Modular forms of weight 1

MARIOS MAGIOLADITIS

Arbeitsgemeinschaft Galoisdarstellungen zu Modulformen

Institute of Experimental Mathematics (IEM) University of Duisburg-Essen Januar 2006 Arbeitsgemeinschaft Galoisdarstellungen zu Modulformen. Organisation: G. Böckle, G. Frey, M. Möller. Wintersemester 2005/06.

Lecture 13. Modular forms of weight 1 (part 2) was given on 24th January 2006 in the Institute of Experimental Mathematics (IEM).

I would like to thank Xavier Taixés for his help.

Marios Magioladitis

Homepage: http://www.exp-math.uni-essen.de/~magiolad

E-mail: marios@math.uoc.gr

References

[DeSe] Delign, P. Serre, J.-P., Formes modulaires de poids 1, Ann. Sci. ENS. 7 No.4 (1974), 507-530. Available at: http://www.numdam.org/ [Fr] G. Frey (ed.), On Artin's conjecture for odd 2-dimensional representations, Lecture note in math. 1585 (1994), Springer-Verlag.

Contents

1	Prelimaries		5
	1.1	Elements of modular forms	5
	1.2	Elements of Galois Representation	6
2	Results		9
	2.1	The main theorem	9
	2.2	Artin conductor and local factors	10
	2.3	Characterisation of representations attached to forms of weight 1	11
		The Artin Conjecture for odd 2-dimensional representations	
3	l-adic representation and representation mod l		15
	3.1	l-adic representations	15
	3.2		
		3.2.1 Proof of theorem 3.2.2	16
4	Pro	of of the main theorem	19

Prelimaries

1.1 Elements of modular forms

Let N be an integer ≥ 1 . We define

$$\Gamma(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_2(\mathbb{Z}), a \equiv d \equiv 1 (mod N), b \equiv c \equiv 0 (mod N) \right\}$$

$$\Gamma_1(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_2(\mathbb{Z}), a \equiv d \equiv 1 (mod N), c \equiv 0 (mod N) \right\}$$

$$\Gamma_0(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_2(\mathbb{Z}), c \equiv 0 (mod N) \right\}$$

It's easy so see that

$$\Gamma(N) \subset \Gamma_1(N) \subset \Gamma_0(N)$$

Let f be a function over the semiplane $H = \{z \mid Im(z) > 0\}$. Let k be an integer and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element in $SL_2(\mathbb{Z})$. We write

$$(f \mid_k \gamma)(z) = (cz+d)^{-k} f(\gamma z), \text{ where } \gamma z = \frac{az+b}{cz+d}.$$

Definition 1.1.1. Let Γ be a set such that $\Gamma(N) \subset \Gamma \subset SL_2(\mathbb{Z})$. A function f is called **modular of weight** k over Γ if:

1.
$$f \mid_k \gamma = f \ \forall \gamma \in \Gamma$$

- 2. f is holomorphic in H
- 3. f is "holomorphic on points" i.e. $\forall \sigma \in SL_2(\mathbb{Z})$ the function $f \mid_k \sigma$ has a series development to powers of $e^{2\pi z/N}$ with exponents > 0.

If we replace "exponents ≥ 0 " with "exponents > 0", in the above then the modular form is called **parabolic**.

Definition 1.1.2. Let f be a modular form of weight k over $\Gamma_1(N)$ and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$. The form $f \mid_k \gamma$ depends only from the image of d in $(\mathbb{Z}/N(\mathbb{Z})^*$. We will note $f \mid R_d$. We also define $f \mid R_{-1} = (-1)^k f$.

Definition 1.1.3. An homorphism

$$\epsilon: (\mathbb{Z}/N(\mathbb{Z})^* \to \mathbb{C}^*$$

is called **Dirichlet** character mod N.

- ϵ is called **even** if $\epsilon(-1) = 1$.
- ϵ is called **odd** if $\epsilon(-1) = -1$.

