Encyclopædia Britannica. Vol. I.-(A-ANA).

Tutal number of Articles, 966.

PRINCIPALCONTENTS.

abBey and abBot. Rev. Edmund Venables, Precentor and Canon of Lincoln.
abelard. G. Croom Robertson, M.A., Professor of Logic, University College, London. aberdeen. Alex. Cruiceshant, M.A.
abraham. Rev Samuel Davidson, D.D., Author of "Introduction to the Old and New Testaments," \&co. ABYSSINIA. Davin Kay, Fellow of the Royal Geographical Society.
ACademy. Francis Storr, M.A., Author of "Tables of Irregular Greek Verbs."
ACCENT. Joun M. Ross, LL.D., late Editor of the "Globe Encyclopxdia."
acclimlatisation. alfred R. Wallace, Author of "Theory of Natural Selection"
achilles. A. Stuart Murray, British Museum, London. .
Achin. Col. Henry Yule, C.B.. F.R.G.S., Adthor of "The Book of Marco Polo."
ACOUSTICS. David Thoarson, M.A., Jate Professor of Natural Philosophy, University of Aberdeen.
ACTS OF THE APOSTLES. Principal Donaldson, LL. D., Author of "Early Christian Litcrature and Doctrine."
ACTINOZOA. T. H. Huxley, Ll. D., F.R.S., Professor in the Loyal School of Mines, London.
ADAM. Rev. Samuel Davidson, D.D.
adDison. William Spalding, LL.D., late Professor of Rbetoric and Belys Lettres, University of Edinburgh. ADMIRAL and ADMIRALTY. F. W. Rowsell, C.B., Superintendent of Naval Contracts, H. M. Admiralty. AdULTeration. Dr IIenry Letrfny, Ph.D., formerly Medical Offcer of Health to the City of London.
AERONAUTICS. James Glaisher, F.R.S., Superintendent of the Meteorological Section, Greenwich Observatory.
eschylus. J. Stuart Blaceie, late Professor of Greek, University of Edinburgh.
ESIR. Miss E. C. Otte, Translator of Humboldt'a "Cosmos."
eSTHETICS. James Sully, LL.D., Author of "Sensation and Intuition."
afghanistan. Col. Yule, C.b.
AFRICA. Keiti Johnston, Fellow of the Royal Geographical Society.
agassiz. W. C. Willianson, LL.D., F.R.S., Professor of Nataral History, Ofens College, Manchester.
AGRaRIan LaWs. George Ferouson, LL.D., formerly Professor of Humanity, University of Aberdeen.
agriculture. John Wilson, Member of Council, Highland and Agricultural Society, and W. T. Trornton,
Author of "A Plea for Peasant Proprietors."
alchemy. Juies Andrieu.
ALEXANDER THE GREAT. Rev. Sir Georoe W. Cox, Baronet, Author of "A History of Greece," \&q.
Alexander Vi. Richard Garnett, British Museum, Author of "Idylls and Epigrams from Greek Anthology."
alford, dean. Charles Kent, Author of "Charles Dickens as a Reader."
Alge. Dr J. Hutton Balfour, F.R.S., late Professor of Botany in the University of Edinburgh.
algebra. Philip Kelland, F.R.S., Iate Professor of Mathematics, University of Edinburgh
algeria. David Kay, F.R.G.S.
ALPHABET. Johm Peile, M.A., Fellow and Tutor of Christ’a College, Cambridge.
ALPS. John Ball, F.R.S., late President of the Alpine Club.
altar. Rev. G. H. Forbes.
alum. James Dewar, F.R.S., Jacksonian Professor of Natural Experimental Philosophy, Cambridge.
amazon. a. Stuart Murray, British Museum.
ambassador. Henry Reeve, C. B., D.C.L., Registrar of H. M. Privy Council.
ambulance. Thomas Lonomore, C.B., Professor of Army Surgery, Netley.
america (North and South). Charles Maclaren, late Fel. of the Geolog. Soc., and of the Royal Society, Edin.
american Literature. John Nichol, LL.D., Professor of English Language, University of Glasgow.
ammon. Samuel Birch, LL.D., D.C.L., Keeper of Department of Oriental Antiquities, British Museum.
ammunition. Capt. C. Orde Browne, R.A., Royal Laboratory, Woolwich.
amos. Rev. Canon T. K. Ceerne, Oriel Professor of Exegesis, University of Oxford.
Amphibia. Prof. T. H. Hexley.-
amphitheatre. Rev. G. H. Forbes.
Analogy and analysis. Pref. Croom Ronertson.
an esthesia: Dr. James O. Afflecr, Examiner, Royal College of Physicians, Edinburgh.
ANATOMY. Sir Wm. Turner, M.B., F.RS., Professor of Anatomy in the University of Edinburgh

PREFATORY NOTICE.

THE Encyclopadia Britannica has long deservedly held a foremost place amongst

English Encyclopædias. It secured this position by its plan and method of treat. ment, the plan being more comprehensive, and the treatment a happier blending of popular and scientific exposition than had previously been attempted in any undertaking of the kind. The distinctive feature of the work was that it gave a connected view of the more important subjects under a single heading, instead of breaking them up into a number of shorter articles. This method of arrangement had a twofold advantage. The space afforded for extended exposition helped to secure the services of the more independent and productive minds who were engaged in advancing their own departments of scientific inquiry. As a natural result, the work, while surveying in outline the existing field of knowledge, was able at the same time to enlarge its boundaries by embodying, in special articles, the fruits of original observation and research. The Encyclopædia Britannica thus became, to some extent at least, an instrument as well as a register of scientific progress.

This characteristic feature of the work will be retained and made even more promi. nent in the New Edition, as the list of contributors alrcady published sufficiently indicates. In some other respects, however, the plan wili be modificd, to meet the multiplied reauircments of advancing knowledge. In the first place, the rapid progress of science during the last quarter of a century necessitates many changes, as well as a considerable increase in the number of headings devoted to its exposition. In dealing with vast wholes, such as Physics and Biology, it is always a difficult problem how best to distribute the parts under an alphabetical arrangement, and perhaps impossible to make such a distribution perfectly consistent and completc. The difficulty of distribution is increased by the complexity of divisions and multiplication of details, which the progress of science involves, and which constitute indeed the most authentic note of advancing knowledge. This sign of progress is reflected in extensive changes of terminology and nomenclature, vague general headings once appropriate and sufficient, such as Animalcule, being of necessity abandoned for more precise and significant equivalents

But, since the publication of the last Edition, science, in each of its main divisions, may be said to have changed as much in substance as in form. The new conceptions introduced into the Biological Sciences have revolutionized their points of view, methods of procedure, and systems of classification. In the light of larger and more illuminating generalizations, sections of the subject, hitherto only partially explored, have acquired new prominence and value, and are cultivated with the keenest interest. It is enough to specify the researches into the ultimate structures, serial gradations, and progressive changes of organic forms, into the laws of their distribution in space and time, and into the causes by which these phenomena have been brought about. The results of persistent labor in these comparatively new fields of inquiry will largely determine the classifications of the future. Meanwhile the whole system of grouping, and many points of general doctrine, are in a transition state; and what is said and done in these directions must be regarded, to a certain extent at least, as tentative and provisional. In these circumstances, the really important thing is, that whatever may be said on such unsettled questions should be said with the authority of the fullest knowledge and insight. and every effort has been made to secure this advantage for the New Edition of the Encyclopædia.

The recent history of Physics is marked by changes both of conception and classification almost equally great. In advancing from the older dynamic to the newes potential and kinetic conceptions of power, this branch of science may be said to have entered on a fresh stage, in which, instead of regarding natural phenomena as the result of forces acting between one body and another, the energy of a material system is looked upon as determined by its configuration and motion, and the ideas of configuration, motion and force are generalized to the utmost extent warranted by their defini. tions. This altered point of view, combined with the far-reaching doctrines of the correlation of forces and the conservation of energy, has produced extensive changes in the nomenclature and classification of the various sections of physics; while the fuller investigations into the ultimate constitution of matter, and into the phenomena and laws of light, heat and electricity, have created virtually new sections, which must now find a place in any adequate survey of scientific progress. The application of the newer principles to the mechanical arts and industries has rapidly advanced during the same period, and will require extended illustration in many fresh directions. Mechanical invention has, indeed, so kept pace with the progress of science, that in almost every department of physics improved machines and processes have to be described, as well as fresh discoveries and altered points of view. In recent as in earlier times, invention and discovery have acted and reacted on each other to a marked extent, the instru ments of finer measurement and analysis having directly contributed to the finding out of physical properties and laws. The spectroscope is a signal instance of the extent to which in our day scientific discovery is indebted to appropriate instruments of obser vation and ana분

These extensive changes in Physics and Biology involve corresponding changes in the method of their exposition. Much in what was written about each a generation ago is now of comparatively little value. Not only therefore does the system of grouping in these sciences require alteration and enlargement; the articles themselves must, in the majority of instances, be written afresh rather than simply revised. The scientific department of the work will thus be to a great extent new. In attempting to distribute the headings for the New Edition, so as fairly to cover the ground occu pied by modern science, I have been largely indebted to Professor Huxley and Professos Clerk Maxwell, whose valuable help in the matter I am glad to have an opportunity of acknowledging.

Passing from Natural and Physical Science to Literature, History and Philosophy, it may be noted that many sections of knowledge connected with these departments display fresh tendencies, and are working towards new results, which, if faithfully reflected, will require a new style of treatment. Speaking generally, it may be said that human nature and human life are the great objects of inquiry in these departments. Man, in his individual powers, complex relationships, associated activities and collective progress, is dealt with alike in Literature, History and Philosophy. In this wider aspect, the rudest and most fragmentary records of savage and barbarous races the earliest stories and traditions of every lettered people, no less than their developed literatures, mythologies and religions, are found to have a meaning and value of their own. As yet the rich materials thus supplied for throwing light on the central problems of human life and history have only been very partially turned to account. It may be said, indeed, that their real significance is perceived and appreciated, almost fos the first time in our own day. But under the influence of the modern spirit, they are now being dealt with in a strictly scientific manner. The available facts of humar history, collected over the widest areas, are carefully co-ordinated and grouped together, in the hope of ultimately evolving the laws of progress, moral and material, which underlie them, and which, when evolved, will help to connect and interpret the whole onward movement of the race. Already the critical use of the comparative method has produced very striking results in this new and stimulating field of research. Illustrations of this are seen in the rise and rapid development of the comparatively modern science of Anthropology, and the successful cultivation of the assistant sciences, such as Archæology, Ethnography and Philology, which directly contribute materials for its use. The activity of geographical research in both hemispheres, and the large additions secently made to our knowledge of older and newer continents by the discoveries of sminent travelers and explorers, afford the anthropologist additional materials for his work. Many branches of mental philosophy, again, such as Ethics, Psychology anc Esthetics, while supplying important elements to the new science, are at the same time very largely interested in its results, and all may be regarded as subservient to the wider problems raised by the philosophy of history. In the New Edition of the

Encyclopædia full justice will, it is hoped, be done to the progress made in these various directions.

It may be well, perhaps, to state at the outset the position taken by the Ency. clopædia Britannica in relation to the active controversies of the time-Scientific, Re. ligious and Philosophical. This is the more necessary, as the prolific activity of modern science has naturally stimulated speculation, and given birth to a number of somewhat crude conjectures and hypotheses. The air is full of novel and extreme opinions, arising often from a hasty or one-sided interpretation of the newer aspects and results of modern inquiry. The higher problems of philosophy and religion, too, are being investigated afresh from opposite sides in a thoroughly earnest spirit, as well as with a directness and intellectual power, which is certainly onc of the most striking signs of the times. This fresh outbreak of the inevitable contest between the old and the new is a fruitful source of exaggerated hopes and fears, and of excited denunciation and appeal. In this conflict a work like the Encyclopredia is not called upon to take any direct part. It has to do with knowledge rather than opinion, and to deal with all subjects from a critical and historical, rather than a dogmatic, point of view. It cannot be the organ of any sect or party in Science, Religion or Philosophy. Its main duty is to give an accurate account of the facts and an impartial summary of results in every department of inquiry and research. This duty will, I hope, be faithfully performed
T. S. BAYNES.

ENCYCLOPEDIA BRITANNICA.

A

ATHE first symbol of every Indo-European alphabet, denotes also the primary vowel sound. This coincidence is probably only accidental. The alphabets of Europe, and perhaps of India also, were of Semitic origin, and in all the Semitic alphabets except one, this same symbol (in modified forms) holds the first place; but it represents a peculiar breathing, not the rowel a,-the rowels in the Semitic languages occupying a subordinate place, and having originally no special symbols. When the Greeks, with whom the vowel sounds were much more important, borrowed the alphabet of Phœnicia, they required symbols to express those vowts, and used for this purpose the signs of breathings which were strange to them, and therefore needed not to be preserved; thus the Phœnician equivalent of the Hebrew aleph became alpha; it denoted, however, no more a guttural breathing, but the purest rowel sound. Still, it would be too much to assume that the Greeks of that day were so skilled in phonetics that they assigned the first symbol of their borrowed alphabet to the a-sound, bccause they knew that sound to be the most essential vowel.

This primary vowel-sound (the sound of a in father) is produced by keeping the passage through which the air is rocalised between the glottis and the lips in the most open position possible. In sounding all other vowels, the airchannel is narrowed by the action either of the tongue or the lips. But here neither the back of the tongue is raised (as it is in sounding o and other vowels), so that a free space is left between the tongue and the uvula, nor is the front of the tongue raised (as in sounding e), so that the space is clear between the tongue and the palate. Again, no other rowel is pronounced with a wider opening of the lips; whereas the aperture is sensibly reduced at each side when we sound o, and still more when we sound u (that is, yoo). The whole channel, therefore, from the glottis, where the breath first issues forth to be modified in the oral cavity, to the lips, where it finally escapes, is thoroughly open. Hence arises the great impcrtance of the sound, by reason of its thoroughly non-consonantal character. All vowels may be defined as oven positions
of the speech-organs, in which the breath cscapes mthou: any stoppage, friction, or sibilation arising from the contact of those organs, whereas consonants are heard when the organs open after such contact more or less complete. Now, all rowels except a are pronounced with a certain contraction of the organs; thus, in sounding the i (the English e-sound), the tongue is raised so as almost to touch the palate, the passage left being so close, that if the tongue were suffered for a second to rest on the palate, there would be heard not i but y; and a similar relation exists between u and w. This is commonly expressed by calling y and w semi-vowels. We might more exactly call i and u consonantal-rowels; and as an historic fact, i does constantly pass into y, and u into w, and vice versa. But no consonant has this relation to the a-sound; it has absolutely no affinity to any consonant; it is, as we have called it, the one primary essential vowel.

The importance of this sound may be shown by historical as well as by physiological evidence. We find by tracing the process of phonetic change in different languages, that when one vowel passes into another, it is the pure a-sound which thus assumes other forms, whereas other vowels do not pass into the a-sound, though sometimes the new sound may have this symbol. Roughly speaking, we might express the general character of vowel change by drawing two lines from a common point, at which a is placed. One of these lines marks the progress of an original a (ah-sound) through e (a-sound), till it sinks finally to i (e-sound); the other marks a similar degradation, through o to u (oo-sound). This figure omits many minor modifications, and is sub-
 ject to some exceptions in particular languages. But it represents fairly in the main the gencral process of vowelchange. Now, we do not assert that there ever was a time when a was the only existing rowel, but we do main. tain that in numberless cases an original a has passed into other sounds, whereas the reverse process is excessively
rare. - Consequently, the farther we tiace back the history of language, the more instances of this vowel do we find; the more ncarly, if not entirely, does it become the one starting point from which all vowel-sound is derived.

It is principally to tho effort required to keep this sound pure that we must attribute the great corruption of it in all langrages, and in none more than our own. Indeed, in Enghish, the short a-sound is never heard pure ; it is heard in Scotland, e.g., in man, which is quite different from the same word on English lips. We have it, however, long in father, \&e., though it is not common. It has passed into a great many other sounds, all of which are denoted in a most confusing way by the original symbol, and some by other symbols as well. Thus a denotes-(1.) The Englist vorrel-sound in man, perhaps the most common of all the sulstitutes, dating from the 17 th century. (2.) It appears in want; for this sound 0 is also employed, as in on. (3.) A more open sound is heard in all (also denoted by au in auk, and aw in awl). (4.) Very commonly it represents the continental e, as in ale (here also we have the symbol ai in ail). (5.) It is found in dare and many similar words, where the sound is really the e of den, prolonged in the utterance; hero also $a i$ is sometimes an equivalent, as in air. Then (6) there is a sound which is not that of a either in man or in father, but something between the two. It is heard in such words as ask, pass, grant, \&e. All these may be, and often are, pronounced with the sound either of man or of father; still, we do often hear in them a clearly distinguishable intermediate sound, which ought to have a special symbol. Lastly (7), there is the dull sound heard in final unaccentuated syllables, e.g., in the word final itself. It is that to which all unaccentuated syllables tend; but it is also often heard even in monosyllables, where it is represented by every other vowelsymbol in the language, e.g., in her, sir, son, sun. This Protean sound is commonly called the neutral rowel ; it occurs in all languages, but perhaps in none so frequently as in English. . This great variety of sounds, which are all denoted among us by one symbol, clearly shows the insufficiency of our written alphabet.

As in English, so in Sanskrit, the short ah-sound was lost, and was replaced regularly by the neutral sound. This was regarded by tho grammarians as inherent in every consonant, and therefore was only written at the beginning of a word; in fact, it is the smallest amount of vowelsound requisite to float a consonant. Long a, however, kept its sound pure, and does so still in the vernaculars of India. In Latin the sound was probably pure, both short and long, and it has been preserved so in the Romance languages down to the present day. In Greek there was considerable variation, proved in one case at least by a variation of symbol; in Ionic a commonly passed into η, a symbol which prabably denoted the modern Italian open e; but possibly the close e, that is, the English a in ale. On the other hand, it is probable that the Doric a approximated to an a, being sounded as a in our word want; and it is likely that this variation was the $\pi \lambda a \tau \in \epsilon a \sigma-$ μ^{\prime} 's which the grammarians attribute to the Dorians. This is commonly supposed to have been the retention of a where the Ionic had η; but that was not peculiar to the Dorians, being common to all the Greeks except the Ionians. In the north of Europe we find a similar tendency to give to a in o-sound; thus in Norse, $a c$ is sounded as an open o. By a further extension in the north of England, at least in such parts as have been specially exposed to Norwegian influence, au has the sound of 0 ; e.g., law is pronounced lo.

A is frequently used as a prefix in licu of some fuller form in old English. Thus it stands for the preposition on (O.E. an) in away, again, afoot, asleep; for off in g down (O.E. of-dune); and seems to be intensive in athirst (O.E.
of-thirst). Sometinnes, espectally with verbs, it represents the old Englislı a, which in old High German appears as ur or er, and in modern German as er, which signifies the completion of an action, as in erwachen, to which awake corresponds. Frequently no sjecial force scems to be added by tho prefix, as in abide, arise, sc. Sometimes a appears as the representative of the prefix commonly used in past participles, which has the form ge in German, and ge and y in old English, e.g., in ago or agone; compare aware (O.E. gewaere), anong (O.E. gemang), \&e. A also stood for the preposition an (an) in such expressions (now obsolete) as a-doing, a-making, where doing and making are verbal nouns. Lastly, it represents the prepositions on or of in the phrases now-a-days, Jack-a-lantern, and others.

The place that A occupies in the alphabet accounts for its being much employed as a mark or symbol. It is used, for instance, to name the sixth note of the gamut in musie; in some systems of notation it is a numeral (see AritaNETIC); and in Logic it denotes a universal affirmative proposition (sec Logic). In algebra, a and the frst letters of the alphabet are employed to represent known quantities. Al marks the best class of vessels in Lloyd's Register of British and Foreign Shipping. In the old pocts, "A per se" is found, meaning the highest degree of excellence; as when Chaucer calls Creseide "the floure and A per se of Troyo and Grece."

A was the first of the eight literce nundinales at Rome, and on this analogy it stands as the first of the seven Dominical letters.

It is often used as an abbreviation, as in A.D. for anno domini, A.M. for ante meridiem, A.B. and A.M. for artium baccalaureus and artium magister. . In commerce A stands for accepted.
(J. P.)

AA, the name of about forty small European rivers. The word is derived from the old German aha, cognato to the Latin aqua, water. The following are the more important streams of this name:-a river of Holland, in North Brabant, which joins the Dommel at Bois-le-Due; two rivers in the west of Russia, both falling into the Gulf of Livonia, near Riga, which is "situated between them; a river in the north of France, falling into the sea at Gravelines, and navigable as far as St Omer; and a river of Switzerland, in the cantons of Lucerne and Aargant, which earries the waters of Lakes Laldeker and Hallwyler into the Aar.

AACIIEN. Sce Aix-la-Chapelle.
AALBORG, a city and seaport of Denmark, is situated on the Limford, about 15 miles from its junction with the Cattegat. It is the eapital of the district of the same name, one of the subdivisions of the province of Jiitland. The city is a place of considerable commercial importance, and contains a cathedral and a school of navigation. Soap, tobacco, and leather are manufactured; there are several distilleries; and the herring fishery is extensively prosecuted. Grain and herring are largely exported, as are also to a smaller extent wool, cattle, skins, tallow, salt provisions, and spirits. The harbour, which is good and safe, though difficult of access, is entered by about 800 vessels annually, and there is direct steam communication with Copenhagen. The district is celebrated for its breed of horses. Popula tion (1870), 11,953.

AALEN, a walled town of Würtemberg, pleasantly situated on the Kocher, 'at the foot of the Swabian Alps about 50 miles E. of Stuttgart. Woollen and linen goods are manufactured, and there are ribbou looms and tannerics in the town, and large iron works in the neighbourhood. Aalen was a free imperial city from 1860 till 1802, when it was annexed to Wuirtemberg. Population (1871), 5552,

AAF, or Aare, the most considerabie river in Switzerland, after the Rhine and Rhone. It rises in the glaciers
of the Finster-airhorn, Schreckhorn, and Grimsel, in the cauton of Bern; and at the Handeck in the valley of Hash forms a magnificent water-fall of above 150 fect in licight. It then falls successively into the lakes Brienz and Thun, and, emerging from the latter, fows through the cantons of Bern, Soleure, and Anrgau, emptying itself into the Rhine, opposite Waldshut, after a course of about 170 miles. Its principal tributary streams are the Kandcr, Sannc, and Thicle on the left, and the Enmen, Surin, An, Rciss, and Limmat, on the right. On its banks are situanted Untersecn, Thun, Bern, Soleure or Solothurn, Aarburg, and Aaran. The Aar is a beautiful silvery river, abounding in fish, and is navigable from the Rhine as far as the Lakc of Thun Several small rivers in Germany have the same name.

AARAU, the chief town of the canton of Aargan in Switzelland, is situated at the foot of the Jura momitains, on the right bank of the river Anr, 41 miles N.E. of Bern. It is well built, and contains a town-hall, barracks, several emall museuns, and a library rich in histories of Switzerland. There is a cannon foundry at Aarau, and among the principal manufactures are silk, cotton, and leather; also cutlery and mathematical instruments, which are held in great repute. The slopes of the ncighbouring monntains are partially covered with vincs, and the vicinity of the torn is attractive. About ten miles distant along the right bank of the Aar are the famous baths of Schinzuach. Population, 5449 .
AARD-VARI (eartithig), an animal vory common in South Africa, measurisg upwards of three fect in length, and having a general resemblance to a short-legged pig. It feeds on ants, and is of nocturral habits, and very timid and harmless. Its fesi is used as food, and when suitably preserved is considcred a delicacy. The animal is the only known species of its genus (Orycteropus), and belongs to the order Elentata of the mammalia. The same prefix Aard appears iu the name of the Aard-wolf (Proteles Lalundii), a rare auimal found in Caffraria, which is said to partalse of the charactors of the dog and civet. See Mamprilea.
AALGid (French, Argovia, one of the cantons of Switzerland, derives its name from the river which flows through it, Aar-gau being the province or district of the Aar. It is buunded on the north by the Rline, which divides it from the duchy of Baden, on the east by Zurich and Zug, on the south by Lucerne, and on the west by Bern, Soleure or Solothurn, and Easel. It has an area of $5\left(12 \frac{1}{2}\right.$ square miles. By the consus of 1870 , the number of inhabitants was 199,873 , showing an increase dur:ng the preco3ing ten years of 4665 . Aargau stands sixth among the Swiss cautons in density of population, having 395 inhabitants to the square mile. The statistics of $18 \% 0$ show that of the inhabitants 107,703 were Protestants, 89,180 Catholics; and 1541 Jews. German is the language almost universally spoken.
Aargan is the least mountaincus canton of Switzerland. It forms part of a great tablc-land to the north of the N ps and the cast of the Jura having a geueral elevation of from 1200 to 1500 feet. The hills do not rise to auy greater height than 1800 feet above this table-laud, or 3000 fect above the level of the sea. The surface of the country is beautifully diversified, undulating tracts and well-wooded hills alternating with fertile valleys watered by the Aar and its numerous tributaries, and by the rivulets which flow northward into the Rhine. Although moist and variable, the climate is milder than in most parts of Switzcrland.
The minerals of Aargau are unimportant. but remarkable palectitological remains are found in its rocks. . The soil to the left of the Aar is a stife clay, but $t \mathrm{t}$ the right it is light sud productive. Agriculture is in an advanced state, and great attention is given to the rearing of cattle. There
are many rineyards, and much fruit is grown. The cart ton is distinguished by its industry and its generally diffused prosperity. Nany of the inhalitants are employed in the fishiugs on the Aar, and in the navigation of the river. In the villages and towns there are considerable mauufactures of cotton goods, silk, and linen. The chief exports are cattle, hides, cheese, timber, raw cotton, yarn, cotton cloths, silk, machincry, aud wooden wares; and the inports include wheat, wine, salt, leather, and iron The most important towns are Aarau, Baden, Zofiugen, aud Laufcuburg, and there are mineral syriugs at Baclen, Schinzuach, Leeran, and Niederweil The Swiss Junction Railway crosses the Fhine near Waldshut, and rums south through the canton to Turgi, whence one line proceeds S.E to Zurich, and auother S.W. to Aarau and Oiben.
Uutil 1798, Aargau formed part of the canton of Bern, but when the Helvetic Republic was proclaimed, it was erected into a separate canton. In 1803 it received a considerable accession of territory, in virtue of the arrangement under which the French evacuated Switzerland. According to the law whereby the cantons are represented in the National Coumcil by one member for every 20,000 inhabitants, Aargau returns ten representatives to tlent assembly. The internal governmeut is vested in a legislative council elected by the body of the people, while a smaller council of scven members is chosen by the larger body for the general administration of affairs The ro, sources of Aargan are stated to amount to about a million sterling; its revenue in 1867 was nearly $£ 82,000$, and the expenditure slightly greater. There is a public debt of about $£ 40,000$. The canton is divided into eleven districts, and these again are subdivided into forty-eight circles. There is a court of law for each district, and a superior court for the whole cantoin, to which eases involving sums above 160 francs can be appealed. Education is compulsory; but in the Roman Catholic districts the law is not strictly enforced. By improved schools and other appliances great progress has been made in education within the last thirty or forty years.

AARHUUS, a city and seaport of Denmarl, situated on the Cattegat, in lat. $56^{\circ} 9^{\prime} \mathrm{N}$., long. $10^{\circ} 12^{\prime} \mathrm{E}$. It is the chicf torm of a fertile district of the same name, oue of the subdivisions of Jutland. The cathedral of Aarhuus is a Gothic structure, and the largest church in Denmark. The town also contaius a lyceum, museum, and library. Aarhuus is a place of extensive trade. It has a good aud safo harbour, has regular stean communication with Copenlagen, and is connected by rail with Vihorg and the interior of the country. Agricultural produce, spirits, leather, and glove are exported, and there are sugar refineries, and manufactures of wool, cotton, and tobacco. Population (1870), 15,020.

AARON, the first high-priest of the Jews, eldest fon of Amram and Jochebed, of the tribe of Levi, and brother of Moses and Mirinm. When Moses was commissioned to conduct the Israelites from Egypt to Canaan, A?ron was appointed to assist him, principally, it would appear, on account of his possessing, in a high degree, persuasive readiness of speech. On the occasion of Iloses' absence in Mount Sinai (to which he had gone up to receive the tables of the law), the Israelites, regarding Aaron as their leader, clanorously demanded that he should provide them with a visible symbolic image of their God for worship. He weakly complied with the demand, and out of the ornaments of gold contributed for the purpose cast the figure of a calf, this form being doubtless chosen in recollection of the idols of Egypt. In obcdience to instructions given by God to Noses, Arron was appointed Ligh-priest ; his sons and descendants, priests : and his tribe was set apart as the sacerdotal caste. The office of high-priest was held by Aaron for zearly forty years, tili the time of his
death, which pok place on Mount Hor, wheu he ras 123 years old.

AARSSENS, Francis Van (1572-1641), one of the greatest diplomatists of the United Provinces. He represented the States-Gcneral at the Court of Irance for many years, and was also eugaged in embassies to Venice, Germany, and England. His great diplomatic ability sppears from the momoirs he wrote of his negotiations in 1624 with Richelien, who ranked him among the three greatest politicians of his time. A deep stain rests on the memory of Aarssens from the share he had in the death of' Barneveldt, who was put to death by the States-General, after the semblance of a trial, in 1619.

ABABDE, an African tribe ocelpying tho country between the lied Sea and the Nile, to the S. of Kosseir, nearly as far as the latitudo of Derr. Many of the race have settled on the castern bank of the Nile, but the greater part still live like Dedouins. They are a distinct race from the Arabs, and are treacherous and faithless in their dealings. They have few horses; when at war with other tribes, they fight from camels, their breed of which is famed. They possess considerable property, and trade in senna, and in charcoal made from acacia wood, which they send as far as Cairo.

ABACA or Abaka, a name giren to the Mfusa textilis, the plant that produces the fibre called Manilla Hemp, and also to the fibre itself.
$A B A C U S$, an architectural term (from the Gr. $\alpha \beta a \xi ̧$, a tray or flat board) applied to the upper part of the capital of a column, pier, dc. The early form of an abacus is

Forns of the Abacts
aimply a square flat stone, probably derived from the Tuscan order. In Sazon work it is frequently simply chamfered, but sometimes grooved, as in the crypt at Repton (fig. 1), and in the arcade of the refectory at Westminster. The abacus in Norman work is square where the columus are small; but on larger piers it is sometimes octagonal, as at Waltham Abbey. The square of the abacus is often sculptured, as at the White Tower and alton (fig. 2). In carly English work the abacus is generally circular, and in larger work a continuation of circles (fig. 4), sometimes ontagonal, and occasionally square.

The mouldings are generally rounds, which overbang decp hollows. The abacus in early French work is generally square, as at Blois (fig. 3). The term is applied in its diminutive form (Abaciscus) to the chequers or squares of a tessellated pavement.

Abaces also signifies an instrument employed by the ancients for arithmetical calculations; pebbles, bits of bone, or coins, being used as counters. The accompanying figure (5) of a Roman abacus is taken from an ancient monument. It contains seven. long and seven shorter rods or hars, the former having four perforated beads running ou
them, and the latter one. The bar marked I indicates units, X tens, and so on up to millions. The beads on the shorter bars denote fives,-five units, five tens, \&c. The rod 0 and corrcsponding short rod are for marking ounces; and the short quarter rods for fractions of an ounce.

The Swan-Pan of the Chinese (fig. 6) closely resembles the Roman abacus in its construction aud uso. means of balls of bomputations are made with it by man bane or ivory runing on slender bain boo rods similar to the simpler board, fitted up with bead strung on wires, which is employed in teaching the rudiments of arithmetic in elementary schools.

AB.F, a town of ancient. Greece in the E. of Plocis, famous for a temple and oracle of Apollo. The temple was plundered and burned by the Persians (b.c. 480), and again by the Bootians (B.c. 346), and was restored on a smaller scale by Hadrian. Remains of the temple and town may still be traced on a peaked hill near Exarkho. See Leake's Northern Greece.

ABAKANSK, a fortified town of Siberia, in the government of Yeniseisk, on the river Λ bakan, near its confluence with the Yenisei. Lat. $54^{\circ} \mathrm{N}$. ; long. $91^{\circ} 14^{\prime} \mathrm{E}$. This is considered the mildest and most salubrious placo in Siberia, and is remarkable for the tumuli in its neighbourhood, and for some statues of men from eeven to nine feet high, covered with hioroglyphics. Population about 1000.
abaNA and Pharpar, "rivers of Damascus" (2 Kings จ. 12), are now generally identified with the Barada and the Awaj respeetively. The former flows through the city of Damaseus; the Awaj, a smaller stream, passes eight miles to the south. Bath run from west to east across the plain of Damascus, which owes to them much of its fertility, and lose themsclves in marshes, or lakes, as they are called, on the borders of the great Arabian desert. Mr Macgregor, who gives an interesting description of these rivers in his Rob Roy on the Jordan, affirms that "as a work of hydraulic engineering, the system and construction of the canals by which the Abana and Pharpar are used for irrigation, may be still considered as the most complete and extensive in the world."

ABANCAY, a town of Peru, in the department of Cuzeo, 65 miles W.S.W. of the town of that name. It lies on the river Abancay, which is here spanned by ono of the finest bridges in Peru. Rich crops of sugar-cane are produced in the district, and the town has extensive. sugar refineries. Hemp is also cultivated, and silver is found in the mountains. Population, 1200.

ABANDONMENT, in Mfarine Assurance, is the surren:dering of the ship or goods insured to the insurers, in the case of a constructive total loss of the thing insured. There is an absolute total loss entitling the assured to recover the full amount of his insurance wherever the thing insured has ceased to exist to any useful purpose,-and in such a case abandonment is not required. Where the thing assured continues to exist in specie, yet is so damaged that there is no reasonable hope of repair, or it is not worth the expense of bringing it, or what remains of it, to its destination, the insured may treat the case as one of a total loss, (in this case called constructive total loss), and demand the full sum insured. But, as the contract of insurance is . one of indemnity, the insured must, in such a case, make an express cession of all his right to the recovery of the subject insured to the underwriter by abandonment. Thn insured must intimate his intention to abandon, within a
reasonable tines after Tecerving correct information as to The loss; any unnecessary delay veing beld as an indication of his iutention not to abandon. ${ }^{2}$ An apandonment Then once accepted is irrevocable; but in no "creumstances s the insured obliged to abandon. Aftcr abandonment, the captain and cresv are still bound to do all in their power to save the property for the underwriter, without prejudice to the right of abandonment; for which they are entitled to wages and remuneration from the insurers, at teast so far as what is saved-will allow. See Arnould, SLarshall, and Park, on the Law of Insurance, and the fudgment of Lord Abinger in Roux v. Salvador, 3 Bing. N.C. 266, Tudor's Leading Cases, 139.

Abanoonjent has also a legal signification in the law of railways. Uurler the Acts 13 and 14 Vict. c. S3, 14 and 15 Vict. c. 64, 30 and 31 Vict. c. 126 , and 32 and 33 Vict. c. 114, the Board of Trade may, on the application of a railway company, made by the authority and with the consent of the holders of three-fifths of its shares or stock; and on certain couditions specified in the Acts, grant a warrant anthorising the abandonment of the railway or a portion of it. After due publication of this warrant, the company is released from all liability to make, maintain, or work the railway, or portion of the railrray, authorised to be abaudoned, or to complete any contracts relating to 1t, subject to certaiu prorisions and exceptions.

Abandoning a young child under two years of age, so that its life shall be endangered, or its health permanently injured, or likely to be so, is in England a misdemeanour, punishable by penal servitude or imprisonment, 24 and 25 Vict. c. $100, \$ 273$. In Scutland abandoning or exposing an infaut is an offence at common law, although no evil eonsequences should happen to the child.

ABANO, a town of Northern Italy, 6 miles S.W. of Padua. There are thernal springs in the neighbourhood, which have becn much resorted to by invalids for bathing, both in ancieut and modern times. They were called by the Romans Apori Fons, and also Aquce Patavince. Population of Abauo, 3000.

ABANO, Pietro D', known also as Petrus de Apono or Aponensis, a distinguished physician and philosopher, was born at tlie Italiau torn from which he takes his name in 1250, or, according to others, in 1246. After visiting the east in order to acquire the Greek language, he went to study at Paris, where he became a doctor of medicine and philosophy. In Padua, to which he returned when his studies were completed, he speedily gained a great reputation as a physician, and availed limself of it to gratify his avarice by refusing to visit patients except for an exorbitant fee. Perlaps this as well as his meddling with astrology eaused the charge to be brought against him of practising magic, the particular accusations being that he brought back into his purse, by the aid of the devil, all the money he paid away, aud that he possessed the philosopher's stone. He was twice brought to trial by the Inquisition; on the Girst occasion he was acquitted, and he died (1316) before the second trial mas completed. He was found guilty, however, aud his body was ordered to be eshumed and burned; but a friend bad secretly remored it, and the Inquisition had, therefore, to content itself with the public proclamation of its sentence and the burning of Abano in efigy. In his writings he expounds and advocates the medical and philosophical systems of Averrhoes and other Arabian writers. His best known works are the Conciliator differentiarum qua inter philosophos et medicos rersantur (Mantua, 1472, Venice. 1476), and De venenis eorumque remediis (1472), of which a French translation was published at Lyous in 1593.

ABARIS. the Hyperborean, a celebrated sage of antiquits who visited Greece about 570 b.c., or, n.ccording to
others, a century or tiro earlier. The particulars of his history are differently related by different authors, but all accounts are more or less mythical. He is said to have travelled over sea and land, riding on an arrow given him by Apollo, to have lived without food, to have delivered the whole earth from a plague, \&c. Tarious works in prose and verse are attributed to Abaris by Suidas and others, but of these we have no certain information.

Abatement, Abate, from the French abattre, abater, to throw down, demolish. The original meaning of the word is preserved in various legal plrases. The abatement of a nuisance is the remedy allowed by law to a person injurcd by a public nuisance of destroying or removing it by his own act, prorided he comunit no breach of the peace in doing so. In the case of private nuisances abatement is also allowed, provided there be no breach of the peace, and no damage be occasioned beyond what the removal of the nuisance requires.
Abatement of freelold takes place where, after the death of the person last seised, a stranger enters upon lands before the entry of the heir or derisee, and keeps the latter out of possession. It differs from intrusion; which is a similar entry by a stranger on the death of a tenant for life, to the prejudice of the reversiouer, or remaiuder man ; and from disseisin, which is the forcible or fraudulent expulsion of a person seised of the freehold.
Abatement among legatees (defulcatis) is a proportionate deduction which their legacies suffer when the funds out of which they are payable are not sufficient to pay then in full.

Abatement in pleading is the defeating or quashiug of a particular action by some matter of fact, such as a defect in form or personal incompetency of the parties suing, pleaded by the defendant. Such a plea is called a plea in -abatement; and as it does not involve the merits of the cause, it leares the right of action subsisting. Siuce 1852 it has been competent to obriate the effect of such pleas by amendment, so as to allow the real question in controversy between the parties to be tried in the same suit.
In litigation an action is said to abate or cease on the death of one of the parties.

Abatejent, or Rebate, is a discount allowed for prompt payment; it also means a deduction sometimes made at the custom-house from the fixed duties on certain kinds of goods, on account of damage or loss sustained in warehouses. The rate and conditions of such deductious are regulated by Act 16 aud 17 Vict. c. 107.
Abati, or Dell'Abbato, Niccolo, a celebrated frescopainter of Modena, born in 1512. His best works are at Modena and Bologna, and have beeu highly praised by Zanotti, Algarotti, and Lauzi. He acconpauied Primaticeio to France, and assisted in decorating the palace at Foutainbleau (1552-1571). His pictures exhibit a combination of skill in drawing, grace, and natural colouring. Some of his easel picces in oil are in different collections; one of the finest, now in the Dresden Gallery, represents the martyrdom of St Peter and St Paul. Abati died at Paris in 1571.

ABATTOIR, froun abattre, primarily signifies a slaughterhonse proper, or place where animals are killed as distin: guished from boucheries and êturx mublics, places where the dead meat is offered for sale. But the term is also employed to designate a complete meat market, of which the abattoir proper is merely part.

Perhaps the first indication of the existence of abattoirs may be found in the system which prevailed under the Emperors in ancient Rome. A corporation or guild of butchers undoubtedly existed there, which delegated to its officers the duty of slaughtering the beasts required to supply the city with meat. The establishments requisite
for this purpose were at first scattered about the rarious greets, but vere eveutually confined to one quarter, and formed the public meat market. This market, in the time of Nero, was one of the most imposing structures in the city, and some hlea of its magnificence has been transmitted to us by a delincation of it preserved on an ancient coin. As the policy and customs of the Romaus made themselves felt iu Caul, the Roman system of abattoirs, if it may se so called, was introduced there in an imperfect form. A clique of familics in Paris long excreised the special function of cateriug for the public wants in respect of meat. But as the city increased in maguitude and pupulation, the necessity of keeping slaughter-bouses as much as possible apart from dwelling-houses became apparent. As early as tho time of Charles IX., the attention of the French authoritics was directed to the subject, as is testificd by a decree passed on the 25th of February 1567. But although the importance of the question was frequently recognised, no definite or decided step secms to have been taken to effect the contemplated reform until the time of Napoleon I. The evil had thicn reached a terribly aggravated form. Slaughter-houses abutted on many of the principal thoroughfares; the traffic was impeded by the constant arrival of foot-sore beasts, whose piteous cries pained the ear; and rivulets of blood were to be seen in the gutters of the public strects. The constant accumulation of putrid offil tainted the atmosphere, and the Seine was poliuted by being used as a common receptacle for slaughter-house refuse. This condition of things could not be allowed to continue, and on the 9th of February 1810, a decree mas passed authorising the construction of abattoirs in the outskirts of Paris, and appointing a Commission, to which was committed the consideration of the entire question.

The result of the appointinent of this Commission was the construction of the five existing abattoirs, which were formally opened for business on the 15th of September 1818. The Montmartre abattoir occupics 83 English acres;
$\stackrel{1}{4}$

Ménilmontant, 10$\}$ acres; Grenelle, $7 \frac{3}{4}$; Du Toule, $5 \frac{3}{4}$; and Tillejuif, $5 \frac{1}{2}$. "The first two contain each 64 slaughterbouses and the same number of cattle-sheds; the third, 48 ; and cach of the others 32 . The dimensions of exch of the alughter-houses is about 291 feet by_13, The gencral
arrangenent of the abattuirs will be understood from the preceding plan of that of Menilnontant.

The component parts of a French abattoir are-l. Echaudoirs, whirh is the nane given by the Paris butches to the particular division allotted to him for the purpose of knocking down lis beasts; 2. Bourerics et Hergeries, the places set apart for the animals waiting to be slauglitered, where the animals, instead of being lilled at onec, after a long and distressing journey, when their blood is heated and their flesh intlamed, are allorred to cool and rest till the body is restored to its nommal healthy condition; 3. Fundeelrs, or boiling-down establishments; and, 4. Triperies, which are buildings set apart for the cleaning of the tripe of bullocks, and the fat, heads, and tripe of sheep and calves. Besides these, a Paris abattoir contaius Logenents des agens, Magasins, Réservoirs, Voiries, Lieux duisanee, Voútes, Remiscs et éeuries, Purcs cux Bœujs, \&c., and is provided with an abundant supply of water. All the abat toirs are under the control of the municipal. authorities, and frequent inspections are nade by persons recularly appointed for that purpose.'

The abattoirs are situated within the barriers, each at a distance of about a mile and threerquarters from the heart of the city, in districts where human habitations are still comparatively fow. There are two principal markets from which the abattoirs at Paris are supplied,-the one at Poissy, about 13 miles to the north-west, and the other at Sceaux, about 5 miles and a quarter to the south of the city. There are also tro markets for cows and calves, naruely, La Chapelle and Les Bernadins.

The Paris abattoirs were until recently thẽ most perfect specimens of their class; and eren now, although in some of their details they hare been surpassed by the new Islington meat market, for their complete and compact arrangement they remiain unrisalled.

The example set by Paris in this matter has been follored in a more or less modified form by most of the principal Continental towns, and the system of abattoirs has become almost universal in France.

The condition of London in this important sanitary respect was for a long period little more endurable thas that of Paris before the adoption of its reformed system. Smithfield market, situated in a rery populous neighbourhood, continued till 1852 to be an abomination to the tom and a standing réproach to its autherities. No ferrer than 243,537 citatle and $1,455,249$ sheep were sold there in 1852 , to be afterwards slaughtered in the crowded courts and thoroughfares of the metropolis. But publie opinion at length forced the Legislature to interfere, and the corpora. tion was compelled to abandon Smithfield market and to provide a substitute for it elsewhere.
The site selected was in the suburb of Islington, and the designs for the work were prepared by Mr Bunning. The first stone was laid March 24; 1854, and the market was openea dy Prince Albert, June 15, 1855. The Islington market is undoubtedly the most perfect of its kind. It occupies a space of some 20 acres on the high land near the Pentonville prison, and is open to both native and forcign cattle, excepting beasts from foreign countrics under quarantine.

In connection with the Islington cattle market are a fev slaughter-houses, half of which were originally public, and half rented to prirate individuals; but at present they are all practically private, and the majority of the cattle sold are driven away and killed at private slaughter-houses. In this respect the London system differs from that of Paris; and it may be said for the former that the meat is loss liable to be spoiled by boing carted to a distance, and is therefore probably delivered in better condition ; but the latter secures that great desideratum, the practical extino tion of isolated slaughter-houses.

The Edinburgh abattoir, erected in 1851 by the corporation, from designs prepared by Mr Darid Cousin, the city architect, is the best as regards both construction and management in the United Kingdom. It occupies an area of four acres and a quarter, surrounded by a screen-wall, from which, along the greater part of its length, the buildings are separated by a considerable open space. Opposite

the principal gaterray is a double row of buildings, extending in a straight line to about 376 feet in length, with a central roadray (marked AA in the annexed plan), 25 feet wide. There are three separate blocks of building on each side of the roadmay, the central one being 140 feet in length, and the others 100 feet each-cross-roads 18 feet wide separating the blocks. These ranges of building as well as two smaller blocks that are placed transversely behiud the eastern central block, are divided into compartmeuts, numbering 42 in all, and all arranged on the same plan. Nest the roadway is the slaughtering-booth (BB), 18 feet by 24 , and 20 feet in height, and behind this is a shed (CC) 18 feet by 22 , where the cattle are k ept before being slaughtered. All the cattle are driven into these sheds by a back-entrance, through the small enclosed yards (DD). The large doors of the booths are bung by balance weights, and slide up and down, so as to present no obstruction either within the booth or outside. By a series of large veutilators along the roof, and by oticer contrivances, the slanghtering-bootls are thoroughly ventiiated. Great precautions have been used to keep rats out of the buildings. To effect this, the booths are laid with thick well-dressed pavernent, resting on a stratum of concrete 12 inches thick, and the walls, to the beight of 7 feet, are formaed of solid ashlar; the roadways, too, are laid with concret, and causerwayed with dressed whinstonc pavement; and the urainage consists entively of glazed carthentrare tubes.

The ground on which the abattoir is built was previously connected with a distillery, and contains a well 200 feet deep (E), which, with the extensive systenn of tunnels attached to it, provides the establishment with an abundant supply of pure mater. By means of a steam-engine (F), introduced in 1872, the water is pumped up into a raised tank (G), whence it is distributed to the different booths and sheds, as well as for securing the roadways and drains. The steam from the engine is utilised in heating water for the numerous castriron tanks required in the operations of cleansing and dressing the tripery (H) and pig slaugh-tering-huase (I). By an ingenious arrangement of rotary brushes driven by the steam-engine,-the invention of Mr Rutherford, the superintendent,--the tripe is assad in a superior manner, and at greatly less cost
than by the tedious and trooblesume method of handcleaning.
By the Edinburgh Slaughter-Houses Act of 1850, the management is rested in the city authorities. Booths are let at a statutory rent of $£ 8$ each per annum, and, in addition to this, gate-dues are payable for every beast entering the establishment. The present rates for tenants of booths are $1 \frac{1}{2} d$. for an os or cow, $\frac{3}{4} d$. for a calf or pig, and $\frac{1}{d} \mathrm{~d}$. for a sheep. Common booths are provided for butchers who are not tenants, on payment of double gate-dues. The city claims the blood, gut, and manure. The tripe and feet are dressed for the trade without extra charge.

The blood was formerly collected in large casks, and disposed of for manufacturing purposes. This necessitated the storage of it for several days, causing in warm weather a very offensive effluvium. It eren happened at times, when there was little demand for the commodity, that the blood had to be sent down the drains. All nuisance is now avoided, and the amount received annually for the blood has, risen from between $£ 200$ and $£ 450$ to from $£ 800$ to $£ 1200$, by a contract into which Messrs Smith and Forrest of Jranchester have entered with the city authorities, to take over the whole blood at a fixed price per beast. They have erected extensive premises and apparatus at their own cost, for extracting from the blood the albumen, for which there is great demand in calico-printing, and for converting the clot into manure.

In connection with the establishment is a boiling-house, where all meat unfit for human food is boiled down and destroyed. The number of carcases seized by the inspector, and sent to the boiling-house, during the $5 \frac{1}{2}$ years ending with the close of 1872 , amounted to 1449 , giving a reight of upwards of 400,000 pounds.

Before the erection of these buildings, private slaughterhouses were scattered all, orer the city, often in the most populous districts, where, through want of drainage and imperfect rentilation, they contaninated the whole neighbourhood. Since the opening of the public abattoir, all private slaughtering, in the city or within a mile of it, is strictly prohibited.
Few of the provincial towns in Great Britain have as yet followed the example of London and Edinburgh. In some instances improvements on the old system hare been adopted, but Great Britain is still not only far behind her foreign neighbours in respect of abattoirs, but has even been excelled by some of her own dependencies. In America abattoirs are numerous, and at Calcutta and other towns in British India, the meat markets present a very creditable appearance from their cleanliness and systematic arrangeruent.
(c. s. в.)

ABAUZIT, Frrain, a learned Frenchman, was born f Protestant parents at Uzès, in Languedoe, in 1679. His inther, who was of Arabian descent, died when he was but two years of age; and when, on the revocation of the Edict of Nantes in 1685, the authorities took steps to have him educated in the Roman Catholic faith, his mother contrived his escape. For two years his brother and be lived as fugitives in the mountains of the Cerenncs, but they at last reached Genera, where their mother afterwards joined them on escaping from the imprisonment in which sho was held from the time of their fiight. Abauzit's youth was spent in diligent study, and at an early age he acquired great proficiency in languages, physics, and theology. In 1698 ho travelled into Holland, and thero lecame acquainted with Bayle, Jurieu, and Basnage. Proceeding to England, he was introduced to Sir Iszas Newton, who found in him one of the earliest defenders of the great truths his discoreries disclosed to the world.

A B B - A B B

Sir Isaac corrected in the second edition of his Principia an errer pointed out by Abauzit. The high estimate Newton entertained of his merits appears from the cempliment Le paid to Abauzit, when, sending him the Commercium Epistolicum, he said, "IVou are well worthy to judge between Lcibnitz and me." The reputation of Abauzit induced Wiliam III. to request him to settle in England, but he did not accept the king's offer, preferring to return to Geneva. There from 1715 be rendered valuable assistance to a society that had been formed for translating the New Testament into French. Ho deelined the offer of the chair of philosophy in the University in 1723 , but accepted, in 1727 , the sinecure oflice of librarian to the city of his adoption. Here he died at a good old age, in 1767. Abauzit was a man of great learning and of wonderful versatility. The raried knowledge be possessed was so rell digested and arranged in his retentive mind as to be always within his reach for immediate use. Whatever chanced to be discussed, it used to be said of Abauzit, as of Professor Whewell of our own times, that he seemed to bave made it a subject of particular study. Rousseau, who was jealously sparing of his praises, addressed to him, in his Nouvelle Héloïse, a fine panegyric; and when a stranger flatteringly told Voltaire he had come to see a great man, the philosopher asked him if be had seen Abauzit. Little remains of the labours of this intellectual giant, his heirs having, it is said, destroyed the papers that came into their possession, because their religious opinions differed from those of Abauzit. A few theological, archæological, and astronomical artieles from his pen appeared in the Journal Helvétique and elsewhere, and he contributed several papers to Rousscau's Dictionary of Music. A work he wrote throwing doubt on the canenical authority of the Apocalypse was answered-conelusively, as Abauzit himself allowed-by Dr Leonard Twells. He edited, and made valuable additions to Spon's Mistory of Geneva. A cellection of his writings was published at Geneva in 1770, and another at London in 1773. Some of them were translated into English by Dr Harwood (1770, 1774). Lnformation regarding Abauzit will be found in Senebier's IIstoire Littéraire de Genéve, Harwood's Miscellanies, and Orme's Bibliotheca Biblica, 1834.

ABB, a town of Yemen in Arabia, situated on a mountain in the midst of a very fertile country, 73 miles N.E. of Mocha. Lat. $13^{\circ} 58^{\prime} \mathrm{N}$., long. $44^{\circ} 15^{\prime} \mathrm{E}$. It contains about 800 houses, and is surrounded by a strong wall; the streets are well paved; and an aqueduct from a neighbouring mountain supplies it with water, which is received in a reservoir in front of the principal mosque. The pepulation is about 5000 .

ABBADIE, James, an eminent Protestant divine, was born at Nay in Bern about 1657. His parents were poor, but through the kindness of discerning friends, he received an excellent education. He prosecuted his studies with such success, that on completing his course at Sedan, though only seventcen yeare of age, he had conferred on him the degree of doctor in theology. After spending some years in Ecrlin as minister of a French Protestant church, he accompanied Marshal Schomberg, in 1688, to England, and beeame minister of the French church in the Savoy, London. His strong attachment to the cause of King William appears in his elaborate defence of the Revolution, as well as in his history of the conspiracy of 1696 , the materials of which were furnished, it is said, by the suerctaries of state. Tho king promoted him to the deanery of Fillaloe in Ireland. He died in London in 1727. Abbscie was a man of great ability and an eloquent preachur, but is best known by his religious treatises, several of which were translated from the original French into other languages and had a
wide circulation all over Europe. The must important these are Traité de la Véris's de la Religion Chretierne its continuation, Traité de la Divinité de Jésus-Christ and L'Art de se connaître Soi-méne.

ABBAS I., surnamed The Great, one of the mos celebrated of the sovereigns of Persia, was the younges son of Shah Mohammed Khorlabendel. After beading successful rebellion against his father, and calusing one c his brothers (or, as somio say, both) to be assassinated, h obtained possession of the throue at the carly age o eighteen (1585). Determined to rais? the fallen fortune. of his country, he first dirceted his efforts against thu predatory Uzbeks, who occupied and harassed Khorasan After a long and severe struggle, he defeated them in ε great battle near Herat (1597), and drove them cut of his dominions. In the wars he carried on with the Turks during nearly the whole of his reign, his successes were numerous, and he acquired or regained a large extent of territory. liy the victory be gained at Bassorah (1605), he extended his empire beyond the Euphrotes; Achmed I. was forced to cede Shirwan and Kurdistan in 1611; the united armies of the Turks and Tartars were completely defeated near Sultanich in 1618, and Abbas mado peace on very favourable terms; and on the Turks renewing the war, Baghdad fell into his hands after a year's siege (1623). In the same ycar be took the island of Ormuz from the Portuguese, by the assistance of the british. When he died in 1628 , his dominions reached from the Timris to the Indus. Abbas distinguished himself, not only by his successes in arms, and by the magnificence of his court, but also by his reforms in the administration of his kingdom. He encouraged commerce, and, by constructing highways and building bridges, did much to facilitate it. To foreigners, especially Cbristians, he showed a spirit of tolerance; two Englishmen, Sir Anthony and Sir Robert Shirley, were admitted to his confidence, and scem to hare bad mucls influence over him. His fame is tarnished, however, by numerous deeds of tyranny and cruelty. His own family, especially, suffered from his fits of jealonsy; his eldest son was slain, and the eyes of his other children were put out, by his orders.

