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CHAPTER 1

INTRODUCTION

Let {x } ^- be a sequence of Independent, Identically distrib-

uted (1, 1, d.) random variables having a finite mean y and a finite

positive variance a^. For any positive constant o, the stopping time

19(a), defined by

n
N(a) - least n >^ 1 such that |^ AT.] > oa^

1 ^

or +• If no such n exists,

Is finite with probability one by the law of the Iterated logarithm.

An optional stopping time of this form played a central role in

a controversy over the evaluation of ESP experiments in the late

1930*s, Card-guessing experiments were conducted and were assumed to

be independent Bernoulli trials with probability 1/5 of a correct

guess. Experimenters felt that a large "critical ratio"—the deviation

between the observed number of correct guesses and the expected number

of correct guesses divided by the standard deviation—would indicate

the presence of ESP.

However, it was noted that the performance of a subject tended

to decline after a long period and sometimes experimenters, rather than

specifying in advance the length of a run, would terminate it when

conditions seemed to warrant such a move. That the effect of optional

stopping had to be considered in the calculation of various probablli-





ties was pointed out by several critics. In particular, Feller [8]

demonstrated that the normal approximation for the probability of

occurrence of a given critical ratio could not be used. Further,

citing the law of the Iterated logarithm, he remarked that with prob-

ability one any given critical ratio could be attained infinitely often

and, hence, stopping at critical points could certainly give biased

results,^

More generally, for any sequence {X } of 1, 1, d, random vari-
Tt

n
ables with mean zero and variance a^, 7 X ./a^n taay be regarded as a

1
"-

"critical ratio," In this case N(a) defined above is just the number

of trials that must be conducted to achieve a critical ratio that is

greater than a or less than -o, A natural question then is just how

long must one wait to attain a desired critical ratio.

Several people have studied the expected value of the stopping

time Nio) for sequences of random variables with zero mean. One of the

earliest papers was by Blackwell and Freedman [2] in which they

studied coin-tossing random variables. Later, Chow, Robbins, and

Teicher [4] proved that for all 1, 1, d, sequences with zero mean,

EN(o) - +• for all a >_ 1,

To study the case of sequences with nonzero mean, u will be

regarded as a translation parameter. In other words, if {J } is a

fixed sequence with common mean equal to zero, the behavior of the

stopping time N(o) defined with respect to the sequence {X (y)),
n

^Feller [8, p, 288] gives a hint of his future important work
on the law of the iterated logarithm when he states that "we are here
concerned with a trivial special case of deep and interesting problems
to which a considerable part of the modern theory of probability is

devoted."





X (y) - J + y, is analyzed. In particular, for o >_ 1, I am able to

obtain bounds for EN(a) In terms of the mean y and thus obtain Informa-

tion on the way In which ES(o) diverges to Infinity as y •> 0, This

problem has been studied by Woodroofe [16]. For sequences with

—1 48
E\(.X^-']i)a \ < 0* for some 6 > 1, he proved the existence of positive

constants b^, b^t Yj* Y2 with < y^ < Y2 "^ ^ such that

for all sufficiently small values of y. Here, the constants y^ and y

depend on the common distribution of the sequence {X ) , In this paper,
n

the exponents of |y| above are replaced by expressions Involving a

single constant which Is Independent of the distribution of the given

sequence; however, a finite moment generating function must be assumed.

Since Wio) < - almost surely, EHia) - \ P[N{o) > n] and, so, in

order to obtain bounds for ENia) one is led to consider the behavior of

the probabilities P[N(,o) > n] for large n. Breiman [3] determined the

asymptotic behavior of these tall probabilities for a slightly differ-

ent stopping time II*(o) defined by

n
N*io) - least n > 1 such that 17 Ar.| > oa/n

1 ^
""

or -H» if no such n exists.

For ease of reference, his conclusions are presented here as

Theorem 1.1. Let {X } _. be a sequence of 1, 1, d. random variables

with consnon meem zero, finite, positive variance o^, and i?]^^]' < *•

If, for any positive o, N*(o) is the stopping time defined above, then

either there exists an integer n such that PlN*io) > n] - or there





exist positive numbers &{a) and a o(<5) such that P[N*iQ) > n] '^

-B(o) 2on as n - •,

It Is Important to note that although o depends on the common distribu-

tion of the sequence, 0(cj) Is a constant that Is the same for all

sequences satisfying the stated conditions. In fact, -3(c) Is the

largest zero of the confluent hypergeometrlc function M(Xt i, 0^/2)

regarded as a function of the real variable X, The definition of

Mia, b, x) and some properties of 3 as a function of o that will be

useful are Included In the Appendix.

The bounds obtained In this paper for EN(o) are dependent upon

the parameter 3(<J), Specifically, we show for certain sequences {X }

that for e > and c > 1, there exist positive constants A and fl.

Independent of y, such that

for all sufficiently small values of p. The upper bound remains valid

for o ' 1,

Brelman determined the constant 3(<?) first by considering a

stopping time similar to N*(a) but defined on a normalized Brownlan

motion process. If {W (t) , t ^ 0} Is a Brownlan motion process with

drift y, then the stopping time T (o) Is defined by

T io) - Inf {t: \W (t)\ > o/t+l}.

Shepp [13] proved that ETqCo) » -H» If c _> 1 and ETq(o) < » If o < 1.

Applying Brelman' s results, I am able to show that there exist positive

^Brelman states his results for a one-sided stopping time but.
In fact, his proof Is for the two-sided time N*((3) defined here.





constants C and D such that as y - 0,

ET^io) 'vCu-2fl-^<^)l a> 1.

ET (1) 'v. D log y~^ o - 1,

ffr^(<3) -> ^TgCo) o < 1.

We remark that these relations hold even for y < 0; in the first case,

4 , . -2[l-3(o)l r -2^4 1-8(0)we simply regard y ^ as [y J ,

The above results for Brownlan motion are not hard to obtain

and are presented first in Chapter 2. In considering sequences of

random variables, the general methods used are based on the case for

which the sequence has a common normal distribution. For this reason

and, also, since slightly sharper bounds may be obtained (i.e., bounds

hold for e 0), this case is considered separately in Chapter 3,

In order to obtain the desired bounds for EN(a) - ^ P[Nic) > n] ,

it is necessary to obtain bounds on the tail probabilities which hold

uniformly for sufficiently small y. In other words, the dependence of

the constant a in Theorem 1.1 on the distribution of the sequence must

be eliminated. This is done in Chapter 4, where a correction to the

proof of Breiman's theorem is given and the appropriate generalization

is made.

Chapter 5 concerns sequences of random variables which have a

continuous distribution function and for which the moment generating

function exists. The desired bounds for EN (a) are obtained. Finally,

in Chapter 6, extensions to more general cases are presented.





CHAPTER 2

BROWNIAN MOTION

Let us suppose that {W(t) , t >^ 0} Is a Brownlan motion process

defined on the probability space (Q, ^, P) , When necessary, we write

W(t, u) for W(,t) » We shall assume that this process Is normalized;

I.e., EW(t) » 0, VarW(t) » t, and f/(0) = 0. In addition, we shall have

occasion to use the notation y and ^ when dealing with probabilities

and the associated expectations for a Brownlan motion process that

begins at the point x [I.e., 1/(0) = x]. We note that P i P^ and that

P^[Wit) € B] - P[Wit) €B'x] for any Borel set B C R^

,

Now, for ji »* 0, we wish to consider the process {W(t)+vt,

t >^0}, a Brownlan motion with drift y. For convenience, we write

W(t) + ]it " W (t) for all t ^ 0. For any positive number o, we define

the stopping time T " T (a) for the Brownlan motion with drift y by

T " T (o) ' Inf {t: \W (t)\ >^ o/t+i]

,

The same stopping time defined for normalized Brownlan motion (I.e.,

y 0) will be denoted by T T (<j) . In this chapter we determine the

asymptotic behavior of ET (o) as y - 0.

Lemma 2.1. The distribution of the stopping time T Is absolutely

continuous.

Proof. To show that Fit) » P(T £ t) Is absolutely continuous. It

suffices to show that for some constant K, P(t < 2*. <^ t+h) <^ Kh for all





t >_ and h > 0, By the symmetry of Brownlan motion, it is clear that

(1) P(t < Tq <_ t+h) - 2P[t < Tq <_ t+h, W(Tq) > 0].

Now, let us denote the first hitting time of the level a by 5 ; i.e.,

S - inf {a: J/(«) - a}. It is well known (e.g., [9, p. 174]) that 5j

has density g where

g(8 ) " -~;;;^ exp - -rr . 3 > 0,

A change of scale shows that S has the same distribution as a^S,

,

a *

Thus, in particular, for a c/t+T, it follows from (1) that

f(t+;i)[o2(t+l)]
-1

t[c2(t+l)l
-1

'2"Ta-

exp -2fM»

2M

where W is a bound for g.

It follows then that the random variable T has a density which

we will denote by /-. We now show that the stopping time T also has a

density and we obtain a relation between its density and /.,

Lemma 2.2. For any t > and h. >

P(t < T < t+h) - exp - ^ ^t^^^-
{

2 )

^mt^h) ^ ^

it < T^ <^ t+h)

Proof, We make use of the function space representation. For fixed

t > and /i > 0, we consider the space C[0, t+h] of continuous func-

tions on the interval [0, t+h], P- will denote the Wiener measure on





C[0, t+h]i I.e., P Is the unique measure such that

- P[W(t^) 6fli J/(t^)e 5^1

for < t. < t^ < ,», < t < t+h and for Borel sets B . C R^

,

— 1 2 n — t *

t l,.,.,n, n >^ 1, Similarly, we denote by P the measure induced on

C[0, t+h] by {V (s), <^ e <^ t+h), Shepp [12, p. 348] has shown that

P is absolutely continuous with respect to P with Radon-Nikodym

derivative dP /dP " exp - -^^—^ + yx(t+/z) ; i.e., for any

>! CC[0, t+h],

(2) P^M) - exp (-
H^]

'

>'"<*"') dP„(x) .

Now, in particular, we let A be the set In C^[0, t+h] defined by

{x(0 : \x{8)
I

< <j/s+l , <^ s <^ t;

|x(s) I > c/a+1 for some s ^ (t, t+h]).

Then it is clear that P (i4) - P(t < T <^ t+h) and

«'"'(*+'') dP -

(t < T < t+fc)

^„x(t+«
^^(^j _

These equalities together with (2) yield the desired result.

Lemma 2,3, The stopping time T has a density function / , Further, if

/ is the density function of T , then for almost every (a, e.) t >

(3) /^(t) - exp
2*'\

I 2 J

cosh (MCj/t+T) fait).

Proof, As in Lemma 2,1, for t > and /i > we consider P(t < T <_ t+h).

Writing D - {t < 3*0 < t+?i), we see by the previous lemma that





(4) P(t < T < t+h) - exp [- l'^<*'^''M «»"<**'> dP .

We write the Integral above as e\ I e where J_ denotes the

Indicator function of the set !?.

Next, we define the random variable S " t -^ h - T and note

that on the set Z), 0^5 < h. Clearly, S Is ^(T) -measurable where

^'(r ) Is the a-algebra consisting of the sets A such that

^ '^ ^^0 — *^ ^ ^[^(fl)* 8 <^t] for all t >_ 0, It follows from the

strong Markov property that

Using the properties of Brownlan motion, we obtain

- exp fpf/CTg) +^ .

Thus,

'd'

- e\ij^ exp [yJ/(r^) + ii^]

By the symmetry of Brownlan motion, this last expectation Is equal to

cosh (yo/s+l) exp ^
^ -^o^®^

'^^

t

Combining this and (4), we find that

(5) P{t < T <^ t+h) cosh (na/a+1) exp
2 "^

/q(8) ^s.

Since this Is true for all t > and h > 0, It follows Immediately that
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the distribution function of T is absolutely continuous and that the

density / is given by (3) for a. e. t > 0. |||

Before proceeding to the main theorem, it is necessary to make

one final remark, Breiman [3] studied the stopping time

T* - T*(<j) - inf {t >^ 1: \W{t)\ >^ o/t)

and proved that P[T* > t \ f/(l) - 0] -v at'^^' as t - «, Using the

definition of T* and the Markov property, we find that

P[T* > t
I
V(l)] - P[|V(a+l)| < o/s+T, <_8 <_t-l

I
Wa)]

- P^^^h\W(8)\ < o/s+Tt <^8 <_ t-1]

Thus, P[T* > t
I
W(l) - 0] - P[\W(8)\ < o/s+l, <^s <_ t-1] =

P(Tq > t-1) by the definition of TqI consequently, P(Tq > t) '^ at'^^

as t - •,

We show in the Appendix that as a function of (?, 6 is strictly

decreasing and continuous on [1, -H») and that B(l) - 1. Hence, for all

o > 1, we see that &(o) < 1, Also, we remark that 6(c) > 1 for o < 1,

Theorem 2,1, If {W (t) , t >_ 0} is a Brownian motion process with drift

U and if we define for any positive o the stopping time T(,a) by

T(o) - inf {t: \W (t)\ >_ a/t+T)

,

then for each c > 1 there exists a positive constant C, independent of

U, such that ET(o) 'v Cy~ ^
"^'^^

^ as n -»• 0, For o - 1, there exists a

-2
positive constant D, independent of y, such that ETil) "v D log y ,

For o < 1, lim ETio) - ET (<j)

.

y-K)
°

Proof, We define the stopping time Tf.(a) on the normalized Brownian
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motion process {W(t) , t >_ 0} as before. Again, / and f^ will denote

the densities of T(o) and 7^ (o) respectively. First, we fix a > 1 and

we write T, Tq, and 8 for r(o) , TqCo), and 3(o) respectively.

It follows from Lemma 2,3 that

ffT * exp
2 J

cosh (yo/t+T) /jj(t) dt.

We Integrate by parts and perform the change of variable a = y^t to

obtain

(6) ET = y-2(l-e)
P(Tq > ay"^)(fly'^)^ exp

f -v

s~ V (s) da

(30
where v (a) - cosh (o/a-»-y2) - £ cosh ((j/a+y^) +

^ 2 2/a+y2
slnh (<?»^a+y2)

,

Hence, it remains to show that the limit as y -» of the Integral in

(6) is a finite positive constant.

—6
As noted previously, P(.T > t) "^ at as t - «; it follows that

the above integrand converges for all a > to a exp
s] -0

(a) as

y - 0. Further, there is a t. > such that for all t ^t ,

g
t P(r. > t) < a+l. Hence, for all y ^ and all a > 0,

i8Vi'^)^P(T^ > 8\X~^)

•-l"

-2
a+l sv >_ tj

6 —2
sy < tj .

Thus, for all y i* 0,

|(ay"^)^P(2'n > ay"^)cxp
8 «"\(«)| 1 (a+l+t/)exp '^y\(8)\.

We wish to apply the dominated convergence theorem as y - and, so, it

suffices to bound |i; (a) |
in a neighborhood of zero, say for |y| < 1,

For such y.

\v (a)
I

<_ cosh (o/a+1) + j cosh (o/a+1) + <3*^ slnh (o/a+1)

.
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Letting the right side above equal w(fl), It follows from the fact that

< 1 that exp
. 2,

—8
8 W(8)d8 < <», Thus, by the dominated conver-

gence theorem.

(7) 11m M'^^^'^hf - a
y-K)

-«0

exp
(- f)

'-\ (b) de.

