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IX. Researches respecting Quaternions. First Series. By Sir WiLLiam Rowan
Hawmivron, LL.D., V.P.R.1. A., Fellow of the American Society of Arts and
Sciences ; of the Society of Arts for Scotland ; of the Royal Astronomical So-
ciety of London ; and of the Royal Northern Society of Antiquaries at Copen-
hagen ;  Corresponding Member of the Institute of France; Honorary or
Corresponding Member of the Royal or Imperial Academies of St. Petersburgh,
Berlin, and Turin ; of the Royal Societics of Edinburgh and Dublin ; of the
Cambridge Philosophical Society ; the New York Historical Society ; the So-
ciety of Sciences at Lausanne ; and of other scientific Societies in British and

Soreign Countries ; Andrews' Professor of Astronomy in the University of
Dublin ; and Royal Astronomer of Ireland.

Read November 13, 1843.

THE researches respecting Quaternions, of the first series of which an account
is submitted in the following pages, are to be considered as being, at least in their
first aspect and conception, a continuation of those speculations coucerning
algebraic Couples, and respecting Algebra itself, regarded as the science of Pure
Time, which were first communicated to the Royal Irish Academy in November,
1833, and were published in the year 1835 in the seventcenth Volume of its
Transactions. The author has thus endeavoured to fulfil, at least in part, the
intention which he expressed in the concluding sentence of his former Essay,
in the volume just referred to, of publishing, at a time then future, some appli-
cations of the same view of algebra to a theory of sefs of moments, steps, and
numbers, which shounld include that former theory of couples. Some general
remarks on this whole train of speculation, and on its application to geometrical
and physical questions, will be offered at the end of this paper. And the author
indulges a hope that the papers containing an account of those subsequent inves-
tigations respecting Quaternions, which he has made, and (in part) communicated
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to the Academy, since the date prefixed to this First Series of Researches, will
tend to place the subject in a still clearer point of view : and, by exhibiting more
fully to mathematicians its interest and its importance, increase the likelihood of
their contributing their aid to its development.

Observatory of Trinity College, Dublin, May 3, 1847.

General Conception and Notation of a System or Set of Moments.

1. When we have in any manner been led to form successively the separate
conceptions of any number of moments of time, we may afterwards form the new
conception of a system, or MOMENTAL SET, to which all these separate moments
belong ; and may say that this set is of the second, third, fourth, or n* order,
according as the number of the moments which compose it is 2, 3, 4, or n: we
may also call those moments the constituent moments of the set. A symbol for
such a set may be formed by enclosing in parentheses, with commas interposed
between them, the separate symbols of the moments which compose the set; thus

the symbol of a momental quaternion, or set of the fourth order, will be of the
form

(AO’ Al’ A2’ A3)’

if Ay 4, Ay 4, be employed as symbols to denote the four separate moments of
the quaternion. If we employ any other symbol, such as the letter @, to denote
the same quaternion, or set, we may then write an equation between the two
equisignificant symbols, as follows :

Q= (ApApApAy); (1)
and, in like manner, if @’ denote another quaternion, of which the four separate
moments are denoted by ag, Aj, Az A; we shall have this other similar equation,

Q' = (A5 A}, Ap A7), (2)
An equation of this sort, between two symbols of equinumerous momental sets,

is to be understood as expressing that the several moments of the one set coincide
respectively with the Aomologous moments of the other set, primary with pri-
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mary, secondary with secondary, and soon : thus if, with the recent significations
of the symbols, we write the quaternion equation,

d =0 (3)
or more fully,

(a0 A1y A5 A7) = (A Ap Ay 4y), (4)
we indicate concisely, thereby, the system of the four following momental equa-
tions, or expressions of four coincidences between moments of time denoted by
different symbols : ‘

Ag= Ap AJT= A, A; A, A; A, (5)
The same complex equation, or system of equations, may also be thus written :
(8 AD A3 43) (=, =, =, =) (Ap Ap Ap Ay); (6)

or more concisely thus :
Q (=’ = = =) Q. (7)

Characteristics of momental Separation, Recombination, and Transposition.

2. In the foregoing article, parentheses have been used as characteristics of’
systematic combination, in order to combine the symbols of separate moments
into the symbol of a common set. If we now agree to prefix, conversely, charac-
teristics of momental separation, such as M, M,, . . . to the symbol of a momental
set, in order to form separate symbols for the separate moments of that set, we
may resolve the equation (1) into the four following :

MQ = A5 MQT A5 MyQ T A5 M;Q = A3 (8)
and an equation, such as (3), between two momental quaternions or other sets,

@ and ', may, in like manner, be resolved into equations between moments as

follows :
MQ =M,Q; MQ =MQ; &c. (9)

With these characteristics of combination and separation of moments we may
write, for any four moments, a, B, C, D, the identical equations,
A=M,(a B,CD); B=M(4B,CD); & (10)
and for any momental quaternion qQ, the identity,
Q= (M,Q, M;Q, M)Q, M.Q); (1)

with other similar expressions for other sets of moments.
22
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The identical expression (11) may also conveniently be written thus:
1 Q= (M My My M) Q = My, ;5,5 Q3 (12)
1 q being regarded as a symbol equivalent to @, and the third member of the for-
mula being an abridgment of the second ; and then, by omitting the symbol q of
that quaternion of moments which is here the common operand, we may write,
more concisely,
1= (Mp M,y My My) = My, 155 (13)
and may call the second or the third member of this last symbolical equation a
characteristic of recombination (of a momental set). The same analogy of
notation enables us easily to form characteristics of momental transposition,
which shall serve to express the effect of changing the places or ranks, as primary,
secondary, &c., of the moments of any set, with reference merely to that con-
ceived and written arrangement on which the set itself depends for its subjective
or symbolic existence, and without any regard being here had to the objective or
phenomenal succession of the moments in the actual progression of time. Thus,
from the proposed or assumed quaternion (1), we may, in general, derive twenty-
three other quaternions, which shall be all different from it, and from each other,
in consequence of their involving different mental and symbolic arrangements of
the same four moments of time; and these new quaternions may be denoted by
the following expressions :

(Ap Ap Ay Ag) = Mg,1,3,2Q3

...... (14)

(80 g Ap &) = My35,1,0Q-
In this notation we may write the symbolical equations,
M3 01,0= 13 Myo.=1%; | (15)

to imply that four successive transpositions, which are each of the kind directed
by the characteristic M; q,,,,, Will reproduce any proposed momental quaternion
(a, B, G, D), as the last of the four successive results :

(D, o, 8,¢), (c,D,a,B), (B,C,D, 'A), (a, B, ¢, D). | (16)

And generally, for any set of moments, we may write, by an analogous use of
exponents, the formula

Ma_)01,..n2=13 aamn)
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which allows us to establish also this other symbolical equation :

r

1!’:-1.0,1, comea = 1e (18)
For example, if we take, in this last expression, the values n =4, r =1, s = 2,
we are conducted to the following characteristic of a certain transposition of the
moments of an ocfad, which transposition, if it be once repeated, will restore
those eight moments to their original arrangement, and which is therefore to be
regarded as being a symbolical square root of unity ; namely,
0 = 1} (19)
if ‘
® = My5,67,0,1,2,3. (20)
It may also be here observed, as another example of the notation of the pre-
sent article, that if, in addition to this last characteristic w, we introduce three
other signs of the same sort, which we shall call (for a reason that will afterwards
appear) three coordinate characteristics of octadic transposition, and shall define
as follows :
0 = M;,0,7,2,1,4,3,63
@y = M5 3,0,5,2,7, 4,1 5 (21)
®; = My,6,1,0,3,2,54
then these four symbols, w, v, v, v, Will be found to be connected by the rela-
tions, ,
=0 e = w00 =ow; (22)
Vo, = Vw; VO, = W0 ; Vo= ww; (23)
from which, when combined with the equation
o =1, (24)
these other symbolic equations may be deduced :
@ 0, = 035 W0 = 05 030, 0,5 } (25)
W, 0, = 0w,y 0,0, = 00,5 0, 0;" 0w,;
0, 0y 03 = W, W, ) = Wy ) W, — & } (26)
W, 0= 00,0, = 0,00, =1;
(w0,) = (0w,)* = (00,)* = v;
(o) = (w)' = ()t = 1 (27)

4 e 4 4
0'=uw'=e'=1
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Forms of ordinal Relations between Moments, or Sets of Moments ; and Com-
parisons of Pairs of Moments, or Pairs of Sets, with respect to Analogy or
Non-analogy.

3. If the moment denoted by the symbol A’ be supposed to be essentially, as
well as symbolically, distinct from the moment denoted by a, so that these two
symbols denote two different moments in the progression of time, and that there-
fore the momental equation A’ = A does 7ot hold good ; then it is an immediate
and necessary result of our notion or intuition of #ime, that the moment a’, since
it is not cotncident with A, must be either later or earlier thanit. Using, there-
fore, as in a former Essay,® the signs > <, which are commonly employed as
marks of inequality of magnitude, to denote these fwo modes of ordinal diversity,
and thus employing the formula

A > a, (28)
to express, without any reference to magnitude, that the moment A’ is later than
A; but, on the contrary, using this other formula, in like manner without refe-
rence to magnitude,

A" < a, (29)
to express that A’ is earlier than A ; so that the character > is here used as a
sign of subsequence, whereas the mark < is, on the contrary, in this notation, a
sign of precedence ; while the formula, or equation,

A= a, (30)
still expresses that the moment 4’ is coincident (or simultaneous) with 4, so that
the mark — is at once an expression of symbolic equivalence and also a sign of
stmultaneity ; we see that the comparison of any sought moment ', regarded as
an ordinand, with any giwen moment A regarded as an ordinator, must conduct
to one or other of these three forms of ordinal relation, (28), (29), (30); and that
no such comparison of two moments can conduct to two of these three forms, or
modes of relation, at once. In like manuer, if we compare any sef of 7 moments
(A'y A’y . . A'w,), regarded as an ordinand set, with any other equinumerous

* On Algebra as the Science of Pure Time.—Transactions of the Royal Irish Academy, vol. xvii.
Dublin, 1835.
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momental set (A, A, .. A, ), Tegarded as an ordinator sef, by comparing each
moment of the one set with the homologous moment of the other set, primary
with primary, secondary with secondary, and so forth, we shall obtain in general
n different ordinal relations, which may, however, be combined, in thought and
in expression, into one system, or ORDINAL SET; and this set, which may be said
to be of the n* order, will admit of 3" different forms, obtained by attributing
separately to each of its n constituent ordinal relations each of the 3 forms
> < =. For example, the complex ordinal relation which a sought momental
quaternion @/, regarded as an ordinand, bears to a given momental quaternion q,
regarded as an ordinator, is composed of four ordinal relations between the homo-
logous moments of these two momental sets, of which four relations each sepa-
rately may be one of subsequence ( > ), or of precedence (<), or of simultaneity
(=): and hence this complex ordinal relation of Q' to @ may receive any one of
3% = 81 different forms, of which one, namely, the case of quadruple momental
coincidence, has been considered in the first article, and of which the others may
be denoted on a similar plan. Thus to write the formula

(> =< =)q (31)

if @ and ' denote the quaternions (1) and (2), may be regarded as a mode of
concisely expressing the following system of four separate ordinal relations be-
tween moments,

AD>Ag; Al = A5 Ay K Ags A= Ay (32)
or, in the notation of the second article,
M,Q >MQ; MQ = MQ; MQ & MQ; MQ = MQ; (33)
and similarly in other cases.

4. Again, as we have compared two moments, or two sets of moments, or have
conceived them to be compared with each other, with a view to discover the
(simple or complex) ordinal relations existing between them, so we may now
compare, or conceive to be compared, fwo pairs of moments, or of momental sets,
with respect to their (simple or complex) analogy or non-analogy ; that is, with
respect to the similarity or dissimilarity of the two simple or complex ordinal
relations, which are discovered by the two separate comparisons of the moments
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or sets belonging to each separate pair. Representing (as in the former Essay)
by the notation
D—C=B —aA, (34)

the existence of an analogy of this sort between the two pairs of moments, 4, B,
and ¢, D, or the supposition of an ezact similarity between the two ordinal rela-
tions of D to ¢, and of B to A; we may, in like manner, denote by the formula,

Q’” . QII = QI — Q, (35)

the complex analogy which may be conceived to exist between the two pairs of
quaternions, or other momental sets, @, @/, and @, "/, belonging all to any one
determined order m, that is, containing each » moments. This analogy (35)
requires, for its existence, in the view here taken, that the z constituent ordinal
relations between moments which compose, by their mental and symbolic combi-
nation into one system, the complex ordinal relation of the set o’/ to the set @,
should, separately and respectively, be exactly similar to those n other constituent
ordinal relations between moments, which collectively compose the other complex
ordinal relation of the set @' to the set @; for then, but not otherwise, do we
regard the one complex ordinal relation as being in all respects similar to the
other. In symbolical language, the complex set-analogy (or analogy between
pairs of sets) of the n* order (35) may be resolved into n momental analogies
(or analogies between pairs of moments), namely, the following :

MOQIII — MoQ” — M(,Q, . MOQ 5
. (36)
Mll..]Q - Mn—|Q" = Mn_ IQ, - Mn_lQ;

of which each separately is to be interpreted on the same plan as the analogy (34).
The two formule of momental non-analogies, or of dissimilar ordinal relations
between pairs of moments,

D—C>B —A, )
D—cCc< B —a, } (37)

may still be interpreted as in the former Essay; the first formula (37) denoting
that the relation of the moment b to c is, as compared with the relation of B to a,
a relation of comparative lateness ; and the second formula (37) denoting, on the
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contrary, that the former ordinal relation, as compared with the latter, is one of
comparative earliness : and because, in the first case the moment b is ¢oo late,
while in the second case this moment is 00 early, to satisfy the analogy (34), we
may still call the first formula (37) a momental non-analogy of subsequence, and
may call the second formula (37) a non-analogy of precedence. By compound-
ing several such momental non-analogies, or even one such, with any number of
momental analogies, into one system, we shall compose a complex non-analogy
between two pairs of momental sets, which may easily be denoted on the plan of
recent notations ; thus, if we make, for abridgment,

Q" = (a7, AT, 475 &%), }

1t 111 2 II/)
»

19—
Q —-(Ao s Ay Ay A

(38)

retaining for @ and Q' the same meanings as in the equations (1), (2), and then
write the formula

"= =)d —a (39)
we are to be considered as expressing concisely hereby a complex non-analogy be-
tween two pairs of momental quaternions, @, @', and Q”, "/, which may be resolved
into the following system of mixed analogies and non-analogies between four
pairs of moments :

M@ — MQ" > MQ — MQ; 01 A — Ay > A —4; )
”" 1" 4 .
MQ” —MQ” =M —MQ; A — A=A — 4 40
4 7" / . " ’” ’ . ( )
M,Q — M,Q <M2Q — M,Q; Ay — Ay <A2—A2’
MQ” —MQ” =M@ —MQ; Ay — A = a;— A,

A little consideration suffices to show, by the aid of the fundamental notion
of TIME, which enters essentially into this whole theory (as least as the subject is
here viewed), that every simple or complex analogy or non-analogy of the kind
considered in the present article admits of alfernation ; that is to say, if we call
the moments B and c, or the sets @’ and Q”, the means, and call the moments a
and D, or the sets @ and @/, the extremes, of the analogy or non-analogy, it is
allowed to interchange the means or to interchange the extremes among them-
selves, without destroying the truth or changing the character of the formula.
For example, under the conditions (40), we may write, instead of (39), either
of the two following forms :

VOL. XXIL 2F
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QI”'—Q’,,(>’ =, <, =) Q' — q; } (41)
e —Q'(>, =,<,=)q —q"”.

We may also employ ¢nversion, that is, we may substitute extremes for means,
and means for extremes, provided that we, at the same time, change each of the
two signs of ordinal diversity between moments, and every complex sign of
ordinal non-analogy between momental pairs, to the contrary or opposite sign,
by changing > to <, and < to >; thus we may write the complex non-analogy
(39) under this other or nverse form :

Q=" (<= >, =)e—ql (42)
And with the same conceptions, and the same plan of notation, we are led to
regard the following formula of quadruple momental analogy,

Q" —Q' (==, =, =)d —q (43)
as being only a fuller expression of that complex analogy between the two pairs of
quaternions Q, @/, and Q”, Q"’, which is more briefly denoted by the formula
(35).

5. Consistently with the same modes of interpreting formul® for the expres-
sion of any simple or complex analogy or non-analogy between pairs of moments
or of sets, or of any similarity or dissimilarity between simple or complex ordinal
relations, if we agree that the symbol 0, when ¢ occurs as one member of any
such formula, shall be regarded as a symbol of the relation of ordinal identity,
writing thus for any two identical moments, or identical sets,

A—aA=0, @—q=0; (44)
we may then not only write

A—aA=0, @ —q=0, (45)
as transformations of the equations (30) and (3) ; but also

A—a>0, A'—a<0, (46)

as transformations respectively of the two formule of ordinal diversity, (28) and
(29); and may write
Q”‘Q(>9=; <9=)09 (47)

instead of the formula (31). And if we employ small Roman letters, with
or without accents or indices, such as a, a,, &c., to denote generally any ordinal
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relations between moments, which may or may not be relations of identity, and
which may otherwise be denoted by such symbols as B — a, A, — a,, &c., which
have been already used as members of formule expressing analogies or non-
analogies ; writing, for example,

1 111

’ — 4 —_—
Ay — A, —a, A} —A —a,.. } (48)

1oa o 1 o
Ay — A =ay A'—aA'=a,..

and extending this notation so as to introduce the corresponding abridgments,
/

d—ae=q Q" —d"=¢q; (49)
then we may not only transform the formula (31), or the system of the formul=
(32), by writing

q(> =, <,=)0; (50)

but also, on the same plan, may substitute for the expression of the complex non-
analogy (39) this more concise expression,

(> =<=)g (51)
For in this notation (as in that of the former Essay), the first, second, and third

of the three formula,
a>0, a<0, a=0, (52)

express, respectively, that the ordinal relation between moments, denoted by the
letter a, is one of lateness, or of earliness, or of simultaneity ; and in like manner,
the three written assertions,

b>3a b<a b=a, (53)

express, respectively, that the ordinal relation between the two moments of one
pair, denoted by b, as compared with the relation between the two moments of
another pair, denoted by a, is one of comparative lateness, comparative earliness,
or comparative coincidence, that is, analogy. And to mark generally the unity
of the conception of an ordinal set, or system of ordinal relations, such as was
considered in the foregoing article, we may agree to denote such a system or
set of relations by writing in parentheses, with commas interposed, the symbols of
those separate relations ; and thus may write the formula,

Q@ —Q=(Ag— Ap Al— Ay .. Ap i — Ap,y)s (54)

2r2
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or, more concisely, by the abridgments (48) and (49), if we confine ourselves to
the case of an ordinal quaternion,

q = (33,3, 33)- (55)

Operations on an Ordinal Set ; Coordinate Characteristics of Quaternion-
Derivation.

6. We may now treat this last expression for an ordinal quaternion in the
same way as the expression for a momental quaternion was treated in the second
article. Let Ry, R, &c., be characteristics of ordinal separation, analogous to the
characteristics of momental separation, M, M,, &c.; we may then, with their help,
decompose the equation (55) into four others, as follows:

R, = a,; R,q = a,; R,q = a,; R,q = a,; (56)
we may therefore write, for any four ordinal relations, a, b, c, d, between mo-
ments, the identical equations,

a=r,(ab,c,d); b==r,(ab,c,d); &c; (57)
and, for any ordinal quaternion, we may write the corresponding identity,
4= (ReQy RiQs RoQs B9)5 (58)
or more concisely, by abridgments analogous to those marked (13),
1 = (Ryp Ry Ry Ry) = Ry 5,35 (59)

with formule of the same kind for ordinal sets of higher orders. Characteristics
of ordinal transposition are easily formed on the same plan; and we may write,
for example, as the expression of one such transposition performed on the ordinal
quaternion (55),

Ry01,2q = (8p 3p 35 3,); (60)
and may hence deduce this symbolic equation, analogous to (15),
Ryo.a= 1. (61)

If, instead of thus transposing the ordinal relations, we transpose, in the ex-
pression of any one relation, the two related moments, or momental sets, we then
obtain, in general, a new ordinal relation, which is the inverse or opposite of the
old relation, or is that old one with its sign (or signs) changed, each constituent
relation of earliness being altered to a relation of lateness (in the same degree), and
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vice versd : a change which may be expressed, according to known analogies of
notation, by prefixing the sign — to the symbol of the simple or complex relation
which has thus been altered : for example, the equations (48), (49) give, by this
change of signs,

By — Ag= — 8y A, — A} = — 3, &c.; (62)
and
Q—Q' =—q, &e. (63)
Hence we may write, as a consequence of the formula (55), the following :
—q=(—2ap —a, — 8, —a;); (64)
that is, for any ordinal quaternion, we have
—1=(— Ry — Ry — Ry — Ry), (65)

with similar results for other ordinal sets. The notation may be abridged if we
agree to write, for the present, such formule as the following :

—Ry=R_,3; —R, =R_;5.. } (66)
(Rep B_p . ) = R, _,,...5 &c.

for then we can not only express the symbolical equation (65) under the shorter

form,

—1=R_; ) -2 -» (67)
but can compose, generally, characteristics of ordinal derivation, which shall
express the joint or combined performance of several simultaneous or successive
acts of separation, inversion, transposition, and recombination of the constituent
relations of any ordinal set. Thus if we operate twice successively on an ordinal
couple (a, a,), by the characteristic of derivation r_, , we obtain thereby the
two new or derived couples :

R_yo (3 8) = (—8p3);
RL10 (8 3) = Ro1,0 (—ana,) } (68)
=(—ay—8)=—(3,8);

of which the last is merely the original couple (a,, a,) with its sign changed; so
that we have the symbolic equation,

R, o= — 1 (69)
This symbolic result, presented under a slightly different form, was made the
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foundation of the theory of algebraic couples, and of the use of the symbol ¢/ —1
in algebra, proposed by the present writer, in that Essay, already several times
referred to, which was published in a former volume of the Transactions of this
Academy ; for the symbolic equation (vol. xvii. page 417, equation 157)
v (—1) =(0,1),

was there given, in which the essential character of the number-couple (0, 1)
was that, when used as a multiplier, it transformed one step-couple (a,, a,), that
is to say, one couple of steps, a,, a, in the progression of time, or one couple of
ordinal relations between moments, into another couple of steps or of relations in
the same progression of time, according to the law,

(0, 1) (apa,) =(—apa);
which agrees with the process directed by the recent characteristic of derivation,
R_, . and was included in the equation (37), page 401, of the volume lately
cited. Again, if we now regard 4, 7, k as three characteristics of operation on an
ordinal quaternion, defined as follows :

t = R_; -3 2
J = Rogg -1 (70)
k==Rr_5 4105

we shall have the four following symbolic equations, which will be found to be
of essential importance in the present theory of quaternions :