Let k be an integer with the same parity with ϵ [i.e. $\epsilon(-1) = (-1)^k$]. A modular form is called of type (k, ϵ) over $\Gamma_0(N)$ if it is a modular form of weight k over $\Gamma_1(N)$ s.t.

$$f \mid R_d = \epsilon(d) f, \forall d \in (\mathbb{Z}/N(\mathbb{Z})^*,$$

i.e.

$$f\left(\frac{az+b}{cz+d}\right) = \epsilon(d)(cz+d)^k f(z), \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N).$$

We define

$$M_k(N, \epsilon) = \{f \text{ modular form of type } (k, \epsilon) \text{ over } \Gamma_0(N)\}$$

1.2 Elements of Galois Representation

Definition 1.2.1. Let G be a topological group, k be a field with a topology and V be a k-vectorial space. Then a linear representation of G on V over k is a continuous homomorphism

$$\rho: G \to GL_n(k)$$
.

We will say that ρ is **simple** if V is a simple G-module. If V is a direct sum of simple G-modules, then we will say that ρ is **semi-simple**.

Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} and $G = \operatorname{Gal}(\overline{\mathbb{Q}}, \mathbb{Q})$.

The Galois representations of G are the linear representations.

$$\rho: G \to GL_n(k),$$

where k is one of the following:

- (a) The field of complex numbers \mathbb{C} with the discrete topology
- (b) A finite field with the discrete topology
- (c) A finite l-adic extension \mathbb{Q}_l with the natural topology

In the first two cases, the image of ρ , $\rho(G)$, is finite. In the first case ρ is called **Artin representation**, in the second case **mod** l **representation** and in the third case l-adic representation.

Definition 1.2.2. We call ρ odd if $det(\rho(c)) = 1$, where c is the complex conjucation.

Definition 1.2.3. A representation ρ is called unramified in a prime p if the image of the inertia group I_p is trivial. If ρ is unramified in p and ϕ_p in a p-Frobenious we write $F_{\rho,p} := \rho(\phi_p(G))$. We denote then $P_{\rho,p}(T) := \det(1 - F_{\rho,p}T)$.

The following lemma results from Čebotarev's density theorem:

Lemma 1.2.4. Let X be a set of prime numbers of density 1 and let ρ and ρ' be two semi-simple linear representations of G.

If $\forall p \in X$, ρ and ρ' are unramified at p and $P_{\rho,p}(T) = P_{\rho',p}(T)$ (resp. $Tr(F_{\rho,p}) = Tr(F_{\rho',p})$ in the case that k has characteristic 0), then we have that ρ and ρ' are isomorphic.

Definition 1.2.5. Let N be an integer ≥ 1 and X be the set of its prime divisors. If we choose ρ as above, we say that this representation is unramified outside N.

Remark 1.2.6. In the lemma above, if $k = \mathbb{C}$ the condition of semisimplicity is automatically satisfied.

Results

In this chapter we note $G = \operatorname{Gal}(\overline{\mathbb{Q}}, \mathbb{Q})$.

2.1 The main theorem

Theorem 2.1.1. Let N be an integer ≥ 1 , ϵ an odd Dirichlet character mod N and $f \in M_1(N, \epsilon)$ non-identically zero. We suppose that f is an eigenfunction of T_p , $p \not | N$ with eigenvalues a_p .

It exists a linear representation

$$\rho: G \to GL_2(\mathbb{C})$$

which is unramified outside N and s.t. $Tr(F_{\rho,p}) = a_p$ and $det(F_{\rho,p}) = \epsilon(p)$, $\forall p \not| N$. Moreover, ρ is irreducible $\Leftrightarrow f$ is a cusp form.

The proof is given in the last chapter.

Remark 2.1.2. Čebotarev's density theorem implies that the representation ρ attached to f is unique up to isomorphism.

Corollary 2.1.3. The a_p 's are sums of the roots of unity. In particular, $|a_p| \leq 2, \forall a_p$.

Remark 2.1.4. If the modular form is of weight 1 then its correspoding representation is odd.

Proof. Omited.

2.2 Artin conductor and local factors

Let l be a prime number. We choose an extension in $\overline{\mathbb{Q}}$ of the l-adic valuation of \mathbb{Q} .

Let

$$G_0 \supset G_1 \supset ... \supset G_i \supset ...$$

be the ramification groups of the image of ρ corresponding to this valuation.

We note V^{G_i} the subspace of V of the fixed elements by G_i .

We write

$$f_l(\rho) = \sum_{i=0}^{\infty} \left(\frac{G_i}{G_0} codim V^{G_i} \right),$$

where $codimV^{G_i} = \dim V - \dim V^{G_i}$.

