
N PS ARCHIVE
1969
NILSEN, T.

COMMUTATED NETWORK FILTER

by

Tor R«Jnho1 1 Ni Isen





United States
Naval Postgraduate School

THESIS
COMMUTATED NETWORK FILTER

by

Tor R^nholt Nilsen

December 1969

Tki& document k<u> bzm apptove.d fan. pubLLc n.z-

lzcu>e. and &ale.; JUU dLu&Ubutlon aj> wnJUmltzd,



Librajy
U.S. Naval i

j oo cgraduate ScbooJ
Ma*«u»y, California 93940



Commutated Network Filter

by

Tor R^nholt Nilsen
Lieutenant Commander, Royal Norwegian Navy

Submitted in partial fulfillment of the
requirements of the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1969



ftfl „W< *$zzzj-fitst

,U1
At

ABSTRACT

This thesis presents the results obtained in computer simulations

of the commutated network filter. The commutated network filter is also

used as a bandpass filter in servosystems . A linear approximation to

the transfer function is found to be usable for design purposes.
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I. INTRODUCTION

A commutated network is an electrical network, either active or

passive, consisting of resistors and reactive elements which are

switched or commutated in a periodic manner. In most practical cases

the reactive elements are capacitors. There are several configurations

of a commutated network used in the field of electrical engineering.

The configuration used here is that of commutated capacitors used in

the feed-back path around an operational amplifier. Thus by applying

commutation action to the capacitors in a lag network, the low-pass

frequency response of that network can be transformed into that of a

highly selective bandpass filter. The center frequency of the bandpass

characteristic will be the same as the commutation frequency.
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II. COMMUTATED NETWORK CONFIGURATION AND
COMPUTER SIMULATIONS OF THE NETWORK

The fundamental element of commutated networks is the capacitor

shown in fie. 2.1 c .

o-

4,

—

o

Figure 2.1 Commutated capacitor

The commutating function, P, is a unit square wave of the same

frequency as the input signal, e.. The following equations can be

written for fig. 2.1

-;/ i dt
c

i = P-i.
c 1

e = P-e

e = P
cj, i

=±[i. dt
C J 1

dt

(2-1)

(2-2)

(2-3)

(2-4)

(2-5)

since P-P = 1 both when P is in the low and in the high position.

Figure 2.2 shows how the capacitor is placed in the coupled RC

commutated network. ||C

L " JL

i

ft

-t snzr-£>
VvA * &>

Figure 2.2 Coupled commutated network
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Another variation of the commutated network is the uncoupled RC network

shown in fig. 2.3.

Ri 'It

o—J\i

—

±-

Ai U

^ ^=p

X
D> —

o

Figure 2.3 Uncoupled commutated network

Reference 1 proves that both variations of the commutated network

can be represented by the circuit shown in fig. 2.4.

X

'€ 8 —

o

Figure 2.4 Equivalent circuit of commutated networks

The number of capacitors in the commutated network can be varied.

For the following, four capacitors are used in the coupled version of

the network. Figure 2.5 shows the circuit used in the analysis.

Hft< M£i. hi

fi A L
I

o—y'syv.^

>< h X4,. dh^
X ^

rti

— AAA

Figure 2.5 Four-capacitor commutated network
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The equivalent network for the four-capacitor coupled commutated network

is shown in fig. 2.6.

<*>

^j^^mHS^^-^
&>

«L_|J^£.

fi^§>

Figure 2.6 Equivalent circuit for figure 2.5

A computer program was written - in IBM's Digital Simulation

Language - to simulate the network of fig. 2.5. Figure 2.7 shows the

program used.

F = 1.

X = SIN(F*2.*3.1415*TIME)
ZONE = IMPULS (,C, 1.00000)
ZTWO = IMPULS (.1250,1.00000)
ZTHREE = IMPULS (.2500,1.00000)
ZFOUR = IMPULS (.3750,1.00000)
FONE = PULSE (ZONE,. 499)
FTWO = PULSE (ZTWO,. 499)
F-THREE = PULSE (ZTHREE,. 499)
FFOUR = PULSE (ZFOUR,. 499)
PONE = 2.*F0NE -1.

PTWO = 2.*FTWO -1.

PTHREE = 2.*FTHREE -1.

PFOUR = 2 . *FF0UR - 1

.