2= —1;

r=—1;

BP=—1; (7L
ijhk=—1;

and which may be concisely expressed under the form of a single but continued
cquation, as follows :

P=pP=kF=gk=—1. (72) = (a)

7. To leave no doubt respecting the truth or meaning of these important

symbolical relations, (72) or (a), between the three coordinate characteristics of

quaternion-derivation, i, j, k, defined by the equations (70), we shall here ex-

hibit distinctly the successive steps or stages of the transformations which are
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indicated by those characteristics. Suppose then that any ordinal quaternion q,
or any set of four ordinal relations, a, b, ¢, d, between moments of time, is pro-

posed as the subject of the operations.
For the purpose of operating on this quaternion by the characteristic of deri-
vation ¢, we may first write the following definitional equation between its two

symbols,
q = (a,b,c,d), (73)

and then resolve this complex equation into its four components, or constituents,
with the help of the signs of ordinal separation, r,, &c., as follows:
Rq=23; Rq=Db; Rq=c; rq=4d. (74)

In the next place, the definition (70) of 4, combined with the notation (66),
directs us to change the signs of the second and fourth of these equations (74),
and then to make the first and second equations change places with each other,
interchanging also, at the same time, the places of the third and fourth, so as to

form this new system of four equations :

R_q= —b; rq=2a; R ,q=—d; rR,q=c. (75)
We are then to combine these four constituent ordinal relations, thus partially
inverted and transposed, namely, —b, a, —d, and ¢, into a new ordinal quater-
nion; and this will be, by definition, the first coordinate derivative, ig, of the
proposed quaternion q; so that we may now write, as derived from the equation
(73), by the first coordinate mode of quaternion derivation, the equation,

’iq = ('— b) a, — d9 C)- (76)
1f now we repeat this process of derivation, we get successively the two following
systems of four equations :

R,.iq = — b; R,.iq =a; R,.ig= —d; R,.1q = c; (17)

R_,.lq= —a; R.Iq=—Db; R jiq=—c; RLig=—d; (78)

and, finally, by a new combination of these four last ordinal relations into one

ordinal quaternion, which is the derivative of the derivative of q in the first co-
ordinate mode, we find

2q=1iq=(—2a, —b, —c, —d) = —q; (79)
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so that this repeated process of derivation by the characteristic ¢ has changed the
sign of the quaternion, q, by changing the sign of each of its four constituent
ordinal relations, a, b, ¢, d; which is the property expressed by the first equation
(71), namely, by the formula,

P = — 1. (71’ 1)

By exactly similar operations, except so far as the second symbolic equation
(70) differs from the first, we find, for the second coordinate derivative, jq, of
the same proposed quaternion, g, the expression,

Jjg=(—c,d,a —Db); (80)
and for the derivative of the derivative in the second mode,
Fa=ja=(—%—b —¢, —d)=—q=—l¢; (81

the symbols 1q and q (like 1q and Q) being regarded as equivalent: which re-
sult (81) justifies the second equation (71), by giving the symbolic equation,
S=—1L (71, 2)

And in like manner the third coordinate derivative, kq, is, by the third equation
(70), expressed as follows :

kq = (—d, —¢c, b,a); (82)

so that, by repeating this process of derivation, we find that the derivative of the
second order, in the third mode, as well as in each of the two other modes, is the
original quaternion with its sign changed,

KFq=kkq=(—a, —b, —¢c, —d) = — 1q; (83)
or, by detaching the symbols of operation from those of the common operand,
P=—1 (71, 3)

Finally, if we operate on the expression (82) for kq, by the characteristic j,
we find

J-kq =R_y ;54 1(—dy —c, b, a)
=(—b,a, —d, c) =1q; (84)

and, therefore, operating on this result by 7, we obtain,
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t.j.kq=1i.iq=—1gq, (85)
ijk=—1; (71, 4)

so that the first coordinate derivative, of the second coordinate derivative, of the
third coordinate derivative of any ordinal quaternion, is equal to that quaternion
with its sign changed ; and all the parts of the compound assertion (72), or (),
are justified.
8. We see, at the same time, by (84), that
Jk=1; (86)
or that a derivation in the third mode, followed by a derivation in the second
mode, is equivalent to a derivation in the first mode. If, on the contrary, we had
effected the two successive derivations in the opposite order, operating first in the
second mode, and afterwards in the third mode, we should have obtained an
opposite result, that is, a result which might be formed from the previous result
by changing the sign of the final ordinal quaternion: for if we operate on the
expression (80) by %, we get
kjq= (b, —a, d, —c)= —igq, (87)

giving the symbolic equation,

that is,

of which the contrast to the equation (86) is highly worthy of attention. Ano-
ther contrast of the same sort presents itself, between the results of operating on
the expression (80) by the characteristic 4, and on the expression (76) by the
characteristic 7 ; for these two processes give,

jq=(—d, —c, b a) = kq; } 8

Jjiq=(dc, — b, —a) = — kq; (89)
or, more concisely,

iy=k; ji=—F (90)

And, finally, we find, in like manner, by operating on (76) by %, and on (82)
by ¢, the two contrasted results,

kig=(—¢d,3 —b) =jq; ]

. . 91

tkq=(¢c,—d, —a,b)=—jq; ] (91)

VOL. XXIL 2¢
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giving
ki=j; th=—. (92)

The importance and singularity of these results (86) (88) (90) (92) induce us
to collect them here into one view, as follows :

y=k; ji=—k; » 1
Jk=1; k= —uq; (93) = (8)
ki=yj; th= —j. J

9. It ought, however, to be observed, that when once the fundamental for-
mula, or continued equation (A), has been established, no new operations of
actual derivation of quaternions, by inversions and transpositions of ordinal rela-
tions between moments, such as have been performed in the foregoing article,
are necessary, for the deduction of these equations (8). Thus if we knew, by
any process independent of the actual derivations (84), that * = ¢jk = — 1, or

that ¢’q = ¢jkq == — q, whatever ordinal quaternion q may be, we could infer
immediately that
Jkq = —2gkq=—i.jgkq= —i(—q) =1q, (94)

and thus could return to the symbolic equation (86), or to the essential part of
the relation (84), from the equations (a). Again, from those equations (a) we
can infer that

y.kq=19kq=—q=~kq=F.kq, (95)

and, therefore, suppressing the symbol %4q of the common operand, which may
represent any ordinal quaternion, we obtain the first equation (90), namely,
ij = k. Operating on this by 7, and changing #* to — 1, we find the second
equation (92), tk = — j. Operating with this on —%q, we obtain again ¢ = jk.
Operating on this by j, we get i = — k; thatis, we are conducted to the second
equation (90). Operating with this on —¢q, we find the first equation (92),
namely, k&t = j. And, finally, operating on this equation by &, we are brought
to the equation (88), namely, kj = — 7, which completes the symbolic deduction
of (B) from (a).

Either by a deduction of this sort, or by actually performing the operations
indicated, we find also that

' ki=1; (96)
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that is to say, if we operate successively on any ordinal quaternion q by the
three modes of coordinate derivation, 4,7, &, in their order (first by 7, then by 7,
and finally by k), the result will be the original quaternion itself. And if we
make, for abridgment, in the notation of the sixth article,

V= Ry, _q,3 -2
J =Ry s s (97)
K =Ry s _), 03
so that the results of the operation of these three new characteristics, 7, 7', £, on
the quaternion (73), are, respectively,
i’q: (b, ‘—a, d’._ C);
Ja=(c; —d, —a,b); (98)
¥q=(d,c, —b, —a);

we shall then have not only the relations,

V=t jJ==4 K=k (99)
but also these others,

7t = w = 1; :
Ji =g =1 (100)
Fk=kk=1; '

on which account we may call these three new sigus, ¢, 5, &, as compared with
the signs 1, j, k, coordinate characteristics of contra-derivation, performed on an
ordinal quaternion.

Connezions between the coordinate Characteristics of Quaternion-Derivation
and those of Octadic Transposition, introduced in the foregoing Articles.

10. It may serve to throw some additional light on the foregoing relations
between the coordinate characteristics, 4 j, £, of quaternion-derivation, if we
point out a connexion which exists between (1st) the system of these three signs
and the sign —, which enters with them into the formula (4), on the one hand,
and (2nd) the system of the four characteristics of octadic transposition, w,, wy,
and o, which were considered in the second article, on the other hand. In
general, an ordinal set of the n* order, since it involves 7 constituent ordinal

262
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relations, which are each between two moments, or because it is a complex ordinal
relation between two momental sets, which are each of the n* order, may be re-
garded as containing, in its first conception, a reference to 2z moments; and
these moments may always be supposed to be collected, in thought and in expres-
sion, into a new momental set, of twice as high an order as the ordinal-set which
was proposed. In symbols, the ordinal set (54), which may be thus denoted :

Q—Q=(anAl. Ai)—(Ap Ap . - An_y)s (101)

may naturally suggest the consideration of the following momental set, with
which it is connected :

(A ALy« « Ap_pp Apy Ap - Any)s (102)

and if the latter set be given, the former can be deduced from it. Hence every
operation of transposition performed on the 27 moments of the set (102), is con-
nected with, and determines, a certain corresponding change of the n ordinal
relations of the set (101). For example, if in the formula of momental transpo-
sition (18) we make s = 2, r = 1, then, with reference to a certain operation on
the momental set (102), which consists here in exchanging the places of each mo-
ment A with the corresponding moment a’, we obtain the symbolic equation,

Min_1, 0, 1,002 = 1% (103)

which implies that a repetition of this process of transposition would restore the
set (102) to its original state. But the same operation on this momental set cor-
responds to, and determines, a certain other operation, performed on the ordinal
set (101), which consists in changing the sign of each constituent ordinal rela-
tion, and in therefore changing, by the sixth article, the sign of the ordinal set
itself, or in operating on that ordinal set by the characteristic —, or — 1; we
might therefore, in this way, be conducted to the known result, or principle, that
the sign —, or the coefficient — 1, is a symbolic square root of unity. And we
might be led to express in words the corresponding conception, by saying that as
two successive interchanges of the places of two moments, or of two momental
sets, regarded respectively as ordinand and as ordinator, do not finally affect their
ordinal relation to each other ; the second fransposition of these two moments or
sets having destroyed the effect of the first: so too, and for a similar reason, the
character (as well as the degree) of an ordinal relation is not changed, or is
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restored, when it undergoes #wo successive inversions : the opposite of the opposite
of a relation being the same with that original relation itself. Thus, in particular,
for the case n» = 4, the characteristic of octadic transposition, e, of which the
symbolic square was unity, is connected with the sign —, or — 1, prefixed, as a
characteristic of inversion, to the symbol of an ordinal quaternion.

11. Again, with respect to the sign of SEMI-INVERSION, v/(—1), we may
observe that if the exponent n of the order of the ordinal set be an even number,
= 2m, then we shall have in general, as a symbolic fourth root of unity, the fol-
lowing characteristic of momental transposition, which may be obtained by
changing r to 1, s to 4, and % to m, in the formula (18):

= 1#; (104)

Mrm—], 6 1..4m-2
and which takes the particular form (15), when m is changed to 1. And be-
cause the symbolic square of the first member of (104) acquires the form (103)
by restoring 7 in the place of 2m, we see that an ordinal set, if it be of an even
order, such as is an ordinal couple or quaternion, may always be semi-inverted,
and therefore operated on by the sign +/(—1), in, at least, one way, through
the medium of that momental transposition, performed on a momental set of an
evenly even order, which is indicated by this first member. For example, when
we operate on a momental quaternion (A’, A',, A, A) by the characteristic
M, q, 1, » We obtain the new momental quaternion,

(A1 Ao ALy Ay) = M3 01,3 (Ap Al Ap A)) 5 (105)
and it is evident that, as was remarked in the second article, and as is included
in the more general assertion (104), four successive transpositions of this sort re-
produce the momental quaternion which was originally proposed to be operated
on. But we now see, further, that if, on the plan of the article immediately pre-
ceding the present, we connect, in thought, this momental quaternion with the
ordinal couple,

(Ac'n A;) - (Ao’ Al) = (A‘I) — Ap A — Al)’ (106)
we shall thereby connect the foregoing operation of momental transposition with
an operation of ordinal derivation, which must admit of being symbolically repre-
sented by the sign +/(—1), and which here consists in passing from the couple
(106) to this other ordinal couple :

(ap &) — (a1 40) = (A, — A} Ag— Ay). (107)
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In fact, if we examine the changes of ordinal relation which have been made,
in passing from the form (106) to the form (107), we shall perceive that they
may be said to consist in first inverting the second constituent relation of the
couple, namely, a; — A, which thus becomes A, — 4], and in then transposing
the two constituent relations. But this is precisely the process of ordinal deri-
vation which was indicated in the sixth article by the characteristic »_, , and
which we saw to be a symbolic square root of — 1. Indeed, as was noticed in
that sixth article, it was on this property of this mode of derivation, that the
present. writer proposed, in a former Essay, to found a theory of algebraic couples,
and of the use of the symbol 4/( —1) in algebra.

12. Proceeding on a similar plan, though not precisely by the formula (104),
to illustrate those new symbolic fourth roots of unity which enter into the pre-
sent theory of algebraic quaternions, by regarding those roots as certain charac-
teristics of ordinal derivation, which are connected with certain other characteristics

of momental transposition, we are now to consider a momental octad, which we
shall denote as follows :

Q = (Ags Ap> Ags Agy Ay Ay Ay Ay) 5 (108)
and shall regard as being connected, on the plan of the tenth article, with the
ordinal quaternion,

q = (An A}y An A7) — (Bp Ap Ay A5)5 (109)
that is, by (48) and (49), with the ordinal quaternion (55). If we operate on
the octad © by the characteristic of transposition w, defined by the symbolic
equation (20) of the second article, then, according to a remark lately made, the
resulting octad w2 corresponds to, or is (on the present plan) connected with, the
quaternion — ¢ ; and thus the two signs o and —, as here used, have a certain
correspondence, or connexion, though not an identity, with each other. Again,
if we operate on the same octad @ by the three coordinate charagteristics of
transposition w,, v, w, defined by the equations (21), we obtain these three new
octads :

0, Q = (A}, Agp Ay Ass ALy Ags Ay Ay) 5
0, Q2 = (Ay A3 Agy Apy Apy Ap Ay A}) 3 (110)
0, = (Ayp Ay Al Ags Aj Ajs Ap Ag) 5

to which correspond these three derived quaternions :
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1q == (A, — A}, AQ — Ap A;— A Aj — A,);

jq=(A2_A;7 A;“As’ At’l‘Ao’ A A;); (111)

kq= (Aa — Ay A, — Ay Ay — Ap Ap — Ao);
the characteristics of derivation ij £ being easily seen to have the same effect and
significance here as in the recent articles. Thus the three coordinate charac-
teristics of quaternion-derivation, ¢, j, k&, correspond respectively to the three co-
ordinate characteristics of octadic transposition, @, w,, «,; and since the sign —
has been seen to correspond in like manner, as a sign of ordinal inversion per-
formed on the quaternion q, to the other octadic characteristic w, we see that a
correspondence is at once established between the symbolic equations (22), re-
specting transpositions of the moments of an octad, and the formule (72) or (a),
respecting derivations of an ordinal quaternion. The equations (25) corres-
pond in like manner to the formula (93) or (B); the octadic characteristics,
ww, wwv, oo, correspond to the characteristics of contraderivation of a quater-
nion, ¢, j', k' ; the equation (27) might remind us that ¢, 5, k, ¢, ;', ¥ are, all of
them, symbolic fourth roots of unity ; and, finally, the equations (26) show, by
the same kind of correspondence of relations, that we may write the following
formule, which include the results (71, 4) and (96) :

gk = jki = kij = — 1;

112
kji = ikj = jik = 1. (112)

-

Addition and Subtraction, or Composition and Decomposition of Ordinal
Relations between any Sets of Moments.

13. The usual correlation between the signs 4 and — may be extended by
definition to expressions involving those signs in conjunction with symbols for
momental and ordinal sets; and thus, by the use already mentioned of zero, the
following equations,

(' — Q) + ¢ =47,
(@"— )+ (- a)=q"—q (113)
' 0 + Q=0Q v
together with those others which are formed from them by changing each q to g,
may here, as elsewhere, be regarded as identically true. At the same time, the
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two symbols 0 —q and —q will thus be equisignificant, each denoting the inverse
or opposite of that complex ordinal relation between two sets of moments, which
is denoted by the symbol q ; because the symbol — q has been already defined
to denote that inverse relation, and therefore we have now the two equations,
(—q)4+q9=0, (0 —q) + q=0; and the other isolated, but affected symbol,
+ q, may in like manner be interpreted as being equivalent in signification to
0 + q, and therefore to q. With the conceptions of addition and subtraction,
or of composition and decomposition of ordinal relations, which correspond to
these notations, we may write :

@,b,...)x (ab..)=(a"%a bxb...); (114)
Ro(q,iq) = Roq’inoq; } (115)
B (q £q) =rq T RQ;...

or, using  and A as characteristics of sum and difference, we may establish the
important identities :
"RuZq = ZRuG; RaAQ = ARnQ. (116)

Addition of ordinal sets is a commutative and also an associative operation ; that
is, we have the formule,

9+a=q+q" (117)

| @ +9)+9=9"+(qd +9); (118)
the former of these two properties of addition being connected with the principle
of alternation of an analogy, which was mentioned in the fourth article. An
ordinal set, of any order 7, may always be regarded as the sum of n other sets of

the same order, in each of which only one constituent ordinal relation (at most)
shall be a relation of diversity ; for we may write, generally,

q=1(8q,0,..) + (0, »q,..) + &e. (119)

Thus, for example, the ordinal quaternion (73) may be expressed as the sum of
JSfour others, which may be called respectively a pure primary (ordinal quater-
nion), a pure secondary, pure tertiary, and pure quaternary, as follows:

(a, b, ¢, d) = (a, 0, 0, 0) 4 (0, b, 0,0) 4 (0,0, ¢, 0) 4 (0,0, 0, d). (120)
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Multiplication of an ordinal Set by a Number.

14. With these preparations it is easy to attach a perfectly clear conception
to the act or process of multiplying any single ordinal relation, a, or any ordinal
set, q, by any positive or negative number, m. For having already agreed to
regard 1q and q, as well as 1a and a, as being symbols equivalent to each other,
so that we have identically, or by definition,

a=1la q=1gq; (121)

and adopting also from common Arithmetic, which may itself be regarded as a
branch of the Science of Pure Time, since it involves the conception of succes-
sion between things or thoughts as counted, the abbreviations 2, 3, &c., for the
symbols 1 41, 1 4 1 + 1, &ec., we shall have an analogous system of abbreviated
symbols to denote the composition of any number of similar ordinal relations,
whether those components be simple, as a, or complex, as q; namely, the fol-
lowing :

a-4a=2a a+a-a=3a, &c.; 1

q4+9=2¢ q+q+q=3q&. ] (122)

We may also agree to write, at pleasure, 2 X3, 3 X q, &c., instead of 2a, 3q, &c.;
and with this use of elementary notations, the distributive and associative pro-
perties of multiplication offer themselves in the present theory, under the well-
known and elementary forms,

m(a’ £ a) =ma’ £ ma; (m' *m)a=mat ma; (123)
(m'm) X a =m’' X (ma); (m' =+ m) X ma=m'a; (124)
in each of which each symbol a or a’ of a simple ordinal relation may be changed
to the corresponding symbol q or q’ of an ordinal set, and in which we may, a¢

Jirst, suppose that m, m’, m’ — m, and m’ <~ m, denote positive whole numbers.
Then writing (as usual),

0Xa=0, 0xXq=0, (125)
we shall be able, with the help of the interpretations in the last article, to remove
the last mentioned restriction, and to suppose that m, m', m' 4+m, m' — m,
m’ X m(=m'm), and m' =~ m (=), denote any numbers, whole or fractional,

VOL. XXI. 28
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and positive or negative, or null, from — © to 4 @, without violating any of
the usual rules for operating on such numbers, by addition, subtraction, multipli-
cation, and division; or rather we might deduce anew all those known rules for
those fundamental operations on what are usually called real numbers, as conse-
quences of the foregoing formul, or as necessary conditions for their generaliza-
tion; observing, indeed, that for the case of incommensurable (but still real)
multipliers, whether operating on a simple ordinal relation a, or on an ordinal
set ¢, we are to use also an equation of limafs, of the form,

(Im. m) X a = lim.(m X a). (126)

It is a consequence of these conceptions and notations that an ordinal set q is
multiplied by a number m, when each of its constituent ordinal relations, r,q,
r,q, &c., is separately multiplied thereby ; so that we may establish the formula,

m(a, b, c, . .) = (ma, mb, me, . .); (127)
and therefore also,
R,.Mq == MR,q; R.Mq = mRrq; &ec. (128)

And any ordinal relations, such as ma, mb, &c., or any ordinal sets, such as mq,
mq’, &c., which are thus obtained from others, such as a, b, &c., or q, ¢/, &ec., by
multiplying them respectively by any common number m, may be said to be
proportional to those others.

We may also say that any ordinal relations, such as ma, m’a, &c., and that
any ordinal sets, such as mq, m'q, &c., are proportional to the multiplying num-
bers m, m’, &c., by which they are generated from any common relation a, or
set g, as from a common multiplicand, when such generation is possible.

Case of Euistence of a simple numeral Quotient, obtained by a particular Divi-
sion of one ordinal Set by another.

15. The recent theory of the multiplication of an ordinal set by a number,
enables us to assign, in one extensive case, an expression for the result of the
division of one ordinal set by another; for if we regard the equations

(@ +a)Xa=a, (¢ +q)Xq=(, (129)
as being identically or definitionally true by the general symbolical correlation of
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the signs X and -, we may then write, in virtue of the formula (127), this other
and correlative formula,

@, v,e,..)+(abec..)=m, (130)
whenever the following conditions are satisfied :
a ~a=b +-b=c=-c=..=m. (131)

In other words, we know how to interpret the quotient q' + q, of one ordinal set
q’ divided by another q, namely, as being another expression for a simple or
single number m, in the case when the 7 constituent ordinal relations of the one
set are proportional (in the sense latelydefined) to the n homologous constituents
of the other set; and we have, in that case, the continued equation,

q ~+q==rygq +rg =rq +rq=&c. (132)

But in the infinitely many o¢her cases in which this condition of proportionality
is not satisfied, the n numerical quotients, r,q' = R,q, Rq < Rg, &c., being at
least partially different among themselves, and therefore being not each equal to
one common number m (whether commensurable or incommensurable, and
whether positive or negative or null), it is, for the same reason, émpossible to find
any oNE such number, m, which shall be correctly equated to the quotient q' = q
of the two proposed ordinal sets, in consistency with the foregoing principles. It
is, however, not impossible to find a sYSTEM of numbers, which may, consistently
with those principles, be regarded as representing this quotient of the division of
one ordinal set by another ; and we proceed to give an outline of a process by
which such a numeral system, or complex quotient, may be found.

