occllrs at the 

building block level. This work shows that computing a useflll approximation to an ideal 

merge is both achievable and sufficient. 

C. INTEGRATION OF CHANGES TO WHILE-PROGRAMS 

In [Ref. 28], the first semantics-based algorithm for integrating two non-interfering 

modifications of a base program is described. This integration algorithm produces a third 

program which reflects both modifications, and uses program dependence graphs (PDGs) to 

abstractly represent the programs. Using program slicing, it then determines which portions 

of the two modifications are different from the base program. Based on this information, 

the algorithm uses a conservative approximation to determine if the changes can interfere. 

If they can not, the program slices are combined into one integrated POG, which is then 

transformed into a final version of the integrated program. 

L Program Dependence Graphs 

A POG for a program P, as described in [Ref. 28J, is a directed graph, Gp , with 

vertices representing statements in the program, and edges representing control and data 

dependencies between the vertices. There are also two special types of vertices in the POG 

which are not program statements; an entry vertex and a final-use vertex for each output 

variable. A complete Jist of the types of vertices is contained in [Ref. 28). 

Using these components, a POC can be constructed for any willIe-program [Ref. 33]. 

Figure 3.2 shows an example of a simple program and its associated POGo By analyzing the 
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parts of this graph that affect a certain \~<l.riable , we arc able to obserVf~ the effects of a r.hangc 

to the program with respect to that variable. T his is clone using program slicing [Ref. 47). 

program 
sum ::::0; 
x:= I; 
whilex< 11 do 

slIm:= sum + Xi 
x:= x+ 1; 0. 

end(x,."um) 

Figure 3.2: Example of a Program Dependence Graph [Ref. 28] 

2. Program Slicing 

The program slice of a graph G with respect to a vertex s is the subgrapb of G 

induced by all vertices that can reach s by way of control (-c) or flow (_ ,) dependence 

edges, along with the edges that conoect the vertices. 

V(C!,) ~ (w E V(C) I w~. 'l 

To get the slice of a grapb G with respect to one of the output variables, say x, 

merely take the slice with respect to the vertex labeled FinllLUse(x). The slice is COD

structed backward from the final-use vertex, and includes all control or flow edges which 
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can contribute to the final value of x. Def-order edges are contained in the slice only if the 

vertex which observes the dependency is also included in the slice. This construction 'can 

be extended to a set of vertices S = {SI' S2, "', Si} by taking the union of the vertex and 

edge sets of all of the individual program slices. Figure 3.3 shows an example of the slir.e 

of the previous program taken with respect to the variable x at the final-use node and the 

corresponding PDG. 

program 

~,~i,:;x < 11 do 
x := x + 1; 

od 
end (x) 

~ CONTROL 
_ LOOP INDEPENDENT 
--e- DEF-ORDER 

LOOP CONTROLLED 

Figure 3.3: Example of a Slice of a Program Dependence Graph [Ref. 28] 

3. Integration Algorithm 

The integration algorithm presented in [Ref. 28] starts by ereating program depen

dence grapbs for each program and, using program slicing, identifies the part of the base 

program which is preserved in all three versions and the parts of the variations which are 

different from the base. The common part of all three versions is called the preserved part, 
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and the part of each variation that is differeDt from the base is called the affected part of 

that variation. 

These three slices are then combined into an integrateil PDG. If the integrated 

PDC is feasible l and the two variants do not interfere with each otLer, then the integration 

is successful. One major problem identified in this work is that determining wbether a PDG 

is feasible is NP-Complete [Ref. 28]. The other criterion for determining success is more 

tractable, that of determining inte,jerenct. This is done by comparing the slices of each of 

the throe original versions against slices in the merged version. 1f the slice of the merged 

version with respect to the affected parts of each modification is the same as the slice of that 

modification with respect to its affected parts, and the slice of merged version with respect 

to the preserved part is the same as the base version with respect to the preserved part, then 

the versions do not interfere, and a successful integration is possible. 

The work in [Ref. 28J is supported by three theorems; the slicing theorem, the 

equivalence theorem and the integration theorem. The slicing theorem states that when 

given the same input and starting state, a slice of a program that halts produces precisely 

the same output as the program. The equivalence theorem states that if two programs have 

equivalent PDGs, then the programs are themselves equivalent. The integration theorem 

states that if M is the result of a successful integration, then M halts on any initial state 

on which the three input versions halt, and M correctly preserves the meaning of each 

modification to the base. 

4. Meaning Functions 

Meaning functions [Ref. 33J represent the ~emantic meaning of a program as map

pings from states to states. Tbese state changes are represented as sets of pairs including an 

initial state and the corresponding final state(s). In [Ref. 10], Berzins provides a theoretical 

1 A program dependwce gr"ph is fe""ible if it is a PDG for a program.[Ref. 28} 
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foundation for merging simple, imperative programs using their meaning fun ctions. This 

theory uses the notion that program variations can be viewed as partial fun ctions modeied 

using a powerset lattic.e. Since a powersct lattice is equivalent to a Boolean algebra, normal 

set operations, U, nand - can be used to reason about these program variations. 

This theory shows that a change transfonnalions from a base program f to a 

variation 9, A[J,9], can be applied to a second variation h, t:..lf,9](h) with precisely the 

same results as if the change from f to h were applied to 9, AU, h](9). This is very useful 

in change-merging, as it demonstrates that independent updates to a common base version 

9 of a software product and subsequently change-merged without regard for the order in 

which they were accomplished. As long as the changes made are compatible, the results in 

terms of the meaning functions are the same. It does show, however, that the change-merged 

program does not necessarily have to be similar to the input programs. 

The meaning functions for the programs shown in Figure 3.4 are as follows: 

m(B) ~ (x > 0 _ {((x,y),(x, I))) I x ~ 0 _ (((x,y), (x,-ll1l) 

m(A) ~ (x > 0 _ (((x,y),(x, 1))) I x ~ 0 _ (((x,y), (x, 0)))) 

m(C) ~ (x > 0 - (((x,y), (x, x))) I x ~ 0 _ (((x,y), (x,-l)))) 

These three versions are merged using their meaning functions as follows [Ref. 10J: 

miMI ~ m(A(B[C) ~ m(A)[m(B)[m(C) ' 

~ (m(A) - m(B)) U (m(A)nm(B))U(m(C) -m(B)) 

~ (x > 0 _ (((x,y), (x, I))) - {((x,y), (x, I))) [ 

x ~ 0 _ (((x,y), (x, 0))) - {((x,y),(x,-l)))) 

U(x > 0 _ (((x, y), (x, I))) n {((x,y), (x,x))) [ 

x ~ 0 _ (((x,y), (x,O))) n (((x,y), (x, -111l) 

U(x> 0 _ {((x,y), (x,x))) - {((x,y), (x, 1))) [ 

x ~ 0 - (((x,y), (x,-l))) - {((x,y), (x, -I)))) 

----;c'T"'h-, -.o"-.. ""tio-.-:-A"'[B"']CC-."'m-:-b-', i--.,-wc-,.-Oced in Section D.l 
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:00 (x> 0 ..... {} I xs;o-... {((x,y),(x,O))} 

U(x > ° _ {(ix,y), (1, I))) 1 x s 0 - {)) 

U(x > 0-+ {((x,y),(x,x) ) Ix#l} I x::;: 0-+ {J) 

~ (x > 0 - {((x,,), (x,x))) 1 x s 0 _ ((ix,,), (x,O) )} ) 

= m(if x> 0 then y;+= x else y:= 0) = m(M) 

Balle versioo B: if x > 0 then y := 1 else y := - 1 fi 
First change version A: if x > 0 then y := 1 else y ;= 0 fi 
Second change version C: if x > 0 then y ;= x else y := - I fi 

Figure 3.4: A Program and Two Variations [Ref. 10] 

5. Analysis 

The work presented in this sectioo shows that a method can he developed for 

integrating real programs. The work contained in [Ref. 28, 29, 48] illustrates a method for 

integrating programs in a simple imperative programmlng language that has heen developed 

and works. This demonstrates that a practical method is possible for imperative programs, 

hut falls short of providing a method which is useful to solve any real world problems. In 

particular, the method fails to provide any sort of conflict location or resolution. If a conflict 

is detected, then it is reported to the user, and the integration fails. It is up to the user to 

determine the nature of the conflict and how it should be resolved. Our methods a.ddress 

these problems as shown in the next section and in Chapter IV. 

D, CHANGE-MERGING OF PSDL PROGRAMS 

In [Ref. 20J, an initial attempt at developing a model for change· merging PSDL pro· 

grcuns is presented. Although crude, this model provides us with an important part of the 
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~pecification change-merging model, and insight into the current effort defined in subsequent 

chapters, 

1. Change-Merge Operation 

This change-merge operation is defined by the operation A[BJC, where A, Band C 

are sets of pairs representing the functionality of three different versions of a P5DL program. 

The operation A[BJC was initially introduced by Berzins in [Ref. 9J and is defined as: 

A[B)C~ (A - B) U (An C) U (e - B) 

where n, U and - represent the grrotest common approximation, least common extwsion, 

and semantic difference respectively, between two programs. 

The set of all PSDL programs, together with a T and .1, forms a lattice using the 

relation approximates [Ref. 20]. If A is an extension of B , then we say that B approximates 

A, written B t; A. The T element in the lat tice is an extension of every PSDL program, 

and the .1 element approximates all PSDL programs. For example consider the lattice in 

Figure 3.5. In this example, 0 and P are extensions of A and A approximates both 0 and 

P. P and Q are both extensions of Band B approximates both P and Q. P is a common 

extension for both A and B. In fact, P is the least common extension of A and B. 

Figure 3.5: A Lattice of Program Extensions 
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The least common extension of two PSDL programs, AUB, is the smallest possible 

1'5DL program P such that A r;;; P and B !; P, and represents the union of the functionalities 

found ill both A and B. In Figure 3.5, P is the least common extension of A and B. The 

greatest common approximation of two PSDL programs, pnQ, is the largest possible PSDL 

program B such that B [;;; P and B I: Q, and represents the common functionality found in 

both P and Q. In FigHTe 3.5, B is the least common extension of P and Q. The semantic 

difference between two programs, A - B , represents the functionality found in A, but not in 

B. The semantic difference exists if the lat tice is a Boolean algebra, and a pseudo-difference 

can be defined if the lattice is a Brouwerian algebra. 

It has been shown that the least common extension of two programs is not com

putable in the general case [Ref. 6]. In [Ref. 20], we demonstrated that an approximation that 

is computable is sufficient to provide a useful change-merge for most cases. The following 

sections outline the model defined in [Ref. 20J. 

2. Interfaces 

The interface of a PSDL operator P is the definition of the operator's external 

contacts. It defines Ip , the set of inputs expected by the operator, Op, the set. of outputs 

that can be expected, and in the case of generic templates, GNp, the set of generic param

eters used to instantiate the prototype. Ip, Op, and GNp are all ordered sets (sequences). 

The interface may also contain a set Stp, of internal state variables, a ~et Ep, of possible 

exceptions , and a maximum execution time constraint that is met by the program. Stp and 

Ep are sets. 

a. Sequences 

Sequences are a significant building block for many programming langllil.ges, 

including PSDL. A sequence is a totally ordered collection. Since t he order of the collection 
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is significant, any change made to the sequence is an incompatible change and creates a 

sequence which is neither an approximation nor an extension of the original sequencp':· A 

correct mathematical representation for a sequence would be a flat lattice, like the one in 

Figure 3.6. This means that the only approximation for the sequence is the undefined 

sequence, .1, and the only extension of the sequence is the unconstrained set, T, and the 

greatest common approximation of any two sequences is the undefined element, .1. 

____ T ____ 
[1] [3] [1,3] ----1----l. 

Figure 3.6: A Flat Lattice Representation for a Sequence 

(1) Input and Output. Input and Output interfaces are sequences of input 

and output streams. The order of these sequences is significant because actual parameters 

are associated with formal parameters based on the order in which they appear. In change

merging lA, lB, and lB~.o into 1M , any change between the interfa.ce sequence of the base 

version and the two modified versions is significant, and must be preserved in the change

merged version. The change-merged sequence of inputs, or outputs, is determined by the 

following rules: 

1. If both of the modified versions have the same interface sequence as the base, 

then: 1M = lBu •. 

2. If one of the two modified versions, say lA, is the same as the base, and lB is 
not, then: 1M = lB. 

3. If all three versions are different from each other, then: 1M = T. 
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The first situation is the case in which no changes were made between the 

inputs of the Base and the two modifications. In this case, the change-merged version ~h6'uld 

have all of the same inputs, or outputs. The second situation is the case in which only one of 

the modifications changed from the base. fn this case, the change from the base is significant 

and mast be preserved in the change-merged version. The third situation is the case where 

uoth of the modifications changed from the base. The result is a conflict because there 

is no proper PSDL specification that is consistent with both modifications. The result of 

a change-merge which produces a conflict for this situation would he an input declaration 

which contains a T where the input stream declarations would be. 

The type declarations of the streams also have to be merged. Bccallse the 

types are significant, any change to the type declaration must be preserved in the merged 

version. Types are also change-merged using a flat lattice structure. Figllre 3.7 contains an 

example of a change-merge on Inpllt Sets. 

SA = INPUT 
x; integer 

OUTPUT 
w; integer, 
t; integer, 
z : string 

SB,m = INPUT 
x; integer, 
y: real 

OUTPUT 
w; integer, 
z ; string 

SM = INPUT 
x: integer 

OUTPUT 
T 

BB = INPUT 
x ; integer, 
y: r eal 

OUTPUT 
w: integer 

Figure 3.7: Example of a Change-Merge on Input Sets [Ref. 20] 
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(2) Generic Parameters. The Generic interface is contained only in template 

operators and PSD L type specifications. Template operators are operators in the Soft~~re 

Base used to instantiate software components. Change-merging generic parameters is similar 

to change-merging input and output parameters with the exception that, in addition to 

value parameters , generic parameter sequences may also contain operator parameters and 

type parameters. Changes to generic sequences follow the same rules as Input and Output 

sequences. Figure 3.8 shows an example of a change-merge operation on generic parameters. 

GNB".. = GENERIC 
tI: type, 
t2: type, 

GENERIC 
tl : type, 
t3: type, 

01: operution[il,i2: tI,oI: t2j, 
vI : integer 

GNB = GENERIC 
tl : type, 
t2: type, 

02: operution[iI: n,ol: t3], 
vI: integer 

01 : operution[il, i2 : tl, 01 : t2], 
vI: integer 

GNM =: GENERIC 
tl: type, 
t3: type, 
02: aperution [iI: tl,al: t3], 
vI: integer 

Figure 3.8: Example of a Change-Merge on Generic Parameters [Ref. 20] 

b. Sets 

Sets are modeled using a "Powerset Lattice" as shown in Figure 3.9, and thus 

more freedom can be exercised in change-merging them. Change-merge operations do not 

follow the same rules for sets as for sequences. 
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{a,b,c) 

------,-~--
{a;j {b,c) }il:c) 
,- ::::::J=- :::::::.r 

{al... ..j __ 1 _---.JII 
{I 

Figure 3.9: A Powcrsd Lattice Repre~entation for a Set Containing Three Elements 

(1) States. State variables differ from input and output variables in that, 

abstractly, they are tuples, containing a name, a type and an initial value. As the set 

of stale variables is unordered and invisible to the re.~t of the program, the state set can 

be increased or decreased without affecting the parts of the program outside the modified 

component . In change-merging state variable sets, the operations n, U, and - are equivalent 

to the corresponding set operations, U, nand -. The third part of the tuple, the initial 

value, requires an additional check in the change-merging process. These initial values are 

ordered using a flat lattice, because they are ordinary data values. The initial value of a 

change-merged state variable follows the same change-merging rules as input and output 

variables. If all three ver.oions have different initial values for the same state variable, then 

the change-merged version contains a T in the place where the initial value is assigned. If 

only one of the modifications assigns a different initial value than the base version, then the 

change-merged version contains the initial value of the one that was diffcrent. 

(2) Exceptions. The exceptions interface is a list of identifiers which denote 

exception values which may be returned by the operator. Consequently n, U, and - can be 

interpreted as the corresponding set operations, U, nand -. Exceptions that appear in one 

or both of the modified versions, and not in the base, appcar in thc change-merged program. 

Exceptions that appear in the base and do not appear in at least one of the modifications 

are not included in the change-merged program. 
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(3) Maximum Execution Time. Maximum Execution Time (MET) is the 

only timing constraint that appears in PSDL specifications. )'IET is the maximum CPU 

time that an operator can use to perform its assigned task. Change-merging two l\IET 

constraints, t, and t2 , can be done as follows: 

t1 U t2 min(t"t2 ) 

t,nt2 max(t"t2 J 

t, ..:. t2 if t 2 :::; I, then 00 else I, 
T 0 
.1 

Proposition 2 The set of METs form a Brouwerian Algebra 

Proof; 

Let M be the set of all possible METs. 

We must show that M, u,n is a distributive lattice, that M is dosed under':", and 

that 

Va,b,c E M,a ":' b:::; c {:::::> a:::; (b U c). 

1. (M,U, n) is a distributive latt ice: 

Clearly, aU b and an b exist for any a, b E M, and the reflexive, antisymmetric, and 

transi tive properties hold, so (M, u, n) is a lattice. 

M is distributive: Let a,b,c E M. We use a table to illustrate: 

an (b Uc) (anb)U(anc) 
a<b<c b 
a<c<b , 
b<a<c a 
b<c<a a 
c<a<b a 
c<b<a a 

From the table it is easy to see that M is distributive. 

2. M is closed under ..:.: 

b 
, 
a 
a 
a 
a 

Since a .:.. b is always either a or 00 for any a and b, M is certainly closed under .:... 
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3. For any a,b,cEM, a":' b:S: c{==} a.:<:; (bUe) : 

Assnme a ~ b ~ c. Then, a :S b, since otherwise, a - b == 00. Since a :S b, then" .j:. c. 

Thus, a :s: (b U c). 

Now , assume a :s: (bue) . Then a:S: band a:S: c, and a - b= a. Thus a - b:S c. 

Therefore, M is a Brouwerian Algebra. 

3. Functionality 

The functionality of an operator specification is a description of the hehavior of an 

operator. It consists of a set of keywords, an informal description, and/or a formal descrip. 

tion. Through the use of keywords, the operator can be distinguished from other operators 

in the database during the retrieval process. Informal text descriptions are provided for use 

by the engineer. Formal axiomatic descriptions are provided to support automatic retrieval. 

The set of keywords can be change-merged using the appropriate set operations, 

u, n, and -. The informal description is a sequence and must be changed-merged using 

the same method described for input and output parameters. Formal descript ions can be 

change-merged using the Boolean algebra structure of the logic in which they are expressed: 

xUy xVy 
xny xAy 
x-y xA...,y 

4. Data Flow Graphs 

In [Ref. 20], a PSDL implementation graph for an operator A is viewed as a graph 

DA. = {O,L}, where 0 is a set of vertices that represent the component operators of A, 

including the constant operator EXT representing external contacts, and where L is a set of 

links (labelled edges) which represent the data streams entering and leaving the elements of 

O. The labels for the links arc the names of the data streams they represent. 
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The change-merging operation on PSDL data flow graphs is defined in terms of a 

bipartite graph BA = {V, 5, LI, LO} , where V is the set of operators in D"" S is a set' of 

vertices which represent the data streams of operator A, LJ is a set of edges from a stream 

vertex to an operator vertex, representing input links, and LO is a set of edges from an 

operator vertex to a stream vertex, representing output links. 

Change-merging the data flow diagrams is done by change-merging the graphs 

GB~.e, GA and GB by subsets V, S, L1 and LO. Tbe operations U, n, and - can be 

interpreted as the corresponding operations U, n, and -. This change-merge is accomplished 

using the following equation: 

This equation clefines a structural or syntactic change-merging operation that does not nec-

essarily correspond to a semantic change-merging operation. 

The greatest common approximation is obtained for the Ba:;e and the two mod

ifications by taking the intersection on all components of the graph. Then these common 

components are added to the disjoint components of each modification by subtracting out 

the parts of the two modifications wbich are also in the ba:;e. This operation preserves the 

parts of the program common to all the versions , while ensuring that significant changes 

made by the two modifications are included in the change-merged graph. 

This method of change-merging the implementation graph of a PSDL program 

fails to adequately consider the semantic effects of the changed modifications, a..~ does the 

approximate method shown later in this chapter. Although these methods produce a change

merge that is useful in some cases, they are not nearly as useful as the slicing method 

described ill Chapters IV and V. 

30 



5. Data Streams and Control Constraints 

a. Data .';t~ams 

A set of data stream declarations DS ... , defines local data streams that are used 

only within th~ implementation of a composite operator, A, and that are not defined in the 

specification. The order in whicll the d~clarations appear is not significant. They have the 

same structur~ as exc~ption declarations, and can b~ change-merged using the same rules . 

If a stream appears in DSB~ •• , then it appears in DSM if and only if it appears in both DS ... 

and DSs . 1f a stream does not appear in DS8u., then it appears in DSM if and only if it 

appears in at least one of the sets DS ... and DSB . These rules ar~: 

x E DSB40~ 
X E DSB~.e 

--.(x E DSBuo ) 
...,(x E DSBu.) 

x E DS ... A z E DSB 
...,(x E DS ... AxE DSB) 
(x E DS ... V z E DSB) 

-.(x E DS ... V x E DSB) 

zEDSM 

...,(x E DSM ) 

zEDSM 

---.(x E DSM ) 

The type declarations of data streams are also significant, as with Input and 

Output Streams, and changes to those declarations must be preserved in the merged version. 

The type declarations can be merged using a flat lattice structure just as the Input and 

Output streams are merged. 

h. Control Constroinis 

Control constraints are a set of pre-conditions, which control the firing of par

ticular components, and post-conditions, which filter the output provided by those compo-

nents. The control constraints appear in the change-merged operator according to the same 

rules as the data stream definitions. Any control constraint that appears in al l three input 

versions in exactly the same way appears in the change-merged operator without change. 

Any constraint which appears in one or both of the modifi·cations, but not in the ba.<;e, 
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appears unchanged as long as the conditions of the constraint are the same. Changes in COD

ditions are handled different ly depending on the type of constraint. Input and output gua;ds, 

conditional exceptions, "TRIGGERED IF~, "OUTPUT TF M
, "EXCEPTION IF", and timer 

operations have logical predicates as conditions. Timer operations are not change-merged 

as straightforwardly as other predicate constraints. Different operations exist for different 

activities. Start, stop, and reset are tbe three timer operations used in PSDL. The timer 

operations affect the state of the timer. The start and stop operations affect the run state of 

the t imer, and the feset operation affects the value state of the timer. The reset operation 

is thus independent of the others, and can be merged independently. If a reset operation 

appears in all three versions, or appears in at least one of the modifications , but not in the 

base, then it appears in t he changed merged version as well. The start and stop operations 

must be change-merged using a flat lattice ordering relation, as with inputs and outputs. 

The predicates that accompany the control constraints are change-merged according to the 

usual rule, A[BalJe]B = (A~ BalJe)U (An B)U(B- BalJe), where the operations n, U, and 

- are interpreted as follows: 

aub avb 
a nb a/\ b 
a -b a/\--.b 

The constraints "PERIOD", ~FINISH WITHIN", "MAXIMUM RESPONSE 

TIME", and "MINIMUM CALLING PERIOD" have integer values as conditions. These 

values are ordered using a flat lattice and can he change-merged as follows. For "PERIOD" 

constraints, if the value is the same in all three input versions, t hen it appears unchanged 

in the merged version. If it is different from the base in one of the modifications and the 

same as the base in the other modification, then the change must be preserved and the value 

appearing in the modification where it is different appears in the merged version. If all three 

versions have different values for the period, then a .1 or undefined value appears in the 

merged version, indicating an unresolvable conflict. "FINISH WITHIN" and "MAXIMUM 

RESPONSE TIME" constraints are upper bounds and can be change-merged using tbe 
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same method described for ~MAXIMU:\1 EXECUTION TIME". uMINIMUM CALLING 

PEIUOD~ is a lower bound lind two Mep constraints, t] and 12 , caD he change-merged 

using the equations shown below: 

tl Ut2 max(t ] ,t2 ) 

t]nt2 min(t j ,t2 ) 

t1 - t2 if 12:? t} then 00 else t1 

T 0 
1. 

Proposition 3 The set of all MCPs form a Brouwerian Algebra 

Proof: See the proof of Proposition 2. 

6 . Analysis 

Tbe work presented in [Ref. 20] was a first look at providing a change-merging r.a

pability for PSDL prototypes. It explored some critical issues in the problem and provided 

valuable information for work presented later in this dissertation. The work on change

merging specifications has proven to be very valuable and remains virtually unchanged ill 

the current model. Only the parts of the model concerning timing constraints have been 

improved in the current model. The work on change-merging: implementations was unsuc

cC$sful in providing a useful method. The next sections provide a look at an improvement 

over this method. 

E. CHANGING PSDL PROTOTYPES 

1n [Ref. 21), another attempt at formulating a model for representing PSDL implemen

tations is explored. In this model, PSDL prototypes can be considered iterative versions 

of a software system. If S is the intended final version of the software system, then each 

successive iteration of tbe prototype can be viewed as an element of a sequence Si wbere 

limi ..... ""Si=S. 
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1. Prototypes as Graphs 

Each prototype implementation Sj is modeled a:; a graph G j = (Vi, Ei,ei) , where: 

• Vi is a set of vertices. Eacb vertex can be an atomic operator or a composite 
operator modeled as another graph. 

• Ej is a set of data streams. Earl! edge is labelled with the associated variable 
name. There can be more than one edge between two vertices. There can also 
be edges from an operator to itself, representing state vari able data streams. 

• C j is a set of timing and control constraints imposed on the operators in version 
i of the prototype. 

2. Changes to Graphs 

The prototype designer repeatedly demonstrates versions of the prototype to users, 

and designs the next version based on user comments. The change from the graph repre

senting the ith version of the prototype to the graph representing the (i + 1 }st version can 

be described in terms of graph operations by the following equatioDs: 

• LlSj = (VA;, VR;,EAj,ERj,CA;,CR;) where: 

.. Vi+! - Vi = VAj : The set of vertices to be added to S; . 

•• Vi - 11+1 = V Rj: The set of vertices to be removed from Sj . 

•• E;+I - Ej = EA;: The set of edges to be added to Sj . 

•• Ej - Ej+J = ERj: The set of edges to be removed from Sj . 

•• q+! - C; = CAj : The set of timing and control constraints to be added to 
5; . 

.. Cj - C;+l = CRj: The set of timing and control constraints to be removed 
£rOmS\. 
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5;+1 = 5j + ll.5 j is defined iu terms of the individll al compouents of S';+! as follows: 

V;+! = Vi U VA i - VRj 

Ei+l = Ej U EAi - ERi 

Tue following figures suow an example of a change made to a composite operator in 

PSDL. Figure :1.10 contains a graph representation for a composite operator Opl consisting 

of 4 vertices and 6 data streams. Figure 3.11 shows a change to be applied to Opl to produce 

Op2. Fignre 3.12 shows a graph representation of Op2, the result of applying the r.hange to 

Op1. 

~ ~. 

