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ABSTRACT

Sampled-data control systems generally have fixed sampling

frequencies which must be set high enough to give satisfactory

performance for all anticipated conditions, A study is made

here of an adaptive system which varies the sampling frequency

by measuring a system parameter. It is shown, that a sampler

followed by a zero-order hold whose sampling period is con-

trolled by the absolute value of the first derivative of the

error signal will be a more "efficient" sampler than a fixed

frequency sar.; ler. That is, over a given time interval, fewer

samples are needed with the variable frequency system than with

a fixed frequency system while maintaining essentially the same

response characteristics.

Analog computer studies of simple type 1 and type 2

sampled-data servo systems with error sampling and unity feedback

verified the method . Standard analog computer components were

used to set up a simulated servo system, a rate detector, abso-

lute value detector, a voltage controlled oscillator, and a

sampler and zero-order hold*

The system described reduced the number of samples required

for response to a step input to about three-quarters that required

in a fixed sampling frequency system. Over a long period of time,

savings in the number of samples required can be expected to be

between twenty-five and fifty per cent. In many applications,

the saving produced by reducing the overall number of samples

required may outweigh the added complexity of the adaptive

sampling frequency system.
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CHAPTER I

INTRODUCTION

This thesis presents the investigation of a sampled-data

feedback control system employing an adaptive, variable fre-

quency sampler. The basic area of investigation was concerned

with finding a system signal and the functions of that signal

for controlling the variable frequency sampler so that the

sampling would be more efficient. Sampling is defined to be

more efficient when similar output response characteristics

are obtained with fewer samples. The investigation was limited

to the extent that only readily available system signals or

signals which could be generated in a simple manner from some

system signal were considered as controlling signals for the

variable frequency sampler.

The problem was attacked with the aid of analog computer

studies. All of the necessary system component circuits were

simulated on the analog computer. The entire system was com-

posed of a simple servo, a variable frequency sampler and zero

order hold circuit, a differentiating circuit, an absolute

value detection circuit, a voltage controlled, variable fre-

quency oscillator and a transistorized relay control circuit.

Type I and type II servo systems were investigated and it was

found that the number of samples necessary for specified output

response characteristics could be substantially reduced using

aperiodic sampling. A method of sampling frequency control

using a function of the first derivative of the error signal

was developed. It was found that the sampling frequency, in the
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interest of effi iild ] cessary, toward

an upper bound d g the transit- ate and decreased toward

a lower bound during state conditions.

The thesis topic was suggested at the Philco Corporation,

Western Development Laboratories, as an investigation that might

produce profitable results. It was desired that some method

of variable frequency sampling control be found which would

reduce the total number of samples required while maintaining

the same response characteristics. The purpose of the reduc-

tion of the number of samples required was to extend the life-

time of digital shaft encoders and also to enhance the

possibilities of computer time sharing.

A survey of the literature indicated that this sampling

problem had not yet been investigated. Many studies have been

recently made concerning sampled data feedback control systems

12 3 4
with periodic sampling. Direct applications of the

periodic sampling principle are, however, relatively limited.

A more difficult and more promising problem is that of aperiodic

sampling control. Methods have been developed for analyzing

aperiodic sampling systems as an aid toward understanding and

synthesizing these non-linear systems. However, the problem

of designing or implementing the aperiodic sampling control,

has not been investigated. The authors could find no published

or unpublished literature treating the problem of aperiodic

sampling as applied to total sample reduction without response

characteristic degradation.

The following chapters will discuss the basic sampled-data

2





control systems, the control of variable frequency aperiodic

sampling, the results of the analog computer studies and the

system adaptive qualities with respect to aperiodic sampling.

It is hoped that this thesis will help to extend the explored

area in the realm of sampled-data servomechanisms

.





CHAPTER II

THE BASIC SAMPLED* DATA CONTROL SYSTEM

One basic sampled^data feedback control system was chosen

for study. The block diagram of the system is shown in Fig. 1

R \ E Gh(s)

p -k

+ >

Figure 1. Basic sampled-data control system.

The basic sampled-data control system was investigated using

two different transfer functions G(s). This chapter will

consider the basic sampled-data control system with fixed

period sampling only. The desired minimum and maximum fixed

frequency sampling periods will be discussed. The discussion

is separated into two sections; the first section describes

the type II servo system and the second section describes the

type I servo system.

The transfer function G(s) = ~ produces a
s

type II servo system. G. (s) is a zero order hold. The z-plane

root-locus analysis is discussed in Appendix F It is seen

that the z-plane transfer function of this type II sampled-data

system is:

G(z) =
K
l
(z + z

l
)

(z - l)
2

where

K
±

= KT(1 + 4±)

aT - 2
z
l aT + 2





The maximum p was determii ' the steady state

stability requirements. Two conditions determine the region

of stable response of the closed loop system. These simul-

taneous conditions are:

aT S 2

and
O KT - 2 .

Therefore, with both a and K given as fixed values, the range

of T for stable closed loop response is determined by:

O < T ^ - for a > K
a

and

< T - | for a K

Fig. 2(c) illustrates a reasonable sampling period T for steady

state stability conditions. The Brush recording of Fig. 2(c)

shows the system response with system parameters K = 15

,

a = 10 , and T = .096. Since a<K, the maximum period T for

system stability is determined by T = 2/K = .133. Thus it is

seen that T = .096 is near the limit of T for stable response

and the peak overshoot is nearly 100%.

The minimum sampling period T was determined by the

largest value of T that produced a response similar to that

of a continuous system. Fig. 3 illustrates this range of samp-

ling periods for a system with a = 10 and K = 10. In Fig. 3

it is seen that the system response is practically the same

when T = .016 or T = .025. For comparison, Table 1 contains

the pertinent values from Fig. 3. The table shows that with

respect to output response characteristics very little is

gained by sampling faster than T = .043. With system

5





parameters a = 10 and K = 15 . Fig. 2(a) shows that

T = 0.044 is also a reasonable lower limit for this system,

and Fig. 2(b) demonstrates that increasing T to 0.053 sec.

increases the peak overshoot and settling time only slightly.

T
(Secc ds)

Rise
Time

Peak
Overshoot

Time of
Peak
Overshoot

5%
Settling
Time

.016 .125 40% .30 .813

.025 .125 40% .30 .813

.043 .115 45% .28 1.075

.080 .075 60% .25 1.150

Table 1. Comparison of fast sampling responses

Fig. 4 illustrates the accuracy with which the analog

computer simulated system represents the theoretical mathe-

matical model with respect to stability criterion. In both

examples of Fig. 4, a>K so the maximum T for a stable

response is determined by the relation T = 2/a = .100. The

theoretical response of the closed loop system at T = .100

is a stable, undamped periodic response. Fig. 4(a) shows the

steady state response where a = 20, K = 7.5, and T = .1006.

Fig. 4(b) shows the steady state response where a = 20, K = 15,

and T = .1006. Both figures illustrate that the various

simulated components are accurate representations of the system

mathematical model.

The type I servo is produced by the transfer function

G(s) j + ^ • T1:ie z»plane root-locus is discussed in

o





:— "I ^r»-T

(a) T = 0.044 (b) T = 0.053

(c) T = 0.096

Fig. 2. Fixed rate responses for type II system where K = 15

and a = 10. Suitable range of T represented by . 0445 T 5. 096.

The graphs are recordings of the closed loop system response
and the output of the zero order hold to a unit step input.
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it is unnecessary to sample faster than T = .043 seconds.
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(a) Steady state response at limit of stability.

(b) Steady state response at limit of stability.

Fig. 4. Brush recordings illustrating closeness of analog
computer results to the theoretically determined resql

a
t

t
s

iV

The theoretical steady state response at T = 0.10 i,s a, stabl,e t

undamped periodic oscillation.