The latter Integral Is finite; In fact, letting C denote the limit In

(7), we find from known Integral formulas [10, p. 365, //3, 562,1 and

#3.562.2] that

C ' a exp
(4) (r(2.26)[Z>_2+2B<-^> ^^-2+23(^)1

+ fr(3.2B)[Z)_3^2B^-^^ -^.3+28<^>^^

where ^3,(2) denotes the parabolic cylinder function. Therefore, from

(7), ET "N. Cv"^^^'^^ as w - 0.

Now, we consider o » 1, Again, we write T and T for !r(l) and

2* (1); since 6(1) - 1, (6) becomes

ET P(T^ > 8y"^)(«y"^) exp -
| s" V (0) ds

where V («) Is as above with o 1, If we define the functions w. and

Wy by w. (3) " — cosh /a and wAs) - —r slnh /«, then it follows as

before that

11m

y-K)

?(?„ > ay"^)(ay~^)exp
-1

- •=• cosh/o+u2 + / - slnh/a-Hi^ da
2 « *•

2/s+y2 J

exp - J a" [-Wj(a)4W2^^^^ da < -.

Thus,
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ET

P{T^ > 3M~^)(8U'^) exp f «1 -1
cosh ^8+u^ da

llm —
y-K) log u

-2
llm

log p
-2

We denote the Integrand In the numerator above by w^is).

Let e > be given. There exists a t^ > such that for

t >_t t \tP{T > t) - a| < e. Also, there exists a 6 > such that for

Is
I

<_ 6,
I
exp - J - l| < e and [cosh /s - l| < e. For y sufficiently

small, y^tp < 6 and we write

ru'^t.

WjCs) da wAs) da +

5

w^is) ds + w^is) ds ;

we denote these three integrals by J , J , and J , We note that

.-1
Ij <^ t cosh W't-j+l and I^ ± ^ (a+e) exp - -r cosh ^8+^^ ds; by

the dominated convergence theorem, this latter bound has a finite limit

as y -• 0, Hence,

J. + I»

lim
1

y-K) log y

We note that

-2
.

(a-€)exp

Thus,

. 2,
cosh \i/t+l s~ da <^ J £ (o+e) cosh/s+y^

y^t,

8 (fs .

(o-e)(l-e) < lim
y-K) log y

-2 -< (o+e)(l+e).

-2
Letting e - 0, we see that ET(1) 'v. o log y as y -* 0.

Finally, we fix a < 1 and again write 2", T^, and 3 for ^(o)

,

T (o), and 0(o), respectively. We seek to show that lim \ET - ET.\ '

v*o
0. Using the known densities, we note that
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\et ~ et \
<— t exp - uH^

co9h (va/t^) - l| /g(t) dt .

Clearly, as y -*• 0, the Integrand above converges to zero for each t.

Also, since cosh (w<3/t+l) <^ exp ( | w
|
o^t+1) , it is not hard to show that

for y sufficiently small the integrand is bounded by KtfAt) for some

constant K, independent of y and t. Since ET (<?) < • for a < 1, this

function is integrable and, therefore, the desired result follows from

the dominated convergence theorem.
||





CHAPTER 3

NORMALLY DISTRIBUTED RANDOM VARIABLES

On a probability space (JJ, ^, P) , we consider the sequence

{x ] , of 1. 1, d, random variables, each having a normal distribution

with finite mean y and finite, positive variance a^. As usual, we say

that X has a fl(v,a^) distribution. For any positive constant o, we

define the stopping time N » N(a) by

n
N " N(o) « least n > 1 such that |J ^.| > aa/n

1 ^

or -H» if no such n exists.

It is our goal to obtain bounds for EN in terms of y.

We begin with a lemma that is useful here and in later work

when we study random variables with more general distributions.

Lemma 3.1. For a real parameter y ?* 0, let / (x) » e x where

o » o(y) > and y yCy) are such that 11m a(y) = and lim y(v)^/ai\x)

y-K) y-*0

" K , a constant; B is a constant with 3 < 1. Then, for each y ?* 0,

I /..(«) <

1
'^

f^{x)dx + K(v)

where the integral is finite and lim X(y) " 0.

y-K)

Proof. We fix y ^ and write / for / . Clearly, /€ c"(0,<»), / ^ 0,

lim f(x) » +•, and lim f(x) » 0, Also, an elementary computation
a^0'* x-*+»

15
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shows that the roots of the equation /'(x) are the points

2

163
1

a
^ . i Jii -
A^* ' ^ f «

Thus, if Y^ <^ 16aB, the function / is decreasing and

fO»

1

f(.x)dx.

On the other hand, if y^ > 16o6, then f (x) » at two points, say x

and X with x, < Xg. Then / is a piecewise monotone function, decreas-

ing for X < X and x > x and increasing for x < x < x . If [x]

denotes the greatest integer <^ x, we see that when [x,] > [x, ] + 1 that

[Xil [Xjl-l

I /(n) - I /(n) + I fin) + /([x^]) + /([x^l+D + I fin)

[xJ+1

[Xjl

fix)dx +

[x^]

fix)dx +

[Xj]+1

[X2I+2

fix)dx + /([x^D + /([x^l+D

[XJ+12

fix)dx + 2/(x,).

It is easily seen that the same bound holds even if [x ] = [x ] or

[x^l - [Xj] + 1.
.CO

Thus, in any case, \ fin) <_

1

fix)dx + Kiv) where

Ki\x)

jo y2 <

(2/(x,) Y^ >

2 ^ 16aB

16a6 .

We note that

/(«2) exp ^ - 168
a Uv^

i# - 16sl4 If a

-I^^W^ - 168
-2B
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Since Y(y)2/a(y) * ^.t It follows that f(x) 'v constant • a(y) as

U - 0, and, therefore, 11m K(]x) - 0. Finally, the value of
y-*0

f{x)dx Is

known explicitly [10, p. 337] and Is finite for a > and 3 < 1. |||

Theorem 3,1, If {l" } , Is a sequence of 1, 1, d, random variables with

a common N{^y^ a^) distribution and If li{o) Is the stopping time defined

above, then, for each <? > 1, there exist positive constants A and fl.

Independent of y, such that

for all y sufficiently small. For o - 1, there exist positive constants

A and B such that

A^ log y"^
<, ENil) _< 5j log y"^

for all y sufficiently small.

Proof. We first fix c > 1 and write H and B for H{o) and 6(c) respec-

tively. Recall that EJi ' \ P(N > n) , For n >, 1, we define the set

k

C C fl^ by C » {(x ,..,,x ) :
| J x.| <^ oav^, ^ » l,...,n}. Then

PCiV > n) " P I X.\ < ao/kf k - l,.,.,n
1

^

(2ira'^) exp

exp
ny 21

I 2a2j
C •*

2a'

exp

J

n
r y X 2

-^^ + — Ix.
2a2 a2 1

^
dx. ...dx .

n
On the set C, IJ x.| <^ ca/n. Thus, if {AT '} is a sequence of 1. 1. d.

1
^ n
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random variables with a common A^(0, a^) distribution and If we define

the stopping time N by

n
Nq * least n >_ 1 such that |^ X.'| > oar^

or -H» If no such n exists,

then, for all n >^ 1,

(1) P(S > n) <_ exp
2a^ a

P(N^ > n)

and

(2) P(.N > n) >_ exp
2o2 a

P(N > n)

If we define the stopping time N * by

n
N*" least n >^ 1 such that |^ X.'\ >_ oo/n

or +« If no such n exists,

then we note that H* - H^ a. s,; hence. In particular, P(A^ > n)
* * "^

P(^Q* > n). Now,

P(^0* > n) ipflU^I < oa»^, k - 1 nj

>_p||Ar^.'| < oa(.^- »^), J - l,...,n

n
n p
1

> 0.

-6
Hence, It follows from Theorem 1.1 that PC^g* > n) "v on as n - »

where a and B are positive constants, the latter being Independent of

the distribution of the {X '}, Thus, there exists a positive Integer

n- such that for n >_n^t
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(3) ^rT^ <^P(N^* > n) <^n"^

It follows from (1) and (3) that

(4) ^^ £ «n + I ^ ^'^P

n. 2o2 o

-6
n

With a(y) \x^/2o^ and Y(y) - |y|o/a, we see that the hypotheses of

Lemma 3«1 hold. Hence,

S» < n„ + ^ exp
*QXV

I y

I

oyx
x^^dx + ^(y)

2a^ a

where /CCy) - as y - 0, A change of variable yields the inequality

B»<n„+^«(M)+«-2<l-B>
/ \

#00

3a

1"-2J

exp

*

2a2 a j

2/ ^2/ .

As noted in the previous lemma, the Integral above is finite since 3 =

—2 f 1— 6^
6(a) < 1, Thus, the above bound for EH is 0(y ^ ) and, therefore,

there exists a positive constant 5, for example

fl » 3o exp
2a^ a

y dy ,

—2 f1—6)
such that EN <_B\i. for all y sufficiently small. We note that

the constant B depends on the value of the integral and, hence, on a.

Next, using (2) and (3), we see that

n\)?- |y|<J»^

2a2 a

EN >_^l exp
n.

-B
n

Since the terms of this series are decreasing, we replace the sum by an

integral and make a change of variables to obtain

(5) EN ^\x

Thus,

-2(1-6) a

2
exp

v^n,

y ^^] -6 ,— y dy .

2a2 a
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llm
y2(l-e)

ES > f
y-K)

^ ^
exp

2a2 a

I/'^dz/

where, once again, this Integral Is finite. Hence, If, for example,

o
^-! exp

^0 2a2

y'^ dy.

then EN > Av'^^^'^^ for all y sufficiently small.

Finally, we consider o - 1. Since 6(1) = 1, we obtain from (4)

that

3a
ENd) in + ^l exp

n. 2a2 a
^

n-1

Without loss of generality, we may assume that n. >_ 2 and can replace

the sum above by one starting at n » 2 without decreasing the bound.

Just as In Lemma 3,1, we can show that such a sum Is bounded by

exp
xy^ \v\r/x

2a^ a

x-l dx + KiM)

where X(y) -0 as y - 0, Again, a change of variables yields

y ^
exp + — i/~^ dy

" ' ^
J 2 2o2 a
* y^ * '

For y^ < 1, we see that

ENd) inQ +^ K(]x) + ^

M(l) 1 Mq + ^ Z(y) + ^
-2,

exp
y ^y

2^
z/'^dt/ + e

0-1
y'^dy

This bound Is O(log y ) and, so, there Is a positive constant B such

-2
that EN(1) <_ flj log y for all y sufficiently small.

For the lower bound when a =* 1, (5) becomes

y ^
ENd) 1 f

For y such that V^n < 1,

exp

V^n,
2a' ^i

y dy ,
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ENd) 1 f exp
1

2a2

y'dy + ^ exp

P^n,
2^

a

^1

al

Thus, there exists a positive constant i4j (e.g., ^i
" T ®xp

1 1

-2
2a' a'

such that EN(1) >_ A log y for all p sufficiently small,

Now, of course, we would like to obtain the same type of bound

for EN when the sequence {X } has a more general distribution. First,
n

we present an Important preliminary result In the next chapter. Then,

In Chapter 5, we are able to use essentially the techniques of the

previous theorem to obtain the desired result for a wider class of

sequences.





CHAPTER 4

UNIFORM BOUNDS FOR TAIL PROBABILITIES

We now wish to direct our attention to more general sequences

of 1, 1. d, random variables having a conmon nonzero mean y. We again

wish to study the stopping time N determined by the first exit of the

random sum from a square root boundary. To obtain Information on the

behavior of EN aa m •* 0, we study the probabilities PiN > n) ,

Breiman [3] obtained the asymptotic behavior of these probabil-

ities for the zero mean case. In studying the nonzero mean case, we

will be led to consider collections of sequences of i, 1, d, random

variables Indexed by the parameter y. For each y, the corresponding

sequence will have a zero mean. We will need to extend Breiman'

s

result and to obtain bounds for the tall probabilities which hold

uniformly for sufficiently small values of y. These bounds will then

enable us to study EN for various sequences of random variables with

nonzero mean.

To make the required extension, all that is really necessary is

to closely examine Breiman' s proof for a single sequence and make some

appropriate alterations. For ease of reference, the first section is

devoted to an examination of some of the details of this proof. In

fact, a different approach is taken at one point in order to avoid an

Inaccuracy in the original proof. In Section 2, we first make the

extension so that the results hold for a general class of distribution

22





23

functions. Then, at the end of this section, we will obtain the result

on which the subsequent work depends,

1, The Proof for a Single Sequence

We begin by considering a sequence \X } . of i. i. d. random

variables defined on the probability space (Q, ^, P) with EX « 0,

EX^ » 0^ > 0, and ^|-^, P < •». For any o > 0, we define the stopping

time

n
m* « N*{o) " least « ^ 1 such that \\ X .\ >_ ao'/n

1
^

or +* if no such n exists.

Breiman obtained the asymptotic behavior of P(yi^* > n) as n -> <» and his

results have been stated in Theorem 1,1. Here, we review the methods

used.

First, we introduce some notation. Let t^ be a fixed, arbi-

2'fc 2f^+t ^
trary positive number and for t > 0, let m - [e ] and n » [e ° ]

where [x] denotes the greatest integer less than or equal to x. Then,

k
denoting ^ X. by 5, , we define P(y, t) and Qiy, n, t, t ) by

P(y. t) = PlS^ < yo/m; N*ia) > m]

P(5 < yayn; \S,\ < oo/k^ fe = m,...,n | 5 = x\o^)

.

ft f^ /If

Also, if {r(t), t >^ 0} is the Uhlenbeck process [i.e., Y(t) - Wie^^)/e^

where W(t) is normalized Brownian motion], we define $(y» h) by

Qiy, n) « Pro2>[J(tQ) < y; \Y(t)\ < «, < t < t^ | 7(0) = n].

Breiman proves in his Proposition 1 that there is a constant D such
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that

(1) sup \Q(y, n, t. tg) - «(Y. n)| <^De'^^^^,

Y.n

We also denote the Laplace transform of P(y, t) by P(y» s) ; i.e.,

p(y, s) = e P(y# t) <i^ where a is a complex number.

More generally, for bounded functions / defined on [-a, <J] , we

ro

write P(/, t) f(y)P(dy, t) , Writing I for the indicator

2t
function of [-C, e] , we note that P(J , t) = P(iy* > [e ]). We let

w

P(/i *) denote the Laplace transform of P(/, t) . These Laplace trans-

forms are analytic in some half plane of €; in particular, we assume

that is: Re 8 > 8 } is the maximal half plane of analyticity of

Pil , •). It follows from Fubini's theorem that for bounded /,

pif,B) f(y) Pidy, a) for all 8 with Re 8 > 8 , We wish to show

that P(I , •) has a pole at a » Sq, but that for some 6 > 0, this is

the only singularity in {a: i?e a > ag - 6}, In doing this, Breiman

made an error which we are able to avoid; however, the argument needed

is a lengthy one.

In an effort to obtain a series expression for Pil , a)

,

Breiman is led to consider solutions of the differential equation

(2) ij»"(x) -xi|;'(x) = X(|»(«)

with boundary conditions (-<?) " i|»(a) =» 0. The transformation («) =

exp

system

X2
(x) changes (2) into the self-adjoint Sturm-Liouville
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(3)

(-o) - (©) - .