ABBAS MIRZA (b. 1785, d. 1833), Prince of Persia, third son of the Shah Foth Ali, mas destined by his father to suceced him in the government, because of his mother's connection with the royal tribe of the Khadjars. He led various expeditions against the Russians, bat generally without success (1803, 1813, 1826). By a treaty made between Russia and Persia in 1828, the right of Λ bbas to the succession was recogniscd. When the Russian deputies were murdered by the Persian populace in 1829, Abbas was sent to St Petersburg, where he received a hearty welcome from the Czar, and made himself a favourite by his courtesy and literary taste. He formed a design against Herat, but died shortly after the siege had been opened by his son, who succeeded Fcth Ali as the Shah Mohammed Mirza. He was truthful-a rare quality in an Eastern-plaia in dress and style of living, and fona of literature.

ABBASSIDES, the caliphs of Bagndad, the most famous dynasty of the sovereigns of tho Mahometan or Saracen empire. They derived their name and descent from Abbas ($b .566, d .652$ An.), the uncle and adviser of Mahomet, and succeeded the dynasty of the Ommiads, the caliohs of Damascus. Early in the 8th century the famil J oi Abbas had acquired great influence from their near relationship to the Prophet ; and Ibrahim, the fourth in descent from Abbas, supported by the province of Kherasan, obtained several successes over the Ommiad armies, but was captured and put to death by the Caliph Merwan (747). lbrahim's brother. Abul-Abbas, whom he:
had named his heir, assumed the title of caliph, and, by a jecisive victory near the river Zab (750), effected the overthrow of the Ommiad dynasty. Merwan fled to Egypt, but was pursued and put to death, and the vanquished ramily was treated with a severity which gained for AbulAbbas the surname of Al-Saffah, the Blood-shedder. From this time the house of Abbas was fully established in the government, but the Spanish provinces were lost to فhe empire by the erection of an independent caliphate of Cordova, under Abderrahman.
On the death of Abul-Abbas, - Almansur succeeded to the throne, and founded Baghdad as the seat of empire. tie and his son Mohdi waged war successfully against the Turkomans and Greeks of Asia Minor; but from this time Whe rule of the Abbassides is marked rather by the development of the liberal arts than by extension of ferritory. The strictness of the Mohammedan religion was relaxed, and the faithful yielded to the seductions of luxury. The caliphs Earun Al-Rashid (786-809) and Al-Mramun (813.833) attained a world-wide celebrity by their gorgeous palaces, their vast treasures, and their brilliant and nume rous equipages, in all which their splendour contrasted strikingly with the poverty of European sovereigns. The former is known as one of the heroes of the Arabian Nights; the latter more worthily still as a liberal patron of literature and science. It is a mistake, however, to look in the rule of these caliphs for the lenity of modern civilisation. "No Christian government," says Hallam, "except perhaps that of Constantinople, cxhibits such a series of tyrants as the caliphs of Baghdad, if deeds of blood, wrought through unbridled passion or jealous policy, may challenge the name of tyranny."
The territory of the Abbassides soon suffered dismemberment, and their power began to decay. Rival sovereignties (Ashlabites, Edrisites, \&c.) arose in Africa, and an independent government was constituted in Khorasan (820), under the Taherites. In the West, again, the Greeks encrozched upon the possessions of the Saracens in Asia Minor. Ruin, however, came from a less civilised race. The caliphs had continually been waging war with the Tartar bordes of Turkestan, and many captives taken in these wars were dispersed throughout the empire. Attracted by their bravery and fearing rebeilion among his subjects, Motassem (833-842), the founder of Samarah, and successful opponent of the Grecian forces under Theophilus, formed bodyguards of the Turkish prisoners, who became from that time the real governors of the Saracen empire. Motawakkel, son of Motassem, was assassinated by them in the palace (861) ; and succeeding caliphs became mere puppets in their hands. Radhi (934-941) was compelled by the disorgarised condition of his kingdom to. delegate to Mohammed ben Rayek (936 A.D.), under the title of Emir-al-Omara, commander of the commanders, the goovernment of the army and the other functions of the caliphate: Province after province proclaimed itself independent; the caliph's rule became narrowed to Baghdad and its ricinity; and the house of Abbas lost its power in the East for ever, when Hulagu, prince of tho Mongols, 'set Baghdad on fire, and slew Motassem, the reigning calipl (20tb Feb. 1258). The Abbassides continued to hold a semblance of power in the merely nominal caliphate of Egypt, and feebly attempted to recover their ancient seat. The last of them, Motawakkel III., was taken by Sultan Selim I., the conqueror of Egypt, to Constantinople, and detained theree for some time as a prisoner. He afterwards returned to Egypt, and died at Cairo a pensionary of the Ottoman government, in 1538.

ABBE is the French word corresponding to Abbor, but, from the middle of the sixtcenth century to the time of the French Revolution, the term had a wider application.

The assumption by a numerous class of the namo and style of abbé appears to have originated in the right cous. ceded to the King of France, by a concordat between Pope Leo X . and Francis I., to appoint abbés commendataires to 225 abbeys, that is, to most of the abbeys in France. This kind of appointment, whereby the living was" com mended to some one till a proper election could take place, though ostensibly provisional, really put the nomi، nee in full and permanent possession of the benefice. He reccived about one-third of the revenues of the abbey; but had no share in its government, the charge of the house being intrusted to a resident officer, the prieut claustral. The abbés commendataires were not necessarilý priests; the papal boll required indeed that they should take orders within a stated time after their appointment, but there seems to have been no difficulty in procuring relief from that obligation. The expectation of obtaining these sinecures drew young men towards the Church in considerable numbers, and the class of abbés bo formedabbés de coour'they were sometimes called, and sometimes (ironically) abbés de sainte espérance, abbés of St Hopecame to hold a recognised position, that perhaps proved as great an attraction as the hope of preferment. The con: nection many of them had with the Church was of the slenderest kind, consisting mainly in adopting the name of abbé, after a remarkably moderate course of theological study; practising celibacy; and wearing a distinctive dress-a short dark-violet coat with narrow collar. Being men of presumed learning and undoubted leisure, many of the class found admission to the houses of the French nobility as tutors or advisers. Nearly every great family had its abbé. As might be imagined from the objectless sort of life the class led, many of the abbés were of indifferent character; but there are not a few instaicices of abbés attaining emineace, both in political life and in the walks of literature and science. The Abbé Sieyè may be taken as a prominent example of the latter type.

AbBEOKUTA, or Abeokuta, a town of West Africa in the Yoruba Country, situated in N. lat. $7^{\circ} 8^{\prime}$, and E. long. $3^{3} 25^{\prime}$, on the Ogun River, about 50 miles north of Lagos, in a direct line, or 81 miles by water. It lís in a beautiful and fertile country, the surface of which is broken by masses of grey granite. Like most African towns, Abbeokuta is spread over an extensive area, being surrounded by mud walls, 18 miles in extent. The houses are also of mud, and the streets mostly narrow and filthy. There are numerous markets in which native products and articles of European manufacture are exposed for sale. Palm-oil and shea-butter are the chief articles of export, and it is expected that the cotton of the country will become a valuable article of commerce. The slave trade and human sacrifices have bcen abolished; but notwithstanding the efforts of English and American missionaries, the natives are still idle and degraded. The state called Egbaland, of which Abbeokuta is the capital, has an area of about 3000 square miles. Its progress has been much hindered by frequent wars with the king of Dahomey. Population of the town, about 150,000; of the state or adjacent territory, 50,000 . (See Burton's Albeo. kuta and the Cameroon Mountains, 2 rols.)
'ABBESS, the female superior of an abbey or convent of nuns. - The mode of election, position, rights, and authority of an abbess, correspond generally with those of an abbot. " The office was elective, the choice being by the secret rotes of the sisters from their own body. The abbess was solemnly, admitted to her office by episcopal benediction, "together with the conferring of a staff and pectoral, and held it for life, though liable to be deprived for misconduct. The Council of Trent fixes the qualifying age at forty, with eight years of profession. Abbesses had
a right to demand absolute obedience of their muns, over whom they exercised discipline, extending even to the power of expulsion, subject, however, to the bishop. As a female an abbess was ixcapablo of performing the spiritual functions of the priesthood belonging to an abbot. She could not ordain, confer the veil, nor excommunicate. In the eighth century abbesses were censured for usurping priestly powers by presuming to give the veil to virgins, and to confer benedictiou and imposition of hands on men. In England they attended ecclesiastical councils, e.g. that of Becanfield in 694, where they signed before the presbyters.

By Celtic usage abbesses presided over joint-houses of monks and nuns. This custom accompanied Celtic monastic missions to France and-Spain, aud even to fome itself. At a later period, A.D. 1115 , Robert, the founder of Fonterraud, committed the government of the whole order, men as well as women, to a female superior.

Martene asserts that abbesses formerly confessed nuns, but that their undue inquisitiveness rendered it necessary to forbid the practice.

Tho dress of an English abbess of the 1 2th century consisted of a long white tunic with close sleeves, and a black overcoat as long as the tunic, with large and loose sleeves, the hood covering the head completely. The abbesses of the 14th and 15 th centuries had adopted secular habits, and there was little to distinguish them from their lay sisters.
(E. v.)

ABBEVLLLE, a city of France, in the department of the Somme, is situated on the River Somme, 12 miles from its mouth in the English Channel, and 25 miles N.W. of Amiens. It lies in a pleasant and fertile valley, and is built partly on an island, and partly on both sides of the river. The streets are narrow, and the houses are mostly picturesque old structures, built of wood, with many quaint decaying gables and dark archways. The town is strongly fortified on Vauban's system. It has a tribunal and chamber of commerce. The most remarkable edifice is the Church of St Wolfran, which was erected in the time of Louis XII. Although the original design was not completed, enough was built to give a good idea of the splendid structure it was intended to erect. The façade is a magnificent specimen of the flamboyant Gothic style, and is adomed by rich tracery, while the western front is flanked by two Gothic towers. A cloth manufactory was established here by Van Robais, a Dutchman, under the patronage of the minister Colbert, as early as 1669 ; and since that time Abbeville has continued to be one of the most thriving manufacturing towns in France. Besides black cloths of the best quality, there are produced velvets, cottons, linens, serges, sackings, hosiery, packthread, jewellery, soap, and glass-wares. It has also establishments for spinning wool, print-works, bleachingworks, tanneries, a paper manufactory, \&c.; and being situated in the centre of a populous district, it has a considerable trade with the surrounding country. Vessels of from 200 to 300 tons come up to the town at bigh-water. Abbeville is a station on the Northern Railway, and is also connected with Paris and Belgium by canals. Fossil remains of gigantic mammalia now extinct, as well as the rude flint weapons of pre-historic man, have been discovered in the geological deposits of the neighbourbood. A treaty was concluded here in 1259 between Henry III. of England and Louis IX. of France, by which the province of Guienne was ceded to the English. Population, 20,058.

ABBEY, a monastcry, or conventual establishment, vader the government of an AbBot or an abbess. A priory only differed from an abbey in that the superior lure the name of prior instead of abbrt. This was the
case in all the English conventual cathedrals, e.g., Cantos bury, Ely, Norwich, \&c., where the archbishop or oishop occupicd the abbot's place, the superior of the monastery being termed prior. Other prionies were originally off. shoots from the larger abbeys, to the abbots of which they continued subordinate; but in later times the actual dis tinction between abbeys and priories was lost.

Reserving for the article Monasticism the history of the rise and progress of the monastic system, its objects, benefits, evils, its decline and fall, we propose in this article to confine ourselves to the structural plan and arrangement of conventual establishments, and a description of the varives buildings of which these vast piles were composed.

The earliest Christian monastic communities with wbich we are acquainted consisted of groups of cells or huts collected about a common centre, which was usually the abode of some anchorite celebrated for superior holiness or singular asceticism, but without any attempt at orderly arrangement. The formation of such communities in the East does not date from the introduction of Christianity. The example had been already set by the Essenes in Judea and the Therapeutæ in Egypt, who may be considered tho prototypes of the industrial and meditative communities of monks.

In the earlicst age of Christian monasticism the ascetics were accustomed to live singly, independent of one another, at no great distance from some village, supporting themselves by the labour of their own hands, and distributing the surplus after the supply of their own scanty wants to the poor. Increasing religious fervour, aided by persecation, drove them further and further away from the abodes of men into mountain solitudes or lonely deserts. The deserts of Egypt swarmed with the cells or huts of these anchorites. Antony, who had retired to the Egyptian Thobaid during the persecution of Maximin, A.D. 312, was the most celebrated among them for his austerities, his sanctity, and his power as an exorcist. His fame collected round him a host of followers, cmulous of his sanctity. The deeper he withdrew into the wilderness, the more numerous his disciples became. They refused to be separated from him, and built their cells round that of their spiritual father. Thus arose the first monastic community, consisting of anchorites living each in his own little dwell. ing, united together under one superior. Antony, as Neander remarks (Church History, vol. iii. p. 316, Clark's Trans.), "without any conscious design of his own, had become the founder of a new mode of living in common, Cœmobitism." By degrees ordor was introduced in the groups of huts. They were arranged in lines like the tents in an encampment, or the houses in a street. From this arrangement these lines of single cells came to be known as Laura, Laîpat, "streets" or " lanes."

The real founder of coenobian monasteries in the modern sense was Pachomius, an Egyptian of the beginning of the 4 th century. The first community established by him was at Tabennæ, an island of the Nile in Upper Egypt. Eight others were founded in his lifctime, numbering 3000 monks Within 50 years from his death his societies could reckon 50,000 members. These cenobia resembled villages, peopled by a hard-working religious community, all of one sex The buildings were detached, small, and of the humblest character. Each cell or hut, aocording to Sozomen (H. E. iii. 14), contained three monks. They took their chied méal in a common refectory at 3 P.M., up to which hour they usually fasted. They ate in silence, with hoods so drawn over their faces that they could see nothing but what was on the table before them. The monks spent all the time, not devoted to rehgious services or study, in manual labour. Palladius, who visited the Egyptian monasteries. sbout the close of the 4 th century, found among the 300
members of the Cœnooum of Panopolis, under the Pachomian rule, 15 tailors, 7 smiths, 4 carpenters, 12 camel-drivers, and 15 tanners. Each separate community Lad its own œconomus, or steward, who was subject to a chief occonomus stationed at the head establishment. All the produce of the monks' labour was committed to him, and by him shipped to Alexandria. The money raised by the sale was expended in the purchase of stores for the support of the communities, and what was over was devoted to charity. Twice in the year the superiors of the several coenobia met at the chief monastery, under the presidency of an Archimandrite ("the chief of the fold," from μ úv $\delta \rho a$, a fold), and at the last meeting gave in reports of their administration for the year.

The coenobia of Syria belonged to the Pachomian institution. We learn many details concerning those in the vicinity of Antioch from Chrysostom's writings. The monks lived in separate huts, kádvßaı, forming a religious hamlet on the mountain side. They were subject to an abbot, and observed a common rule. (They had no refectory, but ate their common meal, of bread and water only, when the day's labour was over, reclining on strewn grass, sometimes out of doors.) Four times in the day they joined in prayers and psalms.

The recessity for defence from hostile attacks, economy of space, and convenience of access from one part of the community to another, by degrees dictated a more compact and orderly arrangement of the buildings of a monastic cœnobium. Large piles of building were erected, with strong outside walls, capable of resisting the assaults of an enemy, within which all the necessary edifices were ranged round one or more open courts, usually surrounded with cloisters. The usual Eastern arrangement is exemplified (Laura, the designation of a monastery generally, being converted into a female saint).

Monastery of Santa Iarura, Mount Athos (Lenoir).
This monastery, like the Oriental monasteries generally is surrouided by a strong and lofty llank stone wall, enclosing. an area of between 3 and 4 acres. The louger side extends to a length of about 500 feet. © There is only one main entrance, on the north side (A), defended by three scparate iron doors. 'Near the entrance is a large tover (M), a constant feature in the monasteries of the Levant. There is a small postern gaie at (L.) The
enceinte comprises two large open courts, surroundea with buildings connected with cloister galleries of wood or stors. The outer court, which is much the larger, contains the granaries and storehonses (K), and the kitchen (H), and other offices connected with the refectory (G). Immediately adjacent to the gateway is a two-storeyed guesthouse, opening from a cloister (C). The inner court is surrounded by a cloister (EE), from which open the monks? cells (II). In the centre of this court stands the catholicon or conventual church, a square building with an apse of the cruciform domical Byzantine type, approached by a domed narthex. In front of the church stands a marble fountain (F), covered by a dome supported on columns. Opening from the western side of the cloister, but actually standing in the outer court, is the refectory (G), a largo cruciform building, about 100 feet, each way, decorated within with frescoes of saints. At the upper end is a semicircular recess, recalling the Triclinium of the Lateran Palace at Rome, in which is placed the seat of the Hegu. menos or abbot. This apartment is chiefly used as a hall of meeting, the Oriental monks nsually taking their meals in their separate cells. St Laura is exceeded in magnitude by the Convent of Vatopede, also on Mount Athos. This enormous establishment covers at least 4 acres of ground, and contains so many separate buildings within its massive walls that it resembles a fortified town. It lodges above 300 monks, and the establishment of the Hegumenos is described as resembling the court of a petty sovereign prince. The immense refectory, of the same cruciform shape as that of St Laura, will accommodate 500 guests at its 24 marble tables.
The annexed plan of a Coptic monastery, from Lenoir
shows us a church of three aisles, with cellular apses, and two ranges of cells on either side of an oblong gallery.

Monasticism in the West owes its extension and development to Benedict of Nursia (born A.D. 480). His rule was diffused with miraculous rapidity from the parent foundation on Monte Cassino through the whole of Western Europe, and every country witnessed the erection of menasteries far exceeding anything that had yet been seen in spaci-

Plan of Coptic Monastery.
A. Narthex.
B. Church.
C. Corridior, with cells on eaeb siden ousness and splendour. Few D.staircase. great towns in Italy were without their Benedictine convent, and they quickly rose in all the great centres of population in England, France, and Spain. The number of these monasteries founded between A.D. 520 and 700 is amazing. Before the Council of Constance, A.D. 1415, no fewer than 15,070 abbeys had been established of this order aloue. The Bencdictine rule, spreading with the rigour of a young and porrerful life, absorbed into itself the older monastic foundations, whose discipline had too usually become dizgracefully relaxed. In the words of Milman (Latin Ckristianity,-vol. i. p. 425, note x.), "The Benedictine rule was universally receired, even in the older monasteries of Gaul, Britain, Spain, and throughout the West, not as that of a rival order (all rivalry was of later date), but as a more full and perfect rule of the monastic life." Not only, therefore, were new monasteries founded, but those already existing were pulled down, and rcbuilt to adapt them to the requirements of the ner rule.

The buildings of a Benedictine abbcy were uniformy arranged after ono plan, modifed where necessary (as at

Durham and Worcester, where the monesteries stand close to the steep bank of a river), to accommodate the arrangement to local circumstances.
We have no cxisting examples of the earlier monasterics of the Benedictine order. They have all yielded to the ravages of time and the violence of man. But we have fortunately prescrved to us an claborate plan of the great Swiss monastery of St Gall, erected about A.D. 820, which puts us in possession of the whole arrangements of a monastery of the first class towards the early part of the Oth century. This curious and intercsting plan has been made the subject of a memoir both by Keller (Zurich, 1844) and by Professor Willis (Arch. Journal, 1848, voi. F. pp. 86-117). To the latter we are indcbted for the

Crcrund-plan of St Gall.

1. High Ahe
B. High Ahar.

C Altar of St Paill.
C Altar of St I'cter
D. Nave.

- Paradise

Monastic Bohlines
G. Clolater.
H. Calefactory, with Dormicory aver
I. Necessary
J. Abbot's house
K. Refectory.
h. Retectory
i. Kitchen.
H. Bakehouse and Brewhouse.
N. Cellar.
P. Parlour.
P_{2}. Sucristy and Vantry.
${ }^{2}$ 2. Sucristy and Vantry.

- Rouse of Novices-1. Chapel; 2. Refectory: 3. Calufactory: 4. D. Chambers.
- Indrmary-1-6

House of Noniccs above in the Hoctor's of Nonices.
8. Phyalc Garden.
U. House far bloodteltince.
Y. School
W. School Schoolmaster'a Lodgligs.
$\mathrm{X}_{1} \mathrm{X}_{1}$. Guest-bouse for those of superior rsak.
nest-honse for the poor.
X_{2}. Guest-chamber for strange monks. Mental Deparikent.
2. Factory.
a. Threshlug-foor.

- Workshops.
$\left\{\begin{array}{c}\mathrm{C}, \mathrm{MH} \\ \hline 1\end{array}\right.$
c. Stables
e. Stables
o. Goatshed
h. zig-sties. 1. Sheep-folds.
$k_{1} k$, , Servents' sind workmen' alceplog chambars
L Gardener's house.
m, m. Hen snd Duck house.
n. Poutry-keeper't house.
o. Gardes
P. Cemalery.
q. Bakehonee for Sacramenta Brasd r. Ungarned in Plan.
d. s, s. Kl:chens
f. 6, . Baths.

Rabstance of the following description, as well as for the sbore woodcut, reduced from his elucidated transcript of
the original preserved in the archives of the convent. The gencral appesrance of the convent is that of a town of isolated houses with streets running between them. It is evidently planned in compliance with the Beucdictinc rule, whichenjoined that, if possible, the monastery should contain within itself every necessary of life, as well as the buildings more intimately connccted with the religious and social life of its inmates. It should comprise a mill, a bakehouso, stables and cow-houses, together with accommodation for carrying on all necessary meclanical arts within the walls, so as to obviate the necessity of the monks going outside its limits. The gencral distribution of the buildings may be thus described:-The church, with its cloister to the south, occupies the centre of a quadrangular area, about 430 feet square. The buildings, as in all great monasterics, are distributed into groups. The church forms the nucleus, as the centre of the religious life of the community. In closest connec: tion with the church is the group of buildings apprepriated to the monastic life and its daily requirements-the refcctory for eating, the dormitory for sleeping, the common room for social intercourse, the chapter-house for religious and disciplinary conference. These essential elements of monastic life are ranged about a cloister court, surrounded by a covered arcade, affording communication sheltered from the elements, between the various buildings. The infirmary for sick monks, with the physician's house and physic garden, lies to the east. In the same group with the infirmary is the school for the nevices. The outer school, with its head-master's house against the opposite wall of the church, stands outside the convent enclosure, in close proximity to the abbot's house, that he might have a constant eye over them. The baildings devoted to hospitality aro divided into three groups,-one for the reception of distinguished guests, another for monks visiting the monastery, a third for poor travellers and pilgrims. The first and third are placed to the right and leit of the common entrance of the monastery,-the hospitium for distinguished guests being placed on the north side of the church, not far from the abbot's house; that for the poor on the south side next to the farm buildings. The monks are lodged in a guest-house built against the north wall of the church. The group of buildings connected with the material wants of the esta. blishment is placed to the south and west of the church, and is distinctly separated from the monastic buildings The kitchen, buttery, and offices, are reached by a passage from the west end of the refectory, and are connected with the bakehouse and brewhouse, which are placed still fur. ther away. The whole of the southern and western sides is devoted to workshops, stables, and. farm-buildings. The buildings, with some exceptions, seem to have been of one story only, and all but the church were probably erected of wood. The whole includes thirty-three separate blocks. The church (D) is cruciform, with a nave of nine bays, and a semicircular anse at either extremity. That to the west is surrounded by a semicircular colonnade, leaving an open "Paradise" (E) between it and the wall of the church The whole area is divided by screens into various chapels. The high altar (A) stands immediately to the east of the transept, or ritual choir; the altar of St Paul (B) in the eastern, and that of St Peter (C) in the western apse. A cylindrical campanile stands detached from the church or either side of the western apse (FF).
The "cloister court" (G) on the south side of the nav of the church has on its east side the "pisalis" or "calefar tory" (H), the common sitting-room of the brethren, warmed by flucs beneath the floor. On this side in later monas teries we invariably find the chapter-house, the absence α which in this plan is somewhat surprising. It appears, however from the inscriptions on the plan itself, that the
north walk of the cloisters served for the purposes ot a chap-ter-house, and was fitted up with benches on the long sides. Above the calefactory is the "dormitory" opening into the sonth transept of the church, to enable the monks to attend the nocturnal services with readiness! A passage at the other end leads to the "necessarium" (I), a portion of the monastic buildings always planned with extreme care. The sonthern side is occupied by the "refectory" (K), from the west end of which by a vestibule the kitchen (L) is reached. Whis is separated from the main buildings of the monastery, and is connected by a long passage with a building containing the bakehouse and brewhouse (JI); and the sleeping-rooms of the servants. The upper story of the refectory is the "vesviarium," where the ordinary clothes of the brethren were kept. On the western side of the cloister is another two story building (N). The cellar is below, and the larder and store-room above. Between this building and the church, opening by one door into the cloisters, and by another to the outer part of the monastery area, is the "parlour" for internews with visitors from the external world (0). On the eastern side of the north transept is the "scriptorium" or writing-room (P_{1}), with the library above.

To the east of the church stands a group of buildings comprising two miniature conventual establiohments, each complete in itself. Each has a covered cloister surrounded by the usual buildings, i.e., refectory, dormitory, \&c., and a church or chapel on one side, placed back to back. A detached building belonging to each contains a bath and a kitchen. One of these diminutive convents is appropriated to the: "oblati" or novices (Q), the other to the sick monks es añ "infirmary" (R).

The "residence of the physicians" (S) stands contiguous to the infirmary, and the physic garden (T) at the north-east corner of the monastery. Besides other rooms, it contains 2 drug store, and a chamber for those who are dangerously ill. The " house for blood-letting and purging" adjoins it on the west (U).

The "outer school," to the north of the convent area, contains a large school-room divided across the middle by a screen or partition, and surrounded by fourteen little rooms, termed the dwellings of the scholars. The head-master's kouse (W) is opposite, built against the side wall of the church. The two "hospitia" or "guest-houses" for the entertainment of strangers of different degrees ($\mathrm{X}_{1} \mathrm{X}_{2}$) comprise a large common chamber or refectory in the centre, surrounded by sleeping apartments. Each is provided with its own brewhouse and bakehouse, and that for travellers of a superior order has a kitchen and store-room, with bed-rooms for their servants, and stables for their horses. There is also an "hospitium" for strange monks, abutting on the north wall of the church (Y).

Beyond the cloister, at the extreme verge of the convent area to the south, stands the "factory" (Z), containing workshops for shoemakers, saddlers (or shoemakers, sellarii), cutlers and grinders, trencher-makers, tanners, curriers, fullers, smiths, and goldsmiths, with their dwellings in the rear. On this side we also find the farm-buildings, the large granary and threshing-floor (a), mills (c), malthouse (d). Facing the west are the stables (e), ox-sheds (f), goat-stables (g), piggeries (h), sheep-folds (i), together with the servants' and labourers' quarters (k). At the southeast corner we find the hen and duck house, and poultryyard (m), and the dwelling of the keeper (n). Hard by is the kitchen garden (0), the beds bearing the names of the veget ables growing in them, onions, garlic, celery, lettuces, poppy, carrots, cabbages, \&c., eighteen in all. In the same vay the physic garden presents the names of the medicinal herbs, and the cemetery (p) those of the trees, apple, pear, pluim, quincē, \&c., planted there.

It is evident, from this most curious and valuable docu-
ment, that by the 9th ceritiry monastic estabusaments had become wealthy, and had acquired considerable importance, and were occupying a leading place in cducation, agriculture, and the industrial arts. The influence such an institution would diffuse through a wide district would be no less beneficial than powerful.

The curious bird's eye view of Canterbury Cathedral and its annexed conventual buildings, taken about 1165 , preserved in the Great Psalter in the library of Trinity College, Cambridge, as elucidated by Professor Willis with such admirable skill and accurate acquaintance with the existing remains, ${ }^{1}$ exhibits the plan of a great Benedictine monass tery in the 12 th century, and enables us to compare it with that of the 9th, as seen at St Gall. We see in both the same general principles of arrangement, which indeed bed long to all Benedictine monasteries, enabling.us to detero mine with precision the disposition of the various buildings, when little more than fragments of the walls exist. From some local reasons, however, the cloister and monastic buildings are placed on the north, instead, as is far more commonly the case, on the south of the church. There is also a separate chapter-house, which is wanting at St Gall.

The buildings at Canterbury, as at St Gall, form separate groups. The church forms the nucleus. In immediate contact with this, on the north side, lie the cloister and the group of buildings devoted to the monastic life. Outside of these, to the west and east, are the "halls and chambers devoted to the exercise of hospitality, with which every monastery was provided, for the purpose of receiving as guests persons who visited it, whether clergy or laity, travellers, pilgrims, or paupers." To the north a large open court divides the monastic from the menial buildings, intentionally placed as remote as possible from the conventual buildings proper, the stables, granaries, barn, bakehouse, brewhouse, laundries, \&c., inhabited by the lay servants of the establishment. At the greatest possible distance from the church, beyond the precinct of the convent, is the eleemosynary department. The almonry for the relief of the poor, with a great hall annexed, forms the pauper's hospitium.

The most important group of buildings is naturally that devoted to monastic life. This includes two cloisters, the great cloister surrounded by the buildings essentially connected with the daily life of the monks, - the church to the south, the refectory or frater-house here as always on the side opposite to the church, and furthest remored from it, that no sound or smell of eating might penetrate its sacred precincts, to the east the dormitory, raised on a vaulted undercroft, and the chapter-house adjacent, and the lodgings of the cellarer to the west. To this officer was committed the provision of the monks' daily food, as well as that of the guests. He was, therefore, appropriately lodged in the immediate vicinity of the refectory and kitchen, and close to the guest-hall. A passage under the dormitory leads eastwards to the smaller or infirmary cloister, appropriated to the sick and infirm monks. Eastward of this cloister extend the hall and chapel of the infirmary, resembling in form and arrangement the nave and chancel of au aisled church. Beneath the dormitory, looking out into the green court or herbarium, lies the "pisalis" or "calefactory," the common room of the monks. At its northeast corner access was given from the dormitory to the necessarium, a portentous edifice in the form of a Norman hall, 145 feet long by 25 broad, containing fifty-five seats. It was, in common with all such offices in ancient monasteries, constructed with the most careful regard to cleanliness and

[^0]health, a stream of water running th-ough it from end to end. A second smaller dormitory runs from east to west for the accomnodation of the conventual officers, who werc bound tu sleep in the dormitory. Close to the refectory, bus outside the cloisters, are the domestic offices connected with it ; to the north, the kitchen, 47 feet syuare, surmounted by a lofty pyramidal roof, and the kitchen court; to the west, the butteries, pantries, \&C. The infirmary had a small kitcher of its own. Opposite the refectory door int the cloister are two lavatories, an invariable adjunct- to a monastic dining-hall, at which the monks washed before and after taking food.

The buildings devoted to hospitality were divided into three groups. The prior's group "entered at the south-east angle of the green court, placed uear the most sacred part of the cathedral, as befitting the distinguished ecclesiastics or nobility who were assigned to him." 'The cellarer's buildings, were near the west end of the nave, in which ordinary visitors of the middle class were hospitably entertaned. The inferior pilgrims and paupers were relegated to the north hall or almonry, just within the gate, as far as possible from the other two.

Westminster Abbey is another example of a great Benedictine abbey, identical in its general arrangements, so far as they can be traced, with those deseribed above. The cloister and monastic buildings lie to the south side of the church. Parallel to the nave, on the south side of the cloister, was the refectory, with its lavatory at the door. On the eastern side we find the remains of the dornitory, raised on a vaulted substructure, and communicating with the south transept. The chapter-house opens out of the same alley of the cloister. The small eloister lies to the south-east of the larger cloister, and still farther to the east we have the remains of the infirmary, with the table hall, the refectory of those who were able to leave their chambers. The abbot's house formed a small court-yard at the west entrance, close to the inner gatevay. Considerable portions of this remain, including the abbot's parlour, celebrated as "the Jerusalem Chamber," his hall, now used for the Westminster King's scholars, and the kitchen and butterics beyond.
St Mary's Abbey, York, of wheh the ground-plan is annexed'; exhibits the usual Benedictine arrangements. The precincts are surrounded by a strong fortified wall on three sides, the river Ouse being sufficient protection on the fourth side. The entrance was by a strong gateway (U) to the north. Close to the entrance was a chapel, where is now the church of St Olaf (V), in which the new comers paid their devotions immediately on their arrival. Near the gate to the south was the guest's-hall or hospitium (T). The buildings are completely ruined, but enough remains to enable us to identify the grand cruciform church (A), the cloister-court with the chapter-house (B), the refectory (I), the kitchen-court with its offices ($\mathrm{K}, \mathrm{O}, \mathrm{O}$), and the other principal apartments. The infirmary has perished completely.
Some Benedictine houses display exceptional arrangements, dependent upon local circumstances, e.g., the dormitory of Worcester runs from east to west, from the west walk of the cloister, and that of Durham is built over the west, instead of es usual, over the cast walk; but, as a general rule, the arrangements deduced from the examples described may be regarded as invariable.
The history of Monasticism is one of alternate periods of decay and revival. With growth in popular esteem came iucrease in material wealth, leading to luxury and worldiness. The first religious ardour cooled, the strictness of the rule was relaxed, until by the 10th century the decay of discipline was so complete in France that the monlys see said to have been frequently onsequainted with
the rule of St Benedict, and even Ignorant that they were bound by any rule at all. (Robertson's Clurch History, ii. p. 533.) These alternations are reflected in the monastio bnildings and the arrangements of the cstablishment.

St Mary's Abbey, York (Benelletine).-Chuton's Monast:c Julus
A. Church.
B. Chapter-house
C. Y'estibule to dn.
E. Library or Scriotoriam.
F. Calefactory.
G. Necessary.
II. Parlour.
I. Refectory.
K. Great Kitchen and Courh
L. Cellarer's Omice
M. Cellars.
N. Passage to Cloister.
O. Omces
P. Cellars.
P. Cellars.
Q. Uncertaln
R. Passage to Abbot's Monsa
S. Passage to Common Iluasa
T. Hospitium.
U. Great Gate.
V. Porter's Lodge.
W. Cburch of St Olap.
X. Tower.

ㄷ. Entranco from Bootham

The reformation of these prevalent abuses generally took the form of the establishment of new monastic orders, with new and more stringent rules, requiring a modification of the architectural arrangements. One of the earliest of these reformed orders was the Cluniac. This order took its name from the little village of Clugny, 12 miles N.W. of Macon, near which, about A.D. 909, a reformed Benedictine abbey was founded by William, Duke of Auvergne; under Berno, abbot of Beaume. He mas succeeded by Odo, whe is often regarded as the founder of the order. The fame of Clugny spread far and wide. Its rigid rule was adopted by a vast number of the old Benedictine aby beys, who placed themselves in affiliation to the mother society, while nerv foundations sprang up in large nuinbers, all owing allegiance to the "archabbot," established at Clugny! By the end of the 12th century the number of monasteries affliated to Clugny in the various countries of Western Europe amounted to 2000. The monast tic establishment of Clugny was one of the moost extensive and magnificent in France. We may form some idea of its enormous dimensic sfrom the fact recorded, that when, L.D. ${ }^{\prime}$ 1245 - Pope Innocent iV.; eccompanied by twelve
cardinals, a patriarch, three archbishops, the two generals of the Carthusians and Cistercians, the king (St Louis), and three of his sons, the queen mother, Baldwin, Count of Flanders and Emperor of Constantinople, the Duke of Burgundy, and six lords, visited the abbey, the whole party, with their attendaats, were lodged within the monastery without disarranging the monks, 400 in num. ber. Neatly the whole of the abbey buildings, including the magnificent church, were swept away at the close of the last century. When the annexed ground-plan was taken, shortly before its destruction, nearly all the manastery, with the exception of the church, had been rebuilt. The charch, the ground-plan of which bears a remarkable resemblance to that of Lincoln Cathedral, was of vast dimensions. It was 656 feet by 130 feet wide. The nave was 102 feet, and the aisles 60 feet high. The nave (G) had double

Abbey of Clugny, from Viollet Ie Dre.

$|$| F. Tomb of St Hugh |
| :--- |
| G. Nave. |
| H. Cloister. |
| K. Abbot's House. |
| L. Guest-House. |

M. Bakehouse N. Abbey Buildings. O. Garden. P. Refectory.
(M), also remaining, is a detached ouuding of immense size. The first English house of the Cluniac order was that of Lewes, founded by the Earl of Warren, cir. A.d. 1077. Of this only a few fragments of the domestic buildings exist. The best preserved Cluniac houses in England are Castle Acre, Norfolk, and Wenlock, in Shropshire. Ground-plans of both are given in Britton's Architectural Antiquitics. They show several departures from the Benedictine arrangement. In each the prior's honse is remarkably perfect. All Cluniac houses in England were French colonies, governed by priors of that nation. They did not sccure their independence nor become "abbeys" till the reign of Henry VI. The Cluniac revival, with all its brilliancy, was but short lived. The celebrity of this, as of other orders, worked its moral ruin. With their growth in wealth and dignity the Cluniac foundations became as worldly in life and as relazed in discipline as their predecessors, and a fresh reform was needed. The next great monastic revival, the Cistercian, arising in the last years of the 11th centary, had a wider diffusion, and a louger and more honourable existence. Owing its real origin, as a distinct foundation of reformed Benedictines, in the year 1098, to a countryman of our own, Stephen Harding (a native of Dorsetshire, educated in the monastery of Sherborne), and deriving its name from Citeaux (Cistercium), a lewolate and almost inaccessible forest solitude, on the burders of Champagne and Burgundy, the rapid growth and wide celebrity of the order is undoubtedly to be attributed to the enthusiastic piety of St Bernard, abbot of the first of the monastic colonies, subsequently sent forth in such quick succession by the first Cistercian houses, the far-famed abbey of Clairvaux (de Clara Valle), A.d. 1116.

The rigid self-abnegation, which was the ruling principle Cisterclas of this reformed congregation of the Benedictine order, extended itself to the churches and other buildings erected by them. The characteristic of the Cistercian abbeys was the extremest simplicity and a studied plainness. Only one tower-a centraione - was permitted, and that was to be very low. Unnecessary pinnacles and turrits were prohibited. The triforium was omitted. The windows were to be plain and undivided, and it was forbidden to decorate them with stained glass. All needless ornament was proscribed. The crosses must be of wood; the candlesticks of iron. The renunciation of the world was to be evidenced in all that met the eye. The same spirit manifested itself in the choice of the sites of their monasteries. The more dismal the more sarage, the more hopeless a spot appeared, the more did it please their rigid mood. But they came not merely as ascetics, but as improvers. The Cistercian monasteries are, as a rule, found placed in deep wellwatered valleys. They always stand on the border of a stream; not rarely, as at Fountains, the buildings extend over it. These valleys, now so rich and productive, wore a very different aspect when the brethren first chose them as the place of their retirement. Wide swamps, deep morasses, tangled thickets, wild impassable forests, were their prevailing features. The "Bright Valley," Clara Fallis of St Bernard, was known as the "Talley of Wormwood," infamous as a den of robbers. "It was a sarage dreary solitude, so utterly barren that at first Bernard and his companions were reduced to live on beech leares."-(Milman's Lat. Christ. vol. iii. p. 335.)

All Cistercian monasteries, unless the circumstances of the locality forbade it, were arranged according to one plan. The geueral arrangement and distribution of the various buildings, which went to nake up one of these rast establishments, may be gathered from that of St Beruard's own Abbey of Clairraux, which is here given.

It will be observed that the abbey precincts are surrounded by a strong wall, furnished at intervals with watch.

Chirraur. towers and other defensive works. The wall is nearly encircled by a strean of water, artificially diverted from the small rivulets which flow through the precincts, furnishing the establishment with an abundant supply in every part, for the irrigation of the gardens and orchards, the sanitary requiremenis of the brotherhood, and for the use of the offices and workshops. The precincts are divided across the centre by a wall. running from N. to S., into an outer and inner ward.-the former containing the menial, the latter the monastic buildings. The precincts are entered by a gateway (P), at the extreme western extremity, giring admission to the lower ward. Hese the barns, granaries, stables, shambles, workshops, and workmen's lodgings were placed, without any regard to sym-

Chairvaux, No. 1 (Cistercian), General Plan.

A. Ciosst	II. Stables.	O. Public Presse
- Ovens, and Corn and Oll-malls.	1. Wine-press and Hay* cliamber.	P. Gateway R. Remains of Old
C. St Bernaid's Cell.	K Parlour.	Monastery.
D. Clilof Entranca.	L. Workshopenod Fork-	S. Oratory.
E. Tanks lor Fish.	men's Lodgloge.	V. Tile-works.
F. Guest Housc.	M. Slaughter-house.	X. Tile-kiln.
O. Abbot's Iluso.	N. Barns and Stables,	Y. Water-courses.

metry, convenience being the only consideration. Advancing eastwards, we have before us the wall separating the outer and inner ward, and the gatehouse (D) affording communication between the two. On passing through the gateray, the outer court of the inner ward was entered, with the western façade of the monastic church in front. Immediately on the right of entranco was the abbot's house (A), in closo proximity to the guest-house (F): On the other side of the court were the stables, for the accommodation of the horses of the guests and their attendants (H). The church occupied a central position: To the south were the great cluister (A), surrounded by the chief monastic buildings, and further to tho east the smaller cloister, opening out of which were the infirmary, novices' lodgings, and quarters for the aged monks. : Still further to the east, divided from the monastic buildings by a wall, were the vegetable gardens and orchards. and tank for fish The
large fish-ponds; an indispensablo adjunct to any ecclesiastical foundation, on the formation of which the monks lavished extreme care and pains, and which often remain as almost the only visible traces of these rast establishments, wero placed outside the abbey walls.

The Plan No. 2 furnishes the ichnography of the dis. tinctly monastic buildings on a larger scale. The usually unvarying arrangement of the Cistercian houses allows us to accept this as a typo of the monasteries of this order. The church (A) is the chief featurc. It consists of a vast nave of eleven bays, entered by a narthex, with a transept and short apsidal choir. (Itmay beremarked that the eastern limb in all unaltered Cistercian churches is remarkably short, and usually square.) To tho cast of each limb of

Clairvaux, No. 2 (Cistercian), Monastic Bulldings.
A. Church.
B. Clister.
C. Chapter-Houss
D. Monks 'Parlour
F. Calefactory.
F. Kitcben and Court.
G. Refectory.
II. Cemetery.
I. Little Clolster.
K. Infirmary.
L. Lodginga of Nölces.
M. Ohd Guest-Houss.
N. Old A bbot's Lodghngs.
0. Cloister of Supernumerary Monks: Q. Cell of St Lernard. Q. Cell of S .
S. Cellars and Storo houses.
T. Water-course.
U. Sar-mill and OII-mill V. Carrimer's and Cll-mill . Currier's Warksliops. X. Sacrlaty.
Z. Undercroft of Dormitory.
the transept are two square chapels, divided according to Cistercian rule by solid walls. Nine radiating chapels, similarly divided, surround the apse. The stalls of the monks, forming the ritual choir, occupy the four eastern kays of the nave. There was a second range of stalls in the extreme western bays of the nave for the fratres conversi, or lay brothers. To the south of the church, so as to secure as much sun as possible, the cloister was invariably placed, except when local reasons forbade it. Round the cloister (B) were ranged the buildings connected with the monks' daily life. The chapter-house (C) always opened out of the cast walk of the cloister in a line with the
south transept. In Cistercian hunsar this was quadrangular, and was divided by pillars and arches into two or three aisles. Between it and the transept we find the sacristy (X), and a small book room (Y), armariolum, where the brothers deposited the volumes borrowed from the library. On the other side of the chapter-honse, to the south, is a passage (D) communicating with the courts and buildings beyond. This was sometimes known as the parlour, colloquii locus, the monks having the privilege of conversation herc. Here also, when discipline became relaxed, traders, who had the liberty of admission, were allowed to display their goods. Beyond this we often find the calefactorium or day-room-an apartment warmed by flues beneath the pavement, where the brethren, halffrozen during the night offices, betook themselves after the conclusion of lauds, to gain a little warmth, grease their saudals, and get themselves ready for the work of the day. In the plan before us this apartment (E) opens from the south cloister walk, adjoining the refectory. The place usually assigned to it is occupied by the vaulted substructure of the dormitory (Z). The dormitory, as a rule, was placed on the east side of the closter, running over the calefactory and chapter-house, and joined the south transept, where a flight of steps admitted the brethren into the church for nocturnal services. Opening out of the dormitery was always the necessarium, planned with the greatest regard to health and cleanliness, a water-course invariably running from end to end. The refectory opens out of the south cloister at (G). The position of the refectory is usually a marked point of difference between Benedictine and Cistereian abbeys. In the former, as at Canterbury, the refectory ran east and west parallel to the nave of the church, on the side of the cloister furthest removed from it. In the Cistercian monasteries, to keep the noise and sound of dinner still further away from the sacred building, the refectory was built north and south, at right angles to the axis of the church. It was often divided, sometimes into two, sometimes, as here, into three aisles. Outside the refectory door, in the cloister, was the lavatory, where the monks washed their hands at dinner time. The buildings belonging to the material life of the monks lay near the refectory, as far as possible from the church, to the S.W. With a distinct entrance from the outer court was the kitchen court (F), with its buttery, scullery, and larder, and the important adjunct of a stream of running water. Further to the west, projecting beyond the line of the west front of the church, were vast vaulted apartments (SS), serving as cellarsand storelouses, above which was the dormitory of the conversi. Detached from these, and separated entirely from the monastic buildings, were various workshops, which convenience required to be banished to thè outer precincts, a saw-mill and oil-mill (UU) turned by water, and a currier's shop (V), where the sandals and leathern girdles of the monks were made and repaired.

- Returning to the cloister, a vaulted passage admitted to the small cloister (I), opening from the north side of which were eight small cells, assigned to the scribes employed in copying works for the library, which was placed in the opper story, accessible by a turret stairease. To the south of the small cloister a long hall will be noticed. This was a lecture-hall, or rather a ball for the religious disputations customary among the Cistercians. From this cloister opened the infirmary (K), with its hall, chapel, cells, blood-letting house, and other dependencics. At the eastern verge of the vast group of buildings we find the novices' lodgings (L), with a third cloister near the novices' quarters aud the original guest-house (M). Detached from the great mass of the monastic edifices was the original abbot's house (N), with its dining-hall (P). Closely adjoining to this, so that the eye of the father of
the whole establishment should be coustantly over those who stood the most in need of his watchful care,-thoso who were training for the monastic life, and those who had worn themselves out in its duties, -was a fourth cloister (O), with annexed buildings, devoted to the aged and infirm members of the establishment. The cometery, the last resting-place of the brethrcn, lay to the north side of the nave of the church (H).

It will be seen that the arrangentent of a Cisterciun monastery was in accordance with a clearly-defined system, and admirably adapted to its purpose.

The base court nearest to the vuter wall contained the buildings belonging to the functions of the body as agriculturalists and employers of labour. Advancing into the inner court, the buildings devoted to hospitality are found close to the entrance; while those connceted with tho supply of the material wants of the brcthren,-the kitchen, cellars, \&c.,-form a court of themselves outside the oloister, and quite detaehed from the churcb. The church refectory, dormitory, and other buildings belonging to the professional life of the brethren, surround the great cloister. The small cloister beyond, with its scribes' cells, library, hall for disputations, \&c., is the centre of the literary life of the community. The recfuirements of sickness aud old age are carefully provided for in the infirmary cloister, and that for the aged aud infirm members of tho establishment. The same grout contains the qgarters of ${ }^{\prime}$ the novices.

This stereotyped arrangement is further illustrated oy Citesu the accompanying bird's cye view of the mother establish-

Bird's eye View of Citeaux.
A. Cross:
B. Gate-House.
c. Almonry.
C. Almonry
E. Inner Gate-Houas
$\stackrel{\rightharpoonup}{F}$. Stable.
G. Dormitory of ley Brethren.
ment of Citeaux a cross (A), plauted un the high rors.
directs trivellers to the gate of the monastery, reached by an avenue of trees. On one side of the gate-house (B) is a long building (C), probably the almonry, with a dormitory above for the lower class of guests. On the other side is a cliapel (D). Is soon as the porter heard a stranger knock at the gate, he rose, sayiug, Deo gratias, the opportanity for the exercise of hospitality being regarded as a cause for thankfulness. On opening the door he welcomed the new arrival with a blessing-Benedicite. He fell on his knees beforo him, and then went to inform the abbot. Howerer important the abbot's occupations might be, he at once hastened to receive him whom heaven had sent. He also threw himself at his guest's fect, and conducted him to the chapel (D) purposely built closo to the gate. After a short prayer, the abbot committed the gaest to the eare of the brother hospitaller, whose duty it was to provide for his wants, and conduct tho beast on which he might bo riding to the stable (F), built adjacent to the inner gate-house (E). This inner gate conducted into the base court (T), round which were placed the barns, stables, cow-sheds, \&c. On the eastern side stood the dormitory of the lay brothers, fraties conversi (G), detached from the cloister, with cellars and storehouses below. At (H), also outside the monastic buildings proper, was the abbot's house, and annexed to it the guest-house. For these buildings there was a separate door of entrance into (the church (S). The large eloister, with its surrounding arcades, is seen at V. On the south end projects the refectory (K), with its kitchen at (I), accessible from the baso court. The long gabled building on the east side of the cloister contained on the ground floor the chapterhouso and calefactory, with the monks' dormitory abore (AI), communicating with the south transept of the church. At (L) was the staircase to the dormitory. The small cloister is at (IV), where were the carols or cells of the scribes, with the library (P) over, reached by a turret staircase. At (R) we see a portion of the infirmary. The whele precinct is surrounded by a strong buttressed wall (XXX), pierced with arches, through which streams of water are introduced. It will be noticed that the choir of the church is short, and has a square end instead of tho usual apse. The tower, in accordance with the Cistercian rule, is rery Jew. The windows throughopt accord with the studied simplicity of the order.

The English Cistercian honses, of which there are such extensive and beautiful remains at Fountains, Rievaulx, Kiiskstall, Tintern, Netley, dc., were mainly arranged after the same plan, with slight local variations. As an example, we give the ground-plan of Kirkstall Abbey, which is one of tho best preserved and least altered. The church here is of the Cistercian type, with a short chancel of two squares, and transepts with three eastrard chapels to each, divided by solid walls (222). The whole is of the most studied plainness. The windows are unornamented, ancl the nave has no triforium. The cloister to the south (4) occupics the whole length of the nave. On the east side stands the two-aisled chapter house (5), between which and the south transept is a small saciisty (3), and on the other side two small apartments, one of which was probably the parlour (6). Beyond this stretches southward the calefactory or day-room of the monks (14). Nbove this whole range of luilding runs the monks' dormitory, opening by stairs into the south transept of the church. At the other end wero the necessaries. On the south side of the cloister we have the remains of the old refeetory (11), muning, as in Benedictine houses, from east to west, and the new refectory (12), which, with the increase of the inmates of the house, superseded it, stretching, as is usual in Cistercian houses, from north to south. Adjacent to this apartment aro the remains of the bitched; pantry, and
buttery. The arches of the lavatory are to be seen near the refectory entrance. The restern side of the cloister is, as usual, occupied by raulted cellars, supporting on the upper story the dormitory of tho lay brothers (8). Extending from the south-east anglo of the main group of buildings are the walls and foundations of a secondary group of considerable extent. These have been identificd either with the hospitium or mith the abbot's house, but they occupy the position in which the infirmary is more usually found. The hall was a rery spacions apartuent, measuring 83 feet in length by 48 feet 9 inches in breadth

Kirkstall Abley Yorkshire (Cisterciao).

1. Charch
2. Chapels

万. Sactisty
4. Cloistrr.
S. Chapter-
f. Punisliment Cell (?
8. Cellals, with Dormilorles fur cun-
8. Cellals, with Dormulorles fur cun-
rersi over. 9. Guest-Honse.
10. Eommon Room.
11. Old liefectory.
13. New Refnctiry.
14. Colefact ory or 13:y-「.
14. Calcfact ory or 13ty-rion
15. Kitchen and ofters.

16-10. Cinectain; pertiais Omec
 . Infriuary or Ablut's llouse.
and was divided by two rows of columns. The fish-1, ouds lay between tine monastery and the river to tho sonth. Tho abbey mill mas situated about 80 yards to the nortilwest. The mill-pool may be distinctlv traced, together with the gowt or mill stream.

Fountains Abbey, first founded A.D. 1132, deserves special notice, as one of the largest and best preserved Cistcreian houses in England. But the carlier buildings receivecl considerable additions and alterations in the later period of the order, causing deviations from the strict Cistercian type. The church stands a short distauce to the north of the river Skell, the buildings of the abbcy stretching down to aud even across the strean. We havo the cloister (H) to the south, with the threo-aisled chaptere house (I) and calefactory (L) opening from its eastern walk, and the refectory (S), with the kitchen (Q) and buitery (T) attached, at right angles to its soutliern walk. Parallel with the western walk is cin mmense vaulted sulstructuro (U), incorrectl'y styled the cloisters, serving as cellars and store-rooms, and supporting the durmitory of the conversi abore. This building extended across the river. fit ito
S.W. corner were the necessaries (∇), also built, as usual, above the swiftly flowing stream. The monks' dormitory was in its usual position above the chapter-house, to the south of tho transept. As peculiarities of arrangement may be noticed the position of the kitchen (Q), betrreen the refectory and calefactory, and of the infirmary (W) (unless there is some error in its designation) above the river to

Ground Plan of Fonntains Abbey, Yorkshire.
A. Nave of the Charch.

8 Tra'usept
C. Chspels.
D. Tower.
E. Sser.sty.
F. Choir.
G. Chape: of Nine

E Cloister
L. Cbapter-Horse.
k. Base Coart.
L. Calefactory.
M. Water Course
Y. Mill Bridge
the west, adjoining the guest-houses (XX). We may also call attention to the greatly lengthened choir, commenced by Abbot John of York, 1203-1211, and carricd on by his cuccessor, terminating, like Durham Cathedral, in an
eastern transept, the work of Abhot Jolin of Kenv, 12201247 , and to the tower (D), addled not long before the dissolution by Abbot Huby, 1494-1526, in a rery unusual position at the northern end of the north transept. The abbot's house, the largest and most remarkable cxample of this class of buildings in the kingdom, stands south to the east of tho church and cloister, from which it is divided by the kitchen court (l^{-}), surrounded by the ordinary domestic offices. A considerable portion of this house was erected on arches oyer the Skell The size and character of this house, probably, at the time of its erection, the most spacious house of a subject in the kingdom, not a castle, bespeaks the mide departure of the Cistercian order from the stern simplicity of the original foundation. The hall (2) was one of the most spacious and magnificent apartments in medirval times, measuring 170 feet by 70 feet. Like the hall in the castle at Winchester, and Westminster Hall, as originally built, it was divided by 18 pillars and arches, with 3 aisles. Among other apartments, for the designation of which we must refer to the ground-plan, was a domestic oratory or chapel, $46 \frac{1}{2}$ feet by 23 feet, and a kitchen (7), 50 feet by 38 feet. The whole arrangenents and character of the building bespeak the rich and porserful feudal lord, not the humble father of a body of hardworking brethren, bound by vows to a life of porerty and self-denying toil. In the words of Dean Milman, "the superior, once a man boweri to the earth with humility, cape-worn, pale, emaciated, with a coarse habit bonnd with a cord, with naked feet, had become an abbot on his curvetting palfrey, in rich attire, with his silver cross before him, travelling to take his place amid the lordliest of the realm."-(Lat. Christ., rol. iii p. 330.)

The buildings of the Austin Canons or Black Canons Black os (so called from the colour of their habit) present few dustin distinctire peculiarities. This order had its first seat in Canors England at Colchester, where a house for Austin Canons was founded about A.D. 1105, and it rery soon spread widely. As an order of regular clergy, holding a middle position between monks and secular canons, almost resembling a community of parish priests living under rule; they adopted nares of great length to accommodate large congregations. The choir is usually long, and is sometimes, as at Llanthouy and Christ Church (Twynlaam), shut off from the aisles, or, as ai Bolton, Kirkham, dc., is destitute of aisles altogether. The nare in the northern houses, not unfrequently, had only a north aisle, so at Bolton, Brinkburn, and Lanercost. The arrangement of the monastic buildings followed the ordinary type. The prior's lodge was almost invariably attached to the S.W. angle of the nare. The annexed plan of the Abbey of St Augustine's at Pristol, now. the cathedral church of

St Augustiwe's Abbey, Bristol (Bristol Cathedral).
A. Charch.
B. Great Clofster. C. Litsle Cloister. D. Chapter-Mouse E. Calefactory. F. Iefectory. c Yarlour.
II. Kitclien 1. Kirchen Cours K. Cellars
L. Abhot's Ifath P. Abhot's Gateray. R. Latriaary.
S. Friass Longing T. King's Hell V. Guest-Llouse W. Albey Gateway. X. Bams, Stables 80
خ. Lava:or
that city, shuws the arrangement of the buildings, which departs very little from the ordinary Bonedictine type. The Austin Canons' house at Thorriton, in Lincolnshire, is remarkable for the size and magnificence of its gate-house, the upper floors of which formed the guest-house of the establishment, and for possessing an octagonal chapterhouse of Decorated date.