Appendix F. It is seen that the z-plane transfer function is

K
1

= ~(bT + e"
bT

- 1)
1

b
Z

c( ,

K
1
(Z :/l }

z - 1 - e~
bT

(l + bT)
GCz) " (z - Pl )(z - 1)

z
l

bT + e
~bT

_ 1

P
1

= e

From Table F-l in Appendix F, it is seen that if bT >3.71,

then the relationship between T and K for the stable response

region is:

0<K ^ 2b
2
(l + e~

bT
)

^

bT(l + e~
bT

) - 2(1 - e~
bT

)

and if bT<3.71, the relationship is:

,2,~ -bT>.

<K < b (1
-

e }— .

1 - e"
DJ

(l + bT)

The Brush recordings of Figs. 5 and 6 illustrate a

reasonable sampling period range for the type I system.

Fig. 5(a) shows a reasonably fast sampling period that appro-

ximates the high frequency sampled closed loop response.

Figs. 5(b) and 6(a) show intermediate sampling periods, and

Fig. 6(b) illustrates a reasonably slow sampling period which

is nearing the limit of T for stable response. Inspection of

the z-plane root-locus diagrams shows that the type I system

with T<3.71 is more oscillatory near the limit of stability

than is the type II system. This is also observed by compar-

ing Figs. 2(c) and 6(b).

In the same manner as for the type II system, the minimum

10





(a) T = 0,023 sec.

(b) T = 0«038 sec,

Fig. 5, Fixed sampling frequency response: Type I system,

K S 1200 , b = 40 .
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(a) T I 0,050 sec.

(b) T = 0.083 sec,

Fig. 6. Fixed sampling frequency response:
K = 1200 , b = 40 .

Type I system,

12





sampling period was determined by the largest value of T that

produced continuous response characteristics. With system

parameters b = 40 and K = 1200, a reasonable range of T

is given by .023 ' T - .083. The system parameters b and K

were chosen so that the range of the sampling period T would

be similar to the range used for the type II system.

The graphs of Figs. 2, 4, 5, and 6 are all recordings of

the closed loop system response to a unit step input and the

corresponding output of the zero order hold. The analog com-

puter solution is time scaled by the factor 20 so that each

time unit on the Brush recordings represents .05 seconds of

real time.

The purpose of this chapter was to demonstrate how the

ranges of the various system parameters were determined and

to justify the ranges so determined. The z-^plane root-locus

diagrams of Appendix F show the relationships of the open-loop

gain, poles, and zeros to the system root locations. Treating

T as a dependent variable allows a range of T to be determined,

based on a stability criterion. This range of T determines

an upper bound to the duration of the sample period. The

lower bound to the sample period was determined by analog

computer tests and could also be determined by bandwidth con-

siderations. For any given set of system parameters, two

fixed limits can be found so that: (1) it is not desirable

to sample with longer periods than the upper bound to T

because of stability considerations, and (2) it is not necessary

to sample with shorter periods than the lower bound to T since

13





faster sampling provides relatively little additional infor-

mation in the error channel to improve the system response.

The upper and lower bounds to T determine the permissible

range of variation of T when it is continuously or discretely

varied during the transient periods of the system response

as will be described in Chapter IV.

14





CHAPTER III

VARIABLE FREQUENCY SAMPLING

The function of a sampler and hold in a servo system is

to approximate a continuous signal as accurately as possible,

One way to improve the accuracy of ap^ roximation is to increase

the sampling frequency. Another way is to use a higher order

hold than the zero-order hold which is generally used. Both

these methods have distinct limitations. The first in demand-

ing more performance of components and more time of communi-

cation channels, the second in more complicated circuitry.

This chapter presents a method of improving the efficiency

of a sampler-zero order hold combination by using variable

frequency sampling. An efficient sampling system is defined

to be one which satisfactorily approximates its input with a

minimum number of samples over any period of time.

Fig. 7(a) shows the continuous input and sampled-held

output of a sampler and zero-order hold using ordinary fixed

frequency sampling. Since in the servo system the error signal

is the input to the sampler, the symbols E and E* will be used

for the input and output of the sampler and hold. In this

chapter the terms "input" and "output" will refer only to the

signals in and out of the sampler and hold, not to the reference

variable R and command variable C of the ;;ervo system. In

Fig. 7(a) it can be seen that fixed-frequency sampling results

in a better approximation of the input near the maximum of the

15





curve where trie first derivative E approaches zero than it

does in the portion of rapid rise where E is large.

Since in a servo system it is always the purpose to

minimize E, the authors at first tried E as a frequency

controlling variable. Fig. 7(b) demonstrates that attempting

to control f as a function of E can actually decrease
s i \

-

the efficiency of the system. When f is proportional to E
,s

I I

it can be seen that in the rapidly rising portion of the curve,

sampling is too slow, and in the region of the maximum, the

system is sampling unnecessarily fast.

In Fig. 7(c), f is a function of E and the accuracy

of approximation appears to be nearly constant over the entire

curve. This is the type of sampling frequency control found

suitable for improving the efficiency.

Fig. 8 is a magnification of the input and output of the

sampler over one sample period. The total area between the

input and output in the sample period is the integral differ-

ence for one period:

ID = (E - E*) dt
h

ti

/Ti
(E - E*) dt

o

In any successful sampled data servo system, the sampling

frequency must be several times the highest system signal

frequency of importance. Hence, it is assumed that E does not

vary radically during a sample period. Then a reasonable

16
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approximation of E over the period is a straight line approxi-

mation: E = E. + E t
1 d.

where E is the first derivative of E at some instant a in
a

»

the period. Fig. 8 shows approximations based on E. and

a value of E which has the same slope as the chord line.

Then an approximation of the integral difference is:

Ti
ID = (E. + E. t - E*) dt11 h

o

but E£ = E. over the entire period, hence:
h l

/- Ti T.
2

ID = E^ dt = E. y .

o

Now if T is made a function of E such that

C
T. =

, ... ,
where C is a constant,

the integral difference per sample period will be a constant

c2
ID = t §- ,

the algebraic sign being the same as E. . Such a function

for T. is difficult to generate but can be approximated over

a given range by simpler functions.

In Chapter II it was shown that, in general, a servo

system has a usable range of T between upper and lower limits

determined by the stability and the bandwidth of the system.

The simplest way to control T was found to make it a linear

function of E i between those limits.

19





T = T . a Ie I 0^'E 1 ^ max
:

min
max <

' :
' A

rp rp

T . T j E I
^ max ~ min

min I ' A

A method of generating this function using operational ampli-

fiers is described in Appendices C and D.

The function is shown in Fig, 9(a). The ID per sample

E
j
is sketched in Fig. 9(b). It can be

seen that the ID can be held essentially constant over a

limited range by using the linear function. In use with the

simulated servo system, the linear function was found to

improve the sampling efficiency as will be described in

Chapter IV.

Another method of controlling the sampling frequency is

by a number of fixed frequencies which are successively used

as Ej increases. A system using two discrete frequencies

was found to improve efficiency and is also discussed in

Chapter IV. Curves of T and ID as functions of |E are shown

in Fig . 10

.

Therefore, two methods of sampling frequency control

have been investigated to improve efficiency. That these

methods can be used to decrease the amount of sampling needed

to control a servomechanism will be demonstrated in the next

chapter

.

20





'max

(a) Sample Period vs. Error Derivative*

I.D.

(b) Integral Difference per Sample Period
vs. Error Derivative.

Fig. 9» Variable Sampling Frequency Control.

21





To -4 — - —

E-

(a) Sample Period vs. Error Derivative.

I.D.

(b) Integral Difference per Sample Period
vs. Error Derivative.

Fig. 10. Discrete Sampling Frequency Control.
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CHAPTER IV

SERVO SYSTEM WITH VARIABLE SAMPLING FREQUENCY

The characteristics of two sampled- data systems with

fixed-frequency sampling were discussed in Chapter II. This

chapter presents the characteristics of systems incorporating

the variable-frequency sampling discussed in Chapter III.

Fig. 11 is a block diagram of the system with the sampling-

frequency controller. The principal method of analysis was

an analog computer simulation.

In Chapter III it was seen that the integral difference

between input and output of a sampler and zero-crder hold

could be controlled by varying the sampling period T. The

method used was to make T a function of the first derivative

of the input signal. Since the input to the sampler in this

servo system is the error signal E:

T = T( |e|) (4-1)

Since the z-plane transfer function G(z) is a function

E
I

when a variable frequency

sampler is used. The servo system is then non-linear.