Much Is known about the eigenvalues and elgenfunctions of such

a system, (The facts that we state here may be found, for Instance, in

Coddlngton and Levlnson [5, Chapter 7],) The eigenvalues i^j.) of the

system (3) can be ordered so that X > X * X > ,., ; also, llm X, =

-a*2 /A
-«, In this particular case, the functions e Af(X/2, 1/2, x^/2)

are known to be even solutions of (3) ([1, p. 686]) where Mia, b, z) Is

the confluent hypergeometrlc function; It follows from the boundary

conditions that X = -23 (o) where 3 Is the function discussed In the

Appendix and used In the previous chapters. The elgen functions (r,)

can be chosen so that they form an orthonormal set; I.e.,

+ . (x) .(x) d!r = 6... Of course, the eigenvalues of (2) are the

same as those of (3) and If for any /, g In L^C-o, <?) , we define the

inner product (/, g) exp
^ x^^

fix) gix) dx, then the orthogon-

ality relation becomes (^>., il* .) = 6...

A further property of the elgenfunctlons Is that they form a

complete orthonormal set for L^C-c, a); I.e., for any f(£L^i-a, c)

,

the series ^ (/» •) • converges to / In the L^ norm. More fundamental-
% J J

ly, If / € C^l'O, o] and satisfies the boundary conditions [I.e.,

fi-o) = fio) "0], then the above series converges uniformly to / on

[-C, c] .

We will also need to know how these eigenvalues and eigen-
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functions behave, Tricomi [14, pp. 169-177] gives asymptotic expres-

sions for eigenvalues and eigenfunctions of general Sturm-Liouville

systems. Applying his results to the case considered here, we find

that

„(x) =-^sin[(n+l)ii(5i| 1 -ir(x) cos[(n+l)-

t \

iQ 1} + 0(n-2)

where T(x) » •~(a^+<?)3 - --(x+c)^ + o^
i-i. OTT

(x+c) . He also obtains an

expression for the derivative of the eigenfunctions which becomes

(Air 3j

^'(x) « ";?i^(«+l) cos[(n+l)iTf5gj] + r(x) sin[(n+l)Trf^j]) + O(n-l).

Expressions for the eigenfunctions of (2) are obtained by noting that

* (x) = exp ]—rU (^)« We note that, in particular, |x
|
= O(n^) and,

00

hence, \ \\ l"^ < », Also, for large n, ^ (x) = 0(1) and 4i ' (x) = 0(n)
" n n

uniformly for x G [-o, c]

.

Now, for all / € C^ with /(-<?) = /(o) =» 0, we can write /(x) =

on

I (/,•) 'I' -(J?) where the series converges uniformly. Using this repre-
'^

'^

sentation, Breiman shows that for such _f,

tO
to

1
(4) P(/, 8) = I rl>^.(y)Iidy, 8)

-a

for i?e a > s , a ^ X., J ^ 0, where
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I(y, 8) - e
8tQ

(5) >« •a

' —

<

0~^^ P(y, t) dt

[«(y. n, t, tg)-$(Y, n)]e"®*P(cfn. t)(it .

It follows from (1) that I(y, e) is analytic in {e: Re 8 > 8. - 1/16}.

Integrating by parts and using the Schwarz inequality and (2) , we

obtain

r<3

-o

ij»^.(y)IWy, 8)\ < /fj sup |J(y. 3)

Y

expKl [^y(y)]^dy

-<j

i

< ifj sup |j(y. 8)||x.|*

Y

where K is a constant depending only on o. Further, if 8 = x + iy

,

then, using (1) , we see that

•o

(6)
I

if^.(y)I(dy, 8)1 l^i[v'*'*° +
^^^^o'

^ + 1/16)]|X^.|^

At this point, Breiman claims that the sum of
| (1, i|».)||X.| is

J J

absolutely convergent and, therefore, / can be replaced by 1 in (A) to

obtain a series expansion for Pil , a). However, if 11(1, OlU.I^

< «», then certainly J|(l, .) |
< *, and, so, 5(x) - J(l, .) .(x) is

uniformly convergent and continuous on [-c, c] and S{-o) = S{a) = 0.

Since 1 ^L^(-c, o), ^(1, .) • converges to 1 in L^ norm and, hence,
*^ '^

5(x) » la. e,; but this is a contradiction since both 5 and 1 are

continuous but do not agree at -o and o.

To avoid this difficulty, we choose a sequence of "nice"

functions which converge to 1 on (-o, o) and use (A) to obtain the

desired expression for T{I , s) . Specifically, for each n > 1, we can
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choose functions f ^C^[-<3, c], f (-c) = f (o) ^^ 0, / = 1 on
•'n * ' "'n •'n * •'n

[-e + ^, ^ - ^1» 3"^ l/„'l 1 2n. Then, /^(x) -*. i for all x 6(-<7, <?) •

We note that we can write (4) with / in place of /. We denote the

half plane of analyticity of 'P{I , s) by E\ i.e., E = {« : Re 3 > 8^},

Also, we define E' '^ {e: Re s > 8q - 1/16}; we recall that J(y» 3) is

analytic in E' , We now prove several lemmas which we use to obtain the

relationship between 8. and the eigenvalues.

Lemma 4.1. For all a CE, lim P(/ , a) = P(J , a).

Proof, By the bounded convergence theorem, lim P(/ , t) = P(J , t)

since P({-c, c}, t) = for all t ^ (0, ») . Also, |P(/„, t)
| 1
A

P(I , t) and, so, by the dominated convergence theorem, lim P(/ , s) =

P(J , 3) for all aE E,
\\\

Next, we note that it follows easily from the definition of the

inner product and the bounded convergence theorem that lim (f , 4* •) =

(1, 1^ .) for each J >^ 0, Hence, it is clear that each term on the right

side of (4) with / replaced by / converges to the corresponding term

with / replaced by 1 for all a €. E\ s ^ {X ., j ^ 0}, However, we must

also show that the tails of the series converge as n -»• «». Let A, =

{X., t = fe+1, k+2, .,.} for each fe > 0, Then, for each k >_ and each

n >^ 1, we define the function g^, on ^'^Aj, by

k^i ;-'_;,
t.MUd-r, a).
J

-o

Lemma 4.2. The function g, is analytic on ff'VA, ,

K ,W K

Proof. Each term of the series is analytic in E'\\, and, so, it





29

suffices to prove that the series converges uniformly on each compact

subset of E*\h,, Since the only limit of the eigenvalues is at -•,

there are at most a finite number of points of A, in E* , Let iC be a

compact subset of ^'^A,. Then, for a ^ K, \e ^-e «7
l"^ _< Mj, a

constant independent of s and j. Since P(J , •) is analytic on E^ it

is bounded on the compact set K = {s + 1/16: 8 ^ K} CI E, Thus, using

(6), we find that for 8 ^K,

f<5

^4» *,•> ij;^.(Y) KcfY, 8)\ iM^Kf^, j^ll^'l*

-c

or

where Wj is a constant independent of 3 and j.

Thus, to prove that g, is analytic it remains to show that

XI (/ t •)IU«| ^ •• Sy the Schwarz inequality, this sum is less than

equal to \l\(f , * OX .|2 rm X .|~^ . If L is the operator defined

by L = (|»" - x^', then, since f ^ C^ and satisfies the boundary condi-

tions of (2), it follows that (f , il>.)^. " (f . Li>.) = (Lf, i|; .)

.

These are the Fourier coefficients of the continuous (hence, square

integrable) function Lf and so X|(ii/ , t*)!^ < ". We remarked previ-

ously that ^JX.!"^ < », This yields the desired conclusion. |||

J

Lemma 4.3. lim e
-3*0

[1 - / iy)]Iidy, s) = uniformly on compact

-a

subsets of E'

,

Proof. Let i^ be a compact subset of E' , -Z"(Yt 3) is given in (5) as

the sum of two terms and we consider each one separately. For the

fO

first, we must examine [1 - /^(y)]

-<?

e'^^Pidy, t)dt. Using the

definition of f , we see that for s = x + iy and A = (-c, -c + —) \J

(o - -, <?) t
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[1 - /„(y)]

ftc

"'O

e'^^Pidy, t)dt\ <

r^o

e'^^PiA^, t)dt

2to[e^""]

1

s

.

-i€A

On /^, e'^' Is bounded and P

fC

lim [1 -/„(Y)1

/J «
-* as n - « for each j. Thus,

e Pidft t)dt " uniformly on K,

Now, considering the second term in the definition of J(y, s) ,

•*" fO

we write t7(Y, s) =

. J-e

[«(y. n, t, tg)-Q(Y, n)]e'®*P(dn, t)cit. Then

we must show that e
-8to

[1 - f^(.y)]Jidy, 3) =

-<3

[1 - / (Y)le^(^Y, 8) -* uniformly on K, Since J(.^, s) =

n

and 1/ 'I ^ 2n, an integration by parts yields

(7)
-3tt

[1 - /^(y)]«^Wy. 3)\ < 2ne
-Xto

-<?

-4
k(Y. s)|cfY

-<5

for 3 = X + ii/. We note that as y + -c, both $(y, n, t, tg) and

Q(y» n) converge to zero. Also, for all 3 ^ K, there is an x. such

that Re 3 >_ Xq > 3q - 1/16, and, therefore.

k(Y, s)| 1 l5(Y. n, t, to)-Q(Y. n)|e"^°^P(cfn, t)^t;.

'0 J-(j

The integral on the right goes to zero as y + -^ by the dominated con-

vergence theorem and, so, lim J(y, s) = uniformly for 3 ^ K, Since
yi-a

-Xtn
e "is bounded on X, it follows from (7) that

1

lim e
sto

-o +
n
[1 - f^(y)]J(dy, 8) =

-c
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uniformly on K, Letting eT (y , s) = «7(Yt «) - «^(<?» «) t
a similar

argument shows that

lim e
-a to

1
c

n

[1 - /„(Y)yi(dY, 3) =

uniformly on X, Combining these results, we obtain

lim e~**0

uniformly for 8 E. K,

[1 - /•^(y)]iWy. s) =

-c

Lemma 4.4. For each fe >^ 0, lim g, (s) exists uniformly on compact

subsets of ^'\A, ,

«^o ^1-^0.-1 -at ^An a to ^-'to^-i
Proof. We write (e "-e ^ ") = e *"'0[1 + e ^ "(e -e J ") *]. Then

X.t„ f^

^1, „(a) = (7^ (a) + *. or 1 r -„' -,•
?^, at. X.t n̂* ^-^ i)».(Y)I(ciY, a)

-c

f^

where C (a) = e'^*0
J]

(f , 4'.) i|'.(y)J(^Y, a) which, in turn, equals
V

-a
fC

-8t-e' I (/.. .)
fe+1

n' -J-
4».'(Y)-r(Yt a) dy. As before, we can show that

r^

I
k+l

I (/ » •)
I ! .' (Y)-r(Y » a)

I
dy < «, thus permitting an interchange

-<?

of the sum and integral. Hence,

-G (a) = e
n

-a to

-cj'^

I (/„. .)«I'.'(Y) J(y, a) dY.

Since ij; .'(y) « 0(j), |(/^, O'I'-'Cy)! 1«iIW„. * •) Ij'^ and, so. again

^ (/ , O'I'-'Cy) converges uniformly. Thus, this series is the deriv-
k+l

n' 'J' 'J

ative of the function I (f , iJ'.)»|».(y) = fAy) - JC/,, *•)'!'. (y).

k+l
n' -J' 'J n n- -J' -J
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Therefore,

C^(s) = e
-8tQ

f^

.(Y)J(dY. a)

Now, let ik be a fixed compact subset of ff'VAj, . It follows from

Lemma A. 3 and the remarks concerning the convergence of (/ , ^ .) that
n J

lim G (a) exists uniformly for a ^ K. To complete the proof of the
n-Ko

lemma, it remains to show that 11m ^„(fl) exists uniformly for a ^ K

where

-8t( J
(<^

'l'.(Y)i'(iY. e).

•'-c

We will denote the above series with / replaced by 1 by /» (a).

We first show that these series converge uniformly for all

8 ^ K and all n >_ 0. We note that for m > k and a € K,

<» ^ J
fO

\^'"''
I aV Xt (/> »i>m+1 ^^0 j^o -^

.(Y)I(tfY. 8)\
V

where f "^ f or 1,

iKlfW^ le^ '\X\
"* m+1 "^

L denotes the L^ norm, and K and K are con-

stants independent of a ^ ^ and n. Recalling that |X.| 'v» l-r— j , w

- X .t 1

see that le ^ •'Ix.] < •. Hence, given e > 0, there exists an integ

Wq " m-Ce) such that for w ^ Wq,

X,t„ f<?

I«
-ato

w+i **o *j^o ^
.(y)IWy, »)| < e

-c

for all a ^ i^ and f " f or 1. It then follows immediately that

lim h (a) = ^n^^^ uniformly on K,
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We note that because of the uniform convergence, the limit

function, say g,, of the g, is analytic in the domain E'\\,, Also,

g, is seen to be the function

^k
(8)

-att
f«

Ho, 8) - ^(1, .)

(8)

i|».(y)IWy. 8)
J

i-C

X.ta ro

^ ^ 8t X t ^^' *7>
k+1 ^*o *j "^

.(Y)I(dT. a)
V

-e

We now seek to locate a» in relation to the eigenvalues.

f^

Proposition 4.1, If for any k >_ , .(Y)I(ffY, X.) = 0, < J < fe,

V *J

i-e

tO

then 8 Ji ^n* Equality holds if if^{y)I{dy, Xp y 0.

-c

Proof. Starting with (4) with / replaced by / and taking limits as

n - ", we obtain by applying the previous lemmas that for all a ^ff.

a i X..

(9)

"^

f^

8t \ t ^^* 7^

e -e

i,j^iy)Iidy, a) + ^^(a)

-<?

where g, is analytic in E'^lL, By hypothesis, the finite sum on the

right is analytic in E* and, so, in fact, (9) holds for all a ^ E^K,,,

Now, if X, < 8 , then the second term on the right of (9) is analytic

in {a: Re 8 > 8 - 6} for some 6 > 0. Thus, the right side of (9) is

an analytic function on {a: Re 3 > a. - 6} and, as such, defines an

analytic continuation for Pil , a). However, the latter is the Laplace

transform of the nonnegative function P(,I , t); therefore, it c^mnot be

analytically continued across its axis of convergence (see [15, p.





34

58]), This contradiction implies that 8^ <_ A, .

Next, (4) with / replaced by ^, yields

fO

for all 8 ^Ef 8 V^r,. Now, suppose

^(Y)I(<iY, a)

-a

^j^(.y)Iidy , \j) i' and assume

-c

8q < X, . Then the left side above is analytic in £, the right side has

a pole at X, ^ ff, and the two functions are equal in every small neigh-

borhood of X, , Thus, we again have a contradiction and, so, Sq » X, if

to

j^(Y)I(<iY, X^) i 0,

Now, there are two possibilities; i.e., either

^,{y)Iidy, X, ) » for all fe ^ or there exists an integer fe >_

such that

tc

^j^iy)Iidy, X,) "»* 0. These possibilities are exactly what

determines how P(,N* > n) behaves for large n. We obtain immediately

Corol lary 4.1. If i|», (Y)I(dY, X, ) = for all fe >^ 0, then there

•'-C5

exists an n > such that P(,N* > n) - 0.

