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ABSTRACT 

 In today’s data-intensive world, the power to analyze huge amounts of data is 

critical to the success of any organization, including the military. Many data analysis 

tools have been developed in the past decade along with the high-performance machine 

learning algorithms. At present, many of these tools unfortunately are out of reach of the 

target audience—subject matter experts—because one must master some of the advanced 

computer science concepts to use these tools effectively. 

 This thesis proposes to build a prototype data analysis platform that will hide the 

underlying complexity of the tools from the subject matter experts. Using the platform, 

the end users can analyze data through a simple, menu-driven interface. The prototype 

will be built using the programming language Python and the open-source, distributed 

data processing engine Apache Spark 2.0. Different components of Spark 2.0 will be 

studied and evaluated to determine the best approach for building the prototype. 

 The effectiveness of the prototype will be examined using the ADSB (Automatic 

Dependent Surveillance - Broadcast) unfiltered flight data. The thesis concludes with the 

review of the prototype developed for ADSB and the recommendation on possible ways 

of extending the prototype. 
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I. INTRODUCTION 

Throughout history, leaders in the military, government, business or other 

organizations have attempted to plan, collect, process, analyze, disseminate and act on 

information as quickly as possible. This process is very similar to the OODA loop or 

Observe, Orient, Decide, Act. The leader or organization that is able to analyze information 

more effectively and efficiently and make a well-informed decision quicker than their 

rivals is more likely to be successful in their endeavors and will have the initiative.  

Information being produced, gathered and stored on a daily basis is growing in size 

and at an ever-increasing rate. “By the year 2020, about 1.7 megabytes of new information 

will be created every second for every human being on the planet” (Business First 

Magazine 2016, 70). This presents a problem in the “Orient” part of the OODA loop 

because discerning correct conclusions from data is becoming increasingly challenging and 

time consuming due to the size of the data. Big data analysis is the use of data analytic 

techniques and algorithms on very large datasets. Additionally, data analysis, especially in 

regard to big data, requires extensive time to learn and become proficient in. Understanding 

the basic and advanced data analytics, machine learning methodologies and computer 

programing in order to conduct analysis can be time consuming and challenging. This can 

be a heavy burden for domain subject matter experts. 

An easy to use interface may be able to reduce this burden on subject matter experts. 

If data analysis methods and machine learning techniques can be implemented behind the 

scenes this would allow subject matter experts to conduct data analysis in a timely manner, 

and allow them to concentrate on their area of expertise rather than having to learn specifics 

of different programming languages, programming libraries and the various machine 

learning techniques.  

A. OBJECTIVE 

The objective of this research is to build a prototype to study the feasibility of an 

easy-to-use interface for data analysis to include a machine learning algorithm. The 
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interface will be designed so that domain subject matter experts will be shielded from 

coding and from the underlying algorithms. 

The prototype interface will be built using Python and Apache Spark 2.0. Python 

will be used for the interface because of the wide array of tools available as well as its ease 

for building a command line interface. Spark2 Data Frames and its library of data analysis 

and machine learning tools, will be used to examine if various analysis techniques can be 

abstracted away behind the scenes while still providing accurate and fast data analysis of 

big data.  

The data to be studied with the prototype will be the automatic dependent 

surveillance—broadcast or ADSB data. The ADSB data was chosen because of the breadth 

of data types contained in the data and it allowed for the testing of the prototype. 

B. ORGANIZATION 

The research is organized into five chapters. Chapter II provides background 

information and explains the various technologies and programming libraries used when 

implementing the prototype. Chapter III contains the methodology and specific approach 

for the implementation of the prototype. Chapter IV contains the review and analysis and 

challenges faced during this research and Chapter V contains the conclusions and future 

work in regard to research on this topic. 

 

 



3 

II. BACKGROUND 

A. APACHE SPARK 

Apache Spark was originally developed at UC Berkeley in 2009 and is defined by 

the Apache Software Foundation as “a lightning-fast unified analytics engine for large-

scale data processing” (Apache Spark 2018).  

Spark is an open-source program that enables distributed computing capabilities 

and machine learning capabilities to be brought to bear for the analysis of large data sets. 

Many large names in industry to include well-known companies such as Netflix, Yahoo, 

eBay and Hotels.com are deploying and using Spark to address the problems with big data. 

With this exposure, Spark “has quickly become the largest open source community in big 

data, with over 1000 contributors from 250+ organizations” (Databricks 2018). 

New releases of Spark with added features occur constantly, with three updates 

occurring between June 08, 2018 and July 02, 2018. These releases are done by the Spark 

Software Foundation at https://spark.apache.org. 

A.1 Benefits of using Spark 

Speed is the primary benefit of Spark. In fact, Spark won the 2014 Gray Sort 

competition in the Daytona division (Xin 2014). This was a competition to sort 100TB of 

data. Spark was deployed on 206 EC2 machines and sorted the data in 23 minutes smashing 

the previous world record set by Hadoop MapReduce of 72 minutes using 2100 machines. 

In other words, Spark sorted the same amount of data in a third of the time using 10 percent 

of the computing power used previously (Xin 2014).  

“Spark achieves this high performance using a state of the art DAG scheduler, a 

query optimizer and a physical execution engine” (Apache Spark 2018). Figure 1 shows 

the running time in seconds for Spark versus Hadoop when conducting Logistic regression 

on a sample data set. 
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Source: Apache Spark, http://spark.apache.org 
(accessed November 1, 2018). 

Figure 1. Logistic regression bar graph comparison of Hadoop 
and Spark. 

A second benefit of Spark is its ease of use. Spark can be utilized with a number of 

different programming languages. Spark currently supports some of the most well-known 

programming languages to include Java, Scala, R, Python and SQL. Additionally, Spark 

has a large number of application programming interfaces or APIs, for conducting 

operations on, transforming, and manipulating data.  

Another benefit of Spark is the high-level libraries. These libraries include SQL, 

Data Frames, a machine learning library or MLlib, GraphX and even a library for streaming 

data. These libraries increase the productivity of a developer, allow for more complex 

programs while at the same time reducing the stress on the developer. The libraries and 

supported API’s in the Spark Ecosystem are shown in Figure 2. 

http://spark.apache.org/
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Source: Databricks, https://databricks.com/spark/about (accessed November 1, 2018). 

Figure 2. Apache Spark ecosystem.  

One last benefit of Spark is that it gives developers and users many options when 

it comes to the employment of Spark capabilities. Spark can be utilized just about 

anywhere. Spark can be run on a single laptop. It can also be employed with Hadoop, 

Apache Mesos and take advantage of many nodes in cloud architecture 

A.2 Architecture 

While Spark can be run on a standalone computer, a standalone computer does not 

contain enough power to perform timely analysis on big data. It takes a cluster, or a group 

of computers, running in parallel that can combine the resources of the various groups of 

computers to handle data analytics. This is where Spark provides an advantage.  

Spark provides a framework for “managing and coordinating the execution of tasks 

on data across a cluster of computers” (Chambers and Zaharia 2018, 13). Spark consists of 

three main parts, the cluster manager, the driver process and the executors. A Spark cluster 

manager coordinates the resources for use between the driver process and the executor. All 

of this coordination is handled behind the scenes without programmer or user involvement 

https://databricks.com/spark/about
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in the process. The driver process contains the user’s code and is responsible for 

“maintaining information about the Spark application; responding to a user’s program or 

input; and analyzing, distributing, and scheduling work across the executors. The driver 

process is absolutely essential—it’s the heart of a Spark Application and maintains all 

relevant information during the lifetime of the application” (Chambers and Zaharia 2018, 

14). The executors will execute the work assigned to them and report back the result of the 

computation to the cluster manager. Figure 3 shows cluster manager control of a Spark 

application. 

 

Figure 3. The architecture of a Spark application. 
Source: Chambers and Zaharia (2018). 

