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ABSTRACT 

Condition-based maintenance (CBM) entails performing maintenance only when 

needed to save on resources and cost. Formulating a model that reflects the behavior of 

the marine diesel engine in its “normal” operating conditions would aid in making 

predictions of the behavior of a condition monitoring parameter. Modeling for CBM is a 

data-dependent process. Data acquisition, processing, and analysis are required for 

modeling the behavior of the “normal” operating conditions of the diesel engine. This 

thesis leverages on existing data collected through sensors on a diesel engine to describe 

these conditions using regression analysis. The proposed data selection criteria ensure 

that data used for modeling are suitable. To model the behavior of the engine, an 

autoregressive distributed lag (ARDL) time series model of engine speed and exhaust gas 

temperature is derived. The lag length for ARDL is determined by whitening of residuals 

using the autocorrelation function. Due to non-normality of the residuals, a 

nonparametric quantile regression approach is adopted, and the derived model allows us 

to predict the parameter (exhaust gas temperature) that we consider. 
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EXECUTIVE SUMMARY 

In a new ship construction project, the main engines constitute about 10 to 20 

percent of the total acquisition cost (Banks et al. 2001). Maintaining the main engine in 

an operationally ready condition is crucial to the availability of the vessel for its 

dedicated mission. To increase the availability of the vessel, it is reasonable to devise a 

maintenance program that provides high availability of the main engine.  

Corrective maintenance requires the performance of maintenance only when a 

failure occurs; this process consists of system diagnostics, fault finding, and parts 

replacement. Preventive maintenance, on the other hand, aims to increase availability by 

preventing failure through the detection and unveiling of potential failure modes 

(Tsang 1995).  

Condition-based maintenance (CBM) is a preventive maintenance policy that 

recommends performing maintenance only when needed to save on resources and cost. 

Recommendations concerning the need for maintenance typically are derived from a 

statistical model that reflects the behavior of the diesel engine in its “normal” operating 

condition that allows making predictions about the behavior of a condition monitoring 

parameter.  

This thesis aims to document the process for finding an appropriate statistical 

model that may be used to characterize the data collected from a high speed surface craft 

(HSSC), which may be used to forecast the condition of a marine diesel engine. Our 

approach includes determining the following: 

• selection of useful data for model formulation and estimation; 

• selection of a condition monitoring parameter that is indicative of system 
health status; 

• approach for characterizing the data; 

• method for deriving the model. 

We describe the steps taken to analyze data collected from the main engine of the 

HSSC to formulate the model and analyzes the residuals of the predictions done through 
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the model on a new set of data. The derived model can predict the exhaust gas 

temperature for the engine with a set of known engine speeds. Future work could include 

derivation of nonparametric control charts proposed by Li, Tang and Ng (2010). Data 

parameters collected could also include engine running hours to determine mechanical 

wear and tear of the engine. This would give more insight into the engine behavior with 

respect to the engine running hours. 

The methodology for characterising the data collected and deriving the model for 

prediction of the selected engine parameter is shown in Figure 1. There are six steps in 

the process. The first step is to select the data collected using the selection criteria and 

then to analyse the data to determine their properties. The next step is to categorize the 

data according to their properties. Based on the different groups, models can be derived 

for each group. The model is then used for prediction, and the results of the prediction are 

verified against a new set of data.  

 
Figure 1.    Methodology for Regression Analysis 

Modeling for CBM is a data dependent process. Data acquisition, processing, and 

analysis are required for modeling the behavior of the “normal” operating conditions of 

the diesel engine. Leveraging on existing data collected from sensors located on the 

diesel engine on the port side of the HSSC for CBM, we set up selection criteria that 

define the “normal” operating conditions of the HSSC and filtered out data that are not 

useful for analysis.  
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Analysis of data begins with the determination of the correlation coefficient 

between the engine speed and other temperature parameters from the data collected. The 

correlation coefficient for combined B exhaust gas temperature has the highest 

correlation coefficient among the rest of the temperature parameters. Thus, we select the 

combined B exhaust gas temperature as the dependent variable and engine speed as the 

independent variable for the regression model.  

From the data collected, we divide the data into two categories, turbocharger 

mode and cruising mode. Each category has two sub categories, modeling datasets and 

prediction datasets. Modeling datasets are for deriving the regression model, and the 

prediction datasets are for verifying the regression model. 

We derive an autoregressive distributed lag (ARDL) time series model of engine 

speed and exhaust gas temperature to model the behavior of the engine under “normal” 

operating conditions. We determine the lag length of the ARDL model by whitening the 

residuals autocorrelation. We use the R language statistical programming language (R 

Core Team 2015) for data analysis. One can express an ARDL time series model (Greene 

2000) as: 

𝑌𝑌𝑡𝑡 = 𝜇𝜇 + �𝛾𝛾𝑖𝑖𝑌𝑌𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗𝑋𝑋𝑡𝑡−𝑗𝑗

𝑟𝑟

𝑗𝑗=0

+ 𝜀𝜀𝑡𝑡 

with  

𝜀𝜀𝑡𝑡 ∼ 𝑖𝑖. 𝑖𝑖.𝑑𝑑  𝑁𝑁(0,𝜎𝜎𝜀𝜀2) 
 

and, 𝑝𝑝 and 𝑟𝑟 are the lag length for the dependent variable, 𝑌𝑌𝑡𝑡, and independent variable, 

𝑋𝑋𝑡𝑡, respectively.  

The results of linear regression, using ordinary least square methods, show non-

normality nature of the residuals; hence, a nonparametric quantile regression approach is 

more suitable. With the derived models, we use the prediction dataset to predict the trend 

of exhaust gas temperature through the set of engine speed input. We use residual 

analysis through normality quantile-quantile (QQ) plot and robust autocorrelation 

function using Spearman’s rank correlation, to verify the prediction results.  
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I. INTRODUCTION 

A ship and in particular a naval ship can be thought of as a system-of-systems. 

These systems include the propulsion system which produces a mechanical force that 

thrusts the ship forward or backward; the navigation system which gives locational and 

directional information of the ship; the electrical system which produces electrical power 

for equipment onboard the ship; and others. Each system onboard a ship has a unique role 

to play, and all systems are integrated. One of the crucial elements of the propulsion 

system is the main engine.  

In a new ship construction project, the main engines constitute about 10 to 20 

percent of the total acquisition cost (Banks et al. 2001). The function of the main engine 

is to provide propulsion and thrust to the vessel, giving it mobility to travel across the 

surface of the sea.  

Maintaining the main engine in an operationally ready condition is crucial to the 

availability of the vessel for its dedicated mission. To increase the availability of the 

vessel, it is reasonable to devise a maintenance program that provides high availability of 

the main engine. One can broadly divide maintenance into two main types, namely, 

preventive maintenance and corrective maintenance (Tsang 1995).  

Corrective maintenance requires the performance of maintenance only when a 

failure occurs; this process consists of system diagnostics, fault finding, and parts 

replacement. This type of run-to-failure maintenance is unscheduled, and easy to manage 

and implement; but it will incur a longer downtime since the part that is required to be 

replaced may not be readily available.  

Preventive maintenance, on the other hand, aims to increase availability by 

preventing failure through the detection and unveiling of potential failure modes 

(Tsang 1995). One method of preventive maintenance of a system involves performing 

scheduled maintenance at a fixed time interval, before a failure occurs. In fixed interval 

maintenance, the condition of the part that the operator will replace is not tested. 

Therefore, the operator replaces the part regardless of whether it is worn out or still good 
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for operation. While the replacement of a worn out part is timely and can prevent a 

failure from occurring, replacing a part that is still good increases waste and costs.  

The other method of preventive maintenance is condition-based maintenance 

(CBM). CBM involves the continuous monitoring of a parameter that correlates to the 

occurrence of the failure of the equipment. The parameter should be measurable, and an 

operating range should be identified (Tsang 1995). Whenever the measured value of the 

parameter falls outside of the operating range, the system issues a warning to alert the 

operators for the relevant maintenance.  

A. NEEDS ANALYSIS INFLUENCES ON MAINTENANCE PLANNING 

The construction of a naval ship can cost up to billions of dollars (Peer 2012). It 

begins with the awarding of the contract to the shipbuilder, followed by the design of the 

ship hull and structure, the selection of systems to be installed on the ship, the detailed 

design of piping, wiring, and layout of systems, indicators, and sensors on the ship.  

The shipbuilder, the program manager, and the end-users meet regularly to 

discuss their views on how the ship will operate and function. There are four primary 

stakeholders in the construction of a naval ship. They are the program manager, the end-

user, the shipyard, and the system suppliers.  

The program manager works closely with the end-users to define the requirements 

and operational concepts of the new naval vessel that is to be built. This individual 

manages the program, the budget and the shipyard to ensure that the shipbuilding project 

is within budget and meets the operational requirements and specifications. Together with 

the end-users, program managers are the decision makers for selecting the shipyards and 

their subcontractors, both in terms of technological compliance and financial aspects. 

Their effective need is to ensure that the cost estimated for the shipbuilding program is 

sufficient throughout the life cycle of the vessel, from cradle to grave.  

The end-user for a naval vessel is the navy. The navy fleet must be operationally 

ready for the missions assigned to them. Increasing the operational readiness and 

availability of the fleet is an effective need for any navy. Another effective need is to 
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keep the fleet’s operations and maintenance at a low cost. When there is an unlimited 

budget for maintenance, the availability of the fleet can be keep at a very high level. 

However, this is not possible in the real world. There is always a limited budget for 

operations and maintenance. Therefore, we can see that the need for keeping maintenance 

cost low and the navy fleet’s availability high is conflicting.  