Proof. By the previous proposition, 8. j< X, for all k and, therefore,

«Q -«. It is in this case that Breiman shows that PiN* > n) = for

some integer n.
|||

On the other hand, suppose now that k is the smallest non-

negative integer such that f, (y)JWy» X,) ^ 0. Then, applying

Proposition 4.1 to (4), we find that for all f ^ C^ with /(-<?) = /(c) =

and for all e ^ {ax Re 8 > X, >
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rc

e -e

4»^(Y)I(ciY, 8) + h is)

-c

where hj. is analytic in {s: i?e > X, - 6} for some 6 > 0. This

expression shows that P(/, a) 'v a/(8-X,) as 8 -* \. where o -

-' -\*o
ro

*0 « (/. *j,) ^,(Y)i'(dY, ^;u)» ^(/» s) is the Laplace transform

-e

of P(/, t) and, so, by a Tauberian theorem due to Karamata ([15, p.

192]) , it follows that
-X^u

P(/, u) du "^ at as t *- «>, For f ^ 0,

this integral is nonnegative for each t and, so, a >^ 0, Consequently,

(/, ipj) must be of constant sign for all f ^ C^ , /(-<?) = f(a) * 0,

/ >^ 0. Therefore, i|», must be of constant sign and the only such eigen-

function is »|»- > on (-<?, a). Thus, we have proved

Corollary 4.2. If a^ = X, for some k >_ , then, in fact, 8. » Xq.

Now it is possible to rewrite (9) as

(10) P(J 8) = .
^

^ . (1, *„) .(Y)I(dY, 8) + ;i(8).

'-C

This equality holds for all 8 € {s : Re 8 > X.} and we note that h is

analytic in {a : i?e 8 > X- - 6} for some 6 > 0. It follows from (8)

that

h(8) = e"®*0 J(ff, a) - (1. «|»q)

(11)

i(»«(Y)J(dY. a)

at "nrr^^» i^
1 ^^0 ^j^O ^

^i '

e -e

i>jiy)I{dy, 8)

We now wish to make use of the following modification of a

Tauberian theorem due to Ikehara,
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Proposition 4.2, If 4(t) is a nonnegative, nonincreasing function for

t €[0, »), (0) < •», if the integral (e) - e"^* (<:) dt

•

(a =« X + ii/) converges for Re a > x with Xq < 0, and if for some

constant a and some function giy)

,

lim ka) - -^] - giy)
X->Xjj *> 0''

uniformly on every finite interval \y\ ^J/«, then lim e ^ (t) = a,

Ikehara's Theorem asserts the same conclusion for a function ^

that is nonnegative and nondecreasing and for X- = 1. A proof of this

theorem is given by Widder [15, pp. 233-236] and by Doetsch [6, pp.

216-222], Only slight modifications of these proofs are necessary to

obtain a proof for Proposition 4,2, Hence, the proof will not be given

here.

We may note, in particular, that if (a) is analytic in

{e: i?e a > X - 6} for some 6 > except for a first order pole at

a » X , then the constant a is just the residue at that pole; i.e., a =

lim (a-XQ)»(a). We see from (10) that P(,I , •) is analytic in

{ei Re 8 > Xq " 6} for some 6 > except possibly for poles at the

A
points a * Xq ± Imi/t , However, P{I , •) is independent of the

parameter t and, so, the only singularity of P{I , •) in

{«j i?e 8 > Xq - 6} is the first order pole at a » Xq, Applying

Proposition 4,2, we find that lim e ^ P{I , t) = o where a =

t -1.-^0^0(1, .
, Q(Y)I(ciY, Xq) > 0, As noted above, X^ = -23 (c)

and P(J , t) - P(W* > [e^*]). It follows immediately that P{N* > n) '^





37

-B(c)
ocn as n -»• <». This, together with Corollary 4.1, is the content of

Breiman*s result which we have stated previously as Theorem 1.1.

2, The Uniform Result

Let ^ be a class of probability distribution functions such

that each F £ (? satisfies the following properties :

r
X dFix) »(i)

J-«

(ii) m < a^2

(ill)

x2 dF{x)

|x|3 dF{x) <« < »

(iv) f is continuous except possibly at zero.

We remark that m and M are positive constants which are independent of

F,

With each F€ (?, we may associate a sequence \X } _^- of i. i. d,

random variables defined on some probability space (0„, ^„, P„) such

that X, » X.(F) has distribution function F. For this sequence and for

any o > 0, the stopping time N =» N {o) is defined by
r F

N » ^yC*?) " least n >_ 1 such that |J Jf.| > cap<^
F F

or +«» if no such n exists.

If we define N * « Nj,*(o) by

n
iy * " li*{c) = least n > 1 such that 17-^.1 > oo j/n
C If '^ If ''~ c

or +» if no such n exists.

then, since the only possible atom of the distribution function p
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occurs at zero, it follows that N - N * a, s. [P_] . Thus, in particu-

lar, Pp(f/p > n) " ^w^^p* ^ ") • Hence, Theorem 1.1 may be applied to

the sequence {X } to obtain the fact that either (a) for some n,

Ppilfp > n) - 0, or (b) Ppilfp > n) '^ a^'^^^^ as n - • where e(c) is the

same for all F£^,

Henceforth, we will be interested only in the case a >^ 1, Ibr

such e. Chow, Robbins, and Teicher [4] proved a theorem which implies

that EN = +». Thus, (a) is excluded for o ^ 1. We now seek to show

that (b) holds uniformly for all F€C; i.e., that lim r?^^^P„{N„ > n)

= o„ uniformly for F t C.

Just as above, we fix an arbitrary tg > and for t > 0, we

define m - [e^*] and n =• [e^^*'^*0^]. For each F€T, we defii.ne

Pfiy* *). 5^(y, n, t, tg), PyU^, *), and P^C-T^, b) as above; e.g.,

P^(y, t) » ^^[^„(^ < Ytyp"^; tip > m] where 5^(F) - I X^{F) . First, we

prove that (1) holds uniformly for F€^.

Lemma 4.5. There exists a constant Z? such that for all F € <?,

sup \Qp(.y, n, t, tg) - $(y, n)| < Zte"*^""-^.

Y»n

Proof. Prohorov [11, p. 202] obtains an estimate of the rate at which

the measure P on C[0, 1] converges to the Wiener measure, where P is

the measure generated by the functions in C[0, 1] which are formed by

linearly interpolating between the values of N independent random

variables. For the case considered by Breiman in his Proposition 1,

the upper bound p^ for the distance between these two measures is of

the form p„ ^ kN (log N)^ where N = n - m and fe is a constant,

independent of N but dependent on F, A careful analysis of Prohorov *s
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work shows that k depends on a^ and ^|jf (^p. However, since for all

F^C, o„^ > m and J?|;: (F)|3 _< M, we can replace p„ by p„' =

—1/8
k'H (log N + k")^ where fe' and k" are constants Independent of iV and

F6C, Then, Brelman's proof shows that there is a constant /?, now

independent of F£C , such that sup |$b,(y» H, t, t ) - Q(y, n) |
<

Ite-*/^^forallFe-^. '*'

F'

Next, we recall that in the first section we showed that if

PJ<^w ^ 'i) > for all n, then PJ^I , 8) is analytic in {a: i?e a > Xq};

i.e., the half plane of analyticity is the same for all F^C, Also,

we obtained the asymptotic behavior of P„(N„ > n) using Proposition

4,2. Now we are interested in not a single function f, but rather a

certain family of functions indexed by the distribution functions

F€:C, In general, we consider a family of functions, say (,» W^*^}

where w is an arbitrary index set. In order to show that the conclu-

sion of Proposition A. 2 holds uniformly for all <^., W ^ l^, we require
w

that the corresponding o and g satisfy certain restrictions. More

precisely, we prove

Proposition 4.3. Let ( , w €,V} be a family of nonnegative, nonin-
w

creasing functions on [0, •) for which sup {.(0): w ^ V} < ~. Suppose
w

that for every w£ V, the integral .(a)
w

e~^^ ^(t) dt

(a = X + iy) converges for x > Xq where Xq < is independent of W,

Suppose also that there are constants o and functions g^ such that for

each W ^ V

a (

a "4

lim
I
(a) - g^(y)
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w

uniformly on every finite interval \y\ ±yQ» If {a , W ^V} are

uniformly bounded and if {g , w€V} are uniformly bounded and equi-

continuous on every finite interval, then lira e"^^ 4 (t) = o

uniformly for u)^V,

Proof. Let us define the functions

t <

t >_0

t < ,

and for any X > 0, the functions

"„(«
t"

fej^(x) - 2X
sin to l^

Xx

/:,(x)

i:

1 -
I21I

1^1 ^ 2x

|x| > 2X .

It is a well-known result of harmonic analysis that ^, (x) is the

Fourier transform of fe-(x).

Following Widder's proof of Ikehara's Theorem as adapted to

Proposition 4.2, we arrive at the identity

(12)
_1 k^ix^t)[a^(t)-AJt)]dt'-^

2X

'vxy
i^^iy)e ''•^%Q/)4/

-2X

for each W ^Vand each X > 0, The hypotheses on the functions g

imply, by Arzela's Theorem, that {^ , wC-V} is a compact set. Using

this fact together with the Riemann-Lebesgue Theorem, we see that the

limit as X -* •» of the right side of (12) is zero uniformly for W 6 V,

Further, since the a are uniformly bounded.

lim
x^<»

au

/U
k. (,Z"t) <it = o

,A W
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uniformly for W CV, Hence, for each X > 0,

lim
•27

fcj^(x-t) flj^Ct) dt - o^

uniformly for w ^ V. Writing 6(2x) - -~[ ^^" H , we note that k^(x) =

2X6 (2Xx) and, so, a change of variables yields

(13) lim ^ 6(t) a'w^ - if)
dt - o

b)

uniformly for W CV,

Now, following Doetsch's proof of Ikehara*s theorem, we let

e > be given. Then, there is an x. » x. (e, X) such that for x >^Xj,

1

J-c»

«W'»4'-i-2r)<***»«-^=/^-

Since the integrand is nonnegative, the region of integration can be

reduced to [-2i'T, 2/X]. We note that a (,y)e ^^ » ^ (y) is nonincreas-

ing and, therefore, on the interval [-2/x, l/x] , a \x - -js. - — ^

a,,(x) exp

X >^ Xj ,

«,,(«) < (o„ + e/2) exp
w W h il

Since

1

^ ''-2/X

6(t) dt

-1

6 it) dt - /2ir, for X sufficiently large, the right side is

less than a + c. Hence, fixing such a X, it follows that for all x >
w

x,(e, X), a (x) < a + e.

Also, (13) implies that there exists an Xj ' ^2^^* ^^ such that

for X >^ Xj

,

r
1

•27

For t < X, , we note that a (t) < e"^0* ^ (t) < e"^^^^ 4,(0) and for
^iJ" ' —
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* — *1» ^M^*^ **
**M

"*" ^* ®y hypothesis, 4^(0) and a are uniformly

bounded and so ci (*) <^ ^, a constant which is independent of wCV.

Also, as before, we find that for t G [-2/x, 2/x] , a I
x + ^ - ^ <

a^,(x) exp [-Xq -
W

<\,(«) <"„ - e/« - ^

, Hence, for x > x^,— 2

r-2/\

^ 6(t) dt +

r

2/x

r r2/x

• exp l«o AJ
1

6(t;) it

-2/x

-1

Again, for fixed \ sufficiently large and x ^ x.(£, X), a (x) > o - e.

Therefore, since x, and x. are independent of U ^V', we conclude that

lim a (x) - o uniformly for wG.*W,
|||

X*"

We now seek to apply this proposition with V « ^ (W ° F^^) and

p(t) - P/i"^, *). Clearly, sup {^(0) , F€C} < 1 < - and we have

already remarked that the Laplace integral -(s) = P^i^ » «) converges
r to

for 8 with i?e 3 > X- - -2e(tf). As noted previously, P-,(I » •) is inde-
w c C

pendent of the parameter t and it follows from (10) applied to each

F € C that P-{I , •) is analytic in {«: /?e a > Xq - 6} for some 6 >

except for a first order pole at a Xq. With this in mind, we prove

several lemmas which will enable us to apply the previous proposition.

Lennma 4.6. For any fixed FCC,

lim^ \PM^, a) - --^1 - ^-(y) (a = X + iy)

x^-Xo"*" ^ ^ ^ *"*0/ ^

uniformly on every finite interval \y\ j£ i/a , where o„ and g„ are given

by

(14) V ' *o"'^"'°*° ^0^,^
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(15) g^(^y)
e ^ "-1 ry

^-XotOft^-l5 r(Xg) - iB^Uo)] +;i„(X„)'yVAQ, 'pV-0

2/ 9*

1/ =

where B-(8) - (1, *„)

f<^

-<?

i|>Q(Y)J_(<iY» fl) and ^p(®^ ^^ the function

given in (11) applied to P€.C,

Proof. We denote the residue of Pp(I , •) at the pole = Xq by o .

If we write G (a) - Ppi^^, «) - o„/(8-Xq), then G^ is analytic in

{si ite 8 > Xq - 6}. Hence, for g^iy) = G„(XQ-Hti/) , the uniform conver-

gence on finite intervals is an immediate consequence of the analytic-

ity of G-, Straightforward computations show that a_ and g are given

explicitly by (14) and (15) respectively. We remark that the analytic-

ity of ff_ implies that g„ is well-defined at i/ = Im/t,,
\\\

Lemma 4.7. For each y €. [-o, <?], for each fe ^ 0, and for a " x -^ iy

,

> X > Xq - 1/16, IJ^^^^Y. 8)1 < 2\^'^^ + D\Pp^^\l^, X + 1/16)1

where Z? is a constant which is independent of P €"C

Proof. We recall that I„(y, •) is analytic in {8 : i?e 8 > Xq - 1/16}.

It is given explicitly in (5) (when applied to each F£<^) and a simple

calculation shows

V«(T. »)-«»*»!
^ . ro

k -at.
[Qp(y» n. t, tQ)-Qiy. n)](-t)'^e ""P/di), t)dt.

^-o

Thus, using Lemma 4.5, we see

/«(..,)! <2V*' +





the integral above is exactly \PJ' ^ (J , x + 1/16)| as desired.

4A

ik)

Lemma 4.8. For each k ^ and each 8 ^ is : Re 8 > Xq) with 8 = x + iy

^

/^ C "^ AC

\P„ (J , a)
I
^iV,(x), a real-valued function which is independent of

Proof. First of all, if « - i?e s > 0, then |P^^\j , s) |
<

t e P„{I , t) dt < kt X \ This is the desired bound for
P Q —

/?e « > 0.

Now, for Re 8 _5 0, we use the explicit expression for P„(.I , s)

obtained from (10) and (11) applied to P €. ^ , First, we obtain the

bound for fe = 0. We note that \e ^-e ^ ^\ >_ e*^0_g^O*0 f^j. ^n j >_

and X = Re 8 > X . Also, integrating by parts and recalling that i^.' =

rO

0(«7)» we obtain, using the previous lemma, that
|

*^.(Y)J^(<iy. 8)\ <

j-
<3

if[tQ + DP-il , X + 1/16) ]j where ^ is a constant depending only on a.

As seen previously, |(1, * .)
| 1 lUiyUj-la " H^^Z ^""^ ^ "^'^ J ° < «.

