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We compute the electric conductivity of quark matter at finite temperature T and a quark chemical
potential μ under a magnetic field B beyond the lowest Landau level approximation. The electric
conductivity transverse to B is dominated by the Hall conductivity σH. For the longitudinal conductivity σk,
we need to solve kinetic equations. Then, we numerically find that σk has only a mild dependence on μ and
the quark massmq. Moreover, σk first decreases and then linearly increases as a function of B, leading to an
intermediate B region that looks consistent with the experimental signature for the chiral magnetic effect.
We also point out that σk at a nonzero B remains within the range of the lattice-QCD estimate at B ¼ 0.
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Introduction.—Extreme matter of quarks and gluons in
quantum chromodynamics (QCD) could be realized as a
quark-gluon plasma in nucleus-nucleus collisions and as
quark matter in the neutron star cores. Nowadays, the
collision experiment called the beam energy scan is aiming
to explore the QCD phase diagram at finite temperature T
and quark chemical potential μ≲ T. Interestingly, such hot
and dense QCD matter may be exposed under a strong
magnetic field B if the nucleus-nucleus collision is non-
central. The presence of strong B provides us with an ideal
probe to topological contents of the QCD vacuum, as
exemplified by the chiral magnetic effect (CME) [1].
To quantify topological effects induced by B, we need

transport coefficients, among which the most important is
the electric conductivity σ. The CME signature in a
condensed-matter system of Weyl semimetals is the neg-
ative magnetoregistance, that is, the quadratic rise of
σCMEðBÞ ∝ B2 [2], which has been first detected exper-
imentally in Ref. [3] assuming that nontopological σ is
insensitive to B. In contrast to the condensed-matter
system, for hot and dense quark matter, we can make a
first-principles estimate for σðBÞ from QCD directly.
Moreover, in the nucleus-nucleus collision, σðBÞ controls
the lifetime of B [4,5].

So far, σðBÞ has been perturbatively calculated in QCD
under a scale hierarchy,

ffiffiffiffiffiffi
eB

p
≫ T ≫ gT, where e repre-

sents the charge of the proton and g the QCD charge, using
the lowest Landau level approximation (LLLA) [6,7].
Usually, the LLLA is a reasonable approximation for strong
B and has been adopted for various QCD observables such
as the heavy quark diffusion constant [8], the bulk viscosity
[9], etc. The validity of the LLLA is questionable, however,
for σðBÞ involving (u and d) quarkswith small massmq, i.e.,
σ → ∞ as mq → 0, since the scattering phase space is too
severely restricted by the approximation.
In the present work we significantly revise the calcu-

lation of σðBÞ in a different (more realistic) regime,ffiffiffiffiffiffi
eB

p
≫ gT, in which we neglect T-induced quark damping

(∼g2T), namely, Δε > eB=T ≫ g2T, where Δε is an
energy gap associated with adjacent Landau levels.
Then, we will find that our σ with full Landau level
resummation shows a much milder mq dependence than
the LLLA result. We will also see that the B dependence is
minor, which justifies comparing our finite-B σ to the
lattice-QCD measured value at B ¼ 0 [10–12].
Some definitions.—The electric conductivity is given by

the following Kubo formula:

σij ¼ lim
k0→0

lim
k→0

1

2ik0
½Πij

RðkÞ − Πij
A ðkÞ�; ð1Þ

where Πμν
R=AðkÞ are the retarded and the advanced polari-

zation functions, respectively, defined by Πij
R=AðkÞ ≔

�i
R
d4xeik·xθð�tÞh½jiðxÞ; jjð0Þ�i, where “þ” is for R
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and “−” is for A. We note that, for the conductivity used in
the hydrodynamics, ji is not necessarily an electric current
operator, jiem ¼ P

fqfψ̄fγ
iψf, where f refers to flavor and

qf is the electric charge of the f quark, i.e., qu ¼ ð2=3Þe
and qd ¼ −ð1=3Þe. We need to subtract the contribution
from hydrodynamic modes, which can be done with a
subtracted current operator ji ¼ jiem − neT0i=ðE þ PiÞ
with the electric charge density ne, the energy momentum
tensor (operator) Tμν, the energy density E ¼ hT00i, and the
pressure Pi ¼ hTiii [13]. In the following we evaluate this
correlation function involving the electric current and the
energy momentum tensor (1) using perturbation theory and
the Boltzmann equation with magnetic effects fully taken
into account.
For perturbative calculations ofΠij

R=AðkÞwe need the free
quark propagator at finite B. The retarded propagator in the
flavor f sector is given by a sum over the Landau levels
labeled by n as