Opl {Vi.,EJ,Cd 
V, {A,B,C,Dj 

100 

E, {(Xl, EXT _ A),{X2, A _ B), (X" ,A _ C), (X, ,B_ D), 
(X5, C - D), (X6 , D _ EXT)) 

C1 {max _ezec...time(B, 100m3)} 

Figure 3.10: Example of a composite operator in PSDL 
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t:.A,Opl {VRA,VA .... ,EAA,ER,."CA,." CR,d 
VAA {E} 
VR, (C) 
EA, {(X3, A ~ E), (XL E ~ D)) 
ER, {(X3 , A ~ C), (X5 , C ~ D)) 
CA A {latency(X7 ,E,D,50ms)} 
CR, {} 

Figure 3.11: Example of a change made to a composite operator in PSDL 

Operator Op2 = Opt +.o.AOpl 

Op2 {V2 ,E1 ,C2 } 

V2 {A,B,D,E} 
E, {(Xl, EXT ~ A),(X2, A ~ B),(X3, A ~ E),(X4' B~ D), 

(Xl, E ~ D),(X6, D ~ EXT)) 
C2 {max_exec..time(B, 100m.'!), latency(X7, E, D, 50ms)} 

Figure 3.12: Example of the changed operator 
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F. AN APPROXIMATE METHOD FOR CHANGE-MERGING 
PSDL PROTOTYPES 

1. Method 

In [Ref. 21, 23, 25]. an approximate method for change-merging PSDL prototypes 

is explored. This method is useful in providing a rough approximation to the ideal change

merge, but was abandoned in favor of the more useful (and provably correct) slicing method 

[Ref. 23, 24]. It is included to record the effort expended in this endeavor. 

Recall the merging function introduced in [Ref. 9j, and reintroduced in section D: 

M ~ AlBIC ~ (A -B) U (An C) U IC - B). 

If the semantic function of a program is represented as a set of pairs, then two compatible 

modifications of a semantic function can he merged using this equation. 

In this equation, the union, intersection and difference operations are defined as 

normal operations on sets. The difference operation, (A - B) for example, yields the part 

of the function present in the modification, but not in the base version. The intersection 

operation yields the part of the function preserved from the base version in both modifi· 

cations. This model preserves all changes made to the base version, whether extensions or 

retractions. In this model, two changes conflict if the construction produces a relation that 

is not a single valued function. 

In this section, we outline an approximate method for merging prototypes using 

the change model described in the previous section and the above definition. This method is 

approximate, in the sense that the change merging construction is applied to the structure 

of a PSDL program rather than to the mathematical function it computes. This method 

is simple, corresponds to c-Ommon programmer practice, and produces semanticaHy correct 

results most of the time. 
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The approximate method call be understood as follows. All PSDL implementations 

are graphs, whose structure roughly models their functionality. \Ve have n :prescilted these 

graphs using sets. Different variations of a prototype are the results of different changes 

being applied to a common base version. \Vc can merge the two new versions A and C by 

applying the change that produced A from B to version C, or by applying the change that 

produced C from B to version A. The result is the same in either case. Earlier, we expressed 

the (i + 1)5t iteration of a software prototype as 5i+l = Si + 85; . Let us consider an ith 

version which has been changed in two different ways, via 8A and LlB. The results of the:se 

two changes are denoted as SA and 5B• respectively. Now let us consider a case where the 

(i + l)st iteration is the result of merging these two changes: 

T he components of 5i+1; \1;+1> Ei+1 and Gi+l can be computed similarly: 

(VA - \1;) U (VA n VB) U (VB - \1;) 

(EA - Ei) U (EA nEB) U (EB - Ed 

(GA - Gi) U (GA n GB ) U (GB - Gi) 

To demonstrate the concept of the merging operation, we provide the following 

example: The base prototype is as in Figure 3.13. Change A is outlined in Figure 3.14, with 

the result shown in Figure 3.15. Change B is outlined in Figures 3.16 and 3.17. The merging 

operation is performed in Figure 3.18 and the result is shown in Figure 3.19. 

The merge operation outlined in Figure 3.18 involves determining the real effect of 

changes made to the base, and any conB.ict that may arise due to similar changes between the 

two variations. This is a simple example illustrating the merging of two changed prototypes 

which do not conB.ict with one another. In some cases, two changes to a prototype can 

conflict with one another, and the result of their merging can be an inconsistent program. 

In such cases, the engineer must resolve the conflict off· line. 
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Figure 3.13: Fish Fann Control System, Fillhiell 
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L::.. ,. Fishi es = VA A,VRA" EA,."ERA,CA ,.. ,CRA 

V A.... {M anitor JJaderia-Levei, ControLWater ..Flow-.2, Display..status..2} 
V RA {Control.Water ..Flow, DispiayStatu3} 
EAA {(Bacter ia..5tatus : Monitor -Baderia-.Level --+ ControLW ater ..Flow..2), 

(Bacteria: MonitorJiacteriaLeveI ..... Display...status.2) 
(02 s tatus: MonitoT_02 L evel-+ ControLWater ...Flow.2) , 
(N H3..5tatus : Monitor...l'l H3..Level -+ ControLW ater ..Flow.2), 
(H20..status: Monitor J/20..Level_ ControLWater ...Flow...2) , 
(02: Monitor.02-Level_ Display...status.2), 
(N H3: Monitor flH3...Lwel_ Display..status--'2), 
(H20: MonitorJ/20...Level_ DispiayStatus...2), 
(ActivateJnlet: ControLWater..Flow--.2 --I AdjustJnlet), 
(Activat e.Drain: ControLWater..Flow..2 -+ AdjusLDrain), 
(InleLSetting: AdjustJnlet -+ Display...status..2), 
(Drain..5etting: Adjust...Drain ..... DisplayStatus~), 
(Feeding: Control...Feeder ..... DisplayStatus~) } 

ERA {(02Status: Monitor_02-.Levd ..... ControLWater...Flow), 
(/1/ H3Status : Monitor..N H3-.i-evd ..... Control_Water ...Flow), 
(H20 Status : Monitor -.R20...Leve/ ..... ControLWater...Flow ), 
(02: Monitor_02-.Levd ..... DisplayStatus ), 
(N H3: Monitor..NH3-.Levd ..... DisplayStatus), 
(H20: Monitor -.R20...Leve/ ..... DisplayStatus), 
(ActivateJnlet: ControLWater...Flow ..... AdjustJnlet), 
(Activate...Drain: ControLWater...Flow ..... Adjust...Drain), 
(InletSetting: AdjustJnlet ..... DisplayStatus ), 
(DrainSetting: Adjust...Drain ..... DisplayStatus) , 
(Feeding: Control...Feeder ..... DisplayStatus)} 

CA A {max_exec..lime(Monitor-Bacteria_Levd, lOOms), 
max_exec..time(DisplayStatus~, lOOms), 
max_exec..time( ControLW ater ...Flow.2, 200m3), 
period( Control_Water ...Flow..2, 2000ms)} 

CRA {max_exec..time(DisplayStatus, lOOms), 
max_euc..time( C ontroLW ater ...Flow, 2ooms), 
period( ControLW ater -Flow, 2000ms)} 

Figure 3.14: Example of change AA applied to Fishies 
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tlBFishies 
VA. 
VR. 
EA. 
ER. 

Figure 3.15: FishiesA 

{VR8, VA B , EAs , ERB, CAB, CRB} 
{} 
{GeLF'eedingJ'ime} 
{} 
{(Feed~SchedlJ.l e: EXT -+ Gd..Feeding:fime), 
(Feed_Schedule: GeLFeeding..Time --+ EXT)} 

{} 
{} 

Figure 3.16: Example of change 6,B applied to Fishies 
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Figure 3.17: FishiesB 

FishieSM = FishiesA[Fishies]FishiesB = 
(FishiesA - Fishies) U(Fishi esAnFishiesB)U(FishicSB - Fishies) 

VF;.h ...... = V F •• hie .... [VFi.h'<o ]VFi.hiooll = 
(VFi.,,;~ ... - VPi.hi".)U(VFi.hie,,, n VPi''''eoB)U(VFi. hieoB - Vn •hiu ) 

B pi• hi ..... = EFi.hie." [EFi.hi .. ]EFi.hioos = 
(BFi •hi .... - Bpiohi .. ) U(EFi.hie ... nEFi.hi<OB)U(EFi.hieoB - EFi'hi") 

CFiohi ..... = CFi• hi .... [CFi.hi .. 1CFi'h;"'B = 
(CFi •hi .. " - CFi.hi .. )U(CFi.hieo .. nCFi.hi"8 )U(CFi.hi"'B - CFi.hie.) 

Figure 3.18: Perlorming the Change-Merge Operation 
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Figure 3.19: Fishies M 
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There are a number of possible conflicts that can arise during the m~rging operation. 

Conflicts arise when different changes applied to the prototype affect the same portion- of 

the prototype in different ways. Some examples of conflicts are as follows: 

1. One change adds an output edge to a vertex A, while another change removes 

vertex A from the prototype. In this case, automatic resolution of the conflict is not yet 

possible, so the system would have to announce that a conflict has occurred and give the 

designer the opportunity to resolve it. In the case of such a conflict the construction produces 

a graph that is nol well formed, in the sense that it has edges whose endpoints do nOl belong 

to the vertex set of the graph and are distinct from the artificial node EXT that serves as 

an endpoint for external flows. 

2. The two changes assign different timing constraint values to the same operator, 

i.e., (max_exec..time, F, 50ms) and (max_exec..time, F, 40ms). In this case, the conflict can 

be handled automatically, since any operator that executes in under 40ms must also execute 

in under 50ms. In situations where different maximum execution times have been assigned, 

the minimum value can always be chosen. T his is also true oftwo different values for latency, 

maximum response time, and finish within timing constraints. The minimum calling period 

timing constraint would have to be merged using the maximum of the different values. 

Different period values for the same operator io different changes result in a conflict that 

would have to be resolved by the designer. Different control constralnts for the same part of 

the prototype in different changes can also result in a conflict. Some of these conflicts can 

be resolved automatically. 

2. Analysis 

The approximate method described above provides a method of cbange-merging 

PSDL implementations that is closer to the semantically correct version than the first at

tempt, but impossible to prove correct. The next two chapters detail a slicing method for 
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change-merging which is easily prov~n correct. Chapter IV details a semantic morlel of PSDL, 

a method of slicing PSDL programs, and a change-merge model which utilizes these slic~ to 

create a merged version which preserves the significant changes in each of the two modified 

versions. Chapter V detai ls the algorithm developed to implement this slicing method for 

change-merging. This new slicing method has been implemented and integrated into the 

CAPS development system. 

G. CONDITIONAL MERGING OF WHILE-PROGRAMS 

One of the main weaknesses of traditional approaches to data flow analysis and slicing is 

insensitivity to the conditions under which data flows actually take effect. This problem has 

prevented conflict-free merging of software changes that affect the same output variable, even 

in cases where the changes affect disjoint portions of the input space. One way to improve on 

this is to augment the dependency graphs with flow guards, so that disjoint partial flows can 

be distinguished, and successfully merged. A software merge technique hased on conditional 

slices captures a finer-grain picture of the threads in a program than merging based on 

unconditional slices, and hence can produce more accurate program merges. 

1. Conditional Flow Dependencies 

There is a flow dependency between two statements in a while-program if a value 

assigned by the first statement can be read by the second statement. Determining flow 

dependencies exactly is undecidable in the general case [Ref. 13]. Conventional data flow 

analysis calculates a weak approximation to the exact flow dependencies by assuming that 

all paths in the control flow graph of a program are feasible. This method ignores the 

possibility of infeasible paths and non-terminating loops because of its assumption that all 

control predicates are satisfiable along all possible paths through the control flow graph. 
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Conventional flow analysis is guaranteed to find all flow dependencies, but it may report 

som~ dependencies that are not really there. 

In [Ref. 13], Berzins introduces conditional flow dependencies to provide Illore ac

curate computable approximations to exact data flow dependencies. A conditional flow 

dependency is a conventional flow dependency augmented with a predicate describing the 

conditions under which the data flow can take place. The predicates associated with the 

data flows enable us to recognize disjoint flows and hence provide a more discriminating 

model of the data flow dependencies in a program. 

a. Flow Guards 

The predicates associated with each conditional flow dependency are called 

flow guards. The exact flow guard associated with a flow dependency carried by a variahle 

v from a program statement .51 to another program statement .52 is true in a program state 

S if and only if all of the following conditions hold: 

1. Statement.'ll assigns a value to variable v when executed in state S. 

2. Program execution will subsequently reach the statement 32. 

3. Statement 52 will read the value assigned by statement 0$1 to variable v. 

An approximate flow guard must be true whenever the exact flow guard is 

true, and can be true in some cases where the exact flow guard is false. The set of all 

approximate Bow guards forms a lattice with respect to the ordering defined by the logical 

implication relation. The weakest approximate flow guard is true for all states, and the 

strongest approximate Bow guard is the exact Bow guard. Conventional data Bow analysis 

is equivalent to using the weakest approximate flow guards. 

Checking whether C)::act flow guards are disjoint is undecidable in the general 

case, as demonstrated hy the program shown in Figure 3.20. Statements are identified by the 

46 



line numbers shown on the left margin. The flow guard fOT the flow of:r from statement 1 to 

statement 4 is disjoint from the Bow guard for the flow of y from statement 2 to statemel~t 4 

if and only if the program fragment P shown on line 3 terminates, wbir.h is an undecidable 

question. Since program merging algorithms based on conditional flow dependencies need to 

check whether flow guards are disjoint , we seek representations for which disjointness cbecks 

are decidable. 

x:= 1 
y:= 2 
p 

4 z;=:r+y 

Figure :1.20: Undecidability of Disjointness for Guard Conditions 

We can get approximate flow guards with decidable disjointness relations by 

using a logic with restricted expressive power to represent the flow guards. One way to do 

this is to use propositional guard predicates. 

Propositional guard predicates are constructed from the Boolean constants true 

and false, Boolean condition variables associated with the control predicates, the Boolean 

connectives &, 1, and ..... , and the modal operators of the form (P), where P is the condition 

variable associated with the control predicate of a while loop in the program. 

Propositional guard predicates are interpreted as follows. Condition variables 

represent the value produced by the most recent evaluation of the associated control predi-

cate. The connectives &, I, and ..... represent the "and", "or" and "not" operators of standard 

propositional logic. 
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p = (V.) "begin" (V.) "is" 5 "end" (V.) 
s= V:= E 

15;5 
I "if" E "then" S "else" SUfi" 
I "while" E "do" S "ad" 

Figure 3.21: While Program Grammar 

h. Conditional Dependency Graphs 

Conditional flow dependencies are represented by a conditional program de

pendency graph. A conditional program dependency graph consists of a set of vertices and 

a set of edges. The set of vertices contains a vertex for each assignment statement, an 

initiaL,!;tate vertex, and a final vertex for each output variable. The set of edges repre

sent conditional flow dependencies and control dependencies. Control dependency edges are 

needed to provide a flow path between two sequential parts of a program which do not share 

any variables. Control dependency edges are identical to flow dependency edges that do not 

carry a variable. 

We illustrate the construction of a conditional flow graph in terms of a simple 

imperative programming language that provides assignments to scalar variables, sequencing, 

conditionals, and while loops. This language of while-programs does not have any explicit 

input or output statements, and is defined by the grammar shown in Figure 3.21. 

The nonterminals P, 5, E, and V represent while-programs, sta.tements, ex· 

pressions, and variables, respectively. The Kleene star (*) denotes zero or more instances of 

the preceding symbol. 

The input variables of a while-program are listed before the "begin", and the 

output variables are listed after tbe "end". All other program variables are listed between 

the keywords "begin" and "is". The meaning of a. program is characterized by the final values 

of its outrut variables. The meaning of a program statement is characterized by its effect 
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on the program state. The program statl:: cor.sists of the valul::s bound to all of the prog;am 

variables. The meaning of a~ expression is characterized by t!le va\t!e of the expression in 

the current program stak. The evaluation of an expressiou ca:lllot affect the program s~ate. 

An attribute grammar is provided in [Ref. 13) for constructing the conditional 

flow graph for a while-program. The noaes of the flow graph correspond to the assignment 

statements in the program, along with an extra initial vertex and a final vertex for each 

output variable. Each node is associated with an ~ucution guard. The execution guard is a 

predicate that represents the set of program states in which the statement can be exeC11ted. 

Each edge of the flow graph is associated witb a variable name and a flow guard. The 

variable name identifies the data carried by the edge. The flow guard is a predicate tbat 

represents tbe set of program states in which the valne of the variable flows along the edge 

Tbe flow guard is the conjunction oi the conditions that the source node is executed, that 

the destination node is executed, and that all loops on the control path from the source 

node to the destination node terminate. Since each node can define the value of at most one 

variable, there can be at most one edge between any pair of nodes in the flow graph. An 

example of a Conditional Flow Graph is shown in Figure 3.22. 

Basc(x) 

begin 
y:"O: 
ifx>O 

whilex>Odo 
y:- y +~; 
x:=x-l; 

<XI 

whilex<Ooo 
y:=y_x: 
x :_x+ 1; 

<XI 
end if: 

cnd(y): 

Figure 3.22: An Example of a Conditional Dependency Graph 
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2. Conditional Slices 

A slice of a program isolates that portion of the code which affects the program 

behavior with respect to some program statement. A conditional slice must differeutiate 

between portions of the code that affect the meaning of that program statement, but under 

different conditions. We define a condit ional slice of a while·program, with respect to a 

program statemeut and a flow guard, on the program's conditional dependence graph, G 

For program st atement, S and flow guard, P, the slice of G with respect to Sand 

P, G/{S, P} is a suhgraph of G and contains all vertices IIi E G, such that there is a path 

from v; to S along control dependence edges or flow dependence edges not labeled with the 

flow guard,," P. The edges in the slice are all of the edges that connect t he vertices in the 

slice. An example of a. conditional slice is shown in Figure 3.23. 

SliceslJ..;x)(FinaJ(y).p) 

tJ,o,gin 
y:=O; 
if;\;> 0 

Q while;\; >0 do 
y: .. y+ ;\;; 

od 
end if; 

end(y); 

t 

Figure 3.23: Slice Base/{Final(y),P} 
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A conditional slice of a orograffi is itself it. pro~dm, as i t contains a ll of the orig

inal program coae whic~ alTeets the values computed at the fi nal vertex when t~e input is 

restricted to only those :nputs wh ich satisfy the given con dit ions 

3. Conditional Program Merging 

Other approaches to merging while-programs use pieces of each of the input versions 

to perform the merge[Ref. 28, 48]. One oi these program pieces is the part of the two modified 

versions which is the same. This part is known as the preserved part. The remainder of the 

merged program comes from that part of each of the modified versions which is different 

from the base. These parts are called the affected parts of each modification. Construction 

of these program pieces is done using program slicing. 

The preserved part is constructed by comparing slices of each of the modified 

versions with respect to subsets of the program statements. The largest subset of program 

statements that h1l.'l the same slice in all three versions defines the preserved part. The 

affected part oi each of the modified versions is constructed by comparing the slice of the 

modification with respect to each of its vertices against the same slice oi the b1l.'le version. 

If the slices are different in the modification and the base, then that slice is in the affected 

part. 

One of the problems inherent in this method of program merging is its inability to 

distinguish between different changes to the same slice which cannot interfere. Conditional 

slicing alleviates this problem by allowing the different computation paths which can never 

be executed for the same input to be considered separately. 

Using conditional slicing, we calculate the affected part of a modified version by 

comparing slices of the modified version with respect to the program statements and the set 

of all possible truth values of the conditional gllard predicates at that statement. In this 

way, two different paths to the same statement which cannot be taken on a single input are 
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not contained in the same slice, thus changes to one path do not necessarily affect the slice 

containing the other path. 

The merged program is then constructed in the same way as the unconditional 

method, by taking the graph union of the preserved part and the affected parts of both 

modifications. 

Consider the example outlined in Figures 3.24 through 3.29 . in this example, the 

base version is the same as that shown in Figure 3.22 and contains a conditional expression 

that partitions the input space into positive and negative integers. If the input value of x 

is negative, then one set of statements is executed and if it is positive, then another set of 

statements is executed. In Figure 3.24, you see a change made to the then branch of the 

conditional expression. In Figure 3.25, you see a change to the else branch of the conditional. 

Since both of these branches affect the same output variable, y, the traditional approach to 

merging would report a conflict and the merge would fail. This should not be the case, 

however, since these two changes can never interfere. 

begin 
y:=O; 
ifx>O 

whilex>Odo 
y:z y* x; 
c,;x - l: 

"" 
whilex<Odo 

y:'" y-x: 
x:=x+ 1; 

"" end if: 
end(y): 

Figure 3.24: Version A 
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B(x) 

begin 
y:=O; 
ifx:>O 

then 
whilex:>Odo 

Y :=Y + x: 
x:"'x-I: 

whilex<Odo 
y :=y Ix; 
x:=x+ 1: 

'" end if: 
end(yJ; 

Figure 3.25: Version 8 

Figure 3.26: Preserved Part of all Three Versions 
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Figure 3.27: Affected Part of Version A 

Figure 3.28: Affected Part of Version B 



Merge(x) 

begin 
y~O; 

ifx>O 

whilex>Ooo 
y:=y" r. 
x:=x -1; 

od 

wh.ile x<:Odo 
y:-y!r. 
x:",x+ I: 

od 
end if; 

end(y); 

Figure 3.29: Merged Version 
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IV. SEMANTIC MODEL 

in this cbapter we describe our model for the behavior of prototypes, present our slicing 

method for change-merging prototypes, and present an invariance theorem that guarantees 

our method is correct. 

A. PROTOTYPING SYSTEM DESCRIPTION LANGUAGE 

The Prototyping System Description Language (PSDL) is an enhanced da.ta flow Ian· 

guage that can be used to specify and implement prototypes of real-time embedded software. 

PSDL programs are inherently non-deterministic and can he executed in parallel [Ref. 32J. 

This section describes a semantic execution model for F5DL programs. 

1. Overview of PSDL Semantics 

OUT change-merging method is based on the behavior of the input programs and not 

on their syntax. In this section we define a behavior model for PSDL that we can use to prove 

our invariance theorem. The semantics of PSDL have been modeled using algebraic high-level 

Petri nets [Ref. 3~. We chose a different model which is more applicable to our problem. We 

chose to model the behavior of a prototype by observing the data fiow history over its data 

streams. A prototype's behavior is represented by sets of possible histories over the streams 

we call trace....tuples. These trace_tuples are composed of sequences of data-tuples called 

trncl!.5. Each trace_tuple contains precisely one trace per stream. Since PSDL prototypes are 

non-deterministic, one trace.tuple does not necessarily reflect the set of possible histories 

associated with a prototype, thus we must consider the behavior of a prototype to be the 

set of all possible tra.ce..tuples over its data streams. Since PSDL prototypes are intended 
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to prototype embedded real-time systems, which may never be turn~d off, this behavior is 

likely to be of infinite length . We llse trace_tuples as the base uDit for our inductive proof of 

the invariancc theorem in Sectiou B.2 of this chapter. The following subsections describe the 

model starting wi th traces and huilding up to the hehavior of a prototype, and the possibility 

functions we usc to construct the behaviors. 

2. Traces 

The rustory of a PSDL computation can he described by the histories of all the 

data streams, called traces. A trace on a data stream x, denoted Too, is the sequence of all 

data tuples on the stream. Each data tuple contains a data element :1:;' the name 0i of the 

operator responsible for writing Xi to the stream, the time tw; that Xi was written to the 

stream, and the time IT; at which OJ read its input streams to start the computation that 

produced Xi. A data tuple represents the assertion that the value X; was produced by an 

execution of OJ that started at time tr; and finished at time tWi. 

Example 1 Truce on a stn:am * 

Since PSDL was designed for writing prototypes of real-time embedded software 

systems that may never be turned off once started, traces can be finite or counlably infinite. 

The initial data tuple on a data stream is [x(J -+ 1.,00 -+ 1., two -+ 0, tro -+ OJ, where 

.1 represents an undefined value, unless the stream is declared as a stale variable with an 

initial value, in which case t he initial data tuple would be [xo -+ U,Oo -+ DECLOP, two -+ 

0, tro -+ OJ . DECL_OP is the operator in which the state declaration appears, and v is the 

initial value assigned in that declaration. For example, if the state stream is declared in an 

operator p by the declaratioll statement STATE X INITIALLY 3, then the initial data 

tuple on the stream would he [3,p,0 ,Oj. Since every trace contains an init ial data tuple, 

we see that all traces are non-empty and that the minimum length of a trace is one. In a 
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data flow stream, when a data clement is removed from the stream and there is not another 

clement on the stream, the value and the operator name elements are replaced by .i. 

The write times tWj for a given stream form a monotonically increasing sequence 

of numbers that represent the amount of time elapsed between when the prototype began 

execution and when the value was available on the stream. The read times trj for a given 

stream form a monotonically increasing sequence of numbers; the ith element in the sequence 

represents the amount of timeeiapsed between when the prototype began execution and when 

the operator OJ read its input streams at the start of the computation responsible for Xj. 

If an operator fails to terminate on any firing, t hen the trace on any of its output 

streams contalns only the values which were written to the stream before the firing in which 

the operator fai led to terminate. If the fallure to t erminate occurs during the first firing and 

no other operator can write to the stream, the trace contains only the data tuple representing 

the initial value. 

A trace, T", can also be represented by a stream function from a write time to a 

triple containing the ualue, the id of the operntor which wrote the value and the read time: 

q, : TIME --+ TYPE(x) x OPJD X TIME, where TYPE(x) denotes the set of all 

possible values that can be written to the stream x , OPrD is the set of all possible operators 

that can write to the stream, and TIME is a non-negative real number. We chose time to 

be a cont inuous value since prototypes can be executed in parallel, and we cannot guarantee 

that different processors will execute a precisely the same speeds. 

Example 2 Stream Function Representation jor a Tra ce 

A trace jor a stream x is: 
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The stream function ~pJ"/:s entation for this trace t/'Quld be: 

{ 
[0,3) - [~ ,~ , Ol 

IV r = [3,7) - [x l ,0,2] 
[7,00) ---+ [x2,p ,6] 

In order to use these different representations interchangeably, we need to show 

that they are equivalent. Consider the function, $, shown in Figure 4.1. 4> is a bijection 

that maps a sequence of data tuples into a step function, IV, which is continuous only from 

the right. 

llI(t ) = )~~, Vt 

Limits from the left are not preserved at the boundaries between the data tuples, however. 

Theorem 2 $ is well-defined and a bijection when rtstricted to right continuous st~p func
tions with countable range sets. 

fu.cl: Sec Appendix C. 

41(7,.-) = IV"" where \I1",(t) = [xn,On, trnl 
whert'~ [xn, On, twIl , trnl E 'Tr, n E N & tWn ::; t & (n = length(T~) or tWn+! > t) 

q,-l(W r ) = 1"", where [x;, 0, tWi, trj] E To: iff 

(~.,(tWj) = [x;,o,tril & tWi = mint(qi.,{t) = [x;,o,triD) 

Figure 4.1: cf!: Traces -----> FunciionRepre.!ientations 

The meaning of an operator is characterized by a relation between the traces on 

the input streams and the traces on the output streams. If a data stream receives input from 

more than one producer, then we must have a method for merging multiple traces into one 

to determine the behavior of the entire system. The merge function, defined in Appendix 

A, Section 3, provides this method for two traces, A and B. It can easily be generalized to 

any finite number of traces. 
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A strw.m behavior for a stream x, flr' is the set of all possible traces for :x. Since a 

PSDL computation can be non-deterministic, the history of a computation is represented by 

the set of all possible traces for a given PSDL stream. Since the complete stream behavior 

for a data stream in a PSDL prototype may not be visible from outside the prototype, it 

is necessary for us to consider both visihle and generated stream hehaviors for a stream. A 

visible stream behavior for a stream x is a set of traces written to x by an external producer. 