Thus,

|P_(I . a)| < (/^'(e'^^O-e^o^O)'^ + e"**0[i^" + K'" (e**0-e^o*0)-M)

•
[<=o + ^V-^c* "^ "^ 1/16)1,

the constants being independent of F. If x + 1/16 > 0, then

P {I , X + 1/16) < (x + 1/16)"^ and it follows that P (I , a) is

bounded independently of F, Otherwise, we repeat the same process

applied to P-il , x + 1/16) to obtain

Continuing in this manner, we obtain for some m = m(x) > 0,
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where X + m/16 > and e^ and if are functions of X which do not depend

on F. Hence, [P^^I a)
|

_< JCx) + Jf(x)(x + m/16)~^, a function which

is independent of F,

To obtain the desired bounds for higher derivatives, we differ-

entiate P {I , a) [as given by (10) and (11)] and use essentially the

same method as for ?c = 0. We note that the infinite series of (11) is

uniformly convergent on compact subsets ot {a x Re 8 > Xq} and, there-

fore, can be differentiated term by term,
|||

Lemma 4.9. sup {ou: F £(f} <

ij;Q(Y)J^(iY, ^o^» ^^ follows asProof. Since a^ = ^^"^'^0^0(1, i|»q)

before from Lemma 4.7 that Op <^(^o^^*0 "^
^^F^^o* ^0 ^ 1/16)]. Hence,

by Lemma 4.8, a^ _< -K(Xq) [tg + UMq^Xq + 1/16)]; since this bound is

independent of F, the desired conclusion follows.
|||

Lemma 4.10. For any y^ > 0, the family {g , F €, O is uniformly

bounded and equlcontinuous on [-z/q* ^/q 1 •

Proof. Let z/q > be fixed. We note that since Pp(I , •) is indepen-

dent of the parameter tg , so is a = lim (s-Xq)P_(J , a). Hence,

since g^(y) = G^iX^Hy) where G^ia) = PpU^> ») - ap/(s-XQ) , g^ is also

independent of tg . Therefore, since tg was arbitrary, it may be chosen

so that 2iT/tg > y without affecting the gJs, Now, g- is given

explicitly in (15) ; we write g„{y) = "^(i/) + h^iXQ-Hy) where

Upiy) = e
'Xnt0^0

Bj,iXQHy)-B (Xq)
1

v«
^y'o^l iytj

and h„ is as before.
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First, we show that g„iy) is bounded independently ot ¥ ^ C and
r

• [ (e -l)/i/]~ . The second term of this product Is continuous [when

it is extended to equal {it^)~^ at i/ = 0] on |z/ 1 <^ z/^ < 2n/tQ and,

hence, is bounded. If we regard B„{X^-^y) as a function from [-J/q, y^]

to f , we see by the mean value theorem that for y ¥ 0,

\[Bp(.XQHy)-BpiX^)]/y\ < {s^* (X^Hy*)\ , < \y*\ < \y\, while for

i/ = 0, the first term is defined to be iB-'CXq). Thus, using Lemmas

4,7 and 4,8, we see that the modulus of the first term is bounded

independently of F and y. In a similar manner, the second term of u„

is uniformly bounded and so, therefore, is u„. The fact that h„(XQ-¥iy)

is uniformly bounded follows by using again Lemmas 4,7 and 4,8. Thus,

g-, is bounded independently of F and y.

To show that {g„t P^^) is equicontinuous on [-J/q, J/qI » it

suffices to show that the derivatives g' are uniformly bounded. Com-

puting these derivatives, we find, using the mean value theorem, that

they may be bounded by expressions involving I„ (y» Xq+^^) » ^ °°

0, 1, 2, Hence, it follows from Lemmas 4,7 and 4,8 that g' axe

bounded independently of F and y. Therefore, {g„, F^€} is an equi-

continuous family on [-z/f, , J/qI • III

Theorem 4,1, Let C he a class consisting of distribution functions

which satisfy properties (i)-(iv). R)r F^<f, let P_ be the probabil-
r

ity measure induced on the space (ftr,» ^j,) by F and for c > 0, let ^r,(o)

be the stopping time defined above. Then, lim n Pp[N„ie) > n] = a„

uniformly for F €. <^ where S(<?) is a constant which is independent of F

and Op is the constant defined by (14),
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Proof, It follows from the previous lemmas that we may apply Proposi-

tion 4,3 to the family of functions {Pj^(I , •), FtC} to obtain
F C

(16) lim e^^^^^* Pn. t) - a_

uniformly for F^^, We noted previously that P„il , t) =

P-[N io) > [e ]). Hence, (16) is clearly equivalent to the desired

conclusion. 11

As mentioned at the beginning of this chapter, we actually need

to apply this uniform result to a collection of distribution functions

indexed by the parameter p. For each real y in some neighborhood of

zero, say |y| < IIq , let \Y (y)} _^, be a sequence of i, i, d, rand(lorn

variables defined on the probability space (ft , ^ » ^ ) with common

distribution function G which satisfies properties (i)-(iv). We will

write a(y)^ for Oq ^, Further, we assume that as m - 0, G converges

weakly to Gq (denoted by G * Gq) ; i,e, , Jj(y) converges in distribu-

tion to Tj(0). Writing o^ for a(0)^, we note that G — Gq and

E\Y^{\i)\^ < M together imply that lim o(p)^ = a^. Examples of collec-

y-K)

tions of sequences satisfying these properties will arise in our

subsequent work.

Now, for each ii and for every a > 0, we define the stopping

time M = M (c) on the space (ft ,
?"

, P ) by
y y yyy

n
M - Af (<?) = least n >_ 1 such that |^ I.(y)| > ea(u)*^

or +" if no such n exists.

We note that M corresponds to Nq^ defined previously. We prove one

additional lemma before the final theorem of this chapter.
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Lemma 4.11. lim P (M > n) -
^q^^O ^ "^ ^°^ ^^^ n >_ 1,

Proof. Let n >^ 1 be a fixed integer. Defining the sets B C /? by

^U
'^

^^yi*"* *yn^' II^^I < <5o(m)»^, fe = !,...,«>, we can write

P {M > n) =
y y

V

^u^^r? '" "^^y^^l^-

Since G is continuous except possibly at zero, the distribution of

^7.(0) can have an atom only possibly at zero. Thus,
1

^

f

3B,

dG^iy^) ... dG^iy^) =

It'.

where dB. denotes the boundary of B^, Since G G , it follows that

11m
y-K)

. B,

d%(>yn> ••• <^y(^l>

B,

dG^iy^) ... dG^iy^)

PoCAfg >n).

Therefore, it remains to show that

lira 1 • • •

y-K)
B J

dG (y ) ,,, dG iy.) -

B,

dG Cy^) ... dG (i/j)| = 0.

Denoting this absolute value by A(y) and writing 5,(y) = I^v(p)» we see
«

1
^

that

A(y) < P j|5j,(y)| 1 cai]x)/k, 1 <k <n; |5.(y)| > oa/J for some j < n]
y^'-^fe'

y ' k
+ P [|5, (y)| _< oai/k, 1 £ fe < n; |5.(y) |

> oo(v)/J for some j <. n] ,

and, therefore, that
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n
A(»^) 1 I PJoa^ < |5, (y)| < ooiv)^]

1 ^ «

n
+ I P [oaiv)/k < |5j,(u)| <oo/k].

1 ^ /c

Now, for any e > 0, we may choose y sufficiently small so that

|a(y) - a| < e. For such y, (17) may be written

n
A(m) < I Pico/k < |5, (y)| < c(a+e)/k]

(18)

+ I Pjoio-t)^ < |5,(n)| < ca^],
1 ^ /c

Recall that G G^ as \i •* and that Gq is continuous except pos-

sibly at zero. If we first let v -* and then let e - in (18), it

follows that lim A(y) = as desired.
|||

U-K)

Before proceeding, we should remark that in order to insure the

convergence asserted in this lemma for every n >_ 1 and every <3 > 0,

something like the hypothesis that Gq is continuous is necessary. For

example, consider the sequences of i. i. d. random variables

ly„(y)}„ri, |m| < 1, where Prob[X^(,v) = l+ji] -^ and

ProbiXiiv) - -1-hi] =^ . Then. EX^iv) = 0. EX^(]x)^ = aiv)^ = l-u^^

and £'|Jj(m)|^ = 1-y** <_ 1. Also, if F is the distribution function of

X,i]i) , then it is clear that F Fq as y -*• 0; however, F. is not

continuous at ±1, If the stopping time M '(.a) is defined by

n

M '(c) = least n >_ 1 such that |^ X.iu)\ > <5o(y)*^

1
^

or +" if no such n exists,

then, for o = 1,
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1-hi
VI >

P [M '(1) > 1] - { 1 M =MM J

if M<0 .

Thus, lim P [M '(1) > 1] - i ,t

^o^^o'^^^ ^ ^^•

Finally, we prove the theorem which we will need in our

subsequent work.

Theorem 4.2, For each real p such that |y{ < Mg , let [Y (M)f , be a

sequence of i, i, d, random variables defined on a probability space

(Q , J^ t P ) with common distribution function G such that G satis-

fies properties (i)-(iv) and G Gq as v •* 0. If for any positive

n
M (e) = least n >_ 1 such that |^ J.(vi)| > <?a(|i)^

1
^

or -H» if no such n exists.

then, for each o ^ 1, there exists a positive integer n and positive

constants a, and a_ , all independent of y, such that

a.n'^^''^ < P [M (c) > n] < an'^^^^
1 — yv — 2

for all n >_ tIq and all ]i sufficiently small.

Proof. Let us consider the class of distribution functions

{G , |y| < Mq}. We noted that M (a) corresponds to iV (c) and, there-
y " U ''y

fore, by Theorem 4.1,

(19) lim n^^^^P [M (c) > n] = ouuy
uniformly for |y| < y« where we have written a for the constant a_ .

If we take the limit of both sides of (19) as y - 0, the uniform
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convergence justifies interchanging the limits and, so, by Lemma 4.11,

lim a = a^

.

Let e > be given such that Oq - e > 0. Then, for all v

sufficiently small, a- - e/2 < a < a^ + e/2. Also, there exists an

n*, independent of y, such that for all n >_ n^ and all |i with |ti| ^ Wg

,

a - e/2 < n^^^^P [M (e) > n] < a + e/2.
y - y^ u - y

Hence, for all y sufficiently small and n >_ n

^

(20) Oq " ^ 1 "^^''^^^t'^y^*'^ > n] < Oq + e.

Taking a, = a - e and a = a + e, (20) is exactly the desired

result. Ill





CHAPTER 5

RANDOM VARIABLES HAVING MOMENT GENERATING FUNCTIONS

AND CONTINUOUS DISTRIBUTIONS

We have just obtained uniform bounds on the tail probabilities

P(,M > n) for a stopping time M associated with a certain collection

of distribution functions indexed by a parameter y. In that case, each

distribution was assumed to have a zero mean. What we wish to consider

now are certain sequences of 1. i, d. random variables of the form {X }

where X = X + m» EX^ » 0, In this chapter we will determine the

behavior of EN as y -» where N Is a stopping time defined on the

sequence {X },
n f

To do this, we write P(N > n) « dr where P denotes the

B

joint distribution of Jf. , ...» X , In order to apply the results of

Chapter 4, we will define a new distribution function G and an associ-

ated sequence {I ) such that G has zero mean and is absolutely contin-

uous with respect to F , the distribution function of X., In fact, if

we assume that the moment generating function ^ (t) of P exists, then

we can write

(1) dl^ix) - [4j-h)f exp \h I x] dCpix)

whe
Jt

re X = (x, , . . . ,x )t Q is the joint distribution of J., ..., Y , and

h is such that ^ * i-h) » 0. The assumption of the existence of a

moment generating function is rather strong; however, it is this

52
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condition that guarantees that the density in (1) is such that it can

be bounded on the set B in an appropriate manner. The desired result

then follows using the techniques employed in the proof of Theorem 3.1

for the normally distributed case.

We begin by investigating a certain collection of distribution

functions. For each real y in some neighborhood of zero, say |)i| <

Ul', let P be a probability distribution function satisfying the

following properties:

(i')

(ii')

X dP Cx) " m(y) V for ii ^ 0, »i(0) =

[xHii(y)l2 dP^ix) - a(»i)2 < ». a(u)2 >

(ill') ^(t) e^ dP (a:) <_ Wj < « for |t| < 2r

(iv*) F is continuous.

In (iii*), M. and r are positive constants which are independent of y.

Further, we shall assume that P —• F. as y -» 0, An example of such a

collection is {F } where P (x) = F(x-m) and F is a continuous distribu-

tion function having zero mean and a finite moment generating function

in a neighborhood of zero. This is exactly the case we wish to

consider; however, with the more general hypotheses, we are able to

obtain a result (Theorem 5.1) that will be useful not only in the

special case but also later in Chapter 6 as well.

We will assume, without loss of generality, that the moment

generating functions ^ are finite in an open interval containing

[-2r, 2r] so that ^ ^C [-2r, 2r] , We recall that i ^ \t) «





54

k tx J* fi dP (x) . An Important consequence of the boundedness assump-

i»

tion in (Hi') is given in

Lemma 5.1. If ^^it) < M^ for \t\ <_ 2r and |m| < Mj', then for each

k >_Q^ the family {^^ \ |y| < y^'} is equi continuous on [-r, rj.

Proof. By the mean value theorem, we can write <k (to) -

Hence, for each fe ^ 1, in order to prove that ( ^ ~
, l|i| < Mj'} is

equicontinuous, it suffices to show that {^ , |y| < y.'} is uniform-

ly bounded on [-r, r].

We note that |^ ^^\t) |
< \x\ e^ dF (x). Also, the

J -00

somefunction |x| e ' ' is bounded on the real line and, so, for

constant K, \x\^ < Ke^^^^ . Thus, |(t> ^^\t)\ < K[^ {t-r) + <^ {t+r)] <

2AMj for |t| j< r. This is the desired uniform bound.
|

We also make note of several consequences of the assumption

that F —* Pq, First, just as in the previous lemma, we can show that

\x\^ dF (x) £ 2KM. for some constant K, Hence, it follows that

m(y) -*- m(0) * and o(y)^ -*- a(0)^ as p - 0. Further, we may write

r
/t) e^ dF (X) -

r
-tx

e dF (-x) ; i.e., (j> may be regarded as

the difference of two Laplace transforms. As such, since ^ is bounded

for \t\ _< 2r, it follows from the continuity theorem for Laplace trans-

forms [9, p. 433] that F -^ F^ implies that lim 4> (t) = « (t) for

each t, \t\ <_2r.

Now, for each p, |m| < M, ' , there exists a probability space
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(Q„»^„» P, ) and a sequence of i. i. d. random variables {x (y) }
*",

with common distribution function F . We define the stopping time N

^^(<?) on the space (Q , ,y , P ) for all positive o by

n
^ "

^u^^^
" least n >_ 1 such that \l ;i:.(|i)| > oaiM)yn

n

II

1

or -H» if no such n exists.

We wish to obtain bounds for P (N > n) for large n which hold uniform-

ly for all u sufficiently small. To do this, we wish to define a

collection of distribution functions, indexed by the parameter m, which

satisfy the conditions of Theorem A. 2.