From a theorem we have that $f_l(\rho) \in \mathbb{Z}_{\geq 0}$.

We define the **Artin conductor** to be

$$N_{
ho} = \prod_{l} l^{f_l(
ho)}.$$

Note that this is a finite product because ρ is ramified in finite many places and if ρ is unramified in a place l then $f_l(/rho) = 0$.

We will now give the definition the the Artin L-function.

Definition 2.2.1. Let L/K be a finite normal extension of algebraic number fields and ρ be a representation of $\operatorname{Gal}(L/K)$. Let V be its corresponding vector space.

For very prime ideal \mathfrak{p} of K we choose a prive divisor \mathfrak{P} in L. We note with $D_{\mathfrak{P}}$ the decomposition group and with $I_{\mathfrak{P}}$ the inertia group of \mathfrak{P} .

We note $V^{I_{\mathfrak{p}}}$ the subspace of V of the fixed elements by $I_{\mathfrak{p}}$. (Note that for almost all \mathfrak{p} we have $V^{I_{\mathfrak{p}}} = V$).

Let $\sigma_{\mathfrak{P}}$ be the Frobenious automorphism i.e. the generator of $D_{\mathfrak{P}}/I_{\mathfrak{P}}$ which induces on the residual class field extension the automorphism

$$\overline{\sigma}_{\mathfrak{P}}: x \to x^q, x \in \mathfrak{O}_L/\mathfrak{P}, q = |\in \mathfrak{O}_K/\mathfrak{p}|.$$

 $1 - N(\mathfrak{p})^{-s}/\sigma_{\mathfrak{p}}$ operates on $V^{I_{\mathfrak{p}}}$ and

$$L_{\mathfrak{p}}(s,\rho)^{-1} := \det_{V^{I_{\mathfrak{p}}}} (1 - N(\mathfrak{p})^{-s} \sigma_{\mathfrak{P}})$$

is a polynomial in $N(\mathfrak{p})^{-s}$ which does not depend of the choice of \mathfrak{P} .

The Artin L-function of ρ is defined by

$$L(s,\rho) := \prod_{\mathfrak{p}} L_{\mathfrak{p}}(s,\rho)$$

where the product runs over all the prime ideals of K.

Remark 2.2.2. Brauer proved (1947) that the Artin L-function has a meromorphic continuation to the complex plane. Artin conjecture asserts that the Artin L-function is holomorphic to the whole plane with the exception a pole at s=1 if ρ is trivial.

We use the assumptions and the notation from theorem 2.1.1

Theorem 2.2.3. Let f be a cusp newform with coefficients $a_n, n \ge 1$. Let ρ be the representation of G corresponding to f. We have:

- (a). The Artin conductor of ρ is equal to N.
- (b). The Artin L-function $L(s,\rho)$ is equal to $\Phi_f(s) = \sum_{n=1}^{\infty} a_n n^{-s}$.

Corollary 2.2.4. The representation ρ is ramified in all the prime divisors of N.

Proof. Immediate from (a). \Box

Corollary 2.2.5. $L(s, \rho)$ is an holomorphic function (in the whole plane).

Proof. Immediate from (b). The Hecke theory shows that $\Phi_f(s)$ is holomorphic. \square

The last corollary implies that the Artin conjecture is true in this certain case.

Proof. (Proof of theorem 2.2.3)

The proof uses the functional equation satisfied by $\Phi_f(s)$ and $L(s, \rho)$. For a proof see [DeSe] p.515-516.

2.3 Characterisation of representations attached to forms of weight 1

We use the notation used in the first section of this chapter and we suppose that f is a cusp form.

The representation

$$\rho: G \to GL_2(\mathbb{C})$$

corresponding to f has the following properties:

(i) ρ is irreducible (results from the main theorem).

- (ii) ρ is odd (see remark 2.1.4).
- (iii) For every continuous character

$$\chi:G\to\mathbb{C}^*$$
,

the Artin L-function $L(s, \rho \otimes \chi)$ is holomorphic (this is a result of corollary 2.2.5 to the cusp form $f_{\chi} = \sum \chi(n) a_n q^n$).