XONE = -X - .95*Y
WONE = PONE*XONE
WTWO = PTWO*XONE
WTHREE = PTHREE *XONE
WFOUR = PFOUR*XONE
OONE = INTGRL(.0,WONE)
OTWO = INTGRL(.0,WTWO)
OTHREE = INTGRL(.0,WHTREE)
0FOUR = INTGRL(.0,WFOUR)

14



YONE = PONE*(-OONE)
YTWO = PTWO*(-OTWO)
YTHREE = PTHREE*(-OTHREE)
YFOUR = PFOUR*(-OFOUR)
Y = -( YONE + YTWO + YTHREE + YFOUR)

Figure 2.7 Computer program for simulation

The optimal value of the feed-back gain, K, was used. Reference 2

proves that the optimal value is 0.95 (1/(1+1/7 +1/9 +1/15 +1/17 + ...)

The modulating square wave, p, was generated in the following way:

an impluse, Z., was generated at the beginning of every period. This

impulse triggered a square-wave generator and the result, F. , is shown

in fig. 2.8.

t

\

ic
T

2.
*t; n-t

Si

7+tc
y

2.8

Figure 2.8 Square wave, F.

The square wave, F. , was multiplied by a factor of two and the DC-level

was shifted minus one unit. The result is P. as shown in fig. 2.9.
l

Pi

"to Tttp T+n

2.9

-i | !

j

Figure 2.9 Square wave, P

The different square waves are delayed with respect to one another. P„

is delayed T/8 with respect to P, . P„ is delayed T/8 with respect to P
9 ,

and P, is delayed T/8 with respect to P„ . t_ was chosen equal zero.

Figure 2.10 shows the square waves as used in the program.
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The following equations can be written for the commutating waveforms

P is a unit square wave of period T, starting at t=0 thus f = 1/T Hz

and cjd = 2n/T.
n

/'

->t

-I

¥ z

1

fi.

\
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I
5T

s

qT
8

I7T 7
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f

* 3r
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H
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7

K.
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-I

Tr 112
»ST

I?

>VT

Figure 2.10 Commutating square waves
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^Cr-D-iCv-i)

^.-Acr-D-^cv-.rD

(2-6)

(2-7)

(2-8)

The objective of the RC-commutated network is to construct a

signal of same frequency but of opposite phase as the input signal.

If this is the case the sum of the input signal and the output signal

has zero component of the input frequency.

Figure 2.11 shows how this can be implemented.

X C0MMiiTAT fcD

NETWORK
y

bfy
t4

OOT
2.11

Figure 2.11 Filter configuration

Here OUT is the sum of X and Y. As a result of the square waves being

applied to the capacitors, harmonics of the frequency of the input

signal are present in the signal OUT. If N is the number of commutating

capacitors in the network, ref. 2 shows that the following frequencies

are present in the signals OUT and Y: (2N-l)cJo ,
(2N+1)cd , (4N-l)ao ,r o nnn

(4N+l)ao , etc.
n

In order to analyze the discontinous signal Y, a computer program

was written. The object of the program was to calculate the components

a and b in a series of the form
n n

°° /
Y = -r— + E a cos nco t + b sin nco t

/. , V n n n n
n=l

(2-9)
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Figure 2.12 shows the program written in FORTRAN IV. Table I lists

the component values a and b of the output signal Y.v n n r o

It is seen from the table that the following components are dominant:

1st, 7th, 9th, 15th, 17th, 23rd, 25th, 31st, 33rd, 39th, 41st, 47th, 49th,

etc. This is in agreement with theory given in ref. 2.

An investigation was made to find out if the value of t , the time

where P, first goes to the value +1.0, had any effect on the output

signal Y. The following phase delays were tried for the commutating

wave-forms: rr/5, 2tt/5, 3tt/5, and 4rr/5. The results showed that phase-

delaying the commutating square waves does not change the output signal.

The series of equation (2-9) still has the same coefficients.