We note that ^^{0) - 1, ^q
* (0) - m(0) = 0, and q"(0) » o(0)2 >

[implying "(t) > for all t] ; hence, it follows that * (t) > 1 for

all t y 0, \t\ <_ 2». Thus, since lim ^ (t) = ^^it) for \t\ <_ 2r, we may
ji-K)

**

choose 111
I
sufficiently small so that ^ (-i») >^ 1 and ^ (i») >^ 1. Since

^ (0) = 1 and ^ "(t) > 0, we conclude that for all |m| sufficiently

small, there is a unique number /i(m), |^(y)
| ^^t such that ^ *[-^(P)l

= 0; of course, /z(0) = 0. We will write h for h{]i) when no confusion

will arise. Henceforth, we will only consider y in a neighborhood of

zero for which h(,v) as defined above exists, say |y| < y, where,

without loss of generality, y^ ^Pj'*

We now make use of a transformation due to Esscher [7] to

define a new function G ; i.e., for |y| < Wi,

ry

Vy^ ' T:m e'^ dP (x)

.

It is easy to see that G is a continuous probability distribution

function. For each y, |ii| < Ui» there exists a probability space
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(ii,.
' , j^,. ' , P..') and a sequence of i. i. d. random variables \Y (\i)]

with common distribution function G . We note, in particular, tliat

Gq = Fq' hence, we will assume (^o'»^o'» ^0
' ^ ^^ ^^^^ space

(Aq, ^Qy Pq) and that Y (0) = Z (0). We now show that the collection

{(? , |m| < y } and the associated sequences {{Y(m)} _, , \\i\ < y^}

satisfy the conditions of Theorem 4.2.

^e denote EY^iu)^ by T(y)2 and write T^ when no confusion will

arise. Also, we write o^ for a(0)^ = t(0)^. For future reference, we

let v(vi) = -log ^ (.-h) , The next lemma gives the limiting behavior of

h(]i), t(m)2, and v(y).

Lemma 5.2. As y - 0, h(\i) '^ m(\i)/a^t T(y)2 -> a^, and v(y) 'v* m(\i)^/2a^

.

Proof. First, we show that lim ?z(y) = 0. Let e > be given. Then,
y-»-0

since for each fixed t, \t\ <_ 2r, lim
(J» ( t) = <)> ( t) and ((> (t) > 1 for

y-»-0
'^ °

t 5* 0, there exists a 6 > such that for |y| < 6, (j) (-e) >^ 1 and 4» (e)

>^ 1. Since
(t>

(O) = 1 and the minimum of 4> occurs at -/z(y) and <j) ' is

strictly increasing, it follows that -e < -/i(y) < e for |y| < 6; i.e.,

lim h (n) = 0.

y-^O

To obtain the asymptotic behavior of h(]x) , we express <|>
'( t) as

the power series

» n

y n

x"^^ cfF (X)

.

y
J-o.

By the definition of hiv) y 4» '[-Kv)] = and, therefore,

.n-2

m(y) - ;i-[a(y)2+m(y)2] - ;z2
J"

(J?l_

2

The series of higher-order terms above has an absolute value not

x""^^ dF (X) .

y
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greater than the integral \x\^ e' ^ dF (x) which, as in Lemma 5.1,

J ~c

is bounded independently of p. Hence, lim m(\i)/hi\i) = a^ or hi\i) -v

p->-0

m(]i)/a^ as p - 0.

Next, T(y)2 = EY^(]x)^ =

J_o

w^ dG (w) = -—7^
h)

y^e'^y dFAy)
J-o

i2 = ndThus, tCu)^ = <l>^"[-^y)]/<)) [-/z(p)]. Since both {(|) , |ii| < y^} a

H "» |y| < yj) are equicontinuous families, it follows easily from the

fact that h(\i) ^ that (j> "(-h) *
<)>o"(0)

= o^ and ()> (-fc) - <|>g(0) = 1;

hence, lim T(y)^ = a^

.

(2)

Finally, we consider v(p) = -log 4> (-h) , We write

-log (|>^(-;z) log ((.^(-/i) <j>^(-;z)-l h^

m(y)' (-;i)-l -?z^ w(y)'

Also, we express
<J)

(-/l) as the power series

u 2 rn/ X dF (x).

log ( 1-Kc)
Now, since lim —° = 1, the limit of the first term on the right

M-oO ^

in (2) as M - is 1. From the power series expansion, the limit of

the second term as y -» is a^ - a^/2 = a^/2. By the first part of the

proof, h^/miu)^ -»- l/a** as y - 0. Thus, lim [-log (^ (-h)/m(\x)^]= 1/20^,

and, so, v( y) 'V'm(y)^/2a^ as desired.
|||

Let ip it) be the moment generating function of J, (y). From the

definition of G , it follows that ^ (t) =
<l>

{t-h)/^ (-h) and, so, \j^ is

finite for \t\ < r.

Lemma 5.3. G
W

Fq as y ^ 0.

Proof. It follows from the equicontinuity of {<})
, [y] < y } that
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^^it-h) * <j>Q(t) as \i -> 0; hence, 11m i|* (t) =
<J>o(^) ^^^ ^11 *» 1^1 1 ^•

Therefore, G^ -^ Fq.
|||

Lemma 5.4. For all y sufficiently small, say |y| < y^, (a) EY^(\i) = 0,

(b) < mp < EY^(u)^ < », and (c) E\Y^(m)\^ <_ M where m^ and /^Z are

positive constants which are independent of \i.

Proof. For (a), EY^{m) = ^ '(0) = (j) '(-h)/^ i-h) = 0. Next, we recall

that EY^(\i)^ = T(y)2 - a^ and < a^ < <»; therefore, for any m ,

< Wq < o^, we will have m < EYA\i)^ < » for |m| sufficiently small.

Finally, from the definition of (7 , we see that

(3) E\Y^(m) 3 -
^^(-k)

|i/|3 e-^y dF^{y).

Since (j> { -h) * 1, it follows that (j) (-?:) >^ ? for |m| sufficiently

small. Also, as in Lemma 5.1, the integral in (3) can be shown to be

bounded by 2KM-^ where X is a constant, independent of y, and M-^ is the

bound in (iii'). Thus, for M = 4AM , £"17(11)13 £ M for |m| sufficient-

ly small.
Ill

The preceding lemmas show that {G , jy] < Mq} satisfy the

hypotheses of Theorem 4.2. Hence, if we define, for any positive d,

the stopping time M (d) on the space (Q , .t , P ) by

n
M id) = least n >^ 1 such that \l Y.(y)| > dx(\i)^
y . "t

or -H» if no such n exists,

then it follows that for each d >_ 1 there exists a positive integer

"o ~ "o ^*^^ ^^^ there exist positive constants a^ and a2 [a^ = a^( d) ^

a = a (d)], all independent of y, such that
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(A) a^n'^^'^^ < P^[Af^(d) > n] <_ a^n'^^"^^

for all n >^nQ and for all y sufficiently small.

We are now able to obtain the desired bounds for P [N (a) > n] .

Theorem 5.1. Let {F , |y| < ]Xq) be a class of distribution functions

such that each function in the class satisfies properties (i')-(iv')

and F — Fq as y - 0. For |y| < yg, let P be the probability

measure induced on the space (fl , P ) by F and for c > 0, let N (o)

be the stopping time defined above. Then, for each c > 1 and any 6 >

such that 0-6 > 1, there exist positive constants aj » a^Co) and Cj "

a (c) and a positive integer n , all independent of y, such that
2

(5) " ^^^j^^(_^jj„^|ft|(a^«)?v?r„-B(o+«)

for all n ^ "o ^°^ ^^^ ^ sufficiently small where h « /»(y) and t » T(y)

are as defined above. The upper bound also holds for c 1 and any

6 > 0.

Proof. Let e > 1 be fixed and choose 6 > such that o-6 > 1. As

noted above, lim T(y)^ = lim oi\i)^ « a^ and, therefore, for y suffi-
y-K) \i-*<i

clently saall, |<J0(y)/T(y) - o\ < 6. If we define the sets

k

B - {(Xj,...,x^); \l x^l 1 oa(y)i^, fe - 1 n}

.
k

B= {(a, ,...,x^): II X.I < (£H-6)ti^, k- l,...,n}

B"- {(x, ,...,x^): II x.| £(o-6)Tf^, fe - l,...,n} ,

then for all y sufficiently small, B~ C B C B .
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Now, P^[N^ia) > n] =

B J

(6) P^[\(<y) > n] = [^^(-h)f

dF (x ) ... dF (x,). and, so,
U n y 1 ' ' '

n

1
e dG ix ) ... dG (x,)

B *

Thus, for all y sufficiently small, P [H (<?) > n] is bounded above by

the right side of (6) with B replaced by B , and is bounded below by

the right side with B replaced by B' . Using the bounds for \ x. on S'*'

1
^

and B~ and the definition of M (d) , we obtain
y '

H^(-h)fe~^^^^'^~^^'''^P [M (c-6) > n] ±P [N (c) > n]

< [«1> (-«)] e' ' P [W (c+6) > n]

.

- y V V

Combining this and (4), we find that for a. = a.(c-6), a = a-(<3+6),

and tZq = max {nQ((?-6), n (<?+6)}, (5) holds for all n >_ n and all y

sufficiently small.

We note that if c? = 1, then c?+6 > 1 for any 6 > 0. Hence, the

right-hand inequality of (4) may be applied for d = o+^ to obtain the

desired upper bound as above.
||j

In Chapter 3, we studied a stopping time defined on a sequence

of normally distributed random variables with nonzero mean. Now, we

wish to find bounds for the expectation of the same stopping time

defined on a sequence with a more general distribution. Let us fix a

distribution function F that is continuous and possesses a finite

moment generating function in a neighborhood of zero. Further, if

\X \ _, is a sequence of i. i. d. random variables defined on the prob-

ability space (i2,7T, P) with distribution function F, we assume that

EX-^ = and EX-,^ = a^ < «», a^ > 0. For each nonzero y, we may define

the random variable X = A^ (y) on (ft, ^ , P) by setting X = X + y.
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Then {X^} is a sequence of i. i. d. random variables with common mean \x

and we obtain the following result.

Theorem 5.2. Let {^^}^ , be the sequence of i. i. d. random variables

defined hy X^ '^ X^ + ]i where ;: has the distribution function F; i.e.,

{^ ) is a sequence with common nonzero mean y, finite, positive vari-

ance a , a continuous distribution function, and a moment generating

i~Y
function Ee ^ which exists for t in a neighborhood of zero. If for

any positive c?,

n
N(c) = least n >_ 1 such that |^ ^.| > ao/n

1 ^

or +«» if no such n exists,

then for each a > 1 and for any e > 0, there exist positive constants A

and B, independent of y, such that

for all sufficiently small y. The upper bound is also valid for c = 1.

Proof. For each small \i ^ 0. X = X +y has a distribution function

F defined by F (x) = F{,x-]x)\ i.e., F is a translate of F. Of course,

^ (t) = Fe ^ = e gCt); hence, say for |y| < 1, the functions (j) are

clearly uniformly bounded on any finite interval containing zero on

which <|>Q is finite. Thus, {F , |y| < 1} satisfies properties (i')-

(iv') with OT(y) = y and ai.\i)^ = a^. Also, clearly, F — F^ as y - 0.

Let c; > 1 and e > be fixed. Since 3 is a continuous function

of c (see Appendix), there exists a 6 > such that c-6 > 1 and, for

all d for which \a-d\ <_ 6, |6(c)-6(d)| < e/2; in particular, 6(c-6) <

3(c) + e/2 and 3(c+6) > 3(<?) - e/2. Fixing such a 6, we may apply
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Theorem 5.1.

First, we shall consider the upper hound. Since a > I and

6 > have heen fixed, we shall write N, 3"*"
, an<l B~ for N{c), 0(c+6),

and B(c-6), respectively. Then, from (5),

(7) EN <n, +a, I [* (-;z)]"J^|(^«>^V^''
n,

for all p sufficiently small.

Recalling that v(y) = -log (j) i-h) , we write [^ (-??)]" =

e . Let f (x) = e ^"^^ e' '^ ' a; . By Lemma 5.2,

h -v m/o^ and v(.y) a. y2/2(j2. ^j^yg^ [ |/i| Cc?+6)t]^/v(ii) - 2(5+6)^ as y - 0.

Also, we note that v(y) > for y sufficiently small and that 6 < 1.

Hence, it follows from (7), using Lemma 3.1, that for y sufficiently

small

(8) EN <^n^ { a^ f (x)dx + X(y)

where Ki\i) -> as y -> 0.

Performing the change of variable y = y^x, we see that

f (x)dx = y
-2(1-6"^)

exp
2/v(y) |;z|t

+ (c+6 ) /y y'^^dy.

For each y C [0, «») , the integrand on the right converges to

exp
y c+6

+ /^
2a^ a

-e
as y -*• 0; for sufficiently small y, the inte-

grand is dominated by exp
y 2(c?+6)

+ /y
—6

y . The latter function

is integrable, the value of the integral being given explicitly in [10,

p. 337]. Hence, by the dominated convergence theorem.

(9)

Jo

/ {x)dx "^ y
2(1-6"^)

exp

Jq

y c?+6

+ /y
2a2 o

y dy
,
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the integral on the right having a finite value since 3 < 1. Finally,

combining (8) and (9), we find that there exists a positive constant B,

for example

+
B = 2a. exp

y <7+«5—- +— *^
2a'

y~^ dy
,

—2(1— 6 )

such that for y sufficiently small, EN <^ B]i . As noted above,

3"*" » 3(cH-6) > e(c?) - e/2. Thus, EN <^B\\^\~^^^~^^°^^~^ as desired.

We note in the case c = 1, the upper bound of Theorem 5.1

remains valid. Recalling that 3(1) =» 1, we are able to use the same

methods to obtain EN{1) <_ By for all y sufficiently small.

For the lower bound in the case that c > 1 is fixed as before,

we obtain for all v> sufficiently small.

E1>_a,l ^-"^<^v)^-W(c-S)x^^-i

n,

> a,

= a^M

-x^i\i) -\h\io-6)ti/x -e> .

e e X ax

n,

2(1-3 )

i/v(y) \h\T

exp

JyV
(c-6)^'

)

y~ dy .

Denoting this last term by J(vi) , we find, again, by the dominated

convergence theorem that

^(M) - M-2'1-^ >a

«oo

1
exp

.

y 0-6

2a' i

y~^ dy

as y - 0, where, once more, the integral in this expression has a

finite value since 3 < 1. Thus, there exists a constant Ay e.g.

y 0-&a
A =

2

exp
2a'

^ y'^ dyy

—2(1—6 ")

such that for all y sufficiently small, EN >^ A\i , and, there-
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fore, since B~ - e(c-6) < 6(a) + e/2, EN >_ A\m\~^^^~^^^^^'^^ . \\\

We remark that the conclusion of this theorem is equivalent to

the statement that

log ENic) '^ [l-e(c)] log y"2

as y - 0.





CHAPTER 6

SOME GENERALIZATIONS

Brelman obtained the asymptotic behavior of certain tail prob-

abilities for a stopping time defined on a sequence of i. i. d. random

variables which were assumed to have a finite absolute third moment.

In obtaining bounds for the expected value of this stopping time in the

nonzero mean case, we have imposed additional restrictions on the com-

mon distribution of the sequence. We now seek to weaken some of these

more restrictive conditions. Some results in that direction are pre-

sented in this final chapter.

If we drop the assumption that the random variables have a

moment generating function, we can prove that the lower bound remains

valid. Further, when the moment generating function exists, we can

prove easily that the upper bound holds even when the common distribu-

tion function is not necessarily continuous.