Investigation of a complex numeral Quotient, resulting from the general
symbolical Division of one ordinal Set by another.

16. Conceive that from any proposed expression of the form,
q= (ao’ Ap 8. :1,,_‘), (133)

for an ordinal set q of the n™ order, we form n other expressions of coordinate
derivative sets, q,» qp - - Qs 3ccording to the type,

IX, q=Xrq=0Gr = (3r,0 8r,pp -+ Br, 09+ Br,0 1) 5 (134)
2u2
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in which it is supposed that the constituent ordinal relation a, ,, of the derivative
set q,, has a determinate and known dependence on the 7 constituents, such as
3, of the proposed set q; and let us conceive that this dependence is expressed
by a formula such as the following :

8 s=Crao8F .. FCridt.. FCron8a,s (135)
the n® coefficients of coordinate derivation, c.,, ., being all regarded as constant
and known numbers, whether positive or negative or null. It will then be pos-
sible, without altering the constant numerical values thus supposed to belong to
these n® coefficients, ¢, , ,, to form a complex and variable derivative q' of the
set q, by multiplying each of the n simple or elementary derivatives already ob-
tained, such as q,, by a variable number m,, and adding the n products together ;
and the resulting set may be denoted thus:

(my Xo+m, X, + .. 4me Xo 4o 4 Ma; Xay) q } (136)
=myqe+mq 4. .+ mq 4. M G, =05
where we shall have

q¢ =(apan,..a,..3,_) (137)
if we make, for abridgment,
a, =mya, ,+ma, ,+..+mea,,+ .. +Ma 20,3 (138)

and the entire collection of signs of operation, m, X, 4+ &c., which is prefixed
between parentheses to the symbol q in the first line of the formula (136), may
be said to be a characteristic of complex derivation, or a complex symbolic multi-
plier. But instead of thus conceiving the set q’ to be deduced from q by this mode
of complex derivation, or symbolical multiplication (136), with the assistance of
the constant coefficients of derivation ¢, and of n given values for the variable
multiplying numbers m, we may inquire, conversely, what system of numerical
multipliers, mg, . . m,, . . m,_,, must be assumed, in order to produce or generate a
given ordinal set q', as the symbolical product of this sort of multiplication; the
multiplicand set q, and the constant coefficients c, being still supposed to be given.
This inverse or reciprocal process may be called the symbolical division of
one ordinal set by another, namely, of the set q’ by the set q; and it may be
denoted by the following formula, which is the reciprocal or inverse of the for-
mula (136):
’ q = q=mXo+m X, F - My Koy (139)
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To describe more fully the process which is thus briefly indicated, we may
observe that, besides the #® constant coefficients ¢, there are now given, or sup-
posed to be known, 27 ordinal relations of the forms a, and a; (or numbers pro-
portional to these 27 relations), as the constituents of the two given ordinal sets
of the »* order, q and q' ; which sets are here regarded as the divisor set and the
dividend set respectively. Thus the n* ordinal relations of the form a, , are con-
ceived to be known, as depending in a known manner on the » given relations a,,
by the n* expressions of the form (135); and on substituting for these #? ordinal
relations, and for the n other given relations of the form a,, in the z formule
(138), any system of numerical values which shall be (in the sense of the 14th
article) proportional to these different ordinal relations, we shall thereby obtain n
linear equations, of an ordinary algebraical kind, between the » sought numbers,
m,: from which these latter numbers may then in general be deduced, by any of
the usual processes of solution of such ordinary and linear equations.

For example, after fixing upon any standard ordinal relation, or relation
between two selected moments of time, and calling it a, we may first prepare the
equation (138) by putting it under the form,

a, ~a=2%,.m.(a,,>3a); (140)
in which Z, is the characteristic of a summation performed with respect to r, and
the quotients in both members are numerical. And then, by suitable combina-
tions of the numerical quotients in the second member of this last equation, which
combinations are determined by the given expressions (135), we may find a sys-
tem of n® numerical coefficients of elimination, I, ,, of which the values depend
on the constant coefficients ¢, and on the #» given numerical quotients of the form
a;<-a, but are independent of the n other quotients a, = a, and satisfy the n* con-
ditions included in the formula,

£,..,,(a,,+28) =0, or =/, according as 7’ Z or =r; (141)
! being here another number, namely, the common denominator of the elimina-
tion. For in this manner we shall have % final expressions of the form,
m,=1"%,.1,(a,+2); (142)
by which the n sought coefficients of the symbolical quotient (139) can be, in
general, determined.



228 Sir WiLLiaM Rowany HamiuroN's Researches respecting Quaternions.

Successive complex Derivation : Conception of a numeral Set.

17. Suppose that, after deducing q’ from q, by the complex derivation or sym-
bolical multiplication (136), we again derive another ordinal set q” from q’ by
another multiplication of the same sort, with the same constant coefficients of
derivation, ¢, but with a new system of variable numerical mulitipliers, m ; which
supposition we shall, on the same plan as before, express as follows :

(moXo4-- +me X+ . +m,_ Xal)q =0q". (143)
Making now, in imitation of the expression (137),
q’ = (aj,..3a/,..a;), (144)
we shall have, as expressions analogous to (138) and (135), the following :
‘ a, =X.,.m.a,,; (145)
8,0 = 2,00y, 3, (146)

and thus the result of this successive multiplication will be a determined and
known set, q". In the next place, let this resulting set, or successive symbolical
product, q'', be divided by the original set q, which was at first proposed as a
multiplicand ; we shall then obtain, by the method described in the foregoing
article, a symbolical quotient of the form,

Q"+q=mi Xe+..+mi X+ ..+ m ) Xa,s (147)
in which, on the same plan as in the formula (142), and with the same system of
eliminational coefficients of the form /, determined by (141), we have,

my=1"1%,.1,,(ay = a). (148)
Substituting for a; its value, given by (145), (146), and by (138) or (140), and
eliminating the numerical denominator / by (141), we find that we may write :

My = I, ;0. My My Ny, py '3 (149)

if we establish, for conciseness, the following formula, including 7 separate ex-
pressions for so many separate numbers :

Ry r = (2, - by €0, ar,:) - (zc 4.a.); (150)
in which it is to be observed that the sum which enters as a divisor is the same
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for all the n* quotients. The value of each of these numerical quotients (150)
will, in general, depend on the n —1 ratios of the constituents a, a,, ...a,_, of
the first proposed ordinal set q, or the ratios of the numbers to which these »
ordinal constituents are proportional ; but it may be possible to assign (at the
outset) such values to the constant but arbitrary coefficients of derivation c, or
to subject those 7° coefficients to such restrictions, that these n — 1 arbitrary
ratios of the n constituents a,, in the expression (133), shall have no influence on
the value of any one of the n® numbers included in the expression (150). When
this last condition, or system of conditions, is satisfied, we are allowed to detach
the characteristics of the successive symbolical multiplications of an ordinal set
JSrom the symbol of the original multiplicand ; and as the result of the comparison
of the formule (136) and (143), and of (147) under the form,

_ g" = (M Xy F -+ M Xal) G (151)
we may write,
mé’><§+ °'+m“—1)<n—1= (msxo"l' .- +’n:l-lx'l-l) (moxo+' '+mn- 1 Xn- l); ( 152)
which will denote the reduction of a system of two successive and complex deri-
vations, or symbolic multiplications of the kind (136), to one complex derivation
of the same kind. Under the same conditions, the successive performance of two
simple or elementary derivations, of the kind (134), will be equivalent to the
performance of one complex derivation, of the kind (136), with numerical co-
efficients independent of the original derivand, as follows:

X Xy = Epie By g0 X (153)
We may also regard the » variable numerical coefficients m,, in the quotient
(139), obtained by the symbolical division of one ordinal set by another, as com-
posing, under the same conditions, a NUMERAL SET; and this new sort of sef may
be detached, in thought and in expression, from the two ordinal sets which have
served, by their mutual comparison, to suggest it. The quotient (139), when
thus regarded as a numeral set, may be denoted as follows :

q+q=g=(mpm,..m,_,); (154)
the letter ¢, when used as a symbol of such a set, being written in the Italic cha-

racter : and then the » numerical relations, which are included in the formula
(149), may be supposed to be otherwise summed up in the one equation :

’/

(m's ..mioy .. myy) = (Mg ooy ooy, ) (Mg .My .. M), (155)
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And conversely, this last equation, which asserts that the numeral set in its first
member is equal to the symbolical product of the two numeral sets in its second
member, may be considered to receive its ¢nlerpretation from the formula (149);
in which the #® numbers 7, ,, ,» may be called the coefficients of multiplication of
a numeral set. But it is necessary to consider more closely what are the forms
of those conditions of detachment which have been above alluded to, and which
(according to the view here taken) are required for the (separate) existence of
such a numeral set ; it will also be proper to give, at least, some examples of the
possibility of satisfying the conditions thus determined.

Conditions of Detachment.

18. The following appears to be a sufficiently simple mode of discovering the
conditions of detachment, under which the values of the numerical coefficients,
n,, . 0 (149) or (150), shall be independent of the ratios of the ordinal con-
stituents of the set q, which is originally operated upon. Employing the charac-
teristics of ordinal separation, as explained in a former article, we may now regard
it as being the definition of the sign of derivation X,, that this sign satisfies the
symbolic equation,

R, Xr = Z;.C,, ¢ Re> (156)
which gives
R, Xpy X, = L,. €0, R X,
= Z2,¢-Cr, 0,4 Crst Rer (157)
On the other hand, the equation (153), when operated on by the characteristic
of separation R,, gives, by changing 7’ to s, and by afterwards changing 7, s in
(156) to s, 8" :
Ry X X, =%, .0, ,,Rs X,
==, My CpptRe (158)

We are then to satisfy the equation,

= 28 (nr, s Ry X: - cf',l",l R, xr)
= z:,t (nr.r'.:cc,t’,t - cr’,a’,c cr,:,t) R, (159)
and because we are to do this independently of the ratios of the n constituent
ordinal relations a,, which are obtained from the ordinal set q by the » operations
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of separation Rr,, we must endeavour to satisfy all the numerical conditions which
are included in the form,

0= za(nr. e Covyt Cp 0,4 Cr,4, t)' (160)

The number of these conditions of detachment (160) is n*, because each of the
four indices, 7, 7/, &, ¢, may receive any one of the » values 0, 1,...7 —1; and
they involve only 27* numerical coefficients, or rather their ratios, which are
fewer by one, to be determined; from which it may at first sight seem to be
impossible to satisfy all these conditions of detachment, except by making all the
coefficients of derivation vanish. Yet we shall see that when » — 2, namely, for
the case of numeral couples, the conditions admit of an indeterminate form of
solution : and for the case n = 4, it will be shown that they can also be satisfied
by that system of coefficients on which is founded our theory of numeral quater-
nions, and even by a system of coefficients somewhat more general. A more
complete discussion of the important formula (160) will not be needed for the
purposes of the present Essay.

Case of Couples.

19. If we suppose 7 = 2, then the index s, with respect to which the summa-
tion is to be performed, can be only O or 1; the formula (160) becomes, there-
fore, in this case,

Ty, 0 Co,wyt F Mr,r1 Crwt = Cri 0,0 Cr0,6 = Cryi1 Crtae (161)

If we suppose also that the two simple or elementary derivations of one ordinal
couple from another are denoted thus:

Xo (2 3,) = (85,0 8,1) = (aa,-}-a'a,, ba, + b'a); }
X, (8 3;) = (3,00 al.l)_z (ca, + c'a, da,+ d'a);

we shall have, by (135), for the 2° =8 coefficients of derivation of the forme, ,,,
the abridged symbols :

(162)

!, -— b - A .
Co00=03; Cop =03 Co10=b; ¢, =03 }

—_— ! -— pu—
Ci00—=C3 CLon=C; cl.l,o—d’ cl.l.l*d'

(163)

And if we employ in like manner these other temporary abridgments, for the
eight coefficients of multiplication of one numeral couple by another,
VOL. XXI. 21
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Mooo=65 Mo01=€3 Moro=S3 %11 =f";
M0 =83 Mo1=83 Mpe=h; m,,=H#; } (164)
the equations of detachment, included in the general formula (160), will then,
by (161), be the sixteen following :
t=0) ¢=1
(§ =0) ea-+éc=aa+ab; ed + éc’=aad +a't'; (165)
(§=1) eb+ed=ba+0bb; e +ed=0ba' 4 b¥; } (r=0, ¥ =0)

(¢ =0) fa+flc=ca+cb; fo/ +fc=ca +c'b'; (166)

(=1) fo4fd=da+db; fb +fd=da +d¥; (r=0, ¥=1)

(§=0) ga+4gc=actdd; ga+g'c’=ac’+add; } (167)

(¥ =1) gb+gd=bc+bd; gb+gd=bc+bd; (r=1, ¥=0)

(§=0) ha++Hkc=ccHcd; ha'+kc =ec 4 c'd'; (168)

(¢ =1) hb+Wd=dc+d'd; h¥ +kd =do'+ dd. } (r=1, r=1)
Now the twelve equations (165) (166) (167) are all satisfied, independently

of ¢, ¢, d, d', if we suppose

a=b=e=f=g; d=b=e=f=g=0; (169)

and then the four remaining equations (168) take the forms,
ha 4 (K —c)c=dd; (W—c—d)c =0; } (170)

(K —c—d)d=0; ha+ (W-d)d =cd;

which are satisfied by supposing
K=c+d; ha=cd-cd. (171)

Accordingly, with the values (169), the sign of derivation X, reduces itself to the
ordinary numeric multiplier a, so that we may write simply,

Xo=0a; (172)
and while the other sign of linear derivation X, retains its greatest degree of gene-
rality, consistent with the order of the sets, namely, couples, which are at present
under consideration, so that the four numerical constants ¢ ¢’ d d’ remain entirely
unrestricted, the symbolic equations of the form (153) become now, by (164),
(169), and (171) :
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XoXo =€ X, +€'X; =aX,;

X Xo=fXo+ X, =0aX;;

Xo X1 =g Xo+&'Xi=0aX,; (173)

X Xi =k X, + X,

=a7(cd—ed )X, + (c+d) X3
and these equations are, as we aimed that they should be, independent of the
original derivand, that is, here, of the ordinal couple (a, a,). In fact, the three
first equations (173) are evidently true, by (172), whatever the constant co-
efficients of derivation included in the sign X, may be; and if, by the definition
(162) of that sign of derivation, we form the successive derivative,

X1 X, (8¢ 2,) = X, (8,0 8,,)
= (ca, ,+ C'a;, s da, +da, 1)
= (et Om) + ¢/ (ds, 1 )y d(cmy b 0n) -+ (day+d)), (174)

we are conductéd, whatever the two original constituent ordinal relations a, and
a, may be, to the same final ordinal couple, as if we add together the two partial
results, which are obtained by the two derivations represented by the two terms
of the last member of the fourth equation (173), namely, the two following
couples : »
a™' (dd—cd’) X, (ap 3,) = ((c'd—cd’) a, ('d—cd')a); } (175)
(c+d') X, (a» al) =((c +d') (c3,+'a), (c ') (da,+ d's)).
We may therefore express the result of two successive and complex derivations of
thig sort, performed on an ordinal couple (a, a,), by a symbolical equation inde-
pendent of that original derivand, or operand couple, namely, by the following :

(mo Xo + m1 X,) (MeXo+m, X)) =my' Xo+m’ X, (176)

which is included in the form (152), and in which we have now these two rela-
tions, of the form (149), between the numerical coefficients :

my = amim, 4 a” ' (¢'d — ed') mim, ; } 1)
m; = amim, 4 amgm, 4 (¢ + d') mim,.

Under the same conditions we may also write, more briefly,

(my'y m") = (me my) (Mg ), (178)
212
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as in the general form (155); and may regard the one numeral couple (mg',m;’) as
the symbolical product of the other two. If we simplify the formulae by assuming
the five constant coefficients of derivation which still remain disposable, namely,
a,c, ¢, d, d’, as follows :

a=Lc=0,c=—-1,d=1,d =0, (179)
we shall then have
Xo(ap 3,) = (3n a); X (a'o’.al) = (—a, ao); (180)

or more concisely,

' Xo=1; X,=Rr_,03 -(181)
this last symbol being here the same characteristic of derivation of an ordinal
couple which was considered in former articles of this paper. And the equation
for the multiplication of two numeral couples will then reduce itself to the follow-
ing form :

(mey my) (Mg, M) = (mgmy — my My, My MG 4 MgM,) 3 (182)

which agrees with that assigned in the earlier Essay. (See Vol. XVII. page 403.)
With the same values of the coefficients of derivation, and consequently with the
same values of the coefficients of multiplication likewise, we may write also, as
in that Essay (compare the page just cited), a _formula for the division of one
numeral couple by another, namely :
Ty = (momi) = (PR, BESRE), asy)
It is not necessary, and it would detain us too long from the main subject of
this memoir, to consider here any other and less simple formulz of the same sort,
which may be obtained for the same case of couples, by any other systems of co-
efficients of derivation and multiplication, which satisfy the same conditions of
detachment, assigned in the present article.
20. It may be instructive, however, to consider here the same case of couples,
as an exemplification of some other general formule which have been already
given in this Essay. Writing, for abridgment,

a,+-a=aq; a <=-a=a,; a/ -a=a,; (184)
and n like manner,
a,+a=4a,,; a,,+-3=a),; (185)
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the quotients thus denoted being numerical ; we have, by article 16, for the case
n = 2, the commas in the compound indices being here omitted for the sake of
conciseness :

Goo = Coop Gy + Co01 B3 G, = Cyy By + Cyy, By } (186)

G = Cio Gy + Ciun @5 Oy = Cye 3, + €, 4,5

ay; = m, 8y, + My ay,; G =m,a, + ma,; (187)
l= 100 aoo+ lo| Gy = llo Gy + l" Gy } (188)
0=1lpa,0+l,an="1loa0+ lhay;

and, consequently,
m,=1,a,+,a;; 1 (189)
m =00+ 1 al. ]

Again, by article 17, for the same case n = 2, we have the analogous formule :

o ’ ‘. PR ’ ‘.
O3 = Cogo @3 F Con @13 Gy = €y B9 + €y 015 (190)

l — ’ ‘. T ’ )
Al = Cyp9 Qg €11 G153 Gry = €y @y + €y, @y ’,

ay = mgag + m; aj,; @' = may + m;ai,; (191)
and then, assuming these other expressions,

a; =my ay, + m a,; a =my ay +my ay, (192)
we find, by (188), two equations of the same forms as (189), namely,

mf =lya) + 10y ; } 1
1" 17t 93
m =1l a) +1,a;. (193)

Making, therefore, according to the general rule contained in the formula (150),

Myyw=2,. by Coysay,

= (boo Croo =+ b1 €10) @ro F (o Cron + b Crny) Gy (194)
we have results included in the formula (149), namely,
My = 3, 0 MMy Bpros MY = Zp o MMy N5 (195)
that is, more fully,

. s ’

my' == My My Mgy + M My Ry + M, Mo Mg 4 My My Ny 5 } (196 )
/7 ’

m;' = My My Neg, + 'mo'm; Ny + My My Ny, 4= M, My Ny,
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Thus, in particular, the coefficient of the product m, m;, in the expression thus
obtained for m;’, is,

”MO = l-l lOO (0000 aoo + cﬂOl aol)

+ ', (com Qg + Con ay)- (197)
The equations (188) permit us to write
lo=ay; ll)I = —0y,; lm =—ay,; = Qoo 5 ' (198)

provided that we ‘assign to / the value

= Ay Qy — Gy G- (199)
Hence
n. — a, (cooo Gy + Conr aol) — Oy (cmo Qoo + Con am)_ (200)
000 Qg Oy — Gy Gy

If we substitute, in this expression for 7., the values (186) for a,, @y, G, @y
we shall thereby obtain, in general, a certain function of a, a, which will be
homogeneous of the dimension zero, because it will present itself under the form
of a fraction, of which the numerator and the denominator will be homogeneous
and quadratic functions of the same a, a,. In order that this quotient of two
quadratic functions of the number expressing the ratio of @, to a,, or of a, to a,,
may be itself independent of that ratio, we must have certain relations between
the coefficients ¢, &c,, and the fraction itself must take a particular value con-
nected with those coefficients; which relations and value may be determined by
the three equations :

Tooo (cooo Chno — Ci0 colo) = €330 (€300 ~F Coon Coro)
= Ci00 Car0 (cooo + cou) 5 (201)

oo (Cow €11 — €100 Cont =+ Coor €0 — Cin colo)
=Cm (0300 =+ Com cmo) — €1 Cowo (cooo + con)

+ €10 Conn (cooo + con) — €100 (Co10 Com + 63"); (202)
Tgoo (Conr €111 — €1y con) = €111 Con (Coo + con)
— Cn1 (cow Con =+ Con )- (203)

In like manner, each of the seven other coefficients, 7, &c. in the expres-
sions (196), will furnish three other equations of condition, which must all be
satisfied, in order that the values of these coefficients of multiplication of couples
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may be independent of the original ratio of a, to a, or of a, to a,; and each of
the twenty-four equations thus furnished, of which the equations (201), (202),
(203), are three, is an equation of the third dimension, with respect to the coef-
ficients of derivation and multiplication, ¢y, &c., 72y &c. We should, therefore,
by this method, have obtained equations more numerous and less simple than
those which were given by the method of the eighteenth article : which method
there is, therefore, an advantage in introducing, even for the case of couples,
and much more for the case of quaternions, or other ordinal and numeral sets ;
although the method above exemplified appears to offer itself more immediately
from the principles of the seventeenth article.

But to exhibit by an example the agreement of the two methods in their
results, let the symbols defined by the equations (163), (164), be employed to
abridge the expression of the equations (201), (202), (203); the latter will then
become :

e(ad —cb)=d (a*+a'b) —cb(a+4b'); ]

e(ad —cb 4a'd — b)) =d'(a*+ a'd) — c'b(a+ V) (204)
+dd' (@ 4b') —c(ba +%);

e(dd — V) =da (a4V) —c'(ba'+b7); J

and it is evident, upon inspection, that these three equations (204) may be
deduced by elimination of ¢’ from the four equations of detachment (165), which
were obtained by the simplified method ; and which, in that method, formed part
of a system of only sixteen (instead of twenty-four) equations, each rising no
higher than the second (instead of the third) dimension.

Associative Principle of the Multiplication of numeral Sets : Characteristics of
numeral Separation.