Reciprocally,

Theorem 2.3.1. (Weil-Langlands) Let a representation $\rho: G \to GL_2(\mathbb{C})$ satisfying the conditions (i), (ii), (iii) above. We write

$$L(s,\rho) = \sum a_n n^{-s}, f = \sum a_n q^n, \epsilon = det(\rho), N = conductor \ of \ \rho.$$

Then f is a cusp newform of type $(1,\epsilon)$ over $\Gamma_0(N)$, and ρ is the representation attached to f.

Remark 2.3.2. This theorem can be generalized for all global fields.

2.4 The Artin Conjecture for odd 2-dimensional representations

Let

$$PGL_2(\mathbb{C}) = GL_2(\mathbb{C})/\mathbb{C}^*$$
.

Let $\rho:G\to GL_2(\mathbb{C})$ be an odd, irreducible representation. We may consider its projectivisation:

$$\overline{\rho}: G \to PGL_2(\mathbb{C}).$$

obtained by composing ρ with the canonical homomorphism. The image of $\overline{\rho}$, $\overline{\rho}(G)$, is a finite subgroup of $PGL_2(\mathbb{C})$ i.e. a priori is isomorphic to one of the following:

- (a) A dihedral group (i.e. a non-trivial extension of a group of order 2 by a cyclic group).
- (b) The symmetric A_4 group
- (c) The symmetric S_4 group
- (d) The symmetric A_5 group

The cyclic case is excluded because we assumed ρ to be irreducible.

Artin's conjecture has been proven for the dihedral case by Hecke. If ρ is of dihedral type then is induced to a representation of degree 1 of the $\operatorname{Gal}(\overline{\mathbb{Q}},\mathbb{Q}(\sqrt{d}))$, where $\mathbb{Q}(\sqrt{d})$ is a quadratic extension of \mathbb{Q} . The condition (iii) is then satisfied and ρ responds in a cusp form.

Langlands (1980) proved it for the A_4 -type and Tunnell (1981) for the S_4 -type.

The A_5 case is still open and so the question of displaying at least examples of representations of A_5 -type whose Artin L-series are L-series of a newform of weight 1 arises. The question is considered difficult and till up to now we have only few examples. A method of producing such examples is described in [Fr].

l-adic representation and representation mod l

In this chapter we note $G = \operatorname{Gal}(\overline{\mathbb{Q}}, \mathbb{Q})$.

3.1 *l*-adic representations

We will use the following result

Theorem 3.1.1. Let $f \in M_k(N, \epsilon)$ non-identically zero. We suppose that $k \geq 2$ and f is an eigenfunction of the $T_p, p \not| N$, with eigenvalues a_p . Let K be a finite extension of \mathbb{Q} , containing the a_p 's and $\epsilon(p)$'s. Let λ be a finite prime (place) of K of residual characteristic l and let K_{λ} be the completion of K in λ . It exists a continuous semi-simple linear representation

$$\rho_{\lambda}: G \to GL_2(K)$$

which is unramified outside Nl and s.t.

$$Tr(F_{\rho_{\lambda},p}) = a_p$$
 and $det(F_{\rho_{\lambda},p}) = \epsilon(p)p^{k-1}$ if $p \not| Nl$

Due to Čebotarev's density theorem the last condition determines ρ_{λ} in a unique way, up to isomorphism.

Corollary 3.1.2. Let $(f, N, k, \epsilon, (a_p))$ and $(f', N', k', \epsilon', (a'_p))$ be as in theorem 3.1.1. If the set of prime numbers p s.t. $a_p = a'_p$ has density 1, then $k = k', \epsilon = \epsilon'$ and $a_p = a'_p, \forall p \not\mid NN'$.

Indeed, the representations attached to f and f' (for the same choice of K and λ) are isomorphic due to Čebotarev's density theorem (see also lemma 1.2.4).

Remark 3.1.3. Once the main theorem is proven, it's easy to see that 3.1.1 and 3.1.2 also hold for weight 1; however in that case the image of group G is a finite group.

3.2 Reduction mod l

Let $K \subset \mathbb{C}$ be a field of algebraic numbers, λ be a finite prime (place) of K, \mathfrak{O}_{λ} be the corresponding valuation ring, \mathfrak{m}_{λ} be it's corresponding maximal ideal, $k_{\lambda} = \mathfrak{O}_{\lambda}/\mathfrak{m}_{\lambda}$ be the residual field and l be the characteristic of k_{λ} . To the following when we write mod λ we mean mod \mathfrak{m}_{λ} .