Each trace in the visible stream behavior of x is a subsequence of some trace in the complete 

stream behavior for x. The part of the stream behavior which is not produced externally, 

we call the generated stream behavior. The traces in the generated stream behavior for .T 

are also subsequences of traces in the complete stream behavior for.T. For example, consider 

either of the prototypes in Figure 4.2. Each trace in the stream behavior of x, is a sequence 

which contains as subsequences the traces on the hidden and visible parts of x. Thus the 

visible behavior and the generated behavior are both projections of the complete stream 

behavior. 

A truncated trace for a stream x, 'Tr I k, is a finite prefix of'T", for which length('Tr I 
k = min(length('T,,),k) A tntncated stream behavior for a stream x, {3., I k is the set of all 

possible truncated traces, 'Tz; I k. 

3. Trace Tuples and Prototype Behaviors 

A trace tuple is a tuple containing a trace for each stream in a prototype. A trace 

tuple can be projected downward to any subset of the streams in a prototype, say X, by 

including in the projected trace tuple only those traces on the streams in X. A trace tuple, 

T, projected downward to a subset X of the streams of the prototype is represented as Tx. 
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HE - Hidden Behavior 
GB -Given Behavior 
SB .Stream Behavior 

Figure 4.2: Example of prototypes with generated stream behaviors. 
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An example of a trace t uple over the set of data streams in a prototype E{P) is 

(7r " 1'""" .. " 7"r.), Ij E E(P). A visible trace tuple is a tuple of visible traces for each stream 

in the prototype. A tMJ1Icatrd trace tuple is a trace tuple containing only truncated traces: 

A trace tuple can also be viewed as a vector-valued stream function by extending 

the function 4> to trace tuples according to the rule: 

$(("<;"","<))(,) = ($("<,)(,), ... ,$("<){,)) = "(t) 

w(t) is a vector containing ODe data tuple from each trace in the trace tuple, the value 

present on each stream at time t. Using ¢I, we can also view a trace tuple as a sequence of 

vectors, where each vector contains the data tuple present on each stream at a write time t 

for one of the streams in the tuple. 

Example 3 Example of a Trace Tuple on two streams. 

For a set of streams X = {x, y} with Tr = [[.1,.1,0, OJ, [x" 0, 2,3], [x~,p, 6, 7]] and 

T~ = [[.1,.1,0,0], [y), 0,3, 5]. [Y2, 0, 7, 9]], the resulting trace tuple is: 

([[.L,.L, 0, 0], [x" 0, 2, 3], [x"p,6, 7]J, [[.L,.L, 0, 01, [y" 0, 3, 5[, [y" 0, 7, 9J[) 

and the corresponding function representation is: 

[0,3) ([.L,.L,01,[.L,.L,01l 
[3,5) ([x,,0,2],[.L,.L,01l 
[5,7) ([x"0,2],[,,,0,311 
[7,9) ([x"p,6],[,,,0,311 
[9,00) ([x"p, 6], [",0,711 

Since PSDL is non-deterministic, there may he many possible trace tuples for a 

prototype P. We call the set of all possible trace tuples for the data streams in P, the 

prototype behavior of P, and we represent it as B . 
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A prototype behavior can also be projected downward to any suuset of the streams 

in a prototype, say X, by including ill the projected data flow history only the possible 

projected trace tuples over X. A projected data flow history over a sct of streams X is 

represented as Ex. An input prototype behavior for a prototype P is the set of all possible 

visible trace tuples over the streams ill P. 

Example 4 Example of a projected prototype behavior 0'1 a set containing two streams. 

Consider the following set X = {x,y}, where the stream behavior for x is a single 

trace, [[1.,.1,0,0], [x!, 0, 2, 3], [X2,P, 6, 7JJ and the stream behavior for y contains two dif

ferent traces, {[[.l, 1., 0,0]. [YI. 0, 3,5], [Y1, 0, 7, 9]], [[.1.,.1.,0,0], [Yl, 0, 4, 6), (Y2, 0, 6, 8)]). Then 

the resulting prototype behavior, Ex is: 

({[[.L,.L, 0, 0), [x" 0, 2, 3), [x"p, 6, 7[[, [[.L,.L, 0, 0), [",0, 3, 5[, I"~, 0, 7, 9[[), 

([[.L,.L, 0, 0), [x"o, 2, 3[, [x"p, 6, 7[[, [[.L,.L, 0, a), [,,, 0, 4, 6), [",0, 6, 8[[)} 

The function representation corresponding to Ex is: 

)0,3} ([.L,.L,O), [.L,.L,01l 
[3,5} ([x" 0, 2), [.L,.L, all 
[5,7} ([x"o,2),[,,,o,311 
[7,9) ([x"p,6),[",o,3)) 
[9,00) ([x"p,6), I"~, 0, 7)), 

[0,3} ([.L,.L,O), [.L,.L,O)) 
[3,5} ([x" 0, 2), [.L,.L,01l 
[5,6) ([x"o,2),[,,,o,4)) 
[6,S} ([x"p,6),),,,o,411 
[S,oo) ([x"p,6),[",o,6)) } 

A truncated prototype behavior, B I k is the set of all possible truncated trace tuples, up to 

length k. 

To prove our slice behavior invariance theorem, we also need to extend truncated 

trace tuples of length k to length k + 1 hy adding one data tuple onto selected traces in 
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the trace tuple. We define an incremental trace tuple to be a vector of sequences of data 

tuples over a set of streams, where the length of each sequence is either zero or one, and the 

write times fOT all of the data tuplc~ arc the samc. An incremental trace tuple represents the 

output caused by one firing of a set of zero or more operators writing to different streams of 

tbe prototype. We Deed a functioD ffi for appending sets of possible incremental trace tuples 

on to the end of a truncated trace tuple. The e function is defined in Appendix A. This 

function lakes as operands, a truncated trace tuple over the streams in a prototype and a 

set of possible incremental trace tuples over the streams in the prototype, and it produces 

the set of all possible trace tuples resulting from adding each of the incremental trace tuples 

onto the end of the corresponding sequence in the original trace tuple, for each data stream. 

Figure 4.3 shows a summary of the constructs defined in the semantic model of PSDL. 

time 
dataJuple{t: type} 
trace 
str eam..behavior 
trace..tuple 
incrementalJraceJuple 
prototype_behavior 

{xE~lx:::O} 
tuple{x: t,o: op-id,tr,tw: time} 
sequence{ data.Juple} 
set{trace} 
tuple{ stream, : trace} 
vedor{t: trace} :: length(t) :$ 1 
set{traaJuple} 

Figure 4.3: Summary of Model Constructs 

4. Possibility Functions 

Each operator in a PSDL prototype has an input history and an output history. 

The input history of an operator 0 is defined as the prototype's behavior projected over the 

input streams of 0, B[(oh and the output history of 0 is the set of all possihle trace tuples 

written by 0 to its output streams. 

In a PSDL prototype, when an operator fires, it reads one data value from each of 

its input streams and writes at most one output value to each of its output streams. The data 
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values written and the streams they are written to are determined by the semantic meani ng 

of the PSDL operator and the associated control constraints. Since PSDL op~rators~re 

non-deterministic, their meanings are possibility functions . For every possible input, there 

is a set of possible outputs. 

To define the possibility function for an operator 0, Y;C luok at a trace tuple pro

jection of the behavior tY E B/(o) as a sequence of input vectors to o. For every finite prefix 

of cr applied to 0, the result is a set of possible incremental trace tuples over the output 

streams of o. This is the possibility function for 0, :To : B/(e) -. Bo(o}_ :;:0 takes as input 

a projected trace tuple over the input streams of 0 and a read time, and produces a set of 

possible behavior projections over the output streams of o. The read time is the time at 

which the last read operation was performed by 0 on its input streams, and defines which 

values were read by 0 to perform this computation. 

Example 5 Possibility function for an operator p which implements the function: 

F, ~ {( {3}, 9), ({3, -4), 16), ({3, -4, 9), 81), ", ({3, -4, 9, ... ,x.), x.'), ... } 

Example 6 Possibility function for an operator q which implements the state machine: 

F, ~ {( {3},3), ({3,-4},-1),({3, -',9},8), ... , ({3, -4,9, .. ,xd, (~x,) + x.) , ... ) 

In example 5 you will notice that the y value of each pair is dependent only on the 

most current value written to the input stream x. In example 6 the y value of each pair is 

dependent not only on the most current value written to the input stream x, but also on the 

previolls value of y. 
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The effccb oC all PSDL control constraints can be expressed a.'l transfo~mat ions 

on the possihility function of a. bare primitive operator. The effect of each type of <"-Outro] 

constraint OIl a possibility funct ion is defined explicitly in Appelldix B. In the rest of this 

chapter, we assume that the possibility function for each operator includes the effects of any 

associated control constraints. 

To analyze the effects of various approaches to change merging, we assume that 

the possibility function for a network of PSDL operators can be derived from the possibility 

funct ions for the individual operators in the network. This can be done as follows . 

We consider a prototype P to be a network of operators connected by the data 

streams of P, with behavior B. B is the behavior of the entire prototype. Each operator 

contributes to this behavior by reading from its input streams and writing to its output 

streams. The values written are determined by the possibility function of the operator. We 

can derive the possibility function for the prototype P from the possibility functions of the 

individual operaturs using the following construction: 

Fp~ U [ U (EB ( U (U !:.(t,Jal(E(P),Fo(T"o),tC))))))] 
TED Sep(v(P)) oES p(T,o)<jr jr<! 

This construction produces a set of iocremeotaLtrace..tuples over all of the streams 

in P. The pussibility function for each individual operator Fo is at the heart of this coo

·struction. It produces a set of incrementaltrace..tuples over its output streams. This incre· 

mentaltrace..tuple is extended to cover all of the streams in the prototype by the function 

fill. The function l!. is then used to isolate each incrementaLtrace..tuple attributable to a 

particular read time tr and these are combined over all possible read times up to the current 

time t. These incrementaltrace..tuples are then combined using the function p to pick out 

the latest possible write time or read time depending on whether the operator contains a 

feedback loop. Each of these sets of incrementaltrace..tuples for individual operators are 

then combined with sets produced by other operators in the subset S using the function ffi. 

This is done for every possible subset S in the powerset of the vertices of P. Finally, these 
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sets of incrementaLtrace_tuples are combin~d for every possible trace..tuple in the behavior 

Bof P. 

To constrnct the truncated behavior of P of size k, we have to not only produce 

the set of incrementaLtrace_tuples, we have to append them to the set of truncated trace 

tuples of siz~ k - 1. That can be done as follows: 

Blk~ U [ U [T<ll(EfJ( U (Ut.("/ill(E(P),Y.(T,,o,,'"))))))]] 
TEBI(k-i) 5EP(V(P)) 0(5 p(T,o)<tr "<I 

This construction is identical to the previous construction up to the point where the combina-

tion over subsets occurs. At this point, we must append the set of incrementaLtrace...tuples 

produced by the ffi func tion for each subset of the operators to the trace_tuple T in the 

truncated behavior B I (k - 1). This guarantees us that we have considered every possible 

combination of operators firing a t precisely the same time. The result of this construction 

is then a set of possible trace tuples truncated at length k. This construction assumes that 

the truncated B of size k - 1 is known. Precise definitions for the functions ffi, ~, p and fill 

can be found in Appendix A. 

In our work, we assume that execution of the prototype is ~fair~, in the sense 

that, any operator which terminates in isolation will terminate when executed as part of 

a prototype. Failure of an operator to terminate is represented by a possibility function 

that gives the same set of possible output sequences for aU possible extensions of an input 

sequence that fails to terminate. 

B. SLICING OF PSDL PROTOTYPES 

As we saw in Chapter III, Section C.2, a portion of a program's behavior can be 

captured by a slice of the program with respect to a single point in the program. We 

have deVeloped a similar method that is also valid for isolating a portion of the behavior of 

a prototype. This section describes our method for taking slices of PSDL prototypes. One 



of the differences be tween slicing for PSDL prototypes and slicing for whi le programs is that 

PSDL programs are inherent ly concurrent and non·determini~tic. \Vhile programs repre~~nt 

individual deterministic sequential processes. This represents a major contribution of this 

work. 

1. Prototype Dependence Graphs 

Since PSDL implementations are grapbs, we do not need a deep transformation to 

translate our prototypes into graphs as is the case for while programs. The only information 

we need to add to the current PSDL implementat ion graph are dependencies resulting from 

timer interactions, and an external vertex. The external vertex is added to allow slices of 

prototypes with vertices that have no outputs to include those vertices. The following defines 

our Prototype Dependence Graph (PDG): 

Definition 4 PSDL Prototype Dependence Graph: 

A Prototype Dependence Graph (pDG) for a prototyp~ P is a fully ~xpand~d 1 

PSDL impl~m~ntation graph G p . In the PDG, G p = (\I, E, e), th~ set of v~rtic~s has been 
augmented with an etiernalvertez, EXT, and the set of ooges, E, ha3 been augmented with 
a timer dependency edge from 01 to OJ, for fflch pair of vertices OJ, OJ E V such that the 
control constraints of OJ contain timer operations which affect the state of a timer read by 
the control constraints of OJ • 

Values on a timer dependency edge can be modeled precisely in the same way as 

values on a data stream. A data_tuple on a timer dependency edge can be viewed as a tuple 

containing the following for each of the tuple components: 

v: A pair (c, t) containing the operation c E (Start, Stop, Reset) that last changed 
the state of the timer and the value t of t he timer at the time of the state change. 

op: The id of the operator which last changed t he state of the timer. 
tw: The time of the last state change. 
tr: The time that op read its input streams before the firing 

that produced the state change in v . 

I A fully exp&lIded PSDL implemelltation graph is aile i ll which every vertex represents all atomic operator . 
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For example, cOIlsider the data_tuple [(start,25),p,36,34] on the timer stream 

Timerl. In this example, the v element of the data tuple is the pair (start,25), the'op 

element is p, the write_time is 36, and the read_time is 34. This means that th", operator p 

read its streams at time 34, started the timer Timerl at time 36, and the current valae of 

the timer when the state change was executed was 25. This view of timer dependency edges 

allows us to treat them the same as allY uther edge in the graph. 

Top level prototypes do Dot contain inpllts or outputs, so there will always be 

vertices which do not write to a stream. Since we constnlCt our slices from sets of streams 

and not from vertices, as in slicing of while programs, these vertices could never be included 

in a slice. The external vertex is added to provide a way t o capture thesc vertices during 

slicing. During construction of the PDG for a prototype, an artificial edge is added to the 

graph from any vertex which does not write to an output stream to the external vertex 

EXT. These edges are then considered in the construction of the slices of the prototype, 

thus allowing tllOse terminal vertices an opportunity to be included. Only one external 

vertex is needed for this graph, because each artificial edge added is given a unique name, 

and considered separately in the construction of the slice. 

2. Slicing Theorem 

A slice of a PSDL prototype is defined in terms of the prototype's dependence 

graph. It contains the portion of the prototype which affects the bistory of a set of streams. 

This is useful in isolating changes made to a base version of a prototype in a modification. 

If the slices of two versions with respect to the same set of streams are different, then there 

are significant changes that have been made to one version and not the other. 

Informally, a slice is an upstream closure of a set of edges in the graph that includes 

all the source nodes for the edges in the slice. A formal definition of a slice follows: 
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Definition 5 Slice of a PSDL Prototype: 

A slice Sp(X) of a PSDL prototype P with respect to a set of data strMms X i~ 

the subpraph (V, E, C j of th ~ PDG Gp when: 

(lJ V i.~ th ,. smallest sd thai coniuin.s all vertices OJ E G p that satisfy at I~ast one 

of the following conditions: 

a) 0i writes to one of the data streams in X. 

b) OJ precedes OJ in G p , and OJ E V. 

(2) E is the smallest set that contains all of the edges Xk E G p which satisfy at 
l=~t one 0/ th e following conditions: 

a)XkEX. 

b) Ik is direded to some OJ E V. 

(9) C is the smallest set that contains all of th e timing and control constraints 
associated with cuch operator in V and each data stream in E. 

Example 7 Figure ,f.,f shows a prototype for a fish farm control system called Fishi es. 
Figures .f .5, .f. 6 and ,f. 7 display different slices oj Fishies. 

Theorem 3 Slicing Theorem for PSDL Prototypes: 

Let Sp{X) be th~ slice of a prototype P with r~spect to a set of streams X. Then 

Sp(X) and P have the same behavior on any subset of the streams in Sp{X) . 

The proof of this theorem is contained in Appendix C, Section 2. The significance 

of this theorem is that a slice captures a fragment of the semantic behavior of a prototype, 

and the behavior captured by that slice remains the same even if that slice is made a part of 

a different prototype, provided that it is also a slice with respect to that new prototype. This 

property is the basis for constructing a change merging operation that can provide semantic 

guarantees of correctness. 
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Figure 4.4: Fish Farm Control System, Fishiesl.l 

Figure 4.5: SF;,hi .. ,., (02, N Jl3, H20) 
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Figure 4.6: SFi.hiu" (DrainScttin.q ) 

Figure 4.7: S Fuhi .. ,., (DrainSctting , JrtlcLSetting ) 



C. A SLICING METHOD FOR CHANGE-MERGING PSDL 
PROTOTYPES 

O,IT change-merging method for PSDL prototypes, illustrated in Figur.,~ 4.12 through 

1.,15 on the prototype ,'ersiolls originally introduced in Chapter III and shown again in 

Figures 4.4, 4.8 aod 4.9 uses prototype slicing to determine automatically which parts of the 

prototype bave heen affected by a change and which parts have b.,eo preserved. 

Figure 4.8: Fishies1.2 

If the slice of a changed version of a prototype with respect to a stream present in 

both the base versioo and the modified version is different than th e same slice of the base 

version, then the behavior on that slice is likely to be different. Therefore that change is 

significant, and must he preserved in the merged version. For example, consider t he slice 

of Fishi esl.l with respect to the stream Activat~rain, illustrated in Figure 4.10 , and the 
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Figure 4.9; Fi8hies~.~ 
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same slice of Fi.,hieS1.2, illustrated in Figure 4.11. It is easy to see .. purtion of the effect of 

the change wbich produced Fishie.,l.2 from Fi.,hiesl.l' If we ""'''re to take the same slic~ of 

Fishies2.2, we would discover that it is identical to the slice of the base versiun of Fishies. 

This illustrates that this part of the Fishics prototype is not affected by the change which 

produced Fi$hies~.l' Since this change is significant, it must be reflected in the merged 

version. 

Figure 4.10: SF;.M .. l.l(Adivate-Drain) 

Slices are important because they capture all of the parts of a program that can affect 

the behavior visible in a set of data streams. If two different programs bave the same slice for 

a set of streams, they also bave the same behavior over that set of streams. The preserved 

part of a prototype is then the largest set of streams that have the same single stream slice 

in aU three versions, and the affected streams of each modification are those that have a 

different single stream slice in the modified version than in the base version. Performing 

a chaDge-merge using Fi.shiesl.l as the base version, and Fi.shie.s1.2 and Pishies1.2 as the 

modified versions, we get the preserved part as shown in Figure 4.12 and affected parts as 

shown in Figures 4.13 aDd 4.14. 
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Figure 4.11: SFi~h; •• l.' (Activate-.Drain) 

Figure 4.12: Preserved Parts of Fishiesl .l in Both Modifications 
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Figllrc 4.13: Affcctpd Part of Fishiesl_2 

Figure 4.14 : Affected Part of Fishie.';2.2 
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In constructing the preserved part, we con~ i der each stream individually, taking the 

slice of each version with respect to that stream. If the slices afC the same, then that slice 

is added to the preserved part. After all streams have been checked , the preserved part is 

complete. 

The affected parts are constructed by comparing the slices of each stream in the IIlodified 

version against the same slice of the base version. The stream is included in the affected 

part if the slices afC different. 

The merged version is formed by taking the union of the preserved part of all three 

versions and the affected parts of the two modified versions. If the slice of the merged version 

with respect to the streams affected by each modification is the same as the corresponding 

slice of the modified version, then semantic correctness of the merged version with respect 

to the modifications is established. The result of change-merging Fishiesl.l, Fishiesl.2 and 

Fishies2.1 is shown in Figure 4.15. 

Our slicing method h~ the advantage of a dear semantic criterion for correctness, and 

the disadvantage of reporting conflicts whenever two changes can affect the same stream, 

regardless of whether there exists a computation history in which the two changes actually 

interact or conflict with each other. 
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Figure 4.15: The Change-Merged Version of the Fishies Prototype. 
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V. CHANGE-MERGE ALGORITHM 

From the change-merging models for both the specification, shown in Chapter III, and 

the implementation, shown in Chapter IV, we developed a change-merging algorithm. This 

change-merging algorithm takes advantage of the fact t hat the specification and implemen

tation can he change-merged separately to create a correctly change-merged program. This 

chapter outlines the change-merging algorithm in detail and provides a piece by piece analy

sis of the algorithm for correctness, complexity and coverage. This algorithm was written to 

accept a base version and two modifications as input. It is easily extended to change-merge 

the resul t of n modifications to a base version by applying the algorithm iteratively using 

the result of the most recent application as one input and the next modification as the other. 

The result of a successful iterative application on n versions is a merged version containing 

the significant behaviors of each of the inputs. 

The algorithm changeJnerge accepts three expanded versions of a PSDL program as 

input. It then extracts all of the PSDL components from each version of the program. 

The atomic components are held in storage to be included in the change-merged version 

of the program if needed, and the composite component of each program is divided into a 

specification part and an implementation part. 

Each of these parts are change-merged separately and the results are recombined to cre

ate the change-merged composite component. From the implementation part of the change

merged composite component, the algorithm can deduce which of the atomic components 

need to he included in the change-merged program. The change-merged program is then re

turned. If a conBict is detected during the change-merging process , the CONPLICTvariahle 

is set to true, and a Bag is placed into the change-merged program at the locat ion of the 

conBict to aid the designer in locating and resolving it. Figure 5.1 shows the change-merge 

algorithm. 
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Algorithm changc...rncrge(BAS£',A,B: in psdLprogram; CONFLICT: out boolean) 
return psdLprogram 

begin 
1. Extract the psdLcomponeots from each of the input psdLprograms. 
2. Change-merge the specification parts for the three input composite components. 

a. Change-merge the state declarations. 
h. Change-merge the exception declarations. 
c. Change-merge the maximum execution times. 
d. Change-merge the fonnal and infonnal descriptions. 

3. Change-merge the implementation parts for the three input composite components. 
a. Create the prototype dependency graphs for each version. 
h. Create the affected parts of each modified version. 
c. Create the preserved part of the base in aU three versions. 
d. Change-merge the graphs. 
c. Change-merge the stream declarations. 
f. Change-merge the timer declarations. 
g. Change-merge the control constraints. 

(1) Change-merge the trigger constraints. 
(2) Change-merge the execution guard constraints. 
(3) Change-merge the periods. 
(4) Change-merge the finish_withins. 
(5) Change-merge the minimum calling periods. 
(6) Change-merge the maximum response times. 
(7) Challge-merge the output guard constraints. 
(8) Change-merge the exception trigger constraints. 
(9) Change-merge the timer operations. 

4. Create the change-merged program. 
a. Combine the change-merged specification and implementation. 
b. From the resulting implementation, deterrillne which of the atomic components 

from each of the input versions is to be included in the change-merged program. 
5. Return the change-merged progra.m. 

end Change..Merge; 

Figure 5.1: Algorithm change.ITlerge. 
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A. EXTRACTING THE COMPONENTS 

Extracting the components from each of the input PSDL programs is clone using a 

map f etch operation . The algorithm loops through each of the input programs and retrieves 

the set of components each one contains. The atomic components arc placed in a holding 

program so they can be retrieved later if needed for the merged program, and the composite 

component is extracted for change-merging. Tbe algorithm fragment used to extract the 

components is shown in Figure 5.2. 

a. For every component in the Base Version loop 
(1) Fetch the component; 
(2) If the component is atomic then bind to holding program for base version; 
(3) else extract the component; end if; end loop; 

h. For every component in the A Version loop 
(1) Fetch the component; 
(2) If the component is atomic then bind to holding program Cor base version; 
(3) else extract the component; end if; end loop; 

c. For every component in the B Version loop 
(1) Fetch the component; 
(2) If the component is atomic then bind t o holding program for hase version; 
(3) else extract the component; end iC; end loop; 

Figure 5.2: Algorithm Fragment for Extracting the Component. 

The extraction part of the algorithm requires a loop through t he components of each 

version to perform the fetch. The correctness of this algorithm fragment can be shown using 

simple induction. Since the operations inside the loop are constant and the loop is executed 

only once for each component of each program, the worst-case complexity of this part of the 

algorithm is O(n), where n is the number of components in the program. This algorithm 

fragmcnt can be used for all fully expanded PSDL programs, since they contain only onc 

composite component. 
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B. CHANGE-MERGING THE SPECIFICATIONS 

Change-merging the specification of the top level component requires five operations. 

The five operations are responsible for change-merging the components of the specification: 

the state declarations, the maximum execution times, the exception sets, and the informal 

and formal descriptions. 

1. Change-Merging the State Declarations 

Change-merging the state declarations is done with the procedure merge....5totes . 

Since the state declarations are a set, normal set operations may be used to merge the state 

declarations themselves, but the initial values of the state variables conform to a flat lattice 

structure and any change must be preserved. The algorithm m ergc....5 loles is sbov.'o in Figure 

5.3. 

To show correctness of merge-'3tates, we must show that it correctly implements 

the equation (A - Base) U (An B)U (B- Base ). Two internal loops con~truct this equation. 

The first loop captures any state variable declaration which appears in A, but not in BASE; 

the (A - Base) part of the equation, and then captures any state variable declaration which 

appears in both of the modified versions; the (A n B) part of the equation. The second 

loop captures any state variable declaration which appears in B, but not in BASE; the 

(B-Base) part. Since both loops add state variable declarations to the same set MERGE, 

the union part of the etjuation is satisfied. 

The execution of merge..state.o; retjuires a membership test and add operation for 

every state declared, and these are both linear time operations with the current linked-list 

implementation of sets. Thus the entire algorithm requires O( S2) time, where s is the number 

of states declared. This can be improved to O(.o;logs) if balanced trees are used for the sets. 
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Algorithm merge..1Jtates(MERGE: in out type_declaration; 
BASE, A, B: in type_declaration; 
MERGEJNIT: in out init.map; 
AJNIT, BJNIT: in init.map) 

begin 
for every state variable, s, declared in A 

if s is not in BASE, and s is not in B then 
add s to MERGE; add initial value to MERGEJNITj 

end if; 
if s is in B then 

add to MERGE; 
if t he initial values are the same in A..1 N IT and BJ N IT then 

add initial value to MERGEJNIT; 
else add conflicLexpression to MERGEJNITj 

end if; 
end if; 

elld loop; 
for every state variable, $, declared in B 

if s is not in BASE and s is not in A then 
add to MERGE; add initial value to MERGEJNITj 

end if; 
end loop; 

end merge....stutes j 

Figure 5.3: Algorithm merge....states. 
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2. Change-Merging the Maximum Execution Times 

Change-merging the maximum execution time constraints is done with the fuuction 

m erge..met, shown in Figure 5.4. Maximum execution times foll ow a Brouwerian Algebra 

structure as shown by Proposition 2 in Chapter III, Section D.2, and must be merged ac

cording to those rules . 