The Premonstratensian regular canons, or White Canons, had as many as 35 houses in England, of which the most perfect remaining are those of Easby, Yorkshire, and Bayham, Sussex. The head house of the order in England was Welbeck. This order was a reformed branch of the Austin canons, founded, A.D. 1119, by Norbert (born at Xanten, on the Lower Rhine, c. 1080) at Prémontré, a secluded marshy valley in the forest of Coucy, in the diocese of Laon. The order spread widely. Eren in the founder's lifetime it posscssed houses in Syria and Palestine. It long maintained its rigid ansterity, till in the course of years wealth impaired its discipline, and its members sank into indolence and luxury. The Premon* stratensians were brought to England shortly after a.d. 1140, and were first settled at Newhouse, in Lincolnshire, near the Humber. The ground-plan of Easby Abbey, owing to its situation on the edge of the steeply-sloping banks of a river, is singularly irregular. The cloister is duly placed. on the south side of the church, and the chief buildings occupy their usual positions round it. But the cloister garth, as at Chichester, is not rectangnlar, and all the surrounding builaings are tinus made to sprawl in a very awkward fashion., The church follows the plan adopted by the Austin camons in their northern abbeys, and has only one aisle to the nave-that to the north; while the choir is long, narrow, and aisleless. Fach transept has an aisle to the east, forming three clapels.

The church at Bayham was destitute of aisle either to a ave or choir. The latter terminated in a three-sided apse. This church is remarkable for its exceeding narrowness in proportion to its length. Extending in longitudinal dimensions 257 feet, it is not more than 25 feet broad. To adopt the words of Mr Beresford Hope-" Stern Premonstratensian canons wanted no congregations, and cared for no processions; therefore they built their church like a long room."

The Carthusian order, on its establishment by St Bruno, about A.D. 1084, developed a greatly modified form and arrangement of a monastic institution. The principle of this order, which combined the cœnobitic with the solitary life, demanded the erection of buildings on a novel plan. This plan, which was first adopted by St Bruno and his twelve companions at the original institution at Chartreux, near Grenoble, was maintained in all the Carthusian establishments throughout Europe, even after the ascetic geverity of the order had been to some extent relaxed, and the primitive simplicity of their buildings had been ex: changed for the magnificence of decoration which characrerises such foundations as the Certosas of Pavia and Fiorence. According to the rule of St Bruno, all the members of a Carthusian brotherhood lived in the most absolute solitude and silence. Each occupied a small detached cottage, standing by itself in a small garden arrrounded by high walls and connected by a common corridor or cloister. In these cottages or cells a Carthusian monk passed his time in the strictest asceticism, only leaving his solitary dwelling to attend the services of the Church, except on certain days when the brotherbood asembled in the refectory.

The peculiarity of the arrangernents of a Carthusian monastcry, or charter-house, as it was called in England, from a corruption of the French shartreux, is cxhibited in
the plan of that of Clermont, from Vicllet le Duc. The whole establishment is surrounded with a wall, furnished at intervals with watch towers (R). The enclosure is divided into two courts, of which the castern court, surrounded by a cloister, from which the cottages of the monks (I) open, is much the larges The two courts are

divided by the main buildings of the monastery, including the church, the sanctuary (A), divided from (B), the monks' choir, by a screen with two altars, the smaller eloister to the south (S) surrounded by the chapter-house (E), the refectory (X)-these buildings occupying their normal position-and the chapel of Pontgibaud (K). The kitchen with its offices (V) lies behind the refectory, accessible from the outer court without cutering the cloister. To the north of the church, beyond the sacristy (L), and tho side chapels (M), we find the cell of the sub-prior (a), with its garden. The lodgings of the prier (G) occupy the centre of the outer court, immediately in front of the west door of the church, and face the gateway of the convent (O). A small raised court with a fountain (C) is before it. This outer court also contains the guest-chambers (P), the stables, and lodgings of the lay brothers (N), the barns and granaries (Q), the dovecot (H), and the bakehouse (T). At (Z) is the prison. (In this outcr conrt, in all the earlier foundations, as at Witham, there was a smaller church in addition to the larger church of the monks.) The outer and inner court are connected by a long passage (F), wide enough to admit a cart laden with wood to supply the cells of the brethren with fuel. The number of cells surrounding the great cloister is 18 . They are all arranged on a uniform plan. Each little dwelling contains thre roons : a sitting-room (C), warmed with a stove in winter; a slceping-room (D), furnished with a bed, a table, a bench, and a bookcase; and a closet (E). Betreen the cell and the cloister gallery (A) is a passage or corridor (B), cutting off the inmafe of the cell from all sound or movement which might interrunt his meditations. The superior had
free access to this corridor, and through open niches was able to inspect the garden without being seen. At (I) is the hatch or turn-table, in which the daily allowance of food was denosited by a brother appointed for that purpose, affording no view either inwards or ontwards. (H) is the garden,

cultivated by the occupant of the cell. At (K) is the wood-house. (F) is a covered walk, with the necessary at the end. These arrangements are found nith scarcely any variation in all the charter-houses of Western Europe. The Yorkshire Charter-house of Mount Grace, founded by Thomas Holland the young Duke of Surrey, nephert of Richard II., and Marshal of England, during the revival of the popularity of the order, about A.D. 1397, is the most perfect and best preserved English example. It is chgracterised by all the simplicity of the order. The church is a modest building, long, narrow, and aisleless. Within the wall of enclosure are two courts. The smaller of the two, the south, presents the usual arrangement of church, refeclory, \&c., opening out of a cloister. The buiidings are plain and solid. The northera court contains the cells, 14 in number. It is surrounded by a donble stone wall, the two walls being about 30 feet or 40 feet apart. Between these, each in its own garden, stand the cells; low-built two-storied cottages, of two or three rooms on the groundfloor, lighted with a larger and a smaller window to the eide, and provided with a doorway to the court, and one at the back, opposite to one in the outer wall, through which the monk may have conveyed the sweepings of lis cell and the refuse of lis garden to the "eremus" beyond. By the side of the door to the court is a little hatch, through which the daily pittance of food was supplied, so contrived by turning at an angle in the wall that no one could either look in or look out. A very perfect example of this hatch -an arrangement belonging to all Carthusian housesexists at Mfiraflores, near Burgos, which remains nearly as it was completed in 1480 .

There were only nine Carthusian houses in England. The earlicst was that at Witham in Somersetshire, foonded by Henry II., by whom the order was first bronght into England. The wealthiest and most magnificent was that of Shene or Richmond in Surrey, founded by Henry V. about A.D. 1414. The dimensions of the buildings at Shener are stated to have been remarkably large. The great court measured 300 feet by 250 feet; the cloisters were a square of 500 feet; the hall mas 110 feet in length by 60 feet in breadth. The most aelebrated historically is the Charter-house of London, founded by Sir Walter Manny A.D. 1371. the name of which is preserved by the famous
public school established on the site by Thomas Sutton A.d. 1 ह11.

An article on monastic arrangements would be incomplete without some account of the conrents of the Mendicant or Preaching Friars, including the Black Friars or Dominicans, the Grey or Franciscans, the White or Carmelites, the Eremite or Austin Friars. These orders arose at the beginning of the 13th century, when the Benedictines, together with their rarious reformed branches, had terminated their active mission, and Christian Europe was ready for a new religious revival. Planting themsclves, as a rule, in large tomns, and by preference in the poorest and most densely populated districts, the Preaching Friars were obliged to adapt their buildings to the requirements of the site. Regularity of arrangement, therefore, was not possible, even if they had studied it. Thcir churches, built for the reception of large congregations of hearers rather than worshippers, form a class by themselves, totally unlike those of the elder orders in ground-plan and character. They were usually long parallelograms unbroken by transepts. The nave rery usually consisted of two equal bodies, one containing the stalls of the brotherhood, the other left entircly free for the congregation. The constructional choir is often wanting, the whole church forming one uninterrupted structure, with a continuous range of windows. The east end was usually square, but the Friars Church at Winchelsea had apolygonal apse. We not unfrcquently find a single transept, sometimes of great size, rivalling or cxceeding the nave. This arrangement is frequent in Ireland, where the numerous small friarics afford admirablo exemplifications of these peculiarities of ground-plan. Tho friars' churches were at first destitute of towers; but in tho 14th and 15 th centurics, tall, slender towers were commonly inserted between the nave and the choir. The Grey Friars at Lymn, where the tower is hexagonal, is a good example. The arrangament of the monastic buildings is cqually peculiar and characteristic. We miss antirely the regularity of the buildiugs of the carlier orders. At the Jacobins at Paris, a cloister lay to the north of the long narrow church of two parallel aisles, while the refectorya room of immense length, quite detached from the cloister -stretched across the area before the west front of the church. At Toulouse the nave also has tro parallel aisles, but the choir is apsidal, with radiating chapels. The refcetory stretches northmards at right angles to the cloister, which lies to the north of the church, haring the clapter-house and sacristy on the east. As examples of Enylish friaries the Dominican house at Norwich, and those of the Domini- Norwich. cans and Franciscans at Gloucester, may be mentioned. The Gloucester church of the Plack Friars of Norwich departs from the original type in the nave (now St Andrew's Hall), in haring regular aisles. In this it resembles the earlier examples of the Grey Friars at Reading. The choir is long and aislcless; an hexagonal tomer between the two, like that cxisting at Lynn, has perished. The cloister and monastic buildings remain tolerably perfect to the north. The Dominican convent at Gioucester still cxlibits the cloistercourt, on the north side of which is the desecrated church. The refectory is on the west side, and on the south the dormitory of the 13 th century. This is a remarkably good example. There were 18 cells or cubicles on each side, divided by partitions, the bases of which remain. On the cast side was the prior's honse, a building of later date. At the Grey or Franciscan Friars. the church followed the ordinary type in haring two equal bodies, each gabled, with a continuous range of windlows. There was a slender tower between the nare and choir. Of the convents of the Carmelite or White Friars we have a good example in the Abbey of IHulme, near Alnwick, the first of the order in England, founded A.D. 1240. The church is a narrow
oblong, destitute of aisles, 123 fect long by only 26 feet ride. The'cloisters are to the south, with tho chapterhouse, dc., to the east, with the dormitory orer. The prior's lodge is placed to the west of the eloister. The guest-houses adjoin the entrance gateway, to which a chapel was annexed on the south side of the conrentual area. The nave of the clurcli of the Austin Friars or Eremites in London is still standing. It is of Decorated date, and has wide centre and side aisles, dirided by a very light and graceful arcade. Some fragments of the south walk of the cloister of the Grey Friars exist among the buildings of Christ's Hospital or the Blue-Coat School. Of the Black Friars all has perished but the name. Taken as a whole, the remains of the establishments of the friars afford little warrant for the bitter inrective of the Eenedictiue of St Nlban's. Jatthew Paris:-" The friars who have been foundei hardly 40 years hare built residences as the palaces of kings These are they who, enlarging day by day their sumptuous edifices, encircling them with lofty walls, lay up in them their incalculable treasures, imprudently transgressing the bounds of porerty, and violating the rery fundamental rules of their profession." Allowance must here be made for jealousy of a riral order just rising in popularity.

Every large monastery had depending upon it one or more smaller establishments known as cells. These cells were monastic colonies, sent forth ly the parent house, and planted on some outlying estate. As an example, we may refer to the small religious house of St Mary Magdalene's, a cell of the great Benedictiue house of St Mary's, York, in the valley of the Witham, to the south-east of the city of Lincoln. This consists of one long narrow range of building, of which the eastern part formed the chapel, and the western contained tho apartments of the handful of monks of which it was the home. To the east may be traced the site of the abbey mill, with its darn and milllead. These cells, when belonging to a Cluniac house, were called Dbedientio.

The plan given by Viollet le Duc of the Priory of $S t$ Jean des Bons Hommes, a Cluniac cell, situated between the torn of Avallon and the village of Savigny, shows that these diminutire establishments comprised every essential feature of a monastery,-chapel, cloister, chapter-room, refectory, dormitory, all groaped according to the recognised arrangeraent.

These Cluniac obedientice differed from the ordinary Benedictine cells in being also places of punishment, to which monks who had been guilty of any grave infringement of the rules were relegated as to a kind of penitentiary. Here they were placed under the authority of a prior, and were coudemued to severe manual labour, fulfilling the duties usually executed by the lay brothers, who acted as farm-servants.

The outlying farming establishments belonging to the monastic foundations were known as villce or granges. They gare employment to a body of conversi and labourers under the management of a monk, who bore the title of Brother Hospitaller-the granges, like their parent institutions, affording shelter and hospitality to belated travellers.

Authorities:-Dugdale, Monasticon; Fosbrooke, British Monachism; Helyot, Dictionnaire des Ordres Religieux; Lenoir, Architecture Monastique; Viollet le Due, Dictionmaire Raisonnée de 'l'Architccture Francawe; Walcott, Conventual Arrangement; Willis, Abbey of St Gall; Archæological Journal, vol. v., Conventual Buildings of Canter- $^{\text {D }}$ burg; Curzon, Monasteries of the Levant.
(E. च.)

ABBLATE GRASSO, a town in the north of Italy, ncar the Ticino, 14 miles W.S.W. of Milan. It has silk manufactures, and contrins about 5000 inhabitants.

AbBON of Fleuny, or Abbo Floriacensis, a learned Frenchman, born near Orlcans in 945 . He distinguished himsclf in the schouls of l'aris and Rheims, and was a proficient in science, as known in his time. After spending two years in Lnyland, assisting Archbishop Oswald of York in restoring the inonastic systens, he returned to France, and was made Abbot of Fleury (970). Ho was twice sent to Rome by Rohert the Wise (986,996), and on cach oceasiou succeeded in warding off a threatencd papal interdict. Hle was killed in 1004, in endearouring to quell a monkish revolt. He wrote an epitome of the Lives of the Roman Portifs, besides controversial treatises, letters, \&ic.

ABBOT, the head and chief governor of a conmmity of monks, called also in the East Archimendrita, frowe' mandra, "a fold," or Hegumenos. The name allot is derived from the Hebrew =s, $A b$, or father, through the Syriac Alba. It had its origin in the monasteries of Syria, whence it spread through the Last, and soon became accepted generally in all languages as the designation of the head of a monastery. At first it was cmplojed as a respectful title for any monk, as we learn from St Jerome (in Epist. ad Gal. iv. 6, in Mratt. xxiii. 9), but it was soon restricted to the Superior.

The name abbot, though gencral in the West, was not universal. Among the Dominicians, Carmelites, Augustines, \&c., the superior was called Proppositus, "Provost," and Prior; among the Franciscans, Custos, "Guardian;" and by the monks of Camaldoli, Major.

Monks, as a rule, were laymen, nor at the outset was the abbot any exception. All orders of clergy, therefore, even the "doorkecper," took precedence of him. For the reception of the sacraments, and for other religions offices, the abbot and his monks were commanded to attend the nearest church--(Novelle, I33, c. ii.) This rule naturally proved inconrenient when a monastery was situated in a desert, or at a distance from a city, and necessity compelled the ordination of abbots. This innovation was not introduced without a struggle, ecclesiastical dignity being regarded as inconsistent with the higher spiritual life, but, before the close of the 5th century, at least in the East, abbots seem almost universally to hare become deacons, if not presbyters. The change spread more slowly in the West, where the office of abbot was commonly filled by laymen till the end of the 7 th century, and partially so up to the 11th. Ecclesiastical Councils were, however, attended by abbots. Thus, at that held at Constantinople, A.D. 448, for the condermation of Eutyches, 23 archimandrites or abbots sign, with 30 bishops, and, cir. A.D. 690, Archbishop Theodore promulgated a canon, inhibiting bishops from compelling abbots to attend councils. Exaraples are not uncommon in Spain and in England in Saxon times. Δ bbots were permitted by the Second Council of Nicæa, A.D. 787, to ordain their monks to the inferior orders. This rule was adopted in the West, and the strong prejudice against clerical monks having gradually broken down, erentually monks, almost without exception. belonged to some grade of the ministry.

Originally no abbot was permitted to rule orer more than one monastic community, though, in some exceptional cases, Gregory the Great allowed the rule to be broken. As time went.on, violations of the rule became increasingly frequent, as is proved by repeated enactments against it. The cases of Wilfrid of York, cir. A.D. 675, who held the abbacy of the monasteries he had founded at Hexham and Ripon, and of Aldhelm, who, at the same date, stood is the same double relation to those of Dalmesbury, Frome, and Bradford, are only apparent transgressions of the rule. We find more decided instances of plurality in Hugh of the roval Carlovingian house, cir. 720, who was at the same
time Bishop of Rouen, Paris, Baycux, and Abbot of Fonteo nelle and Jumiéges; and Sidonius, Bishop of Constance, who, being already Abbot of Reichenau, took the abbacy of St. Gall also. Hatto of Mentz, cir. 912, annexed to his see no less than 12 abbacies.
In Egypt, the first home of monasticism, we find abbots in chief or, archimandrites exercising jurisdiction over a large number of communities, each of which had its own abbot. Thus, Cassian speaks of an abbot in the Thebaid who had 500 monks under him, a number exceeded in other cases. In later times also, general jurisdiction was exercised over the houses of their order by the abbots of Monte Cassino, St Dalmatius, Clugny, \&c. The abbot of Cassino was styled Abbas Abbatum. The chiefs of other orders had the titles of Abbas Generalis, or Magister, or Minister Generalis.

Abbots were originally subject to episcopal jurisdiction, and continued generally so, in fact, in the West till the 1lth century. The Codex of Justinian (lib. i. tit: iii. de Ep. leg. xl.), expressly subordinates the abbot to episcopal oversight. The first case recorded of the partial exemption of an abbot from episcopal control is that of Faustus, Abbot of Lerins, at the Council of Arles, A.D. 456 ; but the oppressive conduct, and exorbitant claims and exactions of bishops, to which this repugnance to episcopal control is to be traced, far more than to the arrogance of abbots, rendered it increasingly frequent, and, in the 6th century, the practice of exempting religious houses partly or altogether from episcopal control, and making them responsible to the Popo alone, received an impulse from Gregory the Great. These exceptions, though introduced with a good object, had grown into a wide-spread and crying evil by the 12 th century, virtually creating an imperium in imperio, and entirely depriving the bishop of all authority orer the chief centres of power and influence in his diocese. In the 12th century the abbots of Fulda claimed precedence of the Archbishop of Cologne. Abbots more and more aped eepiscopal state, and in defiance of the express probibition of early councils, and the protests of St Bernard and others, adopted the episcopal insignia of mitre, ring, gloves, and sandals. A mitre is said to have been granted to the Abbot of Bobbio by Pope Theodorus I., A.D. 643, and to the Abbot of St Sarianus by Sylvester II., A.d. 1000 . Ducange asserts that pontifical insignia were first assigned to abbots by John XVIII., A.D. 1004-1009; but the first undoubted grant is said to be that to the Abbot of St Maximinian at Treves, by Gregory VII. (Hildebrand), A.D. 1073-1085. The mitred abbots in England were those of Abingdon, St Alban's, Bardney, Battle, Bury St Edmund's, St Augustine's Canterbury, Colchester, Croyland, Evesham, Glastonbury, Gloncester, St Benet's Hulme, Hyde, Malmesbury, Peterborough, Ramsey, Reading, Selby, Shrewsbury, Tavistock, Thorne5, Westminster, Winchcombe, St Mary's York. Of these the precedence was originally yielded to the Abbot of Glastonbury, until in A.D. 1154 Adrian IV. (Nicholas Breakspear) granted it to the Abbot of St Alban's,' in thich monastery he had been brought up. Next after the Abbot of St Alban's ranked the Abbot of Westminster.

To distinguish abbots from bishops, it was ordained that their mitre should be made of less costly materials, and should not be ornamented with gold, a rule which was soon entirely disregarded, and that the crook of their pastoral staff should turn inwards instead of outwards, indicating that their jurisdiction was limited to their own house. The adoption of episcopal insignia by abbots was followed by an encroachment on episcopal functions, which had to be specially but ineffectually guarded against by tho Lateran Council, A.D. 1123. In the East, abbots,
if in pricsts' orders, with the consent of the bistop, were, as we have seen, permitted by the Sccond Nicenc Councl, A.D. 787, to confer the tonsure and admit to the order of reader; but they gradually advanced higher claims, until we find thom authorised by Bellarmine to be associated with a single bishop in episcopal consecrations, and permitted by Innocent IV., A.D. 1489, to confer both the subdiaconate and diaconate. Of course, they almays and everywhere had the power of admitting their own monks, and resting them with the religious habit. In the first instance, when a vacancy occurred, the bishop of the diocess chose the abbot out of the monks of the convent, but the right of election was transferred by jurisdiction to the monks themselves, reserving to the bishop the confirmation of the election and the benediction of the new abbot. In abbeys exempt from episcopal jurisdiction, the confirmation asd benediction had to be conferred by the Pope in person, the house being taxed with the expenses of the new abbot's journey to Rome. By the rule of St Benedict; the consent of the laity was in some nudefined way required; but this seems rever to have been practically enforced. It was necessary that an abbot should be at least 25 years of age, of legitimate birth, a monk of the house, unless it furnished nu suitable candidate, when a liberty was allowed of electing from another convent, well instructed himself, and able to instruct others, one also who bad learned how to command by having practised öbedience. In some exceptional cases an abbot was allowed to name his own successor. Cassian speaks of an abbot in Egypt doing this; and in later tipees we have another example in the case of St Bruno. Popes and sovereigns gradually encroached on the rights of the monks, until in Italy the Pope had usurped the nomina: tion of all abbots, and the king in France, with the exception of Clugny, Prémontré, and other houses, chiefs of their order. The election was for life, unless the abbot was canonically deprived by the chiefs of his order, or, when he was directly subject to them, by the Pope or the bishop.
The ceremony of the formal admission of a Benedictine abbot in mediæval times is thus prescribed by the consuetudinary of Abingdon. The newly elected abbot wis to put off his shoes at the door of the church, and proceed barefoot to meet the members of the house advancing in a procession. After proceeding up the nave, he was to kneel and pray at the topmost step of the entrance of tho choir, into which he was to be introduced by the bishop or his commissary, and placed in his stall. The monks, then kneeling, gave him the kiss of peace on the hand, and rising, on the mouth, the abbot holding his staff of office. He then put on his shocs in the vestry, and a chapter was held, and the bishop on his commissary preached a suitable sermon.

The power of the abbot was paternal but absolute, limited, however, by the canons, of the charch, and, until the general establishment of exemptions; by episcopal control. As a rulc, however, implicit obcdience was enforced; to act without his orders was culpabile; whilo it ras a sacred duty to execute his orders, however unreasonable, until they mere withdramn. Examples among the Egyptian monks of this blind submission to the commands of the superiors, cxalted into a virtue by those who regarded the entife crushing of the individual will as the highest excellence, are detailed by Cassian and others,-e.g., a monk watering a dry stick, day after day, for months, or cndearouring to remore a huge rock immensely exceeding his powers. St Jerome, indeed, lays dowu, as the principle of the compact between the abbot and his monks, that they should obey their superiors in all things, and perform what ever they commanded.-(Ep. 2 ad Eustoch. "de custod

Virgin.) So desputic did the tyranny becume in the West, that in the time of Charlemagne it was necessary to restrain abbots by legal enactments from mutilating their monks, and putting out their eyes; while the rule of St Columba ordained 100 lashes as the punishment for very slight offences. An abbot also had the power of excommunicating refractory uuns, which he might use if clesired by their abbess.

The abbot was treated with the utmost submission and reverenco by the brethren of his house. When he appeared cither in church or cbapter all present rose and bowed. His letters were received kneeling, like those of the Pope and the king. If he gave a command, the monk recciving it was also to knecl. No monk might sit in his presence, or leave it without his permission. The highest place was naturally assigned to him; both in church and at table. In the East he was commanded to eat with the other monks. In the West the rule of St Benedict appointed him a separate table, at which he might entertain guests and strangers. This permission opening the door to luxurious living, the Council of Aix, A.D. 817, decreed that the abbot should dine in the refectory, and be content with the ordinary fare of the monks, unless he had to entertain a guest. These ordinances proved, however, generally ineffectual to securo strictness of diet, and contemporancous literature abounds with satirical remarks and complaints concerning the inordinate extravagance of the tables of the abbots. When the abbot coudescended to dine in the refectory, his chaplains waited upon him with the dishes, a servant, if necessary, assisting them. At St Alban's the abbot took the lord's seat, in the centre of the high table, and was served on silver plate, and sumptuously cntertained noblemen, ambassadors, and strangers of quality. When abbots dined in their own private hall, the rule of St Benedict charged them to invite their monks to their table, provided there was room, on which occasions the guests were to abstain from quarrels, slanderous talk, and idle gossipping. The complaint, however, was sometimes made (as by Matt. Paris of Wulsig, the thirdabbot of St Alban's), that theyinvited ladics of rank to dine with them instead of theirmonks. The ordinary attire of the abbot was accurding to rule to be the same as that of the monks. But by the l0th century the rule was commonly set aside, and we find frequent complaints of abbots dressing in silk, and adopting great sumptuousness of attire. Nay, they sometimes laid aside the manastic habit altogether, and assumed a secular dress. ${ }^{1}$ Thiswasa necessary consequence of their following the chase, which was quite usual, and indeed at that time only natural. With the increase of wealth and power, abbots had lost much of thcir special religious character, and become great lords, chiefly distinguished from lay lords by celibacy. Thus we hear of abbots geing out to sport, with their men carrying bows and arrows; keeping horses, dogs, and huntsmen; and special mention is made of an abbot of Leicester, cir. 1360, who was the most skilled of all the nobility in hare-hunting. In magnificence of equipage and retinuo the abbots vied with the first nobles of the realm. They rode on mules with gilded bridles, rich saddles and housings, carrying hawks on their wrist, attended by an immense train of attendants. The bells of the churches were rung as they jassed. They associated on equal terms with laymen of the highest distinction, and shared all their pleasures and pursuits. This rank and power was, howerer, often uscd most beueficially. For instance, we read of Whiting, the last Abbot of Glastonbury, judicially murdered by Henry VIII., that his house was a kind of wellordered court, where as many as 300 sons of noblemen and

[^1]gentlemen, who had been sent to him for virtuous educa tion, had been brought up, besides others of a meaner rauk, whom he fitted for the universities. His table, attcudance, and officers were an honour to the nation. He would cutcrtain as many as 500 persons of rank at one time, besides relieving the poor of the vicinity twice al-weck. He had his country houses and fisheries, aud when ho travelled to attend Parliament his retinue amounted to upwards of 100 persons. The abbots of Clugny and Vendome were, by virtue of their office, cardinals of the Romish Church.

In process of time the title abbot was improperly trans. ferred to clerics who had no connection with the monastio system, as to the principal of a body of parochial clergy; and under the Carlovingians to the chief chaplain of the king, Abbas Curia, or military chaplain of the em. peror, Albas Castrensis. It even came to be adopted by purely secular officials. Thus the chief magistrate of the republic at Genoa was called Abbas Populi. Ducange, in his Glossary, also gives us Abbus Campanilis, Clockerii, Palatii, Scholaris, \&c.

Lay abbots, so called, had their origin in the system of commendation, in the 8th century. By this, to mect any great necessity of the state, such as an inroad of the Sarnsens, the revenues of monasteries were temporarily commended, i.e., hauded over to some layman, a noble, or even the king himself, who for the time became titular abbot. Enough was reserved to maintain the monastic brotherhood, and when the occasion passed away the revenues were to be restored to their rightful owners. The estates, however, had a habit of lingering in lay hands, so that in tho 9th and 10th centuries most of the sovercigns and nobles among the Franks and Burgundians were titular abbots of some great monastery, the revenues of which they applied to their own purposes. These lay abbots were styled Abbacomites or Abbates Milites. Hugh Capet, before his elcration to the throne, as an Abbacomes held the abbeys of St Denis and St Germain in commendam. Bishop Hatto, of Mentz, A.D. 891-912, is said to have held 12 abbeys in commendum at once. In England, as we see from the Λ cts of the Council of Cleveshoo, in the 8th century, monasterics wero often invaded and ox,cupied by laymen. This occurred sometimes from the monastery having voluntarily placed itself under the protection of a powerful layman, who, from its protector, became its op pressor. Sometimes there were two lines of abbots, one of laymen enjoying the lion's share of the revenues, another of clerics fulfilling the proper dutics of an abbot on a small fraction of the income. The gross abusc of lay commendation which had sprung up during the corruption of the monastic system passed away with its reformation in the 10th century, either voluntarily or by compulsion. The like abuse prevailed in the East at a later period. John, Patriarch of Antioch, at the beginning of the 12th century, informs us that in his time most monasteries had been handed over to laymen, bencficiarii, for life, or for part of their lives, by the emperors.

In conventual cathedrals, where the bishop occupied the place of the abbot, the functions usually devolving on the superior of the monastery were performed by a prior. In other convents the prior was the second officer next to the abbot, representing him in his absence, and fulfilling his duties. The superiors of the cclls, or small monastic establishments dependent on the larger monasterics, were also called priors. They were appointed by the abbots, and held office at their pleasure.

Authorities :-Bingham, Origines; Ducange, Glossary; Herzog, Realwörterbuch; Robertson, Ch. Hist.; Martene, De Antiq. Monast. Ritibus, Montalembert, Monks of the West
abBot, Charles, speater of the House of Commons from 1802 to 1817, afterwards created Lord Colchester. See Colchester.

ABBOT, Geurge, Archbishop of Cantcrbury, was born October 19, 1502, at Guildford in Surrey, where his father was a cloth-worker. He studied at Balliol College, Oxford, and was chosen Master of Universily College in 1597. He was thrse times appointed to the office of Vice-Chancellor of the university. When in 1604 the version of the Bible now in use was ordered to be prepared, Dr Abbot's name stood second on the list of the eight Oxford divines to whom was intrusted the translation of the New Tcstaunent, excepting the Epistles. In 1608 he went to Scotland with the Earl of Dunbar to arrange for a union between the Churches of England and Scotland, and his conduct in that negotiation laid the foundation of his preferment, by attracting to him the notice and farour of the king. Without having held any parochial charge, he was appointed Bishop of Lichfield and Cuventry in 1603, was trauslated to the see of London a month afterwards, and in less than a year was made Archbishop of Canterbury. This rapid preferment was due as much perhaps to his flattering his royal master as to his legitimate merits. After his elevation he showed on several occasions firmness and courage in resisting the ling. In the scandalous divorce suit of the Lady Frances Howard against the Earl of Essex, the archbishup persistently opposed the dissolution of the marriage, thomgh the iufluence of the king and court was strongly and successfully exerted in the opposite direction. In 1618, when a declaration was published by the king, and ordcred to be read in all the churches, permitting sports and pastimes on the Sabbath, Abbot had the courage to forbid its being read at Croydon, where he happened to be at the time. As may be inferred from the incident just incutioned, Abbot was of the Protestant or Puritau party in the Church. He was naturally, therefore, a promoter of the match between the Elector Palatine and the Princess Elizabeth, and a firm opponent of the projected marriage of the Prince of Wales with the Infanta of Spain. This policy brought upon him the hatred of Laud and the court. The king, indeed, never forsook him; but Buckingham was his avowed enemy, and he was regarded with dislike by the Prince of Wales, afterwards Charles I. In 1622 a sad misfortune befell the archbishop while hunting in Lord Zouch's park at Bramzill. A bolt from his cross-brow aimed at a deer happened to strike one of the keepers, who died within an hour, and $A b b o t$ was so greatly distressed by the event that he foll into a state of settled melancholy. His encmies maintained that the fatal issue of this accident disqualified him for his office, and argued that, though the homicide was involuntary, the sport of hunting which had led to it was one in which no clerical person could lawfully indulge. The king had to refer the matter to a commission of ten, though he said that " an angel might have miscarried after this sort." A decision was given in the archbishop's favour; but to prevent disputes, it was recommended that the king should formally absolve him, and confor his office upon him anew. After this the archbishop seldom appeared at the council, chiefly on aecount of his infirmities. He attended the king constantly, however, in his last illness, and performed the ceremony of the coronation of Charles I. A pretext was soon found by his enemies for depriving him of all his functions as primate, which were put in commission by the king. This high-handed procedure was the result of Abbot's refusal to license a sermon preached by Dr Sibthorp, in which the king's prerogative was stretched beyond constitutional limits. The archbishup had his powers restored to binn slrortly afterwards, however, when the king found it, odeolutely necessary to summon a Fasliament. His pre-
sence being unwelcome at court, he lived from that time in retirement, leaving Laud and his party un undisputed ascendency. He died at Croydon on the 5th August 1633, and was buried at Guildford, his native plare, where he had endowed an hospital with lands to the value of $£ 300$ a jear. Abbot wrote a large number of works; but, with the exception of his Exposition on the Prophet Jonalk (1600), which was reprinted in 1845, they aro now little known. His Geographiy, or a Brief Description of the Whole World, passed through numerous editions.

ABBO'T, Geonge, known as "The Puritan," has been oddly and persistently mistaken for others. He has been described as a clergyman, which he never was, and as son of Sir Morris Abbot, and his writings accordingly entered in the bibliographical authorities as by the nephew of the Archbishop of Canterbury. One of the sons of Sir Morris Abbot was, indeed, named George, and he was a man of mark, but the more famous George Abbot was of a different family altogether. He was son or grandson (it is not clear which) of Sir Thomas Abbot, knight of Easington, East Yorkshire, having been born there in 1603-4, his mother (or grandmother) being of the ancient house of Pickering. He married a daughter of Colonel Purcfoy of Caldecote, Warwickshire, and as his monument, which may still be seen in the church there, tells, he bravely held it against Prince Rupert and Maurice during the civil war. He was a member of the Long Parliament for Tamworth. As a layman, and nevertheless a thcologian and scholar of rare ripeness and critical ability, he holds an almost unique place in the literature of the period. His Whole Booke of Job Paraphrased, or made easy for any to understand (1640, 4to), is in striking contrast, in its concinnity and terseness, with the prolixity of too many of the Puritan expositors and commentators. His Vindicice Sabbathi(1641, 8 vo) had a profound , and lasting influence in the long Sabbatic controversy. His Brief Notes upon the Whole Book of Psalms (1651, 4to), as its date shows, was posthumous. He died February 2, 1648. (MS. collections at Abbeyville for history of all of the name of Abbot, by J. T. Abbot, Esq., F.S.A., Darlington; Dugdale's Artiquilies of Warwickshire, 1656, p. 791 ; Wood's Athence (Bliss), s. v.; Cox's Literature of the Sabbath; Dr Janies Gilfillan on The Sabbath; Lowndes, Bodleian, B. Muserm Cutul. s. v.)
(A. B. с.)

AbBot, Robert. Noted as this Puritan divine was in his own time, and representative in various ways, he has hitherto been confounded with others, as Rovert Abbut, Bishop of Salisbury, and his personality distributed over a Robert Abbot of Cranbrook; another of Southwick. Hants; a third of St Austin's, London; while these successive places were only the successive livings of the one Robert Abbot. He is also described as of the Archbishon's or Guildford Abbots, whereas he was in no may relatcd, albcit he acknowledges very gratefully, in the first of his epistles-dedicatory of 4 Hand of Fellouship) to Lelpe Jicepue out Sinne and Antichrist (1623, 4to), that it was from the archbishop he had "received all" his "worldly maintenance," as well as "best earthly countenance" and "fatherly incouragements." The worldly maintenance was the presentation to the vicarage of Craubrook in lient, of which the archbishop was patron. This mas in 1616. He lad received his education at Cambridge, where he proceeded M.A., and was afterwards incorporated at Oxford. In 1639 , in the epistle to the reader of his most noticcable book historically, his Triall of our Churci-Forsakers he tells us, "I have lived now, by Giud's gratious dis pensation, above fifty ycars, and in tho place of ins allotment two and twenty full." The former date carries us back to 1588-89, or jerrhaps 1587-88-the
"Armada" Year-as his birth-time; the latter to 1616-17 (ut supra). In his Bee Thankjull London and her Sisters (1626), be describea himself as formerly "assistant to a reverend divine now with God," and the name on the margin is "Master Haiward of Wool Church." This was doubtless previous to his going to Cranbrook. Very remarkable and effective was Abbot's ministry at Cranbrook, where the father of Phineas and Giles Fletcher was the first " leformation" pastor, and which, relatively small as it is, is transfigured by being the birth-place of the poet of the "Loeusta" and "The Purple Island." His parishioners were as his own "sons aud daughters" to him, and by day and night he thought and felt, wept and prayed, for them and with them. He is a noble specimen of the rural clergyman of his age. Puritan though he was in his deepest convictions, he was a thorough Churchman as teward Nonconfornists, e.g., the Bromnists, with whom he waged stern warfare. He remained until 16 ± 3 at Cranbrook, and then chose the very iuferior living of Southwick, Hauts, as between the one and the other, the Parliament deciding against pluralities of eeclesiastical offices. Succeeding the "extruded" Udall of St Austine's, Abbot continued there until a good old age. In 1657, in the Warning-piece, he is described as still "pastor of Austine's in London." He disappears silently between 1657-8 and 1662. Rubert Abbot's books are distinguished from many of the Puritaus by their terseness and variety. (Brook's Puritans, iii 182, 3; Walker's Sufferings; Wood's Athence (Bliss); Catalogus Impressorum Librorum in Bibliotheca Bodleiana, s.v.; Palmer's Nonconf. Mem., ii. 218.)
(A. B. G.)

ABBOTSFORD, the celebrated residence of Sir Walter Scott, situated on the south bonk of the river Tweed, about three miles above Melrose. The nucleus of the property was a small farm of 100 acres, with the "inharmonious designation" of Clarty Hote, acquired by Scott on the lapse of his lease (1811) of the neighbouring house of Ashestiel. It was gradually increased by various acquisitions, the last and principal being that of Tofttield (afterwards named Huntlyburn), purchased in 1817. The present newhouse was then commenced, and was completed in 1824. The general ground-plan is a parallclogram, with irregular outlinesoue side overlooking the Tweed, and the other facing a courtyard; and the general style of the building is the Scottish baronial. Scott had only enjoyed his new residence one year when (1825) he met with that reverse of fortune (connected with the failure of Ballantyne and Constable), which involved the estate in debt. In 1830, the library ${ }^{1}$ and museum were presented as a free gift by the crediters; and after Scott's death, which took place at Abbotsford in September 1832, a committee of friends subscribed a further sum of about $£ 8000$ towards the same object. The property was wholly disencumbered in 1847, by Mr Cadell, the publisher, accepting the remaining claims of the family over Sir Walter Scott's writings in requital of his obligation to obliterate the heritable bend on the property. The result of this transaction was; that not only was the estate redcemed by the fruit of Seott's brain, but a handsome reoidue fell to the publisher. Seott's only son Walter (Lieutenant-Colonel 15th Ifussars) did not live to enjoy the froperty, having died on his way from India in 1847. Its subsequent pessessors have been Scott's son-in-law, J. G. Lockhart, and the latter's son-in-law, J. R. Hope Scott, Q.C., whose daughter (Scott's greatgranddaughter) is the present proprietor. Mr Loekhart died at Abbotsford in 1854.-Seo Life of Scott, by J. G. Lockhart; Albotsford and Newstead Abley, by Washington Irving; Abbotsford Notanda in Gentleman's Mag.,

[^2]April and May 1869; The Lands of Scott, by James F. Hunnewell, cr. 8vo, 1871; Scott Loan Exhibition Cats logue, 4 to, 1871.

ABBOTSFORD CLUB, one of the principal printing clubs, was founded in 1834 by Mr W. B. D. D. Turnbull, and named in honour of Sir Walter Scott. Taking a wider range than its predccessors, the Bannatyno and Maitland Clubs, it did not confine its printing (as remarked by Mr Lockhart) to works connected with Scotland, but admitted all matcrials that threw light on the ancient history of literature of any country, anywhere described or discussed by the Author of Waverley. The club, now dissolved, con. sisted of fifty members; aud the publications extend to 31 vols. quarto, issued during the years 1835-18G4.

ABBREVIATION, a letter or group of letters, taken from a word or words, and employed to represent them for the sake of brevity. Abbreviations, both of single words and of phrases, having a meaning more or less fixed and recognised, are common in ancient writings and inscrip tions, and very many are in use at the present time. A distinction is to be observed between abbreviations and the contractions that are frequently to be met with in old manuseripts, aud even in carly printed books, whereby letters are dropped out here and there, or particular colloeations of letters represented by soinewhat arbitrary symbols The commonest form of abbreviation is the substitution for a word of its initial letter; but, with a view to prevent ambiguity, one or more of the other letters are frequently added. Letters are olten doubled to indicate a plural or a superlative.
I. Classical Abbreviations.-The followiug list contains a selection from the abbreviations that occur in the writings and inscriptions of the Romans:-
A. Absolvo, Rdilis, Es, Ager, Ago, Aio, Amicus, Annus, Antiquo, Auctor, Auditor, Augustus, Aulus, Aurum, Aut.
A. A. As alienum, Ante audita, A pud agrum, Aurumargentum

AA. Augusti. AAA. Augusti tres.
A.A.A.F.F. Auro argento ære dando feriundo. ${ }^{1}$
A.A.V. Alter ambove.
A.C. Acta causa, Alius civis.
A.D. Ante dicm; e.g., A.D.V. Ante dicm ruintum.
A.D.A. Ad dandos agros.

ED. Edes, Edilis, Edilitas.
EDI. and AIDI. Nimilius, Emilia.
ER. Arariurn. ARP. Are publico.
A.F. Actum fide, Auli filius.

AG. Ager, Ago, Agrippa.
A. G. Animo grato, Aulus Gellius.
A. L. A. and A. L. E. Arbitrium litis :estiwhate-
A.M. and A.MILL. Ad milliarium.

AN. Aniensis, Annus, Ante.
ANN. Annales, Anni, Annoni.
ANT. Ante, Antonius.
A.O. Alii omnes, Amico optimo.

AP. Appius, Apud.
A.P. Ad pedes, सdilitia potestate.
A.P.F. Iuro (or argento) publico feriundo. -
A.P.M. Amico posuit monumentum, Annorum plus ninus,
A.P.R.C. Anno post Lomam conditam.

ARG. Argentum.
Al. V. V.D. D. Aram votam volens dedicavit, Arma votiva douu dadit A T. A tergo. Also A TE. and A TER.
A.T.M.D.O. Aio te mihi dare opertere.

AV. Augur, Angustus, Aurelius.
A.V. Annos vixit.
A.V.C. Ab urbe condita.

AVG. Augur, Angustus.
AVGG. Augusti (generally of two). AVGGG. Augusti trea
AVT.PR.I. Auctoritas nrovincio Romanorum.
B.
B. Balbius, Balbus, Beatus, Bene, Boneficiarius Beneficiom, Bonus, Brutus, Bustum.
B. for V. Berna, Bivus, Bixit.
B. A. Lixit annos, Bonis auguriis, Bonus amabilis.
${ }^{1}$ Describing the fanction of the friwnvirs monetales

BR. or B. B. Bene bene, i.e., optime, Optimus.
B.D. Bonæ dcæ, Ronum datum.
B.DD. Bonis deabus.
B. D.S.M. Bene de se merenti.
B. F. Bona femina, Bona tides, Bona fortuna, Bonum factım.
H.il. Bona femina, Boda filia.
B. H. Bona hereditaria, Boaorum heres.
13. 1. Bonum judicium. B. 1.1. Boni judicis judicium.
B. M. Beatre momorix, Beno mereuti.
B.N. Bona nostra, Bonum nomen.

BN. H.I. Bona hic invenics.
I.P. Kona paterna, Bonorum potestas, Bonum publicem.
B.Q. Bene quiescat, Bona quænita.
B.RP.N. Lono reipublice natus.

BRT. Britannicus.
B.'T. Bonorum tutor, Brevi tempore.
B. V. Bene vale, Bene vixit, Bonus vir.
B.V.F. Balnea vina Veuus.

BX. Bixit, for vizit.

C.

C. Casar, Caius, Caput, Causa, Censor, Civis, Cohors, Colonia, Comitialis (dics), Condemno, Consul, Cum, Curo, Custos.
O. Caia, Centuria, Cum, the prefix Con.
C. B. Civis bonus, Commune bonum, Conjugi benemerenti, Cui
C.C. Calumaire causa, Causa corraita, Conjuǧi carissımæ, Con. silium cepit, Curix consulto.
C.C.C. Calumniæ cavendæ causâ.
C.C.F. Cæsar (or Caius) curavit faciendum, Cajus Caii filius.
CC.VV. Clarissimi viri.
C.D. Cresaris decreto, Caius Decins. Comitialibus diebus.

CLS. Ceasor, Censores CESS. Censores
C.F. Causa fiducie, Conjuri fecit, Curavit faciendum,
C.H. Custos heredum, Custos hortorum.
C. I. Caius Julius, Consul jussit, Curarit judez
CL.. Clarissimus, Claudius, Clodius, Colonis
CL. V. Clarissimus vir, Clypeum vorit.
C. M. Caius MLarius, Causa mortis.

CN. Caæus.
COH Coheres, Cohors.
COL. Collega, Collegjum, Colonia, Columna.
COLL. Collega, Coloni, Coloniæ.
COM. Comes, Comitium, Comparatum.
CON. Conjux, Consensus, Consiliarius, Consul, Consularis.
COR. Cormelia (tribus), Cornelius, Coroda, Corpus.
COS. Consiliarins, Consul, Consulares. COSS. Consules.
C.P. Carissimus or Clarissimus puer, Ciris publicus, Curavit ponendum.
C. R. Caius Rufus, Civis Romanus, Curavit reficiendum.

CS. Cxsar, Communis, Consul.
C. F. Clarissimus or consularis vir.

CVR Cura, Curator, Curavit, Curia.
D.
D. Dat, Dedit, \&c., De, Decimus, Decius, Decretum, Decurin, Deus, Dicit, icr., Dies, Dirus, Dominus, Domus, Donum.
D.C. Decurio coloniæ, Diebus comitialibus, Divus Cæsar.
D.D. Dea Dia, Decurionum decreto, Dedicavit, Deo dedit, Donn dcdit.
D.D.D. Drtum decreto decurionum, Dono dedit dedicavit.
U.E.R. De eare.

LES. Desigratus.
D. I. Dedit imperator, Diis immortalibus, Diis inferis.
D.I.M. Dco iuvicto Mithre, Diis inferis Manibus.
D. M. Deo Magno, Dignus memoria, Diis Manibus, Dolo malo.
D.O.M. Deo Optimo Maximo.
D.P.S. Dedit proprio oumptu, Deo perpetuo sacrum, De pecunia 6иа.

L.

E. Ejus, Eques, Erexit, Ergo, Est, Et, Etiam, Ex

EG. Ager, Egit, Egregius.
F. M. Egregix memorix, Ejusmodi, Erexit monumentum.

EQ.M. Equitum magister.
E.R.A Ea res agitur.

F.

F. Fabius, Facere, Feoit, \&ic., Familia, Fastus (dies), Felix. Femina, Fides, Filius, Elamen, Fortuna, Frater, Fuit, Functus.
F.C. Faciendum curavit, Fidei commissum, Fiduciæ causa,
F.D. Fidem dedit, Flamen Dislis, Fraude donavit.
F.F.F. Ferro flamma fame, Fortior fortuna fato.

FL. Filius, Flamer, Flaminius, Flavius.
f. L. Favete liaguis, Fecit libens, Felix liber.

FR Forum, Fronte, Frumentarius.
F.R. Forum Romanum.
G. Gaius ($=$ Caius), Gallia, Gandium, Gellius, Gemina, Gens, Gesta, Gratia.
G.F. Gemina fidelis (applied to a legion). So G.P.F. Gemina pia fidelis.
GL. Gloria.
GN. Ccoius, Gens, Genus, Gaæus ($=$ Carrs).
G. P.R. Genio populi Romani.

1 I.
H. Tahet, s Icres, IFic, Momo, Honor, IIora.

HER. Heres, Hercnnius. 11 ER , and HERC. Hercnleas
H. L. Hac lege, Hoc loco, Honesto loco.
H.M. Hoc monumentum, Ilonesta mulier, Hora maıa,
H.S.E. Hic sepultus est, Jic situs est.
H. V. Hæc urbs, Hic vivit, Honeste vixit, Honestus vir.
1.
I. Immortalis, Impcrator, In, Infra, Inter, Invictus, Ioso

Isis, Judex, Julius, Junius, Jupiter, Justus.
1A. Jani, Intru.
1.C. Julius Cicsar, Juris Consultum, Jus civile.

1D. Ilem, Ilus, Interdum.

1. D. Inferis diis, Jovi dedicatum, Jus licendum, Jussu Dei
1.D. N. Tovi deo marno.
1.F. Inforo, In fronte.
2. H. Jacet hic, In honestatem. Justus liomo.

1M. Imago, Immortalis, Immunis, Impensi.
IMP. Imperator, Imperium.
1.O. M. Jovi ortimo maximo.
1.P. In publico, Intra prorinciam, Justa persona.
I.S.V.I. Impensa sua vivus posuit.
K.
K. Kroso, Caia, Calumnia, Caput, Carus, Castran
K., KAL., and KL. Ka!endx.
L. Lelius, Legio, Lex, Libens, Liber, Libra, Locus, Lollite, Lucius, Ludus.
LB. Libens, Liberi, Libertus. .
L.D.D.D. Locus datus decreto decurionum.

LEG. Legratus, Legro.
L1B. Liber, Liberalitas, Libertas, Libertus, Librarius.
LL. Lerges, Libentissime, Liberti.
L.M. Jibens merito, Locus monumenti.
I.S. Laribus sacrum, Libens solvit, Locus saccr.

LVD. Ludus.
LV.P.F. Ludos publicos fecit.
M.
M. Magister, Magistratus, Marnus, Manes, Marens, Maring Marti, Mater, Mcmoria, Mensis, Miles, Morumentuin, Mortuns, Ducius, Mulier.
M'. Manius.
M.D. Magno Deo, Manibus diis, Matri deum, Merenti delit.

MFS. Mensis. MESS. Menses.
M.F. Nala fides, Marci filius, Monumentum fecit.
M. I. Matri Jdacæ, Matri Isidi, Maximo Jovi.

MNT. and MON. Moneta.
M.P. MaIe positus, Monymentum posuit.
M.S. Manibus sacrum, Memories sacrum, Manu scripturn.

MVN. Municeps, or municipium: so also MN., MV., and MVN]C.
s.V.S. Narti ultori sacrum, MIcrito votum solvit.

$$
\mathrm{N}
$$

N. Natio, Natus, Nefastus (lies), Nepos, Neptunus, Nero, Nomen, Non, Nonæ, Nostcr, Novis, Numen, Nume rius, Numerus, Nummus.
NF.F. Nepos, Neptuaus.
N.F.C. Nostræ fidei enmmissum.
N.I. Non licet, Non liquet, Non longe.
N.M.V. Nobilis memorix vir.

NN. Nostri. NN., NNO., and NNR. Nostromm.
NOB. Nobilis. NOB., NOBR., and NOV. Novembris.
N.P. Nefastus primo (i.e., priore varte diei), Non potesh
0.
O. Ob, Officium, Omnis, Oportet, Optimus, Opns, Ossa

OB. Obiit, Obiter, Orbis.
O.C.S. Ob cives scrratos.
O.II.F. Omuibus honoribus functus.
O.H.S.S. Ossa bic sita sunt.

OR. Hora, Ordo, Ornamertum.
O.T.B.Q. Ossa tua bene quiescant.
P.
P. Pars, Passus, Patcr, Patronus, Par, Perpctans, Pes, Pins, Fiebs, Pondo, Populus, Post, 1'osuit, Preses, Proctor, Primus, Pro, Provincia, Publicus, Publius, Pucr.
P.C. Factum conventum, Patres conscripti, Pecunia constitute,
P.F. Pia fidelis, Fins fellx, Promissa fides, Publii filius.
P.M. Pia memorix, Plus minus, Pontifex maximus.
P.P. Pater patratus, Pater patrix, Pccunia publica, Prepositus, Primipilus, Proprator.
PR. Preses, Pretor, Pridie, Princens.
Y.R. Permissu reipublice, Populus Romanus.
P.R.C. Post homam conditam.

PR.PR. Prefectus pretorii, 1'ropretor.
P. S. Pccunia sua, Fleliscitum, Proprio sumptu, Publice saluti.
P.V. Pia victrix, Præfectus urbi, Irestantissimus vir.
Q.
Q. Questor, Quando, Quantus, Que, Qui, Quinquennalis, Quintus, Quirites.
Q.D.R Qus de re.
Q.I.S.S. Quæ infra scripta sunt ; so Q. S. S. S. Qux suyra, \&c.

QQ. Quæcunque, Quinguennalis, Quoque.
U.11. Questor reipublice
R.
R. Recte, Res, Respublica, Retro, Rex, Ripr, Roma, Romanus, Rufus, Rursus.
R.C. Romana civitas, liomanus civis.

RESP. and.RP. Respublica.
RET. I'. and RP. Retro pedes.

S.

8 Sacrum, Scriptus, Semis, Senatus, Sepultus, Scrvius, Servus, Sextus, Sibi, Siue, Situs, Solus, Solvit, Sub, Suus.
SAC.' Sàcerdos, Sacrificium, Sacrum.
S.C. Senatus consultum.
S.Di Sacrum diis, Salutem dicit, Senntus decreto, Sententiam dedit.
S.D.M. Sacrum diis Manibus, Sine dolo molo.

SER. Serrius, Servus.
8.E.T.L. Sit ei terra levis.
$\$ N$. Senatus, Sententia, Sine.
S. P. Sacerdos perpetua, Sine pecunia, Sua pccunia
S.P.Q.R. Scnatus populusque Romanus.
S.S:- Eanctissimus senatus, Supra scriptum.
S. Y.B.E.E.Q.V. Si fales beno est, ego quidem valco.
T.
T.' Serminus, Testamentum, Titus. Tribunus, Tu, Turma, Tutor.
TR., TI., und TIB. Tiberius.'
TR., TR., and TRB. Tribunus.
T.F. Testamentum fecit, Titi filius, Titalum fecit, Titus Flavius.
TM. Terminus, Testamentum, Thermx.
T.P. Terminum posuit, Tribunicia p̌itestate, Tribunus plebis.

TVL. Tullius, Tullus.
V.
V. Urbs, Usus, Uxor, Valc, Verba, Vestalis, Vester, Vir, Virus, Vixit, Volo, Votum.
V.A Veterano assignatus, V'ixit annos.
Y.C. Valo conjux, Vir clarissimus, Vir consularis.
V.E. Verum etiam, Vir egregius, Visum est.
V.F. Usus fructus, Verba fecit, Vivus fecit.
$\nabla 1$ Urbis prefectus, Vir perfectissimus, Vinus posuit.
V.R. Urbs Roma, Uti rogas, Votum reddidit.
II. Medleval Abereviations.-Of the different kinds of abbreviations in use in the middle ages, the following are examples:-
A.M. Ave Maria
B. P. Beatus Paulus, Beatus Petrus.
CC. Carissimus (also plur. Carissimi), Clarissimus, Circum.
D. 1 Deus, Dominicus, Dux.
D. N.PP. Dominns noster Papa.

FF. Felicissimus, Fratres, Pandecte (prob. for Gr. II).
1.C. or I.X. Jesus Christus.
1.D.N. In Dei nomine.

KK. Karissimus (or -mi).
MM. Magistri, Martyres, Matrimonium, Meritissimıs.
O.S.B. Ordinis Sancti Benedicti.

PP. Papa, Patres, l'iissimus.
R.F. Rex Francorum.
R.P.D. Reverendissimus Pater Dominus.
S.C.M. Sacra Cresarea Majestas.
S.M. E. Sancta Mater Eeclesia.
S. M. M. Saneta Mater Maria.
S.1.I. Sanctum liomanum Imperium.
S. Y. Sanctitas Vestra, Sancta Virgo.