A.3 Spark SQL  

“Spark SQL is arguably one of the most important and powerful features of Spark” 

(Chambers and Zaharia 2018, 179). SQL or structured query language is a special 

programming language for accessing, managing and working with data in relational 

databases. Spark SQL allows a user to run SQL queries against tables and databases as well 

as be run with user defined functions. SQL can also be run with DataFrames and DataSets.  

The power of Spark SQL derives from several key facts: SQL analysts can 
now take advantage of Spark’s computation abilities by plug in into the 
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Thrift Server or Spark’s SQL interface, whereas data engineers and 
scientists can use Spark SQL where appropriate in any data flow. This 
unifying API allows for data to be extracted with SQL, manipulated as a 
DataFrame, passed into one of Spark’s MLibs’ large-scale machine learning 
algorithms, written out to another data source, and everything in between 
(Chambers and Zaharia 2018, 180). 

A.4 DataFrames 

A DataFrame is a data structure that work like a table, similar to a spreadsheet. 

There are well defined rows and columns. In contrast to a spreadsheet, there are restrictions 

on the types of data in the DataFrame. The data in a column must all be the same data type 

and the data across all the rows must be consistent for each column. A null value can be 

used in the case of the absence of data or if a value is unknown. Rows usually are instances 

of data whereas columns are the types of data associated with the row instance. Examples 

of columns are altitude, speed, etc. An advantage of DataFrames are that they allow 

operations to be easily be applied to data specific locations such as a specific row or column 

or even to a specific data cell at the intersection of a row/column. An example of a 

DataFrame from the ADSB data is shown in Figure 4.  

 

Figure 4. Example DataFrame printout 

The schema or architecture of a DataFrame, can be manually defined by a developer 

or it can be obtained from some other source. A schema consists of the names of the 

columns in the DataFrame and the data type associated with each column. An example 

Schema is provided in Figure 5.  
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Figure 5. Spark DataFrame schema example 

A.5 Machine Learning 

Machine learning is an area of computer science that attempts to get computers to 

learn and make predictions about patterns in new data based upon data that the computer 

was trained on or has seen previously seen. Machine Learning is classified as unsupervised 

or supervised machine learning.  

Supervised learning consists of the computer receiving input variables and output 

variables and the machine attempts to discern the function or algorithm to create a model 

that maps the input to the output. In supervised learning the machine is provided a labeled 

training data set to “learn on” and then it will be tested using a new dataset to make a 

prediction on the new data. Supervised learning is usually either a classification or a 

regression problem. Some examples of supervised learning are Linear Regression, Support 

Vector Machines and Logistic Regression. The supervised learning model is shown in 

Figure 6. 
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Source: Morgan Polotan’s website on supervised learning. 
https://morganpolotan.wordpress.com/tag/supervised-learning/  
(accessed: 18 September 2018) 

Figure 1. Supervised learning model  

In unsupervised learning the machine tries to discern patterns in input data even 

though the data has not been labeled or classified. The machine must determine what is 

interesting in the data without a “teacher.” Unsupervised learning usually falls along the 

lines of a clustering problem or an association problem. A common example of 

unsupervised learning is k-means clustering. The unsupervised learning model is shown in 

Figure 7. 

 
Source: Morgan Polotan’s website on supervised learning. 
https://morganpolotan.wordpress.com/tag/unsupervised-learning/ 
(accessed 18 September 2018) 

Figure 2. Unsupervised learning model 

https://morganpolotan.wordpress.com/tag/supervised-learning/
https://morganpolotan.wordpress.com/tag/unsupervised-learning/
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B. AUTOMATIC DEPENDENT SURVEILLANCE—BROADCAST (ADSB) 

ADSB is an electronic surveillance technology at the heart of the Federal Aviation 

Administration’s Next Generation Transport System. ADSB is designed to give a more 

accurate picture of the current air picture. ADSB will combine data from GPS satellites 

and aircraft avionics data such as speed and altitude and transmit it to a ground station that 

will re-transmit to air-traffic controllers as well as other pilots with properly equipped 

aircraft. 

Historic ADSB data as well as a real-time stream of ADSB data can be found at 

https://www.adsbexchange.com/. The data at the ADSB site is in the java script object 

notation format or JSON.  

The following is a list of the data fields from the ADSB JSON files. Next to each 

listing is a description of the identifier. When ingesting this data in with Spark, these data 

fields will correspond to the columns in the DataFrame. Information in the listing is from 

the data field descriptions page located at https://www.adsbexchange.com/datafields/ 

• Id—Unique identifier 

• Rcvr—Receiver ID number 

• HasSig—True if the aircraft has a signal level associated with it. 

• Sig—Signal level for the last message received. 

• Icao—Six-digit hexadecimal identifier broadcast by the aircraft 

• Reg—Aircraft Registration number 

• Fseen—Date and Time the receiver started seeing the aircraft on this flight 

• Tsecs—Number of seconds that the aircraft has been tracked for 

• Cmsgs—The count of messages received from the aircraft 

• Alt—Altitude in feet at standard pressure 

• Galt—The altitude adjusted for local air pressure, should be roughly the 
height above mean sea level  

• InHG—Air pressure in inches of mercury that was used to calculate the 
AMSL altitude from the standard pressure altitude 

https://www.adsbexchange.com/
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• AltT—Type of altitude transmitted by aircraft 

• Lat—Latitude of aircraft 

• Long—Longitude of aircraft 

• PosTime—Time that the position was last reported by aircraft. In epoch 
time. 

• Mlat—True if latitude and longitude appear to have been calculated by an 
MLAT and not transmitted by aircraft 

• TisB—True if last message received from aircraft was from TIS-B source 

• Spd—Ground speed in knots 

• SpdType—Type of speed that Spd represents 

• Trak—Aircraft’s track angle across the ground clockwise from zero 
degrees north 

• Type—Aircraft model’s ICAO type code 

• Mdl—Aircraft Model 

• Man—Manufacturer’s name 

• Year—Year aircraft was manufactured 

• Cnum—Aircraft’s construction or serial number 

• Op—Name of aircraft operator 

• OpIcao—ICAO code of the operator 

• Sqk—Transponder code 

• Vsi—Vertical speed in feet per minute 

• VsiT—Vertical speed is barometric (0) or geometric (1) 

• WTC—Wake Turbulence category 

• Species—General Aircraft Type 

• EngType—Type of Engine the aircraft uses. Five available classes 

• EngMount—The placement of engines on the aircraft. This information is 
from a database based on Icao code. 
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• Engines—The number of engines on the aircraft. 

• Mil—True if the aircraft appears to be operated by the military. Based on 
Icao code 

• Cou—Country the aircraft is registered to 

• From—The code and name of the departure airport 

• To—The code and name of the destination airport 

• Gnd—True if the Aircraft is on the ground 

• Call—Callsign of the aircraft 

• CallSus—True if the callsign may not be correct 

• HasPic—True if aircraft has a picture associated with it in the VRS/ADSB 
exchange database 

• Trt—Transponder type 

• TT—Trail type 

• Talt—Target altitude set by autopilot broadcast by aircraft 

• Ttrk—The track or heading currently set on the aircraft’s autopilot 

• Sat—True if the data has been received via a SatCom ACARS feed 

• PosStale—True if the last position is older than the display timeout value 
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III. METHODOLOGY 

A. MAIN PROGRAM APPROACH 

As mentioned in the Introduction, this program was developed using Python. The 

required python libraries for the program include numpy, matplotlib, and pandas. These 

libraries were crucial in implementing some of the features including the graphing or 

charting option. As of the work on this program, Spark did not have an inherent graphing 

or charting option. Figure 8 details the program scheme. This code has been developed to 

run on an individual laptop or on a cluster that contain the appropriate libraries listed above. 

