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Chapter 1

Prelimaries

1.1 Elements of modular forms

Let N be an integer > 1. We define

To(N) = {( “! ) € SLy(Z),c= O(modN)}
It’s easy so see that

T(N) C Ty (N) C To(N)

Let f be a function over the semiplane H = {z | Im(z) > 0}. Let k be an integer

and v = < Z Z > be an element in SLy(Z). We write

az+b
cz+d’

(f Ik V)(2) = (cz + d) " f(v2), where yz =

Definition 1.1.1. Let T’ be a set such that T'(N) CT' C SLy(Z). A function f is
called modular of weight k over T if:

1. f|k’}/:fV’}/EF



2. f is holomorphic in H

3. f is "holomorphic on points” i.e. Yo € SLy(7Z) the function f | o has a
series development to powers of €>™*/N with exponents > 0.

If we replace ”exponents > 0” with ”exponents > 07, in the above then the modular
form is called parabolic.

Definition 1.1.2. Let f be a modular form of weight k over T'1(N) and v =

a b

d
(Z/N(Z)*. We will note f | Rq.

We also define f | R_1 = (—1)*f.

€ T'o(N). The form f | v depends only from the image of d in

Definition 1.1.3. An homorphism
€:(Z/N(Z)* - C*

is called Dirichlet character mod N.
- € is called even if e(—1) = 1.
- € is called odd if e(—1) = —1.

Let k be an integer with the same parity with € [i.e. e(—1) = (=1)*]. A modular
form is called of type (k,e€) over I'o(N) if it is a modular form of weight k over
Fl (N) s.t.

f | Ry = E(d)f,Vd € (Z/N(Z)*a

i.e.

f <Zis> :e(d)(cz+d)kf(z),v< “ ! ) € To(N).

We define

M. (N, e) = {f modular form of type (k,€) over T'o(N)}

1.2 Elements of Galois Representation

Definition 1.2.1. Let G be a topological group, k be a field with a topology and
V' be a k-vectorial space. Then a linear representation of G on V over k is a
continuous homomorphism

p:G — GL,(k).

We will say that p is stmple if V is a simple G-module. If V is a direct sum of
simple G-modules, then we will say that p is semi-simple.



Let Q be an algebraic closure of Q and G = Gal (Q, Q).

The Galois representations of GG are the linear representations.
p:G— GL,(k),
where k is one of the following;:

(a) The field of complex numbers C with the discrete topology
(b) A finite field with the discrete topology
(c) A finite l[-adic extension (Y with the natural topology

In the first two cases, the image of p, p(G), is finite. In the first case p is called
Artin representation, in the second case mod | representation and in the third
case [-adic representation.

Definition 1.2.2. We call p odd if det(p(c)) = 1, where c is the complez conjuca-
tion.

Definition 1.2.3. A representation p is called unramified in a prime p if the
image of the inertia group I, is trivial. If p is unramified in p and ¢, ia a p-
Frobenious we write F, , := p(¢p(G)). We denote then P, ,(T) := det(1 — F, ,T).

The following lemma results from Cebotarev’s density theorem:

Lemma 1.2.4. Let X be a set of prime numbers of density 1 and let p and p' be
two semi-simple linear representations of G.

IfVp € X, p and p' are unramified at p and P, ,(T) = Py ,(T) (resp. Tr(F,p)
=Tr(Fy p) in the case that k has characteristic 0), then we have that p and p’ are
isomorphic.

Definition 1.2.5. Let N be an integer > 1 and X be the set of its prime divisors.
If we choose p as above, we say that this representation is unramified outside N.

Remark 1.2.6. In the lemma above, if k = C the condition of semisimplicity is
automatically satisfied.






Chapter 2

Results

In this chapter we note G = Gal (Q, Q).

2.1 The main theorem

Theorem 2.1.1. Let N be an integer > 1, € an odd Dirichlet character mod N
and f € My(N,e€) non-identically zero. We suppose that [ is an eigenfunction of
Ty, p AN with eigenvalues ay,.

It exists a linear representation

which is unramified outside N and s.t. Tr(F,,) = ap and det(F, ) = €(p), Vp fN.
Moreover, p is irreducible & f is a cusp form.

The proof is given in the last chapter.

Remark 2.1.2. Cebotarev’s density theorem implies that the representation p at-
tached to f is unique up to isomorphism.

Corollary 2.1.3. The a,’s are sums of the roots of unity. In particular, |a,| <
2,Vay,.

Remark 2.1.4. If the modular form is of weight 1 then its correspoding represen-
tation is odd.