Y TVenerabilis, Venerandus.
Y.R.P. Vestra Reverendissima Paternitas,
III. Abbreviations now in use. - The import of these
will often he readily undarstood from the conuection in
which they occur. Thero is no cceasion to explain here the common abbreviations used for Christian names, books of Scripture, months of the year, points of the compass, grammatical and mathematical terms, or familiar titles, liko " Mr," \&c.

The ordinary abbreviations, now or recently in use, may be conreniently classified under the following headings :-

1. Abbreviated Titles and Designations.

A.A. Associato of Arts.
A.13. Able-bodicd seaman.
A.M. (Artium Magister), Master ol Arts.
A. 1.A." Associate of the Roya! Academy.
A.R.S. A. Associate of the Royal Scottish Academy.
B. A. Bachelor of Arts.
B.C.L. Bacholor of Civil Law.
13. D. Rachelor of Divinity.
B.LL. Bachelor of Laws.
B.Sc. Bachelor of Scienco.
C. Chairman.
C. A. Chartered Accountant.
C.13. Companion of the Lath.
C.E. Civil Engiucer.
C. ML. (Chirurgice Magister), Master in Surgery.
C.M.G. Companion of St Mlichaei and St George
C.S.I. Companion of the Star of India
D.C.L. Doctor of Civil Law,
D.D. Doctor of Divinity
D. Lit. Doctor of Literature.
D.M. Doctor of Mediciac [Oxford \}
D.Sc. Doctor of Scicnce.

Ebor. (Eboracensis), of Jork ${ }^{1}$
F.C.S. Fellow of the Chemical Society.
F.D. (Fidei Defensor), Defeader ol the Faith.
F.F.P.S. Fellow of the Faculty of Physicians \& Surgcons [Glesgow.]
F.G.S. Fellow of the Geological Society.
F.K.Q.C.P.I. Fellow of King and Quecn's Collego of Physicises in Ircland.
F.L.S. Fellow of the Linnæan Society.
P. M. Field Marshal.
F.P.S. Fellow of the Philological Society.
F.R.A.S. Fellow of the Royal Astronorical Society.
F.R.C.P. Fellow of the Royal College of Plysicians.
E.R.C.P.E. Fellorr of the Royal College of Physicians of Elion burgh.
F.R.C.S. Fcllow of the Royal Collego of Surgeons.
F.1.G.S. Fellow of tho Royal Geographical Society.
F.R.S: Fellow of the Royal Socicty.
F.R.S.E. Fellow of tho Royal Socicty of Edinburgh.
F. R.S.L. Fellow of the Royal Society of literature.
F.S.A. Fellow of the Society of Autiquaries.

1יS.S. Fellow of the Statistical Society.
F.ZS. Fellow of the Zoological Society.
G.C.B. Knight Grand Cross of the 1hath.
G.C.II. Knight Grand Cross of Hanover.
G.C.MI. G. Knight Grand Cross of St Michacl and St Georgo.
G.C.S.I. Knight Grand Commander of the Star of India-
II. R. H. Ilis (or Her) Royal Highncss.
J.P. Justice of the Рeace.
J.U.D. (Juris utriusque Doctor), Doctor or Civil and Canou I.aw.
K.C.S.I. Kight Commander of the Star of India.
K.C.B. Kinight Commander of the Bath.
K.G. Kinight of the Garter.
K.P. Knight of st Patrick.
K.T. Knight of the Thistle.
L.A.II. Licentiate of the Apothecaries' Hall
L.C.J. Lord Chief Justice.

LL.B. (Legum Baccalaurcus), Bachelor of Laws.
LL. D. (Legurm Doctor), Ductor of Laws.
LL. M. (Legum Magister), Master of Larss.
L. R.C.P. Licentiate of the Royal College of Physiciabs
L.. R.C.S. Licentiate of the Royal College of Surgeons.
L.S.A. Licentiate of the Apothecaries Society.
M.A. Master of Arts.

1. B. (Medicinc Baccalaurcus), Bachelor of Dedieine.
M.C. Nember of Congress.
M.D. (Meclicinos Doctor), Doctor of Medicine.
M.I'. Dlember of Parlinment.
M.R.C.P. Member of the Royal Coliego of Physicinds.
II. R.I.A. Member of the Royal 1 rish Academy.

Mus. B. Bachelor of Music.
${ }^{1}$ An arehbishop or bishop, in writing his signature, substitutes for his auruaros the name of his ses; thus the prelates of Canterbury, York, Orford, London, \&c., sabscribe themselves A. C. Cantuar., W. Ebor., J. F. Oxon., J. London. \&\&.

Mas. D. Doctor of Mlusic
N.P. Notary Public.
P.C. Privy Councillor.

Ph.D. (Philosophice Doclor), Doctor of Philosophy.
P.P. Parish Pricst.
P.R.A. President of the Royal Academy.
Q.C. Quecn's Counsel.
R. (Rex, Regina), King, Quec..
R.A. Royal Academician. Royal Artillery.
R.A.M. Royal Academy of Music.
R.E. Royal Engineers.

Reg. Frof. Heglus Professor.
R.M. Royal Marines.
R.N. Royal Navy:

S. or St. Saint.

S.S.C. Solicitor before the Supreme Courts [of Scotland].
S.T.P. (Sacrosancte Theologia Professer), Profes or of Saercd Theology.
V.C. Vice-Chancellor. Vietoria Cross.
V.G. Vicar-General.
V.S. Veterinary Surgeon.
W.S. Writer to the Signet [in Scotland]. Equivalent to Attorney.
2. Abbreviations devoting Monies, Weights, And Measures:-1

ac.		
bar.	barrel.	(money).
bus.	bushel.	lb. or ib. (libra), pound (weight).
c.	cent.	m. or mi. mile; minute.
e. (or	cub.) ft. \&c. cubic foot, sc.	m. minim. mo. month.
cwt.	hundredweight.	да. nail.
d.	(denarius), penny.	0z, ounce.
deg.	degree.	pk. peek.
dr.	drachm or dram.	ro. pole.
dwt.	pennyweighi.	pto pint.
f.	frane.	4. (quadrans), furthing.
f.	florin.	qr. - quarter.
ft.	foot.	qt. quart.
fur.	furlong.	ro. rood.
gra.	gallon.	Rs. ${ }^{2}$ rupees.
gr.	grain.	8. or / (solidus), slilling.
hi: or	hr. hour.	s. or sec. -second.
hid.	hogshead.	se. or ser. scruple.
in.	inch.	sq. ft. \&c. square foot, \&c.
kilo.	kilometre.	st. * stone.
		yd. yard.

3. Miscellaneous Abbreviations.

A. Accepted.
A.C. (Ante Christum), Before Christ.
ace., a/c., or acct. Account.
A. D. (Anno Domini), In the year of our Lord.
A. F.1.0.U. Austriæ est imperare orbi universo, ${ }^{5}$ or Alles Fritrei.th Ist Oesterreich Unterthan.
Et. or شtat. (Etatis [anno]), In the year of his are.
A.H. (Anno Hegira), In the year of the Hegira (the Mohammedian ега).
A. M. (Anno Mundi), In the year of the world.
A. M. (Ante meridiem), Forenoon.

Anon. Anonymous.
A.U.C. (Anno urbis conditos), In the year from the mililing of the city (i.e., Rome.)
B.C: Before Christ.
C. or Cap. (Caput), Chapter.
©. Centigrade (or Celsius's) Thermometer.
rent." (Centum), A hundred, firczucntly £100.
(I. (Confer), Compare.

Ch. or Chap. Chapter.
Co. Company. County.
Cr. Creditor.
curt. Current, the present month.
19. G. (Dei gratia), By the grace of God.

Do. Ditto, the same.
D.O.M. (Dco Optimo Maximo), To Cod the Best and Greatest.

1r. Debtor.
D.V. (Deo volente), God willing.

[^3]eg. (Exempli gratia), For example.
ect. or \&c. (Et catcra), And the rest; and 80 forth.
Ez. Example.
F. or Fahr. Falrecheit's Thermometer.

Fee. (Fecit), lle made (on did) it.
f. Flourished

Fo. or Fol, Folio.
f.o.o. Free on board.
G.P.O. General Post Office.
H.M.S. Her Dlajesty's Ship.
lb. or libid. (Ibidem), In tho samn jiaer.
ld. (Idem), The same.
i.e. (Id est'), That is.'
1.H.S. (Jesus Hominym Salvalor), Jesus the Sariour of men.
lnf. (İnfra), Below.
inst. lustant, the present month.
1.0.U. I owe you.
i.q. (Idem quod), The eame as.
x. т. λ. (x ai: rà̀ λ ouт α), Et coctcra, and the rest.
L. or Lib. (Liber), Book.

Lat. Latitude.
1.c. (Laco citalo), In the place cited.

Lon. or Long. Longitude.
1s.S. (Locus sigill,), The place of the seal.
Mem. (Memento), Kameraber, Memorandum.
MS. Manuseript. MSS. Manuscriptal.
N.B. (Nota bene), Mark well ; take notice.
N.B. North Britain (i.e., Scotland).
N.D. No date.
nem. con. (Nemine contrcdiccnte), No oute contradictingr
No. (Numero), Number.
N.S. New Style.
N.T. New Testament.
ob. (Obiit), Died.
Obs. Chsolete
U.H.M.S. On Ker Majesty's Service.
O.S. Old Style.
O.T. Old Testament.
P. Page. Pp. Pages.
(Pcr), For ; e.g., $\% \mathrm{lb}$, For ons pound.
Pinx. (Pinxil), He painted it.
P.M. (Post meridient), Afternoon.
P.O. Post Ofice. P.O.O. Post Office Otdcr.
P.P.C. (Pour prendre congé), To take leave.
P.R. Prize-ring.
prox. (Proximo [mense]), Next montl.
P.S. Postscript.
l't. Part.
f.t. or pro. tem. (Pro lempore), For the time.
P.T.O. Please turn over.
Q., Qu., or Qy. Query ; Question.
q.d. (Quasi dicut), As if he slould say; as much as to eny.
Q.E.D. (Quod erut dcmonstranduh), which was to he demonstrater
Q.E.F. (Quod erat faciendum), which was to be donc.
q.s. or quant. suff. (Q'uentum suflicil), As much as is sufficitut.
q. ャ. (Quod vidc), Wlich see.

1. or B. (Recipc), Tuke.
$\sqrt{ }(=r$. for radix), the sign of the square root.
I.1.P. (Requiescat in poce S), May he dest in peace !
sc. (Scilicct), Namely; that is to say.
Sc. or Seulp. (Sculpsit), He engraved it.
S.D.U.K. Society for tho Dilliusion of Usefnl Iinowledge.
seq. or s \uparrow., seqq. or sqๆ. (Scquene, sequcutiu), the fullowing-
s. p. (Sine prolc), Without ollsjuing.
S.P.G. Sociaty for the Propagation of tho Gospel.

Sup. (Supra), Above.
s. v. Sub voce), Under the word (or heading).
T.C.D.Trinity College, Dullin.
ult. (Ultimo [mense]), Last month.
U.S. United States.

จ. (Versus), Against.
v. or vid. (Vide), See.
viz. (Videlicet), Namcly.
V.R. (Victoria Regine), Victoria tho Queen.

Xmas. Cluristmas [This \mathbf{X} is a Greck letler, correspnnding to Chl
(See Grevius's Thesantus Antiquitatum, 1694, si7.; Nicolai's Tractatus de Siglis Veterum; Mommsen's Corpus Inscriptionum Latinarum, 1863, s77.; Natalis de Wailly's Palóographie, I'aris, 1838; Aph. Chassant's Putóngraphie, 1854, and Dictionnaire des Alvóviations, 3d ed., 1866. A manual of the abbreviations in current use is a desideratum.)

ABBREVIATORS, a body of writers in the Papal Cbancery, whose business is to sketch out and prepare in due form the Pope's bulls, bricfs. and consistorial decrces

They aro first mentioned in a bull of Benedict iIIL, early in the 14 th century. Their number is fixed at seventytwo, of whom twelve, distinguished as de parco majori, bold prelatic rank; twenty-two, de parco minori, are clergymen of lower rank; and the remainder, cxaminatores, may be laymen.
ABDALLATIF, or Abd-el-Latif, a celebrated physician and traveller, and one of the most voluninous writers of the East, was born at Baghdad in 1162 An interesting memoir of A bdallatif, writtea by himself, has been preserved with additions by Ibn-Abu-Osaiba, a contemporary. From that work we learn that the higber education of the Fouth of Baghdad consisted principally in a minute and careful study of the rules and principles of grammar, and in their committing to memory the wholo of the Koran, a treatise or two on philology and jurisprudence, and the choicest Arabian poctry. After attaining to great proficiency in that kind of learning, Abdallatif applied himself to natural philosophy and medicine. To enjoy the society of the learned, he went first to Mosul (1189), and afterwards to Damascus, the great resort of the eminent men of that age. The chemical fooleries that engrossed the attention of some of these had no attraction for him, but be entered with eagerness into speculative discussions. With letters of recommendation from Saladin's rizier, he visited Egypt, where the wish he had long cherished to cunverse with Maimonides, "the Eagle of the Doctors," was gratifed. IIc afterwards formed one of the circle of learned men whom Saladin gathered around him at JeruEalem, and shared in the great sultan's favours. He taught medicine and philosophy at Cairo and at Damascus for a number of years, and afterwards, for a shorter period, at Aleppo. His love of trarel led him in his old age to risit different parts of Armenia and Asia Minor, and he was aetting ont on a pilgrimage to Mecea when he died at Baghdad in 1231. Abdallatif was undoubtedly a man of great knowledge and of an inquisitive and penctrating nind, but is said to have been somewhat vain of his attainments. Of the numerons works-most of them on medi-cine-which Osaiba ascribes to him, one only, the Account of Fighnt, appears to be known in Europe. The manuscript of this tork, which was discovered by lococke the Orientalist, is preserved in the Bodleian Library. It was translated into Latin by Professor White of Oxford in 1800, and into French, with very valuable notes, by De Sacy in 1810. It consists of two parts: the first gives a general view of Egypt ; the second treats of the Nile, and contains a vivid description of a famine caused, during the author's residence in Egypt, by the river failing to overflow its banks. The work gives an authentic detailed account of the state of Egypt during the middlo ages.

ABD-EL-KADER, celcbrated for his braro resistance to the advance of the French in Algeria, was born rear Mascara, in the early part of the year 1807. His father was a man of great influenco among his countrymen from his high rank and learning, and Abd-el-Kader himself at an carly age acquired a wide reputation for wisdom and piety, as well as for skill in borsemanship and other manly exercises. In. 1831 he was chosen Emir of Mascara, and leader of the combined tribes in their attempt to check the growing puwer of the French in Africim His efforts were at first successful, and in 1834 he concluded a treaty with the French general, which was very favourable to his cause. This treaty was broken in the succeeding year; but as the war that followed was mainly in favour of the Arabs, peace was renewed in 1837. War again broko out in 1839, and for more than a jcar was carried on in a very desultory manner. In 1841, however, Marshal Bugeaud assumed the chief command of the French force, which numbered nearly 100,000 men. The war was now oarried on with grayt vigour, and _.bd-el-Kader, after a
most determined resistance, surrendered bimself to the Wue d'Aumale, on the 22 d December 1847. The promise, that he would be allowed to retire to Alexandria or St Jean d'Acre, upon the faith of which Abd-el-Kader had given himself up, was broken by the French government. IIe was taken to France, and was imprisoned first in the castle of l'au, and afterwards in that of Amboisc. In 1852 Louis Napolcon gave him his liberty on condition of his not returning to Algeria. Since then he resided successively at Broussa, Constantinople, and Dannascus. Ho is reported to have died at Mecca in October 1873. Sce Algeria.

ADDERA (1.), in Ancient Geography, a maritime town of Thrace, castward from the mouth of the river Nestus. Mythology assigns the founding of the town to Irercules; but IIcrodotus states that it was first "colonised by 'Timesias of Clazomenx, whom the Thracians in a short time expelled. Tather more than a century later (B.C. 541), the people of Scos recolonised Abdera. The torm soon became one of considerable importance, and in b.c. 408, when it was reduced ly Thrasybulus tho Athenian, it is described as in a very flourishing condition. Its prosperity was greatly inpaired by its disastrous war with the Triballi (circa b.c. 376), and very little is Leard of it thereafter. The Abderite, or Abderitani, were proverbial for their want of wit and judgment; yet their city gave birth to several eminent persons, as l'rotagoras, Democritus, and Anaxarchus the philosophers, Hecatæus the historian, Nicænctus the poct, and others.

ABDERA (2.), a tom in Misprania Betica, founded by the Carthaginians, on the south coast, between Mralaca and Prom. Charidemi. It is probably represented by the modern Adra.

ABDICATION, the act whereby a person in office renounces and gives up the same before the expiry of the time for which it is leeld. The word is seldom used except in the sense of surrendering the supreme power in a state. Desputic sovereigns are at liberty to divest themselves of their powers at any time, but it is otherwise with a limited monarehy. The throne of Great Britain cannot be lawfully abdicated unless with the consent of the two Mouses of Par. liament. When James II., after throwing the Great Seal into the Thames, fled to France in 1688 , be did not formally resign the crown, and the question was discussed in Parlia. ment whether he had forfeited the throne or had abdicated. The latter designation was agreed on, for in a full assembly of the Lords and Commons, met in convention, it was resolved, in spite of James's protest, "that King James II. laving endeavoured to subrert the constitution of the king. dom, by breaking the original contract between king and people, and, by the advice of Jesuits and other wicked ${ }^{\text {'ersona, }}$ haring violated the fundamental laws, and having witlsdgawn himself out of this kingdom, has abdicated 1 he government, and that the throne is thereby vacant." The Scotch Parliament pronounced a decree of forfeiture and deposition. Among the most memorable abdications of antiquity may be mentioned that of Sulla the dictator, r.G. 79, and that of the Emperor Diocletion, A.D. 305. The following is a list of the more important abdications of latertimes:-

ABDOMEN, in Anatomy, the lower part of the trunk of the body, situated between the thorar and the pelvis. See Anatomy.

AbDOMINALES, or Abdoninal Fisees, a sub-division of the Malacopterygious Order, whose ventral fins are placed behind the pectorals, under the abdomen. The typical abdominals are carp, salmon, herring, silures, and pike.

ABDUCTION, a law term denoting the forcible or fraudulent removal of a person, limited by custom to the case where a woman is the victim. In the case of men or children, it has been usual to substitute the term Kidrapping (q.v.) The old severe laws against abduction, generally contemplating its object as the possession of an heiress and her fortune, have been repealed by 24 and 25 Vict. c. 100 , s. 53 , which makes it felony for any one from motires of lucre to take away or detain against her will, with intent to marry or carnally know her, \&c., any woman of any age who has any interest in any real or personal estate, or is an heiress presumptive, or co-heiress, or presumptive next of kin to any one having such an interest ; or for any one to cause such a woman to be married or carnally known by any other person; or for any one with such intent to allure, take away, or detain any such woman under the age of twenty-one, out of the possession and against the will of her parents or guardians. By s. 54, forcible taking away or detention against her will of any woman of any age with like intent is felony. Even without such intent, abduction of any unmarried girl under the age of sizteen is a misdemeanour. In Scotland, where there is no statutory adjustment, abduction is similarly dealt with by practice.

ABDUL MEDJID, Sultan of Turkey, the thirty-first sovereign of the house of Othman, was born April 23, 1823, and succeeded his father Mahmoud II. on the 2d of July 1839. Mahmoud appears to Lave been unable to effect the reforms he desired in the mode of educating his children, so that his son received no better education than that given, according to use and wont, to Turkish princes in the harem. When Abdul Medjid succeeded to the throne, the affairs of Turkey were in an extremely critical state. At the very time his father died, the news was ou its way to Constantinople that the Turkish army had been signally defeated at Nisib by that of the rebel Egyptian viceroy, Mehemet Alli; and the Turkish fleet was at the same time on its way to Egyp: to be surrendered perfidiously by its commander to the same enemy. But through the intervention of the great European powers, Mehemet Ali was obliged to come to terms, and the Ottoman empire was saved. ' In compliance mith his father's

[^4]express instructions, Abdul Mcdjid set at unce about carrying out the extensive reforms to which Mahmoud had so energetically duroted himself. In November 1839 was proclaimed au edict, knowu as the Hatti-sherif of Gulhanć, consolidating and enforcing these reforms, which was supplemented, at the close of the Crimean war, by a similar statute, issued in February 1856. By these enactments it was provided that all classes of the sultan's subjects should have security for their lives and property; that taxes should be fairly imposed and justice impartially administercd; and that all should have full religious liberty and equal civil rights. Thee scheme was regarded as so revolutionary by the aristocracy and "lie cuiucatell classes (the Ulema) that at met with keen opposition, and was in consequence but partially put in force, especially in the remoter parts of the empire; and more than one conspiracy was formed against the sultan's life on account of it. Of the other measures of reform promoted by Abdul Medjid the more important were-the reorganisation of the army (1843-4), the institution of a council of public instruction (1846), the abolition of an odious and unfairly imposed capitation tax, the repression of slave trading, and various pravisions for the better administration of the public service and for the advancement of commerce. The public history of his times-the disturbances and insurrections in different parts of his dominions throughout his reign, and the great war successfully carried on ayainst Russia by Turkey, and by England, France, and Sardinia, in the interest of Turkey (1853-56)-can be merely alluded to in this personal notice. When Kossuth and others sought refuge in Turkey, after the failure of the Hungarian rising in 1849, the sultan was called on by Austria and Russia to surrender them, but boldly and determinedly refused. It is to his credit, too, that he would not alluw the conspirators against his own life to be put to death. He bore the character of being a kind and honourable man. Against this, however, must be set down his excessive extravagance, especially towards the end of his life. He died on the 25th of June 1861, and was succeeded, not by one of his sons, but by his brother, Abdul Aziz, the present sultan, as the oldest survivor of the family of Othman.

A BECKET, Thomas, Archbishop of Canterbury and Chancellor of England in the 12th century, was born ia London on the 21st of December 1118. His father, Gilbert Becket, and his mother Roesa or Matilda, were both, there can be little doubt, of Norman extraction, if indeed they themselves were not immigrants from Normandy to England. Gilbert Becket, a merchant, aud-at oue time Sheriff of London, a man of generous impulses and somewhat lavish hospitality, provided for his only child Thomas all the attainable advantages of influential society and a good education. At ten years of age Thomas thas placed under the tuition of the canons regular of Merton on the Wandle in Surrey. From Merton he proceeded to study in the London schools, then in high repute. At Perensey Castle, the seat of his father's friend Richer de l'Aigle, one of the great barons of England, he subsequently became a proficient in all the feats and graces of chivalry. From Pevensey he betook himself to the study of theology in the University of Paris. He never became a scholar, much less a theologian, like Wolsey, or even like some of the learned ccclesiastics of his own day; but his intellect was vigorous and original, and his manners captivating to his associates and popular with the multitude. His father's failure in bnsiness recalled him to London, and for three years he acted as a clerk in a lawryers office. But a man so variously accomplished could not fail to stumble on preferment sooner or later. Accordingly, about 1142, Archdeacon Baldwiv, a learaed civilian, a friend of the elder Becket, intruduced him to Theobald, Archbishop of

Canterbary, who at once appeinted hom to an uffice in the Areliepiscopal Court. His talents speedily raised lim to the archdeaconry of the see. A liecket's tact in assisting to thwart an attempt to interest the Pope in favour of the coronation of Stephen's son Eustacc, paved the way to the arihdeacon's elevation to the Chancellorship of England under Henry II., a lignity to which he was raised in 1155. As he had served Theobald the archbishop, so he served Henry the king faithfully and well. It was his nature to be loyal. Enthusiastic partisanship is, in faet, the key to nuch that is otherwise inexplicable in his subseguent conduct towards Henry. When at a later period A Fiechet was raised to the prinacy of Englaud, a dignity not of his owa seeking, he must neels quarrel with Hemry in the interest of the Pope and "for the honour of God." As Chancellor of England he appeared iu the rar of Toulouse at the head of the chivalry of England, and "who can recount," says his attendant and panegyrist Grim, "the carnage, the desolation Lie made at the heat of a strong body of soldiers? He attacked casties, and razed towns and cities to the ground; Le burned down honses and farns, and never showed the slightest touch of pity to any one who rose in insurrection against his master:" In simgle comba今 he vanquished and made prisoner the valiant Knight Engelram de Trie. Nor did A Becket the chancellorseek to quell Henry's secular foes alone. He was the able mouthpiece of the Crown in its contention with the Bishop of Chichester, who had alleged that the permission of the Pope was neccssary to the conlarring or taking away of ecclesiastical berefices; and he rigoronsly exacted scuttage, a military tax in lieu of personal service in the field, from the clergy, who accused him of "plunging a sword into the bosom of his mother the church." His pomp and munificence as chancellor were beyond precedent. In 1159 he undertook, at Henry's request, an embassy to the French Court for the purpose of aftiancing the king's cldest son to the daughter of the king of France. His progress through the country was like a trimuphal procession. "How wonderful must be the king of England himself whose chancellor travels in such state!" was on every one's lips. In I162 he was elceted Arehbishop of Canterbury, Gilbest Foliot, Dishop of Herfurd, alone dissenting, and remarking sarcastically, at the termination of the ceremony, that "the king had worked a miracle in having that day turned a layman into an urchbishop and a soldier into a saint." Ilitherto A Secket had only been in deacon's orlers, and had made no profession of sanctity of life. At the same time, there is nothing to show that his character was stained by the gross licentivnsness of the times. Now, however, he devoted himself body and soul to the service of the church. The fastidious courtier was at once transformed into the squalic penitent, who wore hair-cloth next his skin, fed on roots, drank nauseous water, and daily washed the feet of thirtecn Leygars. Henry, who had expected to see the archlishop comptetcly sunk in the chancellor, was amazed to receive the fulluwing laconic message from \dot{A} Decket:-"I desire that you will proride yourself with another clancellor, as I find mysclf hardly sufficient for the duties of one office, much less of two." From that moment there was strife Letween A Lecliot and Henry, A Becket straining every nerve to extend the authority of the Pope, and Henry dining his utmost to sulject the clureh to his own will. Throughout the bitter struggle for supremacy which ensucd Letween A lecket and the king, A Becket was hacked by the syzn pathy of the Sa:on pupulace, Henry by the supperit of the Nurman barons and by the greater dignitarics of the church. At the outset A Decket was woroted. He was constrained to take an oath. "with good faith and without fraud or reserve, to observe the Constitutions of Clarenuna," which suljected clerlis guilty of crime tw the orditiary
civil tribunals, put ecclesiastical dignities at the royal dis prosal, prevented all appeals to lione, and made Henry the virtual "head of the church." For his guilty compliance with these anti-papal constitutions he received the special pardun and absohition of his holiness, and proceeded to anathenatise them with the energy of a genuine remorse. The king resolved on his ruin. He was summoned before a great council at Northampton, and in defiance of justice was called on to account for the sum of 44,000 marks declared to have been misappropriated by him during his chancellorship. "For what lappened before my consecra. tion," said A Becket, "I ought not to answer, nor will I. Know, moreover, that ye are my cluildren in God; neither law nor reason allows you to judge your father. I refer my quarrel to the decision of the Pope. To him I appeal, and shall now, under the protection of the Cathulic Church and the Apostolic See, depart." He effected his escaje to France, and took refuge in the Cistercian monastery of Pontigny, whence be repeatedly anathenatised his enemics in England, and hesitated not to speak of Henry as a " malicious tyrant." Pope Alexardier iII., thungh at heart a warm supporter of Becket, was guarded in his conduct towards Henry, who had shown a disposition to support the anti-pope Pascal III., and it was not till the Archbishop of York, in defance of a papal bull, had usurped the functions of the exiled primate ly officiating at the coromation ol Henry's son, that Alexąnder becanse really formidable. A Becket was now resolute for martyrdon or victory. Herry began to tremble, and an interview betwoen him and Decket was arranged to take place at Fercitville in 1170. It was agreed that \dot{A} Becket should return to his see, and that the Fing should discharge his debts and defray the expenses of his journey. A Becket proceeded to the coast, but the king, who had promised to meet him, broke his engagement ia every particular. A Bechet, in retaliation, excummunicated the Archbishop of York and the Bishops of London and Salisbury for offcioting at the coronation of the ling's soll. The terrified prelates took refuge in Nor:mandy with Heary, who, on hearing their tale, accompanicd by an accumut ol À Becket's splendid reception at Canterbury, exclained in nagovernable fury, "Of the cuwarls who eat nuy bread, is there not one who will free me from this turbulent ${ }^{n i c}{ }^{\text {mit }}$ " Four knights, Fitzurse, 'J'racy, Morville, and Ditto, rctsolved to avenge their sovercigh, who it aypars was ignorant of their intention. They arrived in Cuntcrlury, and finding the archlishop, threatened him with deuth if be would mot nbsolve the excommunicated bishops. "In vain," repliced A Decket, " you threaten me. If all the swords in Enylund were brandishing over my head, your terwrs could not move twe. F'oot to fout you will find me fighting the battle of tho Lurd." He was barlaromsly murdered in the great catlicdial, at the fuot of the altar of St Lenedict, on the 2011, Decentber 1170. T'wo years thereafter ho was calloniand ly the Pope ; and down to the Jeformatiun inumuctable pilgrime nges were made to the shrine of St Thomas of Canterbur: by devotecs from every corncr of Christendum. Sinamervis were the miracles wronght at his tomb, that Cervase of Canterbury tells us two large velunes $\mathrm{kej} \mathrm{t}^{\mathrm{t}}$ in the calledral were filled with accounts of them. Every fifticth year a jubilec was celebrated in his hunour, which lasted fifteen days; plenary indulgences were then granted to all who visited his tomb; and as many as 100 , (100) pilgrims were registered at a time in Canterlury. The worslipy of St Thomas superseded the adoration of God, and even that of the Virgin. In one year there was offered at Gud's ultar nuthing; at that of the Virgin $\mathfrak{f t}$, $1 \mathrm{~s} . \sim 8 \mathrm{~d}$.; while St
 sum, if the purchasing power of moncy in those times be cunsidered. Henry Wili., with a just if snmewhat ludicrous appreciation of tho jesue which is beeket had raisent
with his royal predecessor Henry II., not only pillaged the rich shrine dedicated to St Thomas, but caused the saint himself to be cited to appear in court, and to be tried and condemned as a traitor, at the same time ordering his name to be struck out of the calendar, and his bones to be burned and the ashes thrown in the air. A Becket's character and aims have been the subject of the keenest ecclesiastical and bistoric controversy down to the present time, but it is impossible to doubt the fundamental sincerity of the one or the disioterestedness of the other, however inconsistent his actions may sometimes appear. If the fruit of the Spirit be "love, joy, peace, long-suffering, gentleness, goodness, faith, neekuess, and temperance," A Becket was assuredly not a saint, for he indulged to the last in the bitterest invectives against his foes; but that he fought with adinirable courage and devotion the "battle of the Lord," according to the warlike ideas of an age with which he was in intense sympathy, is beyond dispute. He was the leading Ultramontane of his day, hesitating not to reprove the Pope himself for lukewarmness in the cause of the "church's liberty." He was the last of the great ecclesiastics of the type of Lanfranc and Anselm, who struggled for supremacy with the civil power in England on almost equal terms. In his day'the secular stream was running very strong, and he might as chancellor have floated down the current pleasantly enough, governing England in Henry's name. He nevertheless perished in a chivalrous effort to stem the torrent. The tendency of his principles was to supersede a civil by a spiritual despotism ; "but, in point of fact," saya Hook, in his valuable Life, "he was a high-principled, high-spirited demagogue, who taught the people to struggle for their liberties," a struggle soon to commence, and of which he was by no means an impotent if an unconscious precursor.-See Dr Giles's Vita et Epistola S. Thonce Cantuariensis; Canon Morris's Life of St Thomas Becket; Canon Robertson's Life of Becket ; Canon Stanley's Historical Memorials of Canterbury ; J. Nichol's Pilgrimages of Walsingham and Canterbury; Hook's Lives of the Archbishops of Canterbury; and Lord Campbell's Lives of the Chancellors of England.
A'BECLETT, Gilbert Abbott, a successful cultivator of light literature, was born in London in 1811, and educated at Westminster School. He wrote burlesque dramas with euccess from his boyhood, took an active share in the establishment of different comic periodicals, particularly Figaro in London and Punch, and was a constant contributor to the columns of the latter from its commencement till the time of his death. His principal publications, all overflowing with kindly humour, and rich in quaint fancies, are his parodies of living dramatists (himself included), reprinted from Punch (1844); The Small Debts Act, with Annotations and Explanations (1845); The Quizziology of the British Drama and The Comic Blackstone (1846). A Comic History of England (1847); and A Comic History of Rome (1852). He contribated occasionally, too, to the Times ard other metropolitan papers. A'Beckett was called to the bar in 1841, and from 1849 discharged with great efficiency the duties of a metropolitan police magistrate. He died at Boulogne on the 30th of August 1856.

ABEL (ל2 ${ }^{2}$ son of Adam, slain by Cain his elder brother (Gen. iv 1-16). The narrative in Genesis, which tells us that "the Lord had respect unto Abel and to his offering, but unto Cain and to his offering ho had not respect," is supplemented by the statement of the New Testament, that "by faith Δ bel offered unto God a more excellent sacrifice than Cain," (Heb. xi. 4), and that Cain slew Abel "becauso his own works were evil and his brother's rightecous" (1 Jobn iii. 12).

In patristic theology the striking coutrast between the brothers was mystically explained and typically applied in various ways. Angustine, for example, regards Absi as the representative of the regenerate or spiritual man, and Cain as the representative of the natural or corrupt man. Augustine in his treatise De Harresibus, c. 86, mentions a sect of Abelitae or Abelians, who seem to have lived in North Africa, and chielly in the neighbourhood of HippoRegius. According to their tradition, Abel, though married, lived in continence, and they followed his practice in this respect, so as to avoid the guilt of bringing sinful creatures: into the world.
aBEL, Karl Friedrich (1726-1787), a celebrated German musician. His adagio compositions havo been highly praised,-but he attained greater distinction as a perfornuer than as a composer, his instrunent being the Viola digambu, which from his time has given place to the violuncellu. He studied under Sebastian Bach, played for ten years (1748-58) in the band formed at Dresden by the Electur of Saxony, under Hasse, and then, proceeding to England, became (1759) chamber-musician to the queen of George III. His life was shortened by habits of intemperance.
abel, Niels Henrik, one of the ablest and acutest mathematicians of modern times, was born at Findöe in Norway in 1802, and died near Arendal in 1829. Considering the shortness of his life, the extent and thorouglness of his mathematical investigations and analyses are marvellous. His great powers of generalisation were displayed in a remarkable degree in his development of the theory of elliptic functions. Legendre's eulogy of Abcl, "Quelle tête celle du jeune Norvegien!" is the more forcible, that the French mathematician had occupied himself with those functions for most of his lifetime. Abel's works, edited by M. Holmboe, the professor under whom he studied at Chriatiania, were published by the Swedish goverment in 1839 .
abel, Thomas, a Roman Catholic divine during the reign of Henry VIII., was an Englishman, but when or where born does not appear. He was educated at Oxford, where he passed B.A. on 4th July 1513, M.A. on 27 th June 1516, and proceeded D.D. On 23d June 1530 ho was presented by Queen Catherine to the rectory of Bradwell in Esscx, on the sea-coast. He had bcen introduced to the court through the report of his learning in olassical and living languages, and accomplishments in mavie ; and he was appointed domestic chaplain to Queen Catherine. It speaks well both for the chaplain and his royal mistress, that to the last he defended the outraged queen agaiust "bluft King Hal." - The Defence, "Invicta Veritus," was printed at Laneberge in 1532. This pungent little book was replied to, but never answered, and remains the defence on Queen Catherine's part. Abel was ensuared, as greater men were, in the prophetic delusions and ravings of Elizabeth Barton, called the "Holy Maid of Kent." As belonging to the Church of Rome, he inevitably opposed Henry VIII.'s assumption of supremacy in the church. Ultimately he was tried and condemned for " misprision of treason," and perished in the usual crucl and ignoble way. The execution, as described, took place, at Smithfield on July 30,1540 . If we may not concede the venerable and holy name of martyr to Abel-and John Foxe is passionate in his refusal of it-yet we must hold that be at least fell a victim to his unsparing defence of his queen and friend, the "misprision of treason" having been a foregone conclusion. In stat. 25, Henry VIII., c. 12 , he is described as having "caused to be printcd and set forth in this realme diverse books against the divorce and separation." Neither the Tractatus nor the "diverse booka" are known-Dodd, Churck History, Brussele, 1737, folio, vol i. p. 208; Bourchier, Hist. Ecch
de Martyr. Fratr. minor. (Ingulst. 1583); Pitts, De illustr: Angl. Scrip.; Tanner's Bibliotheca Hibernico-Britanbica, p. i. ; Zurich, Original Letters relative to the English heformation (Parker Socicty, pt. ii. pp. 209-211, 1846); Foxe's Acts and Monuments (Cattley's, vol. v. pp. 438-440); Burnet, Soames, Biog. Brit.; Wood's Athence (Bliss), s. v. ; Stow, Čhron. p. 581.
(A. B, G.)

ABELARD, Peter, born at Pallet (Palais), not far from Nantes, in 1079 , was the eldest son of a noble Breton house. The namo Abalardus (also written Abailardus, Abaielardus, and in many other ways) is said to be a corruption of Ifabelardus, substituted by himself for a nickname Bajolardus given to him when a student. As a boy, he showed an extraordinary quickness of apprehension, and, choosing a learned life instead of the active career natural to a youth of his birth, early became an adept in the art of dialcetic, under which name philosophy, meaning at that time chiefly the logic of Aristotle transmitted through Latin channels, was the great subject of liberal study in the episcopal schools. Roscellin, the famous canon of Compiègne, is mentioned by himself as his teacher; but whether be heard this chanmion of extreme Nominalism in early youth, when he wandered about from school to scbool for instruction and exercise, or some years later, after he had already begun to teach for himself, remains uncertain. His wanderings finally brought him to Paris, still under the age of twenty. There, in the great cathedral school of Notre-Dame, he sat for a while under the teaching of William of Champeaux, the disciple of St Anselm and most advanced of Realists, but, presently stepping forward, bo overcame the master in discussion, and thus began a long duel that issued in the downfall of the philosophic theory of Realism, till then dominant in the early Middle Age. First, in the teeth of opposition from the metropolitan teacher, he proceeded to set up a school of his own at Melun, whence, for more direct competition, be removed to Corbeil, nearer Paris. The success of his teaching was signal, though for a time he had to quit the field, the strain proving too great for his physical strength. On his return, after 1108 , he found Williain lecturing no longer at Notre-Dame, but in a monastic retreat outside the city, and there battle was again joined between them. Forcing upon the Realist a material change of doctrine, he was once more victorious, and thenceforth he stood supreme. His diseomfited rival still had power to keep him from lecturing in Paris, bnt soon failed in this last effort also. From Melun, where he had resumed teaching, Abelard passed to the capital, and set up his school on the heights of St Geneviere, looking over Notre-Damc. When he had increased his distinction still further by winning reputation in the theological school of Anselm of Laon, no other conquest remained for him. He stepped into the chair at Notre-Dame, being also nominated canon, about the year 1115.

Few teachers ever held such sway as Abelard now did for a time. Distinguished in figure and manners, he was soen surrounded by crowds-it is said thousands-of students, drawn from all countries by the fame of his teaching, in which acuteness of thought was relieved by simplicity and grace of exposition. Enriched by the offerings of his pupils, and feasted with universal admiration, he came, as he says, to think himself the only philosopher standing in the world. But a change in his fortunes was at haud. In his devotion to science, he had hitherto lived a very regular life, varied only by the excitement of inntlict: now, at the height of his fame, other passions began to stir within hirn. There lived at that time, within the precincts of Notre-Dame, under the care of her uncle, the canon Fulbert, a young girl named Heloise, of ooble extraction and born about 1101 . Fair, but still
more remarkable for her knowledge, which extended beyond Latin, it is said, to Greek and Mebrew, she awoka a feeling of love in the breast of Abelard; and with intent to win her, he sought and gained a footing in Fulbert's house as a regular inmate. Becoming also tutor to the maiden, he used the unlimited power which he thus obtained over her for the purpose of seduction, though not without cherishing a real affection which slee returned in unparalleled devotion. Their relation interfering with his public work, and being, moreover, ostentatiously sung by himself, soon became known to all the world except the too-confiding Fulbert; and, when at last it could not escape even his vision, they were separated only to meet in secret. Therenpon Heloise found herself pregnant, and was carried off by her lover to Brittany, where she gave birth to a son. To appease her furions uncle, Abelard iow proposed a marriage, under the condition that it should be kept secret, in order not to mar his prospects of advancement in the church; but of marriage, whether public or secret, Heloise would bear nothing. She appealed to him not to sacrifice for her the independence of his life, nor did she finally yield to the arrangement without the darkest forebodings, only too soon to be realised. The secret of the marriage was not kept by Fulbert; and when IIcloise, true to her singular purpose, boldly then denied it, life was made so unsupportable to her that she sought refugo in the convent of Argentenil. Immediately Fulbert, believing that her husband, who aided in the flight, designed to be rid of ber, conceived a dire revenge. He and some others broke into Abelard's chamber by night, and, taking him defenceless, perpetrated on him the most brutal mutilation Thus cast down from his pinnacle of greatness into an abyss of shame and misery, there was left to the brilliant master only the life of a monk. Heloise, not yet twenty, consummated her work of self-sacrifice at the call of his jealons love, and took the veil.

It was in the Abbey of St Denis that Abelard, now aged forty, sought to bury himself with his woes out of sight. Finding, however, in the cloister neither calm ner solitude, and having gradually turned again to study, te yiclded after a year to urgent entreaties from without ard within, and went forth to reopen his school at the Prio:y of Maisoncelle (1120). His lectures, now framed is a devotional spirit, were beard again by crowds of studerits, and all his old influence seemed to have returned; but old enmities were revived also, against which he was no longer able as before to make bead. No sooner had he put in writing his theological lectures (apparently the Introductio ad Theologiam that has come down to us), thin his adversaries fell foul of his rationalistic interpretation of the Trinitarian dogma. Charging him with the heresy of Sabellius in a provincial synod held at Soissons in 1121, they procured by irregular practices a condemnation of his teaching, whereby he was made to throw his book into tho flames, and then was shut up in the conrent of St Médard. After the other, it was the bitterest possible experience that could befall him, nor, in the state of mental desolation into which it plunged him, could he find any comfort from being soon again set frec. The life in his own monastery proving no more congeuial than formerly, ho fled from it in secret, and only waited for permission to live away from St Denis before he chose the one lot that suited his present mood. In a desert place near Nogent-sur-Scine, he built himself a calin of stubblo and reeds, and turned hermit. But there fortune came back to him with a new surprise. His retreat becoming known, students flocked from Paris, and covered the wilderness around him with their tents and huts. When he began to teach again, he found consolation, and in gratitude ho consecrated the new oratory they built for nim by the name of the Paraclete

Upon the retnrn of new dangers, or at least of fears, Abelard left the Paraclete to make trial of another refuge, accepting an invitation to preside over the Abbey of St Gildas-de-Rhuys, on the far-off shore of Lower Brittany. It proved a wretched exchange. The region was inhospitable, the domain a prey to lawless exaction, the house itself savage and disorderly. Yet for nearly ten years he continued to struggle with fate before he fled from his charge, yielding in the end only under peril of violent death. The misery of those years was not, hewever, unrelieved ; for he had been able, on the breaking-up of Heloise's convent at Argenteuil, to establish her as head of a new religious bouse at the deserted Paraclete, and in the capacity of spiritual director he often was called to revisit the spot thus made doubly dear to him. All this time Heloise had lived amid universal esteem for her knowledge and character, uttering no word under the doom that had fallen npon her youth; but now, at last, the occasion came for expressing all the pent-up emotions of her soul. Living on for some time in Brittany after his flight from St Gildas, Abelard wrote, among other things, his famous Historia Calamitatum, and thus moved her to pen her first Letter, which remains an unsurpassed utterance of buman passion and womanly devotion ; the first being followed by the two other Letters, in which she finally accepted the part of resignation which, now as a brother to a sister, Abelard commended to her. He not long after was seen once more upon the field of his early triumphs, lecturing on Mount St Geneviève in 1136 (when he was heard by John of Salisbury), but it was only for a brief space: no new triumph, hut a last great trial, awaited him in the ferw years to come of his chequered life. As far back as the Paraclete days, he had counted as chief among his foes Bernard of Clairvaux, in whom was incarnated the principle of fervent and unhesitating faith, from which rational inquiry like his was sheer revolt, and now this uncompromising spirit was moving, at the instance of others, to crush the growing evil in the person of the boldest offender. After preliminary negotiations, in which Bernard was roused by Abelard's steadfastness to put forth all his strength, a council met at Sens, before which Abelard, formally arraigned upon a number of heretical charges, was prepared to plead his cause. Whien, however, Bernard, not without foregone terror in the prospect of meeting the redoubtable dialectician, bad opened the case, suddenly Abelard appealed to Rome. The stroke availed him nothing; for Bernard, who had power, notwithstanding, to get a condemnation passed at the council, did not rest a moment till a second condempation was procured at Rome in the following year. Meanwhile. on his way thither to urge his plea in person, A'clard had broken down at the Abbey of Cluni, and there, an ntterly fallen man. with spirit of the humblest, and only not hereft of his intellectual force, he lingered but a ferw nouths before the approach of death. Removed by friendly hands. for the relief of his sufferings, to the Priory of St Marcel, he died on the 21st of April 1142. First buried at St. Nfarcel, his remains soon after .were carried off in secrecy to the Paraclete, and given over to the loving care of Heloise, who in time came herself to rest beside them. The bones of the pair were shifted more than once afterwards, but they were marvellously preserved even through the vicissitudes of the French Revolution. and now they lie united in the well-known tomb at Père-Lachaise.

Great as was the influence exerted by Abelard on the miuds of his contemporaries and the course of medieral thuught, he has beer little known in modern times but for his connection with Heloise. Indeed, it was not till the present century, when Cousin in 1836 issued the collection entitled Ouvrages inédits a'Abêlard that his
philosophical performance could be judged at first hand: of his strictly philosophical works only one, the ethieal treatise Scito te ipsum, having been pullished carlier, namely, in 1721. Cousin's collection, besides giving extracts from the theological work Sic et Non (an assemblage of opposite opinions on doctrinal points, culled frum the Fathers as a basis for discussion), includes the Dialectica, commentaries on logical works of Aristotle, Porphyry, and Boëthius, and a fragment, De Generibus et Speciebus. The last-named work, and also the psychological treatise Do Intellectibus, published apart by Cousin (in Frragmens Philosophiques, vol, ii.), are now considered upon internal evidence not to be by Abelard himself, but only to have sprung out of his school. A genuine work, the Clossulde super Porphyrium, from which M. de Rémusat, in his classical monograph Abélare (1845), has given extracts, remains in manuscript.

The general importance of Abelard lies in his having fixed more decisively than any one before him the scholastic manner of philosophising, with its object of giving a formally rational expression to the received ecclesiastical doctrine. However his own particular interpretations may hare leen condemned, they were conceived in essentially the same spirit as the general scheme of thought afterwards elaborated in the 13th century with approval from the heads of the church. Throngh him was prepared in the Middle Age the ascendency of the philosophical authority of Aristotle, which became firmly established in the half-century after his death, when first the completed Organon, and gradually all the other works of the Greek thinker, came to be known in the schools: before his time it was rather upon the authority of Plato that the prevailing Realism sought to lean. As regards the central question of Universals, without having sufficient knowledge of Aristotle's views, Abelard ret, in taking middle ground between the extravagant Realism of his master, William of Champeaux, or of St Anselm, and the not less extravagant Nominalism (as we have it reported) of his other master, Roscellin, touched at more than' one point the Aristotelian position. Along with Aristotle, also with Nominalists generally, he ascribed full reality oniy to the particular concretes; while, in opposition to the "insana sententia". of Roscellin, he dechared the Universal to be no mere word (vox), but to consist, or (perhaps we may say) emerge, in the fact of predication (sermo). Lying in the middle between Realism and (extreme) Nominalism, this doctrine has often beez spoken of as Conceptualism, but igiorantly so. Abelard, proeminently a logician, did not concern himself with the psychological question which the Conceptualist aims at deciding as to the mental subsistence of the Universal. Outside of his dialectic, it was in ethics that Abelard showed greatest activity of philosophical thought ; leying very particular stress upon the subjective intention as determining, if not the moral character, at least the moral value, of human action. His thought in this direction, wherein he anticipated something of modern speculation, is the more remarkable because his scholastic successors accomplished least in the field of morals, hardly venturing to bring the principles and rules of conduct under pure pbilosophical discussion, even after the great ethical inquries of Aristotle became fully known to them.
(c. c. r.)

ABENCERRAGES, a family or faction that is said to have held a prominent position in the Moorish kingdom of Granada in the 15 th century. The name appears to have been derived from the Yussuf ben-Serragh, the head of the tribe in the time of Mahommed VLi, who did that sovereign good servico in his struggles to retain tho crown of which he was three times deprived. Notring is known of the family with certainty; bat the name ie
faniliar from the intcrestung romance of Gines Perez de Hita, Guerras cuviles de Gramada, which celebrates the feuts of the Abencerrages and the rival family of the $\%$ csris, and the cruel treatment to which the former were subjected. Florian's Gonsalro of Cordova, and Chateanhriand's Iast of the Abencerrages, are imitations of Perez de Hita's work. The hall of the Abencerrages in the Nhambra takes its name from being the reputed scene of the massacre of the family.

ABENEZRA, or IBN L'ZRA, is the name ordinarily given tu Abratam ben Meir ben Ezra (called also Abenare or Evenare), one of the most eminent of the Jewish literati of the Middle Ages. He was born at Toledo about 1090; left Spain for Rome about 1-10: resided afterwards at Mantua (1145), at Lucca (1154), at Rhodes (1155 and 1166), and in England (1159) ; and died probably in 1168 . He was distinguished as a philosopher, astronomer, physician, and poet, but especially as a grammarian and commentator. The works by which he is best known form a series of Commentaries on the books of the Old Testament, which have nearly all been printed in the great Rabbinic Bibles of Bomberg (1525-6), Buxtorf (1618-9), and Frankfurter (1724-7). Abenezra's commentaries are acknowledged to be of very great value ; he was the first who raised biblical exegesis to the rank of a science, interpreting the text according to its literal sense, and illustrating it from cognate languagos. His style is elegant, but is so concise as to be somet imes obscure; and he occasionally indulges in epigram. In addition to the commentaries, be wrote several treatises un astronomy or astrology, and a number of grammatical forks.
ABENSBERG, a small town of Bavaria, 18 miles S.W. of Regensburg, containing 1300 inhabitants. Here Nspoleon gained an important victory over the Austrians on the 20th of April 1809. The town is the Abusina of the Romans, and ancient ruins exist in its neighbourhood.

ABERAVON, a parliamentary and municipal borough of Wales, in the county of Glamorgan, beantifully situated on the Avon, near its mouth, 8 miles east of Swansea. The town and adjacent villages have increased rapidly in recent years, from the extension of the mines of coal and iron iu the vieinity, and the establishment of extensive works for the smelting of tiu, copper, and zinc. The harbour, Port Talbot, bas been much improved, and has good doeks; and there is regular steam communication with BristoL Ores for the smelting furnaces are imported from Cornwall, and copper, tin, and coal are exported. Aberavon unites with Swansea, Kenfigg, Loughor, and Neath, in returning a member to Parliament. In 1871 the population of the parish was 3396, of the parliamentary borough, 11,906.

aberconway. See Conway.

ABERCROMBIE, Joan, an eminent phssician of Edin: burgh, was the son of the Rev. George Abercrombie of Aberdeen, in which city he was born in 1781. After attending the Grammar School and Marischal College; Aberdeen, he commenced his medical studies at Edinburgh in 1800, and obtained his degree of M.D. there in 1803. Soon afterwards he went to London, snd for about a year gave diligent attention to the medical practice and leetures in St George's Hospital. In 1804 he returned to Edinbargh, becaine a Fellow of the College of Surgeons, and commenced as general practitioner in that city; where, in dispensary and private practice, he laid the foundation of that character for sagacity as an observer of disease, and jndgment in its treatment, that eventually elevated him to the head of bis profession. In 1823, be became a Licentiate of the College of Physicians; in 1824, a Fellow of that body; and from the death of Dr Gregory in 182 2 he was considered the first physician in Scotland Aber-
crombie early began the laudable practice of preserving aceurate notes of the cases that fell under his care; and at a period when pathological anatomy was far too litt!e regarded by practitioners in this country, he had the merit of sedulously pursuing it, and collecting a mass of most important information regarding the changes produced by diseaso on different organs; so that, beforo the year 1824, be had more extended experience, and more correct views in this interesting field, than most of his contcmporaries engaged in extensive praotice. From 1816 he occasionally enriched the pages of the Edinburyh Medical and Surgical Journal with cssays, that display originality and industry, particularly those "on the disesses of the spinal cord and bram," and "on diseases of the intestimal canal, of the pancreas, and spleen." The first of these formed the basis of his great and very origiual work, Patholoyical and Practical Rescarches on Diseases of the Brain and Spinal Cord, which appeared at Edinburgh in 1828. In the same year he publisied also another very valuable work, his Rescarches on the Diseases of the Intestinal Canal, Liver, and other liscera of tho Abdomen. Though his professional practice was very extensive and luerative, he fond time for cor epeculations and occupations. In 1830 he published his Inquiries concerming the Intellectual Powers of Man and the Investu gation of Truth, a work which, though less original aul profound than his medical speculations, contains a popular view of an interesting subject, expressed in simple language. It was followed in 1833 by a sequel, The l'hilosophy of the Moral Feeiings, the object of which, as stated in the preface, was "to divest the subject of all improbable speculations," and to show "the important relation which subsists between the science of mind and the doctrines of revealed religion." Both works have been very extensively read, reaching the 18th and 14th editions respectively in 1869. Soon after the publicatini of Mforal F'eelings, the University of Oxford conferred on the author the honorary degree of Doctor of Medicine, and in 1835 he was elected Lord Rector of Marischal College, Aberdeen. Dr Abercrombie was much beloved by his numerous friends for the suavity and kindness of his manners, and was universally esteemed for his benevolence and unaffected piety. He died on the 14 th of November 1844 of a very uncommon disease, the bursting (from softening of the museular substance) of the coronary vessels of the heart.
ABERCROMBY, Davtd, M1.D. This Scottish physician was sufficiently noteworthy hali a sentury after his (probable) decease to have his Nova Mredicine Praxis reprinted at Paris in 1740; while during his lifetime his Tuta ac efficax luis venerece sape absque mercurio ac semper absque salivatione mercuriali curando methodus (1684, 8vo) was translated into German and published at Dresden in 1702 (8vo). In 1685 were published De Pulsus Varintione (London; Paris, 1688, 12mo), and Ars explorandi medicas facultates plantarum ex solo sap. (London). His Opuscula were collected in 1687 . These professional writings gave him a place and memorial in Haller's Biblia theca IIedicince Pract. (4 vols. 8vo, 1779 , tom. iii. p. 619); but he claims passing remembrance rather as a metaphysician by his remarkable controversial books in theology and philosophy. Formerly a Roman Catholic and Jesuit, he abjured Popery, and published Protestancy proved Safer than Popery (London, 1686). But by far the most noticeable of his productions is A Discourss of Wit (London, 1685). This treatise somehow has fallen out of sight-much as old coined gold gets hidden away -so that bibliographers do not seem to have met with it, and assign it at hap-hazard to Patrick Abereromby, M.D. Notwithstanding, the most cursory examination of it proves that in this Discourse of Whit are contained
sume of the most characteristic and most definitely-put metaphysical opinions of the Scottish philosophy of common sense. Of this early metaphysician nothing biographically has come down save that he was a Scotchman ("Scotus")-born at Seaton. He was living early in the 18 th century. (Haller, as supra; Lawrence Cbarteris's M.S., s. v.) So recently as 1833 was printed A Short Account of Scots Divines by him, edited by James Maidment, Edinburgh.
(A. B. G.)