SfR=AðpÞ ¼
X∞
n¼0

−SfnðpÞ
p2
0 − ε2fn � iϵp0

¼
X∞
n¼0

−SfnðpÞ
p2
k −m2

fn � iϵp0

;

ð2Þ

where the (flavored) Landau quantized energy dispersion is

εfn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2jqfBjnþm2

f

q
and we defined m2

fn ≔

2jqfBjnþm2
f, p

μ
⊥≔ð0;px;py;0Þ, and pμ

k ≔ ðp0; 0; 0; pzÞ.
Here, we chose the Fock-Schwinger gauge, and the B
direction along the z axis without loss of generality. The
numerator SfnðpÞ has Dirac index structures decomposed as

SfnðpÞ ¼ ð=pk þmfÞ½Pf
þAnð4ξfpÞ þ Pf

−An−1ð4ξfpÞ�
þ =p⊥Bnð4ξfpÞ ð3Þ

with ξfp ≔ jp⊥j2=ð2jqfBjÞ. We introduced AnðxÞ ≔
2e−x=2ð−1ÞnLnðxÞ, and BnðxÞ ≔ 4e−x=2ð−1Þn−1Lð1Þ

n−1ðxÞ,
where LnðxÞ ¼ Lð0Þ

n ðxÞ and LðαÞ
n ðxÞ represent the

generalized Laguerre polynomials [14]. In the above
expression Pf

� represents the projection operator Pf
� ≔

½1� sgnðqfBÞiγ1γ2�=2.
Electric conductivity.—Proceeding to the conductivity

calculation, we decompose the anisotropic tensor structure
of the electric conductivity using B̂i ≔ Bi=jBj as

σij ¼ σHϵ
ijkB̂k þ σkB̂iB̂j þ σ⊥ðδij − B̂iB̂jÞ; ð4Þ

where σH represents the Hall conductivity for an electric
current perpendicular to both electric and magnetic fields.
In the R=A basis, the polarization tensor at the one-loop
order reads

Πμν
R ðkÞ¼−i

X
f

q2f

Z
d4p
ð2πÞ4 tr½γ

μSfRRðkþpÞγνSfARðpÞ�

− i
X
f

q2f

Z
d4p
ð2πÞ4 tr½γ

μSfRAðkþpÞγνSfRRðpÞ�; ð5Þ

apart from the hydrodynamic mode subtraction, which
will be taken into account later. We can straightfor-
wardly perform the integration (5) to get σH ¼ ne=B,
which is nothing but the Hall conductivity. Up to the
one-loop order σ⊥ ¼ 0, which is intuitively understood
from the Landau quantization of transverse motion.
A nonzero value of σ⊥ appears from the two-loop and
higher order contributions. Here, we give a parametric
estimate, σ⊥=T ∼ g2T2=jeBj ≪ 1 for

ffiffiffiffiffiffiffiffiffijeBjp
≫ gT. This

parametric form is derived from one self-energy insertion
to the fermion propagators. The leading behavior of
the self-energy is ∼g2T, while the propagator is of order
1=Δε ∼ T=jeBj. Thus, the combination of these factors
leads to ðg2TÞðT=jeBjÞ ¼ g2T2=jeBj ≪ 1.
Kinetic equations.—Next, we calculate the longitudinal

conductivity of our main interest. To this end we must deal
with the resummation over pinching singularities (see
Ref. [15], for example). An efficient approach to resum
higher order diagrams is solving the Bethe-Salpeter equa-
tions, as illustrated in Fig. 1, which amounts to the common
formalism used in Ref. [16].
The Bethe-Salpeter equations can be translated to the

linearized kinetic or Boltzmann equations as

2Pμ
pð∂μ þ qfFνμ∂pν

Þfp ¼ −C½f�;
2P̄μ

p0 ð∂μ − qfFνμ∂p0
ν
Þf̄p0 ¼ −C̄½f�;

2kμ∂μgk ¼ −C̃½f� ð6Þ

for quarks, antiquarks, and gluons, respectively, where
∂pν

≔ ∂=∂pν and C½f�, C̄½f�, and C̃½f� represent
the collision terms. In the above, 2Pμ

p ≔ ūðpÞγμuðpÞ and
2P̄μ

p0 ≔ v̄ðp0Þγμvðp0Þ with the wave functions uðpÞ and
vðp0Þ for particle and antiparticle, respectively, and the
subscript p, p0, and k represent not only the momenta but
also the Landau level n, the angular momentum l, the spin
s, the color c, and the flavor f collectively.