Proof. Omited. O
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2.2 Artin conductor and local factors

Let [ be a prime number. We choose an extension in Q of the l-adic valuation of
Q.

Let
G()DGl D...DG;’D...

be the ramifiction groups of the image of p corresponding to this valuation.
We note Vi the subspace of V of the fixed elements by Gj.

We write

filp) = Z <g—;codivai> :

i=0
where codimV % = dimV — dim V.
From a theorem we have that fi(p) € Z>o.
We define the Artin conductor to be

N, =[],
l

Note that this is a finite product because p is ramified in finite many places and if
p is unramified in a place [ then f;(/rho) = 0.

We will now give the definition the the Artin L-function.

Definition 2.2.1. Let L/K be a finite normal extension of algebraic number fields
and p be a representation of Gal (L/K). Let V be its corresponding vector space.

For very prime ideal p of K we choose a prive divisor B in L. We note with Dy
the decomposition group and with Iz the inertia group of .

We note VIv the subspace of V of the fized elements by I,. (Note that for almost
all p we have Vi =V).

Let oz be the Frobenious automorphism i.e. the generator of Dy /Iy which induces
on the residual class field extension the automorphism

op e —al,eeOL/PB,q=1]€Ok/pl.

1 — N(p) */oy, operates on VI and

Ly(s,p)™" 5= det (1= N(p) ~*og)

is a polynomial in N(p)~*° which does not depend of the choice of .
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The Artin L-function of p is defined by

L(S,p) = HLP(SMD)
b

where the product runs over all the prime ideals of K.

Remark 2.2.2. Brauer proved (1947) that the Artin L-function has a meromor-
phic continuation to the complex plane. Artin conjecture asserts that the Artin
L-function is holomorphic to the whole plane with the exception a pole at s = 1 if
p s trivial.

We use the assumptions and the notation from theorem 2.1.1

Theorem 2.2.3. Let f be a cusp newform with coefficients an,n > 1. Let p be the
representation of G corresponding to f. We have:

(a). The Artin conductor of p is equal to N.

(b). The Artin L-function L(s, p) is equal to ®(s) =Y. 02 | apn™*.
Corollary 2.2.4. The representation p is ramified in all the prime divisors of N.
Proof. Immediate from (a). O
Corollary 2.2.5. L(s, p) is an holomorphic function (in the whole plane).
Proof. Immediate from (b). The Hecke theory shows that ®(s) is holomorphic. O

The last corollary implies that the Artin conjecture is true in this certain case.

Proof. (Proof of theorem 2.2.3)
The proof uses the functional equation satisfied by ®(s) and L(s, p). For a proof
see [DeSe] p.515-516. O

2.3 Characterisation of representations attached
to forms of weight 1

We use the notation used in the first section of this chapter and we suppose that f
is a cusp form.
The representation

p:G — GL2(C)
corresponding to f has the following properties:

(i) p is irreducible (results from the main theorem).



12

(ii) pis odd (see remark 2.1.4).

(iii) For every continuous character

x:G—C",

the Artin L-function L(s, p ® x) is holomorphic (this is a result of corollary
2.2.5 to the cusp form f, =Y x(n)a,q").

Reciprocally,

Theorem 2.3.1. (Weil-Langlands) Let a representation p : G — G L2 (C) satisfying
the conditions (i), (i), (iii) above. We write

L(s,p) = Z a,n"°, f = Zanq”, e = det(p), N = conductor of p.

Then f is a cusp newform of type (1,€) over To(N), and p is the representation
attached to f.

Remark 2.3.2. This theorem can be generalized for all global fields.

2.4 The Artin Conjecture for odd 2-dimensional
representations

Let

PGL,(C) = GL,(C)/C*.

Let p : G = GL2(C) be an odd, irreducible representation. We may consider
its projectivisation:
5:G — PGL(C).

obtained by composing p with the canonical homomorphism. The image of p, p(G),
is a finite subgroup of PG L2 (C) i.e. a priori is isomorphic to one of the following:

(a) A dihedral group (i.e. a non-trivial extension of a group of order 2 by a cyclic
group).

(b) The symmetric A4 group
(¢) The symmetric Sy group

(d) The symmetric A; group
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The cyclic case is excluded because we assumed p to be irreducible.

Artin’s conjecture has been proven for the dihedral case by Hecke.

If p is of dihedral type then is induced to a representation of degree 1 of the
Gal (Q, Q(v/d)), where Q(v/d) is a quadratic extension of Q. The condition (iii) is
then satisfied and p responds in a cusp form.