ABERCROMBY, James, Lord Dunfermline, third son of the celebrated Sir Ralph Abercromby, was born on the 7th Nov. 1776. Educated for the profession of the law, he was called to the bar at Lincoln's Inn in 1801, but he was prevented from engaging to any considerable extent in general practice by accepting appointments, first as commissioner in bankruptcy, and subsequently, as steward of the estates of the Duke of Dcronshire. He commenced his political career in 1807, when he was elected member of Parliament for the borough of Midhurst. His sympathies with the small and struggling Opposition had already been declared, and he at once attached himself to the Whig party, with which he consistently acted throughout life. In 1812 he was returned for Calne, which he continued to represent until his elevation to the Scotch bench in 1830. During this lengthened period he rendered conspicuous and valuable services to his party and the country. In Scotch affairs he took, as was natural, a deep interest; and, by introducing, on two separate occasions, a motion for the redress of a special glaring abuse, he undoubtedly gave a strong impulse to the growing desire for a general reform. $\ln 1824$, and again in 1826 , he presented a petition from the inhabitants of Edinburgh, and followed it up by a motion "for leave to bring in a Bill for the more effectual representation of the city of Edinburgh in the Commons House of Parliament." The motion was twice rejected, but by such narrow majorities as showed that the monopoly of the self-elected Council of thirty-three was doomed. In 1827, on the accession of the Whigs to power under Mr Canning, Abercromby received the appointment of Judge-Advocate-General and Privy Counsellor. In 1830 he was raised to the judicial bench as Chief Baron of the Exchequer in Scotland. The office was abolished in 1832; and almost centemporancously, Edinburgh, newly enfranchised, was called to return two members to the first reformed Parliament. As the election marked the commencement of a new political era, the honour to be conferred possessed a peculiar ralue, and the choice of the citizens fell most appropriately on Francis Jeffrey and James Abercromby, two of the foremost of those to whom they were indebted for their hard-won privileges. In 1834 Mr Abercromby obtained a seat in the cabinet of Lord Grey as Master of the Mint. On the assembling of the new Parliament in 1835, the election of a speaker gave occasion for the first trial of strength between the Reform party and the followers of Sir Robert Peel. After a memorable division, in which more members voted than had ever before been known, Albercromby was elected by 316 votes, to 310 recorded for Manners-Sutton. The choice was amply justified, not only by the urbanity, impartiality, and firmness with which Abercromby discharged the public duties of the chair, but also by the important reforms he introduced in regard to the conduct of private business. In 1839 he resigned the office, and received the customary honour of a peerage, with the title of Lord Dunfermline. The evening of his life was passed in retirement at Colinton, near Edinbargh, where he died on the 17 th April 1858. The courage and sagacity which marked his entire conduct as a Liberal were never more conspicuous than when, towards the close of his life, he availed himself of an opportunity of practically asserting his cherished doctrine of absolute religious equaiity. The
important part he took in originating and supporting the United Industrial School in Edinburgh for ragged children, irrespective of their religious belief, deserres to be gratefully acknowledged and remembered, even by those who took the opposite side in the controversy which urose with regard to it .

ABERCROMIBY, PAtrice, M.D., was the third son of Alexander Abercromby of Fetterneir in Aberdeenshire, and brother of Francis Abercromby, who was created by James II. Lord Glasford. He was born at Forfar in 1656 . As throughout Scotland, he could have had there the benefits of a good parish school; but it would seem from after events that his family was Roman Catholic, and hence, in all probability, his education was private. This, and not the unproved charge of perversion from Protestantism in subserviency to James II., explains his Roman Catholicism and adhesion to the fortunes of that king. But, intending to become a doctor of medicine, he entered the Uuiversity of St Andrews, where he took his degree of M.D. in 1685. From a statement in one of his preface-epistles to bis magnum opus, the DFartial Achievements of the Scots Nation, he must have spent most of his youthful years abroad. It has been stated that be attended the University of Paris. The Discourse of Wit (1685), assigned to him, belongs to Dr David Abercromby, a contemporary. On his return to Scotland, he is found practising as a physician in Edinburgh, where, besides his professional dutics, he gave himself with characteristic zeal to the study of antiquities, a study to which he owes it that his name still lires, for he finds no place in either Haller or Hutchison's Medical Biographies. He was out-and-out a Scot of the old patriotic type, and, living as he did during the agitations for the union of England and Scotland, he took part in the war of pamphlets inaugurated and sustained by prominent men on both sides of the Border. He crossed swords with no less redoubtable a foe than Daniel Defoe in his Advantages of the Act of Security, compared with those of the intended Union (Edinburgh, 1707), and A Vindication of the Same against Mr De Foe (ïbid.) The logic and reason were with Defoe, but there was a sentiment in the adrocates of independence which was not sufficiently. allowed for in the clamour of debate; and, besides, the disadvantages of union were near, hard, and actual, the advantages remote, and contingent on many things and persons. Union wore the look to men like Abercromby and Lord Belharen of absorption, if not extinction. Abercromby was appointed physician to James II., but the Revolution deprived him of the post. Crawford (in his Peerage, 1716) ascribes the title of Lord Glasford to an intended recognition of ancestral loyalty; its bestowment in 1685 corresponding with the younger brother's graduation as M.D., may perhaps explain his appointment. A minor literary work of Abercromby's was a translation of 1. Beague's partizan History (so called) of the War carried on by the Popish Government of Cardinal Beaton, aided by the French, against the English under the Protector Somersct, which appeared in 1707. The work with which Abercromby's name is permanently associated is his already noticed Martial Achievements of the Scots Nation, issued in two noble folios, vol. i. 1711, vol. ii. 171G. In the titlepage and preface to rol. i. he disclaims the ambition of being an historian, but in vol. ii., in title-page and preface alike, he is no longer a simple biographer, but an historian. That Dr Abercromby did not use the word "genuine history" in his title-page without warrant is clear on every page of his large work. Granted that, read in the light of after researches, much of the first volume must necessarily be relegated to the region of the mythical, none the les's ras the historian a laborious and accomplished roader and inrestigator of all available authorities, as well manuscript as
printed; while the roll of names of those who aided him includes every mau of note in Scotland at the time, from Sir Thomas Craig and Sir George Mackenzie to Mr Alexander Nisbet and Mr Thomas Ruddiman. The Martial Achicevements has not been reprinted, though practically the first example of Scottish typography in any way noticeable, vol. ii. haring becn printed under the scholarly sapervision of Thomas Ruddiman. The date of his death is uncertain. It has been variously assigned to 1715 , 1716, 1720, and 1726, and it is usually added that he left a widow in great poverty. That he was living in 1716 is certain, as Crawford speaks of him (in his Peerage, 1716) as "my worthy friend." Probably he died about 1716. Memoirs of the Abercrombys, commonly given to him, does not appear to have becn publishcd. (Cbambers's Eminent Scotsmen, s. v.; Anderson's Soottish Nation, s. v.; Chalmers's Biog. Dict., s. v.; Chalmers's Life of Ruddiman; Haller's Bibliotheca Medicince Pract., 4 vols. 4to, 1779; Hutchinson's Biog. Medical, 2 vols. 8vo, 1799; Lee's Defoe, 3 vols. 8го.)
(A. в. G.)

Abercromby', Sir Ralpe, K. B., Licutenant-General in the British army, was the eldest son of George Abercromby of Tullibody, Clackmannanshire, and was born in October 1734. After passing some time at an excellent school at Alloa, he went to Rugby, and in 1752-53 he attended classes in Edinburgh University. In 1754 he was sent to Leipsic to study civil law, with a view to his proceding to the Scotch bar, of which it is worthy of notice that both his grandfather and his father lived to be the oldest menbers. On returning from the Continent he expressed a strong preference for the military profession, and a cornet's commission was accordingly obtained for him (March 1756) in the 3d Dragoon Guards. He rose through the intermediate gradations to the rank of lieu-tenant-colonel of the regiment (1773), and in 1781 be became colonel of the $103 \mathrm{dinfantry}$. mas disbanded in 1783 be retircd upon half-pay. That up to this time he had scarcely been engaged in active service, was owing mainly to his disapproval of the policy of the Government, and especially to his sympathies with the American colonists in their struggles for independence; and his retirement is no doubt to be ascribed to similar feelings. But on France declaring war against England in 1793, he hastened to resume his professional dnties; and, being esteemed one of the ablest and most intrepid officers in the whole British forces, he was appointed to the command of a brigade under the Duke of York, for service in Hollard. He commanded the advanced guard in the action on the heights of Cateau, and was wounded at Nimeguen. The duty fell to him of protecting the British army in its disastrous retreat ont of Holland, in the winter of $1794-5$. In 1795 he reccived the honour of kuiglithood, the Order of the Bath being conferred on him in acknowledgment of his services. The same year he was appointed to succeed Sir Charles Grey, as commander-in-chief of the British forces in the West Indies. In 1796, Grenada was suddenly attacked and taken by a detachment of the army under his orders. He afterwards obtained possession of the settlements of Demerara and Essequibo, in South America, and of the islands of St Lucia, St Vincent, and Trinidad. He returned in 1797 to Europe, and, in reward for his important services, was appointed to the command of the regiment of Scots Greys, istrusted with the governments of the Isle of Wight, Fort George, and Fort Augustus, and raised to the rank of lieu-tenant-general. He held, in 1797-8, the chief command of the forces in Ireland. There he laboured to maintain the disnoline of the army, to suppress the rising rebellion, and to protect the people from military oppression, with a care worthy alike of a great general and an enlightcned
and beneficent statesman. When be was appointed to the command in Ireland, an inrasion of that country by the French was confidently anticipated by the English Government. He used his utmost efforts to restore the discipline of an army that was utterly disorganised; and, as a first step, he anxiously endeavoured to protect the people, by re-establishing the supremacy of the civil power, and not allowing the military to be called out, except when it was indispensably necessary for the enforcement of the Law and the maintenance of order. Finding that he received no adequate support from the head of the Irish Govern. ment, and that all his efforts were opposed and thwarted by those who presided in the councils of Ircland, he resigned the command His departure from Ircland was decply lamented by the reflecting portion of the people, and was speedily followed by those disastrous results which he had anticipated, and which he so ardently desired and had so wiscly endeavoured to prevent. After bolding for a short period the office of Commander-in-Chief in Scotland, Sir Ralph, when the enterprise against Holland was resolved upon in 1799, was again called to command under the Duke of York. The difficulties of the ground, the inclemency of the season, unavoidable delays, the disorderly niovements of the Russians, and the timid duplieity of the Dutch, defeated the objects of that expedition. But it was confessed by the Dutch, the French, and the British alike, that even victory the most decisive could not have more conspicuously proved the talents of this distinguished officer. His country applauded the choice, when, in 1801, he was sent witi an army to dispossess the Freuch of Egypt. His experience in Hollaud and the West Indies particularly fitted him for this new command, as was proved by his carrying his army in bealth, in spirits, and with the requisite supplies, in spite of vary great difficulties, to the destined scene of action. The debarkation of the troops at Aboukir, in the face of an opposing force, is justly ranked among the most daring and brilliant exploits of the English army. A battle in the neiglibourhood of Alexandria (March 21, 1801) was the sequel of this successful landing, and it was Sir R. Abercromby's fate to fall in the moment of victory. He was struck by a spent ball, which could not be extracted, and died seven days after the battle. The Duke of York paid a just tribute to the great soldier's memory in the general order issued on the occasion of his death :-"His steady ubscrvance of discipline, his ever-watchful attention to the health and wants of his troops, the persevering and unconquerable spirit which marked his. military carccr, the splendour of his actions in the field, and the heroisin of his death, are worthy the imitation of all who desire, like him, a life of beroism and a death of glory." By a rote of the House of Commons, a monument was erected in honour of Sir Ralph Abercfomby in St Paul's Cathedral. His widow was created a peeress, and a pension of $£ 2000$ a year was settled on her and her two successors in tho title. It may be mentioned that Abercromby was returned, after a keen contest, as nember of Parliament for his native county of Clackmannanshire in 1773; but a parliamentary life had no attractions for him, and he did not seek re-election. A memoir of the later years of his life (1793-1801), by his son, Lord Dunfermline, was published in 1861.

ABERDARE, a town of Wales, ic. the county of Glamorgan, on the right bank of the river Cynon, four miles S.W. of Merthyr-Tydvil. The district around is rich in valuable mineral' products, and coal and iron mining are very extensively carried on in the neighbourhood. Important tin-works, too, have been recently opened. Part of the coal is used at the irois-works, and large quantitics are sent to Cardiff for exportation. Aber-
dare is connected with the coast by canal and railway. Owing to the great development of the coal and iron trade, it has rapidly increased from a ucre village to a large and flourishing town. Handsome churches, banks, and hotels have been erected, a good supply of water has been introduced, and a public park has been opened. Two markets are beld weekly. The whole parish falls within the parliamentary borough of Merthyr-Tydvil The rapid growth of its population is seen by the following figures: in 1841 the number of inhabitants was 6471; in 1851, 14,999; in 1861, 32,299; and in 1871, 37,774.
ABERDEEN, a royal burgh and city, the chief part of a parliamentary burgh, the capital of the county of Aberdeen, the chief seaport in the north of Scotland, and the fourth Scottish town in population, industry, and wealth. It lies in lat. $57^{\circ} 9^{\prime} \mathrm{N}$. and long. $2^{\circ} 6^{\prime} \mathrm{W}$., on the German Ocean, noar the mouth of the river Dee, and is 542 miles north of London, and 111 miles nortik of Edinburgh, by the shortest railway routes.

Aberdeen, probably the Devana on the Diva of Ptolemy, was an important place in the 12th century. William the Lion had a residence in the city, to which be gave a charter in 1179, cocfirming the corporate rights granted by David I. The city received many subsequent royal charters. It was burned by Edward ID. in 1336, bat it was soon rebuilt and extended, and called New Aberdeen. The houses were of timber and thatched, and many such existed till 1741. The burgh records are the oldect of any Scottish burgh. They begin in 1393, and are complete to the present time, with only a short break. Extracts from them, extending from 1398 to 157.0 , have been published by the Spalding Club. For many centuries the city was subject to attacks by the barons of the surrounding districts, and its avenues and six ports had to be guarded. The ports had all been remored by 1770 . Several monasteries existed in Aberdeen before the Re formation. Most of the Scottish sovereigns visited the
"city and reccived grifts from the anthorities. In 1497 a bluckhouse was built at the harbour mouth as a protection against the English. During the religious struggle in the lith century betreen the Royalists and Covenanters the city was plundered by both parties. In. 1715 Earl Marischal proclaimed the Pretender at Aberdeen. In 1745 the Duke of Cumberland resiled a short time in the city. In the middle of the 1 Sth century boys were kidnapped in Aberdeen, aud sent as slaves to America. In 1817 the city became iusolfent, with a debt of $£ 225,710$, contracted by public improvements, but the debt was soor paid off: The motto on the city arass is Bon-Accurd. It formed the watchword of the Aberdonians while siding King Robert the Bruce in his battles with the English.

Of eninieut men connected with Abcrdeen, New and Old, may be mentionad-John Barbour, Hector Boece or Boethius, Bishop Elphinstone, the Earls Marischal ; George Jamesone, the famous portrait painter ; Edward Raban, the first printer in Aberdeen, 1622; Rev. Andren Cant, the Corenanter; David Auderson (Davie do a' thing), 2 mechanic; James Gregory, inventor of the reflecting telescope; Dr Thomas Reid, the metalihysiciau; Dr George Campbell, Principal of Marisclal College, author of several important works, and best known by his Philosoplyy of Rhetoxic; Dr James Beattie; Lord Byron; Sir James Mackintosh; Pobert Hall; Dr R. Hamilton, who wrote on the National Debt.

Till 1800 the city stond on a $i \mathrm{em}$ eminences, and had steep, narrow, and crooked streets, but, since the Improvement Act of that year, the whole aspect of the place has been altered by the formation of two new spacious and nearly level streets (Union Street and King Street, meeting in Castle Street), and by the subsequent laying ont of many others, besides squares, terraces, \& cc., on nearly flat ground. The city is above eight miles in circuit, and is built on sand, gravel, and boulder clay. The highest parts are from 90 to 170 feet above the sca. The chief thoroughfare is Union Street, nearly a mile long and 70 feet broad. It runs W.S.W. from Castle Street, and crosses the Denburn, now the railmay valler, by a noble granite arch 132 feet in span and 50 feet high, which cost, with a hidden arch on each side, $£ 13,000$.

Aberdeen is now a capacious, elegant, and well-built town, and from the material employed, consisting chiefly of light grey native granite, is called the "granite city." It contains many fine public buildings. The principal of these is Mariscbal College or University Buildings, which stands on the site of a pre-Reformation Franciscan Convent, and was rebuilt, 1S36-1841, at a cost of about $£ 30,000$. It forms three sides of a court, which is 117 by 105 feet, and has a back wing, and a tower 100 feet high. The accommodation consists of twenty-five large class-rooms and laboratories, a hall; library, museums, \&c.

The University of Aberdeen was formed by the union and incorporation, in 1860, by Act of Parliament, of the University and King's College of Aberdeen, founded in Old Aberdeen, in 1494, by William Elphinstone, Bishop of Aberdeen, under the authority of a Papal bull obtained by James IV., and of the Marischal Collcge and University of Aberdeen, founded in Ner Aberdeen, in 1593, by George Keith, Earl Marischal, by a charter ratified by Act of Part liament. The officials consist of a chancellor, with rector and principal ; there are 21 professors and 8 assistants. Arts and divinity are taught in King's College, and medicine, natural history, and law in Marischal College. The arts session lasts from the end of October to the beginning of April. The arts curriculum of four years, with graduation, costs $£ 36,11 \mathrm{~s}$. There are 214 arts bursaries, 29 divinity, and 1 medical, of the aggregate ammal value of £3646, £650, and £26, respectively. About 60 arts
bursaries, mostly from $£ 10$ to $£ 35$ in vame, are given yearly by competition, or by presentation and examination. Trio-thirds of the arts students are bursars. Seventecn annnal scholarships and prizes of the yearly value of $£ 758$ are givell at the end of the arts curriculum. The average yearly number of arts students, in the thirteen years since the union of the arts classes of the two colleges in 1860, has been 312, while in the separate colleges together for the nine years befure the union, it was 431. In winter session 1872-73 there were 623 matriculated students in all the faculties. In 1872, 32 gradnated in arts, 68 in medicine, 5 in divinity, and 1 in law. The library has above 50,000 volumes. The Gencral Council in 1873 had 2075 registered members. who, with those of Glasgow University, return one member to Parliament.
The Free Church Divinity College was built in 1850, at the cost of $£ 2025$, in the Tudor-Gothic style It has a large hall, a library of 12,000 volumes, and 15 bursaries of the yearly value of from $£ 10$ to $£ 25$.
At the east end of Union Street, and partly in Castle Street, on the north side, are the new County and Municipal buildings, an imposing iranco-Scottish Gothic pile, 225 feet long, 109 feet broad, and 64 feet high, of four stories, built 1867-1873 at the cuos of $£ 80,000$, including $£ 25,000$ for the site. Its chief feature is a tower 200 feet high. It contains a great hall, 74 feet long, 35 feet broad, and 50 fect high, with an open timber ceiling: a Justiciary Court-Honse, 50 fect long, 37 feet broad, and 31 feet high; a Town Hall, 41 feet long, 25 feet broad, and 15 feet high, and a main entrance corridor 60 feet lung, 16 feét broad, and 24 feet high. A little to the west is the Town and County Bauk, a highly ornamented building inside and outside, in the Italian style, costing about £24,000.

A very complete closed public market of two floors was built in 1842 , at a cost of $£ 28,000$, by a company incorporated by Act of Parliament. The upper floor or great hall is 315 feet lang, 106 feet broad, and 45 feet high, with gallcries all round. The lower floor is not so high. The floors coutain numerous small shops for the sale of meat, fowls, fish, \&cc., besides stalls and sents for the sale of vegetakles, butter, eggs, dc. The galleries contain small shops for the sale of drapery, hardware, fancy goods, and books. On the upper floor is a fonntain of polished Peterhead granite, costing $£ 200$, with a basin $7 \frac{1}{4}$ feet diameter, cut out of one block of stone. Connected with this undertaking was the laying out of Market Street from Union Streat to the quay. At the foot of this street is being built in the Italian style the new post and telegraph office, at a cost of $£ 16,000$, including $£ 4000$, the cost of the site. It is to form a block of about 100 feet square and 40 fcet high.

Aberdeen has abent 60 places of worship, with nearly 48,000 sittings. There are 10 Established churches; 20 Free, 6 Episcopalian, 6 United Pré́byterian, 5 Congregatiunal, 2 Baptist, 2 Methodist, 2 Evangelical Union, 1 Unitarian, 1 of Roman Catholic, 1 of Friends, and 1 of Original Seceders. There are also several mission chapels. In 1843 all the Established ministers seceded, with 10,000 lay nuembers. The Established and Free Church denominations have each about 11,000 members in communion. The Estahlished West and East churches, in the centre of the city, within St Nicholas churchyard, form a continuous building 220 feet long, including an intervening aisle, over which is a tower and spire 140 feet high. The West was built in 1775 in the Italian style, and the East in 1834 in the Gothic, each costing about $£ 5000$. They occupy the site of the original cruciform church of St Nicholas, erected in the 13th, 14th, and 15 th centuries. One of the nine bells in the tower bears the date of 1352 . and is 4 feet
diameter at the month, $3 . \frac{f}{5}$ feet high, and very thick. The Union Street front of the churchyard is occupied by a very elegant granite façade, built in 1830, at the cost of £1460. It is $147 \frac{1}{2}$ feet long, with a central arched gateway and entablature $\overline{3} 2 \frac{1}{4}$ feet high, with two attached Ionic columns on each side. Each of the two wings has six Ionic columns (of single granite blocks, 15 feet 2 inches long), with basement and entablature, the whole being $23 \frac{1}{2}$ feet high. The following are the style, cost, and date of erection of the other principal Aberdeen churclies-St Andrews, Eliscopal, Gothic, $£ 6000,1817$; North Church, Established, Greek, $£ 10,000,1831$; three churches in a cruciform group, Firce, simple Lancet Guthic, with a fine brick spire 174 feet high, $£ 5000,1844$; llunaan Catholic, Gothic, $£ 12,000,1859$; Free West, Gothic, $£ 12,856,1869$, with a spire 175 feet high.
In 1873 there were in Aberdeen about 110 schools, with from 10,000 to 11,000 pupils in attendance. About 2500 studeuts attend the University, Mechanics' Institution, and private schools for special branchos.

Five miles south-west of Aberdeen, on the south side of the Dee, in Kincardineshire, is St Mary's Roman Catholic College of Blairs, with a president and three professars.
The Aberdeen Grammar School, dating from about 1263, is a preparatory school for the university. It has a rector and four regular masters, who teach classics, English, arithmetic, and mathematics, for the annual fee of $£ 4,10$ a. for each pupil. Writing, drawing, de., are also taught. Nearly 200 pupils attend, who enter about the age of twelve. Like the Edinburgh High School, it has nu elementary department. There are 30 bursaries. A new granite building for the school was erected, 1861-1863, in the Scotch baronial style, at the cost of $£ 16,000$, including site. It is 215 feet long and 60 feet high, and has three towers.

The Mechanics' Institution, founded 1824, and reorganised 1834, has a hall, class-rooms, and a library of 14,000 volumes, in a building erected in 1846 , at a cost of $£ 3500$. During the year $1872-73$, there were at the School of Science and Art 385 pupils; and at other evening classes, 538.

Aberdeen has two native banks, besides branch banks, and a National Security Savings Bank; three insurance companies, four shipping companies, three railway companies, and a good many miscellaneous companies. There are ten licensed pawnbroking establishments, with about 440,000 pledges in the year for $£ 96,000$, and with a capital of $£ 27,000$. There are seven incorporated trades, originating between 1398 and 1527, and having charitable funds for decayed members, widows, and orphans. They have a hall, built in 1847 for $£ 8300$, in the Tudor Gothic style. The hall, 60 feet long, 29 wide, and 42 high, contains curious old chairs, and curious inscriptions on the shields of the crafts.

Among the charitable institutions is Gordon's Hospital, founded in 1729 by a miser, Robert Gordon, a Dantzic werchant, of the Straloch family, and farther endowed by Alexander Simpson of Collyhill in 1816. It is managed by the Town Council and four of the Established ministers of Aberdeen, incorporated by royal charters of 1772 and 1792. The central part of the house was built in 1739, and the winge in 1830-1834, the whole costing $£ 17,300$, and being within a garden of above four acres. It now (1873) maintains and educates (in English, writing, arithmetio, physics, mathematics, drawing, music, French, \&c.) 180 boys of the age 9 to 15 , the sons and grandsons of decayed burgesses of guild and trade of the city; and next those of decayed inhabitants (not paupers). Expenditure for year to 31 st October 1872, £4353 for 164 boys. It has a head-master. three regular, and several visiting
masters. The Boys' and Girls' Kuspital, lately built for $£ 10,000$, maintains and cducates 50 boys and 50 girls.
The Female Orphan Asylum, founded by Mrs Elmslie, in 1810, and managed by trustees, maintains and educates, clielly as domestic servants, 46 girls betreen the ages of 4 and 16 , at the yearly cost fur each of abont $£ 23,13$ s. Those admitted must be legitimate orphan daughters of respectable parents, who have lived three years immediatcly before death in Aberdcen or in the adjoining parishes of Old Machar and Nigg. The Hospital for Orphan and Female Destitute Children, endowed by John Carnccie and the trustees of the Murtle Fund, maintains and cducates 50 girls, chiefly for domestic service. The Asylum for the Blind, established in 1843, on a foundation by Miss Cruickshank, maintains and educates alout 10 blind children, and gives industrial employment to blind adults. There is a bays' and girls' school for 150 boys and 150 girls on Dr Bell's foundation. The Industrial Schools, begun by Sheriff Watson in 1841, and the Reformatory Schools, begun in 1857, having some 600 pupils on the roll, have greatly diminished jurenile crime in the district. The Murtle or John Gordon's Charitable Fund, founded in 1815, has an annual revenue from land of about $£ 2400$, applicable to all kinds of charity, in sums from $£ 5$ to $£ 300$. The Midbcltie Fund, founded by a bequest of $£ 20,000$, in 1848, by James Allan of Midbeltie, gives yearly peusions ranging from $£ 5$ to $£ 15$ to respectable decayed widows in the parishes of St Nicholas and Old Dachar.

The tro parishes in which Aberdeen is situated, viz., St Nicholas and Old Machar, have each a large poor-house. The poor of both parishes cost about $£ 20,000$ a year.

The Royal Infirmary, instituted in 1740, was rebuilt 1833-1810, in the Grecian style, at the cost of $£ 17,000$. It is a well-situated, large, commodious, and imposing building. It has three stories, the front being 166 feet long and 50 feet high, with a dome. A detached feverhouse was built in 1872 for about £2500. The managers were incorporated by royal charter in 1773 , and much increased in number in 1852. The institution is supported by land rents, feu-duties, legacies, donations, subscriptions, church collections, \&c. Each bed has on an average 1200 cmbic feet of space. There are on the average 130 resident patients, costing each on the average a shilling daily, and the number of patients treated may be stated at 1700 annually, besides outdoor patients receiving advice and medicine. The recent annual expenditure has been about $£ 4300$. There is a staff of a dozen medical officers.

The Royal Lunatic Asylum, opened in 1800 , consists of two separate houses, ralued in 1870 at $£ 40,000$, in an enclosure of 40 acres. It is under the same management as the Infirmary. The recent daily average of patients has been about 420 , at an annual cost of $£ 13,000$. The annual rate for єach pauper is $£ \supseteq 5,103$. The General Dispensary, Vaccine, and Lying-in Institution, founded in 1823, has had as many as 6781 ceses in one year. The Hospital for Incurables has a daily average of 26 patients, and the Ophthalmic and Auric Institution has had 671 cases in a year.

The Music Hall, built in 1821 and 1859 at the cost of $£ 16,500$, has a front 90 feet long, with a portico of 6 Ionic pillars 30 feet high; large, highly-decorated lobbies and rooms; and a hall 150 feet long, 68 broad, and 50 high, with a flat ceiling, and galleries. The hall holds 2000 persons seated, and has a fine organ and an orchestra for 300. Here H.R.H. Prince Albert opened the British Association, as president, 14th September 1859. A new Theatre and Opera House was built in 1872, in the mixed Gothic style, for $£ 8400$, with the stage $52 \frac{1}{2}$ feet by 29 , and the auditorium for 1700 to 1800 persons. The front wall is of Bluish granite and red and yellow freestone, with
some polished Peterhead granite pillan, the rest being built of concrete.

In Castle Street, the City Place and Old Market Stance, is the Market Cross, a beautiful, open-arched, hexagonal structure of freestone, 21 feet diameter, and 13 feet high. It has Ionic columns and pilasteri, and an entablature of trelve panels. On ten of the pancls are medallions, cut in stone, in high relief, of the Scottish sovereigns frum James I. to James VII. From the centre rises a com. posite column $12 \frac{1}{2}$ feet high, with a Corinthian capital, on which is the royal unicorn rampant. This cross was planned and erected about 1682 by John Montgomery, a natire architect, for $£ 100$ sterling. On the north side of the same street, adjoining the municipal buildinçs, is the North of Scotland Bank, a Grccian building in stanite, with a portico of Corinthian columns, laning uost elaborately carved capitals. On an emincnce east of Castle Street are the military barracks for 600 men, built in 1796 for $£ 16,000$.

The principal statues in the city are those of the lass Duke of Gordon-died 1836 -in grey granite, 10 feet high; Queen Tictoria, in wiite Sicilian marble, $8 \frac{1}{2}$ feet high; Prince Albert, bronze, natural-size, sitting posture; and a curious rough stone figure, of unknown date, supposed to be Sir William Wallace.

The Dee to the south of the city is crossed by three bridges, the old bridge of Dee, an iron suspension bridge, and the Caledonian Pailway bridge. The first, till 1832 the only access to the city from the south, consists of seven semicircular ribbed arches, is about 30 feet high, and was built early in the 16 th century by Bishops Elphicstone and Dunbar. It was nearly all rebuilt 1718-1723, and from being $14 \frac{1}{2}$ feet wide, it was in 1842 made 26 feet wide. From Castle Street, Fing Street leads in the direction of the new bridge of Don (a little east of the old "Brig o' Balgownie"), of five granite arches, each 75 feet span, built for nearly $£ 13,000$ in 1827-1832.

A defective harbour, and a shallow sand and gravel bar at its entrance, long retarded the trade of Aberdeen, but, under various Acts since 1773, they have been greatly deepened The north pier, built partly by Smeaton, 1775-17S1, and partly by Telford, $1810-1815$, extends 2000 feet into the German Occan. It is 30 feet broad, and, with the parapet, rises 15 feet abore high water. It consists of large granito blocks. It has increased the depth of water on the bar from a few feet to 22 or 24 feet at spring tides, and to 17 or 18 feet at neap. The wet dock, of 29 acres, and with 6000 feet of quay, was completed in 1848, and called Victoria Dock, in honour of Her Majesty's visit to the city in that year. These and other improvements of the harbour and its entrance cost $£ 325,000$ down to 1848. By the Harbour Act of 1868, the Dee near the harbour has been diverted to the south, ar the cost of $£ 30,000$, and 90 acres of new ground (in addition to 25 acres formerly made up) for harbour works are being made up on the city or north side of the river; $£ 80,000$ has beeu laid out in forming in the sea, at the sonth side of the river, a new breakwater of concrete, 1050 feet long, against south and south east storms. The narigation channel is being midened and deepened, and the old pier or breakwater on the north side of the river mouth is to be lengthened at least 500 feet searrard. A body of 31 commissioners manage the harbour affairs.

A berdeen Bay affords safe anchorage with off-shore minds, but not with those from the N.E., E., and S.E. On the Girdleness, the south point of the bay, a lighthouse was built in 1833 , in lat. $57^{\circ} 8^{\prime} \mathrm{N}$. , and long. $2^{\circ} 3^{\prime} \mathrm{W}$., with two fixed lights, one vertically below the other, and respectively 115 and 185 feet above mean tide. * There are also fued leading lights to direct ships entering the harbour
at night. In fogs, a steam whistle ucar the lighthouse is sounded ten seconds every minute. Near the barbour mouth are three batteries mounting ninetecn guns.

The wator supplied to the city contains only $3 \frac{1}{2}$ grains solid matto' in a gallon, with a hardness of about 2 degrees. It is brought by gravitation, in a close brick culvert, from tho Dee, 21 milcs W.S.W. of the city, to n reservoir, which rupplies ninc-tenths of the city. The other tenth, or higher part of the city, is supplied by a separate rescrroir, to which part of the water from the culvert is forced ap by a hydraulic cngine. Nearly 40 gallons water per head of the population are consumed daily for all purposes. The new water works cost $£ 160,000$, and were opened by Her Majesty, 16 th October 1866.

The gas is made of cannel coal, and is sent through 71 miles of main pipes, which extend 5 miles from the works.

The manufactures, arts, and trade of Aberdeen and vicinity are large and flourishing. Woollens were made as early as 1703, and knitting of stockings was a great industry in the 18th contury. There are two large firms in the woollen trade, with 1550 hands, at $£ 1000$ weekly wages, and making above 1560 tons wool in the year into yarns, carpets, hand-knit hosiery, cloths, and tweeds. The linen trade, much carricd on since 1749, is now confined to one firm, with 2600 hands, at $£ 1200$ wages weckly, who spin, weare, and bleach 50 tons flax and 60 tons tow weekly, sind produce yarns, floorcloths, sheetings, dowlas, ducks, tuwels, sail-canvas, \&c. The cotton manufacture, introduced in 1779 , employs only one firm, with 550 hands, at $£ 220$ weekly wages, who spin 5000 bales of cotton a-year into mule yarn. The wincey trade, begon in 1839, employs 400 hands, at $£ 200$ weekly wages, who make $2,100,000$ yards cloth, 27 to 36 inches broad, in the year. Paper, first made here in 1696, is now manufactured by three firms in the vicinity. The largest has 2000 hands, at $£ 1250$ weekly wages, and makes weekly 75 to 80 tons of writing paper, and $6 \frac{1}{2}$ millions of envelopes, besides much cardboard and stamped paper; another firm makes weekly 77 tons coarse and card paper; and a third, 20 tons printing and other paper. The comb works of Messrs Stewart \& Co., begun in 1827, are the largest in the world, employing 900 hands, at $£ 500$ wcekly wages, who yearly convert 1100 tons horns, hoofs, india-rubber, and tortoiseshells into 11 millions of combs, besides spouns, cups, scoops, paper-knives, \&c. Seven iron foundries and many engineering works employ 1000 men, at $£ 925$ weekly wages, and convert 6000 tons of iron a-ycar into marine and land steam engines and boilers, corn mills, wood-preparing machinery, machinery to grind and prepare artificial manures, hesides sugar mills and frames and coffec machinery for the colonies.

The Sandilands Chemical Works, Degun in 1848 , cover Give acres, and employ over 100 men and boys, at $£ 90$ to $£ 100$ weekly wages. Here are prepared naphtha, benzole, creosote oil, pitch, asphalt, sulphate of ammonia, sulphuric acid, and artificial manures. Paraffin wax and ozokerite are refined. An Artesian well within the works, 421 feet deep, gives a constant supply of good water, always at 51° Fahr. Of several provision-curing works, the largest employs SCO hands, chiefly females, in preserving meats, soups, sauccs, jams, jellies, pickles, \&c., and has in connection with it, near the city, above 230 acres of fruit, vegetable, and farm ground, and a large piggery. The products of the breweries and distilleries are mostly comsumed at home A large agricultaral implement work employs 70 or 80 men and boys. Nearly 200 aares of ground, within three miles of the city, are laid out in rearing shrub and forest-tree seedlings. In 1872 about 145 acres of strawherries were reared within threc miles of Aberdeen, and ou wis of this fruit are asid to bave been exported.

Very durable grey gramte lias been quarried near Aberdeen for 300 years, aud blocked and dressed paring, kerb, and building granite stones have long been expurted from the district. In 1764, Aberdeen granite pavement was first used in London. About the year 1795, large granite blocks were sent for the Portsmuuth docks. The chief stones of the New Thames Embankment, Lendon, are from Kemnay granite quarrics, 16 miles north-west of the city. Aberdeen is almost entirely built of granite, and large quantities of the stone are exported to build bridges, wharfs. docks, lighthouses, \&c., elsewhere. Aherdcen is famed for its polishing-works of granite, especially grey and red. They employ about 1500 hands in polishing vases, taoles, chimncy-picces, fountains, monumeuts, columns, \&c., for British and foreign demand. Mr Alpxander Macdonald, in 1818 , was the first to begin the gravite polishing trade, and the works of the same firm, the orly ones of the kind till about 1850, are still the largest in the kingdom.

In 1820, 15 vesscls from Aberdeen were engaged in the northern whale and seal fishing; in 1860, one vessel, but none since. The white fishing at Aberdeen employs sone 40 boats, each with a crew of 5 men . Of the 900 tens wet fish estimated to be brought to market yearly, above a third are sent, fresh by rail to England. The salmon caught in the Dee, Don, and sea are near! y all ent to London fresh in ice. The berring fishing has been prosecuted since 1836, and from 200 to 350 boats are engaged in it.

Aberdeen las been famed for shipbuilding, especially for its fast clippers. Since 1855 nearly a score of vessels have been built of above 1000 tons each. The largest vessel (a sailing one) ever built here was one in 1855, of 2400 tons. In 1872 there were built 11 iron vessels of 9450 tons, and 6 wooden of 2980 tons, consuming 5900 tons iron, and costing $£ 252,700$, including $£ 70,700$ for chsincs and other machincry. 1400 hands were employed in slipbuilding in that jear, at the weekly wages of about $£ 1230$.

In 1872, there belonged to the port of Aberdeen 236 vessels, of 101,188 tons, twentr-four of the vesscls, of 7483 tons, being steamers. They trade with most British and Irish ports, the Baltic and Meditermanean ports, and many more distant regions. In 1872, 434,108 tons shipping arrived at the port, and the custom duties were $£ 112,414$. The export trade, exclusive of coasting, is insignificant. The shore or harbour ducs were $£ 126$ in 1765 , and $£ 1300$ in 1800 . In the year ending 30th September 1872, they were $£ 25,520$; while the ordinary harbour revenue was $£ 37,765$, expenditure $£ 28,598$, and debt $£ 324,614$. The introduction of steamers in 1821 greatly promoted industry and traffic, and especially the cattle trade of Aberdeenshire with London. These benefits have been much increased by the extension of railways. Commodious steamers ply regularly between Aberdeen and London, Hull, Newcastlo, Leith, Wick, Kirkwall, and Lerwick.

The joint railway station for the Caledonian, Great North of Scotland, and Deeside lines, was opened 1867 , and is a very handsome erection, costing about $£ 26,000$. It is 500 feet long, and 102 feet broad, with the side walls 32 feet high. The arched roof of eurved lattice-iron ribs, covered with slate, zinc, and glass, is all in one span, rising 72 fcet high, and is very light and airy.

The Medico-Chirurgical Society of Aberacen was founded in 1789. The hall was built in 1820 at a cost of $£ 4000$, and is adorned with an Ionic portico of four granite columns, 27 feet high. It has 42 members, and a library of 5000 volumes. The legal practitioners of Aberdeen have been styled advocates since 1633, and received royal charters in 1774,1779 , and 1862. They form a society, called the Society of Advocates, of 127 members in 1873 , with a
hall built in 1871 for $£ 5075$, a library of nearly 6000 Nolumes, and a fund to suypert decayed and indigent members, and their nearest relatives. The revenue in 1872 was $£ 2880$.'

Aberdeen has one daily and three weekly newspapers. The Aberdeen Journal, established in 1748, is the oldest newspaper north of the Forth.

The phaces of out-door recreation and amusement are chiefly the following:-The Links, a grassy, benty, and sandy tract, 2 miles long and $\frac{1}{4}$ to $\frac{1}{3}$ mile broad, along the shore between the mouths of the Dee and the Don. It is mostly only a few fect above the sea, but the Broad Hill rises to 94 feet. Cattle shows, reviews, \&c., are held on the Links. To the north-west of the town, a Public Recreation Park of 13 acres was laid out in 1872, at the cost of $£ 3000$, with walks, grass, trees, shrubs, and flowers.

Daily observations from 1857 to 1872 show the mean temperature of Aberdeen for the year to be $45^{\circ} .8$ Fahr., for the three summer months 56° Fabr., and for the three winter months $37^{\circ} 3$. The average yearly rainfall is 30.57 inches. Aberdeen is the healthiest of the large Scottish towns. East winds prevail in spring.

Since $1867 £ 50,000$ has been spent in constructing main sewers throughout the city. A few acras of farm land have been irrigated by part of the scwage.

The city is governed by a corporation, the magistrates and town council, consisting of twenty-five councillors, including a provost, six bailies, a dean of guild, a treasurer, \&c. The corporation revenue in the year 1871-72 was $£ 11,498$. The police, water, and gas are managed by the council. The municipal and police burgh has an area of nearly three square miles, with 12,514 municipal electors, and with assessable property valued at $£ 230,000$ in 1873 . The Parliamentary burgh hes an area of nine square miles, inchuding Old Aberdeen and Woodside, with 14,253 Parliamentary electors, and real proparty to the value of $£ 309,328$ in 1873 . It returns one member to Parliament. lhe population of Aberdeen in 1396 was about 3000 ; in 1643, 8750 ; in 1708, 5556 ; in 1801, 26, 492 ; in 1841, 63,262 ; and in $1871,88,125$; with 6718 inhabited houses, 292 uninhabited, and 77 building.

Aberdeen, Old, is a small, quiet, ancient town, a hurgh of barony and regality, a mile north of Aberdeen, aud as far south-west of the mouth of the Don. It mostly forms one long street, 45 to 80 feet above the sea. The Don, to the nerth of the town, runs through a narrow, wooded, rocky ravine, and is spanned by a single Gothic arch, the "Brig o' Balgomie" of Lord Byron. The bridge rests on gneiss, and is 67 feet wide and $34 \frac{1}{2}$ feet high above the surface of the river, which at ebb tide is here 19 feet decp. The bridge is the oldest in the north of Scotland, and is eaid to have been built about 1305. The funds beionging to the bridge amount to $£ 24,000$.

The town was formerly the see of a bishop, and had a large cathedral dedicated to St Machar. In 1137 David I. translated to Old Aberdeen the bishopric, founded at Mortlach in Banffshire in 1004 by Malcelm II. in memory of his signal victory there over the Danes. In 1153 Malcolm IV. gave the bishop a new charter.

The cathedral of St Machar, begun about 1357, occupied nearly 170 years in building, and did not remain entirc fifty yeurs. What is still left is the oldest part, viz., the nave and side aisles, 126 feet long and $62 \frac{1}{2}$ feet broad, now used as the parish church. It is chielly built of outlayer granite stones, and while the plainest Scottisl cathedral, is the only one of granite in the kingdom. On the flat pannelled ceiling of the nave are 48 heraldic shielis of the princes, nobles, and bishops who aided in its erection. It has been latcly repaired, and some painted windows inserterd. at the cost of $£ \pm 280$.

The chief structure in Old Aberdeen is the stately fabric of King's College near the middle of the town. It forms a quadrangle, with interior court 108 feet square, two sides of which hare been rebuilt, and a projecting wing for a library added since 1860 . The oldest parts, the Crown Tower and Chapel, date from about 1500. The former is 30 feet square and 60 feet high, and is surmounted ly a structure about 40 feet high, consisting of a six-sided lantern and a royal crown, both sculptured, and resting on the intersections of two arched ornamented slips rising from the four corners of the top of the tomer. Tha chapel, 120 fect long, 28 feet broad, and 37 feet high, still retains in the choir the original oak canopied stalls, miserere scat, and lofty open screen. These fittings are 300 years old, in the French flamboyant style, and are unsurpassed, in tasteful design and delicate execution, by the oak carring of any other old church in Europe. This carred moudwork owes its preservation to the Principal of Reformation times, who armed his people, and protected it from the fury of the barons of the Mearns after they had robbed the cathedral of its bells and lead. The chapel is still used for public worship during the University session.

Connected with Old Aberdeen is a brewery in tho town, and a brick and coarse pottery work in the vicinity. Therg are also a Free church, two secondary schools, and two primary schools. Old Aberdeen has its own municipal officers, consisting of a provest, 4 bailies, and 13 councillors. The town is drained, lighted, supplied with water, and is within the Parliamentary boundary of New Abcrdecn. There are sevcral charitable institutions. Population in 1871, 1857 ; inhabited houses, 233.
(A. c.)

ABERDEENSHIRE, a maritime county in the northeast of Scotland, between $56^{\circ} 52^{\prime}$ and $57^{\circ} 42^{\prime} \mathrm{N}$. lat. and between $1^{\circ} 49^{\prime}$ and $3^{\circ} 48^{\prime}$ long. W. of Grcenwich. It is bounded on the north and east by the German Ocean; on the sonth by the counties of Kincardine, Forfar, and Yerth; and on the west by these of Inrerness and Banff. Its greatest length is 102 miles, and breadth 50 miles. Its circuit with sinuosities is about 300 miles, 60 being seacoast. It is the fifth of Scotch counties in size, and is one sixteenth of the extent of Scotland. Its area is 1970 square miles, or $1,260,625$ acres, of which, in 1872,36.6 per cent., or 585,299 acres, were cultivated, 93,339 in woods (mostly Scotch fir and larch), and 6400 in lakes. It contains 85 civil parishes and parts of 6 others, or 101 parishes, including civil and quoad sacra. The county is gencrally hilly, and mountainous in the south-west, whence, near the centre of Scotland, the Grampians send out various branchex, mostly to the north-east, through the county. The run of the rivers and the general slope of the county is to the north-east and east. It is popularly divided into five districts:-First, Mar, mostly between the Dee and Don, and forming nearly tho seuth half of the county. It is mountainous, especially Braemar, its west and Highland part, which contains the greatest mass of elevated land in the British Isles: Here the Dee rises amid the grandeur and wildness of lofty mountains, much visited by tonrists, and composed chiefly of granite and gneiss, forming many high precipices, and showing patches of snow throughut every sumner. Here rises Ben Muichdluu, the second highest mountain in Scotland and in the British Isles, 4296 fect ; Braeriach, 4225 ; Cairntoul, 4245 ; Cairngorm (famed fur "Cairngorm stones," a peculiar kind of rock crystal), 4090 ; Ben-a-Buird, 3860 ; Ben Aron, 3826 ; and Byron's "dark Lochnagar," 3786. The soil on the Dee is sandy, anil on the Don loamy. The city of Aberdeen is in Mar. Second, Formartin, between the lower Don and Ytham, with a sandy coast, succeeded by a clayey, fertile, tilled tract, and then by low hills, moors, mosses, and tilled land. Third, Buchan north of the Ythan, and next in size to

Mar, with parts of the coast buld and rocky, and with the interior bare, lorr, flat, undulating, and in parts penty. On the coast, six miles south of Pcterhead, are the Bullers of Buchan,-a basin in which the sea, entering by a natural arch, boils up violently in stormy weather. Buchan Ness is the castmost point of Scotland. Fourth, Garioch, a beautiful, undulating, loamy, fertile valley, formerly called the granary of Aberdeen, with the promiseut hill Benachic, $167 \mathrm{~g}_{\text {f }}$ feet, on the sontl2. Fifth, Strathbogie, mostly consisting of hills (The Buck, 2211 fect; Noath, 1830 fect), moors, and mosses. The county as a whole, except the low grounds of Buchan, and the Highlands of Braemar, consists mainly of nearly lerel or undulating tracts, often naked and infertile, but interspersed with many rich and highly cultivated spots.

The chief rivers are the Dee, 96 miles long; Don, 78 ; Ythan, 37, with mussel beds at its mouth; Ugie, 20; and Deveron, 58, partly on the boundary of Banffshire. The pearl mussel occurs in the Ythan and Don. A valuable pearl in the Scottish crown is said to be from the Ythan. Loch Muick, the largest of the few lake in the countr, 1310 feet above the sca, is ouly $2 \frac{1}{2}$ miles long and $\frac{1}{3}$ to $\frac{1}{2}$ mile broad. The rivers have plenty of salmon and trout. There are noted chalybeate springs at Peterhead, Frascrburgh, and Pananich near Ballater.

The climate of Aberdecnshire, except in the mountainous districts, is comparatively mild, from the sea being on two sides. The mean annual temperature at Braemar is $43^{\circ} \cdot 6$ Fahr., and at Aberdeen $45^{\circ} \cdot \mathrm{S}^{\text {. }}$. The mean yearly rainfall varies from about 30 to 37 inches. The summer climate of the Upper Dee and Don valleys is the driest and most bracing in the British Isles, and grain is cultivated up to 1600 fect above the sea, or 400 to 500 feet higher than elsewhere in North Britain. All the crops cultivated in Scotland ripen, and the peoplo often live to a great age.

The rocks are mostly grauite, guciss, with small tracts of syenite, mica slate, quartz rock, clay slate, grauwacke, primary limestono, old red sandstone, scrpentine, and trap. Lias, greensand, and chalk flints occur. The rocks are much covered with boulder clay, gravel, sand, and alluvium. Brick clay occurs near the coast. The surface of the granite under the boulder clay often presents glacial amoothings, grooves, and roundings. Cairngorm stone, beryl, and amcthyst are found in the granite of Braemar.

The tops of the highest mountains have an arctic flora At Her Majesty's Lodge, Loch Mnick, 1350 feet above the sea, grow larches, regetables, currants, laurels, roses, \&c. Some ash trecs, 4 or 5 feet in girth, are growing at 1300 feet above the sea. Tho mole occurs at 1800 feet above the sea, and the squirrel at 1400. Trees, especially Scoutch fir and larch, grow well in the countr, and Braemar abounds in nat"ral timber, said to surpass any in the north of Europe. Stumps of Scotch fir and oak found in peat in the county are often far larger than any now growing. Grouse, partridges, and hares abound in the county, and rabbits are often too numerous. Red deer abound in Bracmar, the deer forest being there valued at $£ 5000$ a year, and estimated at 500,000 acres, or one-fourth the area of deer forests in Scotland.

Poor, gravelly, clayey, and peaty soils prevail mnch more in Aberdeenshire than good rich loams, but tile draining, bones, and guano, and the best modes of modern tillage, have greatly increased the produce. Farm-houses and steadings have greatly improved, and the best agricultural implements and machincs are in general use. About twothirds of the population depend entircly on agriculture, and oatmeal in various forms, with milk, is the chief food of farm-servants. Farms are generally small, compared with those in the sonth-east connties. The fielas are separated by dry-stone dykes, and alan by wooden and wire fences.

Leases of 19 or 21 years prevail, and the tive, six, or seven shift rotation is in general use. In 1872 there were 11,642 occupiers of land, with an average of 50 acres each, and paying about $£ 536,000$ in rent. Of the 585,299 acres of the county in crop in $1872,191,880$ acres were in oais, 18,930 in barley and bere, 1633 in ryc, 1357 in wheat, 95,091 in turnips (being one-fifth of the turnips grown in Scotland), 8414 in potatoes, 232,178 in grasses and clover. In 1872 the county had 23,117 horses, 157,960 cattle (being above one-seventh of all the cattlc in Scotland), 123,308 sheep, and 13,579, pigs. Tha county is unsur? passed in breeding, and unrivalled in feeding cattle, and this is more attended to than the cultivation of grain-crop. About 40,000 fat cattle are reared, and above $£ 1,000,000$ value of cattle and dead meat is sent from the county to London yearly. The capital invested in agriculture withis: the county is estimated at about $£ 5,133,000$.

The great mincral wealth in Aberdeenshire is its long. famed durable granite, which is largely quarried for build. ing, paving, caisewaying, and polishing. An acre of land on being reclaimed has yielded $£ 40$ to $£ 50$ worth of causowaying stones. Gnciss is also quarricd, as also primary limestone, old red sandstone, conglomerate millstone, grau. wacke, clay slatc, syenitc, and hornblende rock. Iron ore, manganese, and plumbago occur in the county.

A large fishing population in villages along the coast engage in the white and herring fishery. Haddocks are salted and rock-dried (speldings), or smoked (fiunans). The rivers and coasts yield many salmor Peterhead was long the chicf British port for the north whale and seal fishery, but Dunde now vies with it in this industry.

The manufactures and arts of the county aro mainly prosecuted in or near the town of Aberdeen, but throughout the rural districts thero are much milling of corn, brick and tile making, stone-quarrying, smith-work, brewing and distilling, cart and farm implement making, castirs g^{\prime} and drying of peat, timber felling, especially on Decside and Donside, for pit-props, railway slecpers, lath, barrel staves, \&c. The chicf imports into the county are, coals, lime, timber, iron, slates, raw materials of textile manufactures, wheat, cattle-feeding stuffs, bones, guano, sugar, alcoholic liquors, fruits, \&c. The chief exports are granita (rongh, dressed, and polished), flax, woollen, and cotton goods, paper, combs, preserved provisions, oats, barley, live and dead cattle, \&c. In the county there are about 520 fairs in tha year for cattle, horses, shcep, hiring servants, \&c.

Aberdeenshire communicates with tho south by the Caledonian Railway, and fiva macadamised roads across the east Grampians, the highest rising 2200 feet above tha sea Abont 188 miles of railway (the Great North of Scotland, Formartin and Buchan, and Deeside lines), and 2359 miles of public roads, ramify throngh the county. Tolls over the county were abolished in 1865, and the roads are kept up by assessment. The railway lines in the county have cost on the average about $£ 13,500$ a mile. Several macadamised roads aud the Great North of Scotland Railway form the main exits from the county to the north-west.
'Tha chief antiquities in Aberdeenshire are Picts' houscs or weems; stone foundations of circular dwellings; monoliths, some being eculptured; the sa-callod Druid circles; stone cists; stone and earthen enclosures; the vitrified forts of Dunnidecr and Noath; cairns; crannoges; eartheu mounds, as the Bass; flint arrow-heads; clay funeral urns; stone celts and hammers. Remains of Roman camps occur at Peterculter, Kintore, and Auchterless, respectively $107 \frac{1}{2}$, 100 and 115 acres. Roman arms have been found. Ruins of ancient edifices occur. Ois the top of a conical hill called Dunnidecr. in the Garioch district, are the remains of a
sastle, supposed to be 700 years old, and surrounded by a vitrified wall, which must be still older. The foundations of two buildings still remain, the one in Bracmar, and the other in tLa Loch of Cannor (the latter with the remains of a mooden bridge between it and the land), which are supposed to hare belonged to Malcolm Canmore, King of Scotland. The most extensire ruins are the grand ones of liildrummy Castle, evidently once a princely seat, and still corcring nearly an acre of ground. It belonged to David Earl of Huntingdon in 1150, and was the seat of the Earls of Marr attainted in 1716. The Abbey of Deer, now in ruins, was begun by Cumyn Earl of Buchan about 1219,
In Roman times, Aberdeenshire formed part of Vespasiana in Caledonia, and was occupied by the Tairali, a warlike tribe. The local names are mostly Gaelic. St Columba and his pupil Drostan visited Buchan in the 6th century. In 1052 Macbeth fell near the Peel Bog in Lumphanan, and a cairn which marks the spot is still shown. In 1309 Bruce defeated Comyn, Earl of Buchan, near Inverurie, and annihilated a pomerful Norman family. In 1411 the Earl of Marr defeated Donald of the Isles in the battle of Harlaw, near Inverurie, when Sir Robert Daridson, Provost of Aberdeen, was killed. In 1562 occurred the battle of Corrichie on the Hill of Fare, when the Earl of Murray defeated the Marquis of Huntly. In 1715 the Earl of Marr proclaimed the Pretender in Braemar. In 1746 the Duke of Cumberland with his army marched through Aberdeenshire to Culloden. In 1817 a base line of verification, 5 miles 100 feet long, was measured in connection with the Trigonometrical Survey of the British Isles, on the Belhelvie Links 5 to 10 miles north of Aberdecn.

Among èminent men connceted with Aberdeenshire are, Robert Gordon of Straloch, who in 1648 published the first atlas of Scotland from actual survey; the Earl3 Marischal, whose chief seat was Inverugie Castle; Field-Marshal Keith, born at Inverugie Castle, 1696 ; Dr Thomas Reid, the metaphysician, minister of Nem Machar 1737 to 1752 ; Lord Pitsligo, attainted 1745; Sir Archibald Grant of Monymusk, who introduced turnips into the county 1756, and was the first to plant wood on a great scale ; Peter Garaen, Auchterless, said to have died at the age of 132, about 1780 ; Rev. John Skinner, author of some popular Scottish songs ; Morrison the hygeist ; the Earl of Aberdeen, Prime Minister during the Crimean war.