In the construction of a new ship project, the end-user is able to specify the use of 

equipment that meets a certain reliability to reduce maintenance costs throughout the 

lifetime of the ship. A preventive maintenance plan of fixed interval maintenance is the 

usual approach to keeping the fleet’s availability high. But, this approach increases cost 

and waste as previously discussed.  

The shipyard is also a main contractor of any shipbuilding project. Shipyard 

personnel must ensure that the construction project is on schedule to meet the delivery 

milestones, and that seamless integration occurs between the many systems on board the 

ship. They also have to ensure that the equipment is positioned in the most efficient 

location to carry out its specified functions. The shipyard submits proposals to ship 

construction project tenders. The objective of the proposal is to ensure that the price is 

competitive while complying with all requirements, and still able to maximize the profits 

of the shipyard.  

The shipyard must also take care of the structural maintenance of the ship hull 

over the lifetime of the vessel through a maintenance contract with the navy. The 

effective need of the shipyard is to maximize its profits through the ship construction and 

maintenance project they undertake.  

The system suppliers’ effective need is to increase sales to meet their sales target. 

They provide pre-sales and after-sales support of their equipment to the navy. After-sales 

support includes servicing and repair of equipment, as well as the sales of spare parts. As 

they may also be the original equipment manufacturer, they are the subject matter expert 

for the system and may provide technical advice regarding maintenance procedures and 

the frequency of such maintenance.  
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A summary of the roles and effective needs of the primary stakeholders is shown 

in Table 1. 

Table 1.   Role and Effective Needs of Stakeholders 

Stakeholder Role Effective Needs 

Program 
manager 

Define requirements and operational 
concepts Ensure that the cost 

estimated is sufficient 
throughout the life cycle 

from cradle to grave 

Manage program, the budget, and the 
shipyard 

Select shipyard and their subcontractors 

End-users Define operational concept and 
requirement 

Increase availability of 
fleet 

Keep the operations and 
maintenance cost low 

Be operational ready for 
missions 

Shipyard 

Ensure project is on schedule to meet the 
delivery milestones 

Maximize profits in the 
ship construction and 
maintenance project 

Ensure seamless integration between the 
many systems on board the ship 

Ensure equipment is positioned in the 
most efficient location to carry out its 

functions 
Provide structural maintenance of the 

ship hull over the lifetime of the vessel 

System 
suppliers 

Offer service and repair of equipment, 
and sale of spare parts Increase sales to meet 

target Provide technical advice on maintenance 
procedures and the frequency of such 

maintenance 

 

From the stakeholder needs analysis, we find the end-users have two needs that 

conflict with each other. They need to keep the operations and maintenance cost low, 

while increasing the availability of the fleet. Adopting a preventive maintenance policy 

can keep the availability of the fleet high, but replacing parts at fixed intervals, especially 
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parts that are not worn out, with new ones to prevent the occurrence of a failure will 

increase costs and waste.  

Adopting the run-to-failure corrective maintenance policy, which requires 

performing maintenance only when a failure occurs, can reduce cost and waste. However, 

this approach greatly affects and, in fact, reduces the availability of the fleet due to the 

increased downtime required to troubleshoot problems and the procurement lead time 

required to purchase the replacement parts.  

Considering that the navy needs to be operational ready and available, a 

preventive maintenance policy is definitely more suitable. The maintenance of the ship 

hull requires maintenance at fixed intervals to ensure the seaworthiness and safety of the 

ship, as regulated by International Maritime Organization (IMO). The mechanical parts 

of the equipment on-board the ship are also subject to wear and tear over time. The 

degree of wear and tear is dependent on the usage level of the equipment and the vessel.   

The interval between replacing parts is advised by the system supplier, who may 

also be the original equipment manufacturer, whose effective need is also to increase the 

sales of their products and spare parts. Thus, for the navy, correctly identifying the parts 

that are required to be replaced is one way to reduce waste and keep maintenance costs 

low.  

CBM is one type of preventive maintenance that can help the navy efficiently 

determine whether maintenance is required by monitoring certain predefined parameters 

that are correlated to the occurrence of a failure. Using this predictive method, naval 

personnel can perform maintenance just before the occurrence of a failure. Conducting a 

thorough business-case analysis prior to the implementation of CBM is also required to 

ensure that there is positive cost savings to the maintenance cost (Koyak 2013). 

B. LIFE CYCLE COST AND MAINTENANCE COST 

In the acquisition of a defense system, the life cycle cost of the system may 

sometimes be overlooked. The primary consideration in the acquisition project is usually 

the “short term” cost, which is the initial procurement and acquisition cost 
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(Blanchard 2014). Apart from initial procurement and acquisition cost, many other 

related costs may be hiding below the surface. This can be illustrated by the “iceberg” 

effect shown in Figure 1. Operations and maintenance costs contribute to a large 

percentage of the total cost of the system throughout the whole life span of the system. 

For some systems it is estimated to be about 70 to 75 percent of the total cost 

(Blanchard 2014).  

 

Figure 1.  Total Life Cycle Cost Visibility. Source: Blanchard (2014). 

The Department of Defense has published the operation and maintenance 

overview for the fiscal year (FY) 2017 (Office of the Under Secretary of Defense 2016). 

As mentioned in the report, the FY 2017 estimate for depot maintenance for the U.S. 

Navy is $6,262 million. Depot maintenance includes overhaul, repair and maintenance of 
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ships for the U.S. Navy. Apart from depot maintenance, a separate amount is requested 

for day-to-day maintenance under the Facilities Sustainment, Restoration and 

Modernization (FSRM) program. The Navy is budgeting $1,642.7 million for FSRM for 

FY 2017. This makes a total of $7,904.7 million for all maintenance for the U.S. Navy.  

C. HIGH SPEED SURFACE CRAFT 

The vessel from which data is collected for this study is designed and built by 

Singapore Technologies Marine Limited (STM). This is a new-built project in STM. The 

vessel, which is designed and built with an aluminium hull, is a light weight, high speed 

surface craft (HSSC). The vessel is equipped with two MTU 16V 2000 M94 diesel 

engines, one on the port side and the other on the starboard side. These two engines are 

connected to two waterjets that thrust the vessel forward or astern. The HSSC is capable 

of maneuvering sharp turns at high speed while maintaining stability throughout the 

course.  

The HSSC was launched in July 2014, and the commissioning of other platform 

systems was completed by late 2014. This was then followed by internal sea trials and 

official sea trials. The data used in this study were collected from this vessel over a 

period of 13 months, from January 2015 until February 2016.  

D. MTU DIESEL ENGINE 

As previously mentioned, the diesel engine that powers the HSSC is a MTU series 

2000 general purpose four-stroke diesel engine with 16 cylinders. The engine’s sensors 

are connected to the engine control unit (ECU) and engine monitoring unit (EMU). The 

ECU and EMU use the sensors for engine control and monitoring (MTU Friedrichshafen 

GmbH [MTU] 2012). The electronic engine control unit provides closed-loop, open-loop, 

and monitoring of various parameters of the engine through these sensors.  

The placement of the sensors by the diesel engine manufacturer is shown in 

Figures 23 to 27 in the Appendix. These sensors measure exhaust gas temperature, oil 

temperature, fuel temperature, coolant temperature, oil pressure, coolant pressure, fuel 

pressure, engine speed, coolant level, and fuel level. One of the parameters that the ECU 
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controls is to maintain the desired engine speed as the operator drives the vessel. As the 

engine speed changes, parameters correlated to the engine speed also change.  

E. SHIP CONTROL AND MONITORING SYSTEM 

The ship control and monitoring system (SCMS) is a centralized information 

system that connects to various platform systems on board the ship. The SCMS issues 

both audible and visual alarms to the operator when any of the predetermined anomaly 

conditions are triggered. The operator is also able to remotely control and view the status 

of the monitored equipment and platform systems through the SCMS. A database in the 

SCMS logs all events and alarms triggered during the operation period. The database also 

stores the measured readings of condition monitoring values.  

The SCMS is connected to the MTU diesel engine local equipment panel through 

a serial RS422 interface. Values, status, alarms messages, and warning messages of the 

MTU diesel engine are transmitted to the SCMS for display to the operator and storage in 

the SCMS database. 

F. PROBLEM STATEMENT 

The aims of this thesis are to determine the appropriate statistical method to 

characterize the data collected from the HSSC and to derive a model for forecasting the 

behavior of a marine diesel engine. This includes determining the following: 

• selection of useful data for model formulation and estimation; 

• selection of a condition monitoring parameter that is indicative of system 
health status; 

• approach for characterizing the data; 

• method for deriving the model. 

After model development, a decision-making process similar to that of a control 

chart can be used to set the range of normal operation and out-of-control thresholds. 
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G. ORGANIZATION OF THE THESIS 

The thesis is organized in the following manner. Chapter I gives the background 

and the motivation for the study and analysis. Chapter II presents a literature review of 

the previous research on CBM and on marine engines. Chapter III describes the tools and 

methodology adopted to analyze the data collected. Chapter IV presents the results of the 

analysis and offers some discussion of the results. Chapter V summarizes the 

contributions of this work and concludes with recommendations for further studies.  

  



 10 

THIS PAGE INTENTIONALLY LEFT BLANK 



 11 

II. LITERATURE REVIEW 

As a maintenance policy, CBM is useful for diagnostic and prognostic purposes. 

The objective of diagnostic CBM is to identify and find the cause of a failure. One of the 

common causes of failures is equipment ageing and deterioration.  Prognostic CBM aims 

to estimate the remaining useful life of an entity, allowing time for maintenance to be 

carried prior to an actual failure.  