Langlands (1980) proved it for the A4-type and Tunnell (1981) for the Sy-type.

The As case is still open and so the question of displaying at least examples of
representations of As-type whose Artin L-series are L-series of a newform of weight
1 arises. The question is considered difficult and till up to now we have only few
examples. A method of producing such examples is described in [Fr].
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Chapter 3

[-adic representation and
representation mod |/

In this chapter we note G = Gal (Q, Q).

3.1 [-adic representations

We will use the following result

Theorem 3.1.1. Let f € My(N,¢€) non-identically zero. We suppose that k > 2
and f is an eigenfunction of the Tp,p AN, with eigenvalues a,. Let K be a finite
extension of Q, containing the a,’s and €(p)’s. Let X be a finite prime (place) of K
of residual characteristic | and let K be the completion of K in .

It exists a continuous semi-simple linear representation

px G — GLy(K)

which is unramified outside NI and s.t.

TT(pr,p) =ap and d@t(pr,p) = e(p)pk_l if p JN1

Due to Cebotarev’s density theorem the last condition determines py in a unique
way, up to isomorphism.

Corollary 3.1.2. Let (f,N,k,¢,(ap)) and (f',N',K' ¢, (ay,)) be as in theorem
8.1.1. If the set of prime numbers p s.t. a, = a;, has density 1, then k = k', e = €

and ap = a,,¥p JNN'.

Indeed, the representations attached to f and f’ (for the same choice of K and A)
are isomorphic due to Cebotarev’s density theorem (see also lemma 1.2.4).

15
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Remark 3.1.3. Once the main theorem is proven, it’s easy to see that 3.1.1 and
3.1.2 also hold for weight 1; however in that case the image of group G is a finite
group.

3.2 Reduction mod !

Let K C C be a field of algebraic numbers, A be a finite prime (place) of K,
9 be the corresponding valuation ring, my be it’s corresponing maximal ideal,
kx = Ox/my be the residual field and ! be the characteristic of k.

To the following when we write mod A we mean mod mj.

Definition 3.2.1. Let f € My(N,e).

We say that f is A-integer if the coefficients of the series fo belong to Oy.

We say that f =0 (mod X\) if the coefficients of the series foo belong to my.

We say that f is an eigenvector of T, mod A, of eigenvalue a, € ky, if we have

fIT, — apf =0 (mod \).

Theorem 3.2.2. With the above notations, let f € Mp(N,e),k > 1, with coef-
fecients from K. We suppose that f is A-integer, f Z 0 (mod \), and f is an
eigenvector of T, mod A, for p [N, with eigenvalues a, € k. Let ks be the sub-
field of kx containing the a,’s and the reductions mod \ of €(p). Then it exists a
semi-simple representation

which is unramified outside N1 and s.t. ¥p [N, we have that

Tr(F,,) = a, and det(F,,) = e(p)p*~" (mod )).

3.2.1 Proof of theorem 3.2.2

Let (K', X', f', k', €, (a,)) be as in theorem 3.2.2, where K’ D K and A" extends .
If a, = a!, (mod \') and €(p)p*~* = € (p)p* ~* (mod X'), Vp fNI, then the theorem

for f is equivalent with the theorem for f’. The second condition is verified when
e=¢ and k =k’ (mod | — 1) and then the first condition when f = f' (mod \').

REDUCTION TO THE CASE k > 2.

For n > 2 even, let E,, be the Eisenstein series of weight n over SLs(Z) normalised
s.t. the constant term is 1. If we choose n to be divisable by [ — 1, the developement
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of E, is l-integer and F,, = 1 (mod [). (See [DeSe]). Then the product f - E,, is
congruent to f mod A, it’s weight k + n is congruent to k mod (I — 1).

This means that the theorem for f is equivalent to the theorem for f-FE,, which
has weight > 2.

REDUCTION IN THE CASE THAT f IS AN EIGENVECTOR OF T,,.

It suffices to verify that there exists a f' as the one in the begining of this paragraph,
with (k',€') = (k,€), which is an eigenvector of 7).

That results from the following lemma applied to T}, acting over the ©,-module
M of the modular form of type (k,€) over I'g(N) with coefficients in Ojy:

Lemma 3.2.3. Let M be a finite free module over a d.v.r. 9. We note with m
the mazimal ideal of O, k its residual field, K the field of fractions. Let T be a set
of endomorphisms of M which is commutative. Let f € M/mM be an (common)
eigenvector (non-zero) of T € ¥, and ar € k be the corresponding eigenvalues.
It exists then a d.v.r. O' D O, with mazimal ideal m' s.t. O Nm' = m, and its field
of fractions K' is a finite extension of K, and exists a non-zero element f' of

MI:DI®Q M,

which is an eigenvector of T € X, with eigenvalues alp s.t. afp = ar (mod m').