21. Whenever, for any value of the exponent n of the order of a set, we
have succeeded in satisfying the n* simplified equations of detachment, included
in the formula (160) of the eighteenth article, and have thereby found a system
of n* coefficients of derivation, and a connected system of n® coefficients of mul-
tiplication, with reference to which two systems of coefficients an equation, or
rather a system of equations, of the form (153) can be established, independently
of the n — 1 ratios of the constituents of that ordinal set q, on which the two
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successive derivations are performed ; it is evident that we can then proceed, in
like manner, to perform on the resulting set a third successive derivation ; and
that, with respect to such successive operations of derivation, the following simple
but important formula holds good :

Xpre Xo Xe = X X » X (205)

To develope this symbolical equation, which may be said to contain the asso-
ciative principle of the multiplication of numeral sets, we may conveniently
employ a characteristic of numeral separation, N, analogous to those two charac-
teristics, M and R, which we have already introduced in this paper, for the pur-
pose of expressing separately the different moments of a momental set, and of
separating, in like manner, those constituent ordinal relations between moments
which compose an ordinal set. Let us, therefore, agree to regard the n equa-
tions,

My =Nyg; M=NG5... My, = No_q, (206)

as jointly equivalent to the one complex equation or expression (154), for a
numeral set ¢, of any proposed order n; in such a manmer that we shall have,
identically, for numeral constituents and numeral sets, the equations

My = N, (Mg My . o Ma_,), } (207)
m, =N, (Mg My .. Ma_y), ..
and
g = (Ng> N> -+ Naf)3 (208)

which are analogous to those marked (10) and (11), for moments and momental
sets, and also to the formule (57), (58), for constituent ordinal relations, and for
the ordinal sets to which they belong. We may then substitute for the formula
(153) of symbolic multiplication, or of successive derivation, the following :

N,. X,: Xr = nr.r',: H (209)
which will give, also, by suitably changing the letters,
Nc" X. thnt,c,:l; (210)

the commas in the indices being here, for the sake of greater clearness, restored.
In this manner we find that

N,:(X,IXr- Xt) = 2:'":',1',: Ny, o+ (211)
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But, also,
Ne e Xe Xe =0 r,a5 Nepo XpXe =N,0,05 (212)
and, therefore,

Ny (XKoo Xoe Xe) = E Ty 0 My e (213)
consequently, by operating with the characteristic v, on the symbolical equation
(205), we obtain this other form for the expression of the associative principle,
considered as establishing a certain system of relations between the coefficients of
multiplication :

0=,y My — M, Mi1,0)s (214)
We are, therefore, entitled to regard this last formula, or the system of numeri-
cal equations of condition which it includes, as being a consequence of the analo-
gous system of conditions included in the formula (160), because the associative
property of multiplication is a consequence of the principle of detachment. And
on comparing the two formule, we perceive that as soon as the one last deduced,
namely, (214), has been satisfied by a suitable system of coefficients of multipli-
cation, then the one previously established, namely, (160), can be immediately
satisfied also, by connecting with this latter system a system of coefficients of deri-
vation, according to the rule expressed by the following very simple equation :

Crist — Ny, o (215)

For example, in the case of couples, with the abridged symbols (163), (164),

for the two systems of coefficients, this rule (215) would have shewn that if we

had in any manner succeeded in satisfying the sixteen equations of detachment

(165), ...(168) between abcd a'b'c’d’ and efgh €/f'g’h’, we could then satisfy the

same equations of detachment with the same values of the eight latter symbols,

and with the following values for the eight former :

a=e; b=¢€; c=f; d=f;

d=g; V=g c=h; d=W; } (216)

which, in fact, will be found to agree with the values of the nineteeth article.

Connexzion between the Coefficients of Derivation and of Multiplication ; sim-
plified Conception of a numeral Set, regarded as expressing the complex
Ratio of an ordinal Set to a single ordinal Relation.

22. The rule (215), for connecting together the two systems of coefficients,
VOL. XXL 2K
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of derivation and of multiplication, admits of being interpreted or accounted for
in a very simple manner.

The coefficient ¢, , ,, introduced in the sixteenth article, may be regarded as
having been generated, or, at least, brought under our view as follows. We first
supposed an ordinal set, q, to be operated on by the elementary characteristic of
derivation X,, so as to produce thereby a derivative set, q,. We then operated
on this derived set, in a way which may be indicated by the characteristic of
ordinal separation, r,, and so obtained a result of the form

R, X:qQ = a,, (217)
And, lastly, we analyzed this result, so as to find the part of it which depended
on,, and arose from, the constituent a, or r,q of the original operand set; and
the coefficient of this constituent a,, in the part obtained by this analysis, was
denoted by ¢, , , and was regarded as a coefficient of derivation. On the other
hand, the coefficient of multiplication, »,, , may be said to arise thus: an ele-
mentary derivation, denoted by X, is succeeded by another, denoted by X, ;
the compound operation, X, Xy is detached from the operand, and regarded as
equivalent to a single complex derivation, of which the characteristic may be
symbolically equated to a certain numeral set; this last set is subjected to the
characteristic of numeral separation N,, or to an analysis equivalent thereto; and
the result is, by (212), the coefficient of multiplication in question.

Now the agreement of the results of these two processes, which is expressed by
the equation (215), becomes quite intelligible and natural, if we conceive that
the constituent a, of the operand set g, on which constituent alone we really ope-
rate in the former process, the others being, in fact, set aside, as contributing
nothing to the result here sought for, has been dtself produced or generated by
an earlier operation of the form a, X, (where a, has the same signification as in
(184)), from some one primary or original ordinal relation, such as that which
was denoted in some recent articles by the letter a. In this manner we may be
led to look upon any ordinal set, such as the set q in the equation (133), as
being generated by a certain complex derivation, which is expressed by a certain
numeral set ¢, from a single standard ordinal relation, a, or from the relation
between some two standard or selected moments of time, according to either of
the two reciprocal formule :

q=gqa=23%;.a,X;a; or, g =q+-a=2ZX.aX; (218)
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in which last equation the members are symbols for a numeral set. And thus a
numeral set (¢) may come to be conceived as being a system or set of numbers,
serving to mark or to express the complex ratio which an ordinal set (q) bears
to a simple or single ordinal relation (a), regarded as a standard of comparison.

Case of Quaternions ; Coefficients of Multiplication.

23. In the case of quaternions, the formula (214) gives a system of 4* = 256
equations of condition, included in the following type (in which « has been written
instead of 7/, and the accent common to all the indices s’ has been omitted as un-
necessary in the result) :

B0 M 0,0 + Byt Bere P2 Mayas o+ Mrpa Myys,s
= Ny s B0t Mue et Poue Moo+ Moo s Meryss (219)
each of the four indices, 7, s, £, %, in this last formula, being allowed to receive
any one of the four values, 0, 1, 2, 3. And all these two hundred and fifty-six
equations are satisfied when we establish the following system of numerical values
of the sixty-four coefficients of multiplication (in which the commas between the
indices are again omitted for conciseness) :

Moo = 13 Moy =03 7Ny =035 73 = 03

o =035 Moy =15 7y =05 7y = 0

Moo = 035 Mgy =05 Mgy =15 Mgy = 05 } (220)
Boo = 03 gy =03 Mgz =03 Mgy =15

Mo =05 My =15 M =05 7 =0; ]

Ny =—13 n,;, =05 7y, =0; 7y, = 0; { (221)
e = 05 My =05 My =05 myyy =13

Nygo =03 Ny =05 My =13 7y =05

Mgy = 03 Mgy =03 Mgy =1; My =0; ]

Myo = 035 My =05 My =05 7y, = 13 (222)
Mgy = =135 Mgy =05 Mgy = 05 7y, = 03

Nogo = 05 Mgy =—135 Mgy =05 7y =05 J

Mg = 03 Ty =05 My =05 myy =13 ]

Moo = 05 7y =05 7y, =—15 my, = 0 | (223)
Nage = 03 Mgy = 15 Mgy = 05 759, = 0

Nggg = — 13 Mgy = 05 Mgy = 05 My = 0. J
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We might content ourselves with proving the truth of this assertion by actual
arithmetical substitution of these sixty-four values in the two hundred and fifty-
six equations; but the following method, if less elementary, will probably be
considered to be more elegant, or less tedious. It will have, also, the advantage
of conducting to a somewhat more general system of expressions, by which the
same equations can be satisfied; and will serve to exemplify the application of
the fundamental relations, (a), (8), which were assigned in the sixth and eighth
articles, between the important symbols ¢j%, and on which the present Theory of
Quaternions may be regarded as essentially depending.

24. Let us, then, first form, from the type (219), by changing the index r to
the value 0, the following less general type, which, however, contains under it
sixty-four out of the two hundred and fifty-six equations of condition to be
satisfied :

Tguo oy + Mowr Nty + Mous Poee + Mous e

= Moy Moo =+ Prus Pt + Tous Ptoa = Paus Mos- (224)
Make, for abridgment,
Teu = Mo + My + JRz + K (225)

i k being the three symbols just now referred to; we may then substitute for
(224) the following formula, deduced from it, but not involving the index s:

Nous G0 + Mo §or + Moua G2 + Pous G
= Gou Moo + Q1w Pt T+ Gau Toron + G s (226)

This, again, will reduce itself, by the same definition (225) of the symbol ¢, to
the identity,
Gou g0 = Gou G0 (227)

and therefore will be satisfied, if we satisfy the six conditions:
Ia = w3 o =j9m? 9 = kqw; } (228)
D= Gos Gu=9qot} o= qo.bo.
If, instead of making r = 0, we make r = 1, in (219), we then obtain, instead of
(224), the formula :
Mo Mg+ Maeat Nss =+ My Rgy 4 Moz Poga
= Roue Mo + Mrws Pent =+ Paue Prz + Maue Mt 35 (229)



Sir WiLLiam RowaAN HaMILTON'S Researches respecting Quaternions. 243
and the symbolic equation (226) is replaced by the following :
w0 ch + % @n + M2 G+ Mg
= QouPa0 + Giu P =+ GouPis + Gau Paas (230)
which, under the conditions (228), becomes first, by the definition (225),
qlu 9:0 = qqutl H (231)
and then is seen to be satisfied, in virtue of the same conditions.
In like manner by making r = 2, in (219), we find
Rouo Mgor + N Pt =+ aua Nsy ~+ Mg M,
= Pous Ptgo + Mies Pent + Maus gz =+ M Ns '3 (232)
and this, under the form
oo G0 + Mo G + M2z Gz + Maus qes

= Gou Pzo + Gru i+ GouTns + GauPrs (233)
is satisfied by the same conditions (228), since they give
92u G0 = GouTro» (234)

Finally, the formula obtained from (219) by making » = 3, namely,

n3u0 "wc + N3 Ny + nSuQ nm + nw, Nys,
= Tigy, n!30+ Ty Mgz + Mgy 32 + Nyue N335 (235)

or this other, deduced from it by the help of (225),

N340 Goo + M3 Jer + P32 Gi2 F+ M3us G
= GouTs0 + QruPesr + Gou Meza + G2 Pz (236)

is satisfied by the same conditions (228), which give
Y3 9to = Jou Ges- (237)

We shall therefore satisfy not only the sixty-four arithmetical conditions included
in the type (224), but also the sixty-four others included in the type (229), the
sixty-four included in (232), and the sixty-four included in (235); that is to
say, we shall satify the whole system of the two Aundred and fifty-six arithme-
tical (or ordinary algebraical) conditions included in the formula (219), if we
satisfy the system of the siz symbolical equations (228), which involve the three
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symbols 7j & in their composition ; provided that we do so without establishing
any linear relation between those three symbols and unity. This last restriction
is necessary, in order that each of the four symbolical formule, (226), (230),
(233), (236), not involving the index s, may be, as we have supposed, equiva-
lent to the corresponding one of the four arithmetical formule, (224), (229),
(232), (235), in which that index s, occurs, and is permitted to receive any one
of the four values, 0, 1, 2, 3.

25. If we write, for conciseness,

Go = Moo + Moo F 7002 + KNy (238)
the conditions of the preceding article give the sixteen symbolical equations :

Yo =905 In=%05 =55 Gu=ko5 ]

To =95 Qu =190} Gu=J0¢} o =Fkqis

90 = Qo3 G =05 G =J9J3 9 = K]

G = G5 u = 19k5 9 =Jqks g =Kkqoks
in which, while still retaining the linear independence lately assumed to exist
between ¢, J, k, and 1, we may now suppose that the squares and products of the
three symbols, ¢, j, %, are determined, or eliminated, by the help of the funda-
mental formula (a), assigned in the sixth article, namely,

(239)

P =R=gk=—1; (a)
together with those others which this may be considered as including, especially
the following :

gy=k pi=—k; jk=i bj=—14; ki=j th=—,. (B)

In this manner, by (225) and (238), while the first of the sixteen symbolical

equations (239) is identically satisfied, each of the other fifteen will resolve itself

into four ordinary equations, independent of the three symbols 7, 7, & ; and thus,

if we denote, for conciseness, four of the numerical coefficients of quaternion
multiplication as follows,

Mg =8; Ny =b; ngu=c¢; nyu=4d, (240)

the other sixty coefficients of such multiplication may be expressed in terms of
these : and the values so obtained will satisfy the two hundred and fifty-six con-
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ditions included in the formula (219), whatever four numbers may be chosen for
a, b, c, d.
And if we farther simplify the formule by supposing

a=1, b=0, ¢=0, d=0, (241)

which will be found in the applications to involve no essential loss of generality,
we then obtain, from this last-mentioned system of expressions, that system of
sixty-four numerical values for the sixty-four coefficients of multiplication of
quaternions, which was assigned in the equations (220), ... (223), of the twenty-
third article.

Coefficients of Quaternion-Derivation ; Comparison of Characteristics.

26. Adopting, then, those values, (220),...(223), for the sixty-four coefficients
of multiplication, let us, at the same time, in accordance with the rule (215),
adopt also such a connected system of values for the sixty-four connected co-
efficients of derivation, c,,, , as shall give the continued equation,

1 = Cop = Cou = Cppe = Cozg = — €t = Cpyg = — €3 = Cpy
= Gy = €3 = Copg = T Oy = Ol = —Cyy = Oy = Cyy s (242)
ten of these coefficients ¢ being thus each equal to 4 1, and six others being each

equal to — 1, while the other forty-eight coefficients of derivation shall, by the

same rule, vanish.
The formula (135) will thus give the sixteen following equations :

3y = 2,3 A, = ;5 A T 8,5 8, T Ay

A = 25 3, = 355 Ay = 85 3 T A, )
10 1 — C o e . (243)
By, = —2;5 8y = 855 2y T 3,5 Ay = —a;3 J

By = —y5 Ay T 8y Ay = A5 Ay = 85

and, therefore, by comparing the definitions (134) and (70), we shall have the
four expressions :

X4 = (8 a, a, a;) = 1q;

Xq= (—a, a2, —ay a) = q; (244)
x,q=(—2 3, 3, —a,) = Jjq; J

xq=(—a, —aya, a,) = kq;
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for the results of operating, by the four elementary characteristics of derivation,
X X, X, X, which are thus seen to be equivalent to 1, 4, j, &, on the ordinal
quaternion,

q = (ap 8, 3y 3,). (55)
Whatever the constituents of this original operand may be, since the equations
of detachment have been satisfied by the choice of the constant coefficients, we
shall have, by the formula (153), and by the values (220)..(223), sixteen
expressions for the symbolic squares and products of these elementary charac-
teristics of derivation, which are independent of the quaternion first operated on ;
namely, the sixteen expressions following :

Xo Xog= X535 X Xg= X;3 Xg X9 = X33 X3 Xg= X33

Xo X 0= X3 X X, ==Xy Xg X, ==Xz XgX,= X,; (245)
Xo Xy = Xg3 XyXg== X33  XgX=—Xg3 Xz Xy=—X,;

Xy X3== X33 Xy X;=—X,3 Xy Xz X3 Xy, Xy =— Xy}

which might also be deduced from the equations,

X,=1; X, =23 X,=j; X,=k (246)

Product and Quotient of two numeral Quaternions ; Law of the Modulus.

27. We may also write, by (155),

(my', my', myy my') = (mg, my, my, m3) (my, my, my, my), - (247)
and may say that the numeral quaternion (my', my’,my,m;’) is equal to the
product obtained when the numeral quaternion (mg, m,, m, m,) is multiplied, as
a multiplicand, by the numeral quaternion (mg, mi, m;, m;) as a multiplier ; pro-
vided that, by the formula (149), with the same values of the coefficients of mul-
tiplication, we establish the four following equations between the twelve numerical
constituents of these three numeral quaternions :

My = My My — M| M — My My ~— My My ;

m;,zmnl)ml'l'm:mo'l'm;ms"m;mz; (248)

my = mym, — m; m, 4 mym, + mzm,;

my’ = mg my 4 my m, — mym, 4 m;m,.

Under the same conditions we may say that the multiplier quaternion (or the
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left hand factor in the expression for a product) is the quotient obtained by
dividing the product by the multiplicand ; and may write the formula,

1
0

(m ) m;,’ m;’y m;,

; ’ ’ AN
(mos m,, My ma) - (my, m,, my, ma).

(249)

It is easy to see that if we make, for abridgment,
W =mg +m’ +m} 4 m, 1
K? = mg® +m? 4 m? 4 mg, (250)
Wi i i m,

and regard g, o, " as positive (or absolute) numbers, the equations (248) give
the following very simple but important relation :

p=p. (251)

If then we give the name of modulus to the (positive or absolute) square-root

of the sum of the squares of the four (positive or negative or null) numbers,

which enter as constituents into the expression of a numeral quaternion, we see

that it is allowed to say, for such quaternions (as well as for couples and their

analogous moduli), that the modulus of the product is equal to the product of

the moduli. The equations (248) give also, for the numerical constituents of
the quotient (249), the expressions :

my = p~2( 4 mg'm, 4 my'm, 4 my'm, 4 my'm,) ;

my = (i m, 4 mi'm, — mi/m, + m'm,)

my = p~*(—mg'm, 4 my'my + my'm, — my'm,) ;

m:,i = F-g( —mtlllma - milma + m;Iml + m;’mo) 5

(252)

which may be compared with the expression (183) for the quotient that results
from the division of one couple by another. As a verification, we may observe
that they give, as it is not difficult to see that they ought to do,

(mo, my, My, ms)
(my myy My m;)

=(1, 0, 0, 0). (253)

And these results respecting products and quotients of two numeral quaternions
may easily be remembered, or reproduced, if we observe that we have the fol-
lowing general expression for a numeral quaternion :
q = (Mg my My M) = My 4 iy - jm, + ke (254) = (c)
VOL. XXI. 2L
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where 1, j, £ are still those three coordinate symbols, or new fourth roets of unity,
already introduced in this Essay, of which the squares and products are subject to
the fundamental formula :

P=p=R=gk=—1; (a)

and to the relations which are consequences of this formula, especially the fol-
lowing :

Yy=—pn=k; jk=—k=1i; k=—ik= ()
These equations, (o) and (B), had indeed occurred before in this paper; but on
account of their great importance in the present theory, they have been written
once more in this place, in connexion with the general expression (c), which
may represent any numeral quaternion.

On the more general System of Coefficients, obtained by a recent Investigation.

28. If we had not adopted the particular numerical values (241), but had
allowed the four letters a, b, ¢, d, in the equations (240), to denote any four
constant numbers, which numbers, or their symbols, should thus enter as arbi-
trary constants into the expressions for the coeflicients of multiplication, and into
those for the connected coefficients of derivation of quaternions; then it is not
difficult to see that, with the same fundamental system of expressions for the
squares and products of ¢, j, k, contained in the formula (a), the results of the
investigation in the twenty-fourth and twenty-fifth articles might be concisely
presented as follows :

my Xo + My X, 4 my X, + my Xy =
(g 4 m, i+ m, j +my k) (a4 bi + ¢ + dk). (255)

And then the formula of symbolic multiplication of one numeral quaternion by
another, which is included in (152), namely,

My’ Xo 4 mi" Xy +my' Xy +my' X, =
(m(/) Xo + m; X1 + m; Xa + m:'s Xa) (mo Xo + m, X, + m, x2+ maxa)’ (256)
would become, with the same system of non-linear relations between the same
three symbols 7, 7, & : -
my s i e =
(g - mii o i - mi k) (@t b+ g + dk) (my+m,i-myj myk). (257)
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This formula resolves itself, by those relations, and by the linea~ independence of
%, J, k, and 1, into four separate equations, which may be obtained from the four

equations (248), by changing m,, m,, m,, m, respectively, to

my = am, — bm, — cm, — dm,;
m, = am, + bm, 4+ cm; — dm,;
my, = am, — bm, + cm, 4 dm,;
m; == am, 4+ bm, — cm, 4 dm,;

(258)

so that, with these abridgments, the four equations included in the formula (257)
may be thus written :

my = Mg My — MM, — My My — My M, ;
m,' = mom; +m; my + my my — mymy 3
my = mymy — my ms 4 m,m, + mymy ;
m; = miy my - m; my — mymy - m;me.

In this manner we should obtain the four expressions :

where

my = ad,+ bB,+ cC, + dD,;
my = ad, 4+ bB, 4+ cC,+ dD,;
my = ad,+ bB,4 cC, 4+ dD,;
my = ad,+bB, 4+ cC,+ dD,;

A, = mym, — m;m, — mym, — mym,;
A, = mym, + m;m, + mym; — mym,;
A, = m{m, — mimy - my my 4 mym, ;
A, = mgm, -+ m;my, — mym, 4 mym,;

B, = — mym, — m; my 4 mym, — 'my m,;
B, = 4+ mqm, — mim, 4+ mym, - mim,;
B, = — mym, — m;im, — mym, 4 m;my;
B, = 4 mym, — miym; — mym, — mym,;

C,= — mym, — mym,; — mym, + mzm, ;

C, = + mom, — m;m, — m,m, — mym,;

C, =+ mm, + mym, — mym, + mym,;

C, = — mom, + m;m, — m, m; — mym,;
2L2

(259)

(260)

(261)

(262)

(263)
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D, = —mym, 4 m;im, — m;m, — mym,;
D, = — mym, — m; m, 4 m; m, — mym,;
D, =+ mom, — m; m, — mym, — mzm,;
D3=+m4,)mo+m{m| +m;m2'—m;m3°

(264)

And thus may the problem of the multiplication of numeral quaternions be
resolved, without any restriction being laid on the numerical values of the four
arbitrary constants, a, b, ¢, d. The modular equation (251), namely, p'’ = p'u,
will extend to this more general system, if we define the modulus u of the qua-
ternion (my, m, m,, m,) by the formula :

B = (@B ) (m o+ m o m 4 my). (265)
Thus, with the recently established forms (261), ... (264), of the sixteen func-
tions 4,...D, we must have, as an identity, independent of the values of the

twelve numbers denoted by the symbols a b ¢ d m, m, m, m, m; m; m; m;, the
following equation :

(a4, + 6B, + cC, + dD,)' + (ad, +bB, + cC, + dD,)*
+ (ad,+bB,+ ¢C, + dD,)* + (a4, 4 bB,+ ¢C, + D,y
= (@ 48+ 0+ @) (2 P mit - miZ) (m2 - m4-m2 m?); (266)
and therefore, independently of the values of the eight numbers m, ... m; we
must have these Zen other equations:

(i it 2 4 ) (m? 4 2 m )
=A’+ 4’ + 4+ A4 =B+ B’+ B+ B
=C+C4C2 4+ C2 = -D02 + D+ D+ D}

0=4,B,+4,B,+4,B,4+4,B,; 0=4,C,+4,C,+4,C,+4,C,; }
(268)

(267)

0=A0D0+AID1+A2D2+A303; 0:B000+B|CI+B202+B303;
0 = B,D,+ B.D,+B,D,+ B, D,; 0=C,D,+C D+ C,D,+ C,D,.