Algorithm merge.md(BASE,A, B: millisec) relurn millisec 
AJ)IFF.BASE,BJJIFF.BASE,AJNT..8: millisec; 

begin 
ifA~B then 

AJNT.B:= Bi 
else AJNT.B:= A; 

end if; 
if BASE < A then 

A...DIFF.BASE:=l.; 
else AJJIFF...BASE:= Ai 

end if; 
if BASE < B tben 

B...DIFFJJASE:= .1; 
else BJJIFF .BASE:= Bi 

end if; 
if A.J)IFF..BASE:£ AJNT..B then 

if AJJIFPJ3ASE:::; BJJ/FF.BASE then 
return A..DIFF..BASE; 
else return B..DIFF..BASEj 

end if; 
else if AJNT J3::5 B..DIPF ...BASE then 

return AJ NT ...B; 
else return B..D1FF ..BASE; 

end if; 
end if; 

end merge...met; 

Figure 5.4: Algorithm mergeftlet . 

The algorithm for cbange-merging maximum execution times must also satisfy tbe 

cbange-merging equation (A - BaJe)U{An B) U (B- Baa e). It uses a series of conditional 

expressions to calculate tbe values of AJJIFFJ3ASE, B..D1FF..BASE, and A-'NT..B, 
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which represent the (A - Base), (B - Bas e) and A n B parts of the equation shown above. 

It then combines them according to the rules outlined in Chapter Ill, Section D.2. this 

adherence to the mathematical model guarantees the correctness of the algorithm. Since 

this algorithm contaiIlS no loops, it requires constant time to execute, so the worst·case time 

(".omplexity of mergu nd is 0 (1). 

3. Change-Merging the Exception Declarations and Keywords 

Change-merging the exception declarations and the keyword sets is dODe using 

the merge_id_sets (unction shown in Figure 5.5. This algorithm calculates the equation 

(A - Base) U (A n B) U (B - Base) in precisely the same way as merge-stat es calculates 

the merge of the state declarations without the initial values. 

Algorithm merge.. ili.sets(BASE,A,B id~d) return id~et 
begin 

Calculate A - BASE. 
Calculate B - BASE. 
Calculate An B. 
Return (A - BASE) U(AnB) U(B - BASE). 

end merge_id~ets; 

Figure 5.5: Algorithm merge_id..sd s. 

The correctness and complexity analyses of m erge...id..sets are identical to t hose of 

m erge..states, so merging id~ets requires worst case O(x2 ) time for exception declarations 

and O(P) time for keywords. 

4. Change-Merging the Descriptions 

Change-merging both the informal and the formal descriptions is accomplished 

using the funct ion mergLte:r' shown in Figure 5.6. merge_t ext implements a flat lattice 

change-merge, and any change ;rom t he base version in one modification must be identi cal to 
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any change in the other modification or a conflict is produced. This function has a constant 

time complexity. 

Algorithm meT"gr...iext(BASE,A, B: text) return text 
begin 

if BASE =: A 
then return B 
else if BASE = B 

then re turn A 
else if A= B 

then return A 
else return (~Conflict in text. Must be change-merged manuany!~) 

eod if; 
end if; 

end if; 
end mergej~xt; 

Figure 5.6: Algorithm merge.-text. 

5. Analysis of Specification Change-Merge 

Correctness of the specification change-merge part of the algorithm is guaranteed 

by the correctness of the individual algorithms which make up the specification change

merge. The worst-case time complexity of the specification part of the algorithm is obtained 

by adding the complexities of the individual parts as follows: 

where s is the number of state declarations, z is the number of exception declarations, and 

k is the number of keywords. 

This algorithm is capable of performing change-merge operations on all PSDL 

operator specifications. 
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C. CHANGE-MERGING THE IMPLEMENTATIONS 

Change-merging the implementation parts is also accomplished by change-merging the 

individual parts of the implementation separately. It requires five main operations; change

merging the graphs, change-merging the stream declarat ions, change-merging the timer dec

larations, change-merging the control constraints, and change-merging the informal descrip-

lions. 

1. Change-Merging the Graphs 

To change-merge the PSDL implementation graphs, we must first convert them to 

prototype dependency graphs that accurately reflect all of the timer dependencies between 

operators in the prototype as well as the data dependencies. We do this with the buildY DG 

function shown in Figure 5.7. Next we must construct the preserved and affected parts of 

the three input graphs according to the slicing rules defined in Chapter IV. The algorithms 

for these constructions are contained in Figures 5.9 and 5.8, respectively. Finally, we must 

combine these three parts into a change-merged prototype dependency graph using a graph

union operation, shown in Figure 5.12. 

In building the prototype dependency graph, lroildYDG adds an external vertex, 

EXT, to the prototype implementation graph, then for every vertex with no outputs, it 

creates an edge from that vertex to EXT. This is necessary to ensure that these terminal 

vertices are included in the slices, since slices are constructed based on edges not vertices. 

Then for every timer declaration in the prototype implementation, buildY DG creates an 

edge from every vertex which affects the state of that timer to every vertex which reads its 

value. 

The algorithm bui/cLPDG contains two loops. The first loop iterates through the 

vertices in the graph, and determines if the vertex has any outputs. For every vertex with 

no outputs, the algorithm then Mlds an edge to the graph from that vertex to the artificial 
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Algorithm /mildY DG(P : psdLcomporll~.Tlt) return prototypeJiel'mdmcy_graph 
G: prototype_depcndenC1J _graphj 
0: vertex; 
source, dest : id....'Jet; 
begin 

G::= graph(P)j 
add external vertex, EXT; 
for every terminal vertex, 0, add an edge from 0 to EXT; 
for every timer declaration in the implementation of P loop 

initialize source and dest to empty. 
add every vertex which affects the stale of the timer to SOllrCCj 

add every vertex which reads the timer tu des t; 
add all edge to G from every vertex in 5QUrt::e to every vertex in dc.s!; 

end loop; 
return Gj 

end /mifaY DC; 

Figure 5.7: Algorithm bui/dYDG. 

vertex EXT. The correctness of this loop can be established by showing that at the end of 

the loop, there are no vertices in the graph without output edges, except EXT. Since the 

loop cycles through all vertices in the graph and adds an output edge to the graph from any 

vertex which does not have one to EXT, this proof is trivial. 

The second loop iterates through the set of timer declarations, and builds two 

sets for each timer, .source and de~t. It then adds an edge to the graph from every vertex 

in ~ource to every edge in de~t. The ~ource set contains all of the vertices using timer 

operations that affect the state of the t imer. The de~t set contains all of the vertices that 

read the value of the timer. 

To show correctness of this loop, we must show that at the end of each iteration 

through the loop, the graph contains all timer dependency edges associated with the timer 

declarations thus far encountered, and at the end of the loop, the graph contains all timer 

dependency edges associated with the timer declarations in the implementation. We do this 

by the following induction proof: 
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Basis: Since SOUTce and dest are initialized at the beginning of each iteration 

through the loop, tucy are empty before the first iteration, thus the graph contains no t imer 

dependency edges before the first iteration. 

Induction Hypothesis: At the end of the kth iteration, all timer dependency 

edges associated with the first k timer declarations are included in the graph. 

Induction Step: At the beginning of the k + lst iteration of the loop, the laura 

and dest sets are reinitialized to empty. The vertices that affect the state of the k + 1st 

timer are added to source, and the vertices that read the value of the k + 1st timer are 

added to dest. Now, for every vertex in SQUTce, the algorithm adds an edge to every vertex 

in dest. Thus at the end of the k + 1st iteration, the graph contains all timer dependency 

edges associated with the first k timer declarations, by the induction hypothesis, plus it now 

contains all timer dependency edges associated with the k+ 1st timer declaration. Thus, we 

can conclude that for any number n of timer declarations, at the end of the nth iteration 

of the loop, the graph contains all timer dependency edges associated with the first n timer 

declarations. 0 

The complexity of this algorithm is determined by the sum of the complexities 

of the two loops. Since the first loop iterates through all vertices in the graph, performing 

worst-case linear operations on each iteration, its worst case time complexity is 0(n2), where 

n is the number of vertices in the graph, excluding EXT. The second loop contains three 

inner loops that iterate through the vertex set of the graph. The first two of these inner 

loops contain worst-case linear operations. The third inner loop contains another inner loop 

that could also possibly iterate through all vertices in the graph, making its worst case 

time complexity O(n~). Thus, the worst case time complexity of the second outer loop is 

O(tn2 ), where t is the number of timer declarations contained in the implementation and 

n is the number of vertices in the graph. The algorithm then contains two loops, one with 
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complexity O(n2), and one with complexity O(tIl2), therefore, the worst case time complexity 

of build.PDG is O(tn2 ). 

The next step in chauge-merging the graphs is finding out the parts of the mod

ified versions which are different frolll the base. T his is accomplished using the algorithm 

af J ectecLpart, shown in Figure 5.8. This algorithm returns the set of edges in the modified 

version for which the slice of the modified version is different than the slice of the base ver-

sian . First, each edge in the modified version is checked to see if it is the base version. If it 

is not, then it is added to the affected part. Next, the algorithm checks to see if the edge 

recieves input from different sources in the modified version than in the base version. If the 

sources arc different, then the edge is added to the affected part. Finally, the algorithm adds 

any edge to the affected part which receives input via an edge already in the affected part. 

It is sufficient to include in the affected part of modified version, only those edges 

which are different in the modified and base versions of the graph, and the edges which follow 

them. Any edge which precedes an affected edge will produce the same slice in both versions 

since slices are constructed backward from the edge. The correctness of af f ec:ted_purt is 

established by showing that, every in edge in Slice produces a slice which is different in both 

G and B. We prove this by an induction over the wbile loop. 

Basis: At the beginning of the first iteration of the loop, Slice gets one edge from 

E which is either in G and not in B, or is written to by a different set of vertices in G and 

B. Tills edge wiIl certainly produce a different slice in the two graphs, so Slice contains only 

edges which produce different slices in G and B. 

Induction Hypothesis: After the first k iterations of the loop, every edge in 

Sliee produces a different slice in G than in B. 
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Algorithm (If fed ed_part(G, B prototypfuiependcncy_graph) 
return edge....set 
Shee,C, D, E: edgc...3et; 
x,y: edge; 
begin 

C;: edges(B); 
D:= edges(G); 
E:= difference(D,C); 
for every edge x in D loop 

if sources(z) in G are different from the 
souTces(:r) in B then 
add x to E; 

end if; 
end loop; 
while E not empty loop 

select and remove an edge x from E; 
add:r to Slice; 
for each edge II E D loop 

if x.destination E sourlZs(y, G) then 
add y to E; 
remove II from D; 

end if; 
end loop; 

end loop; 
return Slice; 

end affeded...p<lrt; 

Figure 5.8: Algorithm o.j f eded...part 
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Induction Step: During tLc kth iteration of the loop, eve:), edge in G which 

follows the kth edge added to Slice in the data flow of G is added to E. At the beginning 

uf the k + 1st iteration of the loop, one of the edges in E is removed from E and added 

to Slice . Since we know that any edge which fonows an affected edge in the data flow will 

certainly produce a different slice in G and B, we know that thi$ edge win as well. Thus by 

the induction hypothesis, all of the elements in Slia before this iteration produced different 

slices ill G and B, and the current iteration adds an edge which produces a different slice 

in G and B, therefore after the k -'-1st iteration of the loop, every edge in Slice produces a 

different slice in G and B. Since E is a finite set, and no edge already in Slice ran be added 

back into E, the loop will terminate. 0 

The complexity of affecterLparL is determined by the complexity of the loops 

inside. The first for loop iterates over all of the edges in the input graph, G, and adds any 

edge to E which is different in G and B or recieves input from different sources in G and 

8. The worst-case time complexity of this loop is O(e * n), where e is the number of edges 

in G and n is the number of vertices in G. The second while loop iterates over all of the 

edges in E, which we know to contain at most the edges of G, and any edge which follows 

this edge in G is added to E. This makes the worst-case time complexity of this loop, O(c~). 

Therefore the worst-case time complexity of affecielipart is O(e2 ), where e is the number 

of edges in G. 

The next step in change-merging the graphs is constructing the part of the base 

version that is preserved in both of the modifications. This is done using the algorithm 

preserved..part shown in Figure 5.9. This algorithm loops over all of the edges in Base and 

checks to see if they are in the affected parts of either modification, or have been removed 

in one of the modifications. If the edge is not in either affected part and it is in both 

modifications, then the slice it produces is the same in all three versions and it is added to 

the preserved part. 
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Algorithm preserved_part(BASE, A, AP A, B, AP B prototype...ncpwdency_graphj 
return edge--sd 
PP: edge.-st,.! := empty-setj 
e: edge; 
begin 

for every edge E ill ed,qes(BASE) loop 
if not e E APAuAPB and e E edges(A)nedge3(B) 

then add e to P Pj 
endif; 

end loop 
return PPj 

end pre.'lerved-portj 

Figure 5.9: Algorithm preserved_part 

Only those edges which appear in all three versions and are not part of either 

affected part are added to the preserved part. The correctness of this algorithm is established 

by showing that after each iteration of the for loop, PP only contains edges which will 

produce the same slice in all three versions. We offer the following proof: 

~: 

Basis: Before the first iteration of the loop, P P is empty. Since the slice with 

respect an empty edge is aD empty graph, this slice is certainly the same in all three versions. 

Induction Hypothesis: After the first k iterations of the loop, every edge in P P 

produces the same slice in all three versions of the graph. 

Induction Step: During the k + lst iteration of the loop, if the edge e is in the 

edge sets of all t hree versions, and it is not contained in an affected part, then it was not 

affected nor removed by either version, thus it is preserved in all three versions. Since after 

the kth iteration of the loop, all of the edges in PP produced slices which were the same 

in all three versions, and the k + lst iteration a.dds another which produces the same slice 

in all three versions, after k + 1 iterations, every edge in P P produces the same slice in all 

three versions. Therefore the correctness of pre~erved...part is established. 0 
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The complexity of pr escrvccLpart is determined by the complexity of the for loop . 

SiDce all of the operations illside of the loop are at worst G(e) operations, and the l~op 

iterates once for every edge in the base version of the graph, the worst-cast time complexity 

of IJrc.'JcTved..pari is 0(e2), where c is the number of edges in BASE. 

Once the preserved part of the base and the affected parts of both modified versions 

have been calculated, the slices produced by these sets caD be change-merged iota a single 

graph. The slices are CODstrllcted llsing the algorithm create...slice shown in Figure 5.lD. 

This algorithm takes a graph and an edge as input and constructs the slice backward from 

the edge, according to the definition for a slice given in Chapter IV, Section B.2. 

Algorithm create-slice{G : protolypeJiependency_graph; E : edge) 
return prototypeJiependency _graph 
S : prototypeJiependency-sraph; 
V: vertex-set; 
w: vertex; 
begin 

ifeinG 
then a.dd eta S; 
else return emlJty_graph; 

end if; 
for every vertex w in G loop 

if w writes to e 
then add w to V; 

end if; 
end loop; 
while V not empty loop; 

select and remove vertex w from V; 
a.dd w to S; 
add parents of w to V if not in S; 
add edges between parents and w to S; 

end loop; 
return S; 

end creat e-slice; 

Figure 5.10: Algorithm create-s/ice 
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The correctness of creatc-5iice is established by showing that the algorithm pro

duces a correct slice of G with respect to E, according to our defmition of a slice give~' ill 

Chapler IV. 

If e is not an edge in G, then creatc..slice returns an empty graph, which is the 

correct slice of G with respect to c. If e is an edge in G, then e is added to the slice, and auy 

vertex which writes to e is added to the set ofverlices V.Then the algorithm iterates over a 

while loop as long as V is not empty. The correctness of the while loop is established by 

showing that at the end of every iteration of the loop, the slice S contains only the vertices 

ana edges which affect the edge e, and after the last iteration of the loop, S contains all of 

the vertices and edges in G which affect the edge e. 

Basis: Before the first iteration of the loop, the only edge in S is e., and certainly 

every edge in S affects e. 

Induction Hypothesis: After the kth iteration of the loop, all of the edges and 

vertices in S affect the values written to t. . 

Induction Step: During the k + 1st iteration of the loop, a vertex til is removed 

from V and added to S. Since only those vertices which write to an edge in S are in V, and 

only edges which affect the values written to e are in S by the Induction Hypothesis, we are 

guaranteed that w is a correct addition to S. So after the k + lst iteration of the loop, S 

contains only edges and vertices which affect values written to e. 

Since V contains at most the number of vertices in G, and one vertex is removed on 

every iteration of the loop, we are assured that the loop will terminate. Since during evcry 

iteration, any edge which provided input to a vertex in S is added to S and every iteration 

adds any vertex which writes to an edge in S, we are a..ssured that after the la..st iteration of 

the loop, all of the vertices and edges which affect the values written to e. will be in the slice. 

o 
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The time complexity of create..slice is determined hy the two inner loops. The 

for loop iterates over the vertices of the graph ar.e time. This makes the worst-case ti~e 

complexity of this loop, O(n), where n is the number of vertices in the graph . The while 

loop iterates over a set of Vf~rtices, however through all of the iterations of the loop at most 

each edge is visited once, making the worst-ca..~e time complexity of this loop O( e), where 

e is the Dumber of edges in the base version of the graph. Therefore, the worst-ca..~e time 

complexity of crelltc-~lice is O(n + e). 

Once the slices are constnlcted, they are merged llsing the function graph_merge, 

shown in Figure 5.11. This is a vcry simple grapb merging algorithm which uses successive 

calls to graplLunioll, shown in Figure 5.12 to combine the preserved part of the base with 

the affected parts of both modifications into a change-merged prototype dependency graph. 

Algorithm graph_merge(GI, G2, G3 : prototype.Aependency_graph) 
return prototype..Jiependency_graph 
G : prototype_dependenCY-9raph := empty.:psdLgraphj 
begin 

G:= graph_tmion(Gl,G2); 
G:= graph_union(G,G3)j 
return G; 

end graphJnerge; 

Figure 5.1 1: Algorithm graph~mcrge 

The graph_union algorithm is used to combine two graphs into one. It 1I(;cepts two 

prototype dependency graphs as input and adds the edges and vertices of onc to the other. 

The algorithm graph_union makes use of two successive union operations, and 

union operations are vcry well defined. Therefore, the correctness of graph_union is easily 

established. 

The complexity of graph_union is determined solely by the complerities of the 

set union operations, which are linear in the worst case. Therefore, the .... ,orst case time 
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Algorithm graph_tmion(Gl, G2; prototype_depcndency_graph) 
return prototypc.nependencv_yraph 
G: prototype_dependency_graph := empty..psdLgraph; 
begin 

G.vertices:= vcrtices(Gl) U vcdices(G2)j 
G.edges := edgcs(Gl) U edges(G2) j 
return G; 

end graph_union; 

Figure 5.12: Algorithm graph_union 

complexity of graph_union is tbe sum of the complexities of the two union operations , or 

0(1'. + nl, where e is the number of edges in the largest of GI and G2, and n is the number 

of vertices in the largest of Gl and 02. 

The correctness and complexity of graph_merge depend solely on the correctness 

and complexity of graph-union, which have previously been established. Thus, graphJnergc 

is a correct algorithm with worst-case time complexity of 0(1'. + nl, where e and n are the 

number of edges and vertices in the largest input graph. 

Once the graphs have been change-merged, the remainder of the implementation 

parts must be change-merged. The stream declarations and the timer declarations are 

change-merged using the functions m~rg~tr~ams and ml':rge..timl':rs, shown in Figures 

5.13 and 5.14, respectively. Then the control constraints are change-merged using functions 

appropriate to their map type. These algorithms are shown in Figures 5.15 through 5.26. 

2. Change-Merging the Stream and Timer Declarations 

The stream and timer declaration parts are modeled as sets, so change-merging 

them is done using common set operations. In ml':rgl':..strl':ams, the two for loops construct 

the three pieces of the change-merging equation for sets, (A -Base), (AnB), and (B-Bas~). 

The correctness and complexity of ml':rg~treams are ident ical to those of ml':rge..stat I':S. In 

merge..timers, the three pieces of the change-merging equation are constructed separately 
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and com billed to provide the result. T he correctness and complexity of this a lgorithm is 

identical to that of meryt:_i<Lsets. 

Algorithm merge...streams{ BASE, A, B . lype_declaration.) rdurn iype...dedara[ion 
MERGE: type_declaration; 
begin 

MERGE:= empty_type_declaration; 
for every stream s in A loop 

if s is not in BASE and s is Dot in B then 
add s to MERGE; 

end if; 
if s is in B then 

add to MERGE; 
end if; 

end loop; 
for every stream s in Bloop 

if.s is not in BASE and s is not in A then 
add to MERGE; 

end if; 
end IOOPi 
return MERGE; 

end merge...stnams; 

Figure 5.13: Algorithm m ergeJtreams 

Algorithm mergeJimcrs(BASE, A, B id....set) return id_sd 
begin 

Calculate A - BASE. 
Calculate B - BASE. 
Calculate An 8. 
Hetmn (A - BASE)U(AnB)U(B- BASE). 

end mergeJimers; 

Figure 5.14: Algorithm merge_timers 

3. Change-Merging the Control Constraints 

Change-Merging the Control Constraints i~ accompli5h~J by a series of algorithms 

that implement the moJels defined in Chapter III, Section D. Their correctness is established 
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by their conformance to the mathematical models. Each one of these algorithms has wor5t

CMe time complexity of O(n), except mCT"gcJriyger _maps and mergfdimcr ....opJnaps, wh~re 

7l is the number of vertices in the largest input prototype. merge_trigger J71aps has wor5t-

case time complexity of 0(ns2), where fl is the number of vertices in the largest input 

prototype and s is the largest number of streams read by an operator in the prototype. 

meT9E..timer ....ops has worst-case time complexity of O(nt2), where r. is the number of vertices 

in the largest input prototype and t is the largest number of timer operations in the prototype. 

Since these algorithms all execute independently, the worst-case time complexity for the 

entire control constraints section is O(ns2 + nt2 ). 

Algorithm m erge.trigger _maps(V ER:I'S : id...aet; BASE, A, B trigger _map) 
return trigger JTlap 
MERGE: trigger_map; 
opid : psd/...jdj 
base_trig, a_trig, b_trig, merg e-trig trigger: 
begin 

for every opid in VERTS loop 
retrieve base.trig from BASEj 
retrieve a.trig from A; 
retrieve b.trig from B; 
merge..trig := merge..triggers(base.trig,a.trig, b..trig); 
bind merge_trig to op_id in MERGE; 

end loop; 
return MERGE; 

end m erge..trigger JTlapSj 

Figure 5.15: Algorithm merge.trigger _maps 

There is also an informal description of the implementation part that must be 

change-merged. The implementation descriptions are change-merged using the merge..iext 

function shown in Figure 5.6. 
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Algorithm merge-1riggers(BASE, A , B: trigger) return trigger 
MERGE; trigger; 
.streams: id.et; 
begin 

if BASE = A then 
jf BASE = B then 

MERGE.tt:= BASE.tt 
M ERGE.streams := merge-id_sets(BASE.streams, A.streams, B.streams); 

return MERGE; 
else return B; 

end if; 
else if BASE = B then 

return A; 
else if A = B then 

return A; 
return conflict; 

end if; 
end if; 

end if; 
end merge_triggers; 

Figure 5.16: Algorithm merge_triggers 

Algorithm merge..exe:c..guard_map.~{V ERTS id....sel; BASE, A, B: exec_9uard_map ) 
return exec_9uard.rnap 
MERGE: exee-guard_map; 
opjd: psdl....id; 
base_fg, a_eg, b_eg, merge....eg: expression: 
begin 

for every op_id in V EJU'S loop 
retrieve ba.se_eg from BASE; 
retrieve a..eg from A; 
retrieve bJ:-g from B; 
merge_c g := mergt!_expresJions(base_eg, (Leg, b_eg); 
bina merge_eg to opjd in MERGE; 

enaloopj 
return MERGE; 

end merge_ex ec..guard_maps; 

Figure 5.17: Algorithm mergt!-exec..guard_maps 
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Algorithm merge....expressions(BASE, A, B : expression) return expression; 
begin 

if eql.lal(BASE, A) then 
if equal(BASE, B) then return BASE else return Bi end if; 
else if equal(BASE,B) then return A; 

else if equal(A, B) then return A; 
return conflict; 

end if; 
end if; 

end if; 
end merge..expres3ionsj 

Figure 5.18: Algorithm m erge-expressions 

Algorithm merge_outpuLguard_map8(VERTS: id....setjBASE,A,B: ouLguard_map) re
turn ouLguardJnap 

MERGE: ouLguardJ1lupj 
opid : psdLid; 
base_og, a_09, b_og, m erge..og expression: 
begin 

for every op.id in VERTS loop 
retrieve base-og from BASE; 
retrieve aJJg from Aj 
retrieve bJJ9 from Bj 
merge_og := merge_expression.s(ba$e_og, a_og, b_og)j 
bind merge..og to apid in MERGE; 

end loop; 
return ME RG Ej 

end merge_outpuLguard_mapsi 

Figure 5.19: Algorithm merge_QutpuCguard_maps 

102 



Algorithm merge_exr:ep_tri9ger~maps(VERTS id.1>ct; BASE, A, B: exccpJrigger_map) 
return ~xcep~triggcT JnCp 

MERGE: exct'-p.Jri9ger _map; 
opid : psdLid; 
base~d, a_d, b..et, mer,qc...et : expression: 
begin 

for every op_id in VERTS loop 
retrieve basl'!_et from BASE; 
retrieve a_et from A; 
retrieve fut from B; 
merge_et := m erge..expressiofls(base..ei, (Let, b...et); 
bind m ergc_ei to apid in MERGE; 

end loop; 
return MERGE; 

end merge_excep_trigger JTlOpSj 

Algorithm merg c timer..opJnops(VER:rS : id--5etjBASE,A,B ; timer..op_map) return 
timer ..op..rnap 

At ERGE : excep..irigger ..map: 
opid; psdLidj 
base...set, a..llet, ~set, mergr...se/ ; expression: 
begin 

for every apid in VERTS loop 
retrieve base-set from BASE; 
retrieve o.-Set from A; 
retrieve b...s et from B; 
merge....set := merge_timer_op...set(base~et, a_set, b_set )j 

bind merge....5et to op...id in MERGE; 
end loopj 
return MERGE; 

end merge_timer -OpJnapsj 

Figure 5.21: Algorithm merge_timer..opJnaps 
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Algorithm merge..timer_op_sets(BASE, A, B timer _op..set) return timer _op...5e/ 
MERGE: tim!':T_op....s et; 
tJJP: timer-Op; 
begin 

for every t...£)p in BASE loop 
if member(Lop, A) then 

if m ember( Lop, B) then 
add(t...Dp, MERGE); 

end if; 
end if; 

for every tJJp in A loop 
ifnotmember(Lop,MERGE) then 

if m ember(t..op, B) then 
add(t...op,MERGE); 

end if; 
end if; 

[or every tJJp in Bloop 
if notmember( Lop, M ERG E) then 

if member(t...op, A) then 
add( Lnp, M ERG E)j 

end if; 
end if; 

end loop; 
return MERGE; 

end merge_timer ..op .. :Hds; 

Figure 5.22: Algorithm mergl':_timer ..op..sets 
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Algorithm mCT"gc_pcriod(V ERTS : jd_~et; BASE,A,B. timing_map) retllrn timing_map 
MERGE: timing_map; 
opjd : pildLidj 
ba8l'._val, a_val, kval, merge..vaI; millist c:= 0; 
begin 

for every op_id in VERTS loop 
retrieve base_val from BASE; 
retrieve a_val from A; 
retrieve b_val from Hi 
merge_val;= merge_limiTlg.-daia(base..val, a..val, 6..ual); 
bind merge_val to op_id in MERGE; 

end loop; 
return MERGE; 

end merge_period; 

Figure 5.23: Algorithm merge..period 

Algorithm merge_fw...DT Jrlrt(V ERTS id...setj BASE, A, B : timingJnap) 
return timing..map 
MERGE: timing..map; 
opjd : psdlJd; 
base_val, ILual, b...val, merge-val: millisec:= 0: 
begin 

for every op..id in VERTS loop 
retrieve base_val from BASE; 
retrieve a_val from A; 
retrieve b_val from Bj 
merge_val := merg/!Jnet(basc_val, a...val, It-val)j 
bind mt:rgt:_val to op_id in AI ERGE; 

end loop; 
return ME RG Ej 

end m ergt:_!w...DrJnrtj 

Figure 5.24: Algorithm mt:rgt'-!w..nr..=rt 
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Algorit.hm m erge_min_cn.ILper(V ERTS : id ... .H:t; B.15 E, A, B : timingfltup) 
return timingJnap 
MERGE: timing_map; 
Qp..id : psdLid; 
base_val, a_val, !Lval, merge...val: millisec ;-=: 0: 
begin 

for every op_id in VERTS loop 
retrieve base_val from BASE; 
retrieve a_val from Aj 
retrieve b_val from B; 
merge_val :;: mergeJncp(base_val, <Lval, b..val); 
bind merge_val to op_id in M ERGEj 

end loop; 
return MERGE; 

end mergf_min_caILper; 

Figure 5.25: Algorithm m erge_miTLcall..per 

4. Analysis of Implementation Change-Merge 

Change-merging the implementation of the top level component requires four main 

operations; change-merging the graphs, change-merging the stream decla.rations, change

merging the timer declarations, and change-merging t he control constraints. 