Furthermore, the non-linearity is an. unusually complicated

one since the poles and zeroes of the transfer function, as
m

well as the gain, are all functions of E

Because of the non-linearity of the system, an analog

computer simulation was undertaken as being the most direct

approach to the problem. With the simulation, all the non-

linearities are accounted for by actually using a variable-

23
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frequency sampling syste Thus, the record of the computer

output is a direct measure of system performance.

Since it was determined that the sampling frequency

should increase as a function of the absolute value of the

first time-derivative of the error signal, the controller

consisted of a differentiator, an absolute value detector,

shaping circuits, and a variable frequency oscillator. The

function generated for control was:

T = T - A
max

=
. . < T T .

„ - max mm
E = —

T = Tmin E =

A

T T .

max - mm
A

Fig. 12 is a block diagram showing these components in

the system. Another method of control found to be satis-

factory was to use two discrete frequencies instead of

continuously variable frequencies. Fig. 13 is a block

diagram of the system with a discrete frequency controller

which switches frequencies at E = E, . The details of

the analog simulation circuits are described in Appendices

A through E,

The two systems analyzed for fixed frequency sampling

in Chapter II had acceptable response characteristics as

continuous systems. For each system a pair of sampling

frequency limits were found such that above the upper limit,

no improvement in response occurred and below the lower limit,

the system was unstable. In the analog computer study, a

fixed frequency between these limits was chosen such that

25
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system Lightly more

oscillatory thar mparal s system. Its p

formance was the standard against which the

variable freque multiple frequency systems were com

pared. If the vai r„ system could produce similar

response with fewer samples per unit time, then it was said

to be more efficient.

Pig. 14 is a series of recordings of the response of

the type II system to a unit step input. Table 4-1 is a

summary of the response characteristics determined from the

recordings. For each variable period run T =0.1 sec,
111 clX

T • =0.05 sec. Examples include runs at constant Tmin mm
and T , bi=frequency runs switching from T to Tmax ' M J max nun

at E , , a run using continuous control between and
1 ' & mm

T , and three high«freqtiency runs (i, j, k) for comparison,
m 3.x

Run (g) having T - T . was used as the standard ofmm
performance. In Chapter II, it was shown that the response

at T = 0.05 sec, closely approximates the response of the

continuous system. The variable and bi«frequency systems

all sample at half the frequency of the standard system

when E = , thus sampling is reduced by 50% under quiescent

steady-state conditions.

The settling time for response to a step input is

approximately 0.5 sec. for each type of control. Over the

settling time, sampling has been reduced 10% using bi-

frequency sampling in run (f) and 20% using variable

frequency in run (] .
Both these runs demonstrate a reducti

28





(a) T = 0.1 sec,

(fe) £, = 0.1 sec. 5 T^ 0.05 sec. at |e|- 20 rad/sec.

Fig. 14. Type II Servo responses to unit step.
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•«>
(c) T c 0.1 sec. 5 \ * 0.05 sec. at|E|=10 rad/sec

(d) TQ
= 0.1 sec; T

x
= 0.05 sec. at|E| = 5»0 rad/sec,

Fig. 14. Type II SERVO response to unit step.
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*
. >

(e) T
Q
= 0.1 sec.} T^ s 0.05 sec. at |e| - 2*50 rad/sec.

(f) T = 0.1 sec. j T^ = 0.05 sec. at |e
|
= 1.250 rad/sec.

Fig. 14 • Type II Servo response to unit step.
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(g) T = 0,05 sec,

(h) L,r = O-1 sec '5 Tmin = °-°5 sec '
max

A = 0.005 J
(Eqn. 4-2)

Fig. 14. Type II Servo response to unit step.
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(i) T = 0.036 sec.

(j) T = 0.01:6 sec,

(k) T< 0.005 sec

33

Fig. 14. Type II Servo response to unit step.





in sampling while maintaining essentially the same response

characteristics as the standard. By setting E- at higher

levels, the number of samples over the settling period is

reduced at the expense of higher peak overshoots. Specifi-

cations and system requirements would dictate which type of

control and what sensitivity to use in a particular case.

Results with the type I system were similar over the same

type of frequency range.

It can be seen that the variable frequency control

system definitely accomplishes its purpose of more efficient

sampling. In general, the continuously variable control

system was more efficient than the two-frequency control,

but even the latter was a distinct improvement over constant-

frequency sampling.

Table 4-1

Comparative Responses to 1 rad. Step Input. (From Fig. 14.)

Sample Period T Samples > over Overshoot Undershoot
. 5 sec 1.0 sec

a. T =T =0.1 sec.
o max

5 10 110% 33%

b. E
l

=20 rad/sec. 6 11 75 20

c. " 10 7 12 50 12

d. " 5,0 " 8 13 50 20

e. ,T 2.5 " 8.5 13.5 40 10

f . » 1.25 " 9 14 40 8

g. T =T =0.05 sec.& 1 mm 10 20 40 6

h. T = T - 0.005 liUec.
o '

'

8 13 40 8

(Eqn. 4-2)
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CHAPTER V

ADAPTABILITY

This chapter will discuss the adaptive qualities of the

variable sampling frequency system to variations of plant

parameters, i.e., open loop system pole or zero variations.

A second consideration will be whether the variable sampling

frequency system can be programmed to be adaptive to plant

parameter variations.

Consider first the adaptivity of the variable sampling

frequency system to plant parameter variations. The basic

z-plane root-locus relationships are discussed in Appendix

F. It is seen that this system is inherently adaptive to

parametric variations in the sense that the variable sampling

frequency will compensate for the parametric variations which

increase or decrease the error rate.

The sampling iquency is controlled by a function of

the first derivative of the error. In the sense that the

varying plant parameter will cause a variation of the error

derivative, then the sampling frequency will be adaptive to

this parameter variation. That is, if the parameter is

varying or varied in such a manner as to reduce the error

derivative, then the sampler will sample more slowly; and

if the parameter variation increases the error derivative,

then the sampler will sample more rapidly.

Consider the situation where it is possible to measure

the changes of a varying system parameter and, as a result

of this information, correspondingly change the value of the
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open loop gain or the sampling frequency. Specifically,

consider the type II system with a fixed sampling period T,

where

G(z) = KT(1 + -^)
z +

aT _2
aT + 2

(z - 1)
2

Let the s-plane open-loop zero be changed from a to c.a

where c. is a positive real constant. As a compensation

investigation, let T be changed from T to T/c. , and

K be changed from K to c,K. Therefore, the products aT

and KT are unchanged, and the z transform G(z) is

exactly the same expression as before the disturbance c.

was introduced. However, the real time output response has

been changed. Since the z transform is unchanged, it is

seen that the amplitude of the i sample, where (i = 0,

1, 2, . .
.

, n) is unchanged, however, the i sample now

occurs at real time t = (T)(i)/c. instead of at t = (T)(i)

as before. Therefore, this method of compensation preserves

all relative response amplitudes but changes the time of the

response, increasing the speed of response as the zero (or

pole of the type 1 system) becomes larger in value and

decreases the speed of response as the zero (or pole of the

type I system) becomes smaller in value.

If it is desired to maintain exactly the same response

characteristics while the open-loop zero value changes, then

T and K may be varied in some programmed manner to achieve

the desired response, but such an investigation is beyond the

scope of this thesis.
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Fig. 15 illustrates the effect of introducing a change

in the value of the type I system open-loop pole. Fig. 15(a)

shows the variable sampling frequency response where b = 40

,

K = 1200, and .03 ' T .07 . The response has essentially

two overshoots and two undershoots. Fig. 15(b) shows fixed

sampling frequency response where b = 20 , K = 1200, and

T = .024. The peak overshoot is 77% and the response is

relatively oscillatory. Fig. 15(c) shows the system response

where b = 20 (0 ^ t ^ .090), then b = 40 (.090 <t), and

K = 1200 with fixed T of T = .025 . The peak overshoot

is 80% because of the b = 20 value, and after t = .090,

b = 40 and the oscillation damps out quickly as in (a).