Although these identities admit of being established in a more elementary way,
yet it has been thought worth while to point out the foregoing method of arriving
at them, because that method follows easily from the principles of the present
theory.
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On the Extension of the Theory of Multiplication of Quaternions to other
numeral Sets.

29. This seems to be a proper place for offering a few remarks on the treat-
ment of the general equation (214), which may assist in the future extension of
the present theory of multiplication of quaternions to other numeral sets; and
may serve, in the meanwhile, to throw some fresh light on the process which has
been employed in the twenty-fourth and twenty-fifth articles, for discovering a
mode of satisfying that general equation, in the case when the exponent % of the
order of the set is 4.

Let ¢, ¢,..4%,_, be a system of » symbolical multipliers, which we shall
assume to be unconnected with each other by any linear relation; and let us
establish the following formula, analogous to (225),

9,0 = iong, u 0 + .o + in-lnt, un.] — zn-iv N4, u, ve (269)

Then, operating by the characteristic .7, on the equation (214), we shall trans-
form that equation into the following :

0= 2,(Nrrs Qs — Gur Moyra) s (270)
and may satisfy it by supposing
o =%l Go=1"Gools's (271)
for we shall then have
Ny G e =Grr Qolt = Qo tr Qo e = 0o Gor = Za- Gur Nape (272)
We are therefore to endeavour to satisfy the symbolical condition,
Zy.85 00 87 M0, o = CODNSE. = o5 (273)

this constant ¢, being independent of z and u, and the n symbols ¢, ¢,, &c., being
still unconnected by any linear relation. When this shall have been accomplished,
we may then employ the formula,
Xt =t q,; (274)
which will give o
XuXG:zuqotho-——qt,uqozzn-nt,u,' XO; (275)

and therefore will agree with the formula (153). And thus the equations of
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detachment will have been satisfied, and a numeral se?, of the kind above sup-
posed, will be found under the form,

g =Z. M X = .My 5 ¢y (276)

For the case of couples, we may make
i, =1; ¢, =+ (—=1); ¢=1; (277)
and then the condition (273) will be satisfied by the values of the coefficients of
multiplication assigned in the nineteenth article ; and the numeral couple will

present itself under the well-known form, m, + m/(—1).
For the case of quaternions, if we suppose

h=1; 5,=1¢; 4, =y; ,=k; (278)

the symbols ¢, j, & being still connected by the fundamental relations (a) ; the
six symbolical equations (228), and the sixteen symbolical equations (239), will
then be included, by (269), in the formula (273), in which we may write, by
(240), and by (271), or (238),

go=a+bi+¢j + dk; (279)

and the expression (255) will be included in the more general expression (276).
And if we farther particularize, and at the same time simplify, by adopting, as we
propose henceforth to do, the values (241), which reduce ¢, to 1, we shall then
obtain from (276), by (278), the same expression (254), or (c), which has already
been assigned in the twenty-seventh article, as the representation of a numeral
quaternion.

Successive Multiplication of Quaternions: Application of the associative
Principle.

30. It has been stated that we design to adopt, in our theory of numeral
quaternions, the simplifications contained in the equations (241). We shall there-
fore regard, henceforth, the constituents of any product of fwo numeral quater-
nions as being given by the simpler formule (248), and not by the more
complex formule (260), in which 4, ... D, are abridged representatives of the
sixteen quadrinomials (261)...(264). Yet the trouble of investigating these
latter expressions will not have been thrown away: for we may see, by (257),
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that they will serve, hereafter, to express the result of a successive multiplication,
or the continued product of three numeral quaternions. And by applying the
associative principle, already considered in the twenty-first article, to such suc-
cessive multiplication, we see that, instead of developing the formula (257) by a
process which was equivalent to the development of the system of the two
equations,

my+ myi +myj+ mek = (a 4 bé 4 ¢f + dk) (m, + mi + myj+mk), (280)
and

mg +mi4my +my'k = (mo+miit-my g+ myk) (mo+ myi4m, g+ mik), (281)
we might have developed the same formula (257) by a different, but analogous
process, founded on a different mode of grouping or associating the three qua-
ternions which enter as symbolic factors. For we might have introduced this
other quaternion,

my +my ¢ my J 4 myk = (mo+mii +my ) +mak) (a+bi 4-¢) - dk) ; (282)
which would have given the expression,
ikl pm =y i myy A mSk) (metmitmj+mk); (283)
and then the four values (260), for the four constituents of the final product of
the three quaternion factors which enter into the second member of the formula
(257), would have presented themselves as the result of the elimination of the
four counstituents of the intermediate quaternion product (282), between the
eight following equations :

my = mya —mb — mic —m;d;

my = myb 4+ mia +m,d — m;c; (284)
my =mgc — md + mya 4 myb;

my = myd 4 m¢c — myb 4 mia; J

my = my m, — M My — My My — M3 M35 |

i’ = iy, gy — mimys | (285)
my == My My — My My +~ My My + M3 My 5

my = my my 4 my m, — my m, 4 my m,

And accordingly, on comparing these eight equations with the four expressions
(260), we arrive at the same quadrinomial values for the sixteen coefficients
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A, ...D; which have been already given in the equations (261)..(264).
We may perceive that they would conduct also to the relations (267), (268)
between those coefficients, and to the formula (266 ) for the decomposition of a pro-
duct of three sums, containing each four squares, by eliminating the modulus p*
of the quaternion (282) between two equations analogous to (251), namely, the
two following :

P'“ - ”l e, 'uu — ,‘\\,‘; (286)
where p, i, '’ have the significations (250), and where

AN

PR = m e m A my - my?; f=ar B4l (287)

Addition and Subtraction of Numeral Sets ; Non-commutative Character of
Quaternion Multiplication.

31. Any two numeral sets may be added to each other, by adding their
respective constituent numbers, primary to primary, secondary to secondary, and
soforth ; and on a similar plan may subtraction of such sets be performed; thus,
for any two numeral quaternions we may write,

(mg, my, my, my) £ (my, m,, My, my)
= (mo £ my, m; X m, m; £ m, m;Etm,); (288)

and generally, by using £ and A as the characteristics of sum and difference, and
employing those signs of numeral separation which were proposed in the twenty-
first article, we may write formul for sums and differences of numeral sets, which
are analogous to, and may be considered as depending upon those marked (116),
for the addition and subtraction of ordinal sets; namely, the following :

N.Z¢ = EN,g; N,A¢ = ANg. (289)

For the multiplication of numeral sets, we have already established principles
and formulz which involve, generally, the distributive and the associative pro-
perties of the operation of the same name, as performed on single numbers ; but
which do not retain, in general, the commutative property of that ordinary ope-
ration upon numbers. Thus we may write,

¢ X 29 = 2(¢' X ¢) (290)
'Xqd9=9"¢Xe9=¢"94q (291)

and also,
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the mark of multiplication being allowed to be omitted, because its place is un-
important to the result, in the successive multiplication of any three or more
numeral sets. But we are not at liberty to write, generally, for any two such
sets, as factors, the commutative formula,
79=1975

since, although, by the equation (182), this last formula of commutation of
factors holds good, not only for single numbers, but also when the factors are
numeral couples, of the kind considered in the nineteenth article of the present
paper, and in the earlier Essay there referred to, yet, for the case of numeral
quaternions, the relations (B) between the products of the symbols ¢, j, &, give
results opposed to the commutative formula, namely, the following :

y=—j, jk=—kj, k= —ik.

In fact, by (149), or by (209), to justify generally this commutative formula
of multiplication, as applied to numeral sets of the order #, it would be necessary
that the n° coefficients of multiplication should be connected with each other by

the relations included in the type,
nr.r',t = nr’, r,8° (292)

Now these relations have, indeed, been established in our theory of numeral
couples, since, in the abridged notation of the nineteenth article, and with the
values there adopted, we have the equations,

f= g f, = 8’5 Ory By = Moy My = Nygy5 (293)
but they do nof hold good in our theory of numeral quaternions, since we have
been led to adopt values for the coefficients of multiplication, which give, on the
contrary,

Mgz == — N33 Mg = — Ny 5 Nge = — Nygee (294)

Thus, if we still adopt the system of values of the coefficients of qmiternion mul-
tiplication assigned in the twenty-third article, we must reject the commutative
property ; and may establish a formula which is opposite in its character to the

equation (292), namely, the following :
nr.?’,:= h nr’,r.:’ if 1', z r, r > 0’ 1'/ > O' (295)
VOL. XXI 2 M
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General Division of one numeral Set by another : Combination of the Opera-
tions of Division and Multiplication of Quaternions.

32. The general division of one numeral set by another, if regarded as the
operation of returning to the multiplier, from the product and the multiplicand,
involves no theoretical difficulty, since it depends on the solution, by elimination
or otherwise, of a finite system of ordinary equations of the first degree, between
the sought numerical constituents of the quotient ; and it has been already exem-
plified, for couples and quaternions, in the nineteenth and twenty-seventh articles.
But it is of essential importance to observe that, if division of numeral sets be
thus defined by the formula,

(¢"+9)xg9=4¢" (296)
in which, as in all other cases, we conceive the symbol of the multiplier to be
placed at the left hand, and which is analogous to (129), we shall then nos
have, generally, for numeral sets, as for numbers, this other usual equation :

gx(¢"+ 9 =¢"

In fact, if we were to assume, for example, that this latter and usual equation,
though true for numbers and for numeral couples, was generally true for numeral
quaternions also, we should then, in consequence of the definitional formula
(296), which fixes the correlation of the signs X and <, with respect to numeral
sets, be virtually assuming, also, that equation of commutative multiplication,
¢'q = q¢', which, for the case of quaternions at least, we have already seen reason
to reject. Hence follows the important consequence that, in this case of quater-
nions, the first member, ¢ X (¢’ <= ¢), of the lately rejected equation, is the
symbol of a new quaternion, distinct in general from the operand quaternion,
q’, which has been first divided and afterwards multiplied by one common ope-
rator quaternion, q; these two operations, thus performed, having not generally
neutralized each other, on account of the generally noncommutative character
of the multiplication of numeral quaternions. It is, therefore, already an object
of interest in this theory, and will be found to be a problem of which the geome-
trical and physical applications are in a high degree important, {0 determine the
constituents of that new quaternion, ¢, distinct from ¢”, which is thus repre-
sented by the symbol ¢ X (¢’ ¢), or which satisfies the equation

g xX("+q9)=q, (297)



Sir WiLLiaM Rowa~ HamiLroN's Researches respeeting Quaternions. 257

To express the same problem otherwise, with the help of the definition of divi-
sion, (296), we have now the system of the two equations,

=97 9,=4975 (298)
q" and ¢, being those two distinct quaternion products which arise from- the
multiplication of the same two quaternion factors, ¢ and ¢’, with two different
arrangements of those factors; and we are to eliminate the four constituents of
one of those two quaternion factors, namely, the constituents of the factor ¢’,
between the eight separate and ordinary equations into which the two quaternion
equations (298) resolve themselves. If we write, for this purpose,

g =w —+izx + jy + k2,
¢ =w i + jy + k2,

qII= wll+ z‘xll+ ]:y”'l' kzll’ (299)
9,= wll+ ixll+ ]:yn'l' kzu’
we shall then have the four equations,
' =ww — 2z — Yy —2z;
1 e oyl / - . )
¥ z—wr4rw+tyz —2y; (300)

Y =wy—2z +yw+ Jr;

' =wz 42y —yr+42w;
together with the four others which result from these by interchanging, in the
right hand members, the accented with the unaccented letters, and by changing
in the left hand members upper to lower accents; namely, the four following :

w,=ww —a5 —yy — 27;
z, =wz + aw'+yz' —zy; (301)
Yy, =wy — v +yw + 22’ ;
2, =wz 4 zy —yz' + 2w
It thus appears immediately that
w, =w'; (302)
and the elimination, above directed, of the four numbers w’, 27, ', 2/, that is, of
the constituents of the numeral quaternion ¢’, between the eight equations (300),
(301), gives these three other equations, which complete the solution of the

problem, so far as it depends on the above-mentioned elimination :
2mM2
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wx, + 2y, — yz,, =wr’' + yz'’" — zy";
wy, + rz,— 22, =wy’' + 22’ — vz’ } (303)
wz, +yx, — xy, = ws' + zy’ — ya'.
These equations conduct to the relations,
d xz, +4y, + 22, = a2’ +yy’ + 22", (304)
" 2 4y 422 =y 42" (305)

which, as it is easy to foresee, will be found to have extensive applications, and
which may also be easily obtained, by observing that, before the elimination of
w', , y's 2/, the equations (300), (301) give

2 =2wr +wx); z,—2" =2y —z2y); }
Y.ty =2wy' +wy); y,—y" =2Azx’ —a7); (306)
3,47 =2wd +wz); z,—7" =2y —ya).

33. Although these latter combinations (306), of those equations (300), (301),
conduct without difficulty to the equations (303), (304), (305), yet it is still more
easy, when once the principles of the present theory have been distinctly com-
prehended, to deduce the last-mentioned equations, by treating in the following
way the problem of the foregoing article.

Instead of resolving the numeral quaternion ¢’ into the four separate terms,
w, ¥, jy’, k2, as is done in the second of the four expressions (299), and then
eliminating the four constituent numbers w', 2’, %', 2’ between the eight ordinary
equations into which the two quaternion equations (298) resolve themselves, we
may eliminate the quaternion ¢’ itself between those two equations (298), and
so obtain immediately, without any labour of calculation, this new quaternion
equation,

9,9=199"3 (307)
which, by the three remaining expressions (299), and by the equality (302),
becomes : _
(iz, +jy,, +kz,) (w iz +jy + kz) =
(10 + i +jy + k2) (i 43" 4+ k). (308)

If now we perform the multiplications here indicated, attending to the funda-
mental expressions (a) (B), for the squares and products of the three symbols,
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%, J, k, and to the linear independence, already supposed to exist, between the
four symbols ¢, j, £, and 1, we find that the one quaternion formula (308)
resolves itself into the four equations, (303) and (304). And either from the
four equations thus obtained, or by an application of the law of the modulus to
the quaternion equation (308), the relation (305) may be obtained. It is worth
while observing that we may also write the quaternion formula,

W+ 4y +2")g, =
(w +iz +jy + kz) (W' ia"+jy" + k2’) (w — iz — jy — kz); (309)
or, more fully,

(w'+2° +y'+2°) (w,—w" +iz,+jy,+kz,) =

(w* — 2 —y? — 2*) (ia" +Jy" + k2")

+2(z2” + 3y + 22") (ir + jy + kz)

+ 2wii(ys"— 2y") + j(zx" — 22") + k(xy’— y2")};  (310)

by resolving which one formula, the same separate values for w,, x,,y,, 2, may
be obtained, as from the system of the four ordinary equations (302), (303).

On the Operation of pre-multiplying one numeral Set by another, and on frac-
o tional Symbols for Sets.

34. Since we have seen that we are notat liberty to assume generally, for all
numeral sets, that the commutative formula of multiplication holds good, we
must (in general) distinguish between fwo modes of combination of two such sets
with each other, as factors, in some such way as the following. We saw reason,
in the twenty-second article, to regard an ordinal set, q, as having been generated
by a certain symbolical multiplication, or complex derivation, from a single stan-
dard ordinal relation, a, as from an original operand or derivand ; the operator,
or symbolical multiplier, having been a numeral set, ¢. If such an ordinal set,
q, or ¢ X a, be again operated on by the new numeral set, ¢/, as by a new sym-
bolical multiplier, the result will be a new ordinal set, ¢’ X (¢ X a), which, in
this theory, admits of being denoted also by (¢ X ¢) X a; and generally, in the
same theory, the conditions of detachment entitle us to write the formula

¢ X(@Xq)=( X9)Xq, (311)
whatever operand set (of the same order) may here be denoted by the symbol q.
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Thus, to multiply the numeral set ¢, as a multiplicand, by the numeral set ¢/, as
a multiplier, comes to be regarded as being equivalent to the operations of mul-
tiplying some single standard ordinal relation, a, or some ordinal set, q, first by
the given multiplicand set, q, and afterwards by the given multiplier set, ¢ ;
and of then finding that third set, ¢”, namely, the product ¢’ X ¢, or ¢'q, which,
acting as a single multiplier, would produce the same final resuit, and would,
therefore, serve, by its single operation, to replace this twofold process. In this
view of the multiplication of one numeral set by another, the set proposed as a
multiplicand is itself a previous multiplier, and may, therefore, be called a pre-
multiplicator, or, more familiarly, a premultiplier. And thus, instead of saying
that the product ¢’ X ¢, or ¢'q, is obtained by multiplying ¢ by ¢/, we may be
permitted occasionally to say that the same product results from premultiplying
q' by ¢ ; the symbol of the premultiplier being placed towards the right hand, as
that of the multiplier is placed towards the left.

With this phraseology, and with the definitional formula (296), which easily
gives also this other connected formula,

(¢ XD+9=¢, (312)
division and premultiplication are mutually inverse operations ; that is to say,
a numeral set, ¢’, remains, upon the whole, unchanged, when it is bot2 divided
and premultiplied, or both premultiplied and divided, by any other numeral set,
g (of the same order). We may also agree to express the same results by sym-
bols of fractional forms, a fraction being defined to be the quotient which is
obtained when the numerator is divided by the denominator, so that we shall
adopt here, as a definition, the formula

—q—,-: - (313)
rk g +9q

for then we may say that a fraction gives its numerator as the product, when it
is premultiplied by its denominator ; though it does not always, at least for the
case of quaternions, produce that numerator when it is multiplied by that de-
nominator (the order of the factors being then different). In symbols, the
equations

%I- =7, Y=g, (314)
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are here regarded as 2dentical ; whereas these other usual equations,
qll , qlq
g—= q, s —F =9
q 7
of which the first is only an abridged way of writing a formula already rejected,
while the second is connected therewith, are not generally true (or, at least, not
universally so) for numeral sets ; because the order of the factors in multiplica-

tion is, in the present theory of such sefs, not generally unimportant to the
result. We have seen, for example, in the foregoing article, that the quaternion
"

s

which may now be denoted by the symbol qq—, or by this other symbol, q%, or

by 99" =+ g instead of being generally equal to the quaternion ¢”, is equal, in
general, to another quaternion, ¢,, distinct from the former, though having
several simple relations thereto, which will be found to be connected, in their
geometrical and physical applications, with questions respecting the transforma-
tion of rectangular coordinates in space, and the rotation of a solid body. It
may, therefore, be not useless to remark expressly here, that the following usual
equations continue true in the present theory of numeral sets, as well as in
common algebra :

qxq—":qi”; q?—q:ﬁ:q———ﬂ-?g; (315)
9 q 9 4 99+9
or, in words, that a_fraction is multiplied by a numeral set when its numerator is
multiplied thereby ; and that the value of a fraction, regarded as representing a
numeral set, remains unchanged, or represents the same set as before, when its
numerator and its denominator are both premultiplied, or both divided, by any
common set (of the same order) ; both which results depend on the associative
property of multiplication, and on the principle that two numeral sets cannot
generally give equal products, when operating as multipliers on one common
multiplicand (different from zero), unless they be themselves equal sets. These
general remarks will become more clear by their future applications; meanwhile,
we may here agree to use occasionally, for convenience and variety, another form
of expression, consistent with the foregoing principles, and to say that, in the
product ¢'g, the left hand factor, ¢’, is multiplied info the right hand factor, ¢
as the latter has been said to be multiplied by the former, and as that former
factor again has been said to be premultiplied by the latter.
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On the Operations of submultiplying, and of taking the Reciprocal of a numeral
Set.

35. As it has been found necessary to distinguish, in general, between fwo
modes of multiplication of one numeral set by another, with different arrange-
ments of the factors, so is it also necessary in this theory to distinguish generally
between fwo tnverse operations, namely, between the operation of division, and
another closely connected operation, which may be called sub-multiplication.
For if this last-named operation be now defined to be the returning to the mult:-
plicand, when the product and the multiplier are given, it will then be evidently
distinet, in general, or, at least, for the case of quaternions, from the operation
of division, which has been already defined to be the returning to the multiplier,
when the multiplicand and product are given ; because these two factors, the
multiplier and the multiplicand, when regarded as numeral sets (at least if those
sets be quaternions), cannot generally change places with each other, without alter-
ing the value of the product. To denote conveniently this new operation of sub-
multiplication, or of returning from the set ¢’q to the set ¢, when the set ¢’ is
given, we shall now introduce the conception of a reciprocal set, which may
be denoted by any one of the three symbols,

l-e-q:l}:q"; (316)
and of which the characteristic property is, that it satisfies generally the two reci-
procal conditions,

¢7'X99=¢, ¢X¢7q =q, (317)
of which the second follows from the first, and which may be more concisely
written thus:

¢ 'g=9q937'=1. (318)
Thus, whether a numeral set ¢ be multiplied or premultiplied by its reciprocal
set ¢~', the product in each case is unity; and when these two reciprocal sets
are employed to operate, as successive multipliers, on any ordinal or numeral set
as a multiplicand, they neutralize the effects of each other. It follows hence,
that to submultiply by any numeral set is equivalent to multiplying by the reci-
procal of that set ; so that we may write generally, for such sets, the formula of
submultiplication (as in ordinary algebra) thus:

;4@=¢”4@=% (319)
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It is evident from what has been said, that the reciprocal of the reciprocal of a
numeral set is equal to that set ifself; and that to divide by such a set is to pre-
multiply by (or to multiply into) its reciprocal ; thus, generally,

) 1 - ,
‘q’q +e=q'¢X 7= 99.97'=4¢'. (320)

The reciprocal of a quaternion is given by the formula,
(wtix 4y +k2) = (W + 2 + ¥ + 2*) ! (w—iz—jy—kz). (321)
In general, the reciprocal of the product of any number of sets is equal to the
product of the reciprocals of those sets, arranged in the contrary order : thus we

may write, .
(%09 =¢"0" g (322)

On Powers of a Numeral Set, with whole or fractional Exzponents; Square and
Square Root of a Quaternion ; Indeterminate Expressions, by Quaternions,
Jor the Square Roots of Negative Numbers.