18



FORTRAN
SUBROUTINE TORIT(FNT,N,M,A,B)
DIMENSION A(100),B(100),FNT(10500),C(100),PHI(100)
WRITE(6,11)

11 FORMAT(7X, 'J
1 ,8X, 'A(J) ' , 13X,"B(J)', 13X,'C(J)* , 13X , 'PHI(J)')

60 AN=N
COEF=2 . 0/ (2 . 0*AN+1 . 0)
CONST=3 . 141593*COEF
Sl=SIN(CONST)
Cl=COS (CONST)

P - 1.0

S=0..0

J=l
FNTZ=FNT(1)

70 U2=0,0
U1=0.0
I=2*N+1

7 5 UO=FNT(I)+2.0*P*U1-U2
U2=U1
U1=U0
1= 1-1

IF(I-l) 80,80,75
80 A(J)=C0EF*(FNTZ+P*U1-U2)

B(J)-C0EF*S*U1
K = J-l
C(J) m SQRT((A(J))*(A(J)) + (B(J))* (B(J)))

PHI (J) = -ATAN(B(J)/A(J))*57. 2957795
WRITE (6, 12) K,A(J),B(J),C(J),PHI(J)

12 F0RMAT(3X,I5,1P4E17.7)
IF(J-(M+1)) 90,100,100

90 Q=C1*P-S1*S
S=C1*S+S1*P
P = Q
J=J+1
GO TO 70

100 A(1)=A(1)*0.5
RETURN
END

Figure 2.12 Computer program for Fourier analysis
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N B

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24
25
26

27

28
29
30'

31
32

33

34
35
36

37

38
39

40
41
42

43

44
45
46
47

48
49

50

4.0915914E-02
5.7432428E-02
6.4395438E-04
6.7318883E-04
8.5144676E-04
1.0724834E-03
-1.3770524E-03
1.2983000E-01
-1.4599903E-04
9.9531114E-02
1.1894142E-03
7.7437004E-04
2.1180733E-04
2.8510741E-04
-5.2539515E-04
4.4528384E-02
3.3075595E-04
4.2879425E-02
1.3891549E-03
7.9694903E-04
8.3581335E-04
1.0385311E-04
1.0932467E-04
-1.9760877E-02
4.1980087E-04
-1.6020168E-02
-5.6435747E-05
5.6750767E-05
4.2703399E-04
6.2502408E-04
1.3039294E-03
-3.1548135E-02
3.1624935E-05
-3.0806191E-02
-1.3438673E-03
-7.8415312E-04
-5.2506500E-04
-5.0879410E-04
-1.7829986E-04
-6.1985478E-03
-3.8792193E-04
-7.8365095E-03
-8.8027469E-04
-6. 671585 1E-04
-7.9095364E-04
-9.7992225E-04
-1.4365583E-03
1.6978830E-02
-3.2683252E-04
1.6212072E-02
7.035.7 858E-04

0.0
-9.7068429E-01
-2.9122231E-03
-3.3683525E-03
-6. 864587 8E-04
-1.2038115E-03
4.9475231E-05
-5.7617463E-02
-4.4301525E-04
-5.0481014E-02
-1.2319605E'-03

-5.9847650E-04
-9.1678812E-04
-1.2260592E-04
-1.4881822E-03
4.8904710E-02
-3.5192422E-04
4.1087449E-02
5.6604668E-04
3.0924985E-04
-1.5659863E-04
-2.5742664E-04
-9.7328471E-04
3.8151786E-02
1.3531574E-04
3.7231848E-02
1.4239037E-03
8.6518889E-04
7.1566226E-04
8.1200222E-04
6.7783101E-04
-3.6806425E-03
4.2581698E-04
-1.3784338E-03
4.3319259E-04
3.8454239E-04
6.4045424E-04
8.5357740E-04
1.4619438E-03

-2.4380792E-02
1.8413758E-04

-2.3663379E-02
-1.1022575E-03
-5.9376331E-04
-2.7252291E-04
-1. 553283 1E-04
3.4710323E-04
-1.1989255E-02
-2.9340992E-04
-1.3255987E-02-
-1.2116958E-03

Table I Fourier coefficients of output signal Y
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III. FREQUENCY RESPONSE OF FILTER

An investigation of the phase difference between output and input

signals was done for frequencies within one decade on either side of

the notch frequency, cd .

n

The frequency response was done for a notch frequency of one hertz

and with a time constant of one second.

The equivalent network of fig. 2.6 was used for the frequency re-

sponse study where the frequency of the input signal, x, was varied

between O.lHz and 10.0 Hz.