There are different methods and techniques to perform CBM. Jardine, Lin and 

Banjevic (2006) present a review of diagnostics and prognostics CBM for the mechanical 

systems. Diagnostic CBM takes place after a failure has occurred, to find the cause of 

failure. By contrast, prognostic CBM tries to predict the occurrence of a future failure 

with currently available data. Methods and techniques related to CBM range from data 

acquisition to data analysis and decision making. These are the three main steps for 

CBM.  

A. DATA ACQUISITION 

Data acquisition is an important process in CBM. It consists of the collection of 

data from the equipment and then storing them for analysis of the health condition of the 

equipment. Two types of data are useful for performing analysis in CBM. Event data 

records what has happened to the equipment, while condition monitoring data records the 

actual measurements taken that reflect the condition of the equipment at a particular 

moment, over a certain time period.  

Jardine, Lin and Banjevic (2006) mention the use of event data and condition 

monitoring data for CBM data analysis. They also emphasize the importance of event 

data towards CBM, since event data contributes to the performance evaluation of the 

condition monitoring data.  

Data is essential to the subsequent steps of CBM. Yam et al. (2001) implemented 

CBM for a power generation plant, by monitoring the vibration of the planetary gear train 

of one of the motor-pumps within the power generation plant. Bank et al. developed the 

Diesel Enhanced Mechanical Diagnostic Test Bed to study the characteristics of diesel 
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engines for healthy and faulty data (Bank et al. 2001). The test bed generates operational 

data of pressure, temperature, vibration, and displacement for various speeds and loads.  

Jiang and Yan study the level of deterioration in marine diesel engines through 

the concentration of wear particles in the analysis of engine oil samples (Jiang and 

Yan 2008). Lee monitors the exhaust gas temperature of the diesel engine for a roll-on-

roll-off-passenger commercial vessel (Lee 2013). Jardine, Lin and Banjevic note other 

monitoring parameters, such as acoustic, moisture, humidity, weather or environmental 

data as condition monitoring data through various types of sensors for CBM (Jardine, Lin 

and Banjevic 2006).  

There are no strict rules on which parameter to use for condition monitoring. 

From several previous works on CBM of diesel engines, we find the monitoring 

parameters are not the same. It depends on the data available as well as the availability of 

resources or special equipment to perform the analysis.  

B. DATA PROCESSING AND ANALYSIS 

The next step in CBM is data processing and analysis. There are different 

methods and techniques to process and analyze data. It is dependent on the data collected, 

whether it is value type, waveform type, or multi-dimension type.  

Signal processing is commonly used for waveform and multi-dimension type 

data, while for value type data, multivariate analysis or trend analysis techniques can be 

adopted (Jardine, Lin and Banjevic 2006).  

Jiang and Yan derive composite scale models for the prediction of failure of the 

diesel engine based on the data collected from oil analysis (Jiang and Yan 2008). Lee, in 

his thesis, uses the moving average time series technique to predict future values based 

on the model derived (Lee 2013).  

C. DECISION MAKING 

In the work by Yam et al. (2001), the authors develop the intelligent predictive 

decision support system (IPDSS) which is trained with domain-specific knowledge 

through recurrent neural networks (RNN). IPDSS provides analytical decisions for fault 
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diagnosis and trend prediction for the deterioration of the equipment. Condition 

monitoring of the vibration of the planetary gear train is used for prognostic analysis of 

the equipment. Yam et al. compared the trend of the faults against the predicted trends to 

verify the performance of their CBM.  

Jiang and Yan (2008) construct a multivariate control chart, by setting a threshold 

for alarms and anomalies to aid in maintenance decision support for CBM. Lee (2013) 

uses a cumulative sum (CUSUM) control chart to determine whether the process under 

monitoring is still in control.  

Among the common techniques for maintenance decision support, as presented by 

Jardine, Lin and Banjevic (2006), are artificial intelligence (AI) and statistical 

approaches. Statistical process control (SPC) is one of the statistical approaches use for 

CBM. SPC determines if a process is in control by comparing the conditioning 

monitoring parameter against a reference. The process is in control if the condition 

monitoring parameter is within a predefined set of control limits. 

One of the AI approaches use for CBM is expert systems (ES). ES can provide 

decision support in a particular domain through an inference engine, based on a high 

quality domain expert knowledge base. The reasoning methods of the inference engine 

can be rule-based, case-based or model-based. 
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III. TOOLS AND METHODOLOGY 

A. R LANGUAGE 

R (R Core Team 2015) is an open source statistical programming language, 

commonly used in statistical research. The advantage of using R is that the developer 

released R under the GNU general public license, which makes R available at no cost to 

the user. The software is available for download from the R project website. The license 

allows the user to obtain the R source code, which the user may modify and distribute to 

other users of R (Free Software Foundation 2007). 

Although R is open source, it is in no way inferior to commercially released 

statistical software. This powerful programming language can perform data analysis, data 

manipulation, and statistical modeling; and the results can be plotted in a variety of 

graphical formats. The main consideration for selection of R language as the analysis tool 

for this project is the portability of the written code and the availability of the analysis 

software after the completion of this Master’s thesis, allowing further work related to this 

project. 

B. REGRESSION ANALYSIS 

Regression analysis is a technique for deriving a mathematical model that 

represents the relationship between a dependent variable with one or more independent 

variables (Ragsdale 2012). The changes of independent variables can influence the values 

of dependent variables when a relationship between them exists. The model derived 

through regression analysis should closely reflect the behavior of the dependent variable 

with respect to the independent variables. One can use this model to predict the response 

of the dependent variable based on known values of the independent variables.  
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1. Time Series Analysis 

From basic mechanical operating principles, we know that when the engine speed 

increases, the temperature of the other engine parameters will react in response to the 

increase in engine speed. It is therefore intuitive to acknowledge that there is 

autocorrelation in the behavior between the engine speed and the other temperature 

parameters. Hence, one can use a time series regression approach to express the behavior 

of the engine in the presence of the variable speed.     

2. Autoregressive Distributed Lag (ARDL) Time Series  

The observations on a measurable variable acquired over a period of time form a 

time series (Ragsdale 2012). One type of time series is an autoregressive distributed 

lag (ARDL) time series. This ARDL time series is a commonly used statistical and 

econometrical analysis technique. An ARDL time series model can be used to describe 

the behavior of a dependent variable, 𝑌𝑌𝑡𝑡, expressed in terms of a constant y-intercept, 𝜇𝜇, a 

disturbance, 𝜀𝜀𝑡𝑡, an independent variable, 𝑋𝑋𝑡𝑡, their past, 𝑋𝑋𝑡𝑡−𝑗𝑗, and its own past, 𝑌𝑌𝑡𝑡−𝑖𝑖. Lags 

in the time series are values of past periods. The number of lags used in the model 

determines how many past periods can affect the dependent variable. 

An ARDL time series model (Greene 2000) can be expressed as: 

𝑌𝑌𝑡𝑡 = 𝜇𝜇 + �𝛾𝛾𝑖𝑖𝑌𝑌𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗𝑋𝑋𝑡𝑡−𝑗𝑗

𝑟𝑟

𝑗𝑗=0

+ 𝜀𝜀𝑡𝑡 

with  

𝜀𝜀𝑡𝑡 ∼ 𝑖𝑖. 𝑖𝑖.𝑑𝑑  𝑁𝑁(0,𝜎𝜎𝜀𝜀2) 
 

and, 𝑝𝑝 and 𝑟𝑟 are the lag length for the dependent variable, 𝑌𝑌𝑡𝑡, and independent variable, 

𝑋𝑋𝑡𝑡, respectively. One can rewrite the ARDL time series model (Greene 2000) as: 

 
𝐶𝐶(𝐿𝐿)𝑌𝑌𝑡𝑡 = 𝜇𝜇 + 𝐵𝐵(𝐿𝐿)𝑋𝑋𝑡𝑡 + 𝜀𝜀𝑡𝑡 

where 
𝐶𝐶(𝐿𝐿) = 1 −  𝛾𝛾1𝐿𝐿 − 𝛾𝛾2𝐿𝐿2 − ⋯− 𝛾𝛾𝑝𝑝𝐿𝐿𝑝𝑝 

and 
𝐵𝐵(𝐿𝐿) = 𝛽𝛽0 +  𝛽𝛽1𝐿𝐿 + 𝛽𝛽2𝐿𝐿2 + ⋯+ 𝛽𝛽𝑟𝑟𝐿𝐿𝑟𝑟 

Here, 𝐿𝐿 refers to the lag operator. 
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3. Assumptions of Linear Regression 

One of the assumptions of linear regression performed using ordinary least square 

(OLS) method is that the residuals are normally distributed. A nonparametric robust 

regression approach may be appropriate if the residuals have a heavy-tailed distribution. 

Instead of minimizing the sum of squared errors in OLS, the nonparametric robust 

regression approach minimizes the sum of absolute errors. Furthermore, a robust 

autocorrelation function that uses Spearman ranked correlation in the residual analysis 

can be used to measure the autocorrelation in the residuals in a nonparametric manner. 

4. Independent and Dependent Variables for Regression 

In this thesis we derive a regression model based on the data collected from an 

MTU series 2000 general purpose diesel engine on the port side of the HSSC. The data, 

sampled at an interval of one second, are measured by sensors placed on various parts of 

the engine by the engine manufacturer. The selection of a dependent variable with one or 

more independent variable is required for the regression analysis. The independent 

variable is the known and controlled variable. In this case, among the data collected, the 

obvious choice for the independent variable is the engine speed parameter. The engine 

speed is controlled by the helmsman as the driver of the vessel.  