The peak overshoot is greater in (c) than in (b) because the

sampling period in (c) is longer than the period in (b) . In

Fig. 15(d) the system is again b = 20 (0 ^ t ^ .090), then

b = 40 (.090 < t) and K = 1200, with variable frequency

sampling in the range .019 - T - .045 . Comparing (d) with

(c), the peak overshoot is reduced from 80% to 70% as a result

of the higher sampling frequency allowable, and the peak under-

shoot is reduced from 20% to 15% because of the higher

frequency sampling. The response in (d) has essentially two

overshoots and two undershoots as in the case (a). In 0,5

seconds the transient has died out in both the fixed sampling

case (c) and the variable sampling case (d). It is seen that

the response in the variable sampling case with plant para-

meter change has less peak overshoot and less peak undershoot

than the fixed sampling case and has achieved the better
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Fig. 15. Effect of varying open loop pole in type I system.
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response with 17 samples in 0.5 seconds, while the fixed

frequency sampler sampled 20 times in 0„5 seconds.

The variable frequency sampler is controlled by the

error derivative with the sampling period T varying over

a given range. The sampler is not aware of the source of

the disturbance causing the error derivative value, be it

input signal, noise, system parameter variation, or load

torque; the sampling frequency is determined within its

range by the error derivative value and, in this sense, the

variable frequency sampling system is adaptive to all error-

producing disturbances.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

This thesis has described a method of adaptive sampling

frequency control for sampled-data servomechanisms . In the

system described, the minimum sampling frequency for stability

was about 50% of the sampling frequency necessary for the best

transient response. Therefore, with the adaptive sampling

frequency control generating a variable frequency between

those two limits, the maximum possible reduction in the

number of samples needed over a given period of time is 50%

if the system is undisturbed during this time. The reduction

in number of samples over the settling time of the system to

a step input was found to be about 20%. It would, therefore,

seem conservative to estimate an overall reduction in number

of samples required of about 25%, or half the maximum possible

reduction, for a system which is subject to disturbances

relatively often but not continuously.

Therefore, an approximate method of determining the per

cent reduction in number of samples using the adaptive samp-

ling control is as follows:

Determine the minimum sampling frequency for the system

from absolute stability requirements and the maximum sampling

frequency from transient requirements, bandwidth considera-

tions, or comparison with a comparable continuous system. If

these two frequencies are set as the limits of variable f^ s

in the adaptive system, an approximate estimate of the average
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number of samples i i over a long time is:

f + f .

„ T max mm
N = — s — t

If the system is subject to few disturbances, N approaches

f . t. On the other hand, if the system is continually dis-
min J J

turbed , N will increase toward f t as an upper bound.
' max

In no case will the number of samples required be greater

than for the fixed f system. Even in a constantly disturbed

system, E = at each maximum and minimum excursion of E

and some reduction in sampling will occur.

Recommendations for future investigation:

1. Control the voltage controlled oscillator, the

multivibrator discussed in Appendix D, by the other methods

described therein; namely, by two values of JEJ in the sample

E
J

. Additional analog
1*1

stages could be used for inverting and biasing (E j instead of

the bias battery used here.

2. Use an electronic function generator to generate any

number of functions of
|
E

j
to control the sample period. It

is possible that functions other than the simple ones used

here might provide more efficient sampling control.

3„ Approximate E
|
by backward differences taken on the

output of the sampler and hold. In many systems, the con-

tinuous input to the sampler might not be readily available.

Since the sample period is variable, complications can be

foreseen but the technique, if successful, would be directly

applicable to digital systems.
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Tes ious simulated applications

and determine g-time average saving in the number of

samples required.

5. Develop the theory of variable frequency sampling.

The theory of fixed- sampling-frequency sampled-data systems

has been used in this project. Process control theory,

information theory, and statistical sampling theory all might

aid in the development of a theory for this type of system.

42





REFERENCES

1. Ledland, ique for the Analysis Time-
Varying Samp: i

Systems," Tr an

s

. AIEE , Vol. 76,
Pt. II, (January, 1957), pp. 407-413.

2. Hufnagel, R„ E. "Analysis of Cyclic Rate Sampled-Data
Feedback Control Systems," Trans . AIEE , Vol. 77, Pt . II,

(1958), pp. 421-423.

3. Tou , J. T. Digital and Sampled - Data Control Systems
,

McGraw-Hill Book Company, Inc., 1959.

4. Jury, E, I. and F. J. Mullin. "The Analysis of
Sampled-Data Control Systems with A Periodically Time-
Varying Sampling Rate/' IRE Trans . on Automatic Control

,

Vol. AC-4, No. 1, May, 1959.

5. Hufnagel, R. E„ "Analysis of Aperiodically-Sampled-Data
Feedback Control Systems," (unpublished Doctoral disser-
tation, Cornell University, June, 1959).

6. Morrill, G „ D. and R. V, Baum. "Diode Limiters Simulate
Mechanical Phenomena," Electronics , Vol. 25, Pt. 4,
(October-December , 1952TT~pp. 122-126

.

7. Korn, G„ A. and T, M. Korn. Electronic Analog Computers
,

second edition, McGraw-Hill Book Company, Inc., 1956.

43





BIBLIOGRAPHY

Aseltine, J. A. and R, A. Nesbit. "The Incremental Phase
Plane for Nonlinear Sampled-Data Systems," Space
Technology Laboratories, Inc., University of California
at Los Angeles, Los Angeles, California, March 21, 1960.

Dorf , R. A. Sampled-Data Lecture Notes, U. S. Naval Post-
graduate School, 1960.

Grabbe, E. M » and others. Handbook of Automation , Computation
,

and Control , Vol. 2, John Wiley & Sons, Inc., 1959.

Jury, E. I. Sampled-Data Control Systems, John Wiley & Sons,
Inc., 1958.

Ragazzini, J. R. and G. F. Franklin. Sampled - Data Control
Systems , McGraw-Hill Book Company, Inc., 1958.

Thaler, G, J. and R. G. Brown. Analysis and Design of
Feedback Control Systems , McGraw-Hill Book Company, Inc.,

Truxal , J. G. Automatic Feedback Control System Synthesis
,

McGraw-Hill Book Company, Inc., 1955.

Truxal, J. G. ( ed . ) . Control Engineers ' Handbook , McGraw-
Hill Book Company, Inc., 1958.

Wheeler, R. C. H„ Basic Theory of the Electronic Analog
Computer

,

Donner Scientific Company, 1958.

44





APPENDIX A

COMPLETE ANALOG COMPUTER SIMULATION

The compl omputer setup is shown in Fig. A-l.

Time scaling of 20:1 was used throughout, i.e., 20 seconds of

computer time corresponds to 1 second in the simulated servo

system.

The basic sampled data servo system is simulated by

amplifiers 8 through 12. The control circuits for the sampler

are incorporated in amplifiers 1 through 7. A further break-

down of the system into its functional parts follows.

Amplifiers 8 and 10 through 12 are standard adders, sign

changers, and integrators commonly used in analog simulation

of servo systems. Amplifier 9 and the associated relay circuit

make up the sampler and zero -order hold simulator. This

circuit samples the continuous error signal from amplifier 8 at

intervals determined by the control circuits and holds the

sampled voltage as a constant output to the next amplifier until

the next sample occurs. At the time of the next sample, the

output of amplifier 9 jumps to the new sampled value and again

holds it constant. Appendix B contains a detailed explanation

of the operation of the sampler and hold circuit.

The first stage of the sampling control circuits is

amplifier 1 which is a differentiator. It provides the first

derivative of the continuous error signal which is the output

of summing amplifier 8 in the main channel of the simulated

servo system. Amplifiers 2 and 3 are the precision absolute

value detector and signal shaping circuits. They take the
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output of amplil e first derivative of the error

signal, d iute magnitude of it, and further

shape the sig] i
;

lired for the variable frequency

oscillator. The circuits associated with amplifiers 1 through

3 are explained in detail in Appendix C.