1. Lower Bound

First, let us consider a probability distribution function F

having the following properties:

(i")

(ii")

X dFix) =

x^ dFix) = a^ < », a^ >

J -co
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dii") |xP dFix) < «

(iv") F is continuous.

It follows from (i") and (il") that < F(0) < 1. For future refer-

ence, we identify the following three points:

Xj = inf {x: F(x) > F(0)}

X2 = sup {x: Fix) < 1} or +» if {x: F(x) < 1} = 7?^

X2' = inf {x: Fix) > 0} or -» if (x: Fix) > 0} = i?^ ^

We note that -» < x^ ' < < x, < x„ < +».— 2 — 1 2 —

For any m f* 0, we define the distribution function F by F (x)

«= F(x-p); i.e., F is a translate of F. If A^ is a random variable

defined on the probability space (Q, J', P) having as its distribution

function F, then F is the distribution function of X+\i; we write X =

XiM) = X-\-\i. Property (i") above implies that EX '= and, therefore, EX

« y. We now wish to study a sequence of i. i. d. random variables with

common distribution function F . If iV is the stopping time associated

with such a sequence, we obtain a lower bound for PiN > n) of the form

PiN' > n)PiN" > n) where ^' is a stopping time defined for a sequence

of bounded random variables and H" is a stopping time defined for a

sequence of random variables with zero mean. We can then apply the

results of the previous chapter to H' and Breiman's results to N" to

obtain the desired conclusion.

To get this type of bound, we first express X » Xi\i) as the sum

7 + Z where 7 is a truncation of X and Z is a random variable with zero

mean. Although this is not difficult to do, we also wish to insure

that VarZ is small and that the truncation points converge as y - 0.
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The details are presented in the following two lemmas.

Lemma 6.1. For every a, x. < a < Xj, there exists a corresponding

a' < such that if

a' < i ;^ a

otherwise ,

then EY « iJAT = 0. Further, given 6 > 0, a can be chosen so that

VctriX - Y) < 6.

Proof. Let a, X. < a < X , be given. If we define the function g by

•a

giy) = X dF{x),

then we note that g is continuous and nondecreasing for y ^ (-«", 0],

Further, g{0) > and lim g{y) < 0. Defining a' = sup {y: giy) = 0}

and Y as above, it follows immediately that £^7=0.

We remark that for each a, the definition of the corresponding

a' insures that it is a unique function of a. It is also clear that as

o f X2, ot' \ X2* ' Thus, since

Vara - Y)

and a^

a

x2 dFix) +

'2 ^2

tX2

a

x2 dF{x)

x^ dFix) < •, it follows that given 6 > 0, a can be

2 ^ .

chosen sufficiently large so that VariX - Y) < 6.

Remark. If a lies in an interval of constancy of the function F,

without loss of generality, we will henceforth assume that a is the

left endpoint of such an interval; i.e., if F(a) = a, then we choose (a

possibly new) a « inf {x: F(x) = a). Given such an o, we have just

noted that there is a unique corresponding a'. We shall then speak of
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the pair (a' , a)

.

Lemma 6.2. For any 6 > 0, let the pair (a', a) be such that Var(X - Y)

< 6. Then for all y with |y| sufficiently small, there exist numbers

Xq = Xq(w) and Xq ' = Xq'Cu), Xq' < < Xq, such that

(a) if

I " r(y)
[Xiv) ajp'Cy) + y < X(m) IXgCy) + y

otherwise

then EI ' EX " \i;

(b) lim Xq* (v) = a' and lim XQ(y) = o;

(c) Var(X - J) < 6 for |y| sufficiently small.

Proof. First, we consider the case where y > 0, For all such y, let

Xq(u) - OL and write

ra+y

9^(y) X dF (x).
y

2/+VI

The function g is continuous and nondecreasing for y ^ (-«, 0], We

note that

rd

9/y) X dF(x) + y[F(a) - F(i/)].

Thus, for y sufficiently small, g' (0) > y and lim g (y) < y. Hence,

letting X '(y) = sup {i/: gf iy) = y}, we see that if

Xq+ y<^_<Xg+yr
( otherwise

,

then i?y » y = F^T.

We note that for the given pair (o', a) and each y, Xj^'(y) is

uniquely defined. Further v = EI = (x + y) dF(x) and, so.
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X ciF(x) = y[l - F(a) + FCx^')]

X dFix) = 0. Noting that the right side above is greater

than zero, we see that x. *(y) > o' for all (small) y > 0, Also, since

the right side is less than or equal to 2y, it follows that

lim

tXr

X dFix) = 0.

Recalling that a' was chosen so that it was the right endpoint of a

possible interval of constancy, we conclude that lim x^'(y) = o'.
y->0.̂+

Next, for y < 0, we choose XQ*(y) = a'. For -y sufficiently

small, we can show as above that

x-,(y) =» inf {y:

y+v

X dF (x) = y}

'a'+y

is well-defined and is the number desired. Also, as before, it follows

that lim X-(y) « a.

\i-*o-

Finally, we see that

Var{X - 7)

X '

x2 dF (X) +
y

fX.

J-«

x^ dFix) +

x2 dF (X)
y

x2 dF{x) - y2[l-F(xQ)+F(xQ')].

Xq

It follows from the convergence of the truncation points that

11m VariX - T) = Var(X - Y) < «. Thus, for |y| sufficiently small,
y-K)

VariX -I) < 6.

Henceforth, we will always assume that a pair (a*, o) has been

chosen and is fixed. Later, we will introduce certain restrictions
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that will determine how large o must be.

Next, we consider several sequences of random variables and

make use of their independence to get a lower bound for PiN > n)

,

First, we define three additional distribution functions. Let H (x) "

P(X <_x
I
Xq ' < X <_Xq), H ix) - PU <^ X

I
^ 1 JCg • or ;? > Xjj) , and let

H be the distribution function of the indicator function of the event

{X-' < X ^Xj.}. Of course, these distribution functions may each be

expressed in terms of F .

Then, we can consider random variables X* , X'\ and y (defined

on some probability space) so that these random variables are mutually

independent and have distribution functions H , H , and H , respective-

ly. We again let Y denote the truncation of X corresponding to the

pair (x \ X.) as in Lemma 6,2, and let Z ^ X - Y, ^^
?i

^"^ ^7 ^^®

two random variables having the same distribution, then we write

Lemma 6.3. yX' 2 j, (I-y)^' = Z, and yX' + (1-y)^" = X.

Proof, The lemma is proved by simply calculating the distribution

functions of yX' and (I-Y)jf" and that of their sum. Let Pr denote the

probability measure on the space on which the given random variables

are defined. Using the independence and the definitions of B and H ,

we find that

PriyX' <_x) ' PriyX' <_ x, y " D + Pr(yX' £ x, y = 0)

=. PU < X, Xg' < a: < Xq) + IjQ ^^(x)[Pa < Xq') + P(X > Xq)]

where I denotes the indicator function of the set A, Recalling that Y

is just the truncation of X, we see that yX' » 7,

In the same manner, (l-Y)-2r" Z, and, also.
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Y^' + (1-Y)^" ' X.

Now, given the distribution functions F , H , H , and H as* p* M* M* M

above, there exist, for each ji, probability spaces (ft., .^. , P.), i =

1, 2, 3, 4, and sequences of i. i, d, random variables {X (y)},

{X 'iv)}, {X "(w)}, and {y (y) } defined on the respective spaces such

that X^iv) 2 X, X^'iv) - X\ X^"(]x) 2 r', and Y^(y) ^ y- If the

product space of the four spaces above is denoted by (JJ
, ^ » ? ) , then

we can assume that the four sequences of random variables are defined

on the same probability space and that the sequences are mutually

Independent,

Also, we define the sequences of random variables {7 (y)} and
n

iZiv)} by
n

v^> " {;

(y) Xq' < X^iu) <^Xq

otherwise

and Z (y) = X (y) - Y (y) , Henceforth, we shall omit the dependence on

y when writing these random variables [e«g,, we write X for X (\i)].

We denote VarZ^ = Var(Xi - Ij) by 6 (y)^ and VarXi* by (y)^.

It follows from Lemma 6,1 that given 6 > 0, a can be chosen sufficient-

ly large so that 6 (0)^ < 6^, In addition, we prove

Lemma 6,4. lim o (0)^ = a^.
a

ar*X2

Proof. For fixed o, x, < o < Xj, ^l'(O) has the distribution function

H , Thus,

^a^°^' ' F(a)-F(a*)

a

x2 dFix),

As noted in Lemma 6,1, a' 4- x* ' as a + x_ and, by definition.





72

F(X2') = and F(X2) = 1 since F is continuous. Thus,

lira a (0)2 =

a-»x.
a" ' Fix2)-F(x2')

x2 cfF(x)

x^ dFix) » a^.

Finally, we are prepared to introduce the stopping time whose

first moment we wish to study. The i, i, d. sequence {X } has a common
n

continuous distribution function F and EX = y, VarX = a^ . and
V n * n *

E\X
I

^ < *, For this sequence, we define, for any positive number <?,

the stopping time N = N(a) on the space (ft , ^ , P ) by

n
ff » N(a) = least n ^ 1 such that 1^ -^'l > oai/n

or +" if no such n exists.

We now wish to obtain a lower bound for EN(a) when |u| is sufficiently

OB

small. Recalling that EN(o) = ^ P [Nia) > n], we consider the prob-

ability P [Nio) > n] for fixed n.

Lemma 6.5. For any n, < n < o,

(1)

P [19(a) > n] > P
V - y

1^ X,'\ <_ (c-n)a^, fe = l,...,n
1

^

J]
Z.| j< na»^, fe = l,...,n

1
^

Z?
Proof. Let n, < n < c, be fixed. Then, since X. » y.X.' + (l-yOA^.",

P (N > n) ' P
y y J X .

I
_< aa/k, k » 1 , . . . ,n

> P— y
\ly.X.'\ < (a-T\)o/J, l<J<n; \la-y.)X."\ < Ao/k, \<k<n





73

Letting

S„ « {II (1-Y^)^^"I inai/^, fc = l.....n}.

we may write P (iV > n) > P (4 D B ),

If 5 = (a » (a, ,...,«): 8 ," or 1, 1 _< i _< n} and if T is

the random vector T " (Yii«.«iY )• then

p M ns^) =
I p,M ns^

I
r = 8)P (r = 8).

8€S
n

For a particular term in this sum, suppose Sq = (8j,...,8 ) where 8.

t2
It 1 < i, < i^ < ,»» < i < n, and s. =8.

» - 1 2 P - Jl J:

. - 0, 1 £ jj < j^ < ... < J < n with p + <7 = n. Let

^1 - {| I ^v 'I 1 (c-n)a.^^, k = 1 p}.
1 1'

{II ^^- 'I 1 na/j, , fe » l.....(7}.

Then it follows from the mutual independence of iX '}, {X "} , and {y )
n n n

that

P U OB
M n

, r = 8t,)P (r « 8ft)

Now, we note that i-i^ ^k and, therefore.

P (C.) > P
U 1 - y

II ^^ 1 1 (£J-n)ay^, fe = 1.....P
m=l m
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However, since the X .' are identically distributed and p ^ n, the
«7

latter is not less than P
{ k

I I ^„'\ 1 (o-r))o/k, k = 1 n
m=»l

P (N > n) >_P UnB)

Hence,

y P (C,)P (B r\ {T = s})

ae5
n

f fe

> P— y
OT"!

^(V-

« u
{

k

I Z.\ <^ nai/^, fe = l,..,,nBut (1-Y.);ir." - Z. and, so, P (B ) - P

Theorem 6,1. Let {X } . be a sequence of i, i. d, random variables

with EX^ = y 7* 0, VarX-^ » a^, i?|AfiP < «, and a common distribution

function which is continuous. Let N(.o) be the stopping time defined

above. Then, for each c > 1 and any e > such that g(c) + e/2 < 1,

there exists a positive constant A, independent of u, such that for all

y sufficiently small

EN(o) > A\\x
|-2[l-B(c)]+e

Proof, Let us fix a number a > 1 [hence, 3(c) < 1] and fix an e >

such that 6(c?) + e/2 < 1, Before proceeding, we place restrictions on

the parameters n, 5, and a that we will need in the course of the

proof. First, we fix n > such that (a) c-4n > 1 and (b) 3(<3-4n) <

B(c) + e/A, Next, we fix 6 > such that (c) na/6 > 1 and (d) 6(na/6)

< e/4 [recalling that 3(u) - as u ->• +•] , Finally, we fix a suffi-

ciently large so that (e) Var(X - 7) «= 6 (0)2 < 52 ^^d (f) a/a (0) >
a a

1 - n/(c-n). Lemma 6,4 and the remark preceding it imply that such an

a exists.

Now, EN (a) = EN " ^ P (N > n) and, so, by Lemma 6,5, we study
^
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and P I X.'\ <_ (c-n)a*^, k = l,...,n

We consider, first, the sequence {Z }, recalling that Z =«

Z (y) = ;ir (y) - 7 (u). We note that 5Z = and VarZ = 6 (y)^. In
n n n n n a

the proof of Lemma 6,2, we showed that lim 6 (w)^ = 5 (0)^; hence, for

|i-K)

< m < 5 (0)^, 6 (v)^ >_m for y sufficiently small. Also, for

r*»

|u| < 1. s|z„|3 l^l^„(w)Pl |xP cfF(a:) + 30^ + 3 |x| dFix)

+ 1; i.e., ff|Z 1^ is uniformly bounded for \]i\ < 1, In addition, if we

denote the distribution function of Z^ by C , then G may be simply

expressed in terms of F and it follows from the fact that Xq(.]x) -* a

and Xq'Cp) -a' as y -» that G "—* Gq, It is also easy to see that

G is continuous except at zero,
y

If we now define the stopping time N"id) for <i > by

n

N"id) = least n >_ 1 such that \l Z.\ > d6 (y)*^

or +* if no such n exists,

then, by Theorem 4,2, for all d ^ 1, there is a positive constant a"(d)

and a positive integer n. , both independent of y, such that

P [N"(d) > n] >,a"W)n~^^^^ for all n >_ n^ and for all y sufficiently

small.

Since a has been chosen so that 6 (0) < 5, it follows from
a

Lemma 6,2 that 6 (y) < 6 for all y sufficiently small. Thus,

I Z.\ < nai/5^, k = 1 n > P- V
y Z.l < «3r 6 (y)/?r, 1 < fe < n

6 o

the latter is just P [N"(r\a/6) > n]. Now, 5 was chosen so that

na/6 > 1, Thus, for all n ^ Wj
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(2) \1 2^1 1 no»^, k " l,...,n > ^''/z-^^^^/'^^

for all y sufficiently small where a" = a"(na/6).

Next, we must consider the sequence {X '}, We recall that X.'

= X '(y) has the continuous distribution function H . Hence, EX^ * =
1 y 1

y/[F (Xg)-F (Xq')]. Writing m{v) = ^ATj', we note that m(v) '^'

y/[F(o)-F(a')] as y - and m(0) » 0. Also, VarX^' « a (y)^, a finite,

positive number. Since X^ ' is bounded, the moment generating function,

(t) , of ATj ' exists for all t R^ and

(t) =
' ^y(^> = F.(xj-F(x >)

y^-O
e*^ dF (x)

.

y

I -f I Frt V (—n * ^ 1

Hence, ^ (t) _^ e '

' for y sufficiently small; the latter

function is bounded on any finite interval containing zero. Therefore,

for y sufficiently small, say |y| < Vn » the family {H , |y| < yg}

satisfies properties (i')-(iv'). Further, as y -> 0, (^ (t) -* (^Q(t) and.

so, H
w.