36. The symbol ¢!, for the reciprocal of a numeral set, is only one of a
system of symbols of the same sort, which may easily be formed by an adaptation
of received algebraic notation. For with the notions given already, respecting
multiplication and division of sets, there is no difficulty in interpreting now, in
an extended sense, adapted to the present theory, the following usual system of
equations,

=L ¢=¢ ¢=9¢Xg¢, F=g¢Xg..
=1 o 1 —2_1 -1 =3 — 1 -2 (323)
== ¢ '==Xq ==-Xq5..
q p q 7 759 7 q
and then the well-known equation of the exponential law,
X=X =" (324)

will hold good, as in ordinary algebra, the ezponents r and s being here supposed
to denote any two positive or negative whole numbers, or zero.
These two other usual equations,

@r=¢ (@)=4¢ (325)
will then also hold good for numeral sets, at least when r, s, ¢, and ’, denote
whole numbers ; and the latter of these two formule may be employed as a
definition to interpret the symbol ¢, when the exponent is'a numerical fraction ;

VOL. XXI 2 N
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thus, ¢! will denote that numeral set, or any one of those numeral sets, which
satisfy, ‘or are roots of, the equation,

@)r=q¢=g¢ (326)
For example, it results from what has been already shown, that if ¢ denote the

first numeral quaternion (299), then its symbolic square, or second power, is
another quaternion, g,, given by the formula

= =(w+ix +jy +kz) =w, + iz, 4+ jy, + k2, (327)
2

w,=w — 2 — y* —2*; 1 398
r,=2wx; y,=2wy; z,=2wz. J (328)

where

And hence, conversely, the symbolic square root of the quaternion ¢, or its
power with the exponent , is to be regarded as being equivalent to this other
numeral quaternion,

q=¢} = (0, + tx, +jy, + ko)) =w + i + gy + kz; (329)
where the constituents, w, 2, y, 2, are any four numbers (positive, negative, or
zero), which satisfy the system of the four equations (328). Those equations
give the relation

0 4 &} 4y + 2t = @+ B 4 2N (330)
which is included in the more general result (251), respecting the multiplica-
tion of any two quaternions ; therefore, conversely,

W44y + 2=Vt + 2 (331)
and, consequently, by the first of the four equations (328),
2w = w, + vV (w: + z.2 +y.° + 2.°), (332)

where the radical in the second member of (331) is to be considered as a positive
number : and, therefore, the first constituent, w, of the sought quaternion g, or
of the square root of the given quaternion g,, is itself given, generally, by (332),
as either the positive or the negative square root of another given positive num-
ber. And after choosing either of these two values (the positive or the nega-
tive) for w, the other three constituents, x, y, 2, of the sought quaternion g,
become, in general, entirely determined by the three last equations (328).
There are, therefore, in general, two, and only two, different square roots of
any proposed numeral quaternion ; and they differ only in their signs. But there
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1s one very important CASE OF INDETERMINATENESS, in. which an infinste variety
of roots takes the .place of that finite ambiguity, which has thus been seen to
exist generally in the expression for the square root of a quaternion, namely,
the case where the proposed square is equal to o negative number, presented
under the form of a quaternion, of which the first constituent is negative, while
the three last separately vanish. For, if we suppose the data to be such that

wy=—1, 2,=0, y,=0, 2,=0, (333)
r being some positive or negative number, then the positive radical in (331)
becomes

Vst +y’+ &) =r=—w, (334)
and the equation (332) reduces itself to the following :
w = 0. (335)

And while the three last of the four equations (328) are then satisfied, indepen-
dently of the three remaining constituents, @, y, 2, the first of those four equa-
tions gives this one relation, between those three constituents of the sought qua~
ternion ¢,

4y lr=r (336)
which is the only condition that they must satisfy. And since we may satisfy
this condition by assuming A

_Ir _mr _nr
= Y= TR } (337)
h= v/ (& +m +n?),

without any restriction being imposed on the three (positive, or negative, or null)
numbers, /, m, n, we see that, in our theory of quaternions, the square root of a
negative number is a partially indeterminate quaternion, belonging, however,
to a certain peculiar class, and admitting of being thus denoted :

e (il jm - n)r
= =vEtrm ey (338)
In fact, if we square the second member of this last formula, a_ttending to the
fundamental expressions, (a), (B), for the squares and products of the three
symbols, 4, j, &, we find, as the result of this operation, the negative number
2nN2
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— 7% which is the square of the first member; for those fundamental expres-
sions give, generally, this very simple and remarkable equation,

(ir +jy + k) = — (" + 5" + 7). (339) = ()
For example, in this theory, the square root of — 1 itself is represented by a
partially indeterminate symbol of the foregoing class, and we may write

(—yp=2 4 B where 7° = 2% 4" 4 7. (340)

That is to say, whatever three positive, or negative, or null numbers may be
denoted by z, ¥, z, provided that they do not all together vanish, we are allowed
in this theory to establish the following general expression for any one of the
infinitely many square roots of negative unity :
iz 45y +k

(-1 =7 z;"_'{yf"‘_i_;). (341) = (e)
Or, with the recent meaning of r, and with a notation which more immediately
suggests the conception of a numeral set, we may establish the formula,

(—1,0,0,0)= (0, 2 %, ;) (342)

Cubes and Cube Roots of Quaternions ; partially indeterminate Expressions
by Quaternions for Cube Roots of positive and negative Numbers.

37. With the same condition or abridgment, (336), we may write generally,
for any numeral quaternion, this expression

g=w+4(-1)r; (343)
or still more briefly and, at the same time, more determinately,
g=w + o, where F = — 1, (344)

and where « may be conceived to be in general determined when ¢ is determined,
since

..—_f;+’%’+"—f, r=v(@+y +2). (345)

The:cube of this expression (344 for ¢ is
¢ =w*—3wr’ 4 (3w — r)r; (346)
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and this cube, or third power of a quaternion, may be equated to a new quater-
nion, denoted as follows :

9 = ¢ =wy+ @, +jy, + bz, = w, + oy (347)
where
ri=x 4y’ +2h g=-—1; (348)
provided that we satisfy the two conditions,
w,=w'— 3wr’, ;= o(3w —1), (349)

of which- the second again resolves itself into three others, on account of the
mutual linear independence of the three symbols, 2, j, k. These last equations
give

fg:y—“:f"ﬁ:&n”—r’; (350)
z "y =z

and, therefore, it is allowed to write

g=1 r,=r(3w'—1r); (351)
provided that, if we still choose to consider the radical r as positive, we regard
the other radical, r,, as varying its sign, according to the law

7, 2 0, according as 3w? 7 r°, (352)

If, now, it be required to find conversely the cube raot g, or the power with
exponent 4 of a given quaternion, ¢, we shall have, first, the two equations

w1 = () 4 1) 5(3 -~ (%)3 (1 - 3(%)2)_'= ws  (83)

of which the second may be written more concisely thus :

3t —=(1—-3", ifr=tw, r,= tw,; (354)

ti=w," (x4 2)) (355)
The value of this positive number, £, is known, because the four constituents of
the quaternion g, are now supposed to be given ; hence, three different positive
values for # can, in general, be deduced from the square of the first equation
(354), which is a well-known cubic; for each such value of &, the sign of ¢,
and therefore, also (by the same cubic equation), the sign of ¢ may be deter-

so that
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mined by the condition that r, or.¢,w, is, by (352), to receive the same sign as
3 — £2; but r is supposed positive, therefore w has the same sign as £; and.

W14 ) = w1 + ), (356)
so that the constituent w is entirely determined: therefore, r (being = tw) is
known, and then the three remaining constituents, z, y, z, of the sought quater-
nion, ¢, are given by (350). Thus, the sought cube root, ¢, of the proposed
numeral quaternion ¢,, is, in general, determined ; or, at least, is restricted to a
finite and #riple variety, answering to the three (real, numerical, and) unequal
roots of the known cubic équation (354) ; which roots can always be found by
the help of a table of trigonometric tangents. We see, then, by the foregoing
process, which will soon be replaced by one more simple and more powerful, that
there are, in general, three, and only three, distinct cube roots of any proposed
numeral quaternion. But when it is required to find, on the same plan, under
the form of a quaternion, the cube root of a positive or negative number, w,,
regarded as an abridged expression for the quaternion (w, 0, 0, 0), then =, ¥,
z,, and 7 all vanish; and while the ratios of z, y, z remain entirely arbitrary,
the numbers w and r are to be determined so as to satisfy the two equations,

wy,=w'— 3wr’; 0=rBw —1°); (357)

which require that we should suppose either
r=0, w=w, (358)

or else, .
r=3w’, w'= — jw, (359)

For example, if we seek the quaternion cube roots of positive unity, regarded as
equivalent to the quaternion (1, 0, 0, 0), we find not only unity itself, under the
form of the same quaternion, but also this other, and partially indeterminate
expression, _

1*'=(1,0,0,00=(— 4, 2,9, 2); (360)
where the three positive or negative numbers, z, y, z, are only obliged to satisfy
the condition

24 y422=43 {(361)

And, in like manner, besides negative unity itself, there are infinitely many qua-
ternion cube roots of negative unity, included in the expression

(= 1)=(—=1,0,0,00=(+4 2, 9> 2), (362)
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urider the same condition (361) respecting the sum of the squares of the consti-
tuents, &, ¥, z. The values of this last expression (362), as 'well as the values of
the expression (360), are, therefore, included among those quaternions which
are (in this theory) sizth roots of unity, or are among the values of the symbol 1°.
As one other example, it may be remarked that, by the rule (339), the number
negative eight has, for one of its cube roots, the quaternion of which each of
the four constituents is equal to positive unity ; thus, one value of the symbol

(—8,0,0,0),is (1,1, 1, 1); (363)
and, accordingly, we shall find that
(1 +i+j+hyr=—8, (364)

if we develope the first member of this last equation, employing the distributive
property of multiplication, but nof the commutative property, and reducing by
the values of the symbolic squares and products of 4, 7, k, which have been already
assigned. It may be noted here that, in the more general problem of finding the
cube root, ¢, of a quaternion, g, of which the three last constituents, z, y, 2,
do not all vanish, so that 7, is different from 0, we might have ecliminated r*
between the first equation (349) and the first equation (353), and so have
obtained an ordinary cubic equation in w, which, as well as the equation in ¢, can
be resolved by the trigonometrical tables, namely, the cubic:

4w° — 3w(w? 4 ri) = w, (365)

Connexion of Quaternions with Couples, and with Quadratic Equations.

38. In general, if a numeral quaternion ¢ be required to satisfy any ordinary
numerical equation (with real coefficients) of the form

= a,+ aq + a,¢° + a,¢°* + &c, (366)
we may first substitute for ¢ the expression (344), namely, w + o, where
¢ = — 1. Then, after finding any one of those systems of values of the two (real)

numbers % and 7, which satisfy the system of the two equations, obtained by the
foregoing substitution, and by equating separately to zero the sums of the terms
containing respectively the even and odd powers of «, namely, the equations

0 =g, 4+ aw + a,(w*—7*) + a,(w’—3wr*) + &c., (367
0= ar + a,(2wr) + a,(3wr—r*) + &e.; } )
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we shall only have to change o, in the expression for ¢, to ix 4- Jy + kz, and to
suppose, as before, that 2* 43* 4z =72 But the process by which the two
numbers w and r are thus supposed to be discovered, is precisely the process by
which a numeral couple (w, r), of the kind considered in the nineteenth article
of this paper, and in the earlier Essay there referred to, would be determined, so
as to satisfy the couple-equation,

0=a,+a, (v, 1)+ a,(w,r)* 4 &c. (368)
The calculations required for finding a couple (w, r) which shall satisfy this
equation (368), are therefore the same as those required for finding a quaternion
(w, , y, z), which shall satisfy the equation

0=a,+ a,(w, 2,9, 2) + a,(w, 2,9, 2)* + &e. ; (369)

provided that we suppose the constituents of these two numeral sets to be con-
nected with each other by the relation already assigned, namely,

P24y +2=r (336)
Thus, in particular, if it be proposed to satisfy, by a quaternion ¢, the quadratic
equation,

0=ga,+ a,9 + a,¢’, (370)
which we may put under the form
q'— 209 +5=0, (371)

we may first change ¢ to the couple (w, ), and so obtain the #wo separate equa-
tions,

W —r'—2aw+b=0; 2wr—2ar=0; (372)
of which the latter requires us to suppose, either,
1st, r =03 or, 2nd, w =a. (373)
The first alternative conducts to a quadratic equation in w, namely,
w — 20w 4+ b =0, (374)

which is precisely the proposed equation (371), with the symbol ¢ of the sought
quaternion changed to the symbol w of a sought number; and reciprocally if
it be possible to find a real number w, or rather (in general) two such numbers;
which shall satisfy the quadratic (374), that is to say, if (the equation have real

roots, or if ) the condition
@ >b ora*=b+4c, (375)
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be satisfied, where c is a positive or negative number, then the equation (371)
will be satisfied by either of the two quaternions which are included in the
following expression, and by no other quaternion,
g=(w, 0, 0,0) = (a £ v/(a*—b), 0, 0, 0). (376)
The same expression holds good, giving one solution of the equation (371), for
the case a> = b. But in the remaining case, where
a2<b at=b-—c (377)
¢ being still a positive or negative number, we are to adopt the remaining alterna-
tive (373), namely, w = a ; and instead of supposing 7 = 0, we are now, by the
first equation (372), and by (377), to suppose
Pr=w— 2aw+b="5b—a*=c"; (378)
and the solution of the quadratic equation (371) is now expressed by the par-
tially indeterminate quaternion, connected with the two couple-solutions (a,=%¢),
q = (a, %, y, z), where 2° 4y’ 2* = b — a*. (379)
Anud thus we may perceive that, if we denote by u the modulus of the first
numeral quaternion (299), which may represent any such quaternion, then this
quaternion, g, is a root of a quadratic equation, with real coefficients, namely,

the following :
¢ — 2wg 4 p* = 0. (380)

Ezxponential and Imponential of a numeral Set; general Expression for o
Power, when both the Base and the Exponent are such Sets.

39. The investigations, in some recent articles, respecting certain powers and
roots of a quaternion, may be made at once more simple and more general by the
introduction of a well-known exponential series. We shall, therefore, write

=145+ L+ ke (381)

and shall call this series the exponential function, or simply, the exponential of
the numeral set g, with respect to which the operations are performed; we shall

also denote this exponential still more concisely by writing simply pg instead of
P(g), where no confusion seems likely to arise from this abbreviation. The

inverse function, which may be conceived to express reciprocally ¢, by means of
VOL. XXI. 20
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pg, may be called by contrast the imponential function, and denoted by the cha-
racteristic P™'; thus, we shall suppose p~'¢ to be such that

PP7lg = ¢, (382)
or that, more fully,
g=14r79+ 3(»7'¢) + 55(¢»7'¢)’ + &c. (383)
Then, because the function p is such that
pg' X pg =P(9' +q), if ¢'q = qq'; (384)

and because, by the associative principle of multiplication, any two whole powers
of the same numeral set, ¢, are commutative as factors, that is to say, may

change their places with each other, without altering the value of the product ;
we shall have, generally,

2 () X of () =»(S(9) +/(9))s (385)

because we shall have
S(9) Xf(9) =F(9) Xf(9) (386)

if the symbols f(¢) and f'(¢) denote here any combinations of whole powers of
one common numeral set, ¢, and of any given numerical coefficients. For exam-
ple, if @ denote a number, we shall have

pa X pq = P(a 4 q). (387)
We may also deduce, from the formula (385), this other important corollary,
which is general for numeral sets, and in which the symbol p.sq represents the

same function as p(sg), while s may, at first, be supposed to denote a whole
number :

(pq)* = p(sq) = p.5q. (388)
We have, therefore, for any two whole numbers, s and ¢, the relation
(p.sq) = (p.tg)"; (389)

and, therefore, as an equation of which the second member is, at least, one of the
valwes of the first, we have

(psg) =r.tq. (390)
We are thus led to write, as an equation of the same sort, giving an expression

for, at least, one value of any fractional power of a set, whenever the smponen-
tial of that set can be discovered,

r=p(tPTg). (391)
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The simplicity of this equation may now induce us to extend it, as we propose to
do, by definition, to the cases where the exponent of the power, instead of being
a numerical fraction, is an incommensurable number, or even a numeral set. We
shall, therefore, write generally

¢ =r(¢'P7'9); (392)
and thus we shall have a general ezpression for any power of a numeral set,
through the help of the characteristics of the exponential and imponential thereof.

Application to Quaternions ; Amplitude and Vector Unit ; Coordinates,
Radius, and Representative Point.

40. On applying these general principles to the case of a quaternion, we have
first, by (387),
pg = P(w + iz +jy + k2) = pw.p(iz +jy + k2) ; (393)
and then, if we use the notations (345), and attend to the connexion already
established between quaternions and couples, we find that
p(ix 4 Jy + kz) = (o) = cosr +4sinr; ¢ = —1; (394)
where cosr and sinr denote, as usual, the cosine and sine of 7, so that, in the
theory of couples, the following equation holds good :
(0, r) = (cosr, sinr). (395)
(Compare the earlier Essay, where the functional sign r was used instead of p).
Thus the ezponential of a quaternion g is expressed generally, with these nota-
tions, by the formula,
pq = pw.(cos7 - «sinr). (396)
Reciprocally the imponential p™ ¢/, of any other quaternion, ¢, is to be found by
comparing this formula (396) with the expression of that quaternion ¢/, when put
under the form,

g =w+ {r=p(cos¢ + /sin¢), (397)
where )
W= (@ +r?), g = (398)
We find, in this manner, that we may suppose
¢ =rg g¢=r7'q, (399)

202
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provided that we make

pw=p; r=042n'n; =/; (400)
where 7/ is any whole number, and = is, as usual, the least positive root of the
numerical equation,

- a7 'sinw = 0.

Hence, the sought tmponential of the quaternion ¢’ is

Plg =P W (0 + 2n'n) (401)
and, in like manner, by suppressing the accents, the imponential of ¢ is found
to be

Plg=Pp 'u+ (04 2nx), (402)

where 6 may be said to be the AMPLITUDE, and p is what we have already called the
MODULUS of ¢.

41. We may also say that ¢ is the maginary unit, or perhaps, more expressively,
that it is the vECTOR UNIT, of the same quaternion ¢. For in the applications of this
theory to geometrical questions, this imaginary or vector unit « may be regarded
as having in general a given di; ection in space when ¢ is a given quaternion ;
and if we denote its direction cosines by a, B, v, so that
z

a=2 p:-y;, v=2 @4B+py=1, (403)

r r

we may write, generally, by (345),
i =iatjB+ky, d= —L (404)

This power of representing any DIRECTION IN TRIDIMENSIONAL SPACE, by one
of the quaternion forms of +/( —1), is one of the chief peculiarities of the pre-
sent theory; and will be found to be one of the chief causes of its power, when
employed as an instrument in researches of a geometrical kind. If a, B,  be con-
ceived to be the three rectangular coordinates of a point R upon a spheric surface,
with radius unity, described about the origin of coordinates as centre, we may
also write, more concisely and, at the same time, not less expressively,

1=1,; a=-—1L (405)
A numeral quaternion ¢ may therefore, in general, be thus expressed : _
q = p(cos 6 +41,sin0) ; ~ (406)

where

p=N (S Y+ ), d=iatjBFhy=+(=1). (407)
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Its imponential, by (402), will then take the form

plg=logpu + (0 +2nn), (408)
n denoting here any positive or negative whole number, or zero; and log u
denoting the (real and) natural or Napierian logarithm of the positive (or abso-
‘lute) number u; or in other words, that determined (real) number, whether
positive or negative or null, which satisfies the equation

p =P (log p). (409)
42. Substituting this expression (408) for the imponential of a quaternion in
the general expression (392 ) for a power of a set, we find, for a power of a quater-
nion ¢, with another quaternion ¢’ as the exponent of that power, the expression,
¢ =r{¢ logp + ¢ i.(0 + 2nm)}; (410)
which, however, it is not generally allowed to resolve into the two factors,
p(¢’ log p) and P{q’%,(6 4 2nm)}, because ¢’ and ¢'s, are not, in general, condi-
rectional quaternions ; if this latter name be given to quaternions which have
vector units equal or opposite, so that in each case they are commutative with
each other, as factors in multiplication. But if we change the exponent ¢/, in
(410), to any numerical fraction, {, where s and ¢ denote whole numbers, then
this resolution into factors is allowed, and the formula becomes

; ¢ 128
¢ = Pé;logy +;z.(8+ 2n1r)§

= P(Etlog ®)- Pgi,(? + ?t—:@)z

— i (cos + 4, sin) (ﬁ’ 4 2. (411)

S s

and thus it will be found that the chief results of the thirty-sixth and thirty-
seventh articles, respecting certain powers and roots of a quaternion, are repro-
duced under a simpler and more general aspect ; for instance, the square root of
a quaternion is now given under the form

L 6 , .. 6
¢* = pt (cos 4, sin) (§+ nw)==xpu (cos 3 + 2, sin -2-) (412)

But in the particular case where the original quaternion, ¢, reduces itself to a
negative number, ¢ = w = — py so that-its amplitude, 6, is some odd multiple
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of =, while the direction of its vector unit is indeterminate or unknown, the for-
mula (412) for a square root becomes simply

(— =i (413)
the position of the point R upon the unit sphere being now likewise indeterminate
or unknown, which agrees with our former results respecting the indeterminate
quaternion forms for the square roots of negative numbers. In like manner, the

quaternions, distinct from unity itself, which are cube roots of unity, are now
included in the expression

2nw

3
where the direction of ¢, remains entirely undetermined. But, in general, the
power, g+, of a quaternion, g, admits of s, and only s, distinct quaternion values,

. t . . S e .
if the exponent, o be an arithmetical fraction in its lowest terms, so that the

1* = cos ?-%3 + ¢ sin (414)

numerator and the denominator of this fractional exponent are whole numbers
prime to each other; and if the proposed quaternion ¢ do not reduce itself to a
number w, by the three last constituents, @, y, 2, all separately vanishing in its
expression. As an example of the operation of raising a gquaternion fo a
power of which the exponent is distinct from all positive and negative numbers,
and_from zero, we may remark that the formula (410) gives, generally, for the
powers of an imaginary unit, such as 7, (for which we have n =1, 6 = Zr), the

2
expression

A — P% q’i,(g + 2mr)} 3 (415)

making then, in particular, i, =17, and ¢’ = ¥, we find, by (3),

i":p{kz'<§+2mr)§ =p§j(’-2-'+2m)§ =p(f;;')=j; (416)

and by a similar process we find, more generally,
=y, (417)
whenever i,, and ¢, denote #wo rectangular tmaginary units, so that the points

R and Rr’, which mark their directions, are distant from each other by a quadrant
on the sphere. We may here introduce a few slight additions to the nomencla-
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ture already established in this paper, and may say that, in the general expression
g =w + 1z + jy + kz, the three coefficients, 2, y, z, which multiply respectively
the three coordinate characteristics, ¢, j, k, are the three COORDINATES of the qua-
ternion, and that the square root r of the sum of their squares is the rapIus
of the same quaternion. We shall also say that the point r, on the surface of
the unit sphere, which constructs or represents the direction of the vector unit in
its expression, is at once the REPRESENTATIVE POINT of that vector unit, i,, and
also (in a similar sense) the representative point of the quaternion q itself.