 

Figure 8. Analysis program scheme 

The main program control is maintained in the AnalysisControl file. A rough run 

through the program involves asking a user if they want to load a previously saved parquet 

file or provide a time filter with other options to filter. A time frame for the filter is required 

because of how the data is stored. The JSON files are stored and labeled according to 

date/time with each JSON file holding data by the minute. Other filter options consist of 
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specifying a specific region (countries or continents), a specific airline, military aircraft, a 

specific airport or no filter at all. After the filter, according to the options selected, the 

program will ask the user to select the parameters for analysis. The program will then give 

a basic analysis of each parameter as a group. The program will then proceed through each 

parameter one at a time to allow the user to conduct additional analysis on the parameter, 

allow for analysis by grouping by parameters, as well as provide the ability to display a 

chart or graph. 

A.1 Loading a Previous Saved DataFrame in the Form of a Parquet 

The option to load a previously saved parquet is the first option for a user to select 

in the program. This option is available so that a user can load a previously saved 

DataFrame that has already been analyzed. A parquet is “an open source column-oriented 

data store that provides a variety of storage optimizations, especially for analytics 

workloads” (Chambers and Zaharia 2018, 163). Specifically, a parquet is designed to save 

space and also allows for the reading in of single columns vice the whole file. Additionally, 

a parquet is quicker for the reading in of data than other file types such as CSV or JSON 

and a parquet can also save/load complex data types.  

If it is desired to load a previously saved parquet, then a location must be provided 

to the program. The format for the location is in following format: 

C:\Users\UserName\Desktop\Saved\saved.parquet.  

Figure 9 shows a screenshot of the program for loading the parquet as well as the 

format required by the program. 
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Figure 9. Program screenshot for loading a parquet file 

After a location is provided, assuming it is valid, the program will progress to the 

main filter for the program. Note, the load parquet option allows the user to load a 

previously loaded dataset that has been already been worked on. Any filters, and 

parameters that were used previously will still be applied. After loading the parquet, the 

user will be given the list of filters to apply to the DataFrame. 

If no parquet is loaded, the next option the user will be given will be to specify the 

time frame for analysis. 

A.2 User Time Frame Input 

The specification of a time frame for analysis is a part of the time filter. This filter 

is required because of how the ADSB JSON files are stored. As mentioned earlier, the 

JSON files are stored according to date and time with each file consisting of a minute worth 

of ADSB data. The following is an example name for a JSON file containing the ADSB 

data for midnight Zulu time on 15 November 2016: 2016–11-15-0000Z.json. 

The time frame for analysis is provided by the user but it does have a few 

restrictions. The options for time frame analysis are a whole month, a whole day or 

specified part of a day. If a whole month is selected, the user will provide the year and the 

month. For a whole day, the user will provide the year, month, and day. For a part of a day, 

the user will provide the same information as a whole day but will also be asked to specify 

a beginning time and ending time for analysis. 

Time frame analysis information is obtained via the UserTimeInput function in the 

ReadIn program file. This function takes the users’ time inputs and builds the file location 
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or locations for Spark to read in the JSON file or files. The function returns the following 

information:   

• analyze—a categorical variable for the time frame of analysis. Available 
values include a month, a day or part of day 

• year—four-digit string variable pertaining to the year 

• month—two-digit string for the month. 

• day—two-digit string for the day. 

• begin—four-digit string from 0000–2359 corresponding to time of day to 
begin analysis. Value will be None if analyzing a month or whole day. 

• end—four-digit string from 0000–2359 corresponding to time of day to 
end analysis. None if analyzing a month or whole day. The value must be 
later than the begin time. 

• filelocation—a string or list of strings for the file location or locations of 
the JSON files. 

After the input for time frame of analysis is entered, the function 

createDFfromtime, shown in Figure 10, creates a spark session. A spark session is required 

for control of a spark application. The function then takes the outputs from the 

UserTimeInput function to create the initial DataFrame. The spark.read.json function is 

the spark function utilized to read in the JSON file or files. The spark.read.json function 

can take as input a string corresponding to a single file location or a list of strings 

corresponding to many file locations. It will then return a DataFrame with the data from 

the JSON files.  

The code in Figure 10 also shows the spark session creation and the spark.read.json 

function call. If analyze is equal to one, which corresponds to analyzing a whole month or 

it equals two, which corresponds to analyzing a whole day, then the function uses the string 

corresponding to the time frame desired by the user for the file location to create the 

DataFrame. If analyze is equal to three, which corresponds to analysis on a part of a day, 

then the createDFfromtime function uses the function getTimeFiles in the ReadIn file to 

create a list of file locations. This list is then passed to the spark.read.json function for 

creating the DataFrame. 
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Figure 10. CreateDFfromtime function code 

A.3 Apply Filter Function 

The optional filters are next. The available optional filters are shown in Figure 11. 

 

Figure 11. Filter options for program 

These filters are selected with the UserSpecificsRequest function in the NewFilter 

file and are applied in the ApplyFilter function in the NewFilter file. In many cases, 

multiple filters can be selected by the user. The user will make selections and select zero 
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to finish selecting options. Once an option is selected, it is removed so the list of filtering 

options will shrink in size. Options that conflict with an already selected option are 

removed automatically. For example, if Military Aircraft is selected, the option for Specific 

Airline will be removed from the available options. The user selections will be stored in a 

list. This list of filters combined with the created DataFrame are the inputs into the 

ApplyFilter function which returns a DataFrame with the filters applied. After the filters 

have been selected the program will display the filters that were selected as a reminder to 

the user. 

a. Individual Aircraft 

The individual aircraft filter in the ApplyFilter function is a filter that requests the 

user to input the ICAO for an individual aircraft to be analyzed. An ICAO is a six-digit 

hexadecimal string that is unique to each aircraft. An example of an ICAO number is 

A7FB98. In the function, the ICAO number is used to perform an SQL statement on the 

DataFrame. This statement will create a new DataFrame that will only contain information 

pertaining to the ICAO provided. Figure 12 is a small snippet of code, demonstrating the 

SQL statement, for the filtering of the data for a single ICAO. If the ICAO is an invalid 

ICAO or the ICAO is not in the DataFrame, the program will request another ICAO from 

the user. The program determines if there is any data for the ICAO in the DataFrame by 

using the Spark function df.count to count the number of rows in the DataFrame. If the 

returned count is zero, the DataFrame does not contain any data for the selected ICAO. 

 

Figure 12.  Individual aircraft filter demonstrating an SQL select statement 
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The individual aircraft filter is the only filter that will run without any other user 

input. The getParameters function from the DataEntries file is called by the program and 

it automatically selects the parameters “Spd,” “Alt,” “Lat,” “Long,” and “PosTime.” The 

function is set up to add additional parameters for an individual aircraft in future updates. 

Once the ICAO is provided to the program, the ApplyFilter function will return a 

DataFrame and the analysisoperations function is called on the DataFrame. This will 

output the basic statistics of count, mean, standard deviation, minimum and maximum as 

shown in Figure 13. 

Unlike in the rest of the program the user is not given many graphing options. The 

graphing options are based on the available columns in the DataFrame. The program gives 

the user the option to display one of three graphs or all three graphs. The available graphs 

for an individual aircraft are shown in the bottom of Figure13.   

 
 

Figure 13. Statistics of data and graphs to display 

The charts or graphs available to the user are a plot of “Spd” vs “Time,” a plot of 

“Alt” vs “Time,” and a plot of “Spd” vs “Alt.” A sample plot of time vs speed for a flight 

is provided in Figure 14. The plots are created using the graphInd function contained in 

the GraphIt file. Graphing will be discussed more in depth under Methodology section A.6  
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Figure 14. Example graph for analyzing a single aircraft 

The last item available to a user under individual aircraft analysis is the creation of 

a keyhole markup language, or KML, file. The KML file is automatically created by the 

program using the simplekml library available with Python programming language. The 

program will create a sequence of observations, with each observation consisting of a name 

and a coordinate for the aircraft. Each observation contained in the KML will match up 

with an observation in the DataFrame. The program will name each observation in the 

KML file by combining the ICAO with a modified position time value. The modified 

position time value is a position time value that has been converted to a YYYY-MM-DD 

HH:MM:SS format. This ensures a unique naming value for each coordinate. The 

coordinates for each observation in the KML are the values from the latitude and longitude 

columns in the DataFrame. 