The dependent variable is the variable that is of interest for prediction. The 

selection of the dependent variable should be appropriate for the system under 

consideration. A previous study in the area of CBM for marine diesel engines is Lee 

(2013), who uses exhaust gas temperatures as the monitoring parameter for CBM. Lee 

anticipates that high exhaust gas temperatures could lead to possible failure of the main 

engine, as it may be an indication of problems in the combustion chamber. High exhaust 

gas temperature would also add to the level of thermal stress for the surrounding 

components and materials. From the data collected, the operating temperature for exhaust 

temperature can be as high as 700 degrees Celsius. This temperature range is higher than 

for other measured parameters. Thus, we take exhaust temperature as the dependent 

variable in our regression model.  
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C. METHODOLOGY 

The methodology to characterize the data collected and derive the model for 

prediction of the selected engine parameter is shown in Figure 2. There are six steps in 

the process. The data collected are first selected according to the selection criteria, then 

analyzed to determine their properties. The next step is to categorize the data according to 

their properties. Based on the different groups, we can derive models for each group. We 

can then use the models for prediction, and we can verify the results of the prediction 

against a new set of data.  

 

Figure 2.  Methodology for Regression Analysis 
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1. Data Selection Criteria 

It is not meaningful to analyze the data when the main engine is idling or when 

there is no load attached to the engine. To ensure that our analysis is meaningful, the data 

we use for the analysis should only be obtained when the HSSC is in operation and for a 

sufficient period to observe the operation of the vessel under usage conditions. Therefore, 

the following data selection criteria for the selection of useful data for analysis are 

derived: 

• The data should be selected from the period when the clutch is engaged. 

• The engine should be sufficiently warmed up.  

• The engine speed should be above its idling speed. 

• The clutched-in duration should be sufficiently long to display the 
relationship between variables. 

2. Data Properties  

The collected data are analyzed to derive a predictive model for the dependent 

variable. This analysis quantifies the linear relationship between variables using the 

correlation coefficient. The measured strength of the relationship ranges from -1 to 1, 

with a positive value indicating an up slope direction and a negative value indicating a 

down slope direction. An absolute value that is closer to 1 indicates stronger relationship 

between the two variables.  

There are two exhaust temperature parameters in the data collected, combined A 

exhaust temperature and combined B exhaust temperature. Combined A exhaust 

temperature measures exhaust gas temperature of cylinders located on the left side of the 

engine, and combined B exhaust temperature measures exhaust gas temperature of 

cylinders on the right side of the engine. For our analysis, the parameter with a higher 

correlation coefficient is chosen as the dependent variable for regression analysis.  

3. Data Categorization 

The data to be used for regression is dependent on the definition of “normal” 

operating characteristics of the vessel. Selecting the sets of data that exhibit normal 
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operating characteristics is critical to the derivation of a model for predicting the behavior 

of the dependent variable during normal operation. We choose engine speed as the 

independent variable for regression. Correctly categorizing the datasets into groups 

having similar operating conditions creates better models for prediction. The data may be 

grouped into different categories. There are different categories of “normal” operation. 

One way of categorizing the datasets could be in terms of engine speed profile. The MTU 

series 2000 general purpose diesel engine can operate with sequential turbocharger once 

the engine speed exceed 2000 RPM. The first category uses datasets for engine operation 

without the turbocharger. These datasets show the engine speed not exceeding 2000 RPM 

on average and sustained speeds over the analyzed duration. The other category uses 

datasets for the engine operating with turbocharger, with average and sustained speeds 

over the analyzed duration of over 2000 RPM. 

The duration of the dataset also affects the effectiveness of the model. A longer 

operating duration can capture more details throughout the operation. Therefore, the 

datasets are categorized into modeling sets and prediction sets. The datasets used for 

regression modeling are longer than 30 minutes, while the datasets used for prediction are 

not required to be longer than 30 minutes.  

4. Regression Model 

To derive the ARDL time series model, we must estimate the following 

unknowns: 

• coefficients of lagged dependent variable; 

• coefficients of current and lagged independent variable; 

• intercept value; 

• lag length of the model. 

For each speed profile category, a separate regression model is estimated. Once 

we have derived all the regression models for all the datasets within the same category, 

we derive the overall regression model for that particular category by taking the average 
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of all the corresponding coefficients. Using this method, we can derive the intercept value 

and coefficients of current and lagged dependent and independent variables. 

The overall regression model can also be expressed mathematically as: 

𝑌𝑌𝑡𝑡𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜇𝜇� + �𝛾𝛾�𝑖𝑖

𝑝𝑝

𝑖𝑖=1
𝑌𝑌𝑡𝑡−𝑖𝑖 + �𝛽𝛽�𝑗𝑗

𝑟𝑟

𝑗𝑗=0
𝑋𝑋𝑡𝑡−𝑗𝑗 + 𝜀𝜀𝑡𝑡 

with  

𝜇𝜇� =
1
𝑘𝑘�𝜇𝜇𝑠𝑠

𝑘𝑘

𝑠𝑠=1
 

and 

𝛾𝛾�𝑖𝑖 =
1
𝑘𝑘�𝛾𝛾𝑖𝑖𝑠𝑠
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and 

𝛽𝛽�𝑗𝑗 =
1
𝑘𝑘�𝛽𝛽𝑗𝑗𝑠𝑠

𝑘𝑘

𝑠𝑠=1
 

where 𝑘𝑘 is the total number of datasets in the category. 

The lag length can be estimated by examining the autocorrelation of the residuals. 

After estimating the regression model on each dataset, we inspect the autocorrelation 

function of the residuals, adding lags to the regression model until the residuals approach 

the behaviour of white noise (Parker 2012). 

5. Prediction 

Some datasets are set aside for the purpose of prediction to test an estimated 

model. The independent variable of these datasets set aside for prediction is injected into 

the derived model to predict the values for the dependent variable. We discuss this further 

in Chapter IV, Section D3.    

6. Verification 

The simplest way to verify the prediction is by plotting the predicted values 

against the actual values for comparison. Next, we plot the residuals of the results of the 

prediction to determine deviation of predicted results from the actual values. Then, there 

are residual analysis techniques that we can adopt to verify the results of the prediction. 

One of these residual analysis techniques is performing autocorrelation function on the 
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residuals. This is to see if there is any autocorrelation present in the residuals. Another 

technique is normal quantile-quantile (QQ) plots of the residual, to test for the normality 

of the residuals. 
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IV. DATA ANALYSIS AND RESULTS 

A. COLLECTED DATA 

The data used in this analysis is collected from the main engine on the port side of 

the HSSC, over a period of 13 months from January 2015 to February 2016. Sensors on 

the MTU diesel engine measure these values, which are transferred to and stored in the 

SCMS database. There are two types of data collected. They are events data and 

condition monitoring data.  

Events data logs the status of the equipment. These data keep track of what 

happened during the day, for example, what time the main engine is powered up, what 

time the clutch is engaged or disengaged, whether the clutch is engaged for ahead or 

astern.  

The other type of data collected automatically is condition monitoring data. These 

are the data that can be used for analysis. The condition monitoring data, sampled at a 

time interval of one second, is a measure of analog values of parameters such as 

temperature, pressure, voltages, and speed.  

Events data related to usage can add meaning to condition monitoring data. It can 

aid in understanding for which period of time the condition monitoring data is useful for 

analysis. The selection of useful data for analysis is usually performed prior to data 

processing and analysis.  

1. Dataset 

The events data collected from the HSSC for the period from January 2015 to 

February 2016 can be used to determine whether a particular period in time is for analysis 

and derivation of the prediction model. Based on the selection criteria defined in 

Chapter III, Section C1, we should only use the data collected when the clutch is 

engaged. Table 2 lists the dates and duration when the HSSC had its port side engine and 

clutch engaged.  
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Table 2.   Data and Duration of Engaged Clutch of HSSC 

Dataset Date Duration 
1 9 Apr 2015 02:31:36 
2 18 Jun 2015 02:24:10 
3 18 Jun 2015 02:15:07 
4 24 Jun 2015 00:47:23 
5 25 Jun 2015 01:27:34 
6 25 Jun 2015 00:20:44 
7 26 Jun 2015 02:00:35 
8 26 Jun 2015 00:21:17 
9 26 Jun 2015 00:28:44 
10 26 Jun 2015 01:08:39 
11 30 Jun 2015 01:07:34 
12 30 Jun 2015 01:11:22 
13 30 Jun 2015 02:16:22 
14 2 Jul 2015 01:58:50 
15 2 Jul 2015 01:31:24 
16 3 Jul 2015 03:01:29 
17 6 Jul 2015 01:36:06 
18 6 Jul 2015 01:57:22 
19 8 Jul 2015 01:38:08 
20 8 Jul 2015 01:04:02 
21 8 Jul 2015 02:55:12 
22 15 Jul 2015 00:36:51 
23 26 Aug 2015 00:16:08 
24 26 Aug 2015 01:00:47 
25 27 Aug 2015 13:28:28 
26 20 Nov 2015 00:24:49 
27 23 Nov 2015 00:29:27 
28 25 Nov 2015 00:31:06 
29 26 Nov 2015 00:19:12 
30 7 Dec 2015 02:27:29 
31 19 Jan 2016 00:31:22 
32 20 Jan 2016 02:59:04 
33 10 Feb 2016 00:30:18 
34 25 Feb 2016 00:18:29 
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Table 2 shows that the HSSC does not have a fixed operating time and period 

every day. There are days when the clutch is engaged and disengaged multiple times, and 

there are days that there is no operation at all. The duration of operation also varies, 

ranging from the longest at 13 hours to the shortest at 16 minutes. There are periods when 

the HSSC clutch is engaged for 10 minutes or less. Those data are not listed in Table 2.  