=

=

FIG. 1. Bethe-Salpeter equations: the resummed propagator
with self-energy insertions (top) and the resummed vertex with
ladder diagrams (bottom).
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To solve the Boltzmann equation perturbatively, we
expand the distribution functions in terms of small devia-
tions, δfp, δf̄p, and δgk, around the thermal equilibrium,
feqðpÞ ¼ nFðεfn − μÞ, f̄eqðpÞ¼nFðεfnþμÞ, and geqðkÞ ¼
nBðωkÞ, where nB is the Bose-Einstein distribution function
and ωk ¼ jkj is the energy of massless gluons. It would
be convenient to introduce χp, χ̄p0 , and χ̃k rescaled by
common factors as δfp¼βfeqðpÞ½1−feqðpÞ�Ezχp, δf̄p0 ¼
βf̄eqðp0Þ½1 − f̄eqðp0Þ�Ezχ̄p0 , and δgk ¼ βgeqðkÞ½1þ
geqðkÞ�Ezχ̃k, where β ¼ 1=T is the inverse temperature.
Suppose that we solved χp, χ̄p0 , and χ̃k from the kinetic

equations (6); we can express the electric current as
jz ¼ σkEz ¼ ⨋p2P3

pqfðδfp − δf̄pÞ, from which we can
read σk, where ⨋ denotes the phase space sum of all
quantum numbers and the invariant integration of momen-
tum. In this way we come by the following formula

σk ¼ βNc

X
f

qfjqfBj
2π

X∞
n¼0

αn

Z
dpz

2π

pz

εfn

× ffeqðpÞ½1 − feqðpÞ�χp − f̄eqðpÞ½1 − f̄eqðpÞ�χ̄pg:
ð7Þ

Here, we introduced the spin degeneracy factor αn as
α0 ¼ 1 and αn>0 ¼ 2.
Now, let us return to our problem of solving Eq. (6). In

the left-hand side, ∂0 on feq picks up a term ∝ ∂0uz, where
uz is the z component of fluid velocity, which can be
eliminated by the leading order hydrodynamic equation
∂0uz ¼ neEz=ðE þ PzÞ. Then, the left-hand side of the first
equation for quarks simplifies as

2P0
pð∂0 þ qfEz∂pz

Þfp ¼ −βWpEz

�
qf

pz

εfn
−

nepz

E þ Pz

�
:

ð8Þ

Here, we defined Wp ≔ 2P0
pfeqðpÞ½1 − feqðpÞ�. The

second kinetic equation for f̄p has the same structure as
above with fp, Wp, and qf replaced with f̄p, W̄p ≔
2P0

pf̄eqðpÞ½1 − f̄eqðpÞ�, and −qf. Likewise, the gluon
equation is 2ωk∂0gk ¼ −βW̃kð−kz∂0uzÞ with W̃k ≔
2ωkgeqðkÞ½1þ geqðkÞ�.
Using the following multicomponent symbols

J μ ≔ qf

0
B@

pμ=εfn
−p0μ=εfn0

0

1
CA; T 0μ ≔

0
B@

pμ

p0μ

kμ

1
CA; ð9Þ

we can summarize three kinetic equations as

S ≔ J z −
neT 0z

E þ Pz
¼ Lχ; ð10Þ

where the left-hand side will be denoted by S below, and
the right-hand side represents the collision terms; L is a
linear operator defined by

Lχ ≔ L

0
B@

χp

χ̄p0

χ̃k

1
CA ¼ 1

βEz

0
B@

C½f�=Wp

C̄½f�=W̄p0

C̃½f�=W̃k

1
CA: ð11Þ

We should then solve χ ¼ L−1S using our symbolic
notation. We note that L contains five zero eigenvalues
(for a single flavor and more for multiflavors) with the
eigenvectors Ca ¼ fJ 0;T 0μg corresponding to the charge
and the energy-momentum conservations. For two flavors
Ca also contains the quark number conservation.
To formulate the projection procedure, let us introduce

an inner product for two functions A ¼ ðap; āp0 ; ãkÞ and
B ¼ ðbp; b̄p0 ; b̃kÞ by ðA;BÞ≔R

pWpapbpþ
R
p0 W̄p0 āp0 b̄p0þR

kW̃kãkb̃k. It is easy to rewrite Eq. (7) as σk ¼ βðJ z; χÞ
using Eq. (9). With the zero eigenvectors C and the inner
product, we define a projection operator onto functional
space excluding zero eigenvalues as QO ≔ O−P

a;bC
aðC; CÞ−1abðCb; OÞ, where ðC; CÞ−1ab is the inverse

matrix of ðCa; CbÞ. We see Q2 ¼ Q and QCa ¼ 0 by
construction. Using alternative expressions for the charge
density and the enthalpy, i.e., ne ¼ βðT 0z;J zÞ and
E þ Pz ¼ βðT 0z;T 0zÞ [17], we can write S ¼ QJ z.
Noting L ¼ LQ, we find the formal solution of Lχ ¼ S
as χ ¼ QL−1QS, where QL−1Q satisfies a relation
LQL−1Q ¼ Q. We eventually obtain