The created KML file can be loaded into Google Earth, for Geospatial Analysis, to 

analyze the individual aircraft’s track. An example of an individual aircraft’s track in 

Google Earth is shown in Figure 15. The ICAO, date and time of each observation can be 

seen for each observation. 
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Figure15. Google Earth screenshot for an individual aircraft’s 
track using a KML 

b. Region Airspace Filter 

Analyzing a specific region airspace is a second part of the filter. This part of the 

filter is designed to filter ADSB data corresponding to a specific region. Regions currently 

available in the program include North America, South America, Europe, Africa, Australia, 

the entire world, or a specific country. Specific countries included in the program are the 

United States, France, Germany, United Kingdom, China, North Korea. The boundaries of 

these regions and countries are approximate and have been hardcoded. 

The regional filter operates using the point in poly algorithm. The point in poly 

algorithm takes two inputs, a point and a polygon. A point corresponds to a coordinate 

that has a latitude and longitude. The format for the point is a tuple. The polygon is 

represented using a list of tuples. Each tuple in the list corresponds to a point on the 

boundary of the polygon. The general point in poly algorithm will return True if the point 

is contained inside the polygon or False if the point is not in the polygon. If the point lands 

on the edge of the polygon, then the program will return False. Parts of the Inpolygon 

function shown in Figure 16 are borrowed from W Randolph Franklin of Rensselaer 

Polytechnic Institute (Franklin 2017). Example code is available at his website at: 
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https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html. His code was written in C, 

and has been translated to Python and modified in order to return a specific area.  

For the program, the point is created using the latitude and longitude for each 

observation in the DataFrame. The polygon is a hardcoded list of coordinates for a region 

or country. A polygon’s last entry in the polygon is a string corresponding to the name of 

the polygon.  

 
Source: W Randolph Franklin. 
https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html, 
(accessed 02 November 2018) 

Figure 16. Python implementation of the Inpolygon function  

The Inpolygon function is used inside the assignCountry or assignContinent 

functions. These functions loop through a list of the countries or continents. For each region 

the program will determine if the point is inside it. If it is inside, it will return the name of 

the region. The name is then added to the DataFrame on the row corresponding to the 

https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html
https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html
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latitude and longitude used. The functions are also named countryudf and continentudf for 

use in Spark. Multiple functions were required because the functions have to be defined as 

user-defined functions. When a function is designated as user-defined, it allows it to 

conduct operations on a DataFrame. 

c. Specific Airline 

The next filter is one that will filter out specific airlines. The specific airlines that 

the user can select for analysis were hardcoded in the program. The names used were 

determined after analysis of data in the “Op” section of the JSON files. Examples of 

specific airlines that can be filtered are United Airlines, American Airlines, China Airlines, 

Virgin Australia, and Lufthansa. Additional airlines can be added very easily to the code 

to filter for them. 

In the code, the “%” has been added at the end of the airline names. This is used to 

find the name in the “Op” column of the DataFrame. It was required because the names in 

the “Op” column were not consistent. For example, American Airlines in the “Op” column 

could have the names “American Airlines,” “American Airlines carrier” or “American 

Airlines—Fort Worth.” The “%” allows the program to capture all three of these that 

correspond to American Airlines. 

In order to filter the rows that have a specific airline the program requests the user 

select an airline from a list. It then filters the DataFrame using the spark df.filter function 

so that the only rows included in the new DataFrame are those that have a specific airline 

in them. 

d. Military Aircraft 

The Military Aircraft filter works in much the same way as the specific airline filter. 

The user selects a military or branch of the military that has been hard coded into the 

program. The available selections were based on quick examination of several ADSB 

JSON files. The military options provided include all the branches of the United States 

Armed forces, the armed forces of Spain and the Royal New Zealand military. More 

options can be added very easily. The program filters the rows of the DataFrame based on 
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the “Op” column in much the same way as the Specific Airline filter. The filter uses the 

df.filter spark function in the same way that the specific airline filter does but the filter for 

military aircraft also ensures that the column “Mil” is equal to True. 

e. Origin and Destination Filters 

The filter for selecting an origin or destination airport functions like the specific 

aircraft filter except in this case there is some work that occurs behind the scenes. The user 

is shown airport options for names of airports. The selection is then looked up in a 

dictionary, so that it can be converted to a corresponding airport IATA, or International Air 

Transport Association, code. The IATA code is used because of the format of the data in 

the “To” or “From” columns of the DataFrame. If the “To” or “From” column was not null, 

it contained the IATA code for the airport the aircraft. The df.filter spark function was used 

to filter the DataFrame for a specific origin or destination airport based on the IATA code 

for the airport selected. Other airports can easily be added in the future. 

f. No Filter 

Lastly there is an option for no filter. This allows the user to conduct analysis on 

all the data pulled in for the time frame selected earlier. 

A.4 Selection of Parameters 

After the application of filters has been completed, the user is given the options of 

which parameters to select. The parameters available correspond to the columns in the 

DataFrame. The available parameters for the program are shown in Figure 17. The user 

will select the parameters for analysis, which will then be added to a list of parameters. 

This is done until the users enters “0.” The program will then create a new DataFrame that 

consists only of the columns corresponding to the parameters chosen by the user. More 

parameters are available for future use but have been commented out to simplify the 

program. Descriptions of the ADSB parameters are contained in Chapter II. 
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Figure 37. Available parameters for the program 

A.5 Analysis Operations 

After the parameters have been selected the program will conduct analysis 

operations using the analysisoperations function in the DataEntries File. 

Analysisoperations begins by calling the Spark describe function which will provide a 

count, mean, standard deviation, min and max values for all the parameters in the 

DataFrame except for Boolean parameters. Boolean parameters do not get shown when 

using the Spark describe function. 

The analysisoperations function will then go through each parameter one by one 

for individual analysis. Parameter types for the ADSB data are broken into three different 

types, with each parameter being either a string, a numeric or a Boolean. Examples of 

ADSB data that are string types are “Icao,” “From,” “To,” and “Cou.” Examples of 

Boolean parameters are “Bad,” “Mil,” and “Gnd.” Examples of Numeric types are “Alt,” 

“Lat,” “Long,” “PosTime,” and “Spd.” The analysisoperations function handles each data 

type differently because the information gleaned from each data type differs by its type. 

For a string, the function will use the describe function. The describe function as 

mentioned earlier will provide a count, mean, standard deviation, the minimum and 

maximum value. The most useful part from the describe function on a string is the count. 

The count will not include rows that have null values. The function will then ask if the user 

wants to construct a graph. Graphing will be discussed later in section A.6. After asking 
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the user if they want a graph, the user will be asked if they want to group by the parameter. 

If yes, the program will ask what parameters, from the group of parameters the user had 

selected earlier, that they want to group by. The program will create a new temporary 

DataFrame of grouped parameters with a count for each grouping. The user will then be 

asked how they want to display the results. Available options for display are “On Screen,” 

“Graph of values,” or “Both.” The display on screen option will look similar to Figure 18. 

Figure 18 shows a screenshot of “Icao” and “Spd” with a count given for each specific 

grouping. 