Definition 3.2.1. Let $f \in M_k(N, \epsilon)$.

We say that f is λ -integer if the coefficients of the series f_{∞} belong to \mathfrak{O}_{λ} . We say that $f \equiv 0 \pmod{\lambda}$ if the coefficients of the series f_{∞} belong to \mathfrak{m}_{λ} . We say that f is an eigenvector of $T_p \mod{\lambda}$, of eigenvalue $a_p \in k_{\lambda}$, if we have

$$f|T_p - a_p f \equiv 0 \pmod{\lambda}$$
.

Theorem 3.2.2. With the above notations, let $f \in M_k(N, \epsilon), k \geq 1$, with coeffecients from K. We suppose that f is λ -integer, $f \not\equiv 0 \pmod{\lambda}$, and f is an eigenvector of $T_p \mod \lambda$, for $p \not\mid Nl$, with eigenvalues $a_p \in k_\lambda$. Let k_f be the subfield of k_λ containing the a_p 's and the reductions mod λ of $\epsilon(p)$. Then it exists a semi-simple representation

$$\rho: G \to GL_2(k_f)$$

which is unramified outside Nl and s.t. $\forall p \not| Nl$, we have that

$$Tr(F_{\rho,p}) = a_p \text{ and } det(F_{\rho,p}) \equiv \epsilon(p)p^{k-1} \pmod{\lambda}.$$

3.2.1 Proof of theorem 3.2.2

Let $(K', \lambda', f', k', \epsilon', (a'_p))$ be as in theorem 3.2.2, where $K' \supset K$ and λ' extends λ . If $a_p \equiv a'_p \pmod{\lambda'}$ and $\epsilon(p)p^{k-1} \equiv \epsilon'(p)p^{k'-1} \pmod{\lambda'}$, $\forall p \not| Nl$, then the theorem

for f is equivalent with the theorem for f'. The second condition is verified when $\epsilon = \epsilon'$ and $k \equiv k' \pmod{l-1}$ and then the first condition when $f \equiv f' \pmod{\lambda'}$.

REDUCTION TO THE CASE $k \geq 2$.

For n > 2 even, let E_n be the Eisenstein series of weight n over $SL_2(\mathbb{Z})$ normalised s.t. the constant term is 1. If we choose n to be divisable by l-1, the development

of E_n is l-integer and $E_n \equiv 1 \pmod{l}$. (See [DeSe]). Then the product $f \cdot E_n$ is congruent to $f \mod \lambda$, it's weight k + n is congruent to $k \mod (l - 1)$.

This means that the theorem for f is equivalent to the theorem for $f \cdot E_n$, which has weight > 2.

REDUCTION IN THE CASE THAT f IS AN EIGENVECTOR OF T_p .

It suffices to verify that there exists a f' as the one in the beginning of this paragraph, with $(k', \epsilon') = (k, \epsilon)$, which is an eigenvector of T_p .

That results from the following lemma applied to T_p , acting over the \mathfrak{O}_{λ} -module M of the modular form of type (k, ϵ) over $\Gamma_0(N)$ with coefficients in \mathfrak{O}_{λ} :

Lemma 3.2.3. Let M be a finite free module over a d.v.r. \mathfrak{D} . We note with \mathfrak{m} the maximal ideal of \mathfrak{D} , k its residual field, K the field of fractions. Let \mathfrak{T} be a set of endomorphisms of M which is commutative. Let $f \in M/\mathfrak{m}M$ be an (common) eigenvector (non-zero) of $T \in \mathfrak{T}$, and $a_T \in k$ be the corresponding eigenvalues. It exists then a d.v.r. $\mathfrak{D}' \supset \mathfrak{D}$, with maximal ideal \mathfrak{m}' s.t. $\mathfrak{D} \cap \mathfrak{m}' = \mathfrak{m}$, and its field of fractions K' is a finite extension of K, and exists a non-zero element f' of

$$M' = \mathfrak{O}' \otimes_{\mathfrak{O}} M,$$

which is an eigenvector of $T \in \mathfrak{T}$, with eigenvalues a'_T s.t. $a'_T \equiv a_T \pmod{\mathfrak{m}'}$.