σk ¼ βðJ z;QL−1QSÞ ¼ βðS;L−1SÞ: ð12Þ
This means the zero modes of L are already projected out
once applied on S.
Collision terms.—The collision term is the most com-

plicated part. A strong magnetic field,
ffiffiffiffiffiffi
eB

p
≫ gT, makes

1 ↔ 2 processes such as the synchrotron radiation more
enhanced than other ordinary processes by eB=ðgTÞ2 ≫ 1.
That is, the 1 ↔ 2 process of typical scale ∼g2eB=T2 is
much greater than the 2 ↔ 2 process of typical scale
∼g4 ln 1=g. For the 1 ↔ 2 process there are three distinct
contributions, C½f� ¼ Cq→qg½f� þ Cqg→q½f� þ Cqq̄→g½f�,
where the subscripts represent processes illustrated in
Fig. 2. We can also consider similar decompositions for
C̄ for antiquarks and C̃ for gluons.
After tedious calculationswe find that the scattering ampli-

tudes of the synchrotron radiation and the pair annihi-
lation processes, iMp→kþp0 ¼ igūðp0ÞγμtauðpÞε�μðkÞ and
iMpþp0→k ¼ igv̄ðp0ÞγμtauðpÞε�μðkÞ, can be squared with
the summation over the quantum numbers and the phase
space, leading to
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Z
k;p;p0

jMp→p0þkj2ð2πÞ4δð4Þðk−pþp0Þ

¼−
1

2

X
f;n>n0

Z
dpz

2π

1

2εfn

Z
p0
zþ

p0
z−

dp0
z

2π

1

2εfn0
Xðn;n0;ξf−Þ; ð13Þ

Z
k;p;p0

jMpþp0→kj2ð2πÞ4δð4Þðpþ p0 − kÞ

¼ 1

2

X
f;n;n0

Z
dpz

2π

1

2εfn

Z
dp0

z

2π

1

2εfn0
Xðn; n0; ξfþÞ; ð14Þ

where the allowed range ofp0
z is restricted for the synchrotron

radiation in Eq. (13) as p0
z− < p0

z < p0
zþ with

p0
z� ¼ pz

m2
fn þm2

fn0

2m2
fn

�m2
fn −m2

fn0

2m2
fn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

fn þ p2
z

q
: ð15Þ

Two integrands in Eqs. (13) and (14) are identical, i.e.,
Xðn;n0;ξkÞ≔g2NcCF

R ½d2p⊥=ð2πÞ2�tr½γμSfnðpÞγμSfn0 ðp−kÞ�
with a group factor CF ≔ ðN2

c − 1Þ=ð2NcÞ, except for the
kinematical constraint; that is, the argument ofXðn; n0; ξf�Þ is
given by

ξf� ¼ ðεfn � εfn0 Þ2 − ðpz � p0
zÞ2

2jqfBj
: ð16Þ

Using Eq. (3) and properties of the Laguerre polynomials we
find

Xðn; n0; ξÞ ¼ g2NcCF
jqfBj
2π

e−ξ
n!
n0!

ξn
0−n

��
4m2

f

− 4jqfBjðnþ n0 − ξÞ 1
ξ
ðnþ n0Þ

�
Fðn; n0; ξÞ

þ 16jqfBjn0ðnþ n0Þ 1
ξ
Lðn0−nÞ
n ðξÞLðn0−nÞ

n−1 ðξÞ
�
;

ð17Þ

Fðn; n0; ξÞ ≔
(
1; ðn ¼ 0Þ;
½Lðn0−nÞ

n ðξÞ�2 þ n0
n ½Lðn0−nÞ

n−1 ðξÞ�2; ðn > 0Þ:
ð18Þ

Recovery of the lowest Landau level approximation.—It
would be an instructive check whether the LLLA result is
correctly recovered in the limit of eB ≫ T2 (at μ ¼ 0).
Since the synchrotron radiation changes the Landau
level, we can safely discard it. For the pair annihilation
process, Xðn ¼ 0; n0 ¼ 0; ξÞ given in Eq. (17) simplifies
as Xð0; 0; ξfþÞ ¼ 4m2