 

Figure 18. Display on screen option screenshot after a groupby. 
“Icao and “Spd” 

Numeric parameters are handled slightly differently than string parameters. If the 

parameter being analyzed is “Spd” and the parameter “Alt” is in the DataFrame the 

program will ask if the analysis for “Spd” will be for aircraft that are in the air. In other 
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words, the user will have the option to examine statistics for speed for all aircraft in the 

DataFrame or only those in the air. To determine if an aircraft is in the air, the program 

will select the rows where “Alt” is greater than zero. The Spark describe function is then 

used to get the count, mean, standard deviation, minimum and maximum values. In 

addition to these values, the twenty-fifth, fiftieth, and seventy-fifth percentile values are 

calculated as well. All these values will be printed to the screen for the user. As was the 

case for the string variable, the user will be asked if they want a graph. Graphing is 

described in section A.5. Unlike for string parameters, there is no option to groupby the 

numeric datatype. This was due to the large number of different values that would be given 

for a group by with numeric parameters and there would not be much value added.  

Boolean parameters are the simplest of the parameters. Analysisoperations will 

provide an overall count of the number of rows, a count of the true values, and a count of 

the false values for the Boolean parameter. One additional count that is also provided is the 

number of null values in the DataFrame for the Boolean parameter. This count shows how 

many rows had no value for the Boolean parameter in the DataFrame. The Spark describe 

function is not used on a Boolean parameter. It would only return the summary column. 

Figure 13 shows an example of the printout of the describe function. There would not be a 

column or any values relating to the Boolean parameter in the display. The counts of the 

values for Boolean parameters were accomplished using a group by SQL statement. The 

program will group by the Boolean parameter and count the number of true, false and null 

values for the parameter. 

A.6 Plot of a Graph or Chart 

The display of a graph or chart was accomplished using the pandas, numpy and 

matplotlib python libraries. In order to create a graph, the program converts the spark 

DataFrame to a pandas DataFrame. It then uses the matplotlib and pandas libraries to create 

and display the graph or graphs. The plotting of a graph or chart is accomplished in the 

GraphIt file. The main functions in this file that are utilized to provide a chart are the, 

graphInd, graphIt, and graphGrouped. 
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a. graphInd Function 

The graphInd function is used to display graphs when analyzing an individual 

aircraft. The graphInd function takes in a DataFrame and a list of parameters. For an 

individual aircraft the parameters have been limited to “Icao,” “Spd,” “Alt,” “Lat,” “Long,” 

and “PosTime.” The function will give the user the option of displaying one of three graphs 

or all of them. The graphs available to view are line graphs of “Spd vs “Time,” “Alt vs 

Time” and a scatter plot of “Spd” vs “Alt.” Figure 19 shows an example of the three 

available graphs. When plotting time, the parameter “PosTime” is converted from epoch 

time to a spark TimeStamp containing the DD HH:MM. This conversion is required to 

allow matplotlib to display the date and time in that makes sense visually. If the epoch time 

was displayed it would be a large number that corresponds to the number of seconds since 

midnight January 1, 1970. 

 

Figure 19. Example graphs available from GraphInd 
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b. graphGrouped Function 

GraphGrouped is a function in the GraphIt file that is designed to provide a bar 

graph/histogram for a DataFrame that has been grouped by a parameter or parameters and 

has a count column. With data sets as large as the ADSB data set there will be a large 

number of different groupings. Oftentimes, there will be too many to display on any single 

graph or histogram to be able to discern any sort of information from it. If there are over 

120 different groupings in the DataFrame, the program will allow the user to specify a 

customized number to display and it will only display the largest counts based on the 

customized number. The number 120 was chosen because more than 120 groupings caused 

the graph to become unreadable. For grouped data plots, the user will also enter a title for 

the plot. 

c. graphIt Function 

The graphIt function is the main workhorse plotting function for the program. This 

function takes in a DataFrame and allows the user to select a type of graph they would like 

to display. When the program is going through each individual parameter during analysis 

operations, even though it asks if the user wants a plot using that parameter, the user will 

be allowed to select from any of the parameters that are a part of the DataFrame. This may 

cause some issues with the graphing function as it relies on certain parameters such as 

“Icao” to be available to conduct certain operations. For some of these problem cases, 

“Icao” has been kept in the DataFrame, even though not specifically asked for by the user. 

Available plotting/graphing options are a bar chart, a scatter plot and a boxplot.  

(1) Bar Chart 

If the bar chart/histogram option is chosen by the user, the program will give the 

user a list of the available parameters for the x-axis from which to make the plot. The 

program will then provide different options based on the type of the parameter chosen as 

well as based on the actual parameter chosen. If the parameter chosen is a Boolean, or a 

String, the only allowed plots are a histogram of values. The program will then further 

differentiate between the different types of string or Boolean parameters that are in the 

ADSB data. 
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If the parameter is “To” or “From,” the program will ask if the user wants the count 

of the number of flights going to or from the airports in the DataFrame. If the user answers 

yes, then it will provide the counts of the number of flights going to or coming from 

different airports based upon the parameter “To” or “From.” It accomplishes this by 

grouping first by “Icao” and then grouping by “To” or “From,” whichever parameter was 

selected. 

If the answer is no, then the program will group by “To” or “From.” The program 

will provide a warning to the user that this information may not make much sense. This is 

because the grouping will be the number of flights going to or from an airport times the 

number of minutes that each flight was up. As was the case in the grouped data, if there 

will be more than 120 items plotted on the bar chart, the program will ask the user if they 

want to reduce the number of items to a customized number and display the values with 

the highest counts. The user will have an option to specify a title for the graph, but the x-

axis label will be provided based upon the user’s answer to the number of flights question. 

If the parameter is “Mil,” the program will provide a bar graph of the number of 

military aircraft vs the number of non-military aircraft. It does this by grouping by “Icao” 

and “Mil” and then by “Mil” again. 

If the parameter is “Cou,” the program will provide a bar graph for the number of 

flights for each country in the DataFrame. This is accomplished with a groupby “Cou” and 

“Icao” and then a second group by “Cou” again. This is so it counts only the flights for 

each country and not the number of flights combined with how long each flight was up. 

If the parameter for the bar chart is “Icao,” the bar chart will provide a bar chart for 

the number of minutes the flight was seen in during the time frame. This is a grouping by 

“Icao” which will be the number of instances that the specific “Icao” shows up in the files. 

Each instance will correspond to a single minute the aircraft was operational. 

If the parameter is a numeric parameter such as, “Lat,” “Long,” “Spd,” or Alt,” then 

there are four different options for a bar chart. The available options are:  

1. A histogram of all values (Group by parameter). This provides the number 

of instances of that parameter. 
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2. A histogram of all values (Group by “Icao” and the parameter). This 

provides the number of instances of that parameter for each flight. 

3. A histogram using bins of all values (Group by parameter). This provides 

a histogram but with bins that provide for a range of values vice single 

values for each instance. 

4. A histogram using bins of all values (Group by “Icao” and the parameter). 

This provides a histogram of bins that provide for a range of values for 

each flight vice single values. 

Option one will group by the parameter whereas option two will group by the 

parameter and “Icao.” These different options will provide for the number of instances of 

a parameter or provide the number of instances for each flight.  

(2) Graphing with Bins 

Options three and four will provide a graph with bins. The program will provide 

the user with the minimum and maximum value for the parameters. It will then ask the user 

to provide a minimum and maximum value for analysis. After the user provides a minimum 

and a maximum value, the system will ask the user to specify either a bin size or number 

of bins for graphing. If bin size is selected the user will specify the size of the bins desired. 