For Dataset 25, the HSSC had its clutch engaged for 13 hours. This extended 

period of clutch engagement is an unusual pattern of operation when compared with the 

rest of the datasets. This may suggest that the HSSC is involved in a long operational 

activity or sea-trial on that day. As the HSSC is in its testing and evaluation phase during 

the data collection period, it is not surprising that the HSSC is scheduled for sea-trial to 

test equipment performance at open sea for an extended period of time in a day. We 

should consider this an independent event, not a usual operation pattern. Since Dataset 25 

meets the selection criteria, this dataset is not discarded. 

2. Data Variables 

The data collected from the MTU diesel engine are analog values of measured 

variables. The variables, with their respective units, and the range of the values are 

summarized in Table 3. The engine speed is measured and recorded in the range from 0 

to 3000 RPM. The idling speed for the engine is at 600 RPM. The engine goes into its 

idling speed once the engine is powered up and no load is applied to the engine. The 

temperature of variables in fluid form, such as coolant, lube oil, and fuel, are measured 

and recorded in the range from -20 degrees Celsius to 120 degrees Celsius. Charge air 

temperature is measured and recorded in the range from 0 degrees Celsius to 120 degrees 

Celsius. For exhaust temperature, the measured and recorded temperature range is not 

documented in the manual (MTU 2007). But based on the data collected, it could reach 

up to 600 or 700 degrees Celsius. Coolant pressure and gear lube oil pressure, in bars, are 

not documented as well. Lube oil pressure is between 0 to 10 bars, and gear control oil 

pressure is between 0 to 30 bars. Power supply voltage is measured and recorded between 

0 and 35 volts.    
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Table 3.   Diesel Engine Variables Collected. Adapted from MTU (2007). 

Variables Units Minimum 
Value 

Maximum 
Value 

Engine speed RPM 0 3000 
Coolant temperature  Degree Celsius -20 120 
Coolant pressure Bar - - 
Lube oil temperature  Degree Celsius -20 120 
Lube oil pressure Bar 0 10 
Exhaust temperature Degree Celsius - - 
Fuel temperature Degree Celsius -20 120 
Charge air temperature Degree Celsius 0 120 
Gear control oil pressure Bar 0 30 
Gear lube oil pressure Bar - - 
Power supply voltage Volt 0 35 

 

The sensors on the engine measure these variables and then electrically transmit 

them to the engine local control panel and to the SCMS through a serial RS422 interface 

at the sampling interval of one second, for display, storage and offline analysis. 

3. Data Plots 

The data collected are dependent on the operation of the HSSC. Intuitively, the 

temperature and pressure parameters are dependent on the engine speed. As the load or 

demand on the engine increases, the engine speed increases. This in turn leads to the 

change in temperature and pressure parameters. On the other hand, we do not expect the 

power supply voltage to change with respect to the engine speed. Yet, only through 

further analysis can we determine how each individual variable is related to the engine 

speed. Engine speed from sample dataset, Dataset 19, is plotted to observe the behavior 

of the engine and its relationship with the other parameters.   

a. Engine Speed 

Dataset 19 is collected over a period of 1.5 hours from about 09:30 hr until 

11:05 hr, as shown in Figure 3. During that period of time, we observe that at around 

09:30 hr, the engine is picking up speed, and it reaches about 2200 RPM for a period of 

10 minutes, then fluctuating between 2500 RPM and 1300 RPM, and then settling down 



 27 

at about 1800 RPM at around 10:30 hr. At about 10:50 hr, the engine speed once again 

increases to about 2500 RPM, before returning back to its idling speed at around 

11:00 hr. The engine speed is controlled by the helmsmen as he drives the ship, moving 

the throttle forward to increase the engine speed, and moving the throttle backward to 

reduce speed. The engine speed may also affect other parameters. 

b. Temperature 

The temperature parameters of Dataset 19 are plotted against time, as shown in 

Figure 4. We observe that lube oil temperature, coolant temperature, combined A exhaust 

gas temperature, and combined B exhaust gas temperature exhibit a similar trend with 

each other. From the plots, we also observe that the operating temperature of combined A 

exhaust gas temperature and combined B exhaust gas temperature can reach up to 

700 degrees Celsius. Charge air temperature reflects an inverse trend with that of 

combined A exhaust gas temperature and combined B exhaust gas temperature. Fuel 

temperature seems to have a longer delayed reaction than the other temperature 

parameters.  

c. Pressure 

The plots of pressure against time are shown in Figure 5. From the plots, we 

observe that gear control oil has a jump in pressure once the clutch is engaged. The trend 

of gear control oil pressure, gear lube oil pressure, and coolant pressure exhibit a similar 

trend closely resembling that of engine speed. Lube oil pressure does not show a clear 

similarity to the other pressure plots. Another point to note is that gear control oil 

pressure operates at a range much higher than the other pressure variables. Gear control 

oil pressure operates above 20 bars, while the other pressure parameters operate at less 

than 10 bars. 
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Figure 3.  Engine Speed Plotted against Time for Dataset 19 

 

Figure 4.  Temperature Parameters Plotted against Time for Dataset 19 
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Figure 5.  Pressure Parameters Plotted against Time for Dataset 19 

d. Voltage 

The power supply voltage plot is shown in Figure 6. The power supply voltage 

fluctuates between 25 V and 27 V. There is no obvious similarity in trends between the 

power supply voltage and the engine speed. The fluctuation in voltage could be due to 

noise or other factors. 
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Figure 6.  Power Supply Voltage Plotted against Time for Dataset 19 

B. DATA SELECTION 

The selection criteria for data to be used for analysis are discussed in Chapter III, 

Section C1. The selection of the duration for Dataset 1 to Dataset 34 is based on the 

events data that logged the exact time the clutch is engaged. Each dataset records a 

minimum operating duration of at least 15 minutes.  

Coolant is the fluid that flows through the engine to cool the running engine. The 

heat exchange between the running engine and the coolant causes the temperature of the 

coolant to increase. Therefore, the coolant temperature is a good indicator to show that 

the engine is warmed up. To ensure that the engine is sufficiently warmed up, a coolant 

temperature of 70 degrees Celsius is used to mark the beginning of the selected data 
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within each dataset. Table 4 shows the number of observations in each dataset after the 

engine is warmed up. 

Table 4.   Number of Observations of Selected Data for Analysis 

Dataset Number of Observations Dataset Number of Observations 
1 9097 18 7042 
2 8084 19 5542 
3 8108 20 3843 
4 2844 21 10,513 
5 4916 22 1457 
6 1245 23 968 
7 6788 24 3647 
8 1278 25 48,243 
9 1725 26 792 
10 4119 27 849 
11 3623 28 1866 
12 4283 29 743 
13 8183 30 8298 
14 6756 31 1882 
15 5485 32 10,563 
16 10,495 33 1239 
17 5475 34 816 

 

C. CORRELATION COEFFICIENT 

Table 5 shows the correlation coefficient between the engine speed and the 

temperature parameters. The datasets highlighted in red have very low correlation 

coefficients. These datasets shows that the HSSC is operating at the engine idling speed, 

and do not meet the selection criteria. Therefore, these datasets are discarded. Among the 

temperature parameters shown in Table 5, combined B exhaust gas temperature has the 

highest correlation coefficient for most of the datasets. Selecting combined B exhaust gas 

temperature for the dependent variable is supported by the results of the correlation 

coefficient. 
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Table 5.   Correlation Coefficient of Engine Speed and Temperature Variables 

Dataset Lube Oil 
Temp 

Fuel 
Temp 

Coolant 
Temp 

Exhaust 
Gas A 

Exhaust 
Gas B 

Charge Air 
Temp 

1 0.7016 0.4016 0.9058 0.9777 0.9830 -0.8735 
2 0.1079 -0.3156 0.3814 0.7267 0.7375 -0.4583 
3 0.2070 0.1634 0.6892 0.8060 0.8320 -0.4118 
4 0.0552 0.2629 0.7259 0.8017 0.8203 -0.3846 
5 0.7484 0.0356 0.7166 0.8296 0.8534 -0.2431 
6 0.7038 0.2938 0.7467 0.9002 0.9156 -0.4611 
7 0.1299 0.1668 0.1102 0.3734 0.3923 -0.0552 
8 0.1591 -0.0475 0.0187 0.1406 0.1619 0.0800 
9 -0.3981 0.7070 0.6799 0.9144 0.9234 -0.7510 
10 0.5753 0.1031 0.7813 0.8901 0.9167 -0.6468 
11 0.8460 0.1682 0.9014 0.9573 0.9616 -0.7162 
12 0.8675 0.5597 0.9254 0.9458 0.9533 -0.3343 
13 0.8477 0.7049 0.9200 0.9615 0.9672 -0.7113 
14 0.7806 0.0296 0.8416 0.9254 0.9325 -0.5630 
15 0.7716 0.6156 0.9004 0.9688 0.9740 -0.7308 
16 0.7639 0.2209 0.8790 0.9584 0.9662 -0.7035 
17 0.7789 0.3755 0.7493 0.8670 0.8826 -0.2803 
18 0.6656 0.3508 0.7844 0.9330 0.9554 -0.7376 
19 0.7024 0.1548 0.7869 0.9211 0.9445 -0.5676 
20 0.6893 0.6454 0.8304 0.9423 0.9500 -0.7190 
21 0.5505 0.4663 0.8618 0.9670 0.9687 -0.8690 
22 -0.1663 -0.4421 0.4072 0.8289 0.8477 -0.5016 
23 -0.0253 0.0410 -0.0396 0.0256 0.0247 -0.0274 
24 0.1819 0.0785 0.8008 0.8871 0.8966 -0.5934 
25 0.6372 0.1267 0.8929 0.9645 0.9701 -0.8919 
26 0.4243 -0.1786 0.8548 0.9202 0.9290 -0.4060 
27 0.3906 -0.5012 0.7062 0.9434 0.9515 -0.3173 
28 0.4128 0.7634 0.8187 0.9662 0.9642 -0.8142 
29 0.3533 -0.5127 0.8204 0.9319 0.9439 -0.3894 
30 0.8198 -0.0538 0.8925 0.9447 0.9528 -0.6727 
31 0.1100 -0.0341 0.6525 0.8433 0.8550 -0.5659 
32 0.7199 0.2431 0.7953 0.9111 0.9202 -0.6337 
33 -0.1652 -0.8665 0.6785 0.9044 0.9319 -0.6818 
34 0.0588 -0.5947 0.7329 0.9710 0.9674 -0.2685 

Rows with very low correlation coefficient are highlighted in red. Highest correlation coefficient for 
each dataset is highlighted in bold. 
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D. ENGINE SPEED PROFILE 

The engine speed is an uncontrolled, independent variable. As discussed in 

Section A3, there is correlation between the behavior of the engine speed parameter and 

the temperature and pressure parameters; the temperature and pressure parameters are 

dependent on the engine speed.  