A Fourier analysis was done of theoutput signal y. The program of

figure 2.12 was used for the analysis. The phase difference between

the input signal and the first harmonic of the output signal was calcu-

lated. The calculations were done for times when the phase of the

input signal was zero. The phase, $,, of the first harmonic of the

output signal is

$
L

= - tan (B^A^ (3-1)

Figure 3.1 shows the plot of phase versus frequency as obtained.

The phase starts at zero degrees for low frequencies and goes to -90

degrees for frequencies slightly less than ud , jumps to +90 degrees for
n

frequencies slightly above <x> , and goes back to zero degrees for high

frequencies

.

The values obtained in the computer simulation are collected in

Table II.
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Figure 3.1 Frequency response of filter - phase
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Frequency Phase

0.1 - 1.51

0.2 - 7.40

0.25 -11.90

0.3 -18.59

0.4 -20.12

0.5 -24.00

0.6 -30.07

0.8 -51.54

0.9 -71.23

1.25 43.80

2.0 15.14

2.5 14.33

4.0 4.38

10.0 2.09

20.0 0.28

Table II Results of frequency response simulation - phase
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IV. APPLICATIONS OF FILTER IN SERVOSYSTEMS

Computer simulations were done with the filter used in conjunction

with servosystems . The objective of the filter was to suppress the

component of frequency oo in the output signal C.

Example 1

A servosystem with the following transfer function was used in the

first example:

£±*1 -
xl(s)

'

KMO/cd

s (0.00025 s+1) [Z-j + -* s+1
(x> n
n

s— + 11
(4-1)

Figure 4.1 shows the system that has the open-loop transfer function

of equation (4-1)

.

XU«) +
,

<t\Mtug* ty*
KMo *$ + !

C($)

Figure 4.1 Servosystem of example 1

The following values were used: E = 0.01, go = 2rrf . 2500 = 15708 rad/seco 3
' n i

Figure 4.2 shows how the filter was inserted in the servosystem. Figure

4.3 shows the Bode-plot for the system.

24



xi •*

p&ri
4.2

Figure 4.2 Compensated filter network

The signal VN is the sum of the signals OUT and VM. Since the funda-

mental component (frequency = cu ) of the signal OUT is 180 degrees out

of phase with the signal VM, the sum signal VN will have no component

of frequency a) . The computer simulation of the system of fig. 4.1 was

carried for different values of the gain KMO. Figures 4.4 - 4.6 show

the time responses of the system to a unit step input for different

values of KMO. It is seen that the output of the system when the

filter is inserted is much smoother than the output of the system

without the filter inserted, and it does not contain any component of

frequency oo .

It is also seen that as the gain KMO is increased, the oscillations

of the filtered output also increase in magnitude, but their amplitudes

in the filtered output are still much smaller than their amplitudes in

the unfiltered output signal. While the unfiltered output signal be-

comes unstable, the filtered output is still stable. An analysis of

the output signal C shows that the dominant frequency of the signal

varies as a function of the gain KMO. The dominant frequency is found

to be the frequency where the magnitude curve of the Bode-plot crosses

the zero-decibel axis.
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Example 2-4

In examples 2-4 the same servosystem was used. Only the value of the

gain KMO was changed. Figures 4.7 - 4.9 show the Bode-plots for the

servosystem with and without the filter inserted. In example 2 the

notch frequency is set at the phase cross-over (frequency = 15708 rad/sec)

In example 3 the notch frequency of the filter is set at the magnitude

cross-over of the Bode-plot. Finally in example 4 the notch frequency

is set one decade below magnitude cross-over (frequency = 314 rad/sec).

The computer simulations for the time responses for examples 2-4

agreed with the expected results.

In example 2 the unfiltered output is stable with a phase margin of

about 13 degrees. The output when the filtered is in the network has

less phase margin but is still stable.

In example 3 the unfiltered output is stable with a phase margin

of about 18 degrees. As seen from the Bode-plot for the system with

the filter in the circuit the output is now unstable.