The program will compute the number of bins based on the minimum values, the maximum 

value and the bin size. The number of bars for the histogram will be the number of bins 

computed and the values for each bin will be based on the values from the DataFrame. If 

the user selects option for specifying the number of bins, then the program will compute 

the bin size using the number of bins desired, the minimum and the maximum values and 

provide a histogram. A histogram example from the prototype is shown in Figure 20. 
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Figure 20. Histogram example with Bins 

To actually create the bins, the program creates a new column in the DataFrame, 

and it creates a list of tuples corresponding to the bin ranges for the histogram. Each tuple 

contains the minimum value for the bin, the maximum value for the bin and then a string 

corresponding to the range of the bin. The function addSpdAlt and the user defined function 

makesspdaltcol takes the values corresponding to the parameter being graphed and 

compares them to the maximum and minimum values for each bin. A string value, 

corresponding to the bin the value belongs to is then added to the new column in the 

DataFrame. The new column is then grouped and counted to provide the number of values 

that fall into each bin. 

(3) Scatter Plot 

A scatter plot is available for parameters that have numeric values. For a scatter 

plot the user will provide a parameter for the x-axis and another for the y-axis of the plot. 

Only numeric parameters from the DataFrame can be used for a scatter plot. The pandas 

function pandasd.df.plot(kind = ‘scatter’) function is used to create the actual plot. An 

example scatter plot of “Spd” versus “Alt” is provided in Figure 21. 
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Figure 21. Example Scatter plot of “Spd” vs “Alt” for US. Navy 
Aircraft in North America 

(4) Box Plot 

The box plot is the last plotting option available for visualizing numeric data. The 

pandasdf.boxplotfunction will return a boxplot for each individual parameter in the 

DataFrame. An example Boxplot for the parameter “Spd” is shown in Figure 22. 
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Figure 22. Example box plot for the parameter “Spd” 

A.7 Post Analysis 

After the program has gone through all the parameters selected by the user, the 

program will ask a few questions. The first question is if the user wants to conduct any 

more analysis on this time frame. If the user wants to conduct more analysis on this time 

frame, the program will return to the filter stage and ask the user for the filters they want 

to apply to the time frame.  

If the user is finished conducting analysis on the time frame, the program will ask 

if the user wants to save the DataFrame as a parquet. If the user wants to save as a parquet, 

then it is currently saved to a hardcoded location provided by the program. The program 

will then ask if the user is done conducting analysis. If the answer is yes, the program shuts 

down. If not, the program then returns to the very beginning and asks if the user wants to 

load a parquet. 
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B. MACHINE LEARNING—LOGISTIC REGRESSION 

A simple example of machine learning is provided in the LogisticRegression file. 

In this code, logistic regression is run on the following parameters: “Alt,” “Lat,” “Long,” 

“Spd,” and “Mil.” The code is not meant to be fully operational. Rather, it is provided here 

as a simple illustration on how to run one of Spark’s machine learning algorithms from its 

machine learning library. 

The program starts by creating a Spark session and then a DataFrame with the 

parameters “Alt,” “Lat,” “Long,” “Spd,” and “Mil.” A new column named “label” is 

created in the DataFrame for use in the logistic regression. The “label” column is created 

with the Spark withColumn function and is used for the logistic regression label of the data 

that the logistic regression is trying to predict. The ‘label’ must be in a specific data format 

where the values are either 1.0 or 0.0 or the Spark LogisiticRegression function will give 

an error. To do this a binary mapping was used to map the values from the “Mil” column 

which were in a true/false format to the ‘label’ column. The binary mapping performed the 

following mapping. “Yes” or True to are mapped to 1.0 and values that are “No” or False 

are mapped to 0.0.  

The next important step in the logistic regression was to create a “features” column. 

In order to do this, the VectorAssembler transformer from the Spark machine learning 

library was used. This “transformer combines a list of columns into a single vector column. 

The VectorAssembler accepts the following input column types: all numeric types, Boolean 

type, and vector type” (Apache Spark, MLib: Main Guide 2018). The output will be a 

vector consisting of the values from the input columns in the order listed as inputCols for 

the function. This vector is required by the LogisticRegression function. Example code is 

shown in Figure 23. The df1 is a DataFrame that is combined with the output from the 

VectorAssembler function. 
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Figure 23. VectorAssembler function example 

The Logistic Regression model is then created and fit to the data provided. The data 

available concerning the logistic regression are the following: 

• Coefficients for each variable 

• Intercept for the regression 

• ROC or how the regression predicts. 

• False Positive Rate 

• True Positive Rate 

These values can also be graphed using numpy and matplotlib. An example graph 

provided by the program showing the ROC Curve is shown in Figure 24. 

 

Figure 24. ROC Curve example 
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IV. REVIEW AND ANALYSIS 

The prototype developed for this thesis succeeds in hiding the underlying Spark 

system from the end users. In this regard we achieved the primary objective of the thesis. 

However, for it to become a practical system, several aspects of the prototype need to be 

extended. We will address how the prototype can be extended in this chapter. In addition, 

we will describe some of the difficulties we encountered while developing the prototype.  

A. COMMAND LINE INTERFACE 

The prototype was developed using a command line interface or CLI. This interface 

was chosen mainly because of time constraints. Other factors that played into the choice 

however were, the simplicity of a CLI for a user and also the ease with which a CLI can be 

updated in the future to provide additional features. A CLI was sufficient for hiding the 

underlying aspects of Spark from a data analyst. 

The CLI used in this program is simple in that it gives the user a list of options to 

choose from or requests a specific input. The lists of options are hardcoded, in the case of 

the filters. Some other lists of options are based on the parameters in the DataFrame being 

analyzed, or the filter choices the user has made and these choices will determine the 

actions the user can take during analysis. This setup allows a user to concentrate on the 

data analysis and building the DataFrame rather than memorizing the commands required 

to make the program work. 

While a CLI may take longer than a graphical user interface, or GUI, for a user to 

become familiar with, once the user has used the program several times, they will be able 

to easily and quickly transition through the program and probably in a more efficient 

manner than using a GUI. In addition, updates to the program will not change the format 

of the CLI prototype and will have limited impact on the navigation of the program unlike 

in a GUI. In a GUI making small changes can require significant structural changes and 

design changes to the program. 
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Additionally, adding new features for or requirements required by a subject matter 

expert, is very easy in the current format. The prototype was developed with this capability 

in mind. For example, the main filters of the program, shown in Figure 25 can be updated 

by adding additional numbers such as a filter number eight. Filter number eight could be 

type of filter function or this spot could where machine learning options could be 

implemented in the program.  

 

 

Figure 25. Program filters 

The CLI was sufficient for this prototype because it allowed for the hiding Spark 

from the user. CLI also had one other beneficial side effect in that Spark has a very useful 

function for the display of a DataFrame on the command line. The Spark function df.show, 

where df is a Spark DataFrame displays the DataFrame in a tabular format on the display. 

This command can be utilized to allow the user to customize the number of rows from the 

DataFrame to be displayed. 

B. MAKING IT A PRACTICAL SYSTEM 

The prototype, while adequate to show that Spark functionality can be provided to 

a data analyst while hiding the underlying system, can be expanded to make it a more 

practical system. Many aspects of data analysis have been implemented in the program to 

include filtering, getting the mean, minimum, maximum, percentiles, counting, histograms, 

bar charts, scatterplots, and box plots. One recommendation is that even though the subject 

matter experts are not coding the program, they need to be deeply involved from the 

beginning to ensure that the desired filters, analysis tools, options and displays are built 

into the program. 
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In order to turn the prototype into a more practical system, the following 

implementations into the prototype could be performed. 

B.1 Machine Learning Algorithms 

The machine learning script included with the prototype serves as an example of 

logistic regression. This feature could be further implemented into the prototype. 

Additionally, other machine learning algorithms could be implemented into the program 

to include, linear regression, decision trees, random forest, multi class classification as well 

as clustering.  

B.2 Graphical Users Interface 

A graphical user interface or GUI could also make the prototype more practical in 

nature. GUIs tend to me more intuitive for users and it would allow users to pick up on 

functionality in the program much faster. Additionally, a GUI would allow the user to 

select various options at one time, similar to choosing items from a dinner menu, instead 

of having to flow through a program to get to a certain point. Another more practical aspect 

of a GUI is it could allow the user to maintain a better knowledge of the status of the 

DataFrame being operated on to include the parameters chosen, what filters have been 

applied and any other status the user would like to keep abreast of. A CLI just does not 

lend itself to this functionality. In a CLI the user would see pages of data and would have 

to scroll through it to find the information they were looking for. 