Change-merging the graphs requires that each graph be converted to a poe using 

build..PDG which requires O(tn') time, where n is the number of vertices in the graph and 

t is the number of timers declared in the implementation. 

After the prototype dependency graphs are constructed, the a.fIected parts of each 

modification are constructed using affected..parl wbich has worst-case time complexity 

O(e'), where e is tbe number of edges. Then the preserved part is constructed, and it 

has worst-case time complexity O(e2). 
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Algorithm merge..mcp(BASE,A, B: milli.sfc) return millisec 
A..IJIFF JJASE,B...Dl FFJiASE, AJNT JJ: millisecj 
begin 

if A?: B then 
AJNT J3:= Bj 
else AJNT...B:= Ai 

end if; 
if BASE?: A then 

A...DIFFJ3ASE:= Tj 
else A...DIFFJJA$E:= A; 

end if; 
if BASE?: B then 

BJ)IFFJ3ASE:= Tj 
else BJ)IFFJ3A$E:= Bi 

end ifi 
if AJ)JFF...BASE?: AJNT...B then 

if AJ)IFF-BA$E?: B...DIFF...BASE then 
return A..IJIFF-BASE; 
else return B...DIFF ...BASE; 

eod if; 
else if AJNT...B?: BJ)IFF..BASE then 

return AJ NT .13; 
else return BJJIFF...BASE; 

end if; 
end if; 

end m ergf mcp; 

Figure 5.26: Algorithm merge.mcp. 

107 



After all three of the pieces required for cbange-merging the graphs have been built, 

then they must be cbange-merged using graphJnergc, which contains two successive c~lls 

to graph _union, wbic:h we already know requires worst-case O(n + e) time. Therefore, the 

worst-case time c:omplexity of change-merging three graphs is: 

The edges in the graph almost always outnumuer the Vertices, so we call this 0(e2). 

The correctness of the Implementation Change-Merge is established by the COT

rectness of the individual parh. The complexity of the Implementation Change-Merge is 

dominated by the complexity of the change-merging of the graphs, so the worst-case time 

complexity of the Implementation Change-Merge is O(e') . 

D. CREATING THE CHANGE-MERGED PROGRAM 

The last algorithm used in this change-merging tool is build-PTototype, shown in Figure 

5.27. This algorithm takes the change-merged graph and removes the artificial timer edges 

and external vertex. It then sets the change-merged graph in the change-merged prototype. 

Algorithm build...prototype(P: in out psdLcomponentj G: prototypeJiependency_graph) 
A : psdLgraphj 
begin 

assign G to A; 
remove external vertex; 
remove timer dependency edges; 
seLgraph(A, P)j 

end build.prototype; 

Figure 5.27: Algorithm build_prototype 

The timer dependency edges are removed by iterating through the edges of the graph 

and removing the appropriate edges. This requires iteration over the edges of the change

merged graph, making the worst-caae time complexity of this algorithm O( e). 
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E. ANALYSIS OF THE CHANGE-MERGING ALGORITHM 

The correctness of the algorithm changeJncrge is established by the correctness of 

the individual parts. Since these individual algorithms are executed independently of one 

another, there are no dependencies between them, other than those already discussed. The 

complexity of this algorithm is calculated by adding the complexitie; of the individual parts. 

It is easy to see that the complexity is dominated by change-merging the graphs in the 

implementation part, which requires 0(e1 ) time, where e is the Dumher of edges in the 

largest graph. T herefore, the worst-case time complexity of the entire algorithm is 0(e1 ) . 
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VI. CAPS MERGE TOOL 

10 this chapter we describe an implementation for a change-merging tool resulting from 

this effort. The tool has been almost fully implemented and can easily be integrat ed iuto the 

CAPS Prototyping Environment. It is invoked through the Manager's Interface and provides 

a substantially beneficial tool for effective management of large software prototypes. Section 

A of this chapter describes the reqillrements for the tool. Section B provides the instructions 

for using the tool. Section C describes the testing performed on the tool. 

A. REQUIREMENTS 

The requirements for this tool are divided into three parts; interface, functionality and 

conflict reporting. Ea.ch of these parts are discussed separately in the subsections that follow: 

1. Interface Requirements 

a.' Interface must be CtJnsistent with other CAPS interfaces: CAPs uses a menu

driven interface at the top level and windows with selection lists and pushbuttons at lower 

levels. To be consistent, a pushbutton type interlace was required for the change· merge tool 

as welL 

b. User must be able to choose any prototype currently in the working directory; 

The interface should provide a list of the prototypes currently in the user's working directory, 

and the ca.pability for the user to select one of these prototypes. 

c. User must be able to select different versions and assign them to the different 

merge parameters by pushbutton: After the prototype has been selected, the interface should 
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provide a list of the current versions of the prototype. The Ilser shollid then be a ble to select 

each version by clicking with the mouse, and assign the selected version to one of the mc~gc 

pnrameters, base, vcrsioTLG or version_b, by pushing an assign buttoD. 

d. U.~er .~hould be sati.sfi~d that the sdedion made has been as.~ign ed to the correct 

parameter. The interface should provide visual reinforcement that the selection made has 

been assigned to the COITect parameter by showing the selected version in a window labeled 

with the parameter name. 

e. User should be able to initiate the merge tool by pu.~hing a button: The interface 

should provide a button labeled "merge" which, when pushed, will call the merge tool for 

the parameters given. 

f. User should be notified when merge is complet~: The interface should provide 

a pop-up window that alerts the user that the merge is complete. The result of the merge 

should be printed in a window labeled "result~. 

g. User should be notified if a ronjlict occurs: The interface should provide a pop-up 

window that alerts the user that a conflict has occurred during the merge. 

h. User should be able to commit the result to the design database directly from the 

merge interface: A pushbutton should be provided that a\lows the manager using the tool 

to commit the result of the merge to the database, even if conflicts have occllrred. 

2. Functionality Requirements 

a. Tool must be able to retrieve the three versions of the prototype when provided 

only the path.s to thdr forotions: The interface will provide the full directory names for each 

of the input versions as input to the tool. The tool mllst be able to combine all of the PSDL 

source files in each of the version directories into one single file and call the PSDL parser to 

convert the text version of the prototype into an ADT representation of the prototype. 
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b. Tool must (Gil the PSDL e;t;pander to provide fully expanded PSDL programs 

as input to the change. mnye procedure: The P$DL expander i~ a tool which takes a m~lti. 

leveled prototype aDd converts it into a flat prototype with only onc composite component. 

c. Tool must change-m erge the thne versions of the prototype according to the 

models provided by this dissertation: The change-merge tool must be able to retrieve the 

composite component of each version, and perform the change-merge operation using these 

t hree components as input. It then must provide a ncw composite component for the merged 

prototype. The atomic components will then be added to the merged prototype according 

to which version supplied those components to the merged implementation graph. 

d. Tool must split the final version of the prototype into separate files for each of 

the component implem entations and specificatioTl$: The tool must be able to take the merged 

prototype and output it into separate files in the result directory. Each file should contain 

either the specification part or implementation part of one component. If the component 

is the composite component, then the name of the file will be "prototype..name.imp.psdl~ 

or "prototype_name.spec.psdl", depending on whether it contains the implementation or 

specification part of the component, and where "prototype_name" is the name of the com

posite component. If the component is an atomic component, then the name of the file 

will he "prototype..name.componenLnamel.imp.psdl" if it contains an implementation or 

"prototype..name.componenLname.spec.psdl" if it contains a specification, where "compo-

nenLname" is the name of the atomic component. 

3. Conflict Reporting Requirements 

a. Tool must report to the user where in the merged component a conflict has 

occurred: In each piece of the change-merged program where a conflict has occurred, the 

tool must pla.ce a fl ag indicating to the designer where the conflict occurred. This will 

prevent the user from having to search for the conflict in order to resolve it. 
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b. Tool must provide at leasl a partially chaTlge-merged "rogram ill !fn ca$( of 

ali confhcts, The tool will provide tht> most cnangf' merged program possible wherJeve'l· iI 

conflict has occurred. Conflicts in one part of the p:ograTIl should not afft>cl other pc.rt., of 

the program which are not dependellt on t he part with the conflict 

B. USING CAPS MERGE TOOL 

To invoke the CAPS merge tool, select the merge prototypes option from the man<tger's 

interface. The CAPS merge tool window will be displayed as ~hown in Figure 6.1. The list 

of currently avai lable prototypes will he displayed in the prototype5 box at the lower left of 

the window. 

Figure 6.1: CAPS Prototype Merge Tool Interface 
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1. Selecting Prototypes and Versions 

To select a prototYl-'e, dick the left mouse button over the llalJW of thE" prototype 

to be sel t cted. Clicking twice on the same prototype will deselect the prototype. After 

select ing a prototype name, a li st containing all of the versions of the selected prototype will 

appear ill the versions box at the lower right of the merge tool window , as shown in Figure 

6.2. To select a versioll , cl ick the left mouse button on top of one of t he versions. Again. 

douhle clicking on the same version will deselect t he version. 

Figure 6.2: CAPS Prototype Merge Tool Interface with List of Versions 

2. Perfor ming the Merge Operat ion 

To perform a merge, three versions must be selected and assigned to the merge 

parameter hoxes. To assign parameters, first select the version, tb en click the left mouse 

button on the ~assign" button uext to the parameter to be assigned . F igure 6.3 shows t he 

window after all three parameters have been assigned. Changiug a paramP.ter assignment is 
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done by selecting the correct version and clicking on the "assign" button again_ E\"er~' push 

of the "assign" button reassigns the parameter to the selected version. To clear all of lht' 

parameter assignments, use the clear button located aD the right center of tht> window 

Figure 6.3: Assignment of Parameters 

When all of the parameters have been assigned, the ~merge" hutton located on the 

right s ide of the wiDdow must he pushed. Tbis will invoke the cha!lge~merge tool. When the 

change-merge tool has completed its execution, ODe or two windows will appear on the screen. 

The ~merge complete" window, shown in Figure 6.4, will always appear after execution of the 

tool. If a conflict was detected during the change-merge, the "conflict notification~ win dow, 

as shown iD Figure 6.5, will also appear. The manager caD either choose to keep the result 

and manually resolve the conflicts or abandon the result and start again. 

Figure 6.4: Merge Complete 
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Figure 6.,,): Notification of Conflict 

3. Commit Merge 

Once the merge has been completed, the manager has to specifically c.oll1rnit the 

result to the design database. To commit the merged result, the manager clicks the left 

mouse button on the "commit merge~ button Oil the right side of the CAPS Merge Tool 

window . A liew version number will be assigned to result and it will be added to design 

database as a permanent part of the prototypes configuration. 

At this point, the manager can dlOOSC to perform another merge operatiolJ or exit 

the tool. If another merge is desired repeat the process described above as many times as 

desired. To exit the CAPS Merge Tool, click the left mouse button on the ~exit" hutton at 

the bottom of the window, and control will he returned to the CAPS Manager Interface. 

C. TESTING 

\Ve tested the change-merging tool by applying it to a series of sample prototype projects 

each testing a different part of the tool. These projects included real prototypes which 

were developed by students in the CAPS Research Team as well as examples constructed 

specifically for this test. The largest of these prototypes is the Command and Control System 

described in [Ref. 38]. The implementatioll for this prototype contains 27 vertices and 35 

edges with a full range of control COllstraints. Four modified versiolls of this prototype were 
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prototype were created, and the chang ..... merge tool was applied to different combinations of 

the four, each testing a different part of the tool. 

Timing tests were conduded to provide a realistic. assessment of the speed with which 

the tool would operate. During the kst it was determined that the time required to process 

each of the input files (combining the multiple files into one, parsing the input files, and 

expanding the prototype to a flat graph) took a significant amount of the time for the 

system to run. In the case of the Command and Control prototype, the system took on 

average six sec:onds to process each file and 25 seconds to change-merge them. In the cas" 

of the smaller prototypes, the times were significantly less. 

Since the current implementation is not as efficient as an optimal one outlined by tbe 

algorithms in Chapter V, we can expcct a significant speedup for thc optimal implementation. 

In each test of the change-merge tool, the results were exactly as expected. The tool produced 

conflicts whenever expected and correct results when they were possible. 
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VII. CONCLUSION 

A. WHAT WE HAVE ACCOMPLISHED AND WHY IT IS IM
PORTANT 

The purpose of this research was to provide a computer-aided method for combining 

a.nd integrating the contributions of different people working on the same prototype. 1t is 

commonly known that one of the most time consuming and problematic parts of developing 

large software systems is combining independently developed pieces of the system and en

suring they do not conBict. We developed a computer-aided method for merging changes to 

a prototype which will always produce a correct result or report a potential conflict. Using 

this method provides a prototype development manager with the ability to assign different 

development tasks for the same prototype to different members of the development team 

and be assured that the pieces can be integrated together after their completion in a safe 

manner. This method will either produce a change-merged prototype that is correct with 

respect to the different updates or it will notify the manager that a conflict has occurred . 

We found a solution to an analog of this problem in previous work done on integrating 

different versions of while programs at the University of Wisconsin [Ref. 28, 42, 29J. The 

main difference between their method and ours is that while programs are very different 

from data flow programs. Data flow programs are inherently parallel and non-deterministic, 

and the class of enhanced data flow programs used in PSDL also include hard real-time 

constraints. 

We proved our method correct by observing that slices of prototypes which isolate a 

portion of the prototype's behavior will always behave the same in any prototype where 

they are well defined slices. Using the Slicing Theorem in Chapter IV, we were able to show 
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that as long a.~ the slice of the merged version of the prototype with respect to the affected 

parts of each modification WaI; the same !1.1; the same slice of the II1oJifir.ation, the changes 

introduced by that modification were preserved by the method. 

To prove this theorem, we had to develop a computational model urtbe PSDL language. 

Chapter IV provides a detailed development of the model of the language from defining 

the behavior on a single stream in the prototype to constructing the behavior of the entire 

prototype from the behaviors of the individual operators in the prototype. This construction 

is possible because we showed in the Independent Operator Lemma in Appendix B that the 

possibility function for an operator is not determined by the context in which it is placed. 

As long as the operator is given the same input, it will behave in precisely the same way in 

any prototype. 

From the model, we developed an algorithm which can perform the change. merge in 

O(e1) t ime and O(n~) space, and an implementation which provides a working change

merge tool to be used in the Computer-Aided Prototyping System. The algorithm and tool 

demonstrates the feasibility of our method for problems of practical size. 

During the course of this research, we also proposed an improved method for slicing 

and merging while programs which provides a strictly more accurate method than previously 

defined methods. No proof of this method is provided however. That will be left to future 

work. 

B. WHAT STILL NEEDS TO BE DONE 

We couldn't possibly solve all of the world's problems in the short amount of time pro

vided, so there are still many out there to be tackled. Some of the problems that we intend 

to continue working on are providing a method for change-merging different versions of an 

abstract data type written in PSDL. Our method will currently handle the operator imple· 

mentations for ADTs, but fails to provide a method for integrating the data representations. 
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Another area which needs consideration is the area of merging programs in high level 

programming languages, like Ada. In prototyping large systems, it is very important to al;to-

mate as many of t he development tasks as possible to minimize the drain on resources caused 

by monotonically decreasing budgets. One of the first tasks to be finished is completing the 

formalization of the condi t ional program merging we proposed in Chapter III. 

Another area that warrants further study is in further improving t he conflict detect ion 

methods used in change-merging. Automatic conflict resolution tools would provide project 

managers with an even greater degree of confidence in the change-merging tools. 
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APPENDIX A 

FORMAL DEFINITIONS 

This appendix contains forma.l definitions of the types, properties, and functions used 

in our behavioral model of PSDL. 

1. TYPE DEFINITIONS 

a. datB_tuple{t: type} = 

tuple{ value : t, operator: op....id, writeJime : reaJ, read...time : real) 

h. trace{t: type} = sequence{data..tuple{t}} 

c. stream_behavior{t: type} = set{trace{t}} 

d. trace_tuple{P: prototype) = tuple{trace{type{s}:: S E E(P)}} 

e. prototype_behavior{?: prototype} = set{trBce_tuple{P}} 

f. incrementaLtrace_tuple{ t : write...time} = 
tuple{datB_tupJe{type{s} SUCH THAT s E E(P)} 

:: data_tuple.write...time = t} 

2. INVARIANT DEFINITIONS 

We assume that the implementation of an operating system where a PS DL prototype 

is being executed will guarantee mut ual exclusion when two operators executing in parallel 

wish to write t o the same stream at the same time. Because we assume this control on write 

access for data streams, we can guarantee the following invariant is true for all data streams 

in a PSDL implementation. 
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il.. monotonictime( t : trace) 
ALL (i, j: nat SUCH THAT 1:$ i <j:$ length(t ) 

:: t[i].writ e_time < tfj].wrile..time 
-- The write times in a. trace arc monotonically increasing. 

Since an operator writing to a data stream had to read from its input streams before 

it completes execution, we can guarantee that any data tuple in a trace will satisfy the 

following invariant: 

h. frringjnvariant(t: trace) 
ALL (i: nat SUCH THAT 1 :$ i:5 length(t) 

:: (t[i].readJime < t[iJ.writr-time) ,(t[i].read_lime = t[i].write..time = 0)) 
-- The write time in any data tuple is strictly greater than the read time 
-- in that data tuple, unless it is the irutial data tuple. 

If an operator receives input from a feedback loop, then the vertex associated with that 
operator is on a cycle in the PSDL implementation graph. It is necessary to know that 
an operator is on a cycle because this information affects the possibility function of that 
operator. 

c. on..a_C)·cle(o: op.Jd) 
_. 0 provides output to a feedback loop which in turn provides input to o. 

3. FUNCTION DEFINITIONS AND PROPERTIES 

Merging Traces 

In PSDL, it is possible for more than one operator to write into the same stream. 

If this is the case, each of these operators independently writes a sequence of data tuples 

to that stream. These sequences merge to form a single trace for the stream. The function 

merge specified below shows that this combination of sequences is well-defined. Propositions 

4 through 8 state properties about the function merge which are needed for our discussion 

of possibility functions in chapter IV. 
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m~rg~(tl, t2: trace SUCH THAT ALL (i,j: nat:: tl[i].write..time i- t211 !.write..time) 
REPLY (t3: trace) 

WHERE monotonic_tlme(t3) & firingjnvari1l.nt(t3) & 
length(t3) = lcngth(tl) + length(t2) - 1 & tl [O] == t2[0] = t3[01 
.. Every trace contains an initial data.tuple with index zero. 

ALL (i: nat SUCH THAT 1 S; i S; Jength(t3) 
:: SOME(j: nat:: (t3[i] == tlli] & I S; j:; lengtb(tl)) 

I (t31i] == t2li] & 1 :; j:; Jength(t2)))), 

ALL (i: nat SUCH THAT 1:-; i S; Jength(tI) 
:: SOME(j: nat:: t3[j] = tIli] & 1 :::; j S; length(t3))), 

ALL (i: nat SUCH THAT 1 :::; i S; length(t2) 
:: SOME(j: nat:: t3li] = t2[i] & I S; j:; length(t3») 

Proposition 4 merge is well-defined 

merge is a total, singl~'1!alutd function O1!er the specified domain. 

Let 11 and t2 be traces on a stream SUCH THAT 

Vi,j E N,t1[i].writc_time I- t2[j].writdimc. 

Suppose 13 = merge(tI, t2) and t4 = merge(tl,t2) SUCH THAT t3 I- t4. 

Since t3 and t4 are both valid results of merge(tI, t2), we conclude that they both 

satisfy monotonic.time and length(t3) = Icngth(t4) = length(tl) + lenglh(t2) - 1. 

Since t3 I- t4, 3i E N I i < length(t3) SUCII THAT 

taliJ.ualue I- t4[i].1!alue or t3Ii].operator I- t4[i].operutor or 

t3[i].write.Jimc t- t4Ii].write.time or t3[iJ.reatLtim~ t- t4[i].read..time or 

But, by the definition of merge, every element in both t3 and t4 are elements 

of either tl or t2, which have no common write...times, and since both t3 and t4 satisfy 
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morwtonictime, there is only one way to combine the elements of il and t2 into a single 

t race that satisfies monQtonic.Jime. Thus t3 :=: t4, and we have a contradiction. merg; is 

well-defllled. 0 

Proposition 5 merge satisfies monotonic_time 

Ifmonotonic.1ime(tl) and monotonic..time(t2) then monotonic_time(merge(tl, 12)). 

We assume that tl and t2 have no common write times, and that monotonic...time 

is satisfied for both tl aDd t2. Let t3 = mergc(tl,t2). We show t3 satisfies monotonic_time 

by induction. 

Basis: length(t3) = 1 

Since every trace has a data..tupie with index zero, then t3 is the trace with only 

an initiaLdata..tupie, and monotonic_time is satisfied. 

Induction Step: Assume that t3 I k satisfies monotonic_time. Since tl and 12 

satisfy monotonic_time, and they do not contain data_tuples with the same write times, we 

know that no matter which of tl and t2 the k + 1st element of t3 comes from, its write 

t ime will be greater than tWI:. So, we can conclude that the k + 1 element of t3, when 

added will have write.Jime greater than t3[k]. Since t3 I k satisfies monotonic_time, and 

t3[k + l].write.time > t3[k].write-time, we conclude that monotonic_timc(t3) is satisfied. 
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Proposition 6 rrurge satisfies jirirlgJnvarianl 

If firing_invariant i$ satisfied jor both tl and t2 then jiringJnvnriant is satisfied 
for mergc(il, t2). 

Vie assume that tl and 12 have DO common write times, and that fi ring_invarian t 

is satisfied for both tl and t2. Let 13 "" mCTgc(tl,12). We show /irill9_invariant(t3) by 

induction. 

Basis: /ength(t3) = 1 

Since every trace has a data.-tuplc with index zero, then t3 is the trace with 

only an initial data tuple, and two = tro = 0 by the definition of initial data tuples. So 

firing_invariant(t3) is satisfied. 

Induction Step: Assume that 13 I k satisfies firing..invariant. Since tl and t2 

satisfy firing..invariant and each clement of t3 is also an element of t 1 or 12, we know that 

no matter which of II and t2 the k + 1st element of t3 comes from, tWk+l > trk+!. We can 

conclude therefore that firing.invariant(t3) is satisfied. 0 

Proposition 1 merge is commutative. 

merge{tl , t2) = m erge{t2, t1) 

We assume that t1 and t2 have no common write..tirncs. We further assume that 

since t1 and t2 are traces, they both satisfy the trace invariants monotonic_time and fir-

ing_invariant. 

We show that the merge function applied to t1 and t2 satisfies these conditions and 

the length of the result is exactly the same regardless of the order of the parameters. 
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Let t3 = merge(tl,t2). 

Then lcngth(t3 ) = length(merge(tl, t2)) = length(t l ) + length(t2) - 1. 

But, since + is commutative, then 

Iwgth(t!) + Iength(t2) - 1 = length(t2) + length(t l ) - I = length(merge(t2, tIl ) 

We know by Proposition 5 that monotonicJime is satisfied for both m erge(tl , t2) 

and mcrge(t2,tl). We know by Proposition 6 that firing_invariant is satisfied for both 

merge(tl,12) and mcrge(t2,tl). Therefore merge is commutative. 0 

Proposition 8 merge is associative. 

If tl, t2 and f3 each satisfy monotonic_time and firing..invariant, and they have 
no common times, then merge(!l, merge(t2, t3)) = merge(mcrge(tl, t2), t3). 

We assume that tI, t2 and t3 have no common write..times. We further assume 

that since tI, t2 and t3 are traces, they all satisfy the conditions monotonic..time and 

firingjnvuriant. 

Let t4 = merge(tl,merge{t2,t3)). 
Then length{(4) = length(merge(t1, merge(t2, t3))) = 

length(tl) + length(merge(t2,t3)) -1 = 
length(tl) + (length(t2) + length(t3) -1) -1 = 
length(tl) + length(t2) + length(t3) -1 -1 = 
(length(tl) + length(t2) - 1) + length(t3) - 1 = 
length{merge(tl, t2)) + length(t3) - 1 = 
length(merge( merge( tl, t2), (3)). 

So the lengths of m erge(t1,merge(t2,t3)) and m erge(merge(tl,t2),t3) are the 

same. We know by Proposition 5 that monotonic..time is satisfied for both merge(t2, t3) and 

mcrgc(tl, (2). Thus using the same logic, we can conclude that monotonic_time is satisfied 

for merge{tl,merge(t2,t3)) and for merge(merge(t1,t2),t3). We know by Proposition 6 

that jiring-.invariunt is satisfied for both merge(t2, t3) and m erge(t1, t2). Tbus using the 
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same logic, we can conclude that firingjrwariant is satisfied for mcrge(tl,merg e(t2,/3)) 

and for m~rge(merge(tl,l2),t3) . Therefore merge is associative. 0 

b. Other Functions 

This section contains definitions for other functions used to construct the possibility 

functions for prototypes. 