On the general Logarithms of a Set, and especially on those of a Quaternion.

43. Though we cannot enter here at any length into the theory of logarithms
of sets, yet it is obvious that if we make

¢ =¢ (418)
the general expression (392) for a power of a set gives this inverse expression for
the exponent ¢ :

P—lqll

log,.¢" =¢' = g} (419)

in which expression, however, for a logarithm of a set, under the form of a frac-
tion, the numerator and the denominator are to be regarded as separately subject
to that indeterminateness, whatever it may be, which arises in the return from
the exponential of a set to the set itself, or in the passage from a set g to its impo-
nential p~'q. Thus in the case of quaternions, the general logarithm of the
quaternion ¢, to the base g, may, by (419) and (408), be written thus:
log’ + 4, (6 4 2n''x
logs-g" = lig,; +i,((0 + 2nn) :

It involves, therefore, two arbitrary and independent whole numbers, n’ and =,
in its expression, as happens in the theories of John T. Graves, Esq., Professor
Ohm, and others, respecting the general logarithms of ordinary imaginary quantities
to ordinary imaginary bases; and also in that theory of the general logarithms of
numeral couples, with other numeral couples for their bases, which was published
by the present author (as part of the Essay already several times cited, on Conju-
gate Functions and Algebraic Couples, and on Algebra as the Science of Pure
Time), in the seventeenth volume of the Transactions of this Academy.

(420)
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Connezion of Quaternions with Spherical Geometry.

44. Let », 2, ®”,..8""" be any 7n points upon the surface of the unit
sphere, so that they may be generally regarded as the corners of a spherical
polygon upon that surface ; and let them be regarded also as the determining or
representative points (in the sense of the forty-second article) of the same num-
ber of vector units, 7, %, &e. Then the associative property of multiplication
will give, on the one hand, the equation

Tn by« By B« B B« o 2 B By == (— 1) (421)
because
t=n=ty=..=—1; (422)
and, on the other hand, on substituting the expressions for these vector units,
involving their respective direction-cosines and the three fundamental units,
% J, k, which expressions are of the forms
a8 by, G =ia 58 s (423)
we shall have, for the product of the two first, by the fundamental relations (8),
the expression
inty = (fa +jp + ky) (i +Jf +kY')
= —(ea + B8 + ) +UBY — oF) +5(vd — @) +k(af'— pa’), (424)
that 1s,

1, #y, = — cos RR’ 4 7., sin RR, (425)
if rRr’ denote the arc of rotation in a great circle, round a positive pole p”, from
the point R to the point ®’ upon the sphere, with other similar transformations for
the other binary products. By combining these two principles, (421), (425),
it is not difficult to see that, for any spherical polygon, regarded as having its
corners R, R’, . . at the positive poles of the sides of another polygon, the following
formula holds good :

(cosr 4 7,sinR) (COSR’ 47, 8inR’) .. (CosR™ ™V 4ty sin R ™) = (—1)"; (426)

in which the symbols g, ®’, .. under the characteristics cos and sin, denote the
(suitably measured) successive angles at the corners B, R'. . . In particular, for the
I~

case of a spherical triangle, rr'R”, the formula (426) gives this less general for-
mula, which, however, may be considered as including spherical trigonometry :

(cos R 4, sin R) (cos R’ 44 sin R’) (cos B” 44 sink”) = — 1.  (427)
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45. Multiplying both members of this formula (427) into cos r” — 3, sin R,
we put it under the less symmetric but sometimes more convenient form,

(cosr 4-7,sin R) (cos R’ 44y sinR’) = — cosR” 4 7,,sin ",  (428)

Developing the first member of this last equation, and substituting, for the product
of the two vector units, its value (425), we find that it resolves itself into the
two following formule :

COSR COSR’ — cos RR'SIN R sin R’ = — cosr”; (429)
i, Sin R €08 R -} 4,SinR’ coSR 4 #,»sin R sin R sin RR' = ¢,,sinR”.  (430)

Of these two equations, the first agrees with the known expression for the cosine
of a side re’ of a spherical triangle rRr'R", regarded as a function of the three
angles B, &', " ; and the second expresses a theorem, which can easily be verified
by known methods, namely, that if a force = sin r” be directed from the centre
of the sphere to the point R”, that is, to one corner of any such spherical triangle
RR'R”, this force is statically equivalent to the system of three other forces, one
directed to R, and equal to sin R cos ®'; another directed to ®’, and equal to sin &’
cosR; and the third equal to sin R sin R’ sin RR/, and directed towards that pole
p” of the arc rr’, which lies at the same side of this arc as does the corner r”,

46. In this, or in other ways, we may be led to establish, as a consequence
from the principles which have been already stated, the following general formula
Jfor the multiplication of any two numeral quaternions :

g X ¢ = p(cosr + 4, sinR) X p'(cosr’ 4 7,sinr’)
= pp' {cos (r—R") + t,usin (x—Rr")} ; (431)

and to interpret it as being equivalent to the system of the three following rules
or theorems. First, that (as was seen in the twenty-seventh article), the modulus
1" of the product is equal to the product py' of the moduli of the factors.
Second, that if a spherical triangle re'R” be constructed with the representative
points of the factors and product for its three corners, the angles of this triangle
will be respectively equal to the amplitudes of the two factors, and to the supple-
ment of the amph'tude-of the product ; the amplitude r of the multiplier quaternion
¢, for example, being equal to the spherical angle at the corner R of the triangle
just described. And third, that the rotation round the product point, r”, from

VOL. XXI. 2p
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the multiplier point, which is here denoted by R, to the multiplicand point, denoted
here by ®’, is positive ; or, in other words, this rotation is in the same direction
(towards the right hand, or towards the left), as the rotation round the positive
semiaxis of z or of k (= ¢), from that of z or of 4, to that of y or of 5. The
same third rule may also be expressed by saying that the rotation of a great semi-
circle round the multiplier point R, from the multiplicand point r’, fowards the
product point R”, is positive; whereas the rotation to the same product point,
JSrom the multiplier point, round the multiplicand point, is, on the contrary,
negative. (Compare the remarks in Note A, printed at the end of the present
series. )

'47. The associative character of multiplication shows that if we assume any
three quaternions ¢, ¢’, ¢/, and derive two others ¢,, ¢, from them, by the equations

=9 97 =49 (432)
we shall have also the equations

1

74" =99, =9" (433)
¢’ being a third derived quaternion, namely, the ternary product ¢ ¢’ ¢”. Let
rR R R” R, R, R" be the six representative points of these six quaternions, on the
same spheric surface as before; then, by the general construction of a product
assigned in the foregoing article, we shall have the following expressions for the
six amplitudes of the same six quaternions :

6 =r'RR, =Rr,RR"”; 6, =R"RR” =m—RRR;

¢ =r,R"R =R"r'R,; 6,=RrR"R,R =7m—RR,R"; (434)

oll= 'R” R” B’: R”, R" RI; 9'//= ﬂ—R,R”lR” —7—R RI/I R”;
®’R R, being the spherical angle at r, measured from RR’ to R, and similarly in
other cases. But these equations between the spherical angles of the figure are
precisely those which are requisite, in order that the two points r, and &, should
be the two foci of a spherical conic inscribed in the spherical quadrilateral

r &' R” R"”, or touched by the four great circles of which the arcs rR', »'r”,

R” R/, R"" B, are parts; this geometrical relation between the six representative
points r &' B” R, &, 8" of the six quaternions ¢, ¢', ¢, ¢¢ ¢'¢"’; 9¢'¢’, which

may conveniently be thus denoted,
Rk, (..)RR R'R", (435)
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is, therefore, a consequence, and may be considered as an interpretation of the
very simple algebraical formula for associating three quaternion factors,

iy

9 -9"=q.99".
It follows, at the same time, from the theory of cones and conics, that the two
straxght lines, or radit vectores, which are drawn from the origin of coordinates
to the points R, R,, and which construct the imaginary parts of the two binary
quaternion products, q¢'s ¢q", are the two focal lines of a cone of the second
degree, inscribed 1n the tetrahedral angle, which has for four conterminous
edges the four radit which construct the imaginary parts of the three quater-
nion factors q, ¢, ¢, and of their continued or ternary product qq'q"”.

48. We have also, by the same associative character of multiplication, an
analogous formula for the product of any four quaternion factors, ¢, ¢, ¢, ¢,
namely,

q ql ) III - qq q// q/ll — qqlqll qlll -— qll” (436)

if we denote this continued product by ¢"”; and if we make
9 =9, 99 =0 9'¢"=0,9¢=¢"9¢"7"=0" (437
and observe that whenever E and r are foci of a spherical conic inscribed in a
spherical quadrilateral ABcp, so that, in the notation recently proposed,
EF (. .) ABCD, (438)
then also we may write
FE (..) ABCD, and EF (..) BCDA, (439)
we shall find, without difficulty, by the help of the formula (435), the five fol-
lowing geometrical relations, in which each R is the representative point of the
corresponding quaternion ¢ :

R, R, (..)R R B R)";
'R (..)R R R R
Ri’RH( ) R’ " R"'R,; . (440)
R;IIRI}’( )RIIIRIVR R,g

e, (..)r"”R ® R/

These five formula establish a remarkable connexion between one spherical
pentagon and another (when constructed according to the foregoing rules),
through the medium of five spherical conics ; of which five conics each touches
two sides of one pentagon, and has its foci at two corners of the other. If we

2rp2
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suppose, for simplicity, that each of the ten moduli is = 1, the dependence of six
quaternions by multiplication on four (as their three binary, two ternary, and one
quaternary product, all taken without altering the order of succession of the fac-
tors) will give eighteen distinct equations between the ten amplltudes and the
twenty polar coordinates of the ten quaternions here considered ; it is therefore
in general permltted to assume at pleasure twelve of these coordinates, or to
choose six-of the ten points upon the sphere. Not only, therefore, may we in
general take one of the two pentagons arbitrarily, but also, at the same time, may
assume one corner of the other pentagon (subject, of course, to exceptional cases) ;
and, after a suitable choice of the ten amplitudes and four other corners, the five
relations (440), between the two pentagons and the five conics, will still hold good.

A very particular (or rather limiting) yet not inelegant case of this theorem
is furnished by the consideration of the plane and regular pentagon of elementary
geometry, as compared with that other and interior pentagon which is determined
by the intersections of its five diagonals. Denoting by r, that corner of the inte-
rior pentagon which is nearest to the side rr’ of the exterior one; by r/, that
corner which is nearest to &' ®”, and so on toR!”; the relations (440) are satisfied,
the symbol (..) now denoting that the two points written before it are foci of an
ordinary (or plane) ellipse, inscribed in the plane quadrilateral, whose corners
are the four points written after it. We may add, that (in this particular case)
two points of contact for each of the five quadrilaterals are corners of the interior
pentagon ; and that the axis major of each of the five inscribed ellipses is equal to
a side of the exterior figure.

49. By combining the principles of the forty-seventh with the calculations of
the twenty-eighth and thirtieth articles, we see that, with the relations (258),
(259), (284), from which the relations (285) have been already seen to follow,
we may regard m;, m;, m; as the rectangular coordinates of a point on one focal
line, and m;", my’, m; as the rectangular coordinates of a point on the other focal
line of a certain cone of the second degree, having its vertex at the origin of those
coordinates, and having, on the successive intersections of four of its tangent
planes, four points, of which the coordinates are respectively m, m, m,; b, ¢, d;
m!, my, my; and m;’, m;’, my. Hence, with the same relations between the sym-
bols, the known' theory of reciprocal or supplementary cones enables us to infer
that the two equations
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xm; -+ ymy; 4 z2m; = 0, } (441)

xm; 4 ym; 4 zm; = 0,
represent the two cyclic planes of a certain other cone of the second degree,
which has its vertex at the origin, and contains upon its surface the four points
which are determined by the twelve following rectangular coordinates :

md —mge,  mb— md, me — mpb;
cmy — dmg, dm; — bmg, bmy — cmy;
Mgy — Mg’y MMy — My’ mymy —mamy’ 3
my'm,—ms'm, mym—m;'m, mym,—my'm,.

(442)

It would have been easy to have given a little more symmetry to these last
expressions, if we had not wished to present them in a form in which they might
be easily combined with some that had been already investigated, for a different
purpose, in this paper.

50. If we denote by the symbol 7, that vector unit which is directed towards
the positive pole of the arc re’ (from the point R fo the point R’ on the unit
sphere), then the general formula (425) for the product of any two vector units,
7, and ¢, becomes

~
1, 7 = (€0s + 7, sin) (7 —RR'); (443)
and because the positive pole of the arc RR’ is the negative pole of the reversed
arc R'R, 30 that in this reversal the change of sign may be conceived to fall upon
the vector unit,

i = — s (444)
while the arc itself may thus be regarded as not having changed its sign, but only
its pole, we may also write, generally, in this notation, for the quotient of any
two vector units, the expression ’

~
1,15 = — ¢, %, = (cos 4- 7., sin).R'R. (445)

Hence the associative principle of multiplication gives this other property of any
spherical polygon, rr'r"”. .., which may be regarded as a sort of polar conjugate
to the property (426), as depending on the consideration of the polar polygon, or
polygon of poles, namely, the following :

D T . DTN
(0s 4 7, sin ) R'R. (€OS + 7 sin) RVR'.... (COS + typay Sin) RR" ™V = 1. (446)
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Thus, in particular, for any spherical triangle, of which the three sides may be
briefly denoted thus,

N —_ )
RrR=260"; r"#"=0; rr'=¢; (447)

while the three corresponding vector units, directed to the positive poles of these
three arcs, may be thus denoted,

s =5 tyw =3 L=t (448)

the following equation holds good, and may be employed, instead of (427), as a
formula for spherical trigonometry :

(cos @' 4 ¢’ sin 6') (cos 6 4 ¢sin 6) (cos & 4 /sinf’) = 1. (449)

Hence also may be derived this other and not less general equation, analogous to
(431), and serving in a new way to express the result of the multiplication of any
two numeral quaternions, in connexion with a spherical triangle :

p(cos 6 4 ¢sin 0) X p' (cos ' 4 (sin ') = pp’ (cos 6" — /' sin6"). (450)

The sides of the triangle here considered are 6, ¢, 6”, that is, they are the
amplitudes of the two factors and of the product; and the angles respectively
opposite to those three sides are the supplements of the mutual inclinations of the
three pairs of vector units, ¢, /’; ’, ¢; ¢ (3 they are therefore, respectively,
the inclinations of the two vector units / and « to — ¢/, and the supplement of
their inclination to each other. But, in the multiplication (450), ¢, ¢, and — ¢’
are respectively the vector units of the multiplier, the multiplicand, and the pro-
duct ; if then we agree to speak of the mutual inclination of the vector units of
any two quaternions as being also the mutual inclination of those two quaternions
themselves, we may enunciate the following Theorem, with which we shall conclude
the account of this First Series of Researches :—If, with the amplitudes of any
two quaternion factors, and of their product, as sides, a spherical triangle be
constracted, the angle of this triangle, which is opposite to the side which repre-
sents the amplitude of either factor, will be equal to the inclination of the
remaining factor to the product ; and the angle opposite to that other side which
represents the amplitude of the product, will be equal to the supplement of the
inclination of the same two factors to each other.
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Nore A.

Extract from a Letter of Sir William R. Hamilton to John T. Graves, Esq.

« Observatory of Trinity College, Dublin, 24th October, 1843.
¢ The Germans often putifor / —1, and therefore denote an ordinary imaginary
quantity by z + dy. I assume three imaginary characteristics or units, ¢, j, £, such that
each shall have its square = — 1, without any one being the equal or the negative of any
other;

P=2=kt= -1 )

And I assume (for reasons explained in my first letter) the relations
g=k; Jh=t; ki=j; )
Jiz=—hk; RKz=—i; th=—j; 3)

each imaginary unit being thus the product of the two which precede it in the cyclical
order ijk, but the negative of the product of the two which follow it in that order. Such
being my fundamental assumptions, which include (as you perceive) the somewhat strange
one that the order of multiplication of quaternions is not, in general, indifferent, 1 have
at once the theorem that

(w+ iz +jy +kz) (W +ix' +Jy’ +k2’) =w' +i" +jy" + k2", 4)
if the following relations hold good :
w" zww' —xx' —yy —=z2’ ; )
2= wa' faw' +yz'—zy';
y' zwy +yw’ +za' —x2’; 6)

2 zw2 2w Yy —yz';
and reciprocally that these four relations (5) and (6) are mecessary (on account of the
mutual independence of the three imaginary units, ¢, j, £, except so far as they are con-
nected by the conditions above assigned), in order that the quaternion w” 4iz” 45y’ + k2"
may result as a product from the multiplication of w’ + iz’ +jy’ +kz’, as a multiplicand, by
w 4 iz +jy+kz as a multiplier.
¢¢ Making, for abridgment,

z) zwrdaw'; Yy =wy +yw; z)z-wz +zw’; ¢))
z)=yd—zy; Y,/ =2d—x; z)/zxy—yz'; (8)

and observing that
xz, +yy,"+22,'=0, z, +¥y, +2'2, =0; 1))

we see easily that
a:,”z,,” + y[lly”II + z,"z,,” =0; (10)
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therefore, since

h zll = z]ll + z”Il’ yll : y’ll +y”II’ zll = z/” +zllll, (l l)
we have
A ] zhn + y/rz + zln = w‘lfl + yllﬂ + z,”! + z[[ll?‘ + y”;'rz + z”lﬂ. (12)
gain, ,
(zz'+yy + 22/ 4+, 3y,  +2,/2 = (B +y* +2°) (@? +y*+27), (13)

—2ww'(zx' +yy +22) +2, +y,2 42,/ = w (@ +y* + 27) + W (@ +y +2%);  (14)
therefore,
Let
w =p cosl; z —pu sind cosp; y =p sinf sing cosyY; z =y sinf sing siny;

w' =y cosl; a' =y sin cosg’; Yy =g sinl sing’ cosy’; 2z’ = u’sin sing’siny’; p(16)

w"” =p"c0s0”; x” = p"sinf"cosp” ; y" = pu"’sin0 sing’’cosy’”’; z'' = u”sinb'sing ’sim”’;

WP 4y 2 = (0P + By 4 2) (W2 4y T+ 22). (15)

and let y, sin @, and sin ¢, be treated as positive (or, at least, not negative) quantities;
we shall then bave ‘

' ' =pp's (17
which may be enunciated by saying that the modulus of the product of two quaternions
is the product of the moduli of those two factors.

‘¢ At the same time we shall have

r=pusin 0, if we make r= v (2 +3*+2%) ; (18)

and may call this quantity, r, the modulus of the pure imaginary triplet, iz +jy+hz. We
may also call it the radius of the imaginary part of the quaternion w+izx +jy + 4z, or
even the radius of the quaternion itself; and may speak of the inclination of one such
radius to another, the cosine of this inclination being

cos . 77° = cos ¢ cos ¢’ +sin ¢ sin ¢’ cos (Y’ —). (19)
The angle ¢ may be called the colatitude, and i the longitude, of the radius, or triplet,
or quaternion. And 0 may be called the amplitude of the quaternion ; so that the real
part, multiplied by the tangent of the amplitude, produces the radius of the quaternion,

or of its imaginary part,
wtanf=r. ‘ (20)

The amplitude, @, may be supposed to range only from 0 to w. It vanishes for a pure,
real, positive quantity, and becomes = g for a pure imaginary; itis = = for a pure real
negative. »
¢« The equation (5), combined with (16) and (17), gives
cos 8 = cos 0 cos & —sin Osin & {cos ¢ cos ¢’+sin ¢ sin ¢’ cos (V' —¢)}; (€2))

if, therefore, we construct a spherical triangle, of which one side is the inclination of the



Sir WinriaM Rowan Hamirron's Researches respecting Quaternions. 287

factors, while the two adjacent angles are the amplitudes of those factors, the remaining
angle will be the supplement of the amplitude of the product.
¢ Combining (5) with (6), we find that
wwl’ +xw/l +yy’/ +zz1/ :(w2+ w‘l +92 +z2)wl; (22)
wrw//+w/m//+ylyu+zlz//:(wfu+w’2+yr2+zl2)w;
therefore, by (16) and (17),
cos @ =cos 6" cos § + si'n o’ si.n 0 {cos ¢ cos ¢ +sin ¢” sin ¢ cos(P — ) }; (23)
cos ) =cos 6" cos 6 +sin 0 sin 0’ { cos ¢” cos ¢’ +sin ¢ ’sin ¢’ cos(P —y") };

so that in the spherical triangle lately mentioned, the two remaining sides are the inclina-
tions of the two factors to their product. This spherical triangle may, therefore, be con-
structed by merely joining the points r, ®/, ®”, where the sphere, with radius unity, and
with centre at the origin of z, y, z, is met by the directions of the radii, r, 7/, 7, of
the two factors and the product. The spherical coordinates of these three points are
¢, 5 ¢, 5 ¢, y"; the spherical angles at the saie points are 0, &, #—0". In the
solid corner, at the origin, made by the three radii », 7/, 7/, whatever the lengths of these
radii may be, the three dihedral angles are
rrr’=0; rer’z=0; rrr=r-—0'; (24)

that is, they are the amplitudes of the factors, and the supplement of the amplitude of
the produect.