B.3 Graphing 

Scatter plots, box plots and histograms have been included in the functionality of 

this program to show that they can be used with Spark. They however, can be fine-tuned. 

In the prototype when graphing histograms, the user may be asked if they want to only look 

at a custom number of values for the histogram because the graphing of values over about 

100-120 values results in a graph that is unreadable. The program as it is currently 

implemented will only graph the highest count values that the user chooses. Giving the 

user the choice of what they want to see from the histogram would make it more practical 

and functional for the user. For example, if an analyst wants to view the tail of the 
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histogram they would have the choice of viewing the values with the lowest counts from 

the histograms vice only the values with the highest counts. One last way to make the 

prototype more practical in regard graphing would be to graph the histogram over a series 

of graphs, where each graph would have a certain amount of values on it so that it remained 

readable. This way the user would still be able to view the data in a readable manner and 

also have all the data plotted. 

B.4 Correlation 

Correlation is a data analysis tool for determining the closeness of the relationship 

between two variables. Good correlation analysis will give an analyst a better 

understanding of the data they are analyzing. This would be beneficial when building 

models. 

C. LIMITATIONS/CHALLENGES OF SPARK 

Python and Apache Spark 2.0 were a good combination for building the prototype. 

Python was selected because of the various Python tools and libraries available for making 

the backbone of the prototype. Spark 2.0 was chosen because of its DataFrame capability, 

its library of analysis tools, its machine learning library, and because of the speed with 

which it can process large amounts of data. However, they do provide some limitations and 

challenges. These challenges were the difficult parts of building parts of the prototype. 

C.1 Spark Documentation 

The Spark Documentation is extensive and examples are provided but they are not 

very easy to understand at times. For example, the documentation makes it seem very 

straightforward on how to implement machine learning techniques using the Spark 

machine learning libraries. Many books on the subject seem to show the same thing. The 

process however is not very straight forward. An example can be seen when performing 

logistic regression. When using the Spark command fit, which fits a logistic regression 

model to a dataset, the documentation indicates that the input is a dataset which is an 

instance of a Spark DataFrame. The only issue is that a normal DataFrame cannot be used 

as the input. It first must be manipulated. Spark requires that the DataFrame have a column 
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labeled “label and a column labeled “features.” All the data in the “label” column must be 

a binary variable where the values are “1.0” or “0.0.” Values of true and false will not work 

for this column. Each row in the “features” column contains a vector of all the data in that 

row pertaining to the features the user wants to use. The regression will not work without 

these two columns included or formatted correctly. As mentioned above the formatting 

requirement is not entirely clear, in the documentation or in the examples. Examples of 

how to convert a binary variable using a user defined function for the “label” column as 

well as creating the vector for the features column and adding them to the DataFrame using 

the Spark VectorAssembler function can be seen in the Logistic regression file. 

C.2 Graphing with Spark 

A data analyst when analyzing their data would want to be able to view their data 

in some sort of graph or chart. Ideally, the user would want to view the data with a boxplot, 

histogram, scatter plot or some other plot of the data. This would allow the user to visually 

examine the data for any issues or trends in the data. This is especially critical when 

analyzing data and looking at the underlying assumptions of the tests that are being 

conducted such as when conducting an ANOVA or a linear regression. If the underlying 

assumptions for the tests are not met, then false conclusions will be made in regard to the 

data.  

The inability to display data in a graph format is a limitation of Spark. Spark lacks 

any native capability for creating a chart or graph for display of the data. A work around 

for this limitation, used in the prototype, is to use several other python libraries to create a 

chart or plot. The libraries required for this are Numpy, Pandas and Matplotlib. A generic 

way to create a chart is to take the Spark DataFrame and convert it to a Pandas DataFrame. 

Use Numpy to assist in arranging the data then using Matplotlib to provide a visual plot of 

the data from the Pandas DataFrame. A specific example of this is in the GraphIt program 

file. 
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The one drawback of this option is that converting the Spark DataFrame to a Pandas 

DataFrame can be costly and time consuming. Additionally, any work on the data should 

actually be done in Spark and not Pandas to take advantage of Spark’s speed at data 

processing. 

C.3 Loading Spark on a Windows Machine 

The loading and installation of Spark on a machine running the Windows operating 

system can be quite challenging. It is not straight forward. Mr. Frank Kane of Sundog 

Software in his Udemy course, “Taming Big Data with Apache Spark and Python—Hands 

On!” provides a video walk though of step by step instructions on how to set up Spark on 

a windows machine. The instructions are also available on his website at https://sundog-

education.com/spark-python/ and are shown in the Figure 26 (Kane 2018). Instructions for 

MAC or Linux operating systems are also at the same website.  

One thing that cannot be reiterated enough when installing and using Spark on a 

windows machine is to use JAVA 8. JAVA 9 and above are currently not compatible with 

Spark and will create massive headaches for the developer. This restriction or requirement 

is not provided during the Spark download and is not readily apparent on the Spark website. 

https://sundog-education.com/spark-python/
https://sundog-education.com/spark-python/
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Source: Sundog Software Education, https://sundog-education.com/spark-python/ 
(accessed November 1, 2018). 

Figure 26. Instructions on how to install Spark on a Windows machine  
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C.4 User Defined Functions 

User defined functions while not a limitation in Spark do provide a challenge. User 

defined functions, are in fact, a powerful tool for custom manipulations and 

transformations of data. They allow for user customization and manipulation of columns 

both to and from the DataFrame. When writing a user defined function, the first thing to 

do is to write the actual function. Next, the function must be “registered with Spark so that 

it can be used on all of the worker machines” (Chambers and Zaharia 2018, 112). An 

example user defined function and its registration from the prototype is shown in Figure 

27.  

 

Figure 27. Example of a user defined function 

The def assignContinent() function shown above is declared like a normal 

definition of a function in Python. The registration of this function is the line continentudf 

= udf(assignContinent). This function will take a latitude and longitude and return a 

location. Without the registration line, continentudf = udf(assignContinent), Spark will be 

unable to use the function on the DataFrame as all the worker machines/nodes will not have 

it for use. The line df = df.withColumn('Continent', continentudf(col('Lat'), col('Long'))) is 

an example of using the user defined function. Notice how the function used is the 



45 

registered function, not the actual declared function. For this example, a column 

“Continent” is added to the DataFrame df using the user defined function continentudf 

which is an object of the actual function. The inputs to the continentudf function are the 

columns ‘Lat’ and ‘Long’ from the DataFrame df. 

An even more difficult and complicated use of user defined function occurs when 

a user defined function uses as inputs columns from a DataFrame and variables not in the 

DataFrame. The best way to show this is with an example as shown in Figure 28. The 

addSpdAlt() function is designed to return a string that corresponds to a certain interval in 

which a value is located. For example, if the value is 5, and the intervals were in groups of 

10, then it would return the interval “1-10.” The function takes a list of lists of intervals(xs), 

a maximum value(maxv), a minimum value(minv) and a value(from the DataFrame). This 

function returns None or string corresponding to the interval that the value was found in. 

The list of intervals, xs, has the following architecture: xs[i][0] is the minimum value in 

the interval, xs[i][1] is the maximum value in the interval and xs[i][2] is the string 

corresponding to the interval which is what would get returned. 

 

Figure 28. A more complex user defined function from the prototype 

The function call for the user defined function is the following: df1 = 

df.withColumn(x + " Intervals,” makespdaltcol(xs, maxv, minv)(x)). The part that is not 

straight forward is why the (x) is not with the rest of the variables, as in a normal python 

function call, even though the function was declared that way. In this case the (x) 
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corresponds to the column that the variable value comes from during the function call. 