The engine speed is dependent on the position of the throttle at the bridge of the 

vessel. The helmsman increases the throttle level to increase the speed of the engine so 

that the vessel can travel at a higher speed and decreases the throttle level to reduce the 

speed of the engine, which in turn reduces the speed of the vessel. The speed profile of 

the engine is critical for the analysis of the behavior of the engine. 

Categorizing the engine speed into different speed profiles aids in the data 

analysis and processing. The engine speed data can be categorized by their speed and 

duration. At an engine speed greater than 2000 RPM, the engine operates with 

turbocharger. So the first category is for datasets with sustained engine speed greater than 

2000 RPM. Another category contains datasets of sustained engine speeds lower than 

2000 RPM. In terms of duration, one category reflects when the clutch is engaged for 

more than 30 minutes, and another is for when the clutch is engaged for less than 30 

minutes. A summary of the speed profile is shown in Table 6.  
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Table 6.   Engine Speed Profile 

Dataset Sustained 
Speed > 

2000 RPM 

Sustained 
Speed < 

2000 RPM 

No 
sustained 

speed 

Clutch 
Engaged > 
30 minutes 

Clutch 
Engaged < 
30 minutes 

1 X - - X - 
2 - - X - - 
3 - - X - - 
4 - X - X - 
5 - X - X - 
6 X - - - X 
7 - - X - - 
8 - - X - - 
9 - X - - X 
10 - X - X - 
11 X - - X - 
12 X - - X - 
13 X - - X - 
14 X - - X - 
15 X - - X - 
16 X - - X - 
17 X - - X - 
18 X - - X - 
19 X - - X - 
20 X - - X - 
21 X - - X - 
22 - X - - X 
23 - - X - - 
24 - X - X - 
25 X - - X - 
26 X - - - X 
27 - X - - X 
28 X - - - X 
29 X - - - X 
30 X - - X - 
31 - X - - X 
32 X - - X - 
33 - X - - X 
34 - X - - X 
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1. Discarded Datasets 

Five datasets are discarded. These five datasets show spikes at various engine 

speeds, but they do not exhibit any sustained engine speed above the engine idling speed. 

These engine speed graphs do not reflect any load on the engine. As discussed in 

Chapter III, Section C1 on data selection criteria, the engine speed should be above its 

idling speed; these five datasets do not meet these criteria. Therefore, these five datasets 

could not be used for the analysis. 

2. Datasets Used for Modeling 

The datasets used for deriving the regression model are those that have the clutch 

engaged for a duration of more than 30 minutes. We separate these datasets further into 

datasets for turbocharger mode operation and cruising mode operation based on whether 

their operating engine speed is a sustained engine speed greater than 2000 RPM. The 

model for the turbocharger mode of operation uses the datasets with sustained engine 

speeds greater than 2000 RPM for derivation. The model for cruising mode of operation 

uses those datasets with sustained engine speeds lower than 2000 RPM for derivation. 

We use a total of 15 datasets for deriving the regression model for turbocharger mode, 

and four datasets for deriving the regression model for cruising mode, as shown in 

Table 7. 

Table 7.   Regression Model Datasets for Turbocharger and Cruising Mode 

Mode Datasets 
Turbocharger Dataset 1, Dataset 11, Dataset 12,  

Dataset 13, Dataset 14, Dataset 15,  
Dataset 16, Dataset 17, Dataset 18,  
Dataset 19, Dataset 20, Dataset 21,  
Dataset 25, Dataset 30, Dataset 32. 

Cruising Dataset 4, Dataset 5,  
Dataset 10, Dataset 24. 
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3. Datasets Used for Prediction 

The datasets that we use for predictions have not been used for modeling. These 

datasets are those that have the clutch engaged durations of less than 30 minutes. From 

Table 8, there are four datasets for predictions in turbocharger mode and six datasets for 

predictions in cruising mode. 

Table 8.   Prediction Datasets for Turbocharger and Cruising Mode  

Mode Datasets 
Turbocharger Dataset 6, Dataset 26,  

Dataset 28, Dataset 29. 
Cruising Dataset 9, Dataset 22, Dataset 27,  

Dataset 31, Dataset 33, Dataset 34. 

 

E. LAGGED TIME SERIES 

The number of lags in the lagged time series can be estimated by taking the 

autocorrelation of the residuals after linear regression. Lags are added to the model until 

the autocorrelation in the residuals is removed and the results of the autocorrelation of the 

residuals becomes like white noise.  

The number of lags to add starts from one. This is then followed by adding 

another lag after each residual autocorrelation, and increases up to 15 lags. This is 

repeated for all datasets.  

The results of autocorrelation and normal QQ plots from Dataset 19 are presented 

here to illustrate the effects of lag length on autocorrelation and QQ plots. The 

autocorrelation results for 1, 5, 10, and 15 lags are shown in Figures 7, 9, 11, and 13 

respectively. And the QQ plots for 1, 5, 10, and 15 lags are shown in Figure 8, 10, 12, 

and 14, respectively. The normal QQ plots show roughly a straight line when the 

distribution of the data is normal.   
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1. ARDL with One Lag 

By introducing one lag to the ARDL time series model, we obtain the 

autocorrelation of the residuals of the regression, which is shown in Figure 7. With only 

one lag, the residuals are autocorrelated across most time periods. The QQ plot of the 

residuals for normality shows an upside down ‘S’ with heavy tail, indicating that the 

residuals are not normally distributed, and there are outliers with both extreme positive 

and negative values as shown in Figure 8. 

 

Figure 7.  Autocorrelation Function for Time Series with One Lag 
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Figure 8.  Normal QQ Plot for Time Series with One Lag 
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2. ARDL with Five Lags 

The autocorrelation of the residuals of the regression with five lags is shown in 

Figure 9. There is a significant reduction in the autocorrelation, which is statistically 

significant, between time periods. The QQ plot of the residuals for normality still exhibit 

heavy-tailed characteristics, as shown in Figure 10. Therefore, the residuals are also not 

normally distributed. 

 

 

Figure 9.  Autocorrelation Function for Time Series with Five Lags 

 



 40 

 

Figure 10.  Normal QQ Plot for Time Series with Five Lags 
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3. ARDL with 10 Lags 

When there are 10 lags in the ARDL time series, the autocorrelation of the 

residuals of the regression is as shown in Figure 11. There is a further significant 

reduction in the autocorrelation, with only three time periods that are statistically 

significant. The QQ plot of the residuals shown in Figure 12 exhibits heavy-tailed 

characteristics, with an upside down ‘S’ shape, not tracking a straight line at all. This 

shows that the residuals are not normally distributed. 

 

Figure 11.  Autocorrelation Function for Time Series with 10 Lags 
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Figure 12.  Normal QQ Plot for Time Series with 10 Lags 
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4. ARDL with 15 Lags 

When there are 15 lags in the ARDL time series, the autocorrelation of the 

residuals of the regression is as shown in Figure 13. There is no significant 

autocorrelation shown between time periods. The QQ plot of the residuals for normality 

still exhibits heavy-tailed characteristics, as shown in Figure 14. 

 

Figure 13.  Autocorrelation Function for Time Series with 15 Lags 
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Figure 14.  Normal QQ Plot for Time Series with 15 Lags 

5. Lag Length Results Summary 

From the results of the autocorrelation and QQ plots, with 15 lags, we observe 

that the autocorrelation of residuals is reduced to an approximate white noise condition. 

The residuals are not normally distributed and exhibit heavy-tailed characteristics, with 

outliers at both positive and negative ends. Therefore, the ARDL time series model will 

use 15 lags for the modeling and prediction of the datasets. Due to the non-normality of 

the residuals, a nonparametric regression analysis may be more robust and appropriate for 

the analysis of the collected data. 
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F. ARDL MODEL 

The ARDL time series model is set up with 15 lags. We divide the datasets into 

two speed categories, one for turbocharger mode and another for cruising mode. For 

turbocharger mode, we use 15 datasets in deriving the model and four datasets for 

deriving the model for cruising mode. 