Proof. Let \mathfrak{H} be the subalgebra of End(M) generated by \mathfrak{T} . Even by taking a finite extension of scalars, we can suppose that $K \otimes \mathfrak{H}$ is a product of Artin rings of the residual field K.

Let $\chi: \mathfrak{H} \to k$ be an homomorphism s.t. $h \cdot f = \chi(h)f, \forall h \in \mathfrak{H}$.

Since \mathfrak{H} is free n \mathfrak{O} it exists a prime ideal \mathfrak{p} of \mathfrak{H} contained in the maximal ideal $Ker(\chi)$ and s.t. $\mathfrak{p} \cap \mathfrak{O} = 0$; that's the kernel of an homomorphism $\chi' : \mathfrak{H} \to \mathfrak{O}$, where the reduction mod \mathfrak{m} is χ .

The ideal of $K \otimes \mathfrak{H}$ generated by \mathfrak{p} belongs to the support of the module $K \otimes M$. We can conclude then that there exists a non-zero element f'' of $K \otimes M$ s.t. $hf'' = \chi'(h)f, \forall h \in \mathfrak{H}$. We take then as f' a non-zero multiple of f'' belonging to M. \square

End of proof of theorem 3.2.2

Considering what we did previously we can suppose that $k \geq 2$ an that f is an eigenvector of $T_p, p \not|Nl$.

As T_l commutes with T_p we can suppose that f is an eigenvector of T_l , $l \not| N$. Then, let

$$\rho_{\lambda}: G \to GL_2(K_{\lambda})$$

to be a representation assosiated with f (see theorem 3.1.1). We can replace ρ_{λ} by an isomorph representation. Let $\hat{\mathcal{D}}_{\lambda}$ be the ring of integers of K_{λ} . We can suppose that $\rho_{\lambda}(G) \subset GL_2(\hat{\mathcal{D}}_{\lambda})$ (i.e the completion of \mathcal{D}_{λ}). By reduction mod λ we can deduce from ρ_{λ} a representation

$$\tilde{\rho}_{\lambda}: G \to GL_2(k_{\lambda}).$$

Let ϕ be the semisimplification of $\tilde{\rho}_{\lambda}$.

 ϕ is a semi-simple representation unramified outside Nl which satisfies the formulas from theorem 3.2.2. The group $\phi(G)$ is finite. Due to Čebotarev's density theorem $\phi(G)$ is of the form $F_{\phi,p}$, with $p \not| Nl$.

Considering the definition of k_f , we have that $\forall s \in \phi(G)$ the coefficients of the polynomial det(1-sT) are in k_f .

The existence of the representation $\rho: G \to GL_2(k_f)$ we are looking for comes from the following lemma.

Lemma 3.2.4. Let k' be a field and Φ be a group. Let $\phi: \Phi \to Gl_n(k')$ be a semi-simple representation. Let k be a subfield of k' containing the coefficients of the polynomials $det(1-\phi(s)T), s \in \Phi$. Then ϕ is isomorph to a representation $\rho: \Phi \to Gl_n(k)$.

Proof. See lemma 6.13 of [DeSe].

Proof of the main theorem

In this chapter we suppose that the considered modular form f is an Eisenstein series or a cusp form.

Before we proceed we state proposition 5.1 from [DeSe] in the case of k = 1. This is usefull for the proof of the main theorem.

Proposition 4.0.5. Let f be a cusp form of type $(1, \epsilon)$ over $\Gamma_0(N)$ not-identically zero. We suppose that f is an eigenfunction of T_p , $p \not| N$ with eigenvalues a_p .

The series $\sum_{p \mid N} |a_p|^2 p^{-s}$ converges for s > 1 real and we have

$$\sum_{p|N} |a_p|^2 p^{-s} \le \log(\frac{1}{s-1}) + O(1), \text{ for } s \to 1.$$

Proof. See proposition 5.1 from [DeSe].