Amplifiers 4 through 7 are the voltage controlled varia-

ble frequency oscillator . The frequency of the square wave

output of amplifier 5 is a function of the input voltage to

one of the diode circuits associated with amplifier 4. The

operation of the oscillator is explained in detail in Appendix

D. The oscillator output is used to operate the transistor-

ized relay control of the sampler and hold circuit at amplifier

9 back in the main channel of the servo system. Thus, a

signal which is a function of the servo system error signal

is used to automatically control the operation of the sampler.

The transistorized relay control is further described in

Appendix E,

In the main channel of the simulated servo system, ampli-

fier 11 had two possible configurations to provide a type 1

or type 2 system. For the type 2 system, amplifier 11 was

set up with the feedback resistor and the feedback capacitor

in series as shown, in Fig. A-l and Fig. A-2.

The transfer function of stage 11 is then

fo (s) = _K JL_L_a
e . 1 s
i
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and the transfer function of the simulated servo is

G(s) = K Cs + a)

s
z

20
where a = D n with the 20:1 time scaling included.

For the type 1 servo system, amplifier 11 was set up

with the feedback resistor and feedback capacitor in parallel

as shown in Fig. A-3. The transfer function for stage 11 is

then:

^°(s) = -K
e.

v '
1 s + b

i

and the transfer function of the simulated servo is

K
G(s) =

;(s + b)

20
where b = D n with time scaling included.

R
f
C
f

Amplifier 10 is a sign changer necessitated by the sign

change occurring in the sampler and hold stage, amplifier 9.

If it is desired to simulate the servo as a continuous system

without the sampler and hold for comparison of the responses

in the continuous and sampled data modes of operation, ampli-

fiers 9 and 10 can be removed from the circuit and the output

of amplifier 8 connected directly to the input of amplifier 11

A fixed sampling frequency or manually adjustable fre-

quency sampled data system may be simulated by connecting the

output of a low frequency oscillator to the relay control

circuit or, if the variable frequency oscillator has been

set up, it may be used in the following manner. Disconnect
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the differentiating amplifier number 1 and insert a fixed or

adjustable voltage at the input of amplifier 2 or, alterna-

tively, directly to the diode circuit of amplifier 4. The

variable frequency oscillator will now operate as a conven-

tional fixed frequency oscillator and the operation of the

sampled data system with fixed sampling fequency may be

observed

.

The analog computer used was the Donner Model 3000 which

has ten operational amplifiers. The remainder of the necessary

amplifiers were, at various times in the study, Philbrick

Model USA-3, GAP/R Model K2 , and Boeing models, all chopper

stabilized. It was found necessary to use one of the chopper

stabilized amplifiers for the sampler and zero-order hold

simulator, amplifier 9, since the Donner amplifiers would not

respond equally to positive and negative steps under the

stringent conditions imposed by the relay circuit.

Auxiliary voltages were taken from the Donner Computer

initial condition board for low power uses, such as comparator

levels, and from auxiliary dry cells for higher power uses,

such as the relay power supply. A Hewlett-Packard Model 712

or two Model 711 power supplies were used to power the chopper

stabilized amplifiers.

The analog simulation circuits used in this study have

proven to be quite flexible and readily adaptable to various

control arrangements. To the knowledge of the authors, this

is the first analog simulation of a sampled data servo system

possessing automatic sampling frequency control.
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APPENDIX B

SAMPLER AND ZERO-ORDER HOLD SIMULATOR

The sampler and zero-order hold simulator consists of a

high gain operational amplifier, a two position relay, a

pair of storage capacitors which can be adjusted to an exact

2:1 ratio, and an adjustable potentiometer. The circuit is

shown in Fig. B-l. Referring to Fig. S I, potentiometer R

should be adjusted with the wiper-arm at the mid-resistance
D

point so that, R = Rr = ^

Storage capacitor C. , between the relay arm and ground,

is twice as large as feedback capacitor C
f , i.e.,

C
f

= C

C
±

= 2C
f

= 2C

The two relationships R.. = R^ and C. = 2Cr are essential

to the proper operation of the circuit. On the other hand,

the exact magnitudes of R and C are not critical. (With

the Boeing and Philbrick operational amplifiers in the circuit,

R ~ 50K and C = 0.005 pf were found to be satisfactory.)

Therefore, rather than requiring high tolerance components,

the circuit was designed so that R.. , Rr , and C^ could be

adjusted with the circuit in operation, allowing the use of

inexpensive components.

A small damping resistor, r (390 ohms), is incorporated

in the feedback capacitor circuit to suppress unwanted high

frequency oscillations when the relay switches. It is not
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essential to the theory of operation and will be omitted

from the remainder of the figures and discussion.

The sample occurs when the relay arm moves from position

1, the input side to position 2, the grid of the operational

amplifier. Each time the arm moves from 1 to 2 , e jumps

to a value -e. and holds that value until the next time
i

the arm moves from 1 to 2 . The reverse movement of the arm

from 2 to 1 has no effect on e or e. and can occur at
o 1

any time between samples. Therefore, if the relay to be used

in the circuit operates faster or more reliably in one direc-

tion than in the other, it should be installed so that the

best operation is from position 1 to position 2.

A detailed explanation of the operation is as follows:

Assume that the arm of the relay is to the left at position 1,

the input side, and at time t = o moves to the right to

position 2, the grid side. (See Fig. B-2) . Before the relay

moves, at t = 0- , the voltage across capacitor C. is

e . + e

is——- - since R. = R^ and the charge on C.

e . + e

Q L
= (2C) -^—- = C( ei + e

Q
) (1)

The operational amplifier has a gain -K which should be

very high, say 10 to 10 .

Then, along the forward amplifier circuit

e = -Ke (2)
o g

Around the feedback circuit

Of
e - e + J± (3)
g o Cf

K ^ J
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Combining (2) and (3)

Q
i

e = -Ke = -K(e + -^ )
O g O Lr

(4)

Rearranging:

O C
(5)

i"

1 + K

But since K

e =
o

1 ,

(6)

Then, by (3) and (6)

^l + ^L ne
g c

f
c
f

(7)

From (6) the charge on the feedback capacitor Cr is

«5f
= "C

f
e
o

= "Ce
o

(8)

At t = the relay arm moves to position 2, the grid of

the operational amplifier. (Fig. B-3) . The total charge

on the grid circuit is now the sum of the separate charges

on the two capacitors before the switch:

Q = Qx
+ Qf (9)

Then, from (1) and (8)

Q = C(e. + e ) - Ce = Ce. (10)x 1 o o 1

Around the operational amplifier the same relations

still hold between e and e ; hence, the final result
g o

must be that e = . The only way for this requirement to

be met is for capacitor C. to be discharged, the entire
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charge going to feedback capacitor C
f

. That this is true

physically can be seen by the following analysis: Assume

e . + e

that —
—
p is positive. Then, at the sample time, a

positive voltage is suddenly applied to the grid circuit of

the operational amplifier driving the output negative. Because

of the high gain of the amplifier, the output continues in-

creasing negatively until the grid voltage is reduced to zero

via the feedback capacitor C^- . Then the charge on capacitor

C. is zero and the charge on C
f

becomes, from equation (10):

Qf 2
= Q = c ei (li)

Then, from equation (6):

-Q -Ce.
e
o = —

f
= -rr

± = ~ e
i

(12)

which is the desired result.

Thus, e jumps from its original value to -e. at

t = . The feedback capacitor holds e constant until the^ o

relay arm moves back to the input side and then returns to the

grid with another charge Q . The circuit thereby accomplishes

its purpose; namely, to sample the input when the switch is

operated, reproduce the input magnitude at its output, and

hold the magnitude constant between sample times.

If there is any delay between the time the relay leaves

side 1 and the time it arrives at side 2, there will be an

equal delay in the sampled output. The speed of the return

movement is not critical and can occur at any time between

samples. The relay used in this study was a Potter and
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Brumfield Model SCUD. At the sampling frequencies used

there was no significant delay time arising from the relay

opera tion

.