(1) '" 

The uffi" function extends trace_tuples by appending incrementaLtracc-tuples 

to them. It takes as input a trace_tuple T and an incrementaLtrace_tuple..set S. The output 

of the function is a set of trace_tuples where the prefix of each element in the set is T, and 

the remainder of each element is an element of S. 

"@"(T: trace_tuple, S: incrementaLtrace..tuple..set) 
REPLY (D: trace_tuple~et) 

ALL (tt: trace_tuple SUCH THAT tt E D 
': SOME(d: incrementaLtrace...tuple SUCH THAT dES 

:: tt = append(T, d))) 

(2) " 

Tbc 8 function is used to select incrementaLtrace...tupks wbich bave a partic-

ular write_time, 

8(t: time, S1: incrementaLtrace...tuple...set) 
REPLY S2: incrementaLtrace...tuple...set 

ALL (D: incrementaLtrace_tuple SUCH THAT DE 82 
': ALL(d: data_tuple SUCH THAT d E D 

'; d,write-.time = t )) 
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(3) P 

The p function providct; the earliest possible time that an operator can read. 

its input streams based on its output history. If the operator is on a cycle in the grapb, 

then it must complete every firing to include wri t ing its output streams before it can read 

its input streams. If it is not on a cycle, then it does not have to wait for a previous firing 

to be complete before it can read its input streams again. 

p(T: trace_tuple, 0: op....id) REPLY t: time 
SOME(s: stream-sct SUCH THAT s ~ 0(0) 

:: ALL(T: trace SUCH THAT rET. 
:: WHEN on...a_cycle(o) t ;:: r [lcngth(r ) - l].writuime 
:: OTHERWISE t ;:: 7[lcngth(T) - lj.rco.d.iime 

The fill function takes as input all incrementaLtracc_tuplc..set from the output 

streams of an operator and for each incrementaL trace... tuple in the set, it creates an empty 

data_tuple for all other streams in the prototype. 
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APPENDIX B 

EFFECTS OF CONTROL CONSTRAINTS ON 
POSSIBILITY FUNCTIONS 

This appendix defines the effect of each form of constraint contained in the PSDL 

grammar on the possibility function of an operator. The possibility function for an operator 

{) is a function of the form, :F~(Jo, rt), where 1" is the input history of the operator 0, and rt 

is the last possible time that 0 could have read its streams for the currenl firing. The output 

of the possibility function is a set of possible incrementaLtracc..tuples written to the output 

streams of {) by the current firing of o. Examples of possibility functions can be found in 

Chapter IV, Section A.3, Examples 5 and 6. 

The main result in this appendix is Lemma 1, the Independent Operator Lemma, 

which states that the possibility fUDction of an operator is not dependent Oll the context in 

which it is placed. 

Lemma 1 Independent Operator Lemma 

Given the same input history and an unlimited number of processors, an operator has 
the same possibility function regardless of whether it is contain ed in a larger prototype, as 
long as the larger prototype does not introduce input to the operator from a feedback loop. 

This proof is a structural induction over all of the different control constraints in the 

PSDL grammar. First, let us look at the possibility function for an operator 0, Fo> This 

possibility function produces a set of possible incrementa.! trace tuples for every finite prefix 

of input vectors written to the operator's input streams. 
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Eacb of the follow ing sections discusses how each of the control constraints available in 

PSDL affects the possibi lity function for o. 

1. Triggers & Input Guards 

The "Triggered" control constraint defines the conditions which trigger the execution 

of o. The two options, "by all" and "by some" identify any input streams listed after them 

as data flow streams or sampled streams respectively, and any time a value is written to one 

of those streams, it can only be removed from the stream by a firing of the operator 0 for 

data flow streams, and a producer operator for sampled streams. Another option which may 

appear in a triggering constraint is an input guard. These appear as boolean expressions 

that, if satisfied, allow the operator 0 to fire . 

"by all" 

The "by all stream..sef' trigger appearing in a control constraint limits the execution 

of the operator Q to fire only when there is a new value on each of the streams in stream.set. 

The effed of t his on :Fo is that it limits the reM times for which Q can produce a set of 

non-empty incrementaLtrace...tuples. Since the output of:Fo is determined only by the input 

history of 0, which we have assumed to be the same in any context, this only serves to limit 

the possible output histories. These output histories are the same regardless of whether 0 is 

contained in a larger prototype or functions independently. 

h. "by some" 

A similar argument can be made for the "by some stream.set" trigger. The input 

sequences processed by 0 are limited to only those sequences of vectors in which at least one 

of the streams listed in stnam.set contains a new value. The erred of this limitation is the 

same as in the previous sect ion. 
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Input Guards 

Input g\lard~ in the triggering condition of an operator, 0, define which input values 

can tTigg~r the execution of I). Their effect is to limit the rcad times at which the operator 

can frre. Since that effect only serves to limit the execution of 0, it is the same whether or 

not the operator is contained in a larger prototype or not. 

2. Period 

Operators with a period constraint are declared with a time t. After an initial delay of as 

much as t time, the operator is given a window of t amount of time in which to fire. As long 

as the operator fires early enough to complete its execution before the end of the period, a 

set of possible outputs will he written to its output streams, This set of outputs is produced 

non-deterministically because of the flexibility the operator has in starting its execution. 

This non-deterministic start time will change the time that the operator reads its input 

streams, thereby changing the possible outcome. Since, we are assuming that the number of 

processors is unlimited, we conclude that no matter whether the operator is contained in a 

larger prototype or not, all choices for read times are possible, thus the possibility function 

for the operator will be the same in either case. 

3. Finish Within, Minimum Calling Period & Maximum Response 
Time 

Operators with a finish within, minimum calling period or maximum respons e time 

constraint are declared with a time, t. The minimum calling period constraint serves to 

limit the possible read times of the operator, and the finish within and maximum response 

time constraints limit the possible write times of the operator, however these constraints 

are not dependent on the context in which the operator is placed as long as the number of 
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processors is not limited. Therefore, the possibility function for the operator is the same 

whether it is contained in a larger prototype or not. 

4. Constraint Options 

Constroint options include outpnt guard.s, exceptions and timer opemtiQ~~ Output 

guards can affect the possibility function of an operator, but these are part of the definition 

of the operator. Thus, the effect of these output guards on the possibility function for the 

operator is the same regardless of whether the operator is contained in a larger prototype. 

Exception triggers contained in the implementation of an operator can affect outputs on 

streams of type exception, and their triggering is affected only by the inputs provided to 

the operator, so the exception outputs resulting from possible inputs to the operator would 

be the same regardless of whether the operator is contained in a larger prototype. Timer 

operations affect the outputs on timer dependency edges only. These timer opera.tions affect 

the state of a timer if some predicate evaluated on the inputs to the operator is satisfied. 

Since the inputs to the operator are the same when the operator is contained in a larger 

prototype, the resultant timer state change operations will he the same if the operator is 

contained in a larger prototype. 

Since the control constraints and the output history of an operator can only depend on 

the input received from the data streams and timer dependency edges, and we know these 

to be the same, putting the operator in the context of a larger prototype can not affect its 

possihility function. 0 

It is important to note that Lemma I applies equally to operators which are components 

of larger operators, or operators which implement some operation in an abstract data type. 

From our perspective, there is no difference. 
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APPENDIX C 

PROOFS OF THEOREMS 

1. 1ft: Traces - FunctionRepresentations IS WELL-DEFINED 
AND A BIJECTION 

THEOREM 2: 

L Show 4> is single-valued and a total fUllction. Let r he a trace on a stream, and let 
WI and 1112 be two functional representations for r SUCH THAT WI f:. '11 2 , 

Since 1111 t- W2, 3 a time t E [0,00) SUCH THAT 1JI\(t) f:.1!I 2(t). 

But, then by the definition of 4>-1 3n.$ min(iength(41- I ( lJI d),iength(Ifl-'(W2))) 

SUCH THAT 

41- 1(lJId[nj.vaiue #- $-I(w2)[nj.valuc or 

4>-'(w1)[nj.operator::f. 4o-'(w2)[nj.operator or 

$-I(IJIJHn).wriktime #- oIl-I(1JI2)[nj .writdime or 

cJl-1(lJId[n].readJime ¥ 4l-1 (1JI 2){nj.rcadJime. 

Thus, cll-1(wd of. $-I(W2), but we know that $-I(wd = $-1(1Jr2) = T, and 

we have a contradiction. 

Therefore, 4> is well defined. 

2. Show 4> is onto. Let 

M_ [O,t.) 
[t"t,) 

he a mapping in w. 
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Then by definition of 4>, 

Therefore, <l> is onto. 

3. Show r f:. s ~ $(r) ¥- 4>(5) 

Let r and s he two traces on a stream, where r 1: s. 

Then 3n::; max(length(r),length(s)) SUCH THAT 

TlnJ.value =f. s[n].value or T[n].operator #- s[nJ.operator or 

r [n].write_time #- s[nJ.writdime or r[nJ.read_time ¥- s[n].read-.lime. 

If r[n ]. write..time:f- s[nJ.write..time 

then 3t::; min(r[n].writeJime,s[n].write..time) SUCH THAT 

If (r(n].read_time =f. s[n].reatLtime or Tln].value =F s[n].value) 

and r[n].write.Jime = s[n].writeJime 

then 3t = r(n].writeJime = $[n].write...time SUCH THAT 

Therefore, <l>(r) ¥- $(.5), and 4> is one-to-one. 

By 1, 2 &: 3, 4> is a Bijection. 0 

2. SLICING THEOREM FOR PSDL PROTOTYPES 

THEOREM 3: Slicing Theorem 

Let Sp(X) be the slice of a prototype P with respect to a set of streams X . Then 

Sp(X) and P have the same prototype behavior on any subset of the streams in Sp(X). 
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Let Sp(X) be an arbitrary slice of a prototype P. We show that at any point during 

the executiOll of Sp(X), both P and Sp(X) have the same truncated prototype behavior 

over the data streams in Sp(X). From this, we conclude that the prototype behavior over 

any subset of the data streams in Sp(X) is the same in both the slice and the prototype. 

Using 41, we view each of the trace tuples in Bs(sp(x )) I k as a sequence of vectors, each 

vector containing a data tuple from each data stream in E(Sp(X)) and do an induction over 

the length of the longest sequence. 

Induction Hypothesis: 

If the length of the longest sequence of vectors in Bs(sp(x )) is no more than k, then 

Bs(s,.{x)) is the same in both P and Sp(X). 

~: (Sequence of length one) 

The semantics of PSDL determine an initial data tuple for each stream. The read 

time and write time of this initial data tuple are both O. If the stream is declared as a 

state variable, then the initial data tuple contains a data value specified by the STATE 

declaration, and otherwise it contains the undefined data value .i. The operator field of the 

data tuple contains either the id of the operator containing the state variable declaration 

for the stream, if one is declared, or .i. Since the state variable declarations are the same in 

both P and SI'(X), the B over aU of the streams in SJ'(X) is the same in both, when the 

length of the longest sequence of vectors is one. 

Induction Step: (B E / Sp /X » is a sequence of length k + 1) 

Equation 1 shows us that BE(sp(x» I (k + 1) is completely determined by BE(sP{xl) I k. 
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Bs(s.-(x)) I (k + 1) = 

U [Tif! U (EEI( U (U6(t,/ill(EIP1,FoIT"o"t'1))) ))] 
TEBE(S,.(X»lk SEP(V(Sp(X))) ~ES p(T,o)<tr ,.<, 

II) 

Since BE(S,. (Xj) I k is the same in the slice and the entire prototype by the induction 

hypothesis, BE(sp(x)) I (k + I) must also be the same in the slice and the entire prototype. 

Consider the main suhexpression of the right hand side of Equation 1: 

Tif! U (EEl ( U (U 6 (t,JilI(EIP),FoiT,to"t,)))))) 
seP(V{Sp(X))) oES o(T,o)<" ,r<;, 

This construction defines a set of trace tuples of length k + I in terms of a trace tuple r 

of length k and a set of incremental trace tuples of length one that is derived from T and 

the properties of the slice. This set of trace tuples is a subset of BE(s,.(xj) I (k + 1). The 

EEl operation is a function, so, providing the trace tuple, T, and the set of incremental trace 

tuples are the same in both P and Sp(X ), the resultant subset of BE(sl' (x» I (k + 1) is the 

same in both P and Sp(X). 

The set of trace tuples, BE(sl' (x)) I k is the projected B of P over the streams in Sp(X), so 

any trace tuple, T E BE(Sp(X)) I k is certalnly the same in both P and Sp(X), as Sp(X) is 

a suhgraph of P. 

The set of possible incremental trace tuples, D, used in the above construction is constructed 

using tbe following equation: 

D ~ U (EEI( U (U6(t.Jill (Ei Pl,FoiT"o"t'1))))) 
SEP(V(Sp(X))) oES p(T,o)<t>" Ir<! 

D is constructed by looking at every possible subset of the operators in Sp(X), building the 

set of possible incremental trace tuples for the output streams of that subset and finding the 

union over all subsets. Since the powerset ofthe the set of operators in Sp(X ), P(V(Sp(X))), 
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is the same ill hoth P and Sp(X), then the union over all of the subsds is the Shffie in both 

P and Sp(X) provided that the incremental trace tuples produced for each suhset are the 

same in both. 

Pick an arbitrary St E P(V(Sp(X))). We want to construct the set of possible incremental 

trace tuples over the output streams of the operators in S', To do t his, we must look at 

each operator, and construct the set of possible incrementa.! trace tuples over theiT output 

streams. Then, we take ea.ch of those and combine them using the ffi function. Since an 

incremental trace tuple is simply a trace tuplc of length one, the function e can be overloaded 

to accomplish this task as well. The operator EB is a commutative function, so as long as the 

incremental trace tuples produced by each operator are the same in both P and Sp(X), their 

combination using EEl is the same in both P and Sp(X). Accordingly, we pick an arbitrary 

operator, v. Constructing the set of possible incremental trace tuples for Q is accomplished 

using the following: 

u (U" (t,f;II(E(P),:r.(T".)",)))) 
p(T,o)<fT Ir<t 

By Lemma 1, we know t hat the set of incremental trace tuples produced by Q is the same in 

both P and Sp(X) . Now since we already knew that T is the same in both P and Sp(X), 

and we know that ffi is a function, we conclude that the resultant set of trace tuples is the 

same in both P and Sp(X), for each T E BE(sp(x» I k. Further, we conclude that the union 

over all possible trace tuples in BE(sp(x» I k is the same in both P and Sp(X). Therefore, 

BE(sp(x» I (k + 1) is the same in both P and Sp(X). 

Since any finite prototype behavior over the set of streams in the slice is the same in both 

P and Sp(X), we conclude that any finite behavior over a subset of the streams in the slice 

is the same in both P and Sp(X). 

Now, we want to show that any countably infinite prototype behavior is the same in 

both P and Sp(X). Assume not . If any countably infinite prototype behavior is not 
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the same in both, then there must be a finite prefix which is not the same in both P and 

Sp(X). However, according to our induction above, all finite subsequences of BE(sp(x))'are 

the same in both, thus we have a contradiction. T herefore, any countably infinite prototype 

behavior over a subset of the streams in Sp(X) is the same in both P and Sp(X). 0 

The construction shown in Equation 1 defines the behavior of a prototype in PSDL. Since 

PSDL is non-deterministic and can be executed in parallel, it is necessary for us to consider 

all possible execution circumstances. What the construction really does is lengthen the 

prototypes behavior one incrementaLlrace...tuple at a time. This incrementaLtrace..tuple 

added to the eild of the behavior at some time t is the output of every operator in the 

prototype tha.t is writing to its output streams at precisely time t. This can be every 

operator in the prototype or only one operator in the prototype. 
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APPENDIX D 

PSDL Grammar 

The following is the grammar listing for the Prototyping System Description Language 

(PSDL) as of 14 November 1991. This version corresponds to the implementation of our 

merging tool. Optional items arc enclosed in [square brackets J. Items which may appear 7.ero 

or more times appear in { braces }. Terminal symbols appear in BOLDFACE. Groupings 

appear in ( parentheses ). 

psdJ 

= {component} 

component 
= data_type 
I operator 

data~type 

= type id type..spec typejmpi 

type...spec 

= specification [generic type..declJ [type..ded] 
{operator id operator..spec} 
[functionality] end 

operator 
= operator id operator..spec operatorjrnpl 

operator..spec 
= specification {interlace) [functionality] end 

interface 
= attribute [reqrnts-traceJ 
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a.ttribute 
= generic type_decl 
I input type_decI 
I output type-tlecl 
I states typ~ded initially initiaLexpressiolLlist 
I exceptions idJist 
I maximum execution time time 

type-decI 
= idJist: type....name {, id.J.ist : type..name} 

type..name 

= id 
I id [ type_decl 1 

idJist 
= id {, id} 

reqrntLtrace 
= required by idJist 

functionality 
= [keywords] [informaLdesc] [formaL-desc] 

keywords 

= keywords idJist 

informaLdesc 
= description { text} 

fonnaLdesc 
= axioms { text} 

type..imp\ 
= imp lementation ada id end 
I implementation type..name {operator id operatorJrnpl} end 

operatorJmpi 
= im p lementation ada id end 
I implementation psllirnpi end 

psdLimpl 
= data..6.ow...diagram [streams] [timers] [cont roLconstraintsJ [informaLdesc) 

data.Jlow _diagram 
= graph {vertex} {edge} 
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vertex: 

edge 

= vertex opjd [: time] 
~ time i~ the maximum execution time 

= edge id [: time] opJd -+ opJd 
- time is t he lateD C:Y 

= id [( [idJistll [id.Jist] )] 

streams 
= data stream type..decl 

timers 
= timer idJist 

controi...cODstraints 
= control constraints constraint {constraint} 

constraint 
= operator opjd 

[triggered [trigger] [if expression] [reqrnts..traceJ] 
[period t ime [reqmts..tracell 

[finish within time [reqrnts..tracell 
[minimum calling period t ime [reqmts..tracelJ 
[maximum response time time {reqrnts..traceJ] 
{constraint ..options} 

constraint_options 

trigger 

= output idJist if expression [reqmts..trace] 
I exception lei. [if expression] [reqmts..traceJ 
I t imer_op id [if expression] {reqmts.. trace] 

= by all idJist 
I by some idJ.ist 

timer.»p 
= reset timer 
j start timer 
j stop timer 

initiaLexpressionJ ist 
= irutiaLexpression , ini t iaLexpression 
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initiaLexpression 
= true 

false 
integerJiterai 
realJitera! 
stringJiterai 
id 
typcJlame. id [( initiaLexpression.Jist )] 
( initiauxprcssion ) 
initiaLexpression binary_ap initial_expression 
unary....op initiaLcxpression 

binary_oJ> 
= and 

i.= 
j= 

/= 
+ 

& 

mod 

unary..np 

time 

unit 

= not I abs I - I + 

= intcgerJitcral unit 

= microsec 
1m. 
I sec 
I min 
I hOUTS 
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exprcssionJist 
== expression {, expression} 

expression 
= true 

false 
integerJiteral 
time I realJitcral 
stringJiteral 
;d 
type...name. id [( exprcssionJist)1 
( expression) 
initiaLexpression binary_op initiaLexpression 
unary _op initial_expression 

;d 
= letter {alpha..numeric} 

reaUiteral 
= integerJiterai . integerJiterai 

intcgerJiteral 

= digit {digit} 

stringJiteraJ 

digit 

letter 

= " {char}" 

= any printable character except} 

= 0 .. 9 

1 A .. Z 
1-

alpha...numberic 
= letter 

I digit 

,~, 

143 



APPENDIX E 

Ada Implementation Code 

On the following pages are contained the implementation code for the current version 
of the Change-Merge Tool. This tool used the P$DL Abstract Data Type developed n Ada 
by other members of the CAPS Research Team, a.s well as the PSDL Expander developed 
and implemented by Dr. Berzins. The code for these systems are not included in this 
dissertation. 

The code contained in this appendix is broken up into different files. Each section of 
this appendix will contain a different file. All code was implemented in Ada and compiled 
using the Sun Ada Compiler Version 1.0. 
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-- USAGE 

-- INPUT/OUTPUT 

-- AUTHOR 

: Used to perform all of the housekeeping and interface 

between the CAPS interface and the change-merge system 
developed by Dave Dalllpier. 

: Jim Brockett 

-- DATE OF CREATION : 28 NOVEMBER 1993 

-- LANGUAGE USED : Ada 

-- COMPILER USED : Sun Ada 1.0 
-- PURPOSE : Provides three functions used by the Merge Interface; 

-- FILES USED 

-- NOTES 

-- MODIFICATIONS 

merge, find_Base, and commit_merge. 

: This is the module to which the TAE interface code for 

the CAPS merge tool connects. Calls are made from the 

merge interface to this package. It is TBD whether or 

not the actual merge softvare is integrated into this 
package or put separately elsewhere. Either way will 

work. The purpose of this packaage is integration 

specification. 

DATE : 19 APRIL 1994 
AUTHOR : Dave Dampier 
PURPOSE : Completed Integration with Ch1Ulge_Merge_Pkg. 

-- AFFECTED MODULES : All 
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!lith unix_prcs; use unix_pres; 
!lith unix_dirs; use unix_dirs; 

with te1:t_10; use text_lO, 
'\lith a_strings; use a_strings; 
vi tb psdl_program_pkg; use pSdl_program_pkg; 
\lith psdl_ioj use psdl_io; 

vith expaader_pkg; use expander_pkg; 

!lith change_merge_pkg; use change_merge_pkg; 

packllge merge_main is 

procedure merge (BASE_VERSION, 

VERSION_B : in a_string; 
RESULT : in out a_string; 
CONFLICT : in out boolean); 

procedure find_Base (VERSION_A, 

VERSION_B : in a_string; 
BASE_VERSION: in out a_string; 
ERROR . in out boolea.n); 

procedure commit_merge (BASE_VERSION, 

VERSION_A, 

VERSION_B ; in a_string; 

RESULT : in out a_string); 

end merge_main; 

146 



with unix; use unix; 

with system; use system; 

package body merge_main is 

prototype_path_error: exception; 

procedure system_call(command . in string) is 

procedure system_C(command :address); 

pragma INTERFACE(C, sYlltem_C); 

pragma INTERFACE_NAME(system_C. "_system"); 
temp; constant STRING :- command&:ASCILNUL; 

error: integer; 
begin 

system_C(TEMP'ADDRESS) ; 
end system_call; 

147 



-- Local function to extract the name of the prototype from the 
-- version string. Raises PROTOTYPE_PATH_ERROR if an a_string ~ithout 

-- the substring "I.caps/" is received as P. 

pname string(1 .. P.len); 
index1 integer:; P.len; 

index2 : integer :- 1; 

slash_not_found : boolean :"' true; 

begin 
for i in 1 .P.len loop 

pname(i) :'" ascii-nul; 

end loop; 

for i in 1 .2 loop 
while slash_not_found loop 

index1 :"" index1 - 1; 

if index1 < 1 

then raise prototype_path_error; 
end if; 

if P.s(indexl) .. 'I' 
then 

slash_not_found :- false; 

end if; 

end loop; 
slash_not_found ;- true; 

end loop; 

inde:x1 :- index1 + 1; 

while slash_not_found loop 
if P.s(indexl) .. 'I' 

then 
slash_not_found :"" false; 

else 

pname(index2) ;- P.s(indexl); 

index1 :'" index1 + 1; 
indlilx2 ;"" index2 + 1; 

end if; 

end loop; 
return truncatlil(to_a(pname) ,inde:x2); 

end na.me_of_prototype; 
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-- Procedure merge reads in three prototypes and change-merges them, 
-- returning a tile name holding the resultant prototype trom the 
-- change-merge. 

procedure merge (BASE_VERSION, 
VERSION_A, 
VERSION_B : in a_string; 
RESULT . in out a_string; 
CONFLICT in out boolean) is 

PROTOTYPE_NAME , a_string; 
FILE_STRING , a_string; 

BASEFILE tile_type; -- Used to hold expanded tile. 
AFILE , tile_type; 

BFILE , tile_type; 

MERGEFILE tils_type; 

BASE , psdl_program; -- Used to hold base program. 

OPA psdl_program ; -- Used to hold tirst modificat i on. 
OPB psdl_program ; -- Ueed to hold second modification. 
MERGE , psdl_program ; -- Used to hold merged program. 
TEMP , status_code; 

begin 

-- reada in Base prototype and puts in ADT. 
put_line (llchange-merging prototypes ") j 

put_l ineC"reading base version"); 
PROTOTYPE_NAME :- name_of_prototypeCBASE_VERSION); 
system_call ("merge .acript -p "ltBASE_VERSION .st" lilt 

PROTOTYPE_NAME. st"> "l"/tmp/temp_baae_file .psdl"); 
-- builds single tile input! 

open{BASEFILE, in_tile, "/tmp/temp_base_tile.psdl"); 
assign CBASE. empty _psdl_program); 
get (BASEFILE, BASE) ; 
close(BASEFILE) ; 
system_call("rm /tmp/temp_base_tile.psdl"); 
expand(BASE) ; 
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-- reads in firs t modified version of prototype and puts in ADT . 

put_l ine ("reading 1st modi fi ed version" ) ; 

system_call ("merge. scri pt -p "&VERSION_A. s t " "l 
PROTOTYPE_NAME. st"> "l"/tmp/temp_a_file. psdl ") ; 

-- builds singl e file input I 

open(AFILE, in_file, "/tmp/temp_a3il e .psdl ,, ) ; 

assign(OPA ,empty _psdl_program) ; 
get CAFILE,OPA); 

close(AFILE) ; 

system_call ("rm Itmp/temp_a_file .psdl tl ); 

expand(OPA) j 

-- reads in second modified version of prototype and puts i n ADT. 
put_line(IIreading 2nd modified version"); 

system_call ("merge. script -p "&VERSIDN_B.51" "1 
PROTOTYPE_NAME.st"> "&:"/tmp/temp_b3ile.psdl"); 

-- bui l ds single file input! 
open(BFILE, in_file, "/tmp/temp_b3ile.psdl "); 

assign(OPB,empty_psdl_progratll) ; 
get(BFILE, OPB); 
close(BFILE) ; 
system_call("rm /tlllp/temp_b_file .psdl"); 
n pand(OPB) ; 
-- puts result of performing the merge into the directory result. 
change_merge(BASE, OPA, OPB, HERGE, CONFLICT); 
temp ;"" mkdir(result.l'I); 
split(resul t ,PROTOTYPE_NAME,HERGE); 

exception 
when use_error "'> 

put_line (standard_error , 
"error: can't create output file. permission denied."); 

when syntax_error .. > 
put_line (l'Itandard_error, 

" parsing aborted due to syntax error. It) ; 
when semantic_error -> 

put_line (standard_error. 