¢ Though this theorem of the spherical triangle, r, r’, r”, or solid corner, r, 7/, 7"/,
when combined with the law of the moduli (1"’ =py'), reproduces four relations between
the four constituents, w'”, x”, y”, 2", of the quaternion product, and the eight constituents
of the two quaternion factors, namely, w, x, y, 2, and w/, 2, ¥/, 2, that is to say, the two
relations (5) and (15), and the two relations (22) ; yet it leaves still something undeter-
mined, with respect to the direction of the product, which requires to be more closely con-
sidered. In fact, we can thus fix not only the modulus, u”, and the amplitude, 6", of the
product, but also the inclinations of its radius, 77, to the two radii,  and # ; but the con-
struction, so far, fails to determine on which side of the plane rr’ of the radii of the factors
does the radius of the product lie. In other words, when we deduced the relations (15)
and (22), we may be considered as having employed rather the equations (9) and (13),
which were derived from (8), than the equations (8) themselves; the three quantities,
z,”, y,", 2/, might, therefore, all change signs together, without affecting the law of the
moduli, or the theorem of the spherical triangle. And the additional condition, which is
to decide between the one and the other set of signs of these three quantities, or between
the one and the other set of signs in the expressions

@'zl Y=y s Pk (22)
VOL. XXI. 2 q
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is easily seen, on revarting to first principles, to be the choice of the cyclical order ¢;%,
rather than ¢ £j, or the choice of the upper rather than the lower signs in the assumptions

J=—jiztk, jh=—Kk=*i, kRi=—ikh==*j. (26)
This gives a clue, which may be thus pursued. Let

z"=r/ cos¢”, y”=r"sing” cos”, 2z”=r/sing"siny’; } @0
z,)=r"cos¢,, y,/ =r/sing,cosd,”, z/”=r/sing/ siny";
then, by (12) and (16), and by the meaning which we have assigned to 7”, we have
r/lﬂ - rl/fz + rlllﬂ’ "lﬂ = wlﬂ +rll‘2. (28)
s« By (9), r,” is perpendicular to the plane of 7#'; and therefore, by (10), »” is in that
plane, being, in fact, the projection of »”" thereupon. This projection is entirely fixed by
the construction already given ; and it remains only to determine the direction of the
perpendicular, r,”, as distinguished from the opposite of that direction. - And a rule which
shall fix the sign of any one of the coordinates, 2", y,”, z,”, will be sufficient for this
purpose. * It will be sufficient, therefore, to study any one of the equations (8), for
instance the first, namely,

”
x, =

yZ —zy,
and to draw from it such a rule.
¢ Substituting for y, z, ¥/, 2/, their values (16), we find

z,” = puy’ sin @ sin §'sin ¢ sin ¢"sin(Y’ —¢) ; (29)
so that (the other factors having been already supposed positive) z,” has the same sign as
the sine of the excess of the longitude {/ of 7’ over the longitude i of ». But these longi-
tudes are determined by the rotation of the plane of zr round the positive semiaxis of z,
from the position of #y towards the position of zz, or from the positive semiaxis of y
towards that of z ; which direction of rotation is here to be considered as the positive one.
Consequently, z,” is positive or negative, according as the least rotation round +z, from
r to 7/, is itself positive or negative ; in each case, therefore, the rotation round z,”, and,
consequently, round r,”, or finally round #”, from r to 7, is positive. T'he rotation round
the product line, from the multiplier to the multiplicand, is constantly right-handed or
constantly left-handed, according as the rotation round + ¢ from + j to + % is itself right-
handed or left-handed. Hence, also, to express the same rule otherwise, the rotation
round the multiplier, from the multiplicand to the product, is (in the same sense) constantly
positive. In short, the cyclical order is multiplier, multiplicand, product; just as, and
precisely because, we took the order ¢j & for that in which the rotation round any one,
from the next to the one after it, should be accounted positive, and chose that # should
be =k, not = — k. The law of the moduli, the theorem of the spherical triangle, and
the rule of rotation, suffice to determine entirely the product of any two quaternions.
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¢ In my former letter I gave a theorem equivalent to that which I have here given as
the theorem of the spherical triangle, answering, in fact, very nearly to the polar triangle
conjugate therewith, but, as I think, much less geometrically simple, because the three
corners had no obvious geometrical meanings, whereas now the corners r, r’, R” mark
the directions of the factors and product respectively. In the new triangle, if we let fall a
perpendicular from the extremity R” of that radius of the sphere which coincides in direc-
tion with »”, on the are rr’, which represents the inclination of the factors to each other,
and call the foot of this perpendicular r,”, we shall have

r”=r"cosr"R/, r,)=7"sinr"R]; (30)

"

”

also the spherical coordinates of & will be ¢, ¢,”; and ¢,”, ¢, in (27), will be the
spherical coordinates of a point r,” which will be one pole of the arc rRR’, and will be dis-
tinguished from the other pole by the rule of rotation already assigned ; it might, perhaps,
be called the positive pole of RR’, though it ought then to be considered as the negative
pole of r'R.

¢ We saw that r” was in the plane of 7 and #’, and this is now constructed by r,” being
on the great circle rR'.

¢ There seem to be some advantages in considering the quaternion

w+iz"+jy" + kz,” @31

as the reduced product of the two factors already often mentioned in this letter; it
is the part of their complete product (4) which is independent of their order ; and its
radius 7”, is, as we have seen, the projection of the radius ” of the complete product on

¢

the plane of the two factors 7. We now see that
tan 0 sin 77/ = tan @' sin 7 ” = tan rr,”; (32)
the radius r” of the reduced product divides the angle between the radii 7, », of the
factors, into parts, of which the sines are inversely as the tangents of the amplitudes, 6, ¢'.
Indeed this radius, ., is the statical resultant, or algebraical sum, of two lines which
coincide in direction with r and 7’ respectively, if w’ and w be positive, but have their
lengths equal to the products w'r and wr’, or py’ sin @ cos & and py’sin @’ cos 8, or ww’ tan §
and ww’ tan @’; as appears (among other ways) from the equations (7). For the same
reason, or by a combination of the equations (7), (16), (27), we have
/22w~ = cos §°sin 0* + cos 0 sin 6> +2sin O cos O sin ¢/ cos ' cos 7' ; (33)

and because, by (21),
cos §” = cos 0 cos O —sin 8 sin & cos rr’, (34)

we arrive at the following pretty simple expression for the radius of the reduced product,

r” = up’ ¥ (cos B + cos 8*—2 cos 0 cos & cos §”). (35)
202
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But also, by the general analogy of the present notation, if we denote by u,” and 6, the
modulus and amplitude of the same reduced product (31), we shall have

heref p/ cos 0" =w" =pu cos 07, u/sin@”=r/; (36)
therefore
’ " =pp o (cos 0%+ cos 6% 4+ cos 6”*—2 cos  cos 0’ cos 8”) ; 37
and
cos /= cos ¢ (38)

T v/ (cos §*+cos 0 + cos 02— 2 cos b cos § cos §”)’
Again, by (I7), (28), (34), (36), (37),

"= v (W —p/”?) = pp' v/ (1 +2 cos 0 cos ' cos 6§ —cos 62— cos 62 —cos 6"7) | 39
= py’ sin @ sin @ sin 7’ 5 (39)
an expression for the radius of the pure imaginary triplet,
w, +jy," +kz,", (40)

that is, of the complete product (4) minus the reduced product (31), which agrees with
the second equation (30), because, by spherical trigonometry,
sin 0 sin @ sin 77/ =sin 6/ sin 77r (41)

and which gives

u/ =pw  (1—(sin 0 sin @ sin 77/)?). (42)
We might call the triplet (40), (which remains when we subtract the reduced product
from the complete product), the residual triplet, or simply, the residual, of the product of
the two proposed quaternions (4). And we see that this residual is always perpendicular
to the reduced product, when it exists at all; for we shall find that it may sometimes
vanish. It is the part of the complete product which changes sign when the order of the
factors is changed.

¢ These remarks on the geometrical construction of the equations of multiplication (5)
and (6) have, perhaps, been tedious ; they certainly are nothing more than deductions from
those equations, and, consequently, from the fundamental assumptions (1), (2), (3). Yet
it may not be altogether useless, in the way of illustration, to draw some corollaries from
them, by the consideration of particular cases.

“ Multiplication of two Reals.—1t is evident from the figure that, as [the two internal
angles] 0 and @’ tend to 0, [the external angle] 0” tends to 0 likewise; and that the same
thing happens with respect to 6”, when 6 and 6 both tend to w. Hence the product of
two positive or two negative real quantities is a real positive quantity. But when one of
the two amplitudes of the factors, 0 or @, tends to 0, and the other to u, then 6” also
tends to w; the product of two reals is, therefore, real and negative, if one of the two
factors is positive and the other negative.

“ Multiplication by a Real.—If 0 tend to 0, ' tends to become = ', and r” tends to



Sir WiLLiam RowaN HamiLToN’s Kesearches respecting Quaternions. 291

coincide with Rr’; also u tends to become = w. If, therefore, a quaternion be multiplied
by a positive real quantity, w =y, the effect is only to multiply its modulus by that quan-
tity, without changing the amplitude or direction. But if # tend to , then u tends to
—w; R” tends to become diametrically opposite to ®’; and 6 tends to become supple-
mentary to §. If a quaternion be multiplied by a real negative, w= —p, the effect is to
multiply the modulus, g/, by the real positive, —w=pu; to change the amplitude ¢’ to
m—0 ; the colatitude, ¢/, to #—¢’; and the longitude, /, to #+y/. Accordingly, by
inspection of the second line of the expressions marked (16), we see that these changes
are equivalent to multiplying each of the four constituents, »/, /, ¥/, 2/, of the proposed
quaternion, by —u. In each of these two cases of multiplication by a real, the residual
triplet disappears by (39), because sin § vanishes.

¢ Multiplication of a Real by a Quaternion.— We have only to suppose that §’ tends
to 0 or to 7. The residual vanishes, and the order of multiplication is indifferent.

« Multiplication of two pure Imaginaries.—Here 6= 0’ :g, u=r, u'=7"; R” coincides
with Rr,”, that is, with the positive pole of rRRr/; the direction of the product is perpendi-

cular to the plane of the factors; and the amplitude of the product is the supplement of the
inclination of those two factors to each other. Introducing the consideration of the

reduced product and residual, since R”R,”:Z-;, we have, by (30), /=0, r,/=7"; the

reduced product is a pure real, namely, the real part of the complete product; and the
residual is equal to the imaginary part. The amplitude of the reduced product is = ,

. . . . . ™ .
or = 0, according as the inclination of the factors is less or greater than 3 such, then, is

the condition which decides whether the real part of the product of two pure imaginaries,
taken in either order, shall be negative or positive. The real part itself = up’cos 0" = —
7’ cos rr’ = the product of the radii of the factors multiplied by the cosine of the supple-
ment of their mutual inclination. The radius of the residual =77/ sin 7= the product
of the same radii of the factors multiplied by the sine of their inclination to each other.
The product is a pure imaginary, if the factors be mutually rectangular; but a pure
real negative, if the factors coincide in direction ; and a pure real positive, if their direc-
tions be exactly opposite.

¢ Squaring of @ Quaternion.—As R’ tends to coincide with r, and @' to become equal
to 0, rR” tends to coincide likewise with r, and 6” to become double of 0, at least if § be

less than g But if 8 be greater than g, then r” tends to coincide with the point diame-
trically opposite to r, and 0” tends to become equal to the double of the supplement of 6.
Ifo= %’ then r” tends to become distant by -E from R, but in an indeterminate direction,

which is, however, unimportant, because §” tends to become =, and the square (of a pure
imaginary triplet) is thus found to be a pure real negative ; which agrees with the recent
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result respecting the product of two pure imaginaries, coincident in direction with each
other. In general, the square of a quaternion may be obtained by squaring the modulus
and doubling the amplitude ; that is, the square of

p €08 0+ u sin 0 (¢ cos ¢ +7sin ¢ cos ) +ksin ¢ sin ), (43)
may always be thus expressed :
p* €08 20 + p? sin 20(i cos ¢ + sin ¢ cos Y+ k sin ¢ sin ) ; (44)
for instance,
(icos ¢ +jsin ¢ cos Y +k sin ¢ sin P)?= —1; (45)

although, when 6 >g, 0 < m, it is supposed, in the construction, that we treat cos 20 as
=cos (2r—20); sin 26 cos ¢ as = sin (2r—20) cos (w—¢); sin 20 sin ¢ cos ¢ as = sin
(27 —20) sin (x—¢) cos (w+); and sin 20 sin ¢ sin ¢ as = sin (2 —20) sin (x—¢) sin
(m+1); all which is evidently allowed.

““Cubing a Quaternion.—The cube may always be found by cubing the modulus, and
tripling the amplitude.

‘“ Raising to any whole Power.—The n* power of the quaternion (43) is the fol-
lowing, if = be a positive whole number:

u™ cos 1 + u* sin #0(i cos ¢ 47 sin ¢ cos Y+ & sin ¢ sin ). (46)

¢ Extracting a Root.—The n* root has, in general, n, and only », values, included
under the form

u*cos 0+n2p"+p'l3 sin 0+n2p" (i cos ¢ + sin ¢ cos Y+ ksin ¢ siny). (47)

““ Roots of Reals.—1f =0, so that we have to extract the n* root of a positive real
quantity, w, considered as the quaternion

w410 470 + k0 = w, (48)
¢ and i remain entirely undetermined, in the formula
(e 470 470 + k0)~ =y~ cos 2%”+p‘ sin 2’% (i cos p +7'sin ¢ cos w+-ksin gsin ).  (49)

For example, unity, considered as 1410450 4-%0, has not only itself as a cube root, but

also every possible quaternion which has its modulus =1, and its amplitude = %;—r (The

amplitude %’r corresponds merely to quaternions with directions opposite to those with the
amplitude 2—;, and direction is here indifferent.) But unity has only two square roots,

*1 410450 + k0.
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“If @ =, so that we have to extract the #® root of the quaternion (48), when w= —p,
we have still ¢ and ¢ left undetermined, but the formula is now

s Tl Qp+Dr .
(—"'+'0 +]0+k0)':"lce=( p: )7I'+

yx:sin(2p -:; ! )r(icosq; +jsingcosg + ksingsiny). (50)

For example, the square root of —1 may have any arbitrary direction, provided that it is
a pure imaginary with modulus =1;

(-1 +1'0+j0+k0)‘:z' €08 ¢ +j sin ¢ cos yf + % sin ¢ sin . (51)
« Exponent any positive quantity.—The power is

pscos(-:?-e + 2p1r) + pssin('-:—() + 2p1f) (i cos ¢ +j sin ¢ cos Y+ & sin ¢ sin i), (52)

if ™ be any positive fraction ; and it is natural to define that the power with incommen-

surable exponent

§ 1 cos O+ usin 0 (i cos ¢ +7sin ¢ cos Y+ % sin ¢ sin ) 3 (53)

is the limit of the power with exponent g, if v be limit of g; hence, generally, the power
(53) is

p” cos (v0+ 2vprr) + v’ sin (v0+ 2vpr) (Fcos ¢ +jsin ¢ cos L+ 4 sin gsiny);  (54)
at least, if v be positive. The reason for this last restriction is, that we have not yet con-
sidered division, at least in the present letter, which I am aiming to make complete in
itself, so far as it goes.

« Multiplication of codirectional Quaternions.—If, in fig. 1, we conceive R’ to approach
to R, then, in general, &” will approach either to R or to the point diametrically opposite;
and, in the first case, §” will tend to become the sum of @ and ¢’ ; but, in the second case,
the sum of their supplements. In each case we may treat 67 as = 0+, if we treat »” as
coinciding with R, or ¢” and ¢ as equal to ¢ and yy. Thus, generally,

$1 cos 0 4 sin 0 (i cos p+jsin ¢ cos Y+ ksin ¢ sin ) }

X §u cos @ +pu/sin 0/ (i cos ¢ +j sin ¢ cos Y+ ksin ¢ sin ) }
=y cos (0+0) + py' sin (0+ ) (i cos ¢+ sin ¢ cos Y+ ksin ¢sin §); (55)
which accordingly agrees with the equations of multiplication (5) and (6), whatever u, p’,
0, 0, ¢, and Y may be. (Indeed, if &+ 0=, the position of r” is undetermined ; but this
is indifferent, because its amplitude is now =, and the product is a pure real negative.)
For example, by making ¢ =0, we fall back on the old and well-known theorem of ordi-

nary imaginaries, that

(u cos 0+ iy sin 0) (i’ cos @ + iy’ sin ") = ' cos (0+ 0/) + iy’ sin (0+6).  (56)
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¢ Division [ Submultiplication].— By (55),

f1cos 0+ usin @ (i cos ¢+ sin ¢ cosy+Asin g sin P)} X
§u~" cos 0—p~"sin 0(i cos ¢ +7 sin ¢ cos Y+ ksin psin )} = 1. (67)
“ The reciprocal of a quaternion may be found by changing the modulus to its reci-
procal, and then either changing the amplitude to its negative, or else the direction to its
opposite ; this latter change (of direction, rather than of amplitude,) agreeing better than
the former with the construction in fig. 1. Accordingly, in that figure or in this, in
which r represents the direction of multiplier, and may be called the multiplier-point, r’
multiplicand point, and r” product point, if we prolong re’ and rR” till they meet in &', the
point diametrically opposite to r ; then, in the triangle r' r” ®’, the point R/, with ampli-
tude &, will be equal to the product of R' as multiplier, with amplitude 8, and r” as multi-
plicand, with amplitude 6’, by the theorems already established. We may, therefore,
return from product to multiplicand, by multiplying by reciprocal of multiplier. But it is
natural to call this return division [submultiplication]. To divide [or rather to sub-
multiply] is, therefore, to multiply by the reciprocal of the proposed divisor, if this
reciprocal be determined by the rule assigned above. These definitions and theorems
respecting division of quaternions lead us to put the equation (4) under the form
_w—iz—jy—kz

w i +jy +h'=... = FrE1P T (W' +iz" +jy" +k2"); (58)
and so conduct us not only to the relation w’ = (w?+ 2*+ ¥*+ 2*) " (ww” + zx" + yy’ + 22"),
which we had already, but also to these others, which can likewise be deduced easily from

the equations of multiplication, (5) and (6),

=W+ 2t +y*+ 2% (wa'—aw’ + zy' —yz") ;
¥ =+ 22+ Y+ %) (wy’—yw’ + xz’ — 22") 5 (59)
2= (Wt a2t +y? 4+ 2~ (w2’ — 2w’ + yx'’' —axy”).
The modulus of the quotient is the quotient of the modauli.
w08 8 + u”" sin 0 (i cos ¢+ sin ¢ cos YL+ % sin ¢ sin 3))
u cos@ +pu sin@ (7cos¢+jsin ¢ cos+ksin $siny)

= l:—:,- cos (87— 06) +%”- sin (6" —0) (% cos ¢+ sin ¢ cos Y+ k sin ¢ sin ).

(60)

« Codirectional quaternions may be divided by each other, by division of moduli and
subtraction of amplitudes; and diametrically opposite quaternions may be treated as codi-
rectional, by changing an amplitude to its negative. A quaternion divided by itself gives
unity, under the form 1+ 70 450 + 20.

* Raising to any real Power.—The transformation (54) of the v* power of a quater-
nion is now seen to hold good, if the exponent v be any real quantity.
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2
¢¢ Napierian Ezponential—If f{t) = l+% + lt—2 + &e. (61)
then, r being = y (z*+¥*+2?%), &c.,
S(iz+jy+kz) = cos r4sin r (i cos ¢+ sin ¢ cos Y+ksin ¢ sinif) ; (62)

the modulus of the function f of a pure imaginary is unity.”

THe foregoing is an extract from a letter, hitherto unpublished, which was addressed by
the author to his friend, Mr.Graves, at the time specified in the date. Two figures have been
suppressed, as it was thought that the reader would find no difficulty in constructing them
from the indications given. A fractional symbol in the formula (58) has also been sup-
pressed, as not entirely harmonizing, under the circumstances in which it occurs, with a
notation subsequently adopted. And the reader is reminded by the words ¢ submultipli-
cation” and ¢ submultiply,” inserted within square brackets, that these words have since
come to be preferred by the author to the words ¢ division” and ¢ divide,” when it is
required to mark the return from the product to the multiplicand, in cases when the order
of the factors is not indifferent to the result: division being (in the text of the present
paper) defined to be, in such cases, the return from the product to the multiplier. With
these slight changes, it may be interesting to some readers to see how nearly the author’s
present system, although it has been, since the date of the foregoing letter, in some respects,
simplified and extended, besides being applied to a great variety of questions in geometry
and physics, agrees with the formulz and constructions for quaternions, which were em-
ployed by the writer in October, 1843 ; and were in that month exhibited by this letter to
a scientific correspondent, and also soon afterwards to a brother of that gentleman, the
Rev. Charles Graves, before the Meeting of the Academy at which the first public com-
munication on the subject was made, and of which the date (November 13th, 1843) is
prefixed to the present series. As that public communication of November, 1843, was in
great part oral, and as a considerable interval has since elapsed, the author thinks it may
be not irrelevant to mention expressly here that not only were the fundamental formule
(1) (2) (3) of the foregoing letter exhibited to the Academy at the date so prefixed, and a
general sketch given of their relation to spherical trigonometry, but also the theorems
respecting the connexion established through quaternions between certain spherical quadri-
laterals, pentagons, and conics, which form the subject of the forty-seventh and forty-eighth
articles of this paper, were then communicated, and illustrated by diagrams. Those
theorems have since been printed in the Number of the ¢ London, Edinburgh, and Dublin
Philosophical Magazine” for March, 1845. The fundamental equations between ¢, 7, &
received their first printed publication in the Number of that Magazine for July, 1844;
and other articles on Quaternions, by the present writer, which will probably be continued,
have appeared in the Numbers of that Magazine for October, 1844; July, August, and
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October, 1846 ; and in that for the present month, June, 1847, in which these last sheets
of the present paper are now passing through the printers’ hands. The articles on
Symbolical Geometry, in the * Cambridge and Dublin Mathematical Journal,” are also
designed to have a certain degree of connexion with this subject.

The ¢ first letter” to Mr. Graves, referred to in the one here printed, was written on
the 17th of October, 1843,and has been printed in the Supplementary Number of the same
Philosophical Magazine for December, 1844. It contained a sketch of the process by
which the writer had succeeded in combining, through Quaternions, his old conception of
sets of numbers, derived from the conception of sets of moments of time, with the notion
of tridimensional space. 'The former conception had been familiar to him since the year
1834, about the end of which year, and the beginning of the following one, he tried a
variety of triplet systems, and obtained several geometrical constructions, but was not
sufficiently satisfied with any of them to give them publicity; attaching, perhaps, too
much weight to the objection or difficulty, that in every such system of pure triplets, the
product was found to be liable to vanish, while the factors were still different from zero.
It should be here observed that the ¢riplets described in the author’s two letters of October,
1843, are really imperfect quaternions ; they are, therefore, strictly speaking, not proper
triplets, such as he had once sought for (and in some degree found); and they cannot be
regarded as having at all anticipated the independent discoveries since made by Professor
de Morgan, nor those made subsequently by John T. Graves, Esq. and the Rev. Charles
Graves, in 1844, respecting certain remarkable systems of such pure and proper Triplets,
with products of a triplet form, connected with imaginary cube roots of negative or posi-
tive unity. »

The writer hopes that a very interesting theory of octaves, including an extension of
Euler’s theorem respecting products of sums of squares from four to eight, which was
communicated to him as an extension of his quaternions, about the end of 1843 and begin-
ning of 1844, in letters from his friend, Mr. John Graves, will yet be published by that
gentleman, who has also contributed to the < Philosophical Magazine” for April, 1845, a
remarkable paper on Couples. Some valuable papers on Couples, Quaternions, and
Octaves, have also been communicated to the same magazine, since the commencement
of 1845, by Arthur Cayley, Esq., especially an application of quaternions (which appeared
in the February of that year) to the representation of the rotation of a solid body. That
important application of the author’s principles had indeed occurred to himself previously ;
but he was happy to see it handled by one so well versed as Mr. Cayley is in the theory
of such rotation, and possessing such entire command of the resources of algebra and of
geometry. Any further remarks which the writer has to offer on the natureand history of
this whole train of inquiry, must be reserved to accompany the account of his Second
Series of Researches respecting Quaternions.