For proper operation of the circuit, the potentiometer

R must be adjusted so that the voltage at position 1 is

exactly the average of the input and output voltages, i.e.,

e . + e
i o

e„ =
1 2

Also, the in-circuit capacitances of C. and C^- must be in

an exact 2:1 ratio. In order to meet these requirements, it

was found necessary to calibrate or adjust the system after

construction. Calibration procedure is as follows:

Use a square wave from a low-frequency function generator

for a test input. Operate the sampler at a frequency at least

four times that of the test input so that at least two output

samples can be observed during each half-cycle of the test

input. If the circuit is not properly adjusted, the output

will overshoot or undershoot on the first sample of each half-

cycle of the input. (Fig. B-4a) . After proper adjustment of

the potentiometer and the capacitance, the output will be a

rectangular wave of the same amplitudes as the input with a

time delay less than or equal to the sample period. (Fig.

B-4c) . Note that in Fig. B-4a the sampling frequency is

approximately four times the square-wave input frequency and

in Rig. B-4c the sampling frequency is about ten times the

test input frequency; however, the overshoot or undershoot is

dependent only on the adjustment of the circuit, not on the
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relative frequencies. If both the potentiometer and the

capacitances are miscalibrated , it is possible for the over-

shoot or undershoot condition not to appear, but the output

voltage will not have the same magnitude as the input. Both

the potentiometer and the trimmer capacitors must be adjusted

simultaneously to attain the calibrated condition of no

undershoot or overshoot and exact equality of output to input.

Recordings of the sampled output of a triangular input func-

tion are shown in Fig. B-5 over a range of sampling frequencies

It should be noted that the only requirement on the relay

for accurate sampling results with this circuit is the absence

of switching delay time in one direction, a requirement which

can be readily met by commercially available relays. This

two capacitor sampler and hold also has zero pulse width since

the instantaneous input at the switching time is held as a

constant output until the next sample time. By way of

contrast, the usual type of single capacitor sampler and hold,

shown below, requires the relay to close and open rapidly for

a narrow but finite pulse width. Also, capacitor C^ must

be large enough to hold the output constant between samples

but time constant R-iCf must be small compared with the pulse

width in order for the output to reproduce the input magnitude.

R

: r
]t^

K o

Figure B-6 . Ordinary One-Capacitor Hold
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It was felt that the two capacitor circuit used here

was very successful and several circuits were constructed

as plug-in units.
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APPENDIX C

DIFFERENTIATOR AND ABSOLUTE VALUE DETECTOR CIRCUITS

The conversion of the error signal E to a signal which

is a function of the time derivative of E is accomplished

in two analog simulated circuits. These circuits are shown

in Fig. C-l. The two circuits are a differentiating circuit

and a precision absolute value detector with limiting.

The differentiating circuit is accomplished in a conven-

tional manner using one high gain amplifier. In Fig. C-l

the differentiating circuit uses amplifier 1. Adequate

response and stability were achieved by employing a 15 K

damping resistor in the input to the ordinarily noisy analog

differentiator circuit. It is to be noted here that the

differentiator serves its purpose adequately by providing

relative rates rather than by being required to provide

absolute derivative values for successful control signal gene-

ration. The input to the differentiating stage is tE and

the output, which may be scaled as desired, is in this case

±E .

The second stage of the conversion is the absolute value

detector circuit. Fig. C-l shows amplifiers 2 and 3 with the

circuitry for the absolute value detector. This circuit was

designed by modifying a precision absolute-value device (linear

full-wave rectifier) circuit suggested by Korn and Korn and

Morrill and Baum . If the feedback circuit for amplifier 3

consists only of the 2 Megohm resistor, the absolute value
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detector output is >wn in Fig. C-2a. However, the

desired control was achieved by ;ying di imiting

in the feedback path of amplifier 3. This resulted in the

output as shown in Fig, C-2b. In Fig. C-l it is seen that

once the upper feedback diode of amplifier 2 begins to cut

off, the high amplifier gain of amplifier 2 limits the output

sharply. The lower feedback diode of amplifier 2 prevents

amplifier overloads when the input signal to amplifier 2 goes

negative. Morrill and Baum have shown that the voltage feed-

back arrangement leaves the circuit gain essentially independent

of the diode plate resistance and thus the output follows the

input quite precisely. (See Fig. C-3)„ The absolute value

detector separates the magnitude from the sign of an input sig-

nal by a signal discriminating process. All input signals are

either positive or negative. If the input signal is +x.
,

amplifier 2 acts as a 1-to-l sign changer and changes the

signal from +x. to -x. and amplifier 3, a scaled summer,

then adds ~4x. and +2x. and changes the sign of the summa-

tion so that -( («) 4x. + (+) 2x.) = +2x. is the output of

the +x. input. If the input signal is -x. , then amplifier

2 has output and amplifier 3 adds and ~2x. changing the

sign of the summation so that -(0 + C-) 2x.) = +2x. is the

output of the -x. input. Thus x = 2jx.| . (See Fig. C

for graphic representation.) If necessary, x - ~2jx.| is

achieved by reversing the diodes and bias voltages. The output

magnitude may be scaled as desired by varying the feedback
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resistor value in amplifier 3. If the feedback resistor used

has the value kM , then the output is x = k x. . The^ o i|

output of the absolute value detector can be DC biased as

desired. The diode limiter in the feedback path of amplifier

3 changes the slope of the output after the break voltage.

Absolute value detection with limiting then allows monotonic

function generation with the input the independent variable.

In this case, a simple function

x

= k. x.
1 l

( -V =- x. ^ V )
C 1 c

o
= k. x

i I

+ V k
i - V V V

was adequate for the desired signal generation. The slopes

k
1

and k~ are determined by the feedback resistances, and

the break points, V , are determined by the diode biasing

voltages. Fig. C-5 shows the relationship of the feedback

limiter to the output as used in amplifier 3. The slope of

the diode limited branch (x > E, ) is
o b

R
f

(r
fe

r
d )

K
l

^ Kf
+ r

b
+ V

where r , is the diode resistance and the slope of the un =

.

R
f

limited branch (x <E.) is - -— . Thus, as r, and r^
o b R.. b d

become very small with respect to R^ and R
1

, the slope

1_of the diode limited branch approaches

A desired sampling time control relationship is T

\T
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where c. is a constant. T = -r
1 I.

so c,f = \ E
1 s

or

c
2
f
; = i

E where c is a constant and f„ is the sampling

frequency, is a desired response of the voltage controlled

oscillator to the controlling
j

E
| input. Therefore, the

diode limited branch of the absolute value detector was adjusted

to produce an output of the voltage controlled, variable

frequency oscillator which approximated the desired test

2function of c~f =
2 s
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APPENDIX D

THE VOLTAGE CONTROLLED OSCILLATOR

The voltage controlled variable frequency oscillator is

simulated on the analog computer by a free-running multi-

vibrator which has a period controlled by a voltage input.

The circuit is an extension of a fixed period astable multi-

vibrator described by Morrill and Baum (Ref. 6). It consists

of four amplifier stages: two comparators, an integrator,

and a sign changer. The arrangement is shown in Fig. D-l.

The control voltage |E
| is applied through a 45-volt bias

battery to one of the diode circuits on comparator amplifier

4. The output of comparator amplifier 5 is then a square

wave of constant amplitude having a period T governed by the

equation T = A(45v - |e
|

) sec. It is this output voltage

which is used to control the sampler circuit in the simulated

servo system. An explanation of the circuit operation and

derivation of the equation for T follows.

Amplifiers 4 and 5 are comparators. Their operation will

be explained with the aid of Fig. D-2. In Fig. D-2a, R.. and

R„ are much larger than r- , r ' , r~ , r' . In this project,

R
1

and R~ were 1 megohm and r + r' , r + r' were 25K

ohms. The diodes used were GE 1N538 silicon- junction rectifiers

The relationship between the grid voltage e and the

output voltage e is, along the amplifier forward path,

e = -Ke . (1)
o g
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To find the relationships around the feedback paths,

assume that a small positive voltage is applied to the grid.