Proof. Let $ be the subalgebra of End(M) generated by ¥. Even by taking a finite
extension of scalars, we can suppose that K ® £ is a product of Artin rings of the
residual field K.

Let x : $ — k be an homomorphism s.t. h- f = x(h)f,Vh € §.

Since $) is free n O it exists a prime ideal p of § contained in the maximal ideal
Ker(x) and s.t. pN O = 0; that’s the kernel of an homomorphism ' : § — O,
where the reduction mod m is y.

The ideal of K ® $ generated by p belongs to the support of the module K ® M.
We can conlude then that there exists a non-zero element f' of K ® M s.t. hf" =
X' (h)f,Vh € $. We take then as f’ a non-zero multiple of f” belonging to M. O

End of proof of theorem 3.2.2

Considering what we did previously we can suppose that k& > 2 an that f is an
eigenvector of T}, p fNI.

As T; commutes with T,, we can suppose that f is an eigenvector of Ty, I /N. Then,
let
P G — GLQ(K,\)
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to be a representation assosiated with f (see theorem 3.1.1). We can replace py by

an isomorph representation. Let O, be the ring of integers of K. We can suppose
that px(G) C GL3(D)) (i.e the completion of 9,). By reduction mod A we can
deduce from p) a representation

ﬁ)‘ G — GLQ(k,\)

Let ¢ be the semisimplification of py.

¢ is a semi-simple representation unramified outside N [ which satisfies the formulas
from theorem 3.2.2. The group ¢(G) is finite. Due to Cebotarev’s density theorem
#(Q) is of the form Fy ,, with p JNI.

Considering the definition of ky, we have that Vs € ¢(G) the coefficients of the
polynomial det(1 — sT') are in ky.

The existence of the representation p : G — GL2(ky) we are looking for comes from
the following lemma.

Lemma 3.2.4. Let k' be a field and ® be a group. Let ¢ : & — G, (k') be a
semi-simple representation. Let k be a subfield of k' containing the coefficients of

the polynomials det(1 — ¢(s)T),s € ®. Then ¢ is isomorph to a representation
p:® — Gly(k).

Proof. See lemma 6.13 of [DeSe]. O



Chapter 4

Proof of the main theorem

In this chapter we suppose that the considered modular form f is an Eisenstein
series or a cusp form.

Before we proceed we state proposition 5.1 from [DeSe| in the case of k = 1. This
is usefull for the proof of the main theorem.

Proposition 4.0.5. Let f be a cusp form of type (1,€) over T'g(N) not-identically
zero. We suppose that f is an eigenfunction of Tp,p fN with eigenvalues a,.

S

The series ), n lay|>p~* converges for s > 1 real and we have

1
Z |a,|’p° < loy(;) +0(1), fors— 1.
PN

Proof. See proposition 5.1 from [DeSe]. O

Proposition 4.0.6. With the considerations of the previous proposition we have
that Vp > 0 it exists a set of prime numbers X, and a finite subset Y, of C s.t.

dens.supX, <n and a, €Y,,Vp ¢ X,,.

Proof. See proposition 5.5 from [DeSe]. O

We will note with F; the finite field with [ elements.

Lemma 4.0.7. If f is an Eisenstein series, there exist two characters x1 and x>

of (LINZ)* s.t. x1-x2 =€ and s.t. a, = x1(p) + x2(p),Vp [IN.
We consider the reducible representation

P =Xx1® X2,

where x; can be viewed as representations of degree 1 of Gal (Q,Q).

19
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We suppose that f is a cusp form.

(From proposition 2.7 from [DeSe],) a, and €(p) belong to the ring of integers of
O of the number field K, that we suppose to be Galois over Q.

Let L be the set of prime numbers [ which split completelly in K. For every [ € L
we choose a place A\; of K that extends [. The corresponding residual field is equal
to Fl.

Due to theorem 3.2.2, there is a continuous semi-simple representation

pr: Gal (Q/Q) — GL(Fy),

which is unramified outside NI and s.t.

det(1 — F,, ,7) =1 —a,T + e(p)T? (mod X;), if p fNI.

Definition 4.0.8. Let 1 and M be two positive numbers. We consider the following
property for the subgroups G of GLo(F):
C(n,M): If exists an H C G s.t.

|H| > (1 -n)|G]|
and the set of polynomials det(1 — hT),h € H has at most M elements.