The native Scotch population of Aberdeenshire are longneaded, shromd, careful, canny, active, persistent, but reserred and blunt, and without demonstrative enthusiasm. They hare a physiognomy distinct from the rest of the Scottish people, and have a quick, sharp, rather angry accent. The local Scotch dialect is broad, and rich in diminutives, and is noted for the use of e for o or u, f for $n: h, d$ for $t h, d c$. In 1830 Gaelic rras the fireside language almost erery family in Braemar, but now it is little used.
Aberdeenshire has a Lord-Lieutenant and 3 Vice and 60 Deputy-Lientenants. The Supreme Court of Justiciary sits in Aberdeen twice a-year to try cases from the counties of Δ berdeen, Banff, and Kincardine. The counties of Aberdcen and Fincardine are under a Sheriff and two Sheriffs-Substitute. The Sheriff Courts are beld in Aberdeen and Peterliead. Sheriff Small-Debt and Circuit Courts are held at seren places in the county. There are Burgh or Bailic Courts in Aberdeen and the other roval burghs in the county. Justice of the Peace and Police Courts are held in Aberdeen, \&c. The Sheriff Courts take cognisance of Commissary busincss. During 1871, $99 \pm$ persons were confined in the Aberdeenshire prisons. In the year 1870-71, it parishes in the county were assessed $£ 53,703$ for 7702 poor on the roll and 1847 casual poor.

Aberdeenshire contains 105 Established churches, 99 Free, 31 Episcopal, 15 United Preshyterian, 9 Roman

Catholic, and 31 of other denominations. This includes detached parts of the troo adjacent counties.

By the census of 1871, 84.83 per cent. of the children in the connty, of the ages 5 to 13 , wore receiving education. Those formerly called the parochial schoolmasters of Aberdecnshire participate in the Dick and Milne Bequests, which contributed more salary to the schoolmasters in some cascs than did the heritors. Most of the schoolmasters are Masters of Arts, and many are preachers. Of 114 parochial schools'in the county before the operation of the ners Education Act, 89 receired the Milnc Bequest of $£ 20$ a ycar, and 91 the Dick Bequest, areraging $£ 30$ a year, and a schoolmaster with both bequests mould have a yearly income of $£ 145$ to $£ 150$, and in a few cases $£ 250$. The higher branches of education have been more taught in the schools of the shires of Acerdcen and Banf than in the other Scotch counties, and pupils have been long in the habit of going dircct from the schools of these two counties to the University.
The value of property, or real rental of the londs and heritages in the county (including the burghs, except that of Aberdeen), for the jear 1872-73, was $£ 769,191$. The railway and the water works in the city and county were for the same jear ralued at $£ 11,133$. For general county purposes for the year ending 15th May 1872, there was assessed $£ 14,803$ to maintain police, prisons, militia, county and municipal buildings, \&c., and $£ 19,320$ to maintaiu 2359 miles of public county roads.

The chief seats on the proprictary cstates are-Balmoral Castle, the Qucen; Mar Lodge and Skene House, Earl of Fife; Aboyne Castle, Marquis of Huntly; Dunecht House, Earl of Crawford and Balcarres; Keith Hall, Earl of Kintore ; Slains Castle, Earl of Errol ; Haddo House, Earl of Aberdeen ; Castle Forbes, Lord Forbes; Philurth House, Lord Saltoun ; Huntly Lodge, the Duke of Richmond. Other noted seats are-Drum, Irvine ; Invercauld, Farquharson ; Newe Cestle, Forbes; Castle Fraser, Fraser ; Cluny Castle, Gordon ; Meldrum House, Urquhart ; Craigston Castle, Urquhart; Pitfour, Ferguson; Ellon Castle, Gordon; Fyrie Castle, Gordon. Ten baronets and knights have residences in the county. Of the proprictors many live permanently on their estates. Their prevailing narees are Gordon, Forbes, Grant, Fraser, Duff, and Farguharson.

Aberdeenshire has one city, Δ berdecn, a royal parliamentary burgh ; three other rogal parliamentary burghs, Inverurie, Kintore, and Petcrhead ; and seven burghs of barony, Old Aberdeen, Charleston of Abuyne, Frascrburgh, Huntly, Old Meldrum, Rosehearty, and Turriff.

The county sends two members to Parliament-one for Enst Aberdeenshire, with 4341 electors, and the other for West Aberdeenshire, with 3942 electors. The county has also four parliamentary burghs, which, with their respective populations in 1871 , are- A berdeen, 88,125 ; Peterhead, 8535; Inverurie, 2856; and Kintore, 659. The first sends one member to Parliament, and the other three unite with Elgin, Cullen, and Banff, in sending another.

By the census 1801 the county had 121,065 inhabitants. and by that of 1871, 244,603, with 53,576 families, 111 females to 100 males, 34,589 inhabited honses, 1052 uninhabited houses, and 256 building. In 1871 there were in eight torns (Aberdeen, Peterhead, Fraserburgh, Huntly, Inverurie. Old Meldrum, Turriff, and New Pitsligo), 111,978 inhabitants ; in 32 villages, 19,561 ; and in rural districts, 113,064.
(New Statistical Account of Scotland, vol. xii.; the charters of the burgh; extracts from the Council Register down to 1625, and selections from the letters, guildry, and treasurer's accounts, forming 3 volumes of the Spalding Club; Collections for a History of the Shires of A. and Banff, edited by Joseph Robertson, Esq., 4to, Spalding Club;

Regitrum Episcopatus Alerdonensis, vols. i and ii., by 1 'rof. Cosmo Innes, 4 to, Spalding Club ; The IIistory of A., by Walter Thom, 2 vols. $12 \mathrm{mo}, 1811$; Buchan, by the Rev. Juhn B. Pratt, $12 \mathrm{mo}, 1859$; Historical Account and Delineation of A., by Robert Wilson, 1822; First Report of Royal C'om. on Hist. MSS., 1869; The Annals of A., by William Kennedy, 1818; Orem's Description of the Chanonry, Cathedral, and King's College of Old A., 1724-25, 1830; The Castellated Architecture of A., by Sir Andrew Leith Hay of liannes, irap. 4to ; Specinens of Old Castellated Houses of A., with dramings by Giles, folio, 1838; Lives of Eminent 3fnr of A., by Janes Bruce, 12mo, 1841).
(A. c.)
aberdeen, George Hamliton Gordon, Fourth Earl of, was born at Edinburgh on the 28th January 1784. He was educated at Harrow School, and at St John's College, Cambridge, where he graduated in 1804. He succeeded his grandfather in the earldom in 1801, and in the same year he made an extended tour through Lurope, visiting France, Italy, and Greece. On his return he founded the Athenian Club, the membership of which was confined to those whe had travelled in Girece. This explains Lord Byron's reference in the Ringlish Bards and Scotch Reviewers to "the travelled Thane, Athenian Aberdeen." Soon after his return he contributed a very able article to the Edinburgh Review (vol. vi.), on Gell's Topography of Troy. Another literary result of his tour was the publication in I822 of An Inquiry into the Principles of Beauty in Grecian Architecture, the substance of which had appeared some years before in the form of an introduction to a translation of Vitruvius' Civil Archilecture. In 1806, having been elected one of the represeatative pers for Scotland, he tuok his seat in the Honse of Lords on the Tory.side. IIe was already on terms of intimacy with the leading members of the then predominant party, and in particular with Pitt, through the influence of his relative, the celetratted Duchess of Gordon. In 1813 he was intrusted with a delicate and difficult apecial mission to Vicnna, the object being to induce the Emperor of Austria to join the alliance arainst his son-in-law Napoleon. His diplomacy was completely su isful; the desired alliance was secured by the treaty of Töplitz, which the Earl signed as representative of Great Britain in Septenber 1813. On his return at the conclusion of the war, he was raised to a British-peerage, with the title of Viscount Gordon. Lord Aberdeen was a member of the Cabinet formed by the Duke of Wellington in 1828, for a short time as Chancellor of the Duchy of Lancaster, and then as Foreign Secretary. He was Colonial Secretary in the Tory Cabinet of $1834-5$, and ngain received the seals of the Foreign Office under Sir leobert Peel's administration of 1841. The policy of nonintervention, to which he stedfastly adhered in his conduct of foreign affairs, was at once his strength and his weakness. According to the popular idea, he failed to sec the limitations and exceptions to a line of policy which nearly all sdmitted to be as à general rule both wise and just. On the whole, his administration was perlaps more esteemed abroad than at home. It bas been questioned whether any English miuister ever was on terms of greater iatimacy with foreign courts, but there is no substantial Warrant for the charge of want of patriotisen which was sometimes brought against him. On the two chief questions of hone politics which were finally settled during his tenure of office, he was in advance of most of his party. While the other members of the Government gielded Catholic Emancipation sud the repeal of the Corn Lars as unavoidable concessions, Lord Aberdeen spoke and voted for both measures from conviction of their pustiee. On the 13th June 1843, he moved the second resding of his bill "to remove doubts respectiug the
admission of ministers to benefices in Scotland," sud it was passed into law in that session, though a similar measure had been rejected in 1840. As the first proposal did not prevent, so the passing of the Act lad no effect in healing, the breach in the Established Church of Scotland which occurred in 1843. On the defeat of Lord Derby's government in 1852, the state of parties was such as to necessitate a coalition government, of which Lord Aberdeen, in consequence of the moderation of his views, was the natural chief. He had been regarded as the leader of the Peel party from the time of Sir Robert's death, but his views on the two great questions of home policy above mentioned rendered him more acceptable to the Liberals, and a more suitable leader of a coalition' government than any other member of that party could have been. His administration will chiefly be remembered in connection with the Crimean war, which; it is now generally believed, might have been altogether prevented by a more vigorous policy. The incompetence of various departments at home, and the gross mismanagement of the commissariat in the terrible winter of 1854, cansed a growing dissatisfaction with the government, which at length found emplatic expression in the House of Commens, when a motion submitted by Mr Roebuck, calling for inquiry, was carried by an overwhelming majority. Lord Aberdeen regarded the vote as one of no-confidence, and at once resigned. From this period Lord Aberdeen took little part in public business. In recognition of his services he received, soon after his resiguation, the decoration of the Order of the Garter. He died December 13, 1860. Lord Aberdeen was twice married,-first in 1805, to a daughter of the first Marquis of Abercorn, who died in 1812, and then to the widow of Viscount Hamilton. He was succeeded in the title and estates by Lord Haddo, his son by the second marriage.
ABERDOUR, a village in the county of Fife, in Scotland, pleasantly situated on the north shore of the Fiith of Forth, and much resorted to for sea-bathing. It is 10 miles N.Wc of Edinburgh, with which there is a frequent commanication by steamer.
ABERFELLDY, a village in Perthshire, celebrated in Scottish song for its "birks" and for the neighbouring falls of Muness. It is the terminus of a branch of the Highland Railway.
ABERGAVENNY, a market town in Monmouthshire, 14 miles west of Monmouth, situated at the junction of a small stream called the Gavenny, with the river U'sk. It is supposed to have been the Gobanniun of the Runn:us, so named from Gobannio, the Gavenny. The town was formcrly walled, and has the remains of a castle built soon after the Conquest, and also of a Benedictine monas tery. The river Usk is bere spanned by a noble stone bridge of fifteen arches. Two markets are held weckly, and elegant market buildings lave recently becn erected. There is a free grammar school, with a fellowship and cxhibitions at Jesus College, Oxford. No extensive manufacture is carried on except that of shoes; the town owes its prosperity mainly to the large coal and iron works in the neighbourhood. Abergaveany is a polling place for the county. Populatiou of parish (1871), 631 ${ }^{\circ}$.
abernethy, a town in Perthshire, situated in the parish of the same name, on the right bank of the Tay, 7 miles below Perth. The earliest of the Culdee houses was founded there, and it is said to have been the capital of the Pictish kings. It was long the chicf seat of the Epigcopacy in the country, till, in the 9th century, the bishopric was transferred to St Andrews. There still remanns at Abernethy a curious circular tower, 74 feet bigh and 48 feet in circumference, consisting of sixty-four courses of hewn stone. A number of similar towers, though not so well
built, are to be met with in Ireland, but there is only one other in Scotland, viz., that at Brechin. Petrie argues, in bis Round Towers of Ireland, that these structures have been used as belfries, and also as keeps.

ABERNETHY, Jonn,-a Protestant disseuting divinc of Ireland, was born at Coleraine, county Londonderry, Ulster, where his father was ministcr (Nonconformist), on the 19th October 1680. In his thirteenth year he entered a student at the University of Glasgow. On concluding his course at Glasgow he went to Edinburgh University, where his many brilliant gifts and quick and ready wit-thonght-born, not verbal merely-struck the most eminent of his contemporaries and even his professors. Retnrning home, he received licence to preach from his Presbytery before he was twenty-one. In 1701 he was urgently invited to accept the ministerial charge of an important congregation in Antrim; and after an interval of two years, he was ordained there on 8th August 1703. His admiring biographer tells of an amount and kind of work done there, such as only a man of fecund brain, of large heart, of healthful frame, and of resolute will, could have achieved. In 1717 he was invited to the congregttion of Usher's Quay, Dublin, as colleague with Rev. Mr Arbuckle, and contemporaneously, to what was called the Old Congregation of Belpast. The Synod assigned him to Dublin. He refused to accede, and remained at Antrim. This refusal was regarded then as ecelesiastical hightreason; and a controversy of the mosi intense and disproportionate character followed. The controversy and quarrel bears the name of the two camps in the conflict, the "Subscribers" and the "Non-subscribers." Out-and-out evangelical as John Abernethy was, there can be no question that he and his associates sowed the seeds of that after-struggle in which, under the leadership of Dr Henry Cooke, the Arian and Socinian elements of the Irish Presbyterian Chureh were thrown out. Much of what he contended for, and which the "Subscribers" opposed bitterly, has been silently granted in the lapse of time. In 1726 the "Non-subscribers," spite of an almost wofully pathetic pleading against separation by Abernethy, were cut off, with due ban and solemnity, from the Irish Presbyterian Church. Ir 1730, spite of being. a "Non-subseriber," he was called by his early friends of Wood Street, Dublin, whither he removed. In 1731 came on the greatest controversy in which Λ bernethy engaged, viz., in relation to the Test Act nominally, but practically on the entire question of tests and disabilities. His stand was "against all laws that, upon account of mere differences of religious opinions and forms of worship, excluded men of integrity and ability from serving their country." He was nearly a century in advance of his contury. He had to reason with those who denied that a Roman Catholic or Dissenter could be a "man of integrity and ability." His Tracts-afterwards colleeted-did fresh service, generations later. And so John Abernethy through life was ever foremost where unpopular truth and right were to be maintained; nor did he, forsake of an ignoble expediency, spare to smite the highestseated wrongdoers any more than the hoariest errors (as he belicved). He died in 1740, having been twice married. (Kippis' Biog. Brit., s. v.; Dr Duchal's Life, prefixod to Sermons; Diary in MS., 6 vols. 4 to; History of Irish Presbyteriars Church).
(A. B. G.)

ABERNETHY, Joun, grandson of the preceding, an eminent surgeon, was born in London on the 3d of April 1764. His father was a London merchant. Educated at Wolverhampton Grammar School, he was apprenticed in 1779 to Sir Charles Blicke, a surgeon in extensive practice in the metropolis. He attended Sir William Blizzard's anatomical lectures at the London Hospital, and was carly employed to assist Sir Willian as "de-
monstrator;" be also attended Pdtt's surgical lectures at St Bartholomew's Hospital, as well as the lectures of the celebrated John Hunter. On Pott's resignation of the office of surgeon of St Bartholomew's, Sir Cbarles Blicke, who was assistant-surgeon, succeeded him, and Abernethy was electcd assistant-surgeon in 1787 . In this capacity he began to give lectures in Bartholomew Close, which were so well attended that the governors of the hospital built a regular theatre ($1790-91$), and Aberuethy thus became the founder of the distinguished School of St Bartholomew's. He bald the office of assistant-surgcon of the hospital for the long period of twenty-eight years, till, in 1815, he was elected principal surgeon. He had before that tine been appointed surgeon of Christ's Hospital (1813), and Professor of Anatomy and Surgery to the lioyal College of Surgeons (1814). Aberucthy had grat fane both as a practitioner and as a lecturer, his reputatiou iu both respects resting on the efforts he made to promute the practical improvement of surgery. His Surgicul Ob servations on the Constitutional Origin and Treutment of Local Diseases (1809) -known as "My Look," from the great frequency with which be referred his paticuts to it, and to page 72 of it in particular, nuder that name-was one of the earliest popular works on medical science. The vicws he expounds in it are based on plysiolugical cousiderations, and are the more important that the connection of surgery with physiology had scercely been recognised before the time he wrote. The leading principles on which he insists in "My Book" are chielly these two :-1st, That topical diseases are often mere symptums of constitutional maladies, and then can only be remowed by general remedies; and $2 d$, That the disordered state of the constitution very often originates in, or is closely allied to deranged states of the stomach and bowcls, and can only be remedied by meaus that benefici, lly affect the functions of those organs. His professiun owed him much for his able advocacy of the extension in this way of the province of surgery. He had great succuss as a teacher from the thoroigh knowledge he had of his seience, and the persuasivencss with which be enmuciated his views. It has been said, however, that the influeneo he exerted on those who attcnded his lectures was not beneficial in this respect, that his opinions were delivered so dogmatically, and all who differcd from him were disparaged and denounced so contemptuously, as to relress instead of stimulating inquiry. It ought to be nesutioned, that he was the first to suggest and to perform the daring operation of securing by ligature the carotid and the external iliac arteries. The celebrity Abernethy attained in his practice was due not only to his great profcssional skill, but also in part to the singularity of his manners. He used great plainness of speech in his intercourse with his patients, treating them often brusquely, and sumctiunes even rudely. In the circle of his family and friends be was conrteous and affectionate; and in all his dealings he was strictly just and honourable. He resigned his surgery at St Barthulomew's Hospital in 1827, and his professorship a; the College of Surgeons two years later, on account of failing health, and died at his residence at Enficld on the 20th of April 1831. A collected edition of his works in five volumes was published in 1830. A biugraphy, Memoirs of Jokn Abcruethy, by Gcorge Mncilwain, F.I.C.S., appeared in 1853 , and though anything but satisfactory, passed through several editions.

ABERRATION, or (hore correctly) the Abehration of Lignt, is a remarkable phenomenon, by which stars appear to deviate a little, in the course of a year, from their true places in the heavens. It results from the eyc of the observer being carried onwards by the mation of the earth on its orbit, during the time that light takes to
travel from the star to the earth. The effect of this combination of motions nay be best explained by a familiar illtis. tration. Suppose a rain-drop falling vertically is received in a tube that has a lateral notion. In order tlat tho drop may fall freely down the axis of the tube, tho latter must be inclined at such an angle as to move from the position AD to BE , and again to CF , in the tines the drop moves from D to G, and from G to C. The drop in this case, sinee it moves down the axis all the may, must strike the bottom of the tube at C in the direction FC. The
 light proceeding from a star is not scen in its true direc tion, but strikes the eye obliquely, for a precisely similar reason. If lines be taken to represent the motions, so that the cye is carried from A to C during the time that light moves from D to C, tho light will appear to the eye at C to come, not from D , but from F . The angle DCF , contained by the true and apparent directions of the star, is the aberration. It is greatest when the two motions are at right angles to eaeh other, i.e., when the star's longitude is 90° in advance of, or behind, the heliocentric longitudo of the earth, or (which amounts to the same thing) 90° behind, or in advance of, the geocentric longitude of the sun. (See Astronomy.) Now, in the right-angled triangle $\mathrm{ACD}, \tan \triangle \mathrm{DC}($ i.e., DCF$)=\frac{\mathrm{AC}}{\mathrm{DC}}$; whence it appears that the tangent of the angle of aberration (or, since the angle is very small, the aberration itself) is equal to the ratio, velocity of earth in orbit
relocity of light
being to the relocity of light in the proportion of I th 10,000 nearly, the maximum aberration is small, amounting to about 20.4 seconds of are, -a quantity, however, which is very appreciable in astronomical observations.

Aberration always takes place in the direction of the earth's motion; that is, it causes the stars to appear nearer than they really are to the point towards which the earth is at the moment moving. That point is necessarily on the ecliptic, ard 90° in advance of the earth in longitude. The effect is to make a star at the pole of the ecliptic appear to move in a plane parallel to the ecliptic, so as to form a small ellipse, similar to the earth's orbit, but having its majoi axis parallel to the minor axis of that orbit, and vice versd. As we proceed from the pole, the apparent orbits the stars describe become more and more elliptical, till in the plane of the ecliptic the apparent motion is in a straight line. The length of this line, as well as of the major axes of the different ellipses, amounts, in angular measure, to about $40^{\prime \prime} \cdot 8$. The stars thus ajpear to oscillate, in the course of the year, $20^{\prime \prime} \cdot 4$ on each side of their srue position, in a direction parallel to the pune of the ecliptic, and the quantity $20^{\prime \prime} \cdot 4$ is therefore called the constant of aberration.

For the discovery of the aherration of light, one of the unest in modern astronomy, we are indebted to the distingrished astronomer Dr Bradley. He was led to it, in 1727, by the result of observations be made with the view of determining the annual parallax of some of the stars; tial is, the angle subtended at these stars by the diameter of the earth's orbit. He observed certain changes in the positions of the stars that he could not account for. The deviations were not in the direction of the apparent motion chast parallax mould give rise to; and he had no better
success in attempting to explain the phenomenon by the nutation of the earth's axis, radiation, errors of observation, \&cc. At last the true solution of the difficuliy occurred t him, suggested, it is said, by the movements of a vane on the top of a boat's mast. Roenzer had discovered, a quarter of a century before, that light has a velocity which admits of measurement; and Bradley perceived that tho earth's motion, having a perceptible relation to that of light, must affect the direction of the visual rays, and with this the apparent positions of the stars. He calculated the aberration from the known relative velocitics of the earth and of light, and the results agreed entire!y with his observations.

The observed effects of aberration are of importance as supplying an independent method of measuring the velocity of light, but more particularly as presenting one of the few direct proofs that can be given of the earth's motion round the sun. It is indeed the most satisfactory proof of this that astronomy furnishes, the phenomenon being quite inexphicable on any other hyputhesis.

ABERISTWITH, a municipal and parliamentary borough, market torn, and seaport of Wales, in the county of Cardigan, is situated at the western end of the Vale of Rheidol, near the confluence of the rivers Ystwith and Rheidol, and about the centre of Cardigan Bay. It is the terminal station of the Cambrian Railway, and a line to the south affords direct communication with South Walcs, Bristol, de. The borough unites with Cardigan, Lampeter, dec., in electing a member of Parliament. Ceal, timber, and lime are imported, and the exports are lead, oak bark, flannel, and corn. The harbour has of late beca much improved; and the pier, completed in 1865 forms an excellent promenade. There are many elegant buildings, and it has been proposed to cstablish bere a University College of Wales. On a promontory to the S.W. of the town are the ruins of its ancient castle, erected in 1277, by Edward I., on the site of a fortress of great strength, built by Gilbert de Strongbow, and destmyed by Owen Gwynedd. From its pieturesque situation and benlthy climate, and the suitableness of the beach for bathing, Aberystwith has risen into great repute as a watering-place, and attracts many visitors. Much of the finest scenery in Wales, such as the Devil's Bridge, \&c., lies within easy reach. Population (1871), 6898.

ABETTOR, a law term implying one who instigates, encourages, or assists another to perform some criminal action. Sce Accessory.

ABEYANCE, a law term denoting the expectancy of an estate. Thus, if lands be leased to one person for life, with reversion to another for years, the remainder for years is in abeyance till the death of the lessee.

ABGAR, the name or title of a line of kings of Edess? in Mesopotamia. One of them is known from a correspondence be is said to have had with Jesus Christ. Tho letter of Abgar, entreating Jesus to visit him and heal hims of a disease, and offering Him an asylum from the wrath of the Jews, and the answer of Jesus promising to send a disciple to heal Abgar after His ascension, are given by Eusebius, who believed the documents to be genvine. The same belief has beeu held by a few moderns, but there cau be no doubt whatever that the letter of Jesus at least is apocryphal. It has also been alleged that Δ bgar possessed a picture of Jesus, which the credulous may see either at Rome or at Genoa. Some make him the possessor of the handkerchief a woman gave Jesus, as He bore the cross, to wipe the sweat from His face with, on whieh, it is fabled, His features remained miraculously imprinted.

ABIAD, Bahr-el-, a uame given to the western branch of the Nile, above Khartoum. It is better known as the White Nile. See Nilem

ABIESj. See Fir.
ABILA, a city of ancient Syria, the capital of the tetrarchy of Abilene, a territory whose limits and exteut it is impossible now to define. The site of Abila is indicated by some ruins and inscriptions on the banks of the river Barada, between Baalbec and Danascus, about twelve miles from the latter city. Though the names Abcl and Abila differ in derivation and in meaning, their similarity has given rise to the tradition that this was the scene of Abel's death.

ABILDGAARD, Nifolav, called "the Father of Danish Painting," was born in 1744. He formed his style on that of Claude and of Nicolas Poussin, and was a cold theorist, inspired not by nature but by art. As a technical painter he attained remarkable success, his tone being very harmonious and even, but the effect, to a foreigner's eye, is rarely interesting. His works are scarcely known out of Copenhagen, where he won an immense fane in his own generation, and where he died in 1809. He was the founder of the Danish school of painting, and the master of Thorwaldsen and Eckersberg.

ABIMELECH (צֻּ perhaps king-father), occurs first in the Bible as the name of certain kings of the Philistines at Gerar (Gen. xx. 2, xxi 22, xxvi. 1). From the fact that the name is applied in the inscription of the thirty-fourth psalm to Achish, it has been inferred with considerable probability that it was used as the official desiguation of the Philistinian kings. The name was also borne by a son of Gideon, judge of Israel, by his Shechemite concubine (Judges viii. 31). On the death of Gideon, who had refused the title of king both for himself and his children, Abimelech set himself to obtain the sovereignty through the influence of his mother's relatives. In pursuance of his plan he slew seventy of his brethren "upon one stone" at Ophrah, Jotham, the youngest of them, alone contriving to escape. This is one of the earliest recorded instances of a practice exceedingly common on the accession of Oriental despots. Abimelcch was eventually made king, although his election was opposed by Jotham, who boldly appeared on Mount Gerizim and told the assembled Shechemites the fable of the trees desiring a king. At the end of the third year of his reign the Shechemites revolted, and under the leadership of Gaal made an unsuccessful attempt to throw off the authority of Abimelech. In Judges ix. there is an account of this insurrection, which is specially interesting owing to the full details it gives of the nature of the military operations. After totally destroying Shechem, Abimelech proceeded against Thebez, which had also revolted. Here, while storming the citadel, he was struck on the head by the fragment of a millstone thrown from the wall by a woman. To avoid the disgrace of perishing by a woman's hand, he requested his armour-bearer to run him through the body. Though the immediate cause of his death was thus a sword-thrust, his memory was not saved from the ignominy he dreaded (2 Sam. xi. 21). It has been usual to regard Abimelech's reign as the first attempt to establish a monarchy in Israel. The facts, however, seem rather to support the theory of Ewald (Gesch. ii. 444), that Shechern had asserted its independence of Israel, when it chose Abimelech as its king.

ABINGDON, a parliamentary and municipal borough and market town of England, in Berkshire, on a branch of the Thames, 7 miles south of Oxford, and 51 miles W.N.W. of London. It is a place of great antiquity, and was an important town in the time of the Heptarchy. Its name is derived from an ancient abbey. The strects. whisb are well paved, converge to a spacious area, in which the market is held. In the centre of this area stands the market-house, supported on lefty pillars, with a large hall
above, appropriated to the sumincr assizes for the county, and the transaction of other public bisiness. The town contains two churches, which are said to have been erected by the abbots of Abingdon, one dedicated to St Nicholas and the other to St Helena; several charitable institutions, and a free grammar school, with scholarships at lembroke College, Oxford. In $186 t$ a memorial of Prince Alber was erected at Abingdon, a richly ornamented structure, surmounted by a statue of the Prince. Abingdon was incorporated by Queen Marj. It sends one member to Parliament, and is governed by a mayor, four aldermen, and tivelve councillors. In the beginning of the century it manufactured much sail-cloth and sacking; but its chie! trade now.is in corn and malt, carpets, and coarse linen. It is a station on a branch of the Great Western Railway. Population (1871), 6571.

ABIOGENESIS, as a name for the production of living by not-living matter, has of late bcen superseding the less accurate phrase "Spontaneous Generation." Professor Huxley; who made use of the word in his presidential address to the British Association in 1870, distinguished Abiogenesis from "Xenogenesis" or "Heterogenesis," which occurs, or is supposed to occur, not when dead matter produces living matter, but when a living parent gives rise to offspring which passes through \& totally different series of states from those exhibited by the parent, and does not return into the parent's cycle of changes. When a "living parent gives rise to offspring which passes through the same cycle of changes as itself," there occurs "Homogenesis." "Biogenesis" includes both of these. Other names for Abiogenesis are Generatia EAquivoca, Generatio Primaria, Archigenesis (Urzeugung), Archebiosis, \&c. The question of Abiogenesis-whether under certain conditions living matter is produced by notliving matter-as it is one of the most fundamental, is perhaps also the oldcst in Biology; but within recent yearspartly because the means of accurate experimentation havo been increased and the microscope improved, and partly because the question has been recognised in its impor. tant bearings on evolution, the correlation of forces, and the theory of infectious diseases-naturalists have been led to bestow more attention upon it than at any previous period. While, therefore, the doctrine of Abiogenesis cannot be said to be either finally established or refuted, it is at least reasonable to believe that we are gradually advancing to a solution. Among the older observers of phenomena bearing on the question may be named Aristotle, who, with the ancients gencrally, favoured Abiogenesis; Redi, the founder of the opposite view; Vallisnieri ; Bufion; Needlam; and Spallanzani ; among later observers, Schwann and Schulze, Schreder and Dusch, Pasteur, Pouchet, Haeckel, Huxley, Bastian, and many others. The experiments and observations made by theso naturalists, and their results-the ingenious expedients employed to prevent inaccuracy-the interesting and often marvellous transformations which microscopists declare they have witnessed-will be discussed in the article Histology; here it will be enough to note the general nature of the reasouings with which the opponents and defonders of A biogenesis support their riews. The opponents maintain that all trustworthy observations have hitherto shown living matter to have sprung from pre-existing living matter; and that the further we scarch and examine, the smaller becomes the number of those organisms which we cannot demonstrate to have arisen from living parents. They hold that seeming instances of spontaneous generation are usually to be explained by the germ-theory-the presence of invisible germs in the air: and they call to their aid-such high authoritics as Pasteur and Tyndall, The defenders of Abiogenesis, on tho other
hand, while interpreting the results of past observation and experiment in their own favour, are yet less disposed to rest on thesc, rather preferring to argue from those wide analogics of evolution and correlation which seem to support their doctrine. Thus Hacckel expressly embraces Abiogenesis as a necessary and integral part of the theory of universal evolution; and Huxley, in the same spirit, though from the opposite camp, confesses that if it were given lim to look beyond the abyss of geologically recorded time to the still more remote period when the earth was passing through physical and chemical conditions, he should expect to be a witness of the evolution of living protoplasm from not-living matter. (Critiques and Adlrisses, p. 239.) From this point of view, of course, any microsoopic observations that have been made seem very limited and comparatively unimportant. The Abiogenists, indeed, are rot withcut arguments to oppose the results of past observation that secm unfavourable to their views; they argue that, as get, all the forms observed and shown to be produced by Biogenesis are forms possessing a certain degree of organisation, which in their case makes Abiogenesis unlikely, from the first; whereas it has not been shown that the simplest struc-tures-the Afonera-do not arise by Abiogenesis. But it is not so much on grounds of fact and experiment the defenders of the Abiogenesis theory are convinced of its truth, as because it secms to gain confirration from reasonings of much wider scope; because Abiogenesis aids the theory of evolution by tracing the organic into the inbrganic ; because it fosters the increasing unpopularity of the hypothesis of a special "vital force;" and because, if this theory of the "perpetual origination of low forms of life, now, as in all past epochs," were established, it would agree well with the principle of uniformity, and by disclosing the existence of unknown worlds of material for development, would reliere natural selection with its assisting causes frem what many consider the too Herculean Labour of evolving all species from one or a very few promary forms. The' fullest discussion of the subject of Abiogenesis, from the Abiogenist's point of view, is to be found in Dr Bastran's Beginnings of Life. Professor Huxley's address, already referred to, contains an interesting historical survey, as well as a masterly summary of sacts and arguments in favour of Biogenesis. For many interesting experiments, see Nature, 1870-73.
ABIPONES, a tribe of South American Indians, inhabiting the territory lying between Santa Fé and St Iago. They originally occupied the Chace district of Paraguay, but were driven thence by the hostility of the Spaniards. According to M. Dobrizhoffer, who, towards the end of last century, lived among them for a period of seven years, they have many singular customs and characteristics. They seldom marry before the age of thirty, are chaste and otherwise virtuous in their lives, though they practise infanticide, and are without the idea of God. "With the Abipones," says Darwin, "when a man chooses a wife, he bargains with the parents about the price. But it frequently happens that the girl rescinds what has been agreed upon between the parents and bridegroom, obstinately rejecting the very mention of marriage. She often runs awray and hides herself, and thus eludes the bridegroom." The Abiponian women suckle those infants that are spared for the space of two years,-an onerous habit, which is believed to have led to infanticide as a means of escape. The men are brave in war, and pre-eminently expert in swimming and horsemanship. Numerically the tribe is insignificant. M. Dobrizhoffer's account of the Abiponians was translated into English by Sara Coleridge, at the suggestion of Mr Southey, in 1822.
abjuration. See Allfolance, Oate of.

AbKilasia, or Abasia, a tract of Asiatic Russia, on the border of the Black Sea, comprehending between lat. $42^{\circ} 30^{\prime}$ and $44^{\circ} 45^{\prime} \mathrm{N}$. and between long. $37^{\circ} 3^{\prime}$ and $40^{\circ} 36^{\prime}$ E. The high mountains of the Caucasus ou the N and N.E. divide it from Circassia; on the S.E. it is bounded by Mingrelia; and on the S.W. by the Black Sca. Though the country is generally mountainous, there are some deep well-watered valleys, and the climate is mild. The soil is fertile, producing grain, grapes, and other fruits Some of the inhabitants devote themselves to agriculture, some to the rearing of cattle and horses, and not a few support themselves by piracy and robbery. Honey is largely produced, and is exported to Turkey; and excellent arms are made. Both in ancient and in modern times there has been considerable trafic in slaves. This country was carly known to the ancients, and was subdued by tho Emperor Justinian, who introduced civilisation and Christianity. Aftcrwards the Persians, then the Georgians, and more recently the Turks, ruled over the land. Under the Turks Christianity gradually disappeared, and Mobammedanism mas introduced in its stcad. By the treatics of Akerranan and Adrianople, Russia obtained possession of the fortresses of this territory; but till the insurrection of 1866, the chiefs had almost unlimited power. The principal town is Sukumakleh. The population of Abkhasia is variously stated at from 50,000 to 250,000 . See Palgrave's Essays on Eastern Questions, 1872.
ABLUTION, a ceremonial purification, practised in nearly every age and nation. It consisted in washing the body in whole or part, so as to cleanse it symbolically from defilement, and to prepare it for religious observances. Among the Jews we find no trace of the ceremony in patriarchal times, but it was repeatedly enjoined and strictly enforced under the Mosaic cconcmy: It denoted either(1.) Cleansing from the taint of an inferior and less pure condition, and initiation into a kigher and purer state, as in the case of Aaron and his sons on their being set apart to the priesthood; or (2.) Cleansing from the coil of common life, in preparation for special acts of wosship, as in the case of the priests who were commandcd, upon pain of death, to wash their hands and feet before approaching the altar; or (3.) Cleansing from the pollutior occasioned by particular acts and circumstances, as in the case of the eleven species of uncleanness mentioned in the Dlosaio law; or (4.) The absolving or purifying one's self from the guilt of some particular criminal act, as in the case of Pilatc at the trial of the Saviour. The sanitary reasons which, in a warm climate and with a dry sandy soil, rendered frequent ablution an imperative necessity, must not be allowed to empty the act of its symbolic meaning. In the Hebrew different words are used for the washing of the hands before meals, which was done for the sake of cleanliness and comfort, and for the washing or plunging enjoined by the ceremonial lavr. At the same time it is impossible to doubt that the considerations which made the law so suitable in a physical point of riew were present to the mind of the Largiver when the rite was enjoined. Traces of the practice are to be found in the history of nearly cvery nation. The customs of the Mohammedans, in this as in other matters, are closely analogous to those of the Jews. With them ablution must in every case precede the exercise of prayer, and their law provides that in the desert, where water is not to be found, the Arabs may perform the rite with sand. Varions forms of ablution practised by differont nations are mentioned in the sixth book of the Eneid, and we are told that Eneas washed his ensanguined hands after the battle before tonching his Penates. Symbolic ablution finds a place under the New Testament dispensation in the rite of baptism, which is observed, though with some variety of form and circum-
stances, throughout the whole Christian Church. By Roman Catholics and Ritualists, the term ablution is applied to the cleansing of the chalice and the fingers of the celebrating priest after the administration of the Lord's Supper.
ABNER (:Ex, father of light), first cousin of Saul (1 Sam. xiv. 50) and commander-in-chief of his army. The chief references to him during the lifetime of Saul are found in I Sam. xvii. 55, and xxvi. 5. It was only after that monarci's death, however, that Abner was brought into a position of the first folitical importanse David, who had some time before been designated to the throne, was accepted as king by Judah alone, and was ensmed at Hebron. The other tribes were actuated by a feeling hostile to Judah, and, as soon as they had thrown off the Philistinian yoke, were induced by Abner to recognise Lshbosbeth, the surviving son of Szul, as their king. One engagement between the rival lactions under Joab and Abner respectively (2 Sam . ii. 12) is noteworthy, inasmuch as it was preceded by an encounter betreen tivelve chosen men from each side, ir which the whole trenty-four seem to have parished. In the general engagement which followed, Abner was defeated and put to flight. He was closely pursued by Asahel, brother of Joab, who is said to have been "light of foot as a wild roe." As Asahel would not desist from the pursuit, though marned, Abner was compelled to slay him in self-defence. This originated a dcadly feud between the leaders of the opposite parties, for Joab, as next of kin to Asabel, was by the law aud custon of the countig the avenger of his blood. For some time afterwards the war was carried on, the advantage being invariably on the side of Darid. At length Ishbosheth lost the main prop of his tottering cause by remonstrating with Abner for marrying Rizpah, one of Saul's concubines, an alliance which, according to Oriental notions, implied pretensions to the throna sbner was indignant it thes rebuke, and immediateiy transferred his allegiance to David. Who not only welcomed him, but promised to give fim the command of the combined armies on the re-union of the kingdoms. Almost immediatels after, however, Abner was slain by Jzab and his brother Abishai at the gate of Hebron. The ostensible motive for the assassination was a desire to avenga Asahel, and this would be a sufficient justification for the deed according to the moral etandard of the time. There can be little doubt, horrever, that Joab was actuated in great part by jealousy of a new and formidable rival, who seemed not unlikely to usurp his place in the king's favour. The conduct of David after the event was such as to show thai he had no comrplicity in the act, though he coold not ventura to punish its perpetrators. The dirge which he repeated over tho grave of Abner (2 Sam. iii. 33-4) has bees thus tans lated:-

Shorld Abner die as a villain dies ?-
Thy hands-not bound.
Thy feet-Int brought wo to fetters:
As one falls before the sons of kickedness, fellest thot
$\mathrm{ABO}_{\text {, a city }}$ and seaport, and chief tomn of the district of the same name in the Russian prorince of Fuland, is situated in N. lat. $60^{\circ} 26^{\prime}$, E. long. $22^{\circ} 19^{\prime}$, on tis $\Delta u r e-$ joki, about 3 miles from where it falls into the Gulf $0:$ Bothnia. It was a place of importance when-Finland formed part of the singdom of Sweden, and the inhabitants of the city and district are mostly of Swedish descent. By the treaty of paace concluded here between Russia and Sweden on 17 th August 1743, a great part of Finland was ceded to the former. Abo continued to be the capital of Finland till 1819. In November 1827, nearly the whole city was burnt down, the university and its raluable library
being entirely destroset. Before Lis calamity Abo cun. tained 1100 houses, and 13,000 inhabitants; and its university had 40 professors, more than 600 stuaents, and a library of upwards of 30,000 vulumes, together with a betanical garden, an observatory, and a chemical laboratory. The unversity has since been removed to Helsingfurs. Abo is the seat of an archbishop, and of the supreme court of justice for South Finland; and it has a cathedral, a town-hsll, and e cnstom-Louse Sal-cloth, linen, leather, and tobacco are marufactured; shipbuilding is carried on, and there are extensive saw-mills. There is also a large trade in timber, pitch, and tar. Yessels drawing 9 or 10 feet come up to the town, but ships of greater draught are lad? and discharged at the mouth of the river, which forms an excellent harbour and is protected. Population in 1867, 18,109.

AbOLITIONIST. See Sluvery.
ABOMASUMS, caillette, the fourth or rennet stomach of Ruminantia. From the omasum the food is finally deposited in the abomasum, a cavity considerably larger than eithes the second or third stomach, although less than the first. The base of the abomasum is turned to the omasum. It is of an irregular conical form. It is that part of the digestive apparatus which is analogous to the single stomach of other Maminalia, as the food there undergoes the process of chymification, after being macerated and ground down in the thres first stomachs.
ABONEY, the capital of Dahomey, in West Africa, is situated in N. lat. $7^{\text {a }}$, E. long. $2^{\circ} 4^{\text {' }}$, about 60 miles N. of Whydah, the port of the kingdom. It is a claybuilt town, surrounded by a moat and mud walls, and occupies a large area, part of which is cultivated. The houses stand apart; there are no regular streets; and the place is very dirty. It has four larger market-places, and trade is carried on in palm-oil, ivory, and gold, Mohammedan traders from the interior resorting io lis markets The town contains the principal palace of the king of Dahomey. It is the scene of frequent human sacrifices, a "custom" being beld annually, at which many criminals and atitizes win slain; whilo on tbs leath of a king a "grand custom" is holj, at which sometimes as many as 2000 rictims have perished. The slavc-trade is also prosecuted, and the efforts of the British Government to induce the king to abolish it and the "customs" have proved unsuccessful. Population, abont 30,000 . See Dabo3iey.

ABORIGLNES, originally a proper name given to an Italian people who inhabited the ancient Latium, or country now called Campagna di Roma. Various derivatinns of this namo have heen suggested; but there can be scarcely any doubt that the usual derivation (aborigine) is correct, and that the word simply indicated a settled tribe, whose origin and earlier history were unknowa. It is thus the equiralent of the Grees autochthones. It is therefore, strictly speaking, not a proper name at all, although, from being applied to one tribe (or group of tribes), it came to be regarded as such. Whe the Aborigines were, or whence they came, is uncertain; but various traditions that are recorded seem to indicate that they were an Oscan of Opican tribe that descended from the Apennines inte Latium, and united with some Pelasgic tribe to form the Latins. The stories about ※neas's landing in Italy repre sent the Aborigines as at first opposing and then coalesing with the Trojans, and state that the united people then assumed the name of Latins, from their king Latinus. These uracitions clearly point to the fact that the Latins were a mixed race. a circumstance which is proved by the structure of ther language, in which we find numerous words closely connecueá with the Greek, and aiso numerous words that are of an entureay different origin. These nonGreek words are mostly related to the dialects of the

Opican tribes. In modern times the term Aborigines has been extended in signification, and is used to indicate the inhabitants found in a country at its first discovery, in contradistinction to colonies or new races, the time of whose introduction into the country is known.

ABORTION, in Midwifery (from aborior, I perish), the premature separation and expulsion of the contents of the pregnant uterus. When ocourring before the eighth lunar month of gestation, abortion is the term ordinarily employed, but subsequent to this period it is designated premature labour. The present notice includes both these terms. As an accident of pregnancy; abortion is far from nucommon, although its relative frequency, as compared with that of completed gestat:on, has been very differently estimated by accouchenrs. It is more liable to occur in the earlier than in the later months of pregnancy, and it would also appear to occur more readily. at the periods corresponding to those of the menstrual discharge. Abortion may be induced by numerous causes, both of a loeal and general nature. Malformations of the pelvis, accidental injuries, and the diseases and displacements to which the uterus is liable, on the one hand; and, on the other, various morbid conditions of the orum or placenta leading to the death of the foetus, are among the direct local causes of abortion. The general causes embrace ceitain states of the system which are apt to exercise a more or less direct influenco upon the progress of uterogestation. A deteriorated condition of health, whether hereditary or as the result of habits of life, certainly predisposes to the occurrence of abortion. Syphilis is known to be a frequent cause of the death of the foetus. Many diseases arising in the course of pregnancy act as direct exciting causes of abortion, more particularly the eruptive fevers and acute inflammatory affections. Prolonged irritation in other organs may, by reflex action, excite the uterus to expel its contents. Strong impressions made upon the nervous system, as by sudden shocks and mental emotions, oceasionally have a similar effect. Further, certain medicinal substances, particularly ergot of rye, borax, savin, tansy, and cantharides, are commonly believed to be capable of exciting uterine action, but the effects, as regards at least carly pregnaney, are very uncertain, while the strong purgative medicines sometimes employed with the view of procuring abortion have no effect whatever upon the uterus, and can only act remotely and indirectly, if they act at all, by irritating the alimentary canal. In cases of poisoning with carbonic acid, abortion has been observed to take place, and the experiments of Dr Brown Sequard show that anything interfering with the normal oxygenation of the blood may cause the nterus to contract and expel its contents. Many cases of abortion occur witheut apparent cause, but in such instances the probability is that some morbid condition of the interior of the uterus exists, and the same may be said of many of those cases where the disposition to abort has become habitual. The tendency, however, to the recurrence of abortion in persons who have previously miscarried is well known, and should ever be borne in mind with the view of avoiding any cause likely to lead to a repetition of the accident. Abortion resembles ordinary labour in its genera? phenomena, excepting that in the former hemorrhage often to a large extent forms one of the leading symptoms. The treatment of abortion embraces the means to be used by rest, astringents, and sedatives, to prevent the occurrence when it merely threatens; or when, on the contrary, it is inevitable, to accomplish as speedily as possible the complete removal of the entire contents of the utcrus. The artificial induction of premature labour is occasionally resorted to by socoucheurs under certain conditions involving the safcty
of the mother or the foctus. For Criminal Abortion, nee Medical Jurisprudence.
ABOUKIR, a small village on the coast of Egypt, 13 miles N.E. of Alexandria, containing a castle which was used as a state prison by Mehemet Ali. Near the village, and connected with the shore by a chain of rocks, is a small island remarkable for remains of ancient buildings. Stretching to the castward as far as the Rosetta mouth of the Nile is the spacions bay of Aboukir, where Nelson fought "the Battle of the Nile," defeating and almost destroying the French fleet that had conveyed Napoicon to Egypt. It was near Aboukir that the expedition to Egypt, under Sir Ralph Abercromby, in 1801, effected a landing in the face of an opposing force.

ABRABANEL, IsAAO (ealled also Abravanel, Abarbanel, Barbanella, and Ravanella), a celebrated Jewish statesman, philosopher, theologian, and commentator, was born at Lisbon in 1437. He belonged to an ancient family that claimed descent from the royal house of David, and his parents gave him an education becoming so renowned a lineage. He held a high place in the favour of King Alphonso V., whe intrusted him with the management of important state affairs. On the death of Alphonso in 1481, his counsellors and favourites were harshly treated by his successor John; and Abrabanel was, in consequence, compelled to flee to Spain, where he held for eight years (1484-1492), the post of a minister of state under Ferdinand and Isabella. When the Jews were banished from Spair in 1492, no exception was made in Abrabanel's favour. He afterwards resided at Naples, Corfu, and Monopoli, and in 1503 removed to Venice, where he held office as a minister of state till his death in 1508 . Abrabanel was one of the most learned of the rabbis. His writings are chiefly exegetical and polemical ; he displays in them an intense antipathy to Christianity, though be lived on terms of friendship with Christians. He wrote commentaries on the greater part of the Old Testament, in a clear but somewhat diffuse style, anticipating much that has been advanced as new by modern theologians.
ABRACADABRA, a meaningless word once supposed to have a magical efficacy as an antidote against agues and other fevers. Ridieulonsly minute directions for the proper use of the charm are given in the Precepta de Medicina of Serenus Sammonieus. The paper on which the word was written had to be folded in the form of a cross, suspended from the neck by a strip of linen so as to rest on the pit of the stomach, worn in this way for nine days, and then, before sunrise, cast behind the wearer into a stream running to the east. The letters of this word were usually arranged to form a triangle in one or other of the following ways:-

ABRACADABRA	AURACADABRA
ABRACADABR	BRACADABR
ATRACADAB	RACADAB
ABRACADA	ACADA
ABRACAD	CAD
ABRACA	A
ABRAC	
ABRA	
ABR	
AB	
A	

ABRAHAM or $\triangle B R A M$. father of the Israclite race, was the first-born son of Terah, a Shemite, who left Ur of the Chaldees, in the north-east of Mesopotamia, along with Abram, Sarai, and Lot, and turned westwards in the direction of Canaan. Abram had married his half-sister Sarai, who was ten years younger than himself; and though such relationship was afterwards forbidden by the law, it was common in ancient times, both among other
peoples, and among the Hebrews themserves at least before Muses. The cause of Terah's removing from his native country is not given. Having come to Haran, he abode there till his death, at the age of 205 . According to Genesis xii., Abram left Haran when he was 75 years of are, that is, before the death of his father, in consequence of a divine command, to which was annexed a gracious promise, "And I will make of thee a great nation, and I will bless thee, and make thy name great; and thou shalt be a blessiug. And I will bless them that bless thee, and curse him that curseth thee; and in thee shall all families of the earth be blessed" (xii. 2, 3). Another tradition makes him leave Haran only after Tcrah's decease (Acts vii. 4). The later account is that Abram's departure was the result of religious considerations, because he had already become emancipated from surrounding idolatry. Perhaps the desire of a nomadic life, the love of migration natural to an Oriental, had more to do with his pilgrimage than a spiritual impulse from within; but it is likely that his culture advanced in the course of his sojournings, and that he gradually attained to purer conceptions of duty and life. Traditions subsequent to the Jehovistic represent him as driven forth by the idolatrons Chaldeans (Judith v. $6, \& \mathrm{Ec}$.) on account of his monotheistic doctrines, and then dwelling in Damascus as its king (Josephns's Antrquities, i. 7). The true cause of departure may be suggested by Nicolaus of Damascus saying that he came out of Chaldea with an army. The leader of a horde, worsted in some encounter or insurrection, be emigrated at the head of his adherents in quest of better fortunes. The word redeemed, in Isaiah xxix. 22, out of which Ewald conjectures so much, as if Abram had been rescued from great bodlly dangers and battles, does not help the portrait, because it means no more than the patriarch's migration from Leathen Mesopotamia into the Holy Land. Journeying south-west to Canaan with his wife and nephew, he arrived at Sichem, at the oak of the seer or prophet, where Jelovah appeared to him, assuring him for the first tine that his seed should possess the land he had come to. He travelled thence southward, pitching his tent east of Bethel. Still proceeding in the same direction, he arrived at the Negeb, or most southern district of Palestine, whence a famine forced him down to Egypt. His plea that Sarai was his sister did not save her from Pharaoh; for she was taken into the royal harem, but restored to her husband in consequence of divine chastisments inflicted upon the lawless possessor of her person, leading to the discovery of her true relationship. The king was glad to send the patriarch away under the escort and protection of his men. A similar thing is said to have subsequently happened to Sarai at Gerar with the Philistine king Abimelech (Genesis xx.), as also to Rebekah, Isaac's wife (xxvi.). The three narratives describe one and the same event in different shapes. But the more original (the junior Elohistic) ${ }^{1}$ is that of the 20th chapter, so that Gerar was the scene, and Abimelech the offender; while the later Jehovistic narrative (xii.) deviates still more from verisimilitude. Though this occurrence, however, belongs to the southern borders of Palestine, we need not doubt the fact of Abram's sojourn in Egypt, especially as he had an Egyptian slave (Genesis xvi.) How long the patriarch remained there is not related; nor are the influences which the religion, science, and learning of that civilised land had upon him alluded to. That they acted beneficially upon his mind, enlightening and enlarging it, can scarcely be doubted. His religious conceptions were transformed.

[^5]The manifold wisdom of Egypt impressed him. Intercourse with men far advanced in civilisation taught him much. Later tradition speaks of his communicating to the Egyptians the 3 iences of arithmetic and astronemy (Josephus i. 7); but this is founded upon the nation entertained at the time of the civilised Chaldeans of Babylon, whereas Ur of the Chaldees was a district remote from the subsequent centre of recondite knowledge. Abram rcceived more than he inpartcd, for the Egyptians were doubtless his supcriors in science. He found the rite of circumcision in use. There, too, he acquired great substance-flocks and herds, male and feniale slaves. After returniug to Cauaan, to his former locality, Abram and Lot separated, because of disputes between their herdsmen, there not being sufficicut room for all their cattle in common. After this separation the possession of Canaan was again assured to Abram and to his seed, who should be exceedingly numerous. This is the third theocratic promise he received. He is also commanded by Jelovalh to walk through it in its length and breadth as a token of inheritance,-a later Jehovistic tradition that must be judged according to its inhereut verisimilitude. Abram settled again at the soak of Mamre near Hebron. This was his headquarters. After Lot had been taken prisoner in the expedition of the kings of Shinar, Ellasar, Elam, and Goyim, against the old inhabitants of Basan, Ammonitis, Muabitis, Edomitis, and others besides, Abram gave chase to the enemy, accompanied by his 318 slaves and friendly neighbours, rescuing his nephew at Hobah, near Damascus. On his return, the royal priest Melchizedek of Salem came forth to meet him with refreshments, blessed the patriarch, and received from him the tithe of the spoils. The king acted generously towards the victor, and was still more generously treated in return.

Jehovah again promised to Abram a numerous offspring, with the possession of Canaan. He also concluded a covenant with him in a solemn form, aud revealed the fortunes of his posterity in Egypt, with their deliverance from bondage. In consequence of the barrenness of Sarai, she gave her handmaid Hagar to Abram, who, becoming pregnant by him, was haughtily treated by her mistress, and fled towards Egypt. But an angel met her in the desert and sent her back, telling of a numerous race that should spring from her. Having returned, she gave birth to Ishmael, in the 86th year of Abram's age.

Again did Jehovah appear to the patriareh, promising as before a multitudinous seed, and changing his vame in conformity with such promise. He assured him and his posterity of the possession of Canaan, and concluded a covenant with him for all time. At the institution of circumeision on this occasion, Sarai's name was also changed, because she was to be the maternal progenitor of the covenant people through Isaac her son. Abram, and all the males belonging to him, were then circumcised. He had become acquainted with the rite in Egypt, and transferred it to his houschold, making it a badge of distinction between the worshippers of the true God and the idolatrous Canaanites-the symbol of the flesh's subjection to the spirit. Its introduction into the worship of the colony at Namre indicated a deeided advance in Λ bram's religious conceptions. He had got bcyond the cruel practice of human sacrifice. The gross worship of the Canaanites was left behind; and the small remnant of it which he retained comported with a faith approaching monotheism. Amid prevailing idolatry this institution was a protection to his family and servants-a magic circle drawn around them. But, though powerful and respected wherever his name was known, he confined the rite to his own dumestics, without attcmpting to force it on the inhabitants of the land where he sojourned. The punishment of death
for meglecting it, because the uncircumcised person was thought to be a breaker of the covcnant and a despiser of its Author, aeems a harsh measure on the part of Abram; yet it can bardly be counced an arbitrary transference of the later Levitical severities to the progenitor of the race, since it is to the Elohist.