Proposition 4.0.6. With the considerations of the previous proposition we have that $\forall \eta > 0$ it exists a set of prime numbers X_{η} and a finite subset Y_{η} of \mathbb{C} s.t.

$$dens.supX_{\eta} \leq \eta \ and \ a_p \in Y_{\eta}, \forall p \not\in X_{\eta}.$$

Proof. See proposition 5.5 from [DeSe].

We will note with \mathbf{F}_l the finite field with l elements.

Lemma 4.0.7. If f is an Eisenstein series, there exist two characters χ_1 and χ_2 of $(\mathbb{Z}/N\mathbb{Z})^*$ s.t. $\chi_1 \cdot \chi_2 = \epsilon$ and s.t. $a_p = \chi_1(p) + \chi_2(p), \forall p \not| N$. We consider the reducible representation

$$\rho = \chi_1 \otimes \chi_2,$$

where χ_i can be viewed as representations of degree 1 of $\operatorname{Gal}(\overline{\mathbb{Q}}, \mathbb{Q})$.

We suppose that f is a cusp form.

(From proposition 2.7 from [DeSe],) a_p and $\epsilon(p)$ belong to the ring of integers of \mathfrak{O}_K of the number field K, that we suppose to be Galois over \mathbb{Q} .

Let L be the set of prime numbers l which split completelly in K. For every $l \in L$ we choose a place λ_l of K that extends l. The corresponding residual field is equal to \mathbf{F}_l .

Due to theorem 3.2.2, there is a continuous semi-simple representation

$$\rho_l: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL(\mathbf{F}_l),$$

which is unramified outside Nl and s.t.

$$det(1 - F_{\rho_l,p}T) \equiv 1 - a_pT + \epsilon(p)T^2 \pmod{\lambda_l}$$
, if $p \not| Nl$.

Definition 4.0.8. Let η and M be two positive numbers. We consider the following property for the subgroups G of $GL_2(\mathbf{F}_l)$:

 $C(\eta, M)$: If exists an $H \subset G$ s.t.

$$|H| > (1 - \eta)|G|$$

and the set of polynomials $det(1-hT), h \in H$ has at most M elements.

Proposition 4.0.9. Let $\eta < \frac{1}{2}$ and $M \ge 0$. It exists a constant $A = A(\eta, M)$ s.t. for every prime number l and for every semisimple group $G \subset GL_2(\mathbf{F}_l)$ satisfying $C(\eta, M)$ we have $|G| \le A$.

Proof. Omited. See proposition 7.2 from [DeSe].

Let $G_l \subset GL_2(\mathbf{F}_l)$ be the image of ρ_l .

Lemma 4.0.10. $\forall \eta > 0$ exists a constant M s.t. G_l satisfies the condition $C(\eta, M)$, $\forall l \in I$.

Proof. From proposition 4.0.6 it exists a subset X_{η} , of the set P of prime numbers s.t. $dens.supX_{\eta} \leq \eta$ and s.t. for $p \notin X_{\eta}$ and that the a_p 's for $p \notin X_{\eta}$ form a finite set.

We note \mathcal{M} the (finite) set of the polynomials $1 - a_p T + \epsilon(p) T^2$, for $p \notin X_{\eta}$. We note $M = |\mathcal{M}|$.

We claim that G_l satisfies $C(\eta, M), \forall l \in L$.

In deed, let $H_l \subset G_l$ be the set which contains the Frobenius $F_{\rho_l,p}, p \notin X_{\eta}$ and their conjugates. From Čebotarev's density theorem, we have that $|H_l| > (1-\eta)|G_l|$.

On the other hand, if $h \in H_l$, the polynomial det(1-hT) is a reduction (mod λ_l) of an element of \mathcal{M} , so it belongs to a set with at most M elements. So, the condition $C(\eta, M)$ is satisfied.

Lemma 4.0.11. It exists a constant A s.t. $|G_l| \leq A, \forall l \in L$.

Proof. Immediate from proposition 4.0.9.

We choose a constant A satisfying 4.0.11. Even by extending K (which makes L smaller), we can suppose that it contains all the n-th roots of unity, for $n \leq A$. Since l splits in K, all n-th roots of unity with $n \leq A$ are in \mathbf{F}_l .

Let Y be the set of polynomials $(1 - \alpha T)(1 - \beta T)$ where α and β are roots of unity with order $\leq A$.