LM is an R language command that fits a linear model for a set of data according 

to the model specification provided using OLS, and RQ is the R language command that 

fits a quantile regression model (Koenker 2016). RQ is a nonparametric approach and 

allows the user to specify the quantile to be estimated, p, which is between 0 and 1. We 

use the RQ command with p = 0.5, which is equivalent to minimizing the sum of absolute 

values of the regression errors. The independent variable, 𝑋𝑋𝑡𝑡−𝑗𝑗, used for the model is the 

engine speed, and the dependent variable, 𝑌𝑌𝑡𝑡−𝑖𝑖 , is for combined B exhaust gas 

temperature.  

1. Regression Model for Turbocharger Mode  

The regression model for turbocharger mode is derived from 15 datasets during 

operation and with sustained engine speeds above 2000 RPM. Each dataset is processed 

with linear regression using 15 lags with respect to both engine speed and exhaust 

temperature. The coefficients derived by the regression for each dataset are then averaged 

to derive the overall regression model for the turbocharger mode.    

The derived model for turbocharger mode using the LM command is shown in 

Table 9, and the derived model for turbocharger mode using the RQ command is shown 

in Table 10. The derived model lists the intercept and coefficients of the dependent and 

independent variables with 15 lags.  
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Table 9.   LM Regression Model for Turbocharger Mode 

Terms Coefficients Terms Coefficients 
𝜇𝜇 0.224 𝑋𝑋𝑡𝑡 0.003 
𝑌𝑌𝑡𝑡−1 0.783 𝑋𝑋𝑡𝑡−1 -0.002 
𝑌𝑌𝑡𝑡−2 0.319 𝑋𝑋𝑡𝑡−2 0.003 
𝑌𝑌𝑡𝑡−3 0.090 𝑋𝑋𝑡𝑡−3 0.002 
𝑌𝑌𝑡𝑡−4 -0.031 𝑋𝑋𝑡𝑡−4 0 
𝑌𝑌𝑡𝑡−5 0.195 𝑋𝑋𝑡𝑡−5 0.006 
𝑌𝑌𝑡𝑡−6 -0.275 𝑋𝑋𝑡𝑡−6 -0.007 
𝑌𝑌𝑡𝑡−7 0.004 𝑋𝑋𝑡𝑡−7 0.002 
𝑌𝑌𝑡𝑡−8 -0.115 𝑋𝑋𝑡𝑡−8 -0.003 
𝑌𝑌𝑡𝑡−9 0.004 𝑋𝑋𝑡𝑡−9 -0.001 
𝑌𝑌𝑡𝑡−10 -0.067 𝑋𝑋𝑡𝑡−10 -0.001 
𝑌𝑌𝑡𝑡−11 0.038 𝑋𝑋𝑡𝑡−11 0 
𝑌𝑌𝑡𝑡−12 0.056 𝑋𝑋𝑡𝑡−12 -0.001 
𝑌𝑌𝑡𝑡−13 0.001 𝑋𝑋𝑡𝑡−13 -0.001 
𝑌𝑌𝑡𝑡−14 0.016 𝑋𝑋𝑡𝑡−14 0.002 
𝑌𝑌𝑡𝑡−15 -0.023 𝑋𝑋𝑡𝑡−15 -0.001 

 

Table 10.   RQ Regression Model for Turbocharger Mode 

Terms Coefficients Terms Coefficients 
𝜇𝜇 -0.013 𝑋𝑋𝑡𝑡 0.001 
𝑌𝑌𝑡𝑡−1 0.795 𝑋𝑋𝑡𝑡−1 0 
𝑌𝑌𝑡𝑡−2 0.335 𝑋𝑋𝑡𝑡−2 0.002 
𝑌𝑌𝑡𝑡−3 0.011 𝑋𝑋𝑡𝑡−3 0.001 
𝑌𝑌𝑡𝑡−4 -0.036 𝑋𝑋𝑡𝑡−4 0.001 
𝑌𝑌𝑡𝑡−5 0.238 𝑋𝑋𝑡𝑡−5 0.003 
𝑌𝑌𝑡𝑡−6 -0.346 𝑋𝑋𝑡𝑡−6 -0.004 
𝑌𝑌𝑡𝑡−7 0.067 𝑋𝑋𝑡𝑡−7 0.002 
𝑌𝑌𝑡𝑡−8 -0.073 𝑋𝑋𝑡𝑡−8 -0.002 
𝑌𝑌𝑡𝑡−9 0.004 𝑋𝑋𝑡𝑡−9 0 
𝑌𝑌𝑡𝑡−10 -0.029 𝑋𝑋𝑡𝑡−10 -0.001 
𝑌𝑌𝑡𝑡−11 0.021 𝑋𝑋𝑡𝑡−11 0 
𝑌𝑌𝑡𝑡−12 0.031 𝑋𝑋𝑡𝑡−12 0 
𝑌𝑌𝑡𝑡−13 -0.017 𝑋𝑋𝑡𝑡−13 0 
𝑌𝑌𝑡𝑡−14 0.016 𝑋𝑋𝑡𝑡−14 0.001 
𝑌𝑌𝑡𝑡−15 -0.018 𝑋𝑋𝑡𝑡−15 -0.001 
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2. Regression Model for Cruising Mode 

The regression model for cruising mode is derived from four datasets during 

operation and with sustained engine speeds below 2000 RPM. Each dataset goes through 

linear regression with 15 lags. The coefficients derived by the regression for each dataset 

are then averaged to derive the overall regression model for the cruising mode. The 

derived model for cruising mode using the LM command is shown in Table 11, and the 

derived model for cruising mode using the RQ command is shown in Table 12. 

Table 11.   LM Regression Model for Cruising Mode 

Terms Coefficients Terms Coefficients 
𝜇𝜇 0.141 𝑋𝑋𝑡𝑡 0.001 
𝑌𝑌𝑡𝑡−1 0.727 𝑋𝑋𝑡𝑡−1 0 
𝑌𝑌𝑡𝑡−2 0.378 𝑋𝑋𝑡𝑡−2 0.002 
𝑌𝑌𝑡𝑡−3 0.062 𝑋𝑋𝑡𝑡−3 0.002 
𝑌𝑌𝑡𝑡−4 0.014 𝑋𝑋𝑡𝑡−4 0.003 
𝑌𝑌𝑡𝑡−5 0.230 𝑋𝑋𝑡𝑡−5 0.006 
𝑌𝑌𝑡𝑡−6 -0.280 𝑋𝑋𝑡𝑡−6 -0.009 
𝑌𝑌𝑡𝑡−7 0.016 𝑋𝑋𝑡𝑡−7 0.002 
𝑌𝑌𝑡𝑡−8 -0.177 𝑋𝑋𝑡𝑡−8 -0.004 
𝑌𝑌𝑡𝑡−9 -0.058 𝑋𝑋𝑡𝑡−9 0 
𝑌𝑌𝑡𝑡−10 -0.016 𝑋𝑋𝑡𝑡−10 -0.001 
𝑌𝑌𝑡𝑡−11 0.032 𝑋𝑋𝑡𝑡−11 -0.003 
𝑌𝑌𝑡𝑡−12 0.075 𝑋𝑋𝑡𝑡−12 0.001 
𝑌𝑌𝑡𝑡−13 -0.003 𝑋𝑋𝑡𝑡−13 0 
𝑌𝑌𝑡𝑡−14 0.016 𝑋𝑋𝑡𝑡−14 0.002 
𝑌𝑌𝑡𝑡−15 -0.021 𝑋𝑋𝑡𝑡−15 0 
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Table 12.   RQ Regression Model for Cruising Mode 

Terms Coefficients Terms Coefficients 
𝜇𝜇 0.038 𝑋𝑋𝑡𝑡 0.001 
𝑌𝑌𝑡𝑡−1 0.745 𝑋𝑋𝑡𝑡−1 0 
𝑌𝑌𝑡𝑡−2 0.408 𝑋𝑋𝑡𝑡−2 0.001 
𝑌𝑌𝑡𝑡−3 0.015 𝑋𝑋𝑡𝑡−3 0.001 
𝑌𝑌𝑡𝑡−4 -0.084 𝑋𝑋𝑡𝑡−4 0.001 
𝑌𝑌𝑡𝑡−5 0.305 𝑋𝑋𝑡𝑡−5 0.004 
𝑌𝑌𝑡𝑡−6 -0.363 𝑋𝑋𝑡𝑡−6 -0.005 
𝑌𝑌𝑡𝑡−7 0.065 𝑋𝑋𝑡𝑡−7 0.002 
𝑌𝑌𝑡𝑡−8 -0.095 𝑋𝑋𝑡𝑡−8 -0.002 
𝑌𝑌𝑡𝑡−9 -0.019 𝑋𝑋𝑡𝑡−9 0 
𝑌𝑌𝑡𝑡−10 -0.006 𝑋𝑋𝑡𝑡−10 -0.002 
𝑌𝑌𝑡𝑡−11 0.004 𝑋𝑋𝑡𝑡−11 0 
𝑌𝑌𝑡𝑡−12 0.046 𝑋𝑋𝑡𝑡−12 0 
𝑌𝑌𝑡𝑡−13 -0.022 𝑋𝑋𝑡𝑡−13 0 
𝑌𝑌𝑡𝑡−14 0.027 𝑋𝑋𝑡𝑡−14 0 
𝑌𝑌𝑡𝑡−15 -0.027 𝑋𝑋𝑡𝑡−15 -0.001 

 

G. PREDICTION RESULTS 

The prediction results using the derived models for both speed modes and both 

regression approaches are presented in this section. Verification of the prediction results 

through comparison of the actual dataset and residual analysis is also presented. 