" semantic error, parsing aborted."); 
when expander_pkg.no_root -> 

put_line (standard_er ror. 
" semantic error - no top level operator, expansion aborted."); 

put_line (standard_error, 

.. check for recursive use of the prototype nallla in an expanl'lion. " ); 
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when expander_pkg.multipl e_roots => 
put _line{standard_ error, 
" semanti c error - more than one top level operator, 

expansion aborted. ,,) ; 
put_line (standard_error, 

" check for operators that are not used or"); 
put_line ( standard_error, 

" add an extra top-level operator that decomposes"); 
put_line ( standard_error, 

" into the current set of top-level component s "); 
put_line(standard_error, 

" i f your design has several top-level components. ,,) ; 
--when undefined_component "'> 

put_line (standard_error, 
" semantic error - an operator without a PSDL definition has 
been used."); 

when prototype_path_error .. > 
put_line("from merge_main_pkg.merge"); 
put _line(standard_error. 

" path to merge inputs provided by top-level interface was 
incorrect. ,, ) ; 

when constraint_error -> 
put_l ine (standard_error, 

" constraint_error - merger not working properly. ,,) ; 
when numeric_error .. > 

put_line (standard_error, 

" numeric_error - merger not working properly . "); 
when program_error .. > 

put_line (standard_error, 
" program_error - lI1erger not working properly. ,,) ; 

when storage_error -> 
put_line (standard_error. 

" storage_error - merger not working properly. "); 
when tasking_error => 

put_line (standard_error, 
" tasking_er ror - merger not working properly . " ) ; 

when others -> 
put_line(standard_error, 

" unexpected exception - merger not working properly."); 

end lI1erge; 
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procedure find_Base (VERSION_A, 

VERSION_B : in a_string; 
BASE_VERSION: in out a_string; 

ERROR : in out boolean) is 

begin 
text_io. put_line("this procedure is not yet implemented"); 
BASE_VERSION : .. to_a("You must select a base version manually! ,,) ; 

ERROR : so true; 

end find_Base; 

procedure commit_lIIerge (BASE_VERSION, 
VERSION_A, 

VERSION_B : in a_string; 

RESULT : in out a_string) is 

in_result : a_string :- copy(RESULT); 
temp_string: a_string; 

temp : status_code; 

: a_string; 

index: integer :- x.len; 

begin 

"hila x.s(index) /- 'I' loop 
index :., index - 1; 

end loop; 
vnum :"' to_a(x.s(index+l .. x.len»; 

return vnum; 
end version_Dum; 

begin 
temp_string :- (in_result J: to_a("-") 1 versiOIl_nu.m(VERSION_A) 

l to_a(" _") .t versioIl_nu.m(BASE_ VERSION} 

.t to_a("_It} .t version_num(VERSION_E}); 
temp ;""' mkdir(temp_string.s); 
system_call("mv " .t in_result.s .t "/*.psdl ".t temp_string.s); 
temp ;- I1!tdir(in_result.s); 
RESULT := copy(tEllllp_Btring); 

end co_it_merge; 
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2. changeJIlerge_pkg 

-- USAGE 

-- INPUT/OUTPUT : BASE, A, B: in psdl_program 
MERGE: in out pSdl_program 
CONFLICT: out boolean 

-- AUTHOR : Dave Dampier 
-- DATE OF CREATION : 19 April 1994 

-- LANGUAGE USED : Ada 

-- COMPILER USED : Sun Ada 1.0 

-- PURPOSE : Contains tbe procedure .... bich petionns the change-merge 
operation on PSOL programs. 

-- FILES USED : pSdl_type_s.a. psdl_ct_s.a. psdl_prog_s.a, 
psdl_graph_s.!l. prototype_dependency _graph_pkg_s. a, 

-- NOTES 

.... ith a_strings; use a_strings; 
with psdLcomp0nlimt_pkg; use psdl_component_pkg; 
vith psdl_concrete_ type_pkgj use psdl_concrete_type_pkg; 
with pSdl_program_pkg; use pSdl_program_pkg; 
with psdl_graph_pkg; use psdl_graph_pkgj 
with prototype_dependency _graph_pkg j USB prototype_dependency _graph_pkg; 
with proto_spec_merge_pkg; use proto_spec_merge_pkg; 
with proto_illlpl_merge_pkg; use proto_impl_lIIerge_pkg; 
with tell:t_io; 'Use tell:t_io; 
with Bli:pression_pkg; use ell:pression_pkg; 
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-- This function performs the change_merge operation on PSDL prototypes. 
-- Given three prototypes, BASE, A and E, the function creates 
-- prototype dependency graphs for the three prototypes, and using 
-- prototype slicing, it identifies the preserved part of the base 

-- in all three versions, and the parts of the changed versions which 

-- are different from the base. It then combines the three pieces into 

-- a merged graph. If the graph correctl y represents the semantic merge --

-- of the three versions, and there are no conflicts, then the merged 
-- prototype is reconstructed from the merged graph. In the case of a 
-- conflict, the exception "merge_conflict" is raised. 

procedure change_merge(BASE, A, B: in psdl_program; 
MERGE: in out psdl_program; 
CONFLICT: out boolean); 

procedure build_prototype(P: in out pSdl_component; 
G: in prototype_dependency_graph); 
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package body change_merge_pkg i s 

This f'llnct ion perfonrls the change_merge operation on PSDL prot otypes . 
Given three prototypes, BASE, A and B. the function creates 

prot otype dependenc y graphs fo r the three prototypes, and using 

prototype slic ing. it identifies the preserved part of the base 
i n all three versions, and the parts of the cbanged versions wbi c h 

are different from the base. It then combines the three pieces into a 

merged graph. If the graph correctly represents the semant ic llIerge 
of the three versions. and there are no conflicts. t hen the merged 

prototype is reconstructed from the merged graph. 

procedure change_merge(BASE, A, B: in psdLprogr<Ul; 
MERGE: in out psdl_program; 

CONFLICT: out boolean) is 

BASEHOLD, AHOLD. BHOLD: psdl_program :- empty_psdl_program; 
BASETYPE, ATYPE, BTYPE: psdl_program :- empty_psdl_program; 

BASECOHP, ACOHP, BCOMP, HERGECOHP: composite_operator; 

GBASE, GA, GB, GH, PP, APA, APB: prototyp8_dependency_graph; 

BASESTREAMS, ASTREAHS, BSTREAMS, HERGESTREAHS; type_dec1ouation; 
HERGESTATES: type_dec1ouation; 

HERGEINIT: init_map ;"" empty_init_map; 

MERGEEXCEPTIONS, HERGEJ(EYIIDRDS: id_set; 

HERGEHEr: millisec :'"' 0; 
HERGE_INF _DESC, MERGE_AX: text; 

BASETRIG, ATRIG, BTRIG, HERGETRIG; trigger_map :- empty_ trigger_map; 

BASEEG, AEG, BEG, HERGEEG; eXElc_guoud_map ;'" empty_exec_guard_map; 

BASEOG, AOG, BOG, HERGEDG: out_guoud_map :"' empty_out_guoud_map; 

BASEEr, AEr, BET, HERGEET: excep_trigger_map :'" empty_ucep_triggElr_map; 
BASETO, ATO, BTO, HERGETO: timer_op_map :'" empty_timElr_op_map; 

BASEPER, APER, BPER, HERGEPER: timing_map :"' eJIIPty_timing_map; 

BASEFW, AFW', BFW', HERGEFW': timing_map ;- empty_tiMing_map; 
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BASEJiCP, AMCP, BMCP, MERGEMCP: timing_map :'" empty_timing~map; 
BASEMRT, AMRT, BMRT, MERGEMRT: timing_map :., empty_ timing~map; 
BASEDESC, ADESC, BDESC, MERGEDESC: tert; 
MERGEID: psdLid; 
BASETIMERS, ATIMERS, BTIMERS, MERGETIMERS, V: id_set; 

tempexpression: expression; 

tempoutid: output~id; 
tempel:id: ex(:ep_id; 

begin 

(:onfli(:t := false; 

This se(:tion of (:ode is used to extra(:t the psdl (:omponents from ea(:h 

-- of the three progral!ls. It assigns the parent (:omposite operator to its 

-- ovn (:omponent variable, and it assigns the atomi(: operators to holding 

-- components, so they (:an be retrieved later. 

-- BASE 

for id: psdl_ id, (: :psdl_(:omponent in psdl_program_map_pkg. s(:an (BASE) loop 

if (:omponent_(:ategory«(:) ., psdl_typa 

then 

bind(id,(:,BASETYPE) ; 
else 

if (:omponent_gr anlllarity«(:) ., (:omposite 

then 
BASECOKP :., (:; 

else 

bind(id, c, BASEHOLD); 
end if; 

end if; 
end loop; 
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-- , 

for id:psdl_id, c :psdl_component in psdLprogram_map_pkg. scan (A) loop 
if component_categoryCc) " psdl_type 

then 

bind(id,c,ATYPE) ; 

else 
if component_granularity(c) .. composite 

then 

ACOMP :" c; 

else 
bind(id, c. AHOLD); 

end if; 

end if; 
end loop; 

-- B 

for id:psdl_id.c:psdl_component in psdl_program_map_pkg.scan(B) loop 
if component_categoryCc} "' psdl_type 

then 

bind(id,c,BTYPE) ; 

else 
if component_granularity(c) .. composite 

then 

BCOMP :'" c; 

else 

bind(id, c, BHOW); 

end if; 
end if; 

end loop; 
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-- Create the Merged Specification 

-- Merge the states 

merge_states(HERGESTATES ,states(BASECOMP) ,states (ACmo{P), sh.tes(BCOMP), 
MERGEINIT, get_lnit_map{BASECOMP), get_init_mapCACOMP), 

get_init_mapCBCDHP» ; 

-- Merge the Exceptions 

as sign (HERGEEXCEPTIDNS, merge_id_sets (exceptions (BASEeDHP) , 
exceptions (ACOHP). exceptions (BCaMP»); 

-- Merge the Keyvords 

assign (MERGEKEYWORDS. merge_id_sets (keywords (BASEeDM?) • 
keywords (ACOMP) , keywords (BCOMP»); 

-- Merge the InfoIlllal Description 

HERGE_INF _DESC : .. merge_text(infoIlllal_description(BASECOMP). 

informaJ._description(ACOMP) • 
informal_description(BCOHP» ; 

-- Merge the Formal Description 

MERGE_AX :. merge_text(a:xioms(BASECOMP). 
a.%ioms(ACOMP) • 

uioms(BCOKP» ; 
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- - Merge the Maximum Execution Times 

MERGEMET :"' merge_met (specifieQ_maximum_execution_time(BASECOMP) , 
specif ied_maximum_execution_time (ACOMP) , 
specif ieQ_max imutll_execution_ time (BCOMP)) ; 

-- Merge the Implementation 

-- Extract the prototype QepenQency 

-- graphs frbm the psdl components. 

assign(GBASE, build_PDG(BASECOMP)); 

assign(GA, build_PDG(ACOMP)); 

assign(GB, build_PDG(BCOMP)); 

-- Create the Preserved Part 

assignCPP, preserved_part(GBASE, GA, GB)); 

-- Create the Affected Parts of each 

-- modification graph. 

-- put_lineC"Affected Part: A"); 

assign(APA, affected_part(GA, GBASE)); -- First Modification 

-- put_line("Affected Part: B") j 

assign(APB, affected_part(GB, GBASE)); -- Second Modification 
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Greate the Merged Graph using the 
Preserved Part of the Base and 

-- the Affected Parts of both 
-- modifications. 

assign(GH, graph_merge ePP. APA. APB » ; 

-- Merge the streams 

assign(BASESTREAMS, streams(BASECOMP»; 

assign ( ASTREAMS, streams(ACOMP»; 
assign(BSTREAHS, streams(BCOMP» j 

assign(liERGESTREAMS, merge_streams (BASESTREAMS, ASTREAMS, BSTREAMS»; 

-- Merge the timers 

assign(BASETIKERS, timers(BASECOHP» j 

assign(ATIMERS, timers (AeOHP»; 
assignCBTlMERS, timers(BCDMP»; 
ass i gn(HERGETIMERS. merge_timers (BASETIMERS. ATIHERS . BTlMERS»; 

-- Merge the triggers 

for id: psdl_id in id_set_pkg.sca.n(vertices(GBASE» loop 
if not eq ( id, EXT) 

then 

bind(id. get_trigger(id, BASECOHP). BASETRIG); 

end if; 
end loop; 
for id: psdl_id in id_set_pkg.scan(vertices(GA)) loop 

if not eq(id, EXT) 
then 

bind(id, get_trigger(id, ACOHP), ATRIG); 

end if; 

end loop; 

160 



for id: psdl_id in id_set_pkg.scan(verticel'l (GB» loop 
if not eq (id, EXT) 

then 

bind(id, get_triggerCid, BCOMP), BTRIG); 

end it; 
end loop; 

assign(MERGETRIG. lIIerge_ trigger _maps(vertices(GM) • 

BASETRIG, ATRIG, BTRIG»); 

-- Merge the execution guards 

for id: pSdl_id in id_set_pkg.scan(vertices(GBASE» loop 

if not eq(id, EXT) 

then 

bind(id, execution_guard(id. BASECOMP), BASEEG); 

end if; 

end loop; 
for id: pSdl_id in id_set_pkg.scan(vertices(GA» loop 

if not eq(id, EXT) 

then 

bind(id, execution_guiU"d(id, ACOMP) , AEG); 

end if; 

end loop; 

for id: psdl_id in id_set_pkg.sca.n(vertices(GB» loop 

if not eq(id, EXT) 
then 

bind(id. execution_guard(id. BCOMP), BEG); 

end if; 
end loop; 
assign(MERGEEG, lIlerge_eJ:ec_guard_maps (vertices(GM), 

BASEEG, AEG, BEG)); 
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-- Merge the output guards 

for e: edge in edge_set_pkg.scan(edges(GBASE» loop 

assign (temp expression. output_guardCe. x, e. stream_name, BASECOMP» ; 

if not(tempexpression = true_expr ession} 

tben 

tempoutid.op :'" copy(e,x); 

tempoutid. stream : = copy(e. stream_nll.lIUi!) ; 

bind(tempoutid , tempexpressi on, BASEOG); 

end if; 

end loop; 
for e: edge in edge_set_pkg.scan(edges(GA» loop 

assign{tempexpression, output_guard(e .x,e. stream_name ,ACOMP» ; 

if not(tempexpression .. true_expression) 
then 

tempoutid.op :"' copy(e.x); 
tempoutid.straam :. copy (e. stream_name) ; 

bind(tempoutid, tempexpression, ADG); 

end if; 
end loop; 

for e: edge in edge_set_pkg.scan(edgesCGB» loop 

assign (tempexpression. output_guard(e. x, e. stream_name ,BCOMP)} j 

if not(tempexpression .. true_expression} 
then 

tempoutid.op : .. copy(e.x); 
tempoutid. stream : .. copy(e . stream_name} j 

bind(tempoutid, tempexpression, BOG); 
end if; 

end loop; 

assignCMERGEOG, merge_output_suard_maps(BASEOG ,AOe ,BOG» ; 

-- Merge the exception triggers 
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tor id: pSdl_id in id_set_pkg.scan(vertices(GBASE» loop 
it not eq(id, EXT) 

then 
tor e: pSdl_id in id_set _pkg.scan(e.xceptions(BASECOI'!P» loop 

assign(tempexpression, exception_trigger(id, e, BASECOMP» ; 
if not eq(tempexpression, false_expression) 

then 
tempedd.op :'" copy(id); 
tempexid. e.xcep := copy(e); 

bind(tempe.xid, tempexpression, BASEET); 

end if; 

end loop; 

end if; 
end loop; 
for id: pSdl_id in id_set_pkg.scan(vertices(GA» loop 

it not eqCid, EXT) 

then 
tor e: psdl_id in id_set_pkg. scan(exceptions (ACOMP» loop 

assign(tempexpression, exception_trigger(id,e ,ACOMP» ; 
it not eq(tempexpression, false_expression) 

then 
tempexid.op :- copy(id); 

telIlpexid.excep := copy (e) ; 

bind(tempexid, tempexpressi on, AET); 
end it; 

end loop ; 

end if; 

end loop; 
for id: psdLid in id_set_pkg.scan(vertices(GB» loop 

it not eq(id, EXT) 

then 

for e; pSdl_id in id_set_pkg. scan(exceptions(BCOMP» loop 
assign(tempexpression, exception_trigger(id,e,BCOMP»; 

if not eq(tempexpression, false_expreSsion) 

then 
tempexid.op :'" copy(id); 

tempexid.excep :"' copy(e); 
bind(tempexid, tempexpression, BET); 

end it; 
end loop; 

end if; 

end loop; 
llssign(MERGEET, (merge_excep_ trigger_maps(BASEET, AET, BET»); 
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-- Merge the timer operations 

for id: psdLid in id_set_pkg. scan(vertices(GBASE» loop 

if not eq(id, EXT) 

then 

bind(id, timer_operationsCid, BASECOMP), BASETD); 

end if; 
end loop; 
for id: psdl_id in id_set_pkg.scan(vertices(GA» loop 

if not eq(id, EXT) 
then 

bind(id, timer_operations(id, ACDMP). ATD); 

end if; 

end loop; 

for id: pSdl_id in id_set_pkg.scan(vertices(GB» loop 
if not eq(id. EXT) 

then 

bind(id, timer_operations(id, BCOMP), BTO) j 

end if: 
end loop; 

assign(MERGETO, merge_timer_op_maps(vertices(GM), BASETO. ATD, BTO»; 

-- Merge the periods 

for id: psdl_id in id_set_pkg.scan(vertices(GBASE» loop 

if not eq (id, EXT) 

then 

bind(id. period(id, BASECDMP), BASEPER); 
end if; 

end loop; 
for id: psdl_id in id_set_pkg.scan(vertices(CA)) loop 

if not eq(id. EXT) 

then 

bind(id. period(id. ACOMP). APER); 

end if; 

end loop; 
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for id: psdl_id in id_s9t_pkg.scan(vertices(GB» loop 

if not eq(id, EXT) 

then 

bind(id, period(id, BCOMP), BPER); 

end if; 

end loop; 

aasign(MERGEPER, merge_period(BASEPER, APER, BPER»; 

-- Herge the finish_withins 

for id: psdl_id in id_set_pkg. scan(vertices(GBASE» loop 

if not eq(id, EXT) 

then 

bind(id. finish_,.rithin(id, BASECDMP). BASEfW); 

end if; 

end loop; 

for id: psdl_id in id_set_pkg.scan(vertices(GA» loop 
it not eq (id, EXT) 

then 

bind{id. finish_within(id. ACOMP), AFW); 
end if; 

end loop; 
for id: pSdl_id in id_set_pkg.scan(vertices(GB» loop 

if not eq(id, EXT) 

then 

bind(id, finish_vithinCid, scaMP), BF.,,); 

end if; 

end loop; 
assign(MERGEFW. merge_fw_or_mrt(BASEF1rI, AFW. BFW»; 

-- Merge the lIIax response times 

for id: psdl_id in id_Bet_pkg.scan{vertices(GBASE» loop 

if not eq(id, EXT) 

then 

bind(id, lIlaximwn_response_ time(id, BASECOMP), BASEMRT); 

end if; 

end loop; 
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tor id; psdl_id in id_set_pkg.sc:an(vertices(GA)) loop 

it not eq(id, EXT) 
then 

bind(id, muimum_response_time(id, ACDMP), AMRT); 
end if; 

end loop; 
for id; pSdl_id in id_set_pkg.scan(vertices(GB)) loop 

it not eq(id, EXT) 

then 
bind(id, maximum_response_time(id, BCOMP), BMRT); 

end if; 

end loop; 

assign(HERGEMRT, merge_h'_or_mrt(BASEMRT. AHRT. BHRT)) j 

-- Herge the minimum calling periods 

for id; psdl_id in id_set_pkg.scan(vertices(GBASE)) loop 

if not eq(id, EXT) 
then 

bind(id. minimum_calling_period(id, BASECOHP), BASEMCP); 

end if i 
end loop; 

for id; pSdl_id in id_set_pkg.scan(vertices(GA» loop 
if not eq (id, EXT) 

then 

bind(id, minimum_calling_period(id. ACOMP) , AHCP); 

end if; 

end loop; 

for id; psdl_id in id_set_pkg.scan(vertices(GB» loop 

if not eq(id. EXT) 
then 

bind(id. minimum_calling_period(id. BCOMP) , BHCP); 
end if; 

end loop; 

assign(HERGEMCP. lIIerge_lIIin_call_per(BASEMCP. AMCP. BHCP); 
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-- Herge the implementation descriptions 

BASEDESC : .. implel!lentation_description(BASECOHP); 
AOESC : .. implementation_description(ACOMP); 
BOEse :- implemenu,tion_description(BCOHP); 

KERGEDESC :- merge_implementation_description(BASEDESC, AOESC, BOESe); 

-- Construct the merged progrl'l.lll. 

KERGEID : .. copy(nallle(BASECOMP»); 

MERGECOHP :- make_composite_operator(M£AGEID. 

keywords -> MERGEKE'fliORDS, 

uioms .. ) MERGE_AX., 

state -> HERGESTATES. 
ini tia.lization_map -) HERGEINIT, 
exceptions .. > MERGEEXCEPTIONS, 
speciUed_Jlet -> MERGEHET. 

streams .) HERGESTREAMS. 

timers -> MERGETlHERS. 
trigger -) HERGETRIG. 
exec_guard -> HERGEEG. 

out_guard -) MERGEOG. 

exeap_trigger -> MERGEET. 
ti.er_op -> MERGETO, 
per -> H£RGEPER, 
fv -> MERGEFW. 

mcp -> HERGEKCP, 

IIlrt -> HERGEKRT. 
impl_desc -> HERGEDESC); 
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Compare the the Merged Graph \lith the Graph of each modification by' 

comparing the slices of each with respect to their a.:ffected p a rts. 

-- If the slices are the same, then the merged graph is correct and the 

-- program can he rebuilt. Otherwise, there is a conflict that must be 
-- resolved. 

build_prototype(MERGECOMP, GM); 

conflict_free_a :"' compare_graphs(GM, GA, APA); 

conflict_fres_b :" compare_graphs (GM. GB, APB); 

then 
put_lineC"Conflict found in Version_A"); 
conflict :- true; 

end if; 
if not conflict_free_b 

then 
put_line("Conflict found in Version_B"); 
conflict : .. true; 

end if; 

-- Returu the Herged Program. 

bind (HERGEID. MERGECOMP ,MERGE) ; 

assign(V. vertices(PP» j 

for id: pSdl_id in id_set_pkg.scan(V) loop 
bind(id ,fetch(BASElIDLD, id) ,MERGE); 

end loop; 
assign(V, verti(;es(APA»; 

for id; psdl_id in id_set_pkg.s(;an(V) loop 
if not lRember(id,MERGE) 

then 

bind(id ,fet(;h(AHDLO, id) ,MERGE); 

end if; 
end 100F ; 
assign(V. Verti(;l!s(APB»; 
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for id: psdl_id in id_set_pkg.scan(V) loop 

if not member(id,MERGE) 

then 

bind(id ,fetch(BHOLD, id) ,MERGE) ; 

end if; 

end loop; 

end change_merge; 

-- This procedure is used to build the merged prototype vhen the change-

-- merge operation is successful. 

procedure build_prototype(P: in out psdl_component; 
co: in prototype_dependency _graph) is 

begin 

assigu(A, psdl_graph{G»; 
remov&_vertex(EXT. A); 

set_graph(A,P) ; 
end build_prototype; 
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3. proto..specJnerge_pkg 

-- COMPONENT NAME : PACKAGE PRDTO_SPEC_MERGE_PKG(proto_spec_merge_pkg_s. a) 

-- AUTIiDR : Dave Dampier 

-- DATE OF CREATION: 19 April 1994 

-- LANGUAGE USED : Ada 

-- COMPILER USED : Sun Ada 1.0 

-- PURPOSE ; Thi s package provides specifications for the functions 
used to petioIl!l change-lllerges on padl operator 

specifications. 
-- FILES USED : psdl_ct_s.a, psdLct_h.a, psdLtype_s.a, psdl_type_h.a, 

set_s.a, set_b.a, map_s.a, map_b.a. exp_s.a, exp_b.a. 

vith system; 

vith generic_map_pkg; 
';litb generic_set_pkg; 
with TEXT_ID; 

vith a_strings; 

with psdl_concrete_type_pkg; 
with psdl_component_pkg; 
with expression_pkg; 

use TEXT_IOj 

use a_strings; 

use psdl_concrete_type_pkg; 
use psdl_component_pkg; 

use expression_pkg; 

function MERGE_SEQUENCES(BASE, A, B: type_declaration) 
return type_declaration; 

procedure MERGE_STATES (MERGE: in out type_declaration; 

BASE, A, B: in type_declaration; 
MERGEINIT: in out init_map; 
BASEINIT, AINU. BINIT: in ini t_map); 

function MERGE_MET(BASE, A, B: millisec) return millisec; 

function MERGE_TEXT(BASE, A. B: text) return text; 
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function merge_seq1lences(BASE, A. B; type_declaration) 
return type_declaration is 

MERGE; type_declaration; 

TOP ; constant psdl_id :'" to_a("TOP"); 

begin 

assign(MERGE, empty_ type_deClaration) ; 
it equal (BASE, A) 

then if equal(BASE, B) 

then assign(MERGE, BASE); 
else assign(MERGE, B); 

end it; 
else it equal(BASE, B) 

then assign(MERGE, A); 
else if equal(A, B) 

then assign(MERGE, A); 

else bind(TOP, null_type, MERGE); 
end it; 

end if; 

end if; 

ret1lrn MERGE; 

end merge_sequences; 

begin 

if equa1(t_base, t_a) 

then 

if equal(t_base. t_b) 
then 

else 

return(t_b) ; 
end if; 
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else 

if equal(t_base, t_b) 

then 

else 

if equal(t3, t_b) 

then 

else 

return null_type; 
end if; 

end if; 

end if; 

end merge_types; 

procedure merge_statesCMERGE: in out type_declaration; 

BASE, A, B: in type_declaration; 