Then e is negative and the lower feedback path is certainly
o

cut off. The upper diode is cut off if the voltage at the

potentiometer arm is more positive than e . In that case,

the gain of the stage is -K since both feedback loops are

open circuit. Since K is very large in the operational

amplifier, e decreases until the voltage at the potentiometer

arm is less than the grid voltage. Then the upper diode

conducts and, assuming negligible forward resistance in the

diode, the gain of the stage becomes practically zero since

r
1
OcR. and the gain of an operational amplifier with resis-

r
l

tive feedback is ^— «1 . The relationship between the grid
1

voltage and the output voltage around the feedback path is

e
g

= e
o

iXl (2)

Combining (1) and (2), e = -K(e + ir.) (3)

— K
Rearranging: e

Q
=

± +
~ = -i r

1
(4)

since K» 1 .

Then from (2) e = e + ir = -ir- + ir. = (5)

Thus, the voltage on the potentiometer arm for the diode to

just conduct is approximately zero.

Since R- , R~ are much greater than r.. , r' the

current flowing from the input voltage sources will be negli-

gible compared with the current from the clamping voltage

source +X . Then the current through the entire potentiometer
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IS 1 =
I

(6)

Thus, the output is clamped to

r
l

e = -X -=
(7)

Likewise, if a small negative voltage is on the grid, the

output voltage will be

r r

e = -(-X-4 ) = X-|
r
2

r
2

(8)

since the lower feedback diode will be in operation.

The division point for the output to switch from one

voltage to the other is the zero potential point of the grid

circuit, or the point at which the sum of the input voltage

is zero. Thus, the output switches from one polarity to the

other when e
1

+ e~ = , that is when e
1

= -e~ as shown

in Fig. D-2b.

Referring again to Fig. D-l, comparator amplifier 4 has

only one input to the grid circuit, the output of comparator

amplifier 5. The clamping voltages are (-45 + E ) and

zero. Hence, the output of amplifier 4 will be zero when its

input is positive and a(45 - |E
|

) when its input is negative

Where "a" is the potentiometer setting 2 in the lower feed-

back-circuit. The reason for using the control voltage

in this manner will be seen in the final expression for T .

Comparator amplifier 5 has two inputs from amplifiers 4 and 7

and, hence, will switch when e . + e_ = .

The clamping voltages and potentiometers are set so that
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the output will be clamped to t 50 b, where "b" is the

potentiometer setting for both diode circuits in comparator

5, the sign used being opposite to e. + e_ . In practice,

the two potentiometer settings were made approximately equal

by screwdriver adjustment, there being no need for precise

equality

.

Waveforms of the outputs of the multivibrator stages are

shown in Fig. D-3. Integrating amplifier 6 has a ramp output

of slope
50b . _ _ n ,

4

(0.5H2) " +

Amplifier 7 reverses the slopes of the ramps.

Whenever e„ = -e. , comparator 5 switches, i.e., at

e
y

=

and at e = -(45v -
|
E

| ) a

Since e„ is a ramp of constant slope t 50b , the time for

a half cycle can be derived from the equation

-50 bt = - ( 45 - | E
|

) a

or .

t - (45 - |E1 ) a
z

50 b

and the period of a complete cycle is

T _ (45 -
1 E 1 ) a

1
25 b

This equation is of the form

T = A(45 -
|
E

| )

and is graphed in Fig. D-4a.

As explained in Appendix C the control voltage |e| may be

shaped to provide desired frequency control characteristics.
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Figure D~3 . Multivibrator waveforms
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In this study, one scheme used was to multiply | E
|
by a

constant and limit it in the absolute value detector. Fig. D-4b

is a typical T vs. E
|

curve resulting from such shaping.

Another method of control was to make the absolute value

detector also a comparator so that two fixed control voltage

levels appear as the input to the multivibrator
T

Fig. D-4c is
i » I

the resulting two-level T vs . |E
|

graph. Obviously, many

more complicated functions of |e| could be generated by exten-

sions or combinations of these methods or by using an electronic

function generator such as Donner Model 3750. Fig. D-5 shows

actual recordings of the multivibrator waveforms as |E | is

varied. The T vs. |E
|

characteristic for these recordings

was of the type shown in Fig. D-4b.

If |E
I

changes during the sampler cycle, as will often be

the case, the time for one complete period beginning and ending

with e - will be set by the value of |e| at the mid-cycle

point when A(45 - |e |)
t =

2 "

Thus, the sampling frequency is changed once per cycle

by a single value of the control voltage. If the inverse of

the control voltage plus bias were applied to the second diode

circuit of comparator stage 4, both the plus and minus limits

of its output would vary and stage 7 would then integrate

between two variable levels instead of one variable and one

fixed level. The sample period would then be set by two

values of |E| per sample cycle. Future experimentation might

indicate whether the added complexity of the control circuit
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(a) Output of amplifier #k

(b) Output of • amplifier #5

Fig. D-5 Oscillator Waveforms
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(c) Output of amplifier #6

(d) Output of amplifier #7

Fig. D-5 Oscillator Waveforms
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for such a system could be justified by improved performance.

Another multivibrator control method not used in this

project would be to reverse the roles of the comparators by

applying t 50 volts to the diode circuits of stage 4 and the

IE I
control voltage to the diode circuits of stage 5. Then

e„ always integrates to the same voltage t 50a, but integrator

stage 7 now produces an output of slope - b |
E

|
. Then

switching takes place when

X
E I dt = 100 a

o

Thus, the period is a function of the value of I E |
integrated

over the entire sample period rather than the value at one or

two points in the cycle as in the two previous cases. If

is constant

t» |e| t = "b |e|^= 100 a

the period,

T = 200a

b I E| C |E

I

and the sampling frequency is:

f = C
|
E

|

s

If |e| varies rapidly during the sample period, this period

might give better control; however, the sample period would

probably have to be reduced to properly control a servo whose

velocity varied so rapidly. Therefore, the assumption made

during this project that | E
|
would not change erratically

during a sample period seems valid

.

If
I

E
I

were not available as a continuous variable, but
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only by computing backward differences on the sampled error

signal, then any of these methods would be dependent on a

single estimate |E| in each sample period. The principal

reason for using the single point control in this project was

that it was the simplest method available and the results were

very satisfactory.
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APPENDIX E

TRANSISTORIZED SAMPLER RELAY CONTROL

The function of sampling with a zero order hold is accom-

plished by the sampler and zero order hold simulator circuit.

See Fig. E-l. The simulator circuit samples the error signal

E and then maintains or holds this signal level E* until
h

the next sample is taken by the switching action of a two-

position relay in the sampler and zero order hold simulator

circuit. The switching of this relay is controlled by the

output signal of the voltage controlled oscillator. The relay

control circuit is shown in Fig. E-l. The circuit is composed

of a Potter and Brumfield SCUD 24 V-DC two-position relay and

a 2N597 transistor. The transistor is base controlled by the

output signal of the voltage controlled oscillator. A 22K

base resistor protects the base circuit and the relay coil

resistance provides the load for the collector-emitter circuit.

A 24 volt transistor power supply completes the relay control

circuit. This relay is a standard ganged-action , double circuit

model. The double circuit relay was used so that an indicating

light could be incorporated in the system which would show

whether the sampler relay was open or closed. The light is

not necessary to the circuit except as a convenient visual aid

in determining the position of the sampler relay or the approx-

imate sampling rate. A GE-327 light was used.

The output of the voltage controlled, variable frequency

oscillator is used to switch the transistor on and off. The
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transistor operates in either non-conducting or saturated

conducting states. The transistor acts as an on-off switch

to open or close the 24 volt power supply which energizes

the relay coil and thus opens or closes the relay in the

sampler and zero order hold circuit. In this manner, the

|E
|
controlled, time variable frequency output of the voltage

controlled oscillator determines the sampling frequency of

the sampler and zero order hold.
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APPENDIX F

<E ROOT -LOCUS ANALYSIS

-ot-locus analysis in the z-plane will provide a

graphical method for observing the movement of the closed loop

roots as a result of varying the sampling period or the open

loop poles, zeros, or gain. The discussion will include one

section for the analysis of a type I second order servo and

one section for the analysis of a type II second order servo

system.