Normally in Python it would be included in the parentheses with the rest of the variables. 

If that is done, the function will not run. It must have its own parentheses.  

C.5 File Input 

Another small challenge Spark posed in the developing the prototype pertained to 

the input of the JSON files. While the typical file input is easy, the way the data files were 

stored presented a small challenge for reading in many files. Spark has the ability to read 

in a JSON file by its location or by a directory of JSON files. It has the capability to input 

a list of file locations. Spark will not, however, directly read in a directory that contains a 

directory of files. Examples of the various read ins are shown below: 

Read in of a single file: 

df = spark.read.json("C:\\2016_11\\2016-11-15\\2016-11-15-0002Z.json") 

Read in of a directory where the directory 2016-11-15 is a directory of JSON files: 

df = spark.read.json("C:\\2016_11\\2016-11-15\\") 

Read in of a list(xs) of file locations 

xs = ["C:\\2016_11\\2016-11-15\\2016-11-15-0000Z.json", 

      "C:\\2016_11\\2016-11-15\\2016-11-15-0001Z.json"] 

df = spark.read.json(xs) 

The examples above will all work. Shown below is an attempt at reading in all the 

JSON files that are in the sub-directories of the directory 2016_11. This will not work as 

the 2016_11 directory contains directories of JSON files and not the actual JSON files 

themselves. Spark will not automatically dig down into the sub-directories. 

df = spark.read.json("C:\\2016_11\\") 

The fix of this is to use a wildcard. Spark will now read JSON files from the sub-

directories when a * wildcard is added to the end of the directory. 

df = spark.read.json("C:\\2016_11\\*") 
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Using the command above, now all the JSON files contained in the directories 

under 2016_11 will be read in and added to the DataFrame df. 

D. INVOLVEMENT OF SUBJECT MATTER EXPERTS 

While the goal of the program is to shield subject matter experts form the 

programming and algorithms, subject matter experts must be involved in the development 

of the program. They should be involved early and often. Their involvement is key to 

ensuring that the correct characteristics, capabilities, displays and any other desired 

functions are contained in the program. They know the data the program is designed to 

analyze better than the programmer. This is very important when dealing with string data 

type variables. 

In the ADSB data set, two parameters that were string data types were “Op’ and 

“Cou.” Knowing the different values and types of strings that are contained in these two 

columns was paramount in the development of the filters in the program that works on 

these two columns. In the “Op” column, which corresponds to the airplane operator, the 

same operator may be named several different ways. For example, in a quick study of the 

data of the “Op” column, the value for American Airlines, could be “American Airlines,” 

“American Airlines—Fort Worth,” “American Airlines—DFW.” These all appear to be for 

the same airline but in actuality they may not be. There could be a desire to be able to have 

them separated out. If these were branches of American Airlines, then multiple filters may 

be needed to filter for the Airlines as whole, all American Airlines, or to filter by one of its 

sub branches, American Airlines—DFW. When collating the statistics, the programmer 

needs to know how these situations should be handled and a subject matter expert would 

provide this guidance. This is a simple but small illustration of the issue. If a situation like 

this is not understood or handled correctly then false numbers, analysis and conclusions 

could be gleaned. This could have a dramatic effect on a Commander’s decision. 
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V. CONCLUSION AND FUTURE WORK 

A. CONCLUSION 

In this thesis, we developed a prototype that provides data analytics tools to subject 

matter experts. Unlike other currently available data analytics tools that require the users 

to know the programming languages such as R or Python and often the underlying data 

management system, our prototype removes such burden from the users.  

We used Spark 2.0 as the underlying system for our prototype. The users of the 

prototype are completely shielded from the complexity of Spark. The details of the 

prototype and the development issues we encountered while constructing the prototype are 

described in Chapter III and Chapter IV, respectively. The key points we learned from 

using the Spark system is that it is very capable for the development of an analysis program. 

The APIs and libraries are very good for and fairly easy to use. There is however, a lack of 

an inherent graphing capability and specifics in the documentation leave a lot to be desired. 

Using the Python matplotlib and pandas library can cover the graphing shortfall but using 

matplotlib feels kind of clunky.  

Spark is a fast data processing engine that is fairly easy to use. It has a wide range 

of capabilities including functions, processes, algorithms and data analysis functions, 

which can be accomplished through the use of a single line of code or a few lines of code. 

This is in contrast to the many lines of code it would take to accomplish the same task 

solely using Python or some other programming language. The ability to develop and 

utilize user defined functions, while not the most straight forward, is very powerful in 

regard to data transformation and is invaluable to data analysis. Additionally, the 

DataFrame abstract is very useful and eases the task of data analysis. As mentioned 

previously a built in graphing capability for use with Python would be very beneficial. In 

summary, spark has the capability to provide fast data analysis for users.   

Spark’s capabilities have the ability to assist users, watch standers, decision makers 

and commanders in understanding the current situation in regard to the data analysis and 

can aide in making decisions in a timelier manner. 
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The prototype developed can be extended and improved in several aspects. We 

describe the possible extensions and improvements in the next section. 

B. FUTURE WORK 

The prototype for this research worked well but as with most software development, 

it could and should be handled in iterations. After building parts of it, there are ways that 

it could be improved upon to include program flow, user options, and additional 

capabilities. The main goal of this research was to show that an analysis program using 

Spark could be made that allowed for data analysis while hiding the underlying Spark 

system from the user. In that way it was a success but there are several ways that the 

research can be furthered. 

The first recommendation for future work is to examine the development of the 

program using a graphical users interface or GUI. A GUI has a quicker learning curve than 

a command line interface, or CLI, and can be more intuitive for a user. The GUI would 

also give the user the advantage of knowing the current status of the program, what filters 

have been selected and what parameters have been selected. Printing out the DataFrame to 

the screen on a CLI makes the screen cluttered and the forces the user has to scroll back 

through quite a bit of information. A display of selections could be used in the GUI to keep 

the user appraised of what has been selected and the current status. Additionally, part of 

the DataFrame could be shown to the user as part of the GUI for easy feedback to the user 

on operations applied. 

A second recommendation for future work would be to implement the prototype 

using Spark and R called SparkR or as a combination of Spark, R and Python. The R 

programming language is designed for data analysis and has a very good statistics libraries 

including very good-looking plotting functions. One of the weaknesses of Spark with 

Python was its lack of built in plotting functions. Matplotlib was used but was a little 

clunky. R can also be used with Python by installing the rpy2 Python library. In order to 

use the ryp2 library the R programming language must also be installed. This setup would 

allow for the running of R scripts using Python. Alternatively, another option is to use the 
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rPython package with R which would enable the calling of Python scripts from R. SparkR 

also supports the Spark machine learning library  

A third recommendation is to improve the filters using an input from the user as the 

filter instead of using a hard-coded list of options. An example of this would be to setup 

the filter for specific airline by having the user provide an airline name and the program 

would filter for that airline and possibly all like it in the DataFrame. An input of American 

Airlines would filter the DataFrame for all rows that have American Airlines in the  

“Op” column. 

Another recommendation is to develop more machine learning scripts for use with 

the prototype. This would allow other machine learning techniques to be brought to bear 

on data analysis. Some other machine learning algorithms that could be included in the 

program are linear models, support vector machines, decision trees, naïve Bayes as well as 

k-means clustering to name a few. 

Finally, Spark includes an API for streaming data. The ADSB data can be obtained 

in real-time as well. This would allow for near real time analysis of the ADSB data, allow 

for the testing of new data against current models that had already been built and allow for 

prompt decisions to be made. One possible use of the streaming feature would be to identify 

and flag anomalous aircraft from the ADSB data for follow up by the user or potentially a 

military response. 
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