fg
2NcCFðjqfBj=2πÞe−ξ0þ with ξ0þ ¼

½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

f

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0
z
2 þm2

f

q
Þ2 − ðpz þ p0

zÞ2�=ð2jqfBjÞ,
which is nothing but ξþ in Eq. (16) with n ¼ n0 ¼ 0. When
jqfBj is much larger than any other scales, we can

approximate e−ξ
0
þ ≈ 1. Then, the linearized kinetic equa-

tions reduce to

qfNc
jqfBj
2π

βfeqðpÞ½1 − feqðpÞ�
pz

εf0
¼ 4m2

fg
2NcCF

× β
jqfBj
2π

1

4εf0

Z
dp0

z

2π

1

2ε0f0
feqðpÞf̄eqðp0Þ½1þ geqðkÞ�χp;

ð19Þ

where εf0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

f

q
and ε0f0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0
z
2 þm2

f

q
. We need

to keep the current quark mass mf that breaks chiral
symmetry to make the above LLLA expression sensible.
In contrast, we can safely neglect the thermal mass mT ∼
gT ≪ T that does not break chiral symmetry, though the
thermal mass is greater than the current quark mass. Here,
we do not have to consider mixing terms with χ̄p0 . In this
special limit, L is not a matrix and the matrix inversion is
unnecessary. Actually, we can easily solve the above
kinetic equation to obtain χp. Thanks to the charge
conjugation symmetry, the solution for antiquarks is
χ̄p ¼ −χp. Summarizing them, we arrive at the LLLA
result from Eq. (12) as

σk ¼
X
f

Ncβ

g2CFm2
f

q2f
jqfBj
2π

Z
dpz

2π

p2
z

εf0

×
feqðpÞ½1 − feqðpÞ�2R dp0
z

2π
1
ε0f0

f̄eqðp0Þ½1þ geqðkÞ�
; ð20Þ

which is consistent with Ref. [7].
Numerical results and discussions.—Below we will

show numerical results, for which we should write down
the matrix elements of L as a phase space convolution of

FIG. 2. Diagrams of the synchrotron radiation process with a quark (a1), with an antiquark (b1), and with the pair annihilation (c1).
Their inverse processes are (a2), (b2), and (c2), respectively.
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Xðn; n0; ξf�Þ and the distribution functions feq, f̄eq, and geq.
Besides the flavor f and the Landau level n, we should
choose the complete set basis for functions of pz, kz, and
k⊥, which we will take the simplest polynomial form as
p̂zjpzjm for (anti)quarks and k̂zjkzjmkl⊥ for gluons with
integral m and l.
Figure 3 shows our numerical results for the current

quark mass dependence of σk=T for a fictitious single flavor
with q ¼ e at finite T and B but at zero μ. We choose the
QCD charge as g2=ð4πÞ ¼ 0.3 [18]. We clearly see that the
LLLA has artificial enhancement as mq approaches zero.
For the numerical calculation we truncate the Landau level
at nmax. In the eB ¼ 10m2

π case, the convergence of the
Landau level sum is very fast and nmax ¼ 1 already gives a
good approximation, even though the LLLA badly breaks
down in the small mq region. It is interesting that our result
is quantitatively consistent with the lattice-QCD estimate
0.3 ≤ σ=T ≤ 1.0 (for the quark charge squared sum
Cem ¼ 1) [11], which is indicated by the shaded region
in Fig. 3.
The B dependence of σk=T has a nonmonotonic structure

as shown in Fig. 4, for which we adopted a physical

parameter set with u and d quarks. For small nmax or strong
B, the lowest Landau level contribution is dominant, and
then σk is linearly proportional to B (reflecting the fact that
the charge carrier increases), which explains the growing
behavior at large B in Fig. 4. When B is not so large,
contributions from higher Landau levels lead to a larger
interaction cross section due to the phase space factor,
which pushes σk down with larger B. As a result of the
interplay of these competing effects, in an intermediate
region of B, the increasing behavior of σk looks quadratic;
moreover, this nonmonotonic behavior is consistent with
what is seen in the CME experiment in Ref. [3]. Although
quantitative details may depend on the underlying theory,
qualitative features should be the same for general physical
systems (but could be different with different approxima-
tions, say, the relaxation time approximation [2] may lead
to a different B dependence).
Finally, we discuss the dependence of quark chemical

potential μ as shown in Fig. 5. The carrier density is
different from the net particle number but is the sum of
particle and antiparticle numbers. This latter quantity is not
changed by μ, so σk is rather insensitive to μ.
In the future our estimated B dependence of σk could be

tested by the lattice-QCD simulation at finite B, while our
calculation at finite μ would be a unique prediction.
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