Proposition 4.0.9. Letn < § and M > 0. It exists a constant A = A(n, M) s.t.
for every prime number | and for every semisimple group G C GLo(F}) satisfying
C(n, M) we have |G| < A.

Proof. Omited. See proposition 7.2 from [DeSe]. O

Let G; C GL2(F;) be the image of p;.

Lemma 4.0.10. V7 > 0 ezists a constant M s.t. Gy satisfies the condition C'(n, M),
Vvl e L.

Proof. From proposition 4.0.6 it exists a subset X, of the set P of prime numbers
s.t. dens.supX, <n and s.t. for p ¢ X,, and that the a,’s for p ¢ X,, form a finite
set.

We note M the (finite) set of the polynomials 1 — a,T + €(p)T?, for p ¢ X,. We
note M = |M]|.

We claim that G satisfies C(n, M), Vi € L.

In deed, let H; C Gy be the set which contains the Frobenius F,, ,,,p € X;, and their
conjugates. From Cebotarev’s density theorem, we have that |H;| > (1 — n)|Gy].
On the other hand, if h € Hj, the polynomial det(1 —hT) is a reduction (mod A;) of

an element of M, so it belongs to a set with at most M elements. So, the condition
C(n, M) is satisfied. O
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Lemma 4.0.11. [i ezists a constant A s.t. |Gi| < A,V € L.
Proof. Immediate from proposition 4.0.9. O

We choose a constant A satisfying 4.0.11. Even by extending K (which makes L
smaller), we can suppose that it contains all the n-th roots of unity, for n < A.
Since [ splits in K, all n-th roots of unity with n < A are in Fy.

Let Y be the set of polynomials (1 —aT')(1 — 8T) where a and § are roots of unity
with order < A.

If p [N,VI € L it exists R(T) € Y s.t.
1 —a,T + €(p)T? = R(T)(mod \;).

As Y is finite, it exists an R s.t. the congruence above is satisfied for infinitelly
many [, so then we have the equality

1= a,T +e(p)T? = R(T),
ie. 1—a,T +€e(p)T* €Y.

Let

L'={leL|l>Aand R,S€Y,R+# S implies R Z S (mod X\;)}.

The set L — L' is finite. So L' is infinite. Let [ € L'.
The order of the group G is prime to ! (if not I should divide |G;| but |G;| < A < I).

It results, by a standard argument, that the identity representation G; — G L2 (Fy)
is the reduction mod A; of a representation G; — GLy(D),), where 9y, is the
valuation ring of ;.

Composing this with the canonical application G — G we obtain a representation

p: G — GLQ(D}\I).

By construction, p is unramified outside NI. If p /NI, the eigenvalues of the
Frobenius elements F}, , are the roots of the unity with order < A (because the
image of p is isomorph to G; of order < A) i.e. det(1 — F,,T) €Y.

On the other hand, since the reduction of p mod )\; is py, we have
det(1—F,,T)=1—-a,T + e(p)T? (mod X\;).

But, det(1 — F,,T),1 — a,T + e(p)T? € Y and due to the last relation they are
equal i.e.
det(1—F,,T)=1—a,T + ¢(p)T?,Vp fNI.
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We replace now [ by another prime I’ € L'. We obtain a representation p’ : G —
GL»(9), ) which has the same properties as above for p fNI'. In particular

det(1—F,,T)=1—-a,T + e(p)T* Vp [N

From Cebotarev’s density theorem we have that p and p' are isomorph over G Ly (K)
as representations (consequently and as complex representationsi.e. representetions
over GLy(C)). It results that p is unramified outside N and that

det(1 — F,,T) =1—a,T + ¢(p)T?Vp JN.

It remains to show that p is irreducible.

We suppose that p is not irreducible. Then is the sum of two representations of
degree 1, which corrspond to two characters y; and x», unramified outside N, s.t.
X1X2 = € and

ap = x1(p) + x2(p),Vp IN.

We then have

D lap)’p™ =D Ixa(p) + x2(0)Pp .
SlalPr= =23 0+ Y xi%0p = + > x2(0)% 0)p

L) +0(1).

On the other hand we have that x1X, # 1 because otherwise we would have € =
(x1)? and €(—1) = 1. From here it results that

Y xi@)Xe(p)p = 0(1) and Y xa(p)X, (p)p* = O(1).

i.e.

If s — 1, we have that ) p™® = log(;

We have
Zlaplps—ﬂog( )+O()f0rs—>1

That contradicts proposition 4.0.5 and this finishes the proof.