Accompanted by two angels, Jehowah appeared again to Abram at the oak of Mamre, accepted his proposed hospitality, and promised hirn a son by Sarai within a year. Though sho laughed incredulonsly, the promise was definitely repeated. When the angels Ieft, Jehorah communicated to Abram the divine purpose of destroying the dwellers in Siddim because of their wickedness, but acceded to the patriarch's intercession, that the cities of the plain should be spared if ten rightcous men could be found in them. The two angels, who had gone before, arrived at Sodom in the evening, and were cntertained by Let, but threatened with shameful truatment by the depraved inhabitants. Seeing that the yengeance of lieaven was deserved, they proceeded to s-ecute it, saving Lot with his wife and two daughters, and sparing Zoar as a place of refuge for them. Jehovah rained domn fire and brimstone frem heaven, turning all the Jordan district to desolation, so that when Abram looked next morning from the spot where Jchovah and hinself had parted, he sam a thick smoke ascend from the ruins.

Abram then journejed from Hebron to the Negeb, scttled between Kadesh and Shur in Gerar, where Sarai is said to have been treated as a prior account makes her to have been in Egypt. At the patriarch's prayer the plague inflicted on the king and his wives was removed. This is a duplicate of the other story. Whatever historical truth the present narrative has belongs to an earlier period of Abram's life. His second removal to Gerar originated in the former journeying through it into Egypt. He must have remained in the neighbourhood of Hebron, his first settlement, where Isaac was born according to the Elohistic account. After the birtlh of the legitimate heir, succceding events were the expulsion of Hagar and Ishmael from the paternal home, and the making of a covenant between Abimelech and Abram at Beersheba. Here Abram "called on the name of the Lord," and is aaid to have planted a noted tamarisk in commemoration of the event.

Abram was now commanded by God to offer up Isaac in the land of Moriah Proceeding to obey, he was prevented by an angel just as he ras about to slay his son, and sacrificed a ram that presented itself at the time. In reward of his obedience he received the promise of a numerous seed and abundant prosperity. Thence he returaed to Beersheba.

Sarai died and ras buried in the cave of Machpelah near Hebron, which Abram purchased, with the adjoining field, from Ephron the Hittite. The measures taken by the patriareh for the marriage of Isaac are circumstantially described. His steward Eliezer was sent to the country and kindred of Abram to find a auitable bride, which he did in Haran, whitier he was divinely conducted. Rebekah appeared as the intended one; she parted from Bethuel and her family with their full approbation, was brought to Isaac, and became a maternal ancestor of the chosen people.

It is curious that, after Sarah's death, Abram should have contracted a second marriage with Keturah, and begotten six sons. The Chronicles, however, make her his concubine (1 Cluron. i. 32), so that these children may have been born earlier. Probably the narrative intends to account for the diffusion of Abram's posterity in Arabia. Keturah's sons wcie sent away with gifts from their home into Arabia, and all the father's substance was given to Isaac. The patriurch died at the age of 175 jears,
and tras buried by Isaac and Ishmael beside Sarai in Machpelah. The book of Genesis gives two lists of Arab tribes, descended partly from Abram and keturah, partly from him and Hagar or Ishmael. These dwelt in Arabia Deserta and Petraa, as also in the northern half of Arabia Felix.

1. We cannot adopt the opinion of Von Bohlcn and Dozy that Abram is a mythical person. He must be regarded as a historical character, though the accounts of his lifo have mythical elements intermingled with much that is traditional or legendary. The difficulty of separating the historic from the mercly traditional, hinders the presentation of a natural portrait. Later legends lave invested him with extraordinary excellence. They have made him a worshipper of Jehovah, a prophet, the friend of God, fivoured with visible manifestations of His presence, and receiving repeated promises of the most far-reaching character. He is the typical ancestor of the chosen race, living under the constant guidance of God, prospering in worldly goods, delivered from imminent perils. A superhuman kalo surrounds him. It is the Jehovist in particular who invests him with the marvellous and improbable, connecting him with altars and sacrifices-a cultus posterior to, both his time and mental development-making bim the subject of theophanies, talking familiarly to Jehovah himsclf, and feeding angels with flesh. The Elohist's descripticns are simpler. His patriarchs are usually colourless men, upright and plain. .They have neither characteristic features nor distinct outline. Abram stands out an honest; peaceable, generous, high-minded patriarch; a prince, rich, powerful, and honoured, fitted for rule, and excrcising it with prudence. We need not expect a full histery of the man from writers long posterior, the representatives of popular traditions. Only fragments of the liee are given, designed to show his greatness. Legend assigned ideal lineaments to the progenitor whom a remote antiquity shrouded with its hoary mantle, and thus he became a model worthy of imitation.
2. The biblical sources of his biography are three at least; and sometimes all appear in a single chapter, as in Gen. xxii., which describes the severest trial of faith. The oldest or Elohim-document is seen in verses 20-24, which link on to chap. xxi. 2-5, from the same. The rest of the chapter belongs to the junior Elohist, except verses 14-18, added by the Jehorist to connect Abram's sacrifice with Jerusalem. These different documents, out of which the general narrative was finally put together by a redactor, create diversities and contradictions. Thus the Elohist makes Abram laugh at the announsement of a sen by Sarai (xvii. 17) ; the Jehovist, jealous for the patriarch's honour, assigns the laughter to the moman as a sign of incredulity (xviii. 12).
3. The account of the change of names given to Abram and Sarai when circumeision was instituted, cannot be regarded as historical. The Elohist says that Abram became Abraham, the latter meaning father of much people. But the Hebrew tongue has no word raham, and no root with the three letters anc. Hence the Jews found the ctymology a puzzle. ${ }^{1}$ The old reading was undoubtedly Abram and Sarai, though the later Jews expressly forbade Abram either in speaking or writing. The difference is one of mere orthography. The forms and and are cognate ones, as are n. of the Elohist is well known. The names signify father of height and princess respectively.
4. The religion of Abram was not pure Jehonism According to Exodus vi. 3, the name Jehovah was unknown before Noses. Pure Jchovism was a growth not reached
${ }^{1}$ See Beer's Liten Abruham's, pp. 150, 151.
before the prophets. It was a late development, the creed of the most spiritual teachers, not of the people generally. Abram was a distinguished Oriental sheikh, who laid aside the grossness of idolatry, and rose by degrees, through contact with many peoples and his own reflection, to the conception of a Being higher than the visible world, the God of, the light and the sun. He was a civilised nomad, having wider and more spiritual aspirations than the peoples with whom he lived. As a worshipper of God, his faith was magnified by later ages throwing back their more advanced ideas into his time, because he was the founder of a faroured race, the type of Israel as they were or should be.
o. The leading idea forming the essence of the story respecting Abram's sacrifice of Isaac, presents some dificulty of explanation. The chapter did not procced from the earliest miter, but from one acquainted with the institution of animal sacrifices. That the patriarch was familiar with human sacrifices among the peoples round about is beyond a doubt. Was he tempted from within to comply, on onc occasion, with the prevailing custom; or did the disaffected Canaanites call upon him to gire such proof of devotion to his God? Perhaps there was a struggle in his mind between the better ideas which led to the habitual renunciation of the barbarous rite, and scruples of the universal impropriety attaching to it. The persuasion that it could never be allowed may have been shaken at times. The general purport of the narrative is to place in a strong light the faith of onc prepared to make the most costly sacrifice in obedience to the divino command, as well as God's aversion to human offerings.
5. It is impossible to get chronological exactness in Abram's biography, because it is composed of different traditions incorporated with one another, the product of different times, and all passing through the hands of a later redactor for whom the true succession of events was not of primary importance. The writers themselves did not know the accurate chronology, having to do with legends as well as facts impregnated with the legendary, which the redactor afterwards altered or adapted. The Elohist is much more chronological than the other writers. It is even impossible to tell the time when Abram lived. According to Lepsius, he entered Palestine 1700-1730 B.c.; according to Bunsen, 2886; while Schenkel gives 2130-2140 B.c. In Beer's Leben Abrakam's his birth is given 1948 A.M., i.e., 2040 в.c.
6. The Midrashim contain a good deal abont Abram which is either founded on biblical accounts or spun out of the fancy. Nimrod was king of Babylon at the time. The patriarch's early announcement of the doctrine of one God, his zeal in destroying idols, including those worshipped by his father, his miraculous escape from Nimrod's wrath, his persuading Terah to leavo the king's service and go with him to Canaan, are minutely told. During his life he had no fewer than ten temptations. Satan tried to ruin him, after the fien had appeared.at the great feast given when Isaac was weaned, in the form of a poor bent old man, Who had been neglected. We can only refer to one specimen of rabbinic dialogue-making. God appeared to Abram by night, saying to him, "Take thy son"-(Abram interrapting), "Which? I have two of them." The voice of God-"Him who is esteemed by. you as your only son." Abram-"Each of them is the only son of his mother." God's voice-" Him whom thou lovest." Abram-"I lore both." God's voice-" Him whom thou especially lovest." Abram-"I cherish my children with like love." God's voice-"Now, then, take Isaac." Abram-" And what shall-I begin with in him?" God's voice-" Go to the land where at my call mountains will rise up out of ralleys to Moriah, and offer thy son Isaac as a holocaust."
, Abram-"Is it a sacrifice I shall offer, Lord? Where is the priest to prcpare it \}" "Be thou invested with that dignity as Shem was formerly." Abram-"But that land counts several mountains, which shall I ascend ?" "The top of the mountain where thou shalt see my glory veiled in the clouds," \&ic. (Beer, pp. 59, 60.)

The Arabic legends about 1 brahum are mostly taken from the Jewish fountain, very few bein , independent and preIslamite. Mohammed collected all that were current, and prosented them in forms best suited to his purpose. His sources were the biblical accounts and later Jewish legends. Those about the patriarch building the Kaaba along with Ishmael, his giving this son the house and all the country in which it was, his going as a pilgrim to Mecca every year, seeing Ishmael, and then returning to his own land, Syria, his foot-print on the black stone of the temple, and similar stories, are of genuine Aradre origin. The rest are Jewish, with cortain alterations. The collected narratives of the Arabic historians are given by Tabari, constituting a confused mass of legends drawn from the Old Testament, the Koran, and the Rabbins. (See Ewald's Geschichte des Vokkes Israel, vol. i. pp. 440-481, third edition; Bertheau's Zur Geschichte der Israeliten, p. 206, et -seq.; Tuch's Kommentar ueber die Genesis, 1833; Knobel's Die Genesis, 1852; Dozy's Die Israeliten zu Mekka, p. 16, et scq.; B. Beer's Leben Abraham's nach Auffassung der jüdischen Sage, 1859; Chroniqus d'Abou Djafar Mohammed Tabari, par L. Dubeux, tome premier, chapters 47-60; Chwolson's Ssabier und det Ssabismus, vol ii.)
(S. D.)

ABRAHAMI-A-SANCTA-CLARA, was born at Krähenheimstetten, a village in Suabia, on the 4th of June 1642. His family name was Ulrich Megerle. In 1662 he joined the order of Barefooted Augustinians, and assumed the name by which alone he is now known. Tn this order he rose step by step until he became prior provincialis and definitor of his province. Haring arly gained a great reputation for pulpit eloquence, he was appointed court preacher at Vienna in 1669. There the people flocked in crowds to hear him, attracted by the force and homelinesis of his language, the grotesqueness of his humour, and the impartial severity with which he lashed the follies of all classes of society. The vices of courtiers and court-life in particular were exposed with an admirable intrepidity. In general he spoke as a man of the people in the language of the people, the predominating quality of his style, which was altogether unique, being an overflowing and often coarse wit. There are, howerer, many passages in his sermons in which he rises to loftier thought, and uses more refined and dignified language. He died at Vienna on the lst December 1709. In his published writings Abraham-a-Sancta-Clara displayed much the ssme qualities as in the pulpit. Perhaps the most favourable specimen of his style is furnished in Judas der Ereschelm. His works have been several times reproduced in whole or part, though with many spurious interpolations, within the last thirty years, and have been very extensively read by both Protestants and Catholics. A selection was issued at Heilbronn in 1845, and a complete edition in 21 rols. appeared at Passau and Lindau, in 1835-54.
$\triangle B R A N T E S$, a town of Portngal, Estremadura prorince, on the Tagus, about 70 miles N.E. of Lisbon, delightfully situated on the brow of a hill, of which the slopes are covered with olive trees, gardens, and vineyards. It has considerable trade with Lisbon, particularly in fruit, corn, and oil. The town is strongly fortified, end is an important military position. At the convention of Cintra it was surrendered to the British. Junot derived from it his titlo of Duke of Abrantes. Population about 6000.

ABRAN'SES, Duke and Ducaess of. See Junot.
ABRAXAS, or Abrasax, a word engraved ou certain autique stones, which were called on that account Abraxas stones, and were used as amulets or charms. The Basilidians, a Gnostic sect, attached importance to the word, if, indced, they did not bring it into use. The letters of $\dot{u} \beta p a \xi \alpha{ }^{\prime}{ }^{\prime}$, in the Greek notation, make up the number 365 , and the Basilidians gave the name to the 365 orders of spirits, which, as they conceived, emanated in succession from the Supreme Being. These orders were supposed to oceupy as many heavens, each fashioned like, but inferior to that above it; and the lowest of the heavens was thought to be the abode of the spirits who formed the earth and its inhabitants, and to whom was committed the administration of its affairs. The Abraxas stones, which are frequently to be met with in the cabinets of the curious, are of very little value. In addition to the word Abraxas and other mystical characters, they have often engraved on them cabalistic figures. The commonest of these have the head of a fowl, and the arms and bust of a man, and terminate in the body and tail of a serpent.

ABRUZZO, originally one of the four provinces of the continental part of the kingdom of the two Sicilies, afterward subdivided into Abruzzo Ulteriore I., Abruzzo Ulteriore II., and Abruzzo Citeriore, which were so named from their position relative to Naples, and now form three of the provinces of the kingdom of Italy. The district, which ruas the most northerly part of the kingdom of the two Sicilies, is bounded by the Adriatic on the E, and by the provinces of Ascoli Piceno on the N., Umbria and Rome on the W., and Terra di Lavoro, Molise, and Capitanata on the S . The Abruzzi provinces have an area of nearly 4900 English square miles, and extend from N. lat. $41^{\circ} 40^{\prime}$ to $42^{\circ} 55^{\prime}$. Though presenting to the Adriatie a coast of about 80 miles in length, they have not a single good port. This territory is mostly rugged, mountainous, and covered with extensive forests, but contains also many fertile and well-watered valleys. The Apennines traverse its whole extent, running generally from N.W. to S.E., and here attaining their greatest elevation. Near Aquila is Monte Corno, the loftiest peak of that chain, called Il gran Sasso d'Italia, or the great rock of Italy, which rises to the height of 9513 feet. Monte Majella and Monte Velino attain the height of 9500 and $\delta 792$ feet respectively. From the main range of the Apennines a number of smaller branches run off towards the west. The country is watered by numerous small rivers, most of which fall into the Adriatic. They are often-suddenly swollen by the ruins, especially in the spring, and thus cause considerable damage to the lands through which they pass. The principal rivers are the Tronto, Trentino, Pescara, and Sangro. In Ibruzzo Ulteriore II. is lake Celano or Lago di Fucino, the Lacus Fucinus of the Romans, now redaced to about one-third of its former extent. The climate varies with the elevation, but, generally speaking, is temperate and healthy. Agriculture is but little understood or attended to, although in many of the lower parts of the country the land is fertile. The rivers are not embanked, nor is irrigation practised; so that the best of the land is frequently flooded during the rainy season, and parched in the heat of summer. The principal productions are corn, hemp, flax, almonds, olives, figs, grapes, and chestnuts. In the neighbourhood of Aquila saffron is extensively cultivated, although not to such an extent as formerly. The rearing and tending of sheep is the chief occupation of the inhabitants of the highlands; and the wool, which is of a superior quality, is an important article of commerce, while the skins are aent in large quantities to the Levant. Bears, wolves, and wild boars inhabit the moun-
tain fastnesses ; and in the extensive oak forests numerous herds of swine are fed, the hains of which are in high repute. The manufactures are very inconsiderable, being chiefly woollen, linen, and silk stuffs, and earthen and wood wires. Abruzzo was of great importance to the kingdom of Naples, being its chief defence to the north, and presenting almost insurmountable difficulties to the adrance of an enemy. The country is now free of the daring brigands by whom it was long infested. The inhabitants are a stout, well-truilt, brave, and industrious race. Their houses are geuerally miserable huts; their food principally maize, and their drink bad wine. The railway from Ancona to Brindisi passes through Abruzzo Ulteriore I. and Abruzzo Citeriore, skirting the coast; and a line has been projected from Pescara, by Popoli, the Lago di Fucino, and the valley of the Liris, to join the railway from Rome to Naples, and thus open up the interior of the country. The line is open for trafic between Pescara and Popoli.

Abruzzo Ulteriore I. is the most northerly of the three provinces, and has an area of 1283 square miles, with a popalation in 1871 of 245,684 . The western part of the province is very mountainous, the highest crest of the Apennines dividing it from Abruzzo Ulteriore II. The valleys possess a rich soil, well watered by rivulets and brooks in the winter and spring, but these are generally dried up in the summer months. The streams run mostly into the Pescara, which bounds the proviree towards Abruzzo Citeriore, or into the Tronto, which is the northern boundary. The city of Teramo is the capital of the province.

Abruzzo Ulteriore II. is an inland district, nearly covered with mountains of various heights, one of which is the Gran Sasso. There are no plains; but among the mountains are some beautiful and fruitful valleys, watered by the various streams that run through them. None of the rivers are navigable. The province has an area of 2510 square miles, and in 1871 contained 332,782 inhabitants. Its chief town is Aquila.

Abruzzo Citeriofe lies to the south and east of the other two provinces. It is the least hilly of the three, but the Apennines extend through the eouth-west part. They, however, gradually deeline in height, and stretch away into plains of sand and pebbles. The rivers all run to the Adriatic, and are very low during the summer months. The soil is not very productive, and agriculture is in a very backward state; the inhabitants prefer the chase and fishing. The province coutains 1104 square miles, with a population of 340,299 in 1871. Its ahief town is Chieti.

ABSALOM (シibvipu, father of peace), the third son of David, king of Israel. He was deemed the handsomest man in the kingdom. His sister Tamar having been vislated by Amnon, David's eldest a0n, Absalom caused his servants to murder Amnon at a feast, to which he had invited all the king's sons. After this deed he fled to the kingdom of his maternal grandfather, whero he remained three years; and it was not till two years after his return that he was fully reinstated in his father's favour. Absalom scems to have been by this time the eldest surviving aon of David, but he was not tho destined heir of his father'a throne. The suspicion of this excited the impulsive Absalom to rebellion. For a time the tide of public opinion ran so strong in his favour, that David found it expedient to retire beyond the Jordan. But, instead of adopting the prompt measures which his sagacious counsellor Ahithophel advised, Absalorn loitered at Jerusalem till a large force was raised against him, and when he took the field his army was completely routed. The battle was fought in the forest of Ephraim; aud Absalom, caught in
the boughs of a tree by the superb hair in which he gloried, was run through the body by Joab. The king's grief for bis worthless son vented itself in the touching lamentation -"O my son Absalom, my son, my son Absalom! would God I had died for thee, O Absalom, my son, my son!"
ABSALON, Archbishop of Lund, in Denmark, was born in 1128 , near Soroe in Zealand, his family name being Axel. In 1148 he went to study at Paris, where a college for Danes had becn established. He afterwards travelled extensively in different countries; and returning to Denmark in 1157, was the year after chosen Bishop of Roeskilde or Rothschild. Eloquent, learned, endowed with uncommon physical strength, and possessing the confidence of the king, Waldemar I., known as the Great, Absalon held a position of great influence both in the church and state. In that age warlike pursuits were not deemed inconsistent with the clerical office, and Absalon was a renowned warrior by sea and land, as well as a zealous ecclesiastic, his avowed principle being that "both swords, the spiritual and the temporal, were entrusted to the clergy." To his exertions as statesman and soldier Waldemar was largely indebted for the independence and consolidation of his kingdom. In 1177 he was chosen by the chapter Archbishop of Lund and Primate of the church, but he declared himself unwilling to accept the appointment; and when an aftempt was made to install lim by force, he resisted, and appealed to Rome. The Pope decided that the choice of the chapter must be respected, and commanded Absalon to accept the Primacy on pain of excommunication. He was consecrated accordingly by the papal legate Galandius in 1178 . He set the Cistercian monks of Soroe the task of preparing a history of the country, the most raluable result being the Danish Chronicle of Saxa Grammaticus, who was secretary to Absalon and his companion in an expedition against the Wendish pirates. A tower or castle which the arebbishop caused to be built as a defence against these pirates, was the commencement of the present capital, Conenhagen, which from this circumstance is sometimes known in history as Axelstadt. The archbishop died in 1201, in the monastery at Soroe, and was buried in the parish church, where his grave may still be seen.
ABSCESS, in Surgery (from abscedo, to separate), a collection of pus among the tissues of the body, the result of inflammation. Abscesses are divided into acute and chromic. See Surgery.

ABSLNTHE, a liqueur or aromatised spirit, prepared by pounding the leares and flowering tops of rarious species of wormwood, chiefly Artemisia Absinthium, along with angelica root (Archangelica officinalis), sweet flag root (Acorus Calanus), the leaves of dittany of Crete (Origanum Dictamnus), star-anise fruit (Illicium anisatum), and other sromatics, and macerating these in alcohol. After soaking for about eight days the compound is distilled, yielding an emerald-coloured liquor, to which a proportion of an essental-oll, usually that of anise, is added. The liqueur thus prepared constitutes the genuine Extrait d'Alssinthe of the French; but much of an inferior quality is made with other herbs and essential oils, while the adulterations practised in the manufacture of absinthe are very numerous and deleterious. In the adulterated liqueur the groen colour is unnally produced by turmeric and indigo, but the presence of even cupric sulphate (blue vitriol) as a colouring iugredient has bcen frequently detected. In cammerce two varieties of absinthe are recognised-common and Swiss absinthe-the latter of which is prepared with highly con..eentrated spirit; and when really of Swiss manufacture, is of nost trustworthy quality as regards the herls used in its preparation. The chicf seat of the manufacture is in the canton cf Neufeliâtc! is Switzerland, although
absiathe distilleries are scattered generally throughout Switzerland and France. The liqueur is chiefly consumed in France, but there is also a considerable export trade to the United States of America. In addition to the quantity distilled for home consumption in France, the amount imported from Switzerland in recent years has not been less than $2,000,000$ gallons searly. The introduction of this beverage into general use in France is curious. During the Algerian war (1844-47) the soldiers were advised to mix absinthe with their mine as a febrifuge. On their return they brought with them the habit of drinking it, which is now so widely disseminated in French society, and with such disastrous consequences, that the custom is justly esteemed a grave national evil. A Fronch physician, M. Legrand, who has studied the physiological effects of absinthe drinking, distinguishes two trains of results according as the victim indulges in violent excesses of drinking or only in continuors steady tippling. In the case of excessive drinkers there is first the feeling of exaltation peculiar to a state of intozication. The increasing dose necessary to produce this state quickiy deranges the digestive organs, and destroys the appetite. An unappeasablo thirst takes possession of the victim, with giddiness, tingling in the ears, and hallucizations of sight and bearing, followed by a constant mental oppression and anxiety, loss of brain power, aud, eventually, idiocy. The symptoms in the case of the tippler commence with muscular quiverings and decrease of physical strength; the hair begins to drop off, the face assumes a melancholy aspect, and he becomes emaciated, wrinkled, and sallow. Lesion of the brain follows, horrible dreams and delusions haunt the victim, and gradually paralysis overtakes him and lands him in his grave. It has been denied by a French authority, M. Moreau, that these symptoms are due to wormwaod or any of the esscntial coils contained in absinthe, and be maintains that the strong spirit and such adulterations as salts of copper aso sufficient to account for the effects of the liqueur. There is, however, no doubt that proportionately the consumption of absintte is much more deleterious to the human frame than the drinking of brandy or other strong spirits. The use of absinthe hes beea prohibited in both the army and nary of France.

ABSOLUTE (from the Latin absolvere), having the general meaning of loosened from, or unrestricted, in which sense it is popularly used to qualify such words as "monarchy" or "power," has been variously employed in philosophy. Logicians use it to mark certain classes of names. Thus a term has been called absolute in opposition to attributive, rhen it significs something that has or is viewed as having independent existence; most commonly, however, the opposition conveyed is to relutize. A relative name being taken as one which, over and above the object which it denotes, implies in its signification the existence of another object, also deriving a denomination from be same fact, which is the ground of the first name (Miil), as, e.g., father and son, the non-relative or absolute name is one that has its meaning for and in itsclf, as man. This distinction is a convenient one, although, as has been observed, it can hardly in perfect strictness be maintaincd. The so-called sbsolute name, if uscd with a meaning, does always stand in some relation, however variable or indefinite, and the meaning varics with the relation. Thus man, which is a word of very different meanings, as. e.g., not woman, not boy, not master, not brute, and so forth, may be said to have them according to the different relations in π hich it admits of being vicwed, or, as it has been othcrwise expressed, according to the different notions whose "unverse" it composes, along with its different corrclatives. From this point of view there is always one relation in which a ral thing must stand, hamely, the
iclation to ats contradictory (as not man) within the uiverse of being; the correlatives, under less general zotions, being then generally expressed positively as contraries (woman, boy, master, brute, and so forth, for man). If there is thus no name or notion that can strictly be called absolute, all knowledge may be said to be relative, or of the relative. But the knowledge of an absolute has also been held impossible, on the ground that kuowing is itself a relation between a subject and an object; what is known only in relation to a mind cannot be known as absoluts. This doctrine, now commonly spoken of under the name of the Relativity of Knowledge, may, indeed, be bronght under the former view, in which subiect-object marks the relation of highest philosophical significance within the whole universe of things. Keeping, however, the two views apart, we may say with double force that of the absolute there is no knowledge,--(1), because, to be kuown, a thing must be consciously discriminated from other things; and (2), because it-can be known only in relation with a knowing mind. Notwithstanding, there have been thinkers from the earliest times, who, in different mays, and more or less explicitly, allow of no such restriction upon knowledge, or at least cousciousness, but, on the contrary, starting from a notion, by the latter among them called the absolute, which includes. within it the opposition of subject and object, pass therefrom to the explanation of all the phenonema of nature and of mind. In earlier days the Eleatics, Plato, and Plotinus, in modern times Spinoza, Leibnitz, Fichte, Schelling, Hegel, and Cousin, all have joined, under whatever different forms, in maintaining this view. Kant, while denying the absolute or unconditioned as an objeet of knowledge, leaves it conceivable, as an idea regulative of the mind's intellectual experience. It is against auy such absolute, whether as real or conceivable, that Hamilton and Mansel have taken ground, the former in his famous review of Cousin's philosophy, reprinted in his Discussions, the latter in his Bampton Lectures on The Limits of Religious Thought, basing their arguments iudifferently on the positions as to the Relativity of Knowledge indicated above. For absolute in its more strictly metapirysical use, see Metaphysics.
(G. C. P.)

ABSOLUTION, a term used in civil and ecclesiastical law, denotes the act of setting free or acquitting. In a criminal process it signifies the acquittal of an accused person on the ground that the evidence has either disproved or failed to prove the charge brought against him. It is now little used except in Scotch law, in the forms assoilzie and absolvitor. The eeclesiastical usage of the word is essentially different from the civil. It refers to sin actually committed, and denotes the setting of a person free from its guilt, or from its peual consequences, or from both. It is invariably connected with penitence, and some form of confession, the Seripture authority, to which tho Roman Catholies, the Greek Church, and Protestants equally appeal, being found in John xx. 23, James v. 16, se. In the primitive church the injunction of James was literally obeyed, and confession was made before the whole congregation, whose presence and concurrence were reckoned necessary to the validity of the absolution pronounced by the presbyter. In the 4 the eentury the bishops began to exercise the power of absolution in their own right, without recognising the congregations. In consequence of this the practice of private confession (confessio «uricularis) was establislied, and became more and more common, unti it was rendered imperative onee a year by a decree of the fourth Lateran Council (1215). A distinction, indeed, was made for a time between peccata venialia, which might be confessed to a layman, and peccols mortalic, which could only be confessed io a priest;
but this was ultimately abolished, and the Roman Canod Lav now stands, IVec venialia nec mortalia possumus cnnfiteri sacramentaliter, nisi sacerdoti. A change in the form of absolution was alnost a logical sequence of the change in the nature of the confession. At first the priest acted ministerially as an intereessory, using tho formula absolutionis precativa or deprecativa, which consisted of the words: Dominus absolvat te-Misereatur tui omnipotens Deus et dimittat tibi omnia peccata tua. This is still the only form in the Greek Church, and it finds a plave in the Roman Catholic service, though it is no longer used in the act of absolution. The Romish form was altered in the 13th century, and the Council of Trent decreed the use of the formula absolutionis indicativa, where the priest nets judicially, as himself possessed of the power of binding and loosing, and says, Ego absolvo te. Where a form of absolution is used in Protestant Churehes, it is simply declarative, the state being only indicated, and in no sense or degree assumed to be caused by the declaration.

ABSORPTION, in the animal economy, the function possessed by the absorbent system of vessels of taking up nutritive and other fluids. See Physiology.

ABSTEMI, a name formerly given to such persons as could not partake of the cup of the eucharist on account of their natural aversion to wine. Calvinists allowed these to communicate in the species of bread only, touching the cup with their lip; which was by the Lutherans deemed a profanation. Among several Prutestant sects, both in Great Britain and America, abstemii on a somewhat different principle have recently appeared. These are total abstainers, who maintain that the use of stimulants is essentially sinful, and allege that the wine used by Christ and his disciples at the supper was unfermented. They accordingly communicate in the unfermented "juice of the grape." The difference of opinion on this point has led to a good deal of controversy in many congregations, the solution generally arrived at being to allow both wine and the pure juice of the grape to be served at the communion table.

ABSTRACTION, in Psychology and Logic, is a word used in several distinguishable but closely allied senses. First, in a comprehensive sense, it is often applied to that process by which we fix the attention upon one part of what is present to the mind, to the exclusion of another part; abstraction thus conceived being merely the negative of Attention (q.v.) In this sense we are able in thought to abstract oue object from another, or an attribute from an object, or an attribute perceived by one sense from those perceived by other senses. Even in cases when thoughts or images have become inseparably associated, we possess something of this power of abstracting or.turning the attention upon one rather than another. Secondly, the word is used, with a more special siguifica. tion, to describe that conceutration of attention upon the rescmblances of a number of objects, which constitutes classification. And thirdly, not to mention other less important changes of meaning, the whole process of generalisation, by which the mind forms the notions expressed by common terms, is frequently, through a eurious transposition of names, spoken of as abstraction. Especially when understood in its less comprehensive connection, the process of abstraction possesses a peculiar interest. To the psychologist it is interesting, because there is nothing he is more desirous to understand than the mode of formation and true nature of what are called general notions. And fortunately, with regard to the abstractive process by which these are formed, at least in its initial stages, there is little disagreement; since every one describes it as a process of comparison, by which the unind is euabled to cousider the objects confusedly pre-
sented to it in intuition, to recognise and attend exclusively to their points of agreement, and so to classify them in accordance with their perceived resemblances. Further, this process is admitted without much dispote to belong to the discursive or elaborative action of the intellect; although, perhaps - should the view of some modern psychologists be correct, that all intelligence proceeds by the establishment of relations of likeness and unlikeness -abstraction will be better conceired as thus related to intelligence in general and typical of all its processes, than as the action merely of a special and somewhat indefinite faculty. No such harmony, however, exists regarding the nature of the p roduct of abstraction ; for that is the subjectmatter of Nominalism and Realism, which has produced more controversy, and stimulated to more subtlety of thought, than any other subject ever debated in philosophy. The concept or abstract idea has been represented in a multitude of ways: sometimes as an idea possessing an objective existence independent of particulars, even more real and permanent than theirs; sometimes as an idea composed of all the circumstances in which the particulars agree, and of no others ; again, as the idea of an individual, retaining its individualising qualities, but with the accompanying knowledge that these are not the properties of the class; and yet again, as the idea of a miscellaneous asscmblage of individuals belonging to a class. It t -is still impossible to say that the many-sided controversy is at an end. The only conolusion generally admitted seems to be, that there exists between the concept and the particular objects of intuition some very intimate relation of thought, so that it is necessary, for all purposes of reasoning, that the general and particular go hand in hand,. that the idea of the class-if such exists -be capable of being applied, in every complcted act of thought, to the objects comprised within the class.

To the student of ontology, also, abstraction is of special interest, since, according to many distinguished thinkers, the recognition of abstraction as a powerful and universal mental process is to explain all ontology away, and give the ontologist his eternal quietus. The thoroughgoing nominalist professes to discover in the mind an inveterate tendency to abstraction, and a proneness to ascribe separate existence to abstractions, amply sufficient to account for all those forms of independent reality which metaphysics deferid, and to exhibit them all in their true colours as fictitious assumptions. In reply, the ontologist, strengthened by the instinct of self-preservation, commonly contends that the analogy between general notions and metaphysical principles does not hold good, and that the latter are always more than simple abstractions or mere names. Only after abstraction is understood can the question be settled.

In like manner to logic, whether regarded as the science of the formal laws of thought, or, more widely, as the science of scientific methods, a true understanding of abstraction is of the greatest importance. It is important in pure logic, because, as we have seen, every act of jud pment and reasoning postulates a concept or concepts, and so presupposes abstraction. Abstraction, determining the nossibility alike of reason and speech, creates those notions that bear common names; it is indispensable to the formation of classes, great or small; and just according as it ascends, increasing the extension and diminishing the intension of classes, the horizon visible to reason and to logic gradually recedes and widens. And to logic as the science of the sciences a true ductrine of abstraction is not less necessary; because the process of extending knowledge is, in all its developments, essentially the same as the first rudimentary effort to form a concept and think of particulars as merabers of a class; a "natural lav" at
least in its subjective aspect, is invariably an abstraction made by comparing phenomena-an abstraction under which phenomena are classed in order to the extension of knowledge, just as under a concept are grouped the par. ticulars presented in intuition. As proof of this identity it is found that the same differences exist regarding the objective or subjective nature of the "natural law" as regarding that of the concept. Some affirm that the law is brought ready-made by the mind and superinduced on the facts; others, that it is never in any sense more than a mere mental conception, got by observing the facts; while there are yet others who maintain it to be such a subjective conception, but one corresponding at the same time to an external relation which is real though unknowable.
ABSURDUM, Reductio ad, a mode of demoustrating the truth of a proposition, by showing that its contradictory leads to an absurdity. It is much employed by Euclid.
ABU, a celebrated mountain of Western India, between 5000 and 6000 feet in height, sitnated in $24^{\circ} 40^{\prime} \mathrm{N}$. lat., and $72^{\circ} 48^{\prime} \mathrm{E}$. long., within the Rájputáná State of Siroh!. It is celebrated as the site of the most ancient Jain temples in India, and attracts pilgrims from all parts of the country. The Jains are the modern Indian representatives of the Buddhists, and profess the ancient theistic doctrines of that sect, modified by saint worshup and incarnations. The elevations and platforms of the mountain are covered with elaborately sculptured shrines, temples, and tombs. On the top of the hill is a small round platform containing a carern, with a block of granite, bearing the impression of the feet of Dát́-Bhrigu, an incarnation of Vishnu. This is the chief great place of pilgrimage for the Jains, Shrawaks, and Banians. The two principal temples are situated at Deulwárá, about the middle of the mountain, and fire miles south-west of Guru Sikrá, the highest summit. They are built of white marble, and are pre-eminent alike for their beanty and as typical specimens of Jain architecture in India. The following description is condensed from Mr Fergusson's History of Architecture, vol ii. pp. 623 to 625 :-The more modern of the two was built by two brothers, rich merchants, between the years 1197 and 1247, and for delicacy of carving and minute beauty of detail stands almost unrivalled, even in this land of pationt and lansh labour. The other was built by another merchant prince, Bimalá Shâh, apparently about 1032 A.D. and although simpler and bolder in style, is as elaborate as good taste would allow in a purely architectural object. It is one of the oldest as well as one of the most complete examples of Jain architecture known. The principal object within the temple is a cell lighted only from the door, containing a cross-legged seated figure of the god Paresnáth. The portico is composed of forty-night pillars, the whole enclosed in an oblong court-yard about 140 feet by 90 feet, surrounded by a double colonnade of smaller pillars, forming porticos to a range of fifty-five colls, which enclose it on all sides, exactly as they do in a Buddhist monastery (vihára). In this temple, however, each cell, instead of being the residence of a monk, is occupicd by au image of Paresnáth, and over the door, or on the jambs of each, aro sculptured scenes from the life of the deity. The whole intcrior is magnificently ornamented. The Emperor Alkbar, by a farmán dated in the month of Rabi-ul-\{ul, in the 37 th year of his reign, corresponding with 1593 , made a grant of the hill and temples of Abu, as well as of the other hills and places of Jain pilgrimage in the empire, to Harbijai Sur, a celebrated preceptor of the Setámbari sect of the Jain religion. He also prohibited the slaughter of animals at these places. The farmán of this enlightened monarch declared that "it is the rule of the worshippers of God to preserve all religions."

ABU-BEKR (father of the virgin), was originally called Abd-el-Caaba (servant of the temple), and received the naino by which ho is known historically in consequence of the marriage of his virgin daugliter Ayesha to Mohammed. He was born at Mecca in the year 573 A.D., a Koreishite of the tribe of 13 enn-Taim. Possessed of immense wealth, which he had himsclf acquired in commerce, and held in high esteem as a judge, an interpreter of dreams, and a depositary of the traditions of his race, his carly accession to Islamism was a fact of great importance. On his conversion he assumed the name of Abd-Alla (servant of God). His own belief in Mohammed and his doctrincs was so thorough as to procure for him the title Fll Siddik (the faithful), and his success in gaining converts was correspondingly great. In his personal relationship to the prophet he showed the decpest vencration and most unswerving devotion. When Mohammed fled from Mecca, Abu-Bekr was his sole companion, and shared both his bardships and his triumphs, remaining constantly with him until the day of his death. During his last illness the prophet indicated Abu-Bckr as his successor, by desiring him to offer up prayer for the poople. The choice was ratified by the chicfs of the army, and ultimately confirmed, though Ali, Mohiammed's son-in-lavr, disputed it, asserting his own title to the dignity. After a time Ali submitted, but the difference of opinion as to his claims gave rise to a controversy which still divides the followers of the prophet iuto the rival factions of Sunnites and Shiites. Abu-Bekr had scarcely assumed his new position under the title Khalifct-Resul-Allah (successor of the prophet of $G \circ d$), when he was called to suppress the revolt of the tribes Hedjaz and Nedjd, of which the former rejected Islamism, and the latter refused to pay tribute. He encountered formidable opposition from different quarters, but in every case he was successful, the severest struggle being that with the impostor Mosailima, who was finally defeated by Khaled at the battle of Akraba. Abu-Bekr's zeal for the spread of the new faith was as conspicuous as that of its founder had been. When the internal disorders lad been repressed and Arabia completely subdued, be directed his generals to foreign conquest. The Irak of Persia was overcome by Khaled in a single campaign, and there was also a successful expedition into Syria After the hard-won victory over Mosailima, Omar, fearing that the sayings of the prophet would be entirely forgotten when those who had listened to them had all been removed by death, induced Abu-Bekr to see to their preservation in a written form. The record, when completed, was deposited with Hafsu, daughter of Omar, and one of the wives of Mohammed. It was held in great reverence by all Moslems, though it did not possess canonical authority, and furnished most of the materials out of which the Koran, as it now exists, was prepared. When the authoritative version was completed, all copies of Hafsu's record were destroyed, in order to prevent possible disputes and divisions. Abu-Bekr died on the 23d of August 634, having reigned as Khalif fully two ycars. Shortly before his death, which one tradition ascribes to poison, another to natural causes, he indicated Omar as his successor, after the manner Mohammed had observed in his own case.
abulfaragius, Gregor Abulfaras (called also Barhebreus, from his Jewish parentage), was born at Malatia, in Armenia, in 1226. His father Aaron was a physician, and Abulfaragius, after studying under him, also practised medicine witn great success. His command of the Arabic, Syriac, and Greek languages, and his knowledge of philosophy and thcology, gained for him a very high reputation: In 1244 he removed to Antioch, and shortly after to Tripoli, where he was consecrated Bishop of Guba, when only twenty years of age. He was subse-
quently transferred to the see of Aleppo, and was elected in 1266 Maphrian or Prinate of the eastern section of the Jacoliste Christians. This dignity he held till his death, which occurred at Naragha, in Azerbijan, in 1286. Abulfaragius wrote a large number of works on varions subjects, but his fanue as an author rests chicfly on his History of the World, from the creation to his own day. It was written first in Syriac, and then, after a considerable interval, an abridged version in Arabic was published by the author at the request of friends. The latter is divided into ten sections, each of which cont tained the account of a separate dynasty. The historic value of the work lies entirely in the portions that treat of enstern nations, especially in those relating to the Saracens, the Tartar Mongols, and the conquests of Geaghis Khan. The other sectious are full of mistakes, arising partly ne doubt from the author's comparative ignorance of classical languages. A Latin translation of the Arabic abridgement was published by Dr Pococke at Oxford ín 1663. A partion of the original text, with Latin translation, cdited, by 210 means carcfully or accurately, by Bruns and F. W. Kirsch, appeared at Leipsic in 1788.

ABULFAZL, vizier and historiographer of the great Mongol emperor, Akbar, was born about the middle of the 16th contury, the precise date being uncertain. IIis carcer as a minister of state, brilliant though it was, would probably have been by this time forgoten but for the record he hunself hats left of it in his celebrated history. The Aklar Nameh, or Book of Akbar, as Abulfazl's chief literary work is called, consists of two parts,--the first being a complete history of Akbar's reign, and the second, entitled Ayin-i-Akbari, or Institutes of Akbar, being an account of the religious and political constitution and administration of the empire. The style is singularly elcgant, and the contents of the second part possess a unique and lasting interest. An excellent translation of that part by Mr Francis Gladwin was published in Cal. cutta, 1783-6. It was reprinted in London very inaccurately, and copies of the original edition are now exceedingly rare and correspondingly valuable. Abulfazi died by the hand of an assassin, while returning from a mission to the Deccan in 1602 . Some writers say that the murderer was instigated by the heir-apparent, who had become jealous of the minister's influence.
ABULFEDA, Ismael ben-Ali, Emad-eddin, the celcbrated Arabian historian and geographer, born at Damascus in the year 672 of the Hegira (1273 A.D.), was directly descended from Ayub, the father of the emperor Saladin. In his boyhood he devoted himself to the study of the Koran and the sciences, but from his twelfth year he was almost constantly engaged in military expeditions, chiefly against the crusaders. In 1285 he was present at the assault of a stronghold of the Knights of St John, and he took part in the sieges of Tripoli, Acre, and Rounn. In 1298 the princedom of Hamah and other bonours, originally conferred by Saladin upon Omar, passed by inheritance to Abulfeda; but the succession was violently disputed by his two brothers, and the Court availed itself of the opportunity to supersede all the three; and to abolish the principality. The sultan Melik-el-Nassir ultimately (1310) restored the dignity to Abulfeda, with additional honours, as an acknowledgment of his military services against the Tartars and Bibars, the sultan's rival. Ho received an independent sovereignty, with the right of coining money, \&c., and had the title Melik Mowayyad (victorious prince) conferred upon him. For twenty years, till his death in October 1331, he reigned in tranquillity and splendour, devoting himself to the duties of govern: ment and to the composition of the works to which he is chicfly indebted for his fame. He was a munificent patron
of men of letters, who repaired in large numbers to his court. Abulfeda's chief historical work is An Abridgement of the History of the Human Race, in the form of annals, extenoing from the creation of the world to the year 1328. A great part of it is compiled from the works of previous writers, and it is difficult to determine accurately what is the author's and what is not. Up to the time of the birth of Mohammed, the narrative is very succiuct; it becomes more full and valuable the nearer the historian approaches his orm day. It is the only source of information on many facts connected with the Saracen empire, and altogether is by far the most important Arabian history we now possess. Various translations of parts of it exist, the earliest being a Latin rendering of the section relating to the Arabian conquests in Sicily, by Dobelius, Arabic professor at Palermo, in 1610. This is preserved in Muratori's' Rerum Italicarum S'criptores, vol. i. The history from the time of Mohammed was published with a Latin translation by Reiske, under the title Annales Moslemici (5 vols., Copenhagen, 1789-94), and a similar edition of the earlier part was published by Fleischer at Leipsic in 1831, under the title Abulfedce Historia AnteIslamitica. His Geography is cluefly valuable in the historical and descriptire parts relating to the Moslem empire. From his necessarily imperfect acquaintance with astronomy, his notation of latitude and longitude, though fuller than that of any geographer who preceded him, can in no case be depended on, and many of the places whose position he gives with the utmost apparent precision cannot be now identified. A complete edition was published by MM. Reinand and De Slane at Faris in 1840; and Reinaud published a French translation, with notes and illustrations, in 1848. MSS. of both Abulfeda's great works are preserved in the Bodleian Library and in the National Library of France.

ABULGHAZI-BÁHADUR (1605-1663), a khan of Khiva, of the race of Genghis-Khan, who, after abdicating in favour of his son, employed his leisure in writing a history of the Mongols and Tartars. He produced a valuable work, which has been translated into German, French, and Russian.

ABUNA, the title given to the archbishop or metropoli\tan of Abyssinia.

ABUSHEHR. See Bushine.

ABU-SLMBEL, or IPSAMBOL, the ancient Aboccis or Abuncis, a place in Nubia, on the left bank of the Nile,
about 50 miles S.W. of Derr, remarkablo for its ancient Egyptian temples and colossal figures hewn out of the solid rock. For a description of these see Nobia.

ABU-TEMAN, one of the most highly esteemed of Arabian poets, was born at Djacenn in the year 190 of the Hegira (806 A.D.) In the little that is told of his lifeit is difficult to distinguish between truth and fable. He seems to have lived in Egypt in his youth, and to have been engaged in servile employment, but his rare poetic talent speedily raised him to a distinguished position at the court of the caliplos of Bagdad. Arabian historians assert that a single poem frequently gained for him many thousand pieces of gold, and the rate at which his contemporaries estimated his genius may be understood from the saying, that " no one could ever die whose name liad been praised in the verses of Abu-Teman." Besides writing original poetry, he made three collections of select pieces from the poetry of the East, of the most important of which, called Hamasa, Sir William Jones speaks highly. Professor Carlyle quoted this collection largely in his Specimens of Arabic Poetry (1796). An edition of the text, with Latin translation, was published by Freytag at Bonn (1828-51), and a meritorious translation in German verse by Rückert appeared in 1846. Abu-Teman died 845 A.D.

ABYDOS (1.), in Ancient Geography, a city of Mysia in Asia Minor, situated on the Hellespont, which is here scarcely a mile-broad. It probably was originally a Thracian town, bnt was afterwards colonised by Milesians. Nearly opposite, on the European side of the Hellespont, stood Sestos; and it was here that Xerxes crossed the strait on his celebrated bridge of boats when he invaded Greece. Abydos was celebrated for the vigorous resistance it made when besieged by Philip II. of Macedon; and is famed in story for the loves of Hero and Leander. The old castle of the Dardanelles, built by the.Turks, lies a little southmard of Sestos and Abydos.

ABYDOS (2.), in Ancient Geography, a town of Upper Egypt, a little to the west of the Nile, between Ptolemais and Diospolis Parra, famous for the palace of Memnon and the temple of Osiris. Remains of these two edifices aro still in existence. In the temple of Osiris Mr Bankes discovered in 1818, the tablet of Abydos, containing a double series of twenty-six shields of the predecessors of Rameses the Great This tablet is now deposited in the British Muscum.

ABYSSINIA

ABYSSINTA is an extensive country of Eastern Africa, the limits of which are not well dcfined, and authorities are by no means agreed respecting them. It may, however, be regarded as lying between $7^{\circ} 30^{\prime}$ and $15^{\circ} 40^{\circ} \mathrm{N}$. lat., and 35° and $40^{\circ} 30^{\prime}$ E. long., having, N. and N.W., Nubia ; E., the territory of the Danakils ; S., the country of the Gallas; and W., the regions of the Upper Nile. ${ }^{1}$. It has an area of

[^6]about 200,000 squaro miles, and a population of from $3,000,000$ to $4,000,000$.

The name Abyssinia, or more properly Habcssinia,' is derived from the Arahic word Ilabesch, which signifies mixture or confusion, and mas applied to this country by the Arabs on account of the mired character of the people. This mas subsequently Latinised by the Portuguese into Abassia and Abassinos, and hence the present name. The Abyssinians call themscives Itiopyazan, and their country Itiopia, or Manghesta Itiopia, the kingdom of Ethiopia.

The country of Abyssinia rises rather abruptly from the low arid district on the borders of the Red Sea in lofty ranges of mountains, and slopes away more gradually to the westward, where the tributaries of the Nilc have formed numerous deep ralleys. It consists for the most part of extensive and elevated table-lands, with mountain ranges extending in different directions, and intersected by numerous valleys. The table-lands are generally from 6000 to 9000 feet abore the level of the sea, but in the south there are
some of considerable extent, which attain a height of more than 10,000 fset. The mountains in various parts of the country rise to 12,000 and 13,000 feet above the sea, and some of the peaks of Samen are said to reach to 15,000 feet, and to be always covered with snow. The average beight of the range which divides the streams flowing to the cast from those that flow westward is sbont 8000 feet, rising to 10,00 or 11,000 in the south, and sukking in the north. The whole country presents the appearance of faving been broken up and tossed about in a remarkable inanner, the mountains assuming wild and fantastic forms, with sides frequently abrupt and precipito:s, and only Eccessible by very difficult passes. The Samen range of mountains are the highest in Abyssinia, and together with the Lamalmon and J.osts miuntains form a long but not continuous chain, runnine from north to south.

Sketch Chart of Aoyssinla.
The principal rivers of Abyssinia are tributaries of the Nile. The western portion of the country may be divided into three regions, drained respectively by the Naret, the Atbara, and the Abai. The most northern of these rivers is the Mareb, which rises in the mountsins of Taranta, flows first south, then west, and afterwards turns to the north, where it is 2.4 length, ailer a course of up, wards of 500 miles, lost in the sand, but in the rainy season it falls into the Atbara. The 'Atbara. or Takazza, rises in the mountains of Lasta, and fowing first north, then west, and again turning to the north, at length ialls into the Nile, after a course of about 800 miles. The Abai, Eahr-el-Azrek or Blue Piver, the coiterm lranch of the Nile, and considered by Bruce to be the main stream of that river, rises from two mountains near Geesh, in lat. $10^{\circ} 59^{\prime} 25^{\prime \prime}$ N., long. $36^{\circ} 55^{\prime} 30^{\prime \prime}$ E, about 10,000 feet above the level of the sea. It flows first north to the Lake of Denibea or Tzana, then takes a long sexicircular sweep round the province of Godjam, and afterwards flows northward to ahout the 1כth degree of N. lat., where it unites with the Bakr-el-Abiad, which has now been ascertained to be the true Nilo. The Hawash, she principa! river of eastern Abywsiulia. rises about lat. $9^{\circ} 30^{\circ} \mathrm{N}$.., long. $38^{\circ} \mathrm{E}$., and, flowing in a nurth easterly direction towards the Red Sea, is lost in Lake Aussa, lat.
$11^{\circ} 25^{\prime} \mathrm{N}$. , long. $41^{\circ} 40^{\circ} \mathrm{E}$. The principal lake of Abyssinfs is the Dembea, which lies between $11^{\circ} 30^{\prime}$ and $12^{\circ} 30^{\circ} \mathrm{N}$. lat., and 37° and $37^{\circ} 35^{\circ} \mathrm{E}$ long., boing about 60 miles in length by 40 in width, and containing a number of small islands. It is fed by numerous smäl streams. T'se lake of Ashangi, in lat. $12^{\circ} 35^{\prime}$ N., long. $39^{\circ} 40^{\circ} \mathrm{E}$., is about 4 muiles beng by 3 broad, and upwaits of 8000 feet above tho seia.

The fundamentat roclis of Tigré, and probably of all Abyssinia, are metanorphic. They compose the mass of the table-land, and while they occupy 1.0 ineonsiderable portion of its surface, they are exposed, in Tigre at least, in every deep valley. The metamorphics vary greatly in mineral claracter, "every intermediate grade being found between the most coarsely crystalline granite and a slaty rock so little altered that the lines of the origiual bedding are still apparent. Perhaps the most prevalent form of roek is a rather finely crystalline gneisa. Hornblende-chist and micz-rbist ars met with, but neither of the minerals frem whick "icy are named appears to be so abrindant as in some metanorphictrects. On the other hand, a compact felspa ${ }^{4}$ lic rock, approaching felsite in composition, is prevalent in pluces, as in tre Sura defie, betmeen Komaylj and senafé." There are a few exceptions, bnt as a general wuls it may be asserted that in the neighbourhnod of the route followed by the Eritich army, so much of the country as is more than 8000 feet above the sea consists of belded traps, and this is probably the case in general over Abyssimia. "Between the traps and the metamorphics a 2erig: : welotoz sud imestones intervene, rno group of the former underlying the latter. The limestone alone is fosmiliferons, $2 u i$ in of Inressic aga." "On the route to Magdala rolcanic roeks were first met mith at Senafé, where several bills consist of trachyte, passing into claystone and besu: Trup bills, chiofly of traclyte, are dotted over the country to the southward as far as Folsada, a distance of nearly 30 miles. Here a great range of belded traps commences, and extends for about 25 miles to the south, passing to the west of Adigerat." At Meshek, two marches soutt. -jf Antalo, "the soute entered high ranges enticely cemposed of trap, and thence no other rocks wore seen as far as Magdala." "The trappean rocks belong to two disfint and unconformable groups. The lower of these is auch inclized, while the higher rests on its uptaned and denuded edges." Denudation has evidently been going on to a great extent in this country. One of its most striking features are the deep ravines which have been worked out by the action of the streams, sometimes to the depith of 3000 or 4600 leet. "Horr much of the Abyssinian highlands has been removed by these great torrents, and spread as an alluvial deposit orer the busin of the Nile ?" "Probably over the whole of northern Abyssinia there existed at least 4000 feet of bedded traps, of which now only a few vestiges remain."-IT. T. Blanford.

Abyssinia is said to enjoy "probably as salubrious a climate as any country on the face of the globe."Parkinns. The beat is by no means oppressive, a fine light air counteracting the poricr of the sun; and during the rainy season, the sky buing cloudy, the weather is always agreeable and cool, while the rain itself is not very severe. In certain of the low valleys, bowever, malarious influences prevail before and after the rainy senson, and bring on dangerous fevers. On the higher parts the cold is sometimes intense, I'articularly at night. The naturad division of the scasons is into a cold, a hot, and a rainy season. The cold season may be said to extend from October to February, the lot from the beginning of March to the midde of June, and the wet or monsoun period from this time to the ead of September. The rainy season is of importance, not only in equalising the temparature, increasing
the fertlity, and keeping up the water supply of the country, but, as Sir S. Baker has shown, it plays a most important part in the annual overflow of the Nile.
On the summits and slopes of the highest mountains the vegetation is of a theronghly tempcrate and even English character ; the plateaux have a flora of the same character; while on the lower slopes of the hills and in the ravines occur many trees and shrubs of warner cliwes. "The general appcarance of the plateaux and plains is that of a comparatively bare country, with trees and bushes ininly enettered over it, and clumps and greves ouly occurring round villages and churches. But the glens and ravines in the plateau sides, each with its little bright spring, are often thickly wooded, and offer a delicious contrast to the open country."- MFarkham. This refers more particularly to the northern portion of the country, that drained by the Mareb; the central and southern parts are much more fertile and productive. Here the fertility is so great that in same parts three crops are raised annually. Agriculture receives considerable attention, and large quantities of maize, wheat, barley, peas, beans, \&c., are grown. Very extensively cultivated is teff (Poo abyssinica), a herbaccous plant with grains net larger than the head of a pin, of which is made the bread in general use throughout the country. The low grounds produce also a kind of corn called tocussa, of which a black bread is made, which constitutes the food of the lower classes. Coffea grows wild on the western mountains, and the rine and sugar-cane are cultivated in favourable localities. Cotten is also grown to a considerable extent. - Among the fruit-trecs are the date, orange, lemon, pomegranate, and banaaa. Myrrh, balsam, and various kinds of raluable medieinal plants are common.
Most of the domestic animals of Europe are found bere. The cattle are in general small, and the oxcu belong to the humped race. The famous Galla oxen have horns sometimes four feet long. Tho sheep belong to the short and fat-tailed race, and are covered with wool. Goats are very common, and have sometines horns two feet in length. The horses are strong and active. Of wild animals the spotted hyæna is ameng the moit numerous, as well as the fiercest and most destructive, rot only roaming in immense numbers orer the country, but frequently entering the tewns, and even the houscs of the inhabitants. The elephant and rhinoceros are numerous in the low grounds. The Abyssinian rlinoceros has two herns; its skin, which has no folds, is used for shields, and for lining drinking vessels, being regarded as an antidote to poison. Crecediles and hippopotami are plentiful in the rivers; lions, panthers, and leopards are seen occasionally, and buffaloes frequently. Ameng ether animals may be mentioned as common various species of antelopes, wild swine, monkeys, hares, squirrels, several species of hyrax, jackals, \&c.