MERGEINIT: in out init_map; 
BASEINIT, AINIT, BINIT: in init_map) is 

init_value : expression; 

base_type, a_type, b_type : type_nallla; 

begin 
assign(init_value, 6lIlpty_expression); 

assign(MERGE, empty_ type_declaration); 
for id: psdl_id, t: type_name in type_declaration_pkg. Bcan(BASE) loop 

if member(id, A) and member(id. B) 

then 

a_type :'" type_declaration_pkg.fetch(A, id); 
b_ type : .. type_declaration_pkg.fetch(B, id) ; 

bind(id. merge_typeset I a_type, b_ type). MERGE); 
assign<init_value, init_map_pkg.fetch(BASEINIT ,id); 

if eq (ini t_ value, ini t_lIlap_pkg. fetch (AINIT • id)) 

then 

if eq(init_value, init_map_pkg.fetch(BINIT, id» 

then 

bind(id,init_value,HERGEINIT) ; 

bind(id, init_map_pkg.fetch(BINIT, id) ,HERGEINIT) ; 

end if; 
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else 
i1' eq(init_value , init_map_pkg. 1'etch(BINIT ,id) ) 

then 
bind(id, init_map_pkg. fetch(AINIT, id) ,MERGEINIT); 

else 
i f eq(init_map_pkg. fetch(AINIT, id) , 

init_map_pkg .1'etch(BINIT, i d)) 

then 
bind(id, init_map_pkg.:tetch(AINIT, id) ,MERGEINIT) ; 

else 
bind(id,conflict_expression ,MERGEINIT); 

end if; 

end if; 

end if; 

end if; 

end loop; 
for id: pSdl_id, t: type_name in type_declaration_pkg.sca.n(A) loop 

if not member(id, BASE) and member(id, B) 

then 
base_type :" null_type; 
b_type :- type_dec1aration_pkg.fetch(B,id); 

bind(id, merge_ types (base_type , t, b_type), MERGE); 
assignCinit_va.1ue, init_map_pkg. fetc.h(AINIT, id)); 
if eq(init_value, init_map_pkg.fetch(BINIT ,id)) 

then 

bind (id, init_ value,MERGEINIT); 

else 

bind C id, conflict_expression ,MERGEINIT) ; 

end if; 

end if; 
end loop; 
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for id: psdl_id, t: type_name in type_declan.tion_pkg.scanCB) loop 
if not member(id, BASE) and member(id, A) 

then 

base_type :'" null_type; 

a_type : .. type_declaration_pkg. fetch(A, id); 

bind(id, merge_types (basl!_type, a_type, t), MERGE); 

assignCinit_ value, init_map_pkg. fetch(BINIT, id» ; 
if eq{init_value, init_map_pkg.fetch(AINIT. id» 

then 

bind(id, ini t_value,MERGEINIT); 

else 

bind (id. conflict_expression ,HERGEINIT) ; 

end if; 
end if; 

end loop; 
end merge_states j 

function merge_met(BASE, A, B: millisec) return millisec is 

A_DIFF_BASE. B_DIFF_BASE, A_INT_B: millisec; 

begin 

1fA<-a 
then A_INT_B :- H; 

else "_INT_B :- A; 

end if; 

if BASE < .. A 

end if; 
if BASE ( .. B 

then B_DIFF _BASE :- system.mu_int; 
else B_DIFF_BASE :-= B; 

end if; 
if A_DIFF _BASE <c A_INT_B 

then if A_DIFF _BASE <- B_DIFF _BASE 
then return A_DIFF_BASE; 

else return B_DIFF_BASE; 

end if; 
else if A_INT_B <- B_DIFF_BASE 

then return A_INT_B: 
else return B_DIFF _BASE; 

end if; 

end if; 
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begin 

assign(A_DIFF_BASE, empty_id_set); 

assign(B_DrFF _BASE, empty_id_set); 

assign(MERGE, empty_id_set); 

difference(A, BASE, A_DlFF _BASE); 

difference(S, BASE, B_DIFF _BASE); 

for id: psdl_id in id_set_pkg.sc::an(A) loop 
if member(id, B) 

then 

add(id, HERGE); 

end if; 

end loop; 

for id: psdl_id in id_set_pkg. scan(A_DIFF _BASE) loop 
if not member(id. MERGE) 

then 

add(id, MERGE); 
end if; 

end loop; 

for id: psdl_id in id_set_pkg.scanCB_DIFF_BASE) loop 
if not member(id, MERGE) 

then 

add(id, MERGE); 

end if; 
end loop; 

return MERGE; 
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fUllction merge _text(BASE, A, B: text) return text is 

begin 

if eq(BASE, elllpty_tert) and eq(A, el!lpty_text) and eq(B, empty_text) 
then return empty_text; 
else if eq(BASE. A) 

then if not eq(BASE, B) 
then return B; 

alse return BASE; 

end if; 

else if eq (BASE, B) 
then return A; 

else if eq(A , B) 

then return A; 

else return to_a(n •• Text Conflict •• "}; 
end if; 

end if; 

end if; 

end if; 

end merge_ t81:t; 
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4. proto.JrnpLmerge_pkg 

-- COMPONENT NAME : PACKAGE PROTO _I1oiPL_MERGE_PKG(proto_impl_merge_pkg_s. a) 
-- USAGE : Used to perform change-merging on PSQL program 

implementations. 
-- AUTHOR : David A. Dampier 
-- DATE OF CREATION : 19 April 1994 

- - LANGUAGE USED : Ada 

-- COMPILER USED : Sun Ada 1.0 

-- PURPOSE : Provides specifications for the functions necessary 

to merge PSDL Implementations. 

with system; 

\lith TEXT_ID; use TEXT_IO; 

with a_strings; use a_strings; 
with generic_map_pkg; 

vith generic_set_pkg; 
vith psdl_concrete_ typB_pkg; use psdl_concrete_type_pkg; 

with psdLcomponent_pkg; use psdl_component_pkg; 

with proto_spec_merge_pkg; use proto_spec_merge_pkg; 
with expression_pkgj use expression_pkgj 

function merge_streams(BASE, A, B; type_declaration) 

return type_declaration; 

function merge_timers(BASE, A, B: id_set) return id_set 
renames proto_spec_merge_pkg .merge_id_sets; 

function merge_trigger_maps(VERTS: id_set; BASE, A, B: trigger_map) 

return trigger _map; 

function merge_exec_guard_maps(VERTS: id_set; BASE, A, B: lU.ec_guard_map} 
return exec_guard_map; 
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function merge_output_guard_mapsCBASE. A, B: ollt_guar d_map) 
return out_guard_mapr 

function mergll_i!xcep_trigger_mapsCBASE, A, B: excep_trigger_lIlap) 

return excep_ trigger _map; 

function mergi!_timer_op_mapseVERTS: id_set; BASE, A, B: timer_op_map) 

return timer_op_map; 

function merge_period(BASE, A, B: timing_map) return timing_map; 

fun<;tion merg8_implementation_description(BASE. A. B: text) return text 

renames proto_sp8c_merge_pkg .merge_ text; 
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begin 
if equaHt_base, t_a) 

then 
if equalCt_base, t_b) 

then 

end if j 
else 

if equalCt_base, t_b) 

t hen 

else 
if equal(t_a, t_b) 

then 

else 
re'turn null_type; 

end if; 

end if; 

end if; 

end lIIerge_ types; 

function merge_l'ItrealllsCBASE, A, B: type_declaration) 

return type_declaration is 

MERGE: type_declaration; 
base_type, a_type, b_type : type_nallle; 

begin 
aSl'lignCHERGE, empty_ type_declaration); 

for id: psdl_id, t: type_nallle in type_declaration_pkg.sca.n(BASE) loop 
if memblilr(id, A) and member(id, B) 

then 
a_type :- type_declaration_pkg.fetch(A, id); 
b_ type : .. type_declaration_pkg .fetch(B, id) ; 

bind(id, merge_typeset, a_type, b_type), MERGE); 

end if; 

end loop; 
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for id: psdl_id. t: type_name in type_declaratioD_pkg.scan(A) loop 
if not member(id, BASE) and member(id, B) 

then 

base_type :- null_type; 
b_type : - type_declaratioD_pkg.fetch(B,id); 
bind(id,merge_types(basB_type, t, b_type), MERGE); 

end if; 

end loop; 

for id: pSdl_id, t: type_name in type_declaratioD_pkg. seanCB) loop 
if not member(id, BASE) and roemher(id, A) 

then 

base_type :'" null_type; 
a_type := type_declaratioD_pkg.fetch(A,id); 

bind(id,merge_types(hase_type ,a_type, t), MERGE); 
end if; 

end loop; 

return MERGE; 
end merge_strea.ms; 

function merge_triggers(BASE, A, B: trigger) return trigger is 

KERGE: trigger; 
confl ict_trigger: trigger :'" (tt -> by_all, 

begin 
if eq(BASE, A) 

then 
if eq(BASE, B) 

then 

MERGE.tt :- BASE.tt; 
assign(MERGE.streams, 

streams -> id_set_pkg.add(to_a("TOP"), 
id_set_pkg. empty»; 

merge_id_sets(BASE.streams, A. streams, B. streams» ; 

return MERGE; 
else 

return B; 
end if; 
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else 
if eq(BASE, B) 

then 
return A; 

else 
if eq (BASE, B) 

then 
return A j 

else 

return conflict_trigger; 

end if; 

end if; 
end if; 

end merge_triggers; 

function merge_trigger_lIlaps(VERTS: id_slilt; BASE, A, B: trigger_map) 

MERGE: trigger_map; 
base_trig, a_trig, b_trig, merge_trig: trigger; 

begin 
assign(MERGE, empty_trigger_map); 
for id : psdl_id in id_set_pkg.scan(VERTS) loop 

base_trig :- fetch(BASE,id); 
a_trig :- fetch(A,id); 

b_trig : .. fatch(B,id); 

return trigger_map is 

merge_trig :- merge_triggers(baSQ_trig, a_trig, b_trig) j 
bind(id. merge_trig, MERGE); 

end loop; 
return MERGE; 

end merge_ trigger_maps; 

function merga_expressions(BASE, A, B :eJ:pression) return expression is 

local_base: expresslon; 

local_a : exprellsion; 
local_b : e:zpression; 
c:onflict_e:zpression ; constant expression : .. 

c:reate_identifier( to_a(" •• CONFLICr •• ")) ; 
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begin 
ilssign(local_base. BASE); 

!l.ssign(locaLa, A); 

!l.ssign(locaLb, B); 

if eq(local_BASE, locaLa) 

then 

if eq(local_BASE, local_B) 

then 

returu(local_BASE) ; 

else 

return(local_B) ; 

end if; 

else 
if eq(local_BASE, local_B) 

then 

else 
if eq(local_A. local_B) 

then 
return (local_A) ; 

else 

return conflict_expression; 

end if; 
end if; 

end if; 
end merge_expressions; 

MERGE: exec_guard_=ap; 

base_eg, a_eg, b_eg, merge_eg : expression; 

begin 
assign{HERGE. eJIIPty_e:uc_guard_Dlap); 

for id : psdLid in id_set_pkg.scaneVERTS) loop 
assign(base_eg, fetch(BASE, id» j 

assign(a_eg, fetch(A,id» j 

assign{b_eg, fetch(B,id»; 

assign(merge_eg, marge_sxpressions{base_eg, a_ag, b_sg»; 

bind(id. merge_eg, MERGE); 

end loop; 
return MERGE; 
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function merge_output_guard_maps(BASE, A, B: out_guard_map) 

MERGE: out_guard_l!Iap :'" empty _out_guard_map; 
base_og, a_og. b_og, merge_og : 8xpresslon; 

begin 

return out_guard..,map is 

for id : output_id, e: expression in out_guard_map_pkg.scan(BASE) loop 
if member(id,A) and member(id,B) 

then 
assignCa_og, fetch(A, id»; 

assign(b_og, fetcheB, id»; 
assign(merge_og, merge_8xpressions(e, .!I._og, b_og»; 
bind(id, merge_og, HERGE); 

end if; 
end loop; 
for id : output_id, II : expression in out_guard_map_pkg.scan(A) loop 

if not member(id. MERGE) 
then 

if member(id, B) 
then 

assign(bas8_og, empty_expression); 

assign(b_og, fetchCB.id»; 
assignCmerge_og, merge_expressions(ba.se_og. e, b_og»; 
bind(id, merge_og, MERGE); 

else 
if not mamber(id, BASE) 

then 
bind(id, e, MERGE) j 

end if; 
end if; 

end if; 
end loop; 
for id : output_id, e ; expression in out_gua.rd_map_pkg.sca.n(B) loop 

if not lIIember(id, MERGE) and not lIIember(id. BASE) 

then 
bind(id, e, MERGE); 

end if; 
end loop; 
return MERGE; 

end merge_output_guard_lIIaps; 
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function merge_excep_trigger_maps (BASE, A, B: excep_ trigger_map) 

retUrIl excep_trigger..,map is 

MERGE: ell:cep_ trigger _map; 

base_et, a _et, b_et, merge_~rt : expresslon; 

begin 

assign(MERGE, empty_excep_ trigger_map); 

for id: excep_id,e :expression in excep_ trigger_map_pkg. scan (BASE) loop 
if melllher(id,A) and lIlemher(id,B) 

then 

assignCa_et, fetch(A,id)); 
assignCb_et, fetch(B,id)); 

assign(merge_et. merge_expressions(e. a_et, b_et)); 
bind(id, merge_et, MERGE); 

end if; 

end loop; 

for id: excep_id,e :expression in excep_ trigger_map_pkg. scan (A) loop 
if not member(id, MERGE) 

then 
if member(id, B) 

then 
assign(base_et, empty _expression) ; 
assign(b_et, fetch(B, id)); 
assignCmerge_et, merge_expressions{base_et, e, b_et)); 
bind(id, merge_et, MERGE); 

else 
if not member(id, BASE) 

then 
bind(id, e, MERGE); 

end if; 
end if; 

end if; 
end loop; 
for id: exeep_id,e: expression in exeep_ trigger_map_pkg. scan (B) loop 

if not memberCid, MERGE) and not member(id, BASE) 

then 
bind(id, e, MERGE): 

end if; 
end loop; 
return MERGE; 

end merge_exeep_ trigger_maps; 
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function merge_timer_op_sets{BASE,A,B:timer_op_set) return timer_op_set is 

MERGE; timer_op_set; 

begin 

for t_op : timer_op in timer_op_set_pkg.sc:an(BASE) loop 
if member(t_op,A) 

then 

it member(t_op,B) 

then 

add(t_op ,MERGE); 

end if; 

end if; 

end loop; 

for t_op : tiUler_op in timer_op_set_pkg.scan(A) loop 
if not member(t_op,KERGE) 

then 
if IIlBlIlber(t_op,B) 

then 
add(t_op ,MERGE); 

end if ; 

end if; 

end loop; 

for t_op : timer_op in timer_op_set_pkg.scan(B) loop 
if not member(t_op,KERGE) 

then 

if member(t_op,A) 
then 

add(t_op,MERGE) ; 

end if; 

end if; 
end loop; 

return MERGE; 
end merge_ timer_Op_lIBtB; 
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function merge_timer_op_mapseVERTS: id_set; BASE, A, B: timer_op_map) 
return timer_op_map ~fF 

MERGE: timer _op_map; 
base_set, a_set, b_set. merge_set : timer_op_set; 

begin 

assign(HERGE, empty_timer_op_map); 
for id : pSdl_id in id_set _pkg.scan(VERTS) loop 

assign(base_set, fetch(BASE, id)); 

assign(a_set, fetch(A,id)); 

assignCb_set. fetch(B, id)) ; 
assignCmerge_set, merge_timer_op_setsCbase_set, a_set, b_set)); 

bind(id, merge_set, MERGE); 
end loop; 

return MERGE; 

end merge_ timer_op_maps; 

function merge_timing_data(BASE, A, B: mi11is8c) return millisec is 

begin 

if BASE" A 

then if BASE. B 

then return BASE; 
else return B; 

end if; 

else if BASE. B 

then return A; 
else if A • B 

then return A; 
else return system.mu:_int; 

end if; 

end if j 

end if; 

end lIlerge_ timing_data; 
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function lnerge_period(BASE, A, B: timing_map) return timing_map is 

MERGE: timing_map; 

BASEVAL. AVAL, BVAL: millisec :'" 0; 

begin 
assign(MERGE, empty_ timing_map); 
for id: pSdl_id. m: millisec in timing_map_pkg.scan(BASE) loop 

if member(id, A) and member(id,B) 

then 
AVAL :- fetchCA, id); 

BVAL :: fetch{B, id) ; 

bind(id, merge_timing_data.(m,AVAL,BVAL), MERGE); 

end if; 
end loop j 
for id: pBdl_id, m: millisec in timing_map_pkg.scan(A) loop 

if not memher(id, MERGE) and not member(id,BASE) 

then 
if memher(id, B) 

then 

BVAL :- fetcheB, id); 

if m I"' BVAL then 

bind(id, system.mu_int, MERGE); 

end if; 
else 

bind(id. m. MERGE); 
end if; 

end if; 
end loop; 
for id: psdl_id. m: millisec in timing_map_pkg.scan(A) loop 

if not mel!lber(id. A) and not memher(id,BASE) 

then 
bind(id, m, MERGE) j 

end if; 

end loop; 

return MERGE; 
end merge_period; 
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MERGE: timing_map; 
BASEVAL, AVAL, BVAL: millisec :'" 0; 

begin 
assign(MERGE. empty_timing_map) j 
for id: psdl _id. m: millisec in timing_ma.p_pkg.sca.n(BASE) loop 

if member(id, A) and member(id,B) 

then 
HAL :"' fetch(A, id); 

BVAL :'" fetcheB, id) j 

bind(id, merge_met(m,AVAL,BVAL). MERGE) ; 
end if; 

end loop; 
for id: psdl _id. m: lIIillisec in timing_map_pkg.scan(A) loop 

if not member(id, MERGE) and not member(id,BASE) 

then 
if member(id, B) 

then 
BVAL :- fetch(ll. id); 

if m / .. BVAL then 
bind(id, system.mU:_int. MERGE) j 

end if; 

else 
bind(id. m, MERGE) j 

end if; 

end if; 

end loop; 

for id: psdl_id. III: millisec in dming_map_pkg.scan(A) loop 

if not member(id, A) and not member(id,BASE) 

then 

bind(id. m, MERGE); 
end if j 

end loop j 
return MERGE j 

end merge_fw_or_mrt; 
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function merge_mcp(BASE, A, B: lIIillisec) return mill i sec is 

begin 

it A >'" B 
then A_ I KLB : .. H; 

else A_INT_B :'" A; 
end if; 

if BASE <- A 

end if; 
if BASE (- B 

else B_DIFF_BASE :'" system.max_int; 
end if; 
if A_OIFF_BASE > .. A_IHT_B 

then return A_DIFF _BASE; 

else return B_DIFF_BASE; 

end if; 

else if A_INT_B >-= B_DIFF _BASE 

then return A_INT_B; 
else return B_DIFF _BASE; 

end if; 
end if; 
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function merge_min_call_per(BASE, A, B: timing_map) returIl. tillling_map is 

MERGE: timing_map; 

BASEVAL. AVAL, BVAL: millisec :- 0; 

begin 

assign(MERGE, empty_timing_map); 
for id: psdl _id, m: millisEic in timing_map_pkg.scan(BASE) loop 

if member(id, A) and member(id,B) 

then 
AVAL := fetch(A, id); 

BVAL :" fetcheB, id); 

bind(id, merge_mcp(m,AVAL,BVAL). MERGE); 

and if; 

end loop; 

:for id: psdl_id, m: millisec in timing_map_pkg.scan(A) loop 
if not member(id, MERGE) and not member(id,BASE) 

then 
if member(id, B) 

then 
BVAL :'" fetcheB, id); 

if m / .. BVAL then 

bind(id, system.ma.x_int. MERGE); 
end if; 

else 

bind(id, m, MERGE); 

end if; 
end if; 

end loop; 
for id: pSdl_id, m: millisElc in timing_map_pkg.scan(A) loop 

if not member(id, A) and not member(id,BASE) 

then 

bind(id, m, MERGE); 

end if; 
end loop; 

raturn MERGE; 

and proto_impl_merge_pkg; 
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5. prototype_d ependency _graph_pkg 

-- COMPONENT NAME : PACKAGE PROTOTYPE_DEPENDENCY _GRAPH_PKG 

( prototype_dependency_graph_pks_s. a ) 

-- USAGE : Used to perform change-merging OIl prototype 

dependency graphs. 
-- AUTHOR : David A. Dampier 

-- DATE OF CREATION : 19 April 1994 

-- LANGUAGE USED : Ada 

-- COMPILER USED : Sun Ada 1. 0 

-- PURPOSE ; Provides specifications for the funct i ons necessary 
to merge PSDL prototype dependency graphs. 

with TEXT_IO; use TEXT_IO; 

with a _strings; use a_strings; 
\lith generic_map_pkg; 
with generic_set_pkg; 
with psdl_cOllcrete_type_pkg; use psdl_cOIlcrete_type_pkg; 
with psdl_graph_pkg; use psdl_graph_pkg; 

with psdl_component_pkg; use psd130mponent_pkg; 

package prototype_dependency_graph_pkg is 

procedure assign(x: in out edge_set; y: in edge_set) renames 
edge_set_pkg. assign; 

type prototype_dependency_graph is new psdl_graph; 

function build_PDG(P: in psdLcomponent) 
return prototype_dependency _graph; 

function preserved_pllXt (Base, A ,B: in prototype_dependency _graph) 
return prototype_dependency _graph; 

function create_slice(G: in prototype_dependency_graph;E: in edge) 
return prototype_dependency_graph; 

function create_slice(G: in prototype_dependency_graph ;E: in edge_set) 
return prototype_dependency_graph; 
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function compare_slices (S1 ,S2: in prototype_dependency_graph) 
return baolear.; , 

function graph_union(Gl ,G2: in prototype_dependency_graph ) 
return prototype_dependency _graph; 

function grapb_mergeCG1.G2 ,G3: in prototype_dependency_graph) 

return prototype_dependency_graph; 

function affected_part (G ,B: in prototype_dependency_graph) 

return prototype_dependency _graph; 

function compare_graphs (Gl,G2 ,S: in prototype_dependency_grapb) 
return boolean; 

end prototype_dependency_gn.ph_pkg; 
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package body prototype_dependency_graph_pkg is 

function empty_POe; return prototype_dependency_graph is 

begin 

return empty_psdl_graph; 
end; 

-- This function takes a PSDL component and creates from the 

-- implementation gn.ph. a prototype dependency graph. 

function build_PDGep: in psdl_component) 

G: prototype_dependency_graph; 

0: psdLid; 
VERTS: id_set; 
OUTEDGE: a_string; 

begin 

assign{G, empty_PDG); 

return prototype_dependency_graph is 

assignee;. prototype_dependency_graph(graph(P»); 

ass ign (VERTS • vertices (G)); 

for id: psdl_id in id_set_pkg.scan(VERTS) loop 
if equal(successors(id, G), empty_id_set) 

then 
OUTEDGE :- copy(idI:EXT); 

I'lSsignCG. add_edgeCid, EXT, OUTEDGE, G, 0»; 
if not hi'ls_ vertex(EXT, G) 

then 

assign(G, add_v6rtex(EXT, G»; 

end if; 

end if; 

end loop; 
return G; 

end build_PDG; 
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- - This :function calculates the part o:t Ease,A,and B which are identical! 

function preserved_part (Base,A,B: in prototype_dependency_graph) 
return prototype_dependency_graph is 

PP, S1, 52, 53: prototype_dependency_graph; 

E: edge; 

begin 
assignepP, empty_POG); 

assign(S1. empty_POG); 
assign(S2, empty_POG); 

assign(S3, empty_PDG); 

assigneD, edges (Base)) ; 
for E:edge in edge_set_pkg.scan(D) loop 

assign{S1, create_slice(Base, E»; 
assigu(S2, create_slice(A, E»; 
assign(S3, create_sHea(B, E»; 

if compare_slices(Sl, 52) and then compare_slices(S1, 53) 

then 

assign(PP, graph_unian(S1, PP»j 

end if; 

recycle(S1) ; 

recycle(S2) j 
recyc1e(S3) ; 

end loop; 
return PPj 

end preserved_part; 
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-- This function creates a graph which contains only the part of G which-

-- affects the output values written to the edge E. 

function create_slice(G: in prototype_dependency_graph;E: in edge) 

return prototype_dependency_sraph is 

51, 52: prototype_dependency_graph; 

0: edge; 
C: edge_setj 

begin 
assign(S1, empty_PDG); 
<'I.Ssign(S2. empty_PDG); 
if has_edge(E.x, E.y. G) then 

assign(S1, add_edge(E.x,E.y,E.streatLnarne, 
51, latency(E. x ,E.y ,E.streaJII_name,G))); 

assign(S1, add_vertex(E.x. 51, lI1aximUJn_execution_tiJlle(E.x,G))); 

if eq(E.y, EXT) 
then 

assign(S1. add_vertex(E.y, 51)); 
end if; 

assignee, edges(G)); 
"'hile not compare_slicas(S1, 52) loop 

assign(S2, 51); 

for D:edge in edge_set_pkg.scan(C) loop 
if (has_vertex(D.y, Sl) and not eq(D.y, EXT)) 

then 
assign(Sl, add_edge(D.x,D.y. 

D. stream_name,Sl, latency(D .x,D.y ,D. stream_name,G))) ; 

assign(Sl, add_vertex(D.x. Sl, 

end if; 

end loop; 
end loop; 

end if; 
return Sl; 

end create_slice; 

maximum_execution_time(D.x ,G))) ; 
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-- This fW'lction calculates the W'lion of the graphs Gl and G2. 

fW'lction graph_W'lion(Gl ,G2: in prototype_dependency_graph) 

return prototype_dependency_graph is 

G; prototype_dependency_graph; 
V; psdl_id; 

W: id_set; 

E: edge; 
D: edge_set; 

begin 
assign(G, empty_PDG); 

assign(G,G1) ; 

assign(W, vertices(G2»; 

assigneD, edges(G2»: 
for V:psdl_id in id_set_pkg.scan(W) loop 

if not (has_verteJ:(V, G» 

then 
assign(G, add_verteJ:(V, G,maximum_eJ:ecution_tima(V ,G2») ; 

and if: 
end loop; 

for E:adge in edga_set_pkg.scan(D) loop 
if not (edge_set_pkg.member(E, edges(G») 

then 
assign(G, add_edge(E.J:,E.y, 

E.strellJD._name, G ,latency(E.J:,E.y ,E. strellJD._name ,G2)) ; 
end if; 

end loop; 
return G; 

end graph_union; 
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-- This "function merges three graphs using the fUnction graph_union. 

function graph_merge(Gl,G2,G3: in prototype_dependency_graph) 

return prototype_dependency_graph is 

G: prototype_dependency _graph; 

begin 

assignee, empty_POG); 

assignee, graph_UIlion(Gl, G2»; 

assignee, graph_unionCG, G3»; 

return G; 
end graph_merge; 

-- This function calculates the part of G whicb is not contained in P. 

function affected_part (G ,5: in prototype_dependency_graph) 
return prototype_dependency_graph is 

A, SC. SB: prototypl!_dependency_graph; 
E: edge; 
0: edge_set; 

begin 
assign(A, empty_POG); 
assign(SG, empty_POG); 
assign(SB, empty_POG); 

assigneD, edges(G»; 

for E:edge in edgtl_set_pkg.sce.nCO) loop 
assign(SG, create_slice(G, E)); 

assign(SS, create_slice(S, E)); 
if not compare_slices(SG, sa) 

then 
assign(A, add_edge(E.x,E.y, 

E. strea.rn_n!Ule, A, latency(E.x,E.y ,E. stre!Ul_name ,G))) ; 
assign(A, add_vertex(E.x, A, lIIaximum_execution_time(E.x, G))); 
assign(A, add_vertex(E.y, A, mui IllUDI_execution_time(E.y, G))); 

end if; 
end loop; 
return A; 

end affected_part j 
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- - This t'unct i on coc:pares the graphs Gl and G2 \lith respect to the 
-- slice S . It' each ot' Gl and G2 are the same \li t h respect to S, then 
-- it ret urns TRUE. 

function compare_graphs(Gl ,G2, S: in proto t ype_depEndency_graph) 

return boolean is 

E: edge_set ; 
T, V: prototype_dependency_graph; 

begin 
assign(T, empty _PDG) ; 
ass i gn(V J empty_PDG); 

assigneE, edges(psdl_graph(S»); 

assign(T J create_slice(Gl, E)); 

assign(V, create_slice(G2. E»; 

return(compare_slices(T, V»; 
end compare_graphs; 

end prototype_dependency_graph_pkg; 
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