If $p \not| N, \forall l \in L$ it exists $R(T) \in Y$ s.t.

$$1 - a_p T + \epsilon(p) T^2 \equiv R(T) \pmod{\lambda_l}.$$

As Y is finite, it exists an R s.t. the congruence above is satisfied for infinitely many l, so then we have the equality

$$1 - a_p T + \epsilon(p) T^2 = R(T),$$

i.e. $1 - a_p T + \epsilon(p) T^2 \in Y$.

Let

$$L' = \{l \in L \mid l > A \text{ and } R, S \in Y, R \neq S \text{ implies } R \not\equiv S \pmod{\lambda_l} \}.$$

The set L - L' is finite. So L' is infinite. Let $l \in L'$.

The order of the group G_l is prime to l (if not l should divide $|G_l|$ but $|G_l| \le A < l$).

It results, by a standard argument, that the identity representation $G_l \to GL_2(\mathbf{F}_l)$ is the reduction mod λ_l of a representation $G_l \to GL_2(\mathfrak{O}_{\lambda_l})$, where \mathfrak{O}_{λ_l} is the valuation ring of λ_l .

Composing this with the canonical application $G \to G_l$ we obtain a representation

$$\rho: G \to GL_2(\mathfrak{O}_{\lambda_I}).$$

By construction, ρ is unramified outside Nl. If p /Nl, the eigenvalues of the Frobenius elements $F_{\rho,p}$ are the roots of the unity with order $\leq A$ (because the image of ρ is isomorph to G_l of order $\leq A$) i.e. $det(1 - F_{\rho,p}T) \in Y$.

On the other hand, since the reduction of ρ mod λ_l is ρ_{λ} , we have

$$det(1 - F_{\varrho,p}T) \equiv 1 - a_pT + \epsilon(p)T^2 \pmod{\lambda_l}.$$

But, $det(1-F_{\rho,p}T), 1-a_pT+\epsilon(p)T^2\in Y$ and due to the last relation they are equal i.e.

$$det(1 - F_{\rho,p}T) = 1 - a_pT + \epsilon(p)T^2, \forall p \not| Nl.$$

We replace now l by another prime $l' \in L'$. We obtain a representation $\rho' : G \to GL_2(\mathfrak{O}_{\lambda_{l'}})$ which has the same properties as above for $p \not| Nl'$. In particular

$$det(1 - F_{\rho,p}T) = 1 - a_pT + \epsilon(p)T^2, \forall p \not| Nl'.$$

From Čebotarev's density theorem we have that ρ and ρ' are isomorph over $GL_2(K)$ as representations (consequently and as complex representations i.e. representations over $GL_2(\mathbb{C})$). It results that ρ is unramified outside N and that

$$det(1 - F_{\rho,p}T) = 1 - a_pT + \epsilon(p)T^2, \forall p \not| N.$$

It remains to show that ρ is irreducible.

We suppose that ρ is not irreducible. Then is the sum of two representations of degree 1, which corrspond to two characters χ_1 and χ_2 , unramified outside N, s.t. $\chi_1\chi_2=\epsilon$ and

$$a_p = \chi_1(p) + \chi_2(p), \forall p \not N.$$

We then have

$$\sum |a_p|^2 p^{-s} = \sum |\chi_1(p) + \chi_2(p)|^2 p^{-s}.$$

i.e.

$$\sum |a_p|^2 p^{-s} = 2 \sum p^{-s} + \sum \chi_1(p) \overline{\chi}_2(p) p^{-s} + \sum \chi_2(p) \overline{\chi}_1(p) p^{-s}.$$

If $s \to 1$, we have that $\sum p^{-s} = \log(\frac{1}{s-1}) + O(1)$.

On the other hand we have that $\chi_1\overline{\chi}_2\neq 1$ because otherwise we would have $\epsilon=(\chi_1)^2$ and $\epsilon(-1)=1$. From here it results that

$$\sum \chi_1(p)\overline{\chi}_2(p)p^{-s} = O(1) \text{ and } \sum \chi_2(p)\overline{\chi}_1(p)p^{-s} = O(1).$$

We have

$$\sum |a_p|^2 p^{-s} = 2\log(\frac{1}{s-1}) + O(1) \text{ for } s \to 1$$

That contradicts proposition 4.0.5 and this finishes the proof.