In example 4 the unfiltered output is identical to that of example

3. The notch frequency, however, is now one decade below the frequency

co , and the filter's frequency responses are now back to Odb and

degrees for magnitude and phase plots respectively at the gain cross-

over. The filter has thus no influence on the output signal.
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Figure 4.4 Time response to unit step input .KM0=8. 63 6x10

Scale: X=0.0004 sec/in, Y=0.2 units/in.
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12Figure 4.5 Time response to unit step input ,KM0=2 .0x10

Scale: XO.0004 sec/in, Y=0.2 units/in.
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Figure 4.6 Time response to unit step input .KM0=2 . 5x10

Scale: X=0.0004 sec/in, Y=»0.2 units/in.

12

30



oo

O
i—A—

( CN

ex
I
CO

X
0)

u
o

o
t—

I

a.

o
pa

r^

dJ

•H

31



-0
-a

o

i

_JL_

("O

e
to

X

u
o

a
o

00

0)

M
3
00
•H
fa

32



03

X
01

u
o

ex
I

0)

O
PQ

u
3
bO

33



V. APPROXIMATION OF FILTER TRANSFER FUNCTION

As seen from fig. 3.1 the phase part of the frequency response is

discontinous at the notch-frequency.

A transfer function of the form

T(s) =

2 2
s + CD

n

2 2
S + 2£ CD s + to3 n n

(5-1)

is seen to have the same phase characteristic. By varying the value

of the damping factor the curvature of the phase curve can be changed.

Figure 5.1 shows the locations of the poles and zeros of the transfer

function T(s) in the s-plane. The poles are shown for different values

of the damping factor.

§=0.3

§=0.5

Figure 5.1 Poles and zeros of T(s)
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Figure 5.2 shows the Bode-plot of T(s) and of the commutating network

filter as obtained in chapter III.
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VI. CONCLUSION

The commutated network filter has a highly selective bandpass

filter characteristic where the center frequency of the bandpass

frequency-response curve can be easily varied by changing the frequency

of the commutating functions.

The filter can be approximated by a linear second-order transfer

function for design purposes. The transfer function has two zeros on

or very close to the imaginary axis and two poles on a circle with

radius cd . The location of the poles can be changed depending on the

value of the damping factor.
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APPENDIX A

TIME RESPONSES OF SERVOSYSTEM

A compensated servosystem with open-loop transfer function

KMOc(s) =
xi(s)

(ccs+1) (s
2
+2£ go s-ho

2
)n n

(A-l)

was used in example 1, chapter IV to get time responses to a unit step

input for the system with and without the filter inserted.

Additional simulations were carried out for different combinations

of the natural frequency go and the damping factor §. Figure A.l shows

which combinations of go and Z were used
n '

.0025

025

f=2750

f=2600
f=2550
f=2500

f=2450
f=2400

f=2250

-> 6

Figure A.l Values used for time responses

Table III lists the values used for KMO, go and §.
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Figure CD /2tt
n s KMO/10

11
X-scale
sec/in

Y-scale
units/i

A.

2

2450 0.010 8.813 0.0004 0.2

A.

3

2550 0.01 8.463 0.0004 0.2

A.

4

2500 0.005 8.636 0.0004 0.2

A.

5

2500 0.015 8.636 0.0004 0.2

A.

6

2400 0.01 8.986 0.0004 0.2

A.

7

2600 0.01 8.290 0.0004 0.2

A.

8

2500 0.0025 8.636 0.0004 0.2

A.

9

2500 0.020 25.000 0.0004 0.5

A. 10 2500 0.020 8.636 0.0004 0.2

A. 11 2250 0.010 9.499 0.0004 0.2

A. 12 2250 0.0025 9.499 0.0004 0.2

A. 13 2250 0.020 9.499 0.0004 0.2

A. 14 2750 0.01 7.772 0.0004 0.2

A. 15 2750 0.0025 7.772 0.0004 0.2

A. 16 2750 0.02 7.772 0.0004 0.2

Table III Values used for computer -simulation
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Figure A. 2 Time response to unit step input
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Figure A. 3 Time response to unit step input
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Figure A. 4 Time response to unit step input
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Figure A. 5 Time response to unit step input
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Figure A. 6 Time response to unit step input
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Figure A. 7 Time response to unit step input
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Figure A. 10 Time response to unit step input
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Figure A. 11 Time response to unit step input
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Figure A. 12 Time response to unit step input
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Figure A. 13 Time response to unit step input
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Figure A. 14 Time response to unit step input
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Figure A. 15 Time response to unit step input
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Figure A. 16 Time response to unit step input
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