1. Turbocharger Mode 

The turbocharger mode uses Datasets 6, 26, 28, and 29 as new datasets to apply to 

the derived model, to verify the prediction abilities of the models. The prediction result 

for Dataset 28 is presented here for illustration of the prediction capability of the models. 

a. Prediction  

Figure 15 shows the prediction results for Dataset 28. The graph at the top is the 

actual data of combined B exhaust gas temperature. The graph in the middle is the 

prediction result using the parametric regression and prediction approach. The graph at 
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the bottom is the prediction result using the robust nonparametric regression and 

prediction approach. The three graphs seem to show a similar general trend.  

 

Figure 15.  Prediction of Exhaust Gas Temperature in Turbocharger Mode 
Using Dataset 28 (Actual versus LM Regression Model versus RQ 

Regression Model) 

b. Residuals 

From the prediction results in Figure 15, we do not observe much deviation 

between the parametric and nonparametric prediction from the actual dataset. A further 

step for analyzing the prediction results is to observe the residuals. The residuals 

represent the difference between the actual plot and the prediction results. The graph at 

the top in Figure 16 shows the residuals of parametric prediction using the LM regression 
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model, and the graph at the bottom in Figure 16 shows the residuals of nonparametric 

prediction using the RQ regression model. The deviation from the actual dataset plot is 

less than 6 degrees Celsius for both predictions. Both parametric and nonparametric 

models and predictions seem to perform well based on the prediction results. 

 

Figure 16.  Prediction Residuals for Turbocharger Mode Using Dataset 28 (LM 
Regression Model and RQ Regression Model) 
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c. Autocorrelation Function 

The autocorrelation function of the predicted data using the derived LM model 

shows generally low autocorrelation between time periods. There are only eight time 

periods that show an autocorrelation that is statistically significant, as shown in 

Figure 17. These autocorrelation have a value of less than 0.2. 

 

Figure 17.  Autocorrelation Function Plot for Turbocharger Mode Prediction 
Results (LM Regression Model) 
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The autocorrelation function of the predicted data using the derived RQ model 

also shows generally low autocorrelation between time periods. There are also eight time 

periods that show autocorrelations that are statistically significant, as shown in Figure 18. 

These autocorrelations have a value of less than 0.2, but they seem to be slightly higher 

than those of the autocorrelations for the LM model. 

 

Figure 18.  Autocorrelation Function Plot for Turbocharger Mode Prediction 
Results (RQ Regression Model) 
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d. Measures of Variability 

The prediction results can be quantified by determining the R-squared, standard 

deviation, and interquartile range. R-squared measures the fitness of the model to the 

prediction, standard deviation and interquartile range measures the variability of the 

residuals. All computed R-squared values are very high, at above 0.999. This shows that 

engine speed is obviously needed to predict the dependent variable. Table 13 shows the 

variability of the residuals. 

Table 13.   Prediction Results Measures of Variability for Turbocharger Mode 

Dataset 
LM Regression Model RQ Regression Model 

Standard 
Deviation 

Interquartile 
Range 

Standard 
Deviation 

Interquartile 
Range 

6 2.944 0.645 3.157 0.528 
26 1.384 0.633 1.451 0.491 
28 0.991 0.537 1.037 0.396 
29 1.316 0.707 1.367 0.543 

 

2. Cruising Mode 

The cruising mode uses Datasets 9, 22, 27, 31, 33, and 34 as new datasets to apply 

to the derived model, to verify the prediction abilities of the models. The prediction result 

for Dataset 33 is presented here for illustration of the prediction capability of the models. 

a. Prediction  

Figure 19 shows the prediction results for Dataset 33. The graph at the top is the 

actual data of combined B exhaust gas temperature. The graph in the middle is the 

prediction result using the parametric regression and prediction approach. The graph at 

the bottom is the prediction result using the robust nonparametric regression and 

prediction approach. The three graphs seem to show a similar general trend.  
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Figure 19.  Prediction of Exhaust Gas Temperature in Cruising Mode Using 
Dataset 33 (Actual versus LM Regression Model versus RQ 

Regression Model) 

b. Residuals 

From the prediction results in Figure 19, we do not observe much deviation 

between the parametric and nonparametric prediction from the actual dataset. A further 

step in analyzing the prediction results is to observe the residuals. The residuals represent 

the difference between the actual plot and the prediction results. The graph at the top in 

Figure 20 shows the residuals of parametric prediction using the LM regression model, 

and the graph at the bottom in Figure 20 shows the residuals of nonparametric prediction 

using the RQ regression model. The deviation from the actual dataset plot is less 

than 5 degrees Celsius for both predictions. Both parametric and nonparametric models 

and predictions perform well based on the prediction results. 
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Figure 20.  Prediction Residuals for Cruising Mode Using Dataset 33 (LM 
Regression Model and RQ Regression Model) 

c. Autocorrelation Function 

The autocorrelation function of the predicted data using the derived LM model 

shows moderate autocorrelation between time periods. The autocorrelation function value 

for the second lag has a value of about 0.3. More lags that are statistically significant are 

distributed over a longer time period, as shown in Figure 21.  
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Figure 21.  Autocorrelation Function Plot for Cruising Mode Prediction Results 
(LM Regression Model) 

The autocorrelation function of the predicted data using the derived RQ model 

shows moderate autocorrelation between time periods. The autocorrelation function value 

for the first, second, and fifth lags has a value exceeding the absolute value of 0.2. The 

lags that are statistically significant are mainly the first few lags, as shown in Figure 22.  
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Figure 22.  Autocorrelation Function Plot for Cruising Mode Prediction Results 
(RQ Regression Model) 

d. Measures of Variability 

The prediction results can be quantified by determining the R-squared, standard 

deviation and interquartile range. R-squared measures the fitness of the model to the 

prediction, standard deviation and interquartile range measure the variability of the 

residuals. All computed R-squared values are very high, at above 0.999. This shows that 

engine speed is obviously needed to predict the dependent variable. Table 14 shows the 

variability of the residuals. 
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Table 14.   Prediction Results Measures of Variability for Cruising Mode 

Dataset 
LM Regression Model RQ Regression Model 

Standard 
Deviation 

Interquartile 
Range 

Standard 
Deviation 

Interquartile 
Range 

9 0.508 0.320 0.496 0.191 
22 1.654 0.601 1.757 0.511 
27 0.862 0.277 0.877 0.141 
31 2.139 0.371 2.128 0.250 
33 0.563 0.306 0.520 0.190 
34 0.462 0.082 0.436 0.060 

 

3. Summary of Prediction Results 

The prediction results of both LM and RQ regression models for both modes of 

operation show good fit based on the R-squared values and the comparison of actual plots 

against predicted plots. There is randomness in the residuals from the residual plots, with 

no specific patterns shown. The autocorrelation plots show no autocorrelation for the 

turbocharger mode, but there is some autocorrelation for the cruising mode. It could be 

due to the data that is used for prediction; as shown in Figure 19, the exhaust gas 

temperature is reducing over time, which indicates the HSSC is slowing down and 

coming to a stop. 

Comparing the prediction results for variability, we find the LM regression 

models produce residuals with lower standard deviation than RQ regression models. This 

is expected since LM regression uses the OLS method to minimize errors in models. The 

interquartile range is smaller for RQ regression models, which is more desirable. 

LM is more risky due to the heavy tailed QQ plots of the data. There is non-

normality with outliers at both the positive and negative end. From the data used in this 

study, we find RQ regression is a more robust method to model and predict the exhaust 

gas temperature. 
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V. CONCLUSION AND FUTURE WORK 

Condition-based maintenance (CBM) is a preventive maintenance method that 

predicts the onset of a failure, allowing personnel to intervene with necessary 

maintenance actions to prevent the failure. Data analysis is a critical activity that 

contributes to the development of a regression model for making predictions in CBM. 

In this thesis, we employ existing data captured by sensors located on the diesel 

engine of a high speed surface craft for regression modeling in CBM. We define the data 

selection criteria to ensure that the data used for the analysis are suitable and meaningful. 

We also categorize the datasets into two operating speed profiles of the HSSC: one for 

turbocharger mode and the other for cruising mode. 

Regression is the finding of an appropriate mathematical model that can best fit 

the data. We use an autoregressive distributed lag time series model here due to the 

autocorrelative nature of the collected data. We select engine speed as the independent 

variable, and exhaust gas temperature as the dependent variable for the regression model. 

The condition monitoring parameter for CBM is exhaust gas temperature. Exhaust gas 

temperature has an operating temperature much higher than other operating temperatures. 

Possible failures in engines could lead to deviations in exhaust gas temperatures, causing 

higher than usual exhaust gas temperatures. This change in temperature may cause 

cascading effects, adding thermal stress to surrounding components. 

Non-normality in regression results leads to a nonparametric approach using 

quantile regression and verification by Spearman's ranked robust autocorrelation function 

and normality QQ plots. With 15 lags in the ARDL time series model, regression models 

are derived for each of the speed category. We then use the predictions for new datasets 

to verify the models.  

Future work could include derivation of nonparametric control charts proposed by 

Li, Tang and Ng (2010). Data parameters collected could include engine running hours to 

determine the mechanical wear and tear of the engine. This would give more insight into 

the engine’s behavior with respect to the engine running hours. 
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APPENDIX.  MTU SERIES 2000 DIESEL ENGINE DIAGRAMS 

 

Figure 23.  Sensors and Actuators (Engine Plan View). Adapted from 
MTU (2012). 

 

Figure 24.  Sensors and Actuators (Engine Free End View). Adapted from 
MTU (2012). 
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Figure 25.  Sensors and Actuators (Engine Driving End View). Adapted from 
MTU (2012). 

 

Figure 26.  Sensors and Actuators (Engine, Right Side). Adapted from 
MTU (2012). 
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Figure 27.  Sensors and Actuators (Engine, Left Side). Adapted from 
MTU (2012). 
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