«o-

As in Chapter 5, we let h = h(v) be the unique root of ^ * (t)

= and let T(y)2 = ^ "(-^)/* (-?i) . We define the stopping time N'id)

for d > by

n
N*id) = least n >_ 1 such that \l X.'\ > da (y)*^

or +> if no such n exists.

Then, by Theorem 5.1, it follows that for each d > 1 and rj > such

that d-r\ > 1, there exists a positive constant a' (.d) and a positive

integer 1X2, both independent of y, such that

(3) P^[N'(d) > n] > a'W)[*^(-;i)]" ^-1^1 W-n)T/;r ^-3 W-n)
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for all n >_ n and all y sufficiently small.

Now, by assumption (f), (o-r|)o > (cj-2ri)a (0), Also, since

a (v)^ -*• o (0)2 as y -*• 0, it follows that for all y sufficiently small,

(c-2n)a (0) > ((?-3n)a (y). Hence,
a a

(4) II ^/'l 1 (c-n)ar^, ;c = l,...,n 5^P [^'(c-3n) > n].

Thus, combining (3) (with d = <?-3n) and (A), we see that since by

assumption (a), c-An > 1, it follows that

k

(5)
\l X.'\ < io-r\)a^t fc ' 1 n

> an^ ('h)f g-l^l(^-4n)T/T^-3(c-4n)

for all n >^ 712 *^^ ^^^ W sufficiently small where a' " a'(c-3n).

Let nQ = max {n^ , n2}. It follows from (1), (2), and (5) that

EN>al e'^^'^""^
^^('h)] ^-|;z| (c-4n)TV^ ^-[6(c-4n)+6(na/6)]

no

for all y sufficiently small, where a = a'a" is a positive constant.

Assumptions (b) and (d) Imply that
„-[8(<'-''n)+8(no/6) ] ,

^-[HO + e/21^

Recalling that by Lemma 5.2, -log ((> (-/i) 'v OT(y)2/2a (0)^ as y - 0, we

see that -log ^ (-h) is positive for sufficiently small values of y.

Thus, replacing the above sum by an integral and writing m for OT(y) , we

obtain

-^°g y^-^) _ IM(^-An)T^] -[g(c) + e/2]
exp

2

-2/ dz/.

m*- \m\

It follows from the dominated convergence theorem and the fact that

m «= miv) 'V' y/[F(o)-F(a') 1 that this lower bound, say J(\y), is such that
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JM '- w-'^^-'^^"' * ^/^'l exp — ^
.

2a (0)2 (0)
,

^-(6(c) > c/21^^

This last integral is finite [10, p. 337] since we have chosen e such

that e(c) + e/2 < 1. Hence, if

A ' —
2

exp
o-4n

^ ^-[3(c) + e/2]^^

2a (0)2 a (0)

for example, then for all y sufficiently small EN >_

2, Upper Bound

The above theorem shows that for the lower bound to hold, it

suffices to assume only the existence of an absolute third moment

rather than that of a moment generating function. However, the common

distribution function is still assumed to be continuous. On the other

hand, the same type of upper bound is valid if we again assume that a

moment generating function exists, but no longer require that the

common distribution function be continuous. We prove

Theorem 6,2. Let {X ] , be a sequence of i. i. d. random variables

defined by ^ ^ X + v, where X is such that EX. » 0, VarX, « o^, a
^ n n * n l » i »

finite, positive number, and Ee ^ < » for t in a neighborhood of zero.

If for any positive <?,

n

Nic) = least n > 1 such that
| ^ AT , |

> aai/n

1
*

or -H«» if no such n exists,

then for each a ^ 1 and any e > 0, there exists a positive constant B,

independent of p, such that for all p sufficiently small
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£««,)< si„r2ii-6<<')i-s

Proof. Suppose that the sequence {X } Is defined on the probability

space (il,^f P) . Without loss of generality, we may assume that on

this same space there is a sequence of i, i, d, random variables {J }
n

with a common N^O, 6^) distribution, where 5 > is arbitrary; further,

we may assume that the sequences {X } and {Y } are independent, and,

therefore, also, that {X } and {Y } are independent.

We fix c ^ 1 and write It for N(o), Again, since EN =

^ P(N > n) , we consider PiN > n) for n fixed. For any n > 0, we see

that

P(JV > n) ' P I X.\ < oa^, k = l,,.,,n
1 ^ "

(6)

f k

I
1

k I
\l X,\ < eav^, l<k<n; |^ T. |

< r\o/J, 1<J<n

\l Y,\ < nav^. 1<J<n

I (X.+Y.)\ < (e+n)a*^, k = l,...,n

II ^vl 1 na^, J » 1 n

As noted in Chapter 3, it follows from Theorem 2 of Breiman that

1

\l Y.\ _< nai/J, J » l,...,n
-0(na/6) , .•Van asn-*-*" where a, is a

positive constant. Thus, there exists an n such that for w >_ n ,

(7) 11 J^y
I 1 noi/j, J = 1,...,7 > lL„-6(na/6)
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Now, let Z =• Z (y) " X + Y , We note that [Z } is a sequence
* n n n n n

of i. i. d. random variables with EZ^ = v, VarZ.^ ^ o^ + "5^ , and Ee ^ =

exp
hH^^

Ee
tXy

exp
^^252

+ pt
*^1

ffe ^. Hence, for y sufficiently

small, say |y| < yn* the moment generating functions Ee ^ are uni-

formly bounded on a finite interval containing zero on which Ee ^ < »,

Further, the distribution function, say (7 , of Z, is the convolution of

the distribution function of X. and that of J, ; thus, G is continuous
1 1 * y

and G —> ^ as y - 0, Therefore, the family {G
, |y| < \Xq} is like

those considered in Chapter 5«

We define the stopping time N.(.d) for any cf > by
6

n
N id) » least n > 1 such that \l Z.\ > d/a^+fiZ/T
6 -

^ t

or +«> if no such n exists.

We write ^ (t) Fe ^ and again denote the unique root of the equation

^ 'it) - by -h - -;:(y). Also, we write t^ » T(y)2 » ,^ "(-?z)/<t> (-^i)

.

Then, it follows from Theorem 5.1 that for each d >_ 1 there exists a

positive integer n. and a positive constant a^id) ^ both independent of

y, such that

(8) PlUAd) > n] < a,W)[* (-W,"el''IW+n)T^„-6W+n)
A • y 11

for all 'I i «2 ^^^ ^'^ ^ sufficiently small. Finally, we note also

that

(9)

( k

IJ Z,\ <^ icH])a/^t k " l,...,n < P[NAcHy) > n].— 6

So far, 5 and n have been arbitrary positive constants. Let

e > be given. We choose n > such that ^i<y+2r\) > 3(c) - e/4. Then
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we choose 6 > such that 0(no/6) < e/4. These choices are possible by

Proposition A.l,

Let n " max {n , n ). Then, we see from (6), (7), (8), and

(9) that

EH ^^ +!f2y ^-n[-log *(-;!)] ^|;i
I
(^2n)T»^^-[0(c+2n)-e(na/6)l

for all \x sufficiently small. We note that 6((rt-2n)-e(na/6) >

B((?) - e/2. Again, by Lemma 5.2, -log ^ (-h) 'x* ]x^/2(a^+6^) as y ->

and, so, is positive for sufficiently small y. Hence, using Lemma 3.1

and proceeding as in Theorem 5.2, we may replace the series by an

integral to obtain for all sufficiently small y.

s,<„ .!!ij,(„)+„-2(i-t6(=)-e/2i)!!i
- '*0

exp

1

-y ^ y

where Jt(y) -»• as y -* 0. Again, the integral term is asymptotic to

-2(l-[e(o) - €/2])_^
az

exp

^0

cH-2n

2(a2+62) A2+62

-[$((?) - e/2] ,

1/
'"^^

'ii/ as

y -• 0, Thus, for example, if

f
Aa.

B
h

exp
c+2n

^-[3(.) - e/2],^^

a finite positive constant, then EN <,B|y|" ~ '^"" for all y

sufficiently small.

Finally, we are also able to weaken the requirement that the

random variables have a moment generating function; however, the bound

we obtain is not as sharp.





82

Theorem 6.3. Let \X ] , be a sequence of i, i, d, random variables

defined by X " X + ii where X. is such that EX. = 0, VarX, = o^, a
^ n n 1 1 » 1 »

finite, positive number, and E\X.
\

< « for some 6 > 1. If for any

c > 0,

n
N(o) » least n >^ 1 such that |^ AT.] > aa^

1
^

or +» if no such n exists,

then for each a ^ 1 there exists a positive constant B, Independent of

p, such that for all y sufficiently small

where y(o) » B(cvT)/2.

Proof, Suppose that the sequence {X } is defined on the probability

space (Q, ^, P) , Without loss of generality, we may assume that on

this same space, there is another sequence {X '} of i, i. d, random

variables such that X, ' has the same distribution as AT, and such that

the sequences {X } and {X '} are independent. For y / 0, we write

X * = X ' + \i and let N'(a) denote the stopping time Nic) defined with

respect to {X '}.
n

Fixing <? ^ 1, we write N and N' for Nia) and N'(o) respective-

w

ly. Since EN " ^ P{N > n) , we obtain bounds for the probabilities

PiN > n) , First, we note

P(N > n)2 = P(N > n, N' > n)

(10)

< P \l (X. - X.*)\ < 2oa/^, k = l,...,n
1 ^ ^ "
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Defining Y = X - AT ', we see that EY « 0, Varl - 20^, and
^ n n n * n * n *

E\I P < •. Thus, if we define the stopping time N.id) for d > by
n

n

^Qid) » least n >_ 1 such that |^ T.| > <io/2i/n

or +• if no such n exists.

then, applying Theorem 2 of Breiman [3], we obtain for d >_ 1 the fact

—ft ^/7^
that P[NAd) > n] '^ a'n as n -»• • where a' is a constant which

depends on d and the distribution of I . Noting that the right side of

(10) equals P[N^{a/2) > n] , we conclude that there exists a positive

integer n , independent of y, such that P(N > n) £ an" for all

n ^ tTq where a is a constant, independent of y. We write y(o) =

B(<?/2")/2 and note that y(a) < 6(c) <_ 1.

Also, by Chebychev's inequality, P{N > n) <^ rT^EN^ , Since

E\X
I

< • for some 6 > 1, it follows from an inequality obtained by

Woodroofe [16] that \i^EN^ <^ dEN where <i is a positive constant which is

independent of y. Thus, P(N > n) <^ dv'^n'^EN,

Now, for each m > n- , we write

m •

^^ 1^0 -^ I P(^ > n) + I ^(^ > n)

riQ m+1

< ng + am^"^^^^ + dv'^m-^EN,

In particular, if we choose m = [2(iy~^] where [x] is the greatest

integer less than or equal to x, then it follows that there exists a

positive constant B (e.g., B » 4[nQ + a(2cf)
"^

]) , independent of y,

such that for all sufficiently small y, EN <_ B'^^^'^^^^^K \\\





APPENDIX

THE FUNCTION

In [3], Breiman first studies the stopping time 2* * »
o

Inf {t: \V{t)\ >, o/t, t >^1) where {V(t) , t >_ 0} Is the standard Brown-

ian motion process. He proves that as t -> •, P[T * > t | J/(l) = 0] '>'

<xt where -2B(o) is the largest pole of

for X € r, /?e X > 0. Here, ^> (2) is the parabolic cylinder function.

Using certain standard identities (e,g,, see [1, p. 687]), we see that

-S(c) is, in fact, the largest zero of the confluent hypergeometric

function W(X, i, o^l2) regarded as a function of X, We remark that the

function W(a, &, a) is given by the power series

Mia.h, z) 'Ijsr:^
^ 'n

where (a) q = 1 and (a) «= (a) (a+1) . , , (a+n-1) , n >_ 1. This series

converges as long as b is not a negative Integer,

Proposition A.I. The function 3(o) is a continuous, strictly decreas-

ing function on (1, ••) with < 8(0) < 1, 8(1) « 1, and lim 8(cj) = 0.

Also, 8 is right continuous at <? = 1,

Proof. That 6(1) - 1 and lim B(e) » are included in Theorem 1 of

Breiman' s paper. The relevant properties of W(X, i, o^ IT) used below

8A
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are contained In [1, p. 504ff],

For a fixed o, the zeros of MiX^ i, a^/2) are all negative and,

so, 0(e) > 0. Also, ^f(0, i, £j2/2) , 1 and W(-l, i, 0^/2) » 1 - o^ <

for all c > 1. Hence, since W(X, i, a^/2) is a continuous function of

X, it must have a zero in the interval (-1, 0); i.e., 0(c) < 1 for

O > I,

Let (3., f?- be such that 1 <^ c. < (?_, We note that for fixed X,

-1 < X < 0, W(X, i, x) regarded as a function of x is strictly decreas-

ing. Hence, for all X €(-1, 0), i«f(X, i, a ^/2) > Af(X, i, o 2/2) and,

so, -0((3.), the largest zero of W(X, i, o^/2)^ is less than -0(c?2).

Thus, 0(a ) > 0(0-) and is strictly decreasing for <? ^ [1, ")

.

Finally, we show that is continuous. The monotonicity of

implies that it may have at worst only jump discontinuities. We fix

Oq >^ 1 and consider 0(<?q ) = lim &(oQ+t) <^ 0(^0^' ^°^ fixed x^ > 0,

^(^» i» ^n^ ^^ strictly increasing for X^ (-1, 0). Thus,

'0 ^» *» *'0 '"* — "' ^^^o'» '• "0W[-0(<5n ). K c?n^/2) > m-0(<;„). K en^/2] « and, so, there is an

Xj _> «Jq^/2 such that M[-0(Oq"''), i, Xil "0 since M(Xq, it x) is contin-

uous and decreasing as a function of x. However, for all e > 0,

A/[-0(cQ+e), i, Xj] > Af[-0((3g ), i, Xj] =0 and, consequently, Xj <

(Cg+e)2/2. Hence, x^ = ^q^^^ *"** "^(^0 ^ ^^ ^ ^®^° °^ '^^^» ^» ^O^/^^*

implying -0(<?p ) < -0(c5 ), the largest zero of this function. There-

fore, BicQ ) =
0(<?o^ *^*^ ^ •'•^ right continuous for all q >_ 1, A

similar argument demonstrates that is left continuous for a > I and,

thus, is continuous on (1, •)

,

|||

We make one additional remark about the function 0. As noted

above, for any X ^ (-1, 0), W(X, i, x) is strictly decreasing as a
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function of x. Hence, for c < 1, W(X, i, (?^/2) > W(X, i, i) and the

latter is greater than zero for all X € (-1, 0) since 6(1) = 1. Also,

Af(-1, i, o^/2) " l-o^ > 0, Thus, we conclude that for all a < 1,

0(c) > 1.

Although the function arose in conjunction with the study of

the stopping time T * for the Brownian motion process, we showed in

Chapter 4 that this same 0(o) occurs in the study of the asymptotic

behavior of 'P\Tii{,6) > n] where N(o) is the analogous stopping time

defined for certain sequences of 1. ! d. random variables. Therefore,

it is exactly this function which plays such an important role

throughout this paper.
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