The birds of Abyssinia are very numerous, and many of them remarkable for the beauty of their plumage. Great numbers of eagles, vultures, hawks, and oither birds of prey are met with; and partridges, snipes, pigeons, parrots, thrushes, and swallows are very plentiful. Among insects the most numerous and useful is the bee, heney everywhere constituting an important part of the food of the inhabitants, and several of the provinces paying a large proportion of their tribute in this article. Of an opposite class is the locust, the ravages of which here, as in other parts of Northern Africa, are terrible. Serpents are not numerous, but several species are poisoneus.
The inhabitants of Abyssinia form a number of different tribes, and evidently belong to several distinct races. The majerity are of the Caucasian race, and are in general wellformed and landsome, with straight and regular features, lively eyes, hair long aud straight or somewhat curled, and colour dark olive, approaching to black. Riuppell regards
them as identical in features with the Dedouin Arabs. Fihe tribes inhabiting Tigré, Annhara, Agow, \&c., belong to this race. The Galla race, whe eame originally from the south, have now overrun the greater part of thie country, constituting a large pertion of the soldiery, and, indeed, there arc few of the chiefs who have not an internuixture of Galla blood in their veins. They are fierce and turbulent in character, and addieted to cruclty. Nany of them are still idolaters, but most of them bave now adopted the Mohammedan faith, and not a few of them the Christianity of the Abyssinians. They are gencrally large and well-built, of a brown complexion, with regular features, small decily-sunt but very bright cyes, and long blaek hair. A :ace of Jcws, knewn by the name of Falushas, inhabit the district of Samen. They affirn that their forefathers came inte the country in the days of Rehoboam, but it seems more probable that they arrived about the time of the destruction of Jerusalem. From the 10th century they enjoyed thein own constitutional rights, and were subject to their own kings, whe, they pretend, were descended from King David, until the year 1800 , when the royal race became extinct, and they then became subject to Tigré.

The prevailing religion of Abyssinia is a very corrupted torm of Christianity. This is professed by the najority of the people, as well as by the reigning princcs of the different states. . There are also seattered over the country many Mohammedans, and some Falashas or Jews. Christianity was introduced into this country about the year 3.30 , but since that time it has been so corrupted by errors of tarious kinds as to have become little more than a dead formality mixed up with much superstition and Judaism. Feasts and fast-days are very frequent, and baptism and the Lord's supper are dispensed after the inanner of the Greek Church. The children are circumcised, and the Mosaic commandnuents with respect to foed and purification are observed The eating of animals which do not chew the cud and which have not cloven heofs is prohibited. The ecelesiastical body is very mumerous, consisting of priests, of various kinds, with monks and nuns, and is looked upon with great awe and reverence. If a priest be married previous to his ordination, he is allowed to remain so; but no one can marry after having entered the priesthood. The primate or ehicf bishop is called Abuna (i.e., our father), and is nominated oy the patriarch of Cairo, whem they acknowledge as their spiritual father. The ehurches are rude edifices, chicly of a circular form, with thatched roofs, the interior being divided into three compartments,-an onter one for the laity, one within for the priests, and in the centre the Holy of Holies, exactly after the manner of a Jewish temple. The wership consists merely in reading passages of Scripture and dispensing the Lord's supper, without any preaching. Like the Greek Church, they have no images of any kind in their places of worship, but paintings of the saints are very common-their faces always in full, whatever may be the position of their bodies. They have innumerable saints, but above all is the Virgin, whom they regard as queen of heaven and earth, and the great intercessor for the sins of mankind. Their reverence fer a saint is often greater than for the Almighty, and a man who weuld net hesitate to invoke the name of his Maker in witness to a falsehood may decline so to use the name of St Michael or St Geerge. *Legends of saints and works of religious controversy form almost their entire literature. "At presut," says Bishop Gobat, "the Christians of Abyssinia are divided into three parties, so inimical to eneh other that they curse oue another, and will no longer partake of the sacrament together. It is one single point of theology that disunites them-the unceasing dispute concerning the unction of Jesus Christ."
ln manners the Abyssinians are ruae and barbarous

Engaged as they are in continual wars, and accustomed to bluodshed, human life is little regarded amons them. Murders and executions are frequent, and yet cruelty is said not to be a marked feature of thcir character; and in war they seldom kill their prisoners. When one is conricted of murder, he is handed over to the relatires of the deceased, who may either put him to death or accept a ransom. When the murdered person has no relatives, the priesta take upon themselves the office of arengers. The Abyssinians are irritable, but easily appeased ; and are a gay people, fond of festive indulgences. On every festive occasion, as a saint's day, birth, marriage, \&c., it is customary for a rich man to collect his friends and neighbours, and kill a cow and one or two sheep. The principal parts of the cow are eaten raw while yet warm and quivering, the remainder being cut into sinall picees, and cooked xith the favourite sauce of butter and red pepper paste. The raw meat in this way is considered to be very superior in taste and much tenderer than when cold. "I can readily believe," says Mr Parkyns," that raw meat would be preferred to cooked meat by a man who from clildhood had been accustomed to it." The statement by Bruce respecting the cutting of steaks from a live cow has frequently been called in question, but there can be no doubt that Bruce actually saw what be narrates, though it would appear to have been a very exceptional case Mr Parkyns was told by a soldier, "that such a practice was not uncommon among the Gallas, and even occasionally occurred among themselves, when, as in the case Bruce relates, a cow bad been stolen or taken in foray." The principal drinks are mése, a Lind of mead, and lousa, a sort of beer made from fermented cakes. Their dress consists of a large folding mantle and close-fitting drawers; and their houses are very rude structures of a conical form, covered with thatch Marriage is a very slight connection among them, dissolvable at any time by either of the parties ; and polygamy is by no means uncommon. Hence there is little family affection, and what exists is only among children of the same father and mother. Children of the same father, but of different mothers, are said to be "always enemies to each other."-Gobat.

Abysisinia is one of the most ancient monarchies in the world, and has been governed from time immemorial by an emperor. For many ycars, however, until the accession of the late Emperor Theodore, he had been a mere puppet in the hands of one or other of his chiefs. Each chief is entire master of all sources of revenue within his territory, and has practically full power of life and death His subjection consists in an obligation to send from time to time presents to his superior, and to follow him to war with as large a force as he can muster. For several generations the emperor had been little better than a prisoner in his palace at Gondar, his sole revenue consisting of a small stipend and the tolls of the weekly markets of that city, the real power being in the hands of the ras or vizier of the empire, who was always the most powerful chief for the time. If at any time a elief "has found himself strong eaongh to march upon the capital, he has done so, placed upon the throne another puppet emperor, and been by him appointed ras or vizier, till a rival stronger than himself could turn him out and take his place."- Dr Beke.

The three principal provinces of Abyssinia ale Tigré in tho north, Ambara (in which Gondar the capital is situated) in the centre, and Shoa in the south. The governors of these have all at different times assumed the tithe of Ras. Three other provinces of some importance are Lasta and Wang, whose capital is Sokota; Godjam, to the south of Lake Dembea; and Kirara, to the west of that lake, the birth-place of the Emperor Theodore The two provinces of Tigré and Shoa have generally beeu in a state of rebclion
from or acknowledged independence of the central power at Gondar. The geographical position of Tigré enhances its political importance, as it lies between Gondar and the sea at Massowah, and thus holds as it were the gate of the capital. The province of Shoa is almost separated from that of Ambara by the Wolla Gallas, a Mohammedan tribe, and for a long time the former had been virtually indejecndent, and governed by a hereditary line of princes, to oue of whom the Indian government sent a special embassy under Major Harris in 1841.
The principal towns are Gondar in Amhara, the former capital of the kingdom, and containing about 7000 inhabitants, aml Debra lialmrin imhara, formerly a small village, but which rose to be a place of considerable size in conse. quence of the Einperor Theodore having fixed upon it as his residence, and near it was Giffat, where the European wor'zmen resided. It was burned by the cmperior when ho set out on his fatal march to Naydala Adorna is the capital of Tigré, and the second city in the empire, having about 6000 inhabitants. Antalo is also one of the principal towns of Tigré, and the capital of Enderta. Near Antalo is Chelicut. Sokota, the capital of Lasta Waag, is a tomn of considerable size. The capital of Shoa is Anhobar, and near it is Angolala, also a place of considerable size. Tho capital of Agamé is Adigerat.
The language of the religion and literature of the country is the Geez, which belongs to the Ethiopic class of lauguages, and is the ancient language of Tigré; of this the modern Tigré is a dialect. The Amharic, the language of Ambara, is that of the court, the army, and the merchants, and is that too which travellcrs who penetrate beyond Tigré have ordimarily occasion to use. But the Agow in its various dialcets is the language of the people in some provinces almost exclusively, and in others, where it has been superseded by the language of the dominant race, it still exists among the lowest classes. This last is believed to be the original language of the people; and from the afinity of the Geez, Amharic, and cognate dialects, to the Arabic, it scems probable that they were introduced by culquerors or settlers from the opposite shores of the Red Sea The Gallas, who have overrun a great part of Abyssinia, have introduced their own language into various parts of the country, but in many cases they have adopted the language of the people among whom they have come. The literature of Abyssinia is very poor, and contains nothing of much value. During the late war the libraries in connection with the religious communities were found to contain only modern works of little interest. On the capture of Magdala, a large number of MSS. were found there, which had bee n brought by Theodore from Gondar and other parts. Of these 359 were brought home for examination, and are now deposited in the British Museum The oldest among chem belong to the 15 th and 16 th centuries, but the great bulk of them are of the 17 th and 18 th, and some are of the present century. They are mostly copies of the Holy Scriptures, canonical and apocryphal, including the Book-of Enoch, prayer and hymn books, missals, lives of saints, and translations of various of the Greek fathers.

The trade and manufactures of Abyssinis are insignificant, the people being chiefly engaged in agriculture and pastoral pursuits. Cotton cloths, the universal dress of the country, are made in large quantities. The preparation of leather and parchment is also carried on to some estent, and manufactures of iron and brass. "The Abyssinians are, I think," says Mr Markham, "cappable of civilisation. Their agriculture is good, their manafactures are not to be despised; but the combined effects of isolation, Galla inroads, and internal anarchy, have thrown them back for centuries." The foreign trade of Abyssinia is carried on entirely through Massowah. Its priacipal inports are lead,
tin, copper, silk, gumpowrer, glass mares, Persian carpets, and coloured clotins. The chicf exports are gold. ivory, slaves, coffce, butter, honcy, and wax.

Abyssinia, or at least the northern portion of it, was included in the ancient kingelom of Ethinpia. The conncetion between Egypt and Ethiopia was in early times very intimate, and occasionally the two countrics were under the same ruler, so that the arts and ciritisation of the one naturally found their way into the othcr. In early times, too, the Hebrews had commercial intercourse with the Ethiopians; and according to the Abyssinians, the Queen of Sheba, who visitcd Solomnn, was a monarch of thcir country, and from her son Monilck the kings of Abyssinia are descended. During the captivity many of the Jews settled here, and brouglit with them a knowledge of the Jewish religion. Under the Ptolemics, the arts as well as the enterprise of the Greeks entercd Etbiopia, and led to the establishment of Greck colonics. A Greek inscription at Adulis, no longer extant, but copied by Cosmos, and preserved in his Topographia Christiana, records that Ptolemy Euergetes, the third of the Greck dynasty in Egypt, invaded the countries on both sides of the Red Sea, and, baving reduced most of the provinces of Tigré to subjection, acturned to the port of Adulis, and there offered sacrifices to Jupiter, Mars, and Neptune. Another inscription, not so ancient, found at Axum, and copied by Salt and others, states that Aeizanas, king of the Axomites, the Homerites, de., conquered the nation of the Bogos, and returned thanks to his father, the god Mars, for his victory. The ancient kingdom of Auxume flourished in the first or second century of our era, and was at one time nearly coextensive with the modern Abyssinia. The capital Arrume and the scaport Adulis were then the chief centres of the trade with the interior of Africa in gold dust, ivory, leather, aromatics, dc. At Axum, the site of the ancient capital, many vestiges of its former greatness still exist; and the ruins of Adulis, which was once a seaport on the Bay of Anncsley, are now about 4 miles from the shore. Christianity was introduced into the country by Frumentius, who was consecrated first bishop of Abyssinia by St Athanasius of Alexandria about A.d. 330. Subsequently the monastic system was introduced, and betwcen 470 and 480 a great company of monks appear to have entered and established themselycs in the country. Since that time Dlonachism has been a power among the people, and not without its influence on the course of events In 522 the king of the Homerites, on the opposite coast of the Red Sea, haring persecuted the Christians, the Emperor Justinian requested the king of Abyssinia, Caleb or Elesbanan, to arenge their cause. He accordingly collected an army, crossed over into Araoia, and conquered Yemen, which remained subject to Abyssinia for 67 ycars. This was the most flourishing period in the annals of the country. The Ethiopians possessed the richest part of Aralia, carried on a large trade, which extended as far is India and Ccylon, and were in constant communication with the Greek empire. Their expulsion from Arabia, followed by the conquest of Egypt by the Nohammedans in the middle of the 7 th century, changed this state of affairs, and the continued advances of the followers of the Prophet at length cut them off from almost every means of communication with the civilised world; so that, as Gibbon says, "encompassed by the enemies of their religion, the Ethiopians slept for near a thousand years, forgetful of the world by whom they were forgotten." About A.D. 960 , a Jewish princess, Judith, conceived the blooly design of murdering all the members of the royal family, and of establishing herself in their stead. During the execution of this project, the infant king was carried off by some faithful adherents, and conveyed to Shoa, where his authority was acknowledged, while Judith reignca
for 40 years over the rext of the kingdom, and transmitted the crown to her descendants. In 1268 the kingdom was restored to the royal house in the person of Ieon Imlac.

Towards the close of the 15 th century the Pertingeso missiuns into Abyssinia commenced. A belicf had long 1revailed in Europe of the existence of a Christian kingtom in the far eart, whuse monarch was known as Prester Jolm, and varions expeditions had been sent in quest of it. Among others who had engajed in this search was Pedro de Covilham, who arrived in Abyssinia in 1490, and, belicving that he had at Iength reached the far-famed king. clem, presented to the Negus, or cmperor of the country, a Ietter from his master the king of Portngal, addressed to Prester Jhan. Covilham remained in the country, lut in 1507 an Amenian named Matthew was sent by the Nemus to the king of Portugal to request his aid agninst the Turks. In 1520 a Portuguese flect, with 1 Tatthew on board, euteral the Red Sar in compliance with this request, and an cmbassy from the flect visited the country of the Negrs, and remained there for about six years. One of this embassy was Fathcr Alvarez, from whom we have the earliest and not the least interesting account of the country. Betreen 1528 and 1540 armies of M Mohanmedans, under the renowned gencral Mohammed Gragn, entered Abyssinin frum the low country, and overran the kingdom, obliging the emperor to take refuge in the mountan fastnesses. In tins extremity rccourse was agnin had to the Portuguese, and Bermudez, who bad remained in the country after the departure of the embassy, was ordained successor to the Abuna, and sent on this mission. In consequence a Portuguese flcet, under the command of Stephen de Gama, was sent from India and arrived at Massowah. A force of 450 musqueteers, under the command of Clristopher de Gama, younger brother of the admiral, narched into the interior, and being joined by aative troops were at first successful against the Turks, but were subsequently defenter, and their commander taken prisoner and put to deat!. Soon afterwards, horecver, Mohammed Gragn was shot in an engagement, and his forces totally routed. After thix, quarrels arose between the Negus and the Catholic primate Bermadez, who wished the former publicly to profess him. self a convert to Rome. This the Negus refused to do, and at length Bermudez was obliged to make his way out of the country. The Jcsuits who had accompanied or followed Bermudez into Abyssinia, and fixed their head-quarters at Fremona, were oppressed and neglected, but not actually expelled. In the beginning of the following century Father Paez arrived at Fremona, a man of great tact and judgment, who soon rose into high favour at court, and gained over the emperor to his faith. He directed the crection of churches, palaces, and bridges in different parts of the country, and carried ont many useful works His successor Mendez was a man of much less conciliatorymanners, nnd the fcclings of the people became more strongly excited against the intruders, till at length, on the \&eath of the Negus, and the accession of his son Facilidas in 1633, they were all sent out of the couniry, after having had a footing there for nearly a century and a half. The French physician Poncet, who went there in 1608, was the only European that efterwards visited the country before Bruce in 1769.

It was about the middle of the 16 th century that the Galla tribes first cntcred Abyssinia from the south; and notwithstanding frequent cfiorts to dislodge them, they gradually extended and strengthened their positions till they had overrun the greater part of the country. The power of. the emperor was thus weakened, independent chiefs set themselves up in different parts, until at length he became little better than a puppet in the hands of the -mnst powerful of his chiefs. In 1805 the country was visitcd by Lord Valentia and Mr Salt, and again by Salt in 1810. In

1829 Messrs Golant and Kugler were sent out as missionaries by the Church Missionary Society, and were well reeeived by the Ras of Tigré. Mr kugler died soon after his arrival, and his place was subsequently supplied by Mr Isenberg, who was followed by Messrs Blumhardt and kirapf. In 1830 Mr Gobat proeceded to Gondar, where he also met with a favourable reception. In 1833 ho returned to Europe, and published a journal of his residence here. In the following year he went back to Tigré, but in 1836 he was compelled to leave from ill health. In 1838 other missionaries were obliged to leave the conntry, owing to the opposition of the native priests, Mlessrs Isenberg and Krapf went south, and established themselves at Shoa. The former soon after returned to England, and Mr Krapf remained in Shoa till Mareh 1842. Dr Rüppel, the German naturalist, visited the country in 1831, and remained nearly two years. MM. Combes and Tamisier arrived at Massowah in 1835, and visited districts which had not been traversed by Europeans since the time of the Portuguese. In 1839 the French Government sent out a scientific commission under M. Lefebvre. Its labours extended over five years, and bave thrown great light on the condition and productions of the country. In 1841 a political mission was sent by the Governor-General of India to Shoa, under the direction of Major Harris, who subsequently published an account of his travels. One who has done much to estend our geographical knowledge of this country is Dr Beke, who was there from 1840 to 1843. Mr Mansfield Parkyns was there from 1843 to 1846, and has written the most interesting book on the country since the time of Bruce. Bishop Gubat having conceived the idea of sending lay missionaries into the country, who would engage in secular occupations as well as carry on missionary work, Dr Krapf and Mr Flad arrived in 1855 as pioneers of that mission. Six came out at first, and they were subsequently joined by others. Their work, however, was more valuable to Theodore than their preaching, so that he employed them as workmen to himself, and established them at Gaffat, near his capital. Mr Stern arrived in Abyssinia in 1860, but returned to Europe, and eame back in 1863, accompanied by Mr and Mrs Rosenthal.
Lij Kissi, who came subsequently to be known as the Emperor Theodore, was born in Kuara, a western province of Abyssinia, about the year 1818. His father was of noble family, and his uncle was governor of the provinces of Dember, Kuara, and Chelga. He was educated in a convent, but, preferring a wandering life, he became leader of a band of malcontents. On the death of his unele he was made governor of Kuara, but, not satisfied with this, he seized upon Dernbea, and having defcated several generals sent against him, peace was restored on his receiving Tavavitch, daughter of Ras Ali, in marringe. This lady is said to have been his good genius and counsellor, and during her lifo his conduct was most exemplary. He next turned his arms a gainst the Turks, but was defeated; and the mother of Ras Ali having insulted him in his fallen condition, he proclaimed his independence. The troops sent against him were successively defented, and eventually the whole of the possessions of Tas Ali fell into his hands. He next defeated the clief of Godjam, and then turned his arms against the governor of Tigre, whom he totally defeated in February 1855. In March of the same year he took the title of Theodore III., and caused himself to be crowned king of Ethiopia by the Abuna. Theodore was now in the zenith of his career. He is described as being generous to excess, free from cupidity, merciful to his vanquished enemies, and strictly continent, but subject to violent bursts of anger, and possessed of unyielding pride and fanatical religious zeal. He was also a man of education and intelligence, superior to those among whom he lived, with natural
talents for governing, and gaining the estecn of others He had further a noble bearing and majestic walk, a frane capable of enduring any anount of fatigue, and is said te have been "the best shot, the best spearman, the best runner, and the best horseman in Abyssinia.", Had he contented himself with what he now possessed, the sovereignty of Amhara and Tigré, he might have maintained his position; but he was led to exhaust his strength against the Gallas, which was probably one of the chief causes of his ruin. He obtained several vietories orer that people ravaged their country, took possession of Magdala, whick he afterwards made his principal stronghold, and enlisteo many of the chicfs and their followers in his own ranks. Ho shortly afterwards reduced the kingdom of Shoa, and took Ankobar, the capital; but in the meantime his own people were groaning under his heavy exactions, rebellions were breaking out in various parts of his provinces, and his good queen was now dead. He lavished vast sums of money upon his army, which at one time amounted to 100,000 or 150,000 fighting men; and is order to meet this expenditure, he was forced to cract exorbitant tributes from his people. The British consul. Plowden, who was strongly attached to Theodore, having been ordered by his Government in 1860 to return t c Massowah, was ntticked on his. way by a rebel namec Garred, mortally wounded, and taken prisoner. Theodore attacked the rebels, and in the action the murderer of M_{1} Plowden was slain by his friend and companion Mr Bell, but the latter lost his life in preserving that of Theodore. The deaths of the two Englishmen were terribly avenged by the slaughter or mutilation of nearly 2000 rebels. Theodore soon after married his second wife Terunish, the proud daughter of the late governor of Tigré, who felt ncithes affection nor respect for the upstart who had dethroned hes father, and the union was by no mcans a happy one. In 1862 he made a second expedition against the Gallns, which was stained with atrocious cruelties. Theodore had now given himself up to intoxication and lust. When the news of Mr Plowden's death reached England, Captain Cameron was appointed to succeed him as consul, and arrived at Massowah in February 1862. He proceeded to the camp of the king, to thom he prosented a rife, a pait of pistols, and a letter in the Queen's name. In Octuber Captain Cameron was dismissed by Theodore, with a letter to the Queen of England, which reached the Forcign Office on the 12th of February 1863. For some reason or other this letter was put aside and no answer returncd, and to this in no small degree is to be attributed the difficulties that subsequently arose with that country. After forwarding the Letter, Captain Cameron, hearing that the Christians of Bogos had been attacked by the Shangallas and other tribes under Egyptian rule, proceeded to that district, and afterwards went to Kassula, the seat of the Egyptian ad. ministration in that quarter. Thence he went to Metemeh, where he was taken ill, and in order to recruit his henltb he returned to Abyssinia, and reached Jenda in August 1863. In November despatches mere reccived from England, but no answer to the emperor's letter, and this, together with the consul's visit to Kassala, greatly offended him, and in January 1864 Captain Cameron and his suite, with Messrs Stern and Rosenthal, were cast intc prison. When the news of this reached England, the Government resolved, when too late, to send an answer tc the emperor's letter, ind selected Mr Hormuzd Rassam te be its bearer. He arrived at Massowah in July 1864, and immediately despatched n messenger requesting permissior to present himself before the emperor. Neither to this nel a subsequent npplication was any answer returned til August 1865, when a curt ncte was received, stating that Consul Cameron had been released, and if Mr Rassan still
desired to visit the king, he was to proceed by the route of Metemeh. They reached Metemeh on 21 st November, and five weeks more were lost before they heard from the emperor, whose reply was now courteous, informing them that the governors of all the distriets through which they had to march had received orders to furnish them with every necessary. They left Metemeh on the 28 th Deceraber, and on 25 th January following arrived at Theodore's camp in Damot. They were received with all honour, and were afterwards sent to Kuarata, on Lake Dembea, there to awwit the arrival of the captives. The latter reached this on 12th March, and everything appeared to proceed rery favourably. A month later they started for the coast, but had not proceeded far when they were all brought back and put into confinement. Theodore then wrote a letter to the Queen, requesting European workmen and machinery to be sent to him, and despatched it by Mr Flad. The Europeans, although detained as prisoners, were not at first unkindly treated; but in the end of June they were sent to Magdala, where they were soon afterwards put in chains. They suffered lunger, cold, and misery, and were in constant fear of death, till the spring of 1868 , when they were relieved by the British troops. In the meantime the power of Theodore in the country was rapidly waning. In order to support his vast standing army, the country was drained of its rescurces: the peasantry abandoned the fertile plains, and took refuge in the fastnesses, and large fertile tracts remained uncultivated. Rebellions broke out in various parts of the country, and desertions took place among his troops, till his army became little more than a shadow of what it once was. Shoa had already shaken off his yoke ; Godjam was virtually independent; Walkeit and Samen were under a rebel chief; and Lasta Waag and the country about Lake Ashangi had submitted to Wagsham Gobaze, who had also overrun Tigré, and appointed Dejach Eassai his governor. The latter, however, in 1867 rebelled against his master, and assumed the supreme power of that province. This was the state of matters when the English troops made their appearance in the country. With a view if possible to effect the release of the prisoners by conciliatory measures, Mr Flad was sent back, with some artisans and machinery, and a letter from the Queen, stating that these would be handed over to his Majesty on the release of the prisoners and their return to Massowah. This, however, failed to influence the erpperor, and the English Government at length saw that they must have recourse to arms. In July 1867, therefore, it was resolved to scnd an army into Abyssinia to enforce the release of the captives, and Sir Robert Napier was appointed com-mander-in-chief. A reconnoitring party was despatched beforehand, under Colonel Merewether, to select the landingplace and anchorage, and explore the passes leading into the interior. They also eutered into friendly relations with the different chiefs in order to secure their co-operation The landing-place selected was Mulkutte, on Annesley Bay, the point of the coast nearest to the site of the ancient Adulis, and we are told that "the pioneers of the English expedition followed to some extent in the footsteps of the r.dventarous soldiers of Ptolemy, and met with a few faint traces of this old world enterprise."-C. R. Markham. The force amounted to upwards of 16,000 men, besides 12,640 belonging to the transport scrvice, and followers, imaking in all upwards of 32,000 men. The task to be accomplished was to mareh over 400 miles of a mountainous and little-known country, juhabited by savage tribes, to the camp or fortress of Theodore, and compel him to deliver up his captives. The commander-in-chief landed on 7 th January 1868, and soen after the troops began to move forward through the pass of Senafé, and scuthward through the distriets of agamé, Tera, Endarta, Wojerat, Lasta. and

Wadela. In the meantime Theodore had been rednced to great straits. His army was rapidly deserting him, and ho could hardly obtain food for his followers. He resolved to quit his capital Debra Taber, which he barned, and set out with the remains of his army for Mardala Duriag this march he displayed an amount of enmneering shill in the construction of roads, of military talent, aud fertility of resource, that excited the admiration and astonishment of his enemies. On the afternoon of the 10th of April a foree of about 3000 men suddenly poured domn upon the English in the plain of Arogie, a few miles from Magdala. They advanced again and again to the charge, but were each time driven back, and finally retired in good order. Early next morning Theodore sent Lient. Prideaux, one of the captives, and Mr Flad, accompanied by a native chief, to the English camp to sue for peace. Answer was returned, that if he would deliver up all the Europeans in his hands, and submit to the Qucen of England, he would receive honourable treatment. The captives were liberated and sent away, and along with a letter to the English general was a present of 1000 cows and 500 sheep, the acceptance of which would, according to Eastern custorn, imply that peace was granted. Through some misunderstanding, word was sent to Theodore that the present would be accepted, and he felt that he was now safe; but in the evening he learned that it had not been received, and despair again seized him. Early next morning he attempted to escapo with a few of his follewers, but subsequently returned. The same day (13th April) Magdala was stormed and taken, and within they found the dead body of the emperor, who had fallen by his own hand. The inlabitants and troops were subsequently sent away, the fortifications destroyed, and the town burned. The queen Terunish having expressed her wish to go back to her own country, accompanied the British army; but died during the march, and her son Alam-ayahu, the only legitimate son of the emperor, was brought to England, as this was the desire of his father. The success of the expedition was in no small degree owing to the aid afforded by the several uative chiefs through whose country it passed, and no one did more in this way than Prince Kassai of Tigte. Iu acknowledgment of this several picces of ordnance, small arms, and ammunition, with much of the surplus stores, were handed over to him, and the English troops left the country in May 1868. Soon after this Prince Kassai declared his independence; and in a war which broke out between lim and Wagsham Gobaze, the latter was defeated, and his territory taken possession of by the conqueror. In 1872 Kassai was crowned king of Abyssinia with great ceremony at Axam, under the title of King Johanues. In that year the governor of Massowah, Munzinger Bey, a Swiss, by command of the Viceroy of Egypt, marched an armed forco against the Bogos country. The king solicited the aid of England, Germany, and Russia against the Egyptiaus, whose troops, however, were after a time withdrawn. Sir Bartlo Frere, in the blue-book published respecting his mission to Zanzibar, is of the opinion that England, laving regard to the passage to India by the Red Sea, should not have wholly abandoned Abyssinia.
(D. к.)
(See Travels of Bruce, 1768-73; Lord Talentia, Sait, 1809-10; Combes et Tamisier, 1835-37; Ferret et Galinier, 1839-43; Rüppell, 1831-33; MM. Th. Léfebvre, A. Petit,et Quartin-Dillon, 1839-43; Major Harris; Gobat; Dr C. Beke; Isenberg anid Krapf, 1839-42; Mansfield Parkyns; Von Heuglin, $1861-62$; H. A. Stern, 1860 and 1868 ; Dr Blanc, 1868; A. Kassam, 1869; C. R. Marlham; 1869; W. T. Blanford, 1870; Record of the Expedition to Abyssinia, compiled by order of the Sceretary of State for War, by Major T. J. Holland and Captain H. Hozier, 2 vols. Ata, and plates, 1870; rarious Parliamentary Papers, 1867.68.

ACACIA, a genus of shrubs ànd trees belonging to the natural family Leguminosix and the section Mimosex. The lowers are small, arranged in rounded or elongated clusters. The leaves are compound pinnate in gencral. In some instances, however, more especially in the :ustralian specics, the leaf-stalks become Glatened, and serve the purpose of leaves; the plants are hence called leafless Acacias, and as tide leaf-stalks are often placed with their edges towards the sky and carth, they do not intercept light so fully as ordinary trees. There are about 420 specics of Acacias widely scattered over the warmer regions of the globe. Thcy abound in Australia and Africa Various species, such as Acacia vera, arabica, Ehrenbergii, and tortilis, yield gum arabic; while Acacia Verek, Seyal, and Adansonii furnish a similar gum, called gum SenegaL. These species are for the most part natives of Arabia, the northmatern part of Africa, and the East Indies. The wattles

- of Australia are species of Acacia with astringent barks. Acacia dcalbata is used for tanning. An astringent medicine, called catechu or cutch, is piocured from severel species, but more especially from Acacia Catechu, by boiling down the wood and evaporating the solution so as to gct an extract. The bark of Acacia arabica, under the name of Babul or Babool, is used in Scinde for tanning. Acacia formosa supplies the valuable Cuba timber called sabicu. Acacia Seyal is the plant which is supposed to be the shittah tree of the Bible, which supplied shittim-wuod The pods of Acacia nilotica, under the name of neb-neb, are used by tanners. The seeds of Acacia Niopo are roasted and used as snuff in South America. The secds of all the varicties of Acacia in South Australia to the west called Nundo, are used as food after being roasted. Acacia melanoxylon, black wood of Australia, sometimes called light wood, attains a great size; its wood is used for furniture, and receves a high polish. Acacia homalophylla, nyyall wood, yields a fragrant timber, used for ornamental purposes. A kind of Acacia is called in Australia Bricklow. In common language the term Acacia is often applicd to species of the genns Robiniz, which belongs also to the Leguminous family, but is placed in a differeut section. Robinia Pseudo-acacea, or false Acacia, is cultivated in the milder parts of Britain, and forms a large trec, with beantiful pink pea-like blossoms. The treo is sumetimes called the Locust tree.

A CADEMY

ACADEMY; ⿺辶 <adinucia, ${ }^{2}$ a suburb of Athens to the north, forming part of the Ceramicus, about a mile beyond the gate named Dypilum. It was said to have belonged to the hero Academus, but the derivation of the word is unknown. It was surrounded with a wall by Hipparchns, and adorned with walks, groves, and fountains by Cimon, the son of Miltiades, who at his death bequeathed it as a public pleasure-ground to his fellow-citizens. The Academy was the resort of Plate, who possessed a small estate in the neighbourhood. Here he taught for nearly fifty years, till his death in 348 в.c.; and from these "groves of the Academy where Flato tanght the truth," ${ }^{2}$ his school, as distinguished from the Peripatctics, reeeived the name of the Academics.
The same name (Academia) was in after times given by Cicero to his villa or country-house near Puteoli. There was composed his famous dialogue, The Academic Questrons.
Of the academic school of philosophy, in so far as it diverged from the doctrines of its great master see Plato!, we must treat very briefly, referring the reader for particulars to the founders of the various schools, whose names we shall have occasion to mention.
The Academy lasted from the days of Plato to those of Cicero. Λ s to the number of successive schools, the critics are not agreed. Cicero himself and Varro recognised only two, the old and the new; Sextus Empiricus adds a third, the middle; others a fourth, that of Philo and Charmidas; and somue even a fifth, the Academy of Antiochus.
Of the old Academy, the principal leaders were Speusippus, Plato's sister's son, and his immediate successor; Xenocrates of Chalccdon, who with Speusippus accompanied Plato in his journey to Sicily; Poleme, a dissolute young

[^7]Ethenian, who came to laugh at Xenocrates, and remained to listen (Horace, Sat., ii. 3, 253); Crates, and Crantor, the latter of whom wrote a treatise, $\pi \epsilon p i ̀ t \in \theta \theta o v s$, praised by Cicero. Speusippus, like the Pythagoreans, with whom Aristotle compares him, denied that the Platonic Good could be the first principle of things, for (he said) the Good is not like the germ which gives birth to plants and animals, but is only to be found in already existing things. He therefore derived the universe from a primeval indeterminate unit; distinct from the Good; from this unit be deduced three principles-one for numbers, one for magnitude, and one for the soul. The Deity he conceived as that living force which rules all and resides everywhere. Xcnocratcs, though like Speusippus infected with Pythagoreanism, was the most faithful of Plato's successors. He distinguished three essences: the sensible, the intelligible, and a third, componnded of the other two. The sphere of the first is all below the heavens, of the second all beyond the heavens, of the third heaven itself. To each of these three spheres one of our faculties corresponds. To the sensible, sense; to the infelligible, intollect or reason; to the mixed sphere, opinion ($\delta 0^{\circ} \xi a$). So far he closely follows the psychology and cosmogeny of his mastcr; but Cicero notes as the characteristic of both Speusippus and Xenocrates, the abandonment of the Socratic principle of hesitancy.

Of the remaining three, the same writer (who is our principal authority for the history of the Academic school) tells ns that they preserved the Platonic doctrine, but emphasised the moral part. On the old Academy he pronounces the following eulogium (De Fin. v. 3): "Their writings and method contain all liberal learning, all history, all polite discourse; and besides, they embrace such a variety of arts, that no one can undertake any noble carcer without their aid. In a word, the Academy is, as it were, the workshop of every artist." 3Iodern criticism has not endorsed this high estimate. They preserved, it is true, and
slaborated many detaiis of the Platonic teaching，which wo covia H have spared；but of Plato＇s originality and specu－ lative power，of his poetry aud enthosiasm，they inherited nothing；＂nor amid all the learning which has been pro－ fuscly lavished upon investigating their tenets，is there a single deduction calculated to elucidate distinctly the character of their progress or regression．＂${ }^{1}$＂There is a saying of Polemo＇s，which will illustrate their virtual abandonment of philosophy proper：＂We should excrcise ourselves in Lusiuess，not in dialectical speculation．＂
Arcesilaus，the successor of Crates，the disciple of Theo－ phrastus and Polemo，was the founder of the second or middle Academy．He professed himself the strict fol－ lower of Plato，and seems to have been sincerely of opinion that his was nothing but a legitimate develupment of the true Platonic system．He followed the Socratic method of teaching in dialogues；and，like Socrates，left no writ－ ings，－at least the ancients were not acquainted with any． But we have no evidence that he maintained the ideal theory of Plato，and from the general tendency of his tcaching it is proballe that he overlooked it．He affirmed that，neither zur senses nor our mind can attain to any certainty；iu all we must suspend our judgment；proba－ bility is the guide of life．Ciceru tells us that he was more occupied in aisputing the opinions of others than in adrancing any of his own．Arcesilaus is，in fact，the founder of that academic scepticism which was developed and systematised by Carneades，the founder of the third or new Academy．He was the chief opponent of the Stoics and their ductrine of certitude．This is attested by a well－known saying of his：＂If there had been no Chry－ sippus，there would have been no Carneades．＂To the Stoical theory of perception，the фavтa⿱ia ката入 $\eta \pi \tau \tau \kappa \eta$ ，by which they expressed a conviction of certainty arising from impressions so stroug as to amount to science，he opposed the doctrine of ákaтa入ך $\psi \dot{a}$ ，which denied any nccessary correspondence between perceptions and the objects perceived．But while denying the possibility of any knowledge of things in themselves，he saved himself from absolute scepticism by the doctrine of probability or verisimilitude，which may serve as a practical guide in life． Thus he announced as his criterion of truth an imagination or impression（ ϕ avтaбia）at once credible，irrefragable，and attested by comparison with other impressions．The wise man might be pernitted to hold an opinion，though he allowed that that opinion might be false．In ethics，how－ ever，he appeared as the pure sceptic．On his visit to Rome as an ambassador from Athens，be alternately main－ tained and denied in his public disputations the existence of justice，to the great scandal of Cato and all honest citizens．

On the fourth and fifth Academies，we need not dwell long．Philo and Antiochus both taught Cicero，and with－ out doubt communicated to him that mild scepticism，that eclecticisio sompounded of almost equal sympathy with Plato and Zeno，which is the characteristic of his philo－ sophical writings．The Academy exactly corresponded to the moral and political wants of Rome．With no genius for speculation，the better Romans of that day were con－ tent to embrace a system which，thongh resting on no philosophical basis，and compounded of heterogeneous dogmas，offered notwithstanding a secure retreat from religious scepticism and political troubles．＂My words，＂ says Cicero，speaking as a true Academician，＂do not proclaim the truth，like a Pythian priestess；but I conjec－ ture what is probable，like a plain man；and where，I ask， am I to search for anything more than verisimilitude ？＂ And again：＂The characteristic of the Academy is never to

[^8]interpose oue＇s judgmeut，to approve what scums most pro－ bable，to compare together different opinoons，to sce what may be advanced on either side，and to leave one＇s listeners free to judge mithout pretending to dognatise．＂

ACADEMY，iu its modern acceptation，signifies a society or corporate body of learned nicu，established for the ad－ vancennent of science．litcrature，or the arts．

The first institution of this sort we read of in history was that founded at Alezandria by Ptolemy Soter，which he named the Museum，novatiov．After completing Lis conquest of Egypt，he turned his atteution to the cultiva－ tion of letters and scicnce，and gathered about him a large body of literary men，whom he employed in cullecting books and treasures of art．This was the origin of the Library of Alexandria，the most fannous of the ancient world． Passing by the acadeuries which were founded ly the Moors at Greuada．Cordubia．and as far east as Samarcand， the next instance of an acadeny is that founded by Charle－ magne at the iustigation of the celebrated Alcuin，for promoting the study of grommar，orthography，rhetoric， poetry，history，and mathen，atics．In order to equalise all ranks，each member tuok the pseudonym of some ancient author or celebrated person of antiquity．For instance， Cnarlemagne himsélf was David，Alcuin became Flaccus Albinus．Thongh none of the labours of this academy have come down to us，it undoubtedly exerted considerable influence in modelling tlie language and reducing it to rules．
In the following century Alfred founded an academy at Oxford．This was rather a grammar school than a society of learned men，and from it the University of Oxford originated．
But the academy which may be more justly considered as the mother of modern European academies is that of Floral Games，founded at Toulouse in the year 1325，by Clemens Isaurus．Its object was to distribute prizes and rewards to the troubadours．The prizes cousisted of flowers of gold and silver．It was first recoguised by the state in 1694，and confirmed by letters－patent from the king，and its numbers limited to thirty－six It las，except during a few years of the republic，coutinued to the present day，and distributes annually the following prizes ：－An amaranth of gold for the best ode，a silver violet for a poem of sisty to one hundred Alesandriue lincs，a silver eglantine for the best prose composition，a silver mariguld for an elegy，and a silver lily presented in the last century by M．de Malpeyre for a hyma to the Virgin．
It was the Renaissance which was par excellence the era of academies，and as the ltalians may be said to have dis－ covered anew the buried world of literature，so it was in Italy that the first and by far the most nnmerous academies arose．The earliest of these was the Platonic Academy， founded at Florence by Cosmo de Medici for the study of the works of Plato，thougb subsequently they added the explanation of Dante and other Italian authors．
Marsilius Ficinus，its principal ornament，in his Theologica Platonica，developed a system，chielly borrowed from the later Platonists of the Alexaudrian school，which，as it seemed to coincide with some of the leading doctrines of Christianity，was allowed by the church．His Latin trans－ lation of Plato is at onve literar，perspicuous，and correct； and as he had access to MSS．of Plato now lost，it has in several places enabled us to recover the original reading． After the expulsion of tho Medici from Florence，the Platonic Academy was dissolved．
In giving some account of the principal academies of Europe，which is all that this article professes to do，we shall，as iar as possible，arrange them under different heads， according to－lst，The object which they were designed to promote； $2 d$ ，The countries to which they belong． This classification，though，perhaps，the best arailable，is
necessarily inperfect, inasmuch as sereral of those we shall saention were at once literary and scientific, and many associations for similar objects were known by some other naine. Thus, with the doubtful exception of the Royal Academy of Arts, England has no academies in the proper eense of the word. For those institutions in England which answer to Italian acacmies, we must refer the reader to the article Sociery.
I. Scientific Academies.-Ilaly.-The first society for the prosecution of playsical science was that established at Naples, 3560 , under the presidency of Baptista Porta It was called Aeademia Secretorum Naturo or de Sccreti. It arose from a meeting of some scientific friends, who ausembled at Porta's house, and called themselves the Otinci. No member was admitted who had not made some useful discovery in medicine or natural philosophy. The name suggested to an ignorant public the prosecution of magic and the black arts. Porta went to Rome to justify himself before Paul III. He was acquitted by the Pope, but the academy wis dissolved, and he was ordered to abstain for the future from the practice of all illicit arts.

At Rome he was admitted to the Lineei, an academy founded by Federigo Cesi, the Marcose di Monticelli. The device of the Lincei was a lynx with its eyes turned towards beaven tearing a Cerberus with its claws, intimating that they were prepared to do battle with error and falsehood. Their motto was the verse of Lucretins describing rain dropping from a cloud-"Redit agmine dulci" Besidcs Porta, Galileo and Colonna were enrolled among its members. The society deroted itself exclusively to physical science. Porta, utader its auspices, publashed his great work, Majive Naturalis libri xx., 1589, in fol.; his Phytognomonica, or, tho occult virtue of plants; his De IIumana Physiognomia, from which La ater largely borrowed; also various works on optics and pnemnatics, in which he approached the true theory of vision. He is even said by some to hare anticipated Galilco in the anvention of the telescope.

But the principal monument still remaining of the zeal and industry of Cesi and his academy is the Plezobasanos, a corapendium of the natural history of Mexico, written by a Spaniard, Hernendez. During fifty years the DIS. had been neglected, when Cesi discorered it, and employed Terentio, Fabro, and Colcnna, all Lynceans, to edit it and enrich it with notes and emendations. Cesi's own great work, Theatrum Naturce, was never published. The MS. still exists in the Albani Library at Rome. After Cesis death, 1630 , the academy languished for some years under the patronage of Urban MILL An academy of the same name was inaugurated at Rome 1784, and still flourishes. It numbers among its members some of our English philosophers. But the fame of the Lincei was far outstripped liy that of the Accademia del Cimento, established in Norence 1657, under the patronage of the Grand Duke Ferdinand II., at the instigation of his brother Leopold, acting under the advice of Viviani, one of the greatest geometers of Europe. The object of this academy was (as the name implies) to make experiments and relate them, abjuring all preconceived notions. Unfortunately for science, it flourished for only ten years. Leopold in 1667 was made a cardinal, and the society languished without its head. It has, however, left a record of its labours in a volume containing an account of the experiments, published by the secretary in 1667 . It is in the form of a licautifully priuted folio, with numerous full print pages of illustrations. It contains, among others, those on the supposed incompressibility of water, on the pressure of the air, s2ad on the universal gravity of bodies. Turricelli, the iuventor of the barometer, was one of its members.

Passing by numerous other Italian Accarlemies of Science, we come to those of mudern times.

The Royal Academy of Sciences at Turin orfginated in 1757 as a prirato society; in $1: 59$ it published a volume of Miseellanea I'hilosophieo-Nathenatica Sucietutis privele Taurinensis; shortly after it was constituted a Ruyal Society by Charlos Emanuel III., and in 1783 Victur Amadeus III. made it a lioyal Academy of Sciences. It consists of 40 members, residents of 'lurin, 20 nonresident, and 20 foreign inembers. It publishes each year a quarto volume of proceedings, and has crowned and awarded prizes to many learned works.

Franee.-The Old Arademy of Sciences originated in mnch the same way as the French Acadeniy. A privato society of scientific men had for some thirty years been accustomed to meet first at the house of Montmort, the maitre des requêtes, afterwards at that of Thevenot, a great traveller and man of universal genius, in order to converse on their studies, and communicate their discoveries To this society belonged, among others, Descarte:s, Gasscudi, Blaise Pascal, and his father. Hobbes, the philusnume of Malmesbury, was presented to it during his visit to Paris in i640. Colbert, just as Richelieu in the case of the French Acadenny, conceived the idea of giving an official status to this body of learned men. Seven eminent mathematicians, among whom were Huyghens and De Bessy, the author of a famons treatise on magic squares, were chosen to form the nuclens of the new socicty. A certain number of chemists, physicians, and anatomists were subsequently added. Pensions were gronted by Louis XIV. to each of the menbers, and a fund for instruments and experimentations placed at their disposa! They commenced their session the 22d December 166f in the Royal Library. They met twice a weck-the mathematicians on the Wednesdays, the physicists (as the naturalists and physiologists were then called) on the Saturdays. Duhamel was appointed secretary by the king. This post he owed more to his polished Latinity than to his scientific attainments, all the proceedinge of the society being recorded in Latin. A treasurer was also nominated, who, notwitbstanding his pretentious title, was nothing more than conservator of the scientific instruments, \&c. At first the academy was rather a laboratory and observatory than an academy proper Experiments were undertaken in common and results discussed. Several foreign savants, in particuiar the Danish astronomer Rocmer, joined the society, attracted by the liberality of the Grand Monarque; and the German physician and geometer Tschirnhausen and Sir Isaac Newton were made foreign associates. The death of Coloert, who was succeeded by Lourois, exercised a disas trous effect on the fortunes of the academy. The labours of the academicians were diverted from the pursuit of pure science to such works as the construction of funtains and cascades at Versailles, and the mathematicians were employed to calculate the odds of the games of lansquenct and hassett. In I690 the academy was reconstituted by M. de Pontchartrain, under whose department as secretary of state the academies came. . Dy its new constitution it consisted of ten honorary members, men of high rank, who interested themselves in science, fifteen pensionarics, who were the working members, viz., three geometricians, and the same number of astronomers, mechanicians, anatomists, and chemists. モach section of three had two associates attached to it, and besides, eacis pensionary had the power of naming a pupil. There were eight forcign and four free associates. The officers were, a president and a vice-president, named by the king from among the honorary members, and a secretary and treasurer chosen from the pensionaries, who beld their uffices for life. Fontenelle, a man of wit, and rather a populariser of sciences than an original investigator, succeeded Duhamel e
secretary. The constitution, as is evident, was purely aristocratical, and unlike that of the French Academy, in which the principle of equality among the members was never violated. Science was not yet strong enough to dispense with the patronage of the great. The two leading spirits of the academy at this period were Clairaut and Réaumur. Clairaut was the first to explain capillary attraction, and predicted within a few days of the correct time the return. of Hallcy's comet. His theory on the figure of the earth was only superseded by Laplace's Mécanique Céleste. Réaumur was principally distinguished by his practical discoverics, and a thernometer in common use at the present day bears his name.
To trace the subsequent fortunes of this academy would far exceed our limits, being equivalent to writing the history of the rise and progress. of science in France. It has reckoned among its members Laplace, Buffon, Lagrange, D'Alembert, Lavoisier, and Jussicu, the father of modera botany. Those of our readers who wish for further information we would refer to M. Alfred Maury's excellent history.
On 21st December 1792, the old Academy of Sciences met for the last time. Many of the members fell by the guillotine, many were inprisoned, more reduceá to indi$\epsilon^{\text {enf nce. The aristocracy of talent was almost as much }}$ detested and persecuted by the Revolution as that of rank
In 1795 the Convention decided on founding an Institute, which was to replace all the academies. The first class of the Institute corresponded closely to the old acadcmy. See Institute.
In 1816 the Academy was reconstituted as a branch of the Institute. The new academy has reckoned among its members, besides many other brilliant names, Carnot the engineer, the physicians Fresnel, Ampère, Arago, Liot, the chicnists Gay-Lussac and Thénard, the zoologists G. Cuvier and the two Geoffroy Saint-Hilaires.
The French had also considerable academies in most of their large towns. Montpellier, for example, had a Royal Academy of Sciences, founded in 1706 by Louis XIV., on neariy the zame footing as that at Paris, of which, indeed, it was in some measure the counterpart. It was reconstituted in 1847, and organised under three sectionsmedicine, science, and letters. It has continued to publish annual reports of considerable value. Toulouse also had an acaderny under the denomination of Lanternists; and thore were analogous institutions at Nimes, Arles, Lyous, Dijon, Bordeaux, and other places. Of these several, we belicre, are still in existence, if not in activity.
Before passing on to German academies, we may here notice a privato scientific and philosophical society, the precursor of the French Academy of Sciences. It does not appear to have had any distinguishing name; but the promoter of it was Eusebius Renaudot, Counsellor and Physiciar in Ordinary to the King of France, and Doctor Regent of the Faculty of Physic at Paris, by whom a full account of its conferences was published, translated into English by G. Havers, 1664. In the priface it is said to be "a production of an assembly of the choicest wits of France." We will quote a few of the subjects of these discussions in order to show the character of the society:"Why the loadstone draws iron;" "Whether the soul's inmortality is demonstrable by natural reason;" "Of the little hairy girl lately seen in this city.". On subjects of popular superstition their views were far in advance of the time. Of judicial astrology it is said, "Why should we seck in heaven the causes of accidents which befall us if we can find them on earth?" Of the philosopher's stone"This most extravagant conceit, that it is the panacea, ipincd to the other absurdities of that chimerical art, makes as bclieve that it is good for uothing but to serve for imaginary consolation to the miserable,"

Germany.-The Collegium Curiosum was a scientific society, founded by J. C. Sturn, professor of mathernatics and natural $I^{\text {thilosophy }}$ in the University of Altorff, in Francunia, in 1672, on the plan of the Accademia del Cimento. It originally consisted of 20 mernbers, and continued to flourish long after the death of its founder. The early labours of the socicty were devoted to the repetition (under varied conditions) of the most notable experiments of the day, or to the discussion of the results. Two volumes of proceedings were published by Sturm in 1676 and 1685 respectively. The Programma Invitatorium is dated June 3, 1672; and Sturm therein urges that, as the day of disputatious philosophy had given way to that of experimental philosophy, and as, morcover, scientific societies had been founded at Florence, London, and Rome, it would thcrefore seem desirable to found one in Germany, for the attainment of which end. he requests the co-operation of the learned.
The woris of 1676, entitled Collegium Experimentale sive Curiosum, commences with an account of the diving-bell, "a new invention;" nest follow clapters on the camera obscura, the Torricellian experiment, the air-pump, microscope, telescope, \&c. The two works have been pronounced by a competent authority ${ }^{1}$ to constitute a nearer approach to a text-book of the physics of the period than any proceding work.
The Royal Academy of Sciences at Berlin was founded in 1700 by Frederic I. after Leibnitz' comprehensive plan, but was not opened till 1711. Leibnitz was the first president. Under Maupertuis, who succeeded him, it did good scrvice. Its present constitution dates from January 24, 1812. It is divided into four sections-physical, mathematical, philosophical, and historical. Each scction is under a paid secretary elected for hie, each secretary presides in turn for a quarter of a year. The members are-lst, Regular members who are paid; these hold gencral meetings every Thursday, and sectional meetings every JIonday. $2 d$, Foreign members, not to exceed 24 in number. $3 d$, Honorary members and correspondents. Since 1811 it has published yearly, Mémoires del'Académie Royale des Sciences et Belles Lettres à Berlin. For its scientific and philosophical attainments the names of W. and A. v. Humboldt, Ideles, Savigny, Schleiermacher, Bopp, and Ranke,' सill sufficiently youch
The Academy of Sciences at Mannheim was established by Charles Theodore, Elector Palatine, in the year 1755. The plan of this institution was furnishcd by Schæpplin, according to which it was divided into two classes, the historical aud physical. In 1780 a sub-division of the latter took place into the physical, properly so-called," and the meteorological. The meteorological observations are published separately, under the title of Ephenerides Societatis Meteorologice Palatinc. The historical and physical memoirs are published under the title of Acta Academia Theodoro-Palatince.
The Electoral Bararian Academy of Sciences at Munich was established iu 1759, and publishes its nemoirs under the title of Abhandlungen der Baierischen Akademie. Soon after the Elector of Bavaria was raised to the rank of king, tho Bavarian government, by his orders, dirccted its attention to a new organisation of the Academy of Sciences of Munich. The design of the king was, to render its labours moro extensive than those of any similar institution in Europe, by giving to it, under the direction of the ministry, the immediatc supcrintcndence over all the establishments for public instruction in the kingdom of Bararia. The PrivsCouncillor Jacobi, a man of most excellint character, and of considerable scientific attainments, was appointed president

[^9]The Electoral Academy at Erfurt was established by the Electer of Mentz, in the jear 1754. It consists of a pro tector. president, director, assessors, adjuncts, and associates. Its object is to promote the uscful sciences. The menvirs were originally published in Latin, but afterwards in German. The llessian Academy of Sciences at Giessen publish their transactions under the title of Acta Philo-sophico-1 Medica Academice Scientiarum Principalis IIessiacre. Iu the Netherlands there are scientific academies at Flushing and lirussels, both of whieh have published their transactions.
liussia.-The Imperial Academy of Sciences at St Petersbuig was projected by the Cizar Peter the Great. Laving in the course of his travels observed the advantage of publie societies for the encouragement and promotion of literature, he formed the design ot founding an academy of sciences at St Pctersburg. By the advice of Wolif and Leibnitz, whom he consulted on this nccasion, the society was accordingly regulated, and several learned foreigners were invited to beenme members. Peter himself drew the plan, and sigued it on the 10th of February 1724; but he was prevented, by the suddenness of his death, from carrying it into exccution. His decease, however, did not prevent its completion; for on the 21st of December 1725, Catharine I. established it according to P'eter's plan, and on the 27 th of the same month the society asscmbled for the first time. On the lst of August 1726, Catharine honoured the meeting with her presence, when l'rofessor Bulfinger, a German naturalist of great eminence, pronounced an oration upon the advances made in the theory of magnetic variations, and also on the progress of rescarch in so far as regarded the discovery of the longitorde. \& short time afterwards the empress settled a fund of $£ 4982$ per annum for the support of tho academy; and 15 members, all eminent for their learning and talents, were admitted and pensioned, under the title of professors in the various branches of science