Type I Servo

Given that G(s) = —r—
+

,k and the fixed period sampler

is followed by a zero order hold as shown in Fig. F-l, then

R > E -* I2L 1
-Ts

e

s

K C
y ..

s(s + b)

Fig. F~l . Sampled-data feedback control system.

z transform G(z) is

G(z)
K^Cz + z

x
)

-lXz- Pl )

K, =

z., =

^ <bT + e"
bT

-l)
b
z

1 - e"
bT

(l + bT)

bT + e"
bT

-l

Pi = e
-bT

It is noted that, in general, the substitutions of the
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functions of b, K, and T for z..
, p.. , and K will result

in unwieldy expressions.

The limits on K.. , z , and p
1

are, for all values of

K, b, T from zero to + oo :

^ K * °°

=

*

so the open loop zero z
1

is always between z = and z =

and the open loop pole p
1

is always between z = and z :

The z-plane root-locus diagrams are shown in Table F-l.

By observing that the root-locus equation is:

K
1
(z + z

±
)

Cz - l)(z - Pl )

where z = x + jy , then

K
1
(x + Zl + jy)

= -1

(x - 1 + jy)(x - p x
+ jy)

Solving the gain or phase equation shows that the curved portion

of the root-locus is a circle with its center at -z., and with

radius

R = (z
1

+ IKzjl + p x
)

1/2

The intercepts of the circle with the real axis are the root-

locus breakaway points which are:

1 1/2
z = -z (z

1
+ l)(z

1
+ Pl )
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SUMMARY OF Z-PLANE HOOT-LOCUS DIAGRAMS

Koot-locus

configuration

Conditions for

configuration

Gain range for stable

response

:

1 < LIB
3 + Pl

bT > 3.71

all circular loci
inside unit circle

2(1 + p-)

K< 2b 2 (l*e- bT )

bT(l + e-bT ) - 2(l-e"bT)

., = hill
1 3 + Pl

K,< 3 + Pl

bT = 3.71 K *c b
2
(3 + e"

bT
)

-bT

circular locus
tangent to unit
circle at z = -1

(bT+ e" D1 - 1)

zl> 3 + Pi
Kl*

ll_Ei

bT < 3.71 K << b
2(l-e-bT )

-bT,1- e (1 + bT)

all circular loci
intersect the
unit circle

Table F-l. Summary of z-plane root-locus diagrams.
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The double real roots occur at the two breakaway points and

the gain at these points is:

1/2
k
x

= |(i+z
1
iR)(±z

1
ip

1
+R) = C2z

1
+p

1
+i)i (z

1
+l)(z

1
+p

1
)

Next, the critical value of z. is found such that the
lc

three root-locus configurations as listed in Table F-l may be

defined. The required relation is:

1 - z- = R =
lc

(z
lc

+ 1)<z
lc

+
Pl>

1/2

and the solution is

1 " P-

lc 3 + Pl

and in terms of b and T :

- -bT
1 - e

'lc _ -bT
3 + e

The maximum gain for stability will now be determined for

each of the three configurations. For bT < 3.71 the maximum

gain for stability is determined by the intersection of the

root-locus circle and the unit circle. Three equations result;

namely

,

2 2x + y = 1

Cz
1

+ x)
2

+ y
2

= R
2

= ( Zl + l)( Zl + Pl )

K
(1 - x)

2
+ y

2
(x - p 1

) + y

lm (z
1

+ l)( Zl + Pl )
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These equations reduce to:

1 - P.

K, = (bT < 3.71)lm z
1

and in terms of b and T :

K =
D U ". g. ^ (bT<3.71)
1 - e"

Di
(l + bT)

for the maximum gain for stable response. Similarly,

2(1 + p )

K
i

= -n V- (bT>3.71)
lm (1 - z

1
)

, 2
( 1

-bT.
K = ^ {1 e

, - ;
r^-r (bT>3.71)

bT(l + e
Di

) - 2(1 - e"
Di

)

for the maximum gain for stable response. For the final

conf igui st ion:

K
lm

= 3 + Pl (bT - 3.71)

K =
b2(3 + e "^

T)
(bT = 3.71)

(bT + e
Di

- 1)

for the maximum gain for stable response. A summary of these

results is compiled in Table F-rl.

It is to be noted that for a fixed value of b and a

fixed value of T , variable values of the open loop gain K

will then move the closed loop roots on the same fixed root-

locus circle (assuming K produces roots in the circular

locus range) since the values of p
1

and z
1

are unchanged.

For fixed b and fixed K values, variable values of T will

cause the values of p
1

, z. , and K.. to be changed so the
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closed loop roots will be moved to a different root-locus

circle because of the new p
1

and z. values, and the roots

will probably be moved to a different position on the new

root-locus circle because of the new K.. value. For fixed

K and T values, variable values of b will cause the values

of p.. , z- , and K to be changed so the closed loop roots

will be moved to a different root-locus circle because of the

new p
1

and z values, and the roots will probably be

moved to a different position on the new root-locus circle

because of the new K.. value.

Also note that if b is changed to the new value c.b

(where c is a positive real constant) and T is changed

to the new value T/c. so that the product bT = (c-bKl/c.)

= bT is unchanged, then the closed loop root positions will

be moved on the same fixed root-locus circle since the root-

locus gain K.. has been changed by the factor l/c. even

though z and p are unchanged in value.

Type II Servo

K ( <? + 3 ^)

Given that G(s) = «
, and the fixed period

s

sampler is followed by a zero order hold as in the system of

Fig. F-l, then the z transform <Uz) is:

K- = KT(1 + 4f)
K
1
(z + z

±
)

L Z

G(Z) =
"7 Tv^ aT - 2
(z " 1} z

l " IT-T-2
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The unrestricted limits on K. and z are, for all values

of K, a, T from zero to + <& :

K
x

* oo

The root-locus equation is

K
1
(z +

Z;L )

(z - 1)
2

= -1

Substituting z = x + jy , and reducing the resulting equa-

tion gives:

(z
±

+ l)
2

= (x +
Z;L )

2
+ y

2
.

The resulting equation is the equation of a circle with center

at z = -z
1

, radius R = z.. + 1 , and always contains the

point z = 1 . The root-locus diagram is illustrated in

Fig. F-2.

z-plane

Fig. F-2. Root-locus diagram where -1

As in the case of the type I system, there are again three

root-locus configurations; namely, (1) the root-locus circle

inside the unit circle and tangent at z = 1, (2) the root-

locus circle coincident with the unit circle, and (3) the
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root-locus circle outside the unit circle and tangent at z = 1

Of course, the system response is always unstable for configu-

ration (3) and always conditionally stable for configuration

(2) and, therefore, these two configurations will not be

considered. In order to obtain configuration (1), the open

loop zero must be in the range -1 - z- - and only in

this range. Because of the range of z.. , any expression

involving (+Z-) can be rewritten with (-|zJ); e.g., the

radius of the root-locus circle is R=l+z
1
=l-lz

1 |

and

the center of the root-locus circle is at z = -z
1

=
I z- I .

The circular root-locus portion has gain range

= K
1

* 4R , which is:

* K
1

* 4(1 + Zl ) .

The gain for the entire stable response region is:

* (2)(2)
K
1 1 - z

±

In terms of a, K, and T, this range becomes:

* KT(1 + 4=-)
2 ' aT - 2

aT + 2

which reduces to:

£ KT £ 2

aT - P
Also, since -1 * z- « , then -1 £ t + 2

° '

which becomes: - at - 2

Thus, there are simultaneous conditions on T; namely,

£ aT ^ 2

and = KT = 2
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which conveniently separate so that:

* T i - (for a > K)
a

and = T * § (for a <r K)

are the conditions on T in order to have a stable response.

Notice that these expressions for the range of T for

stability are simple and straightforward compared to the same

expressions for the type I system.

The closed loop root positions of the type II system are

repositioned in the same manner as are the type I system

roots with respect to varying one of the fixed values K, a,

or T, while holding the other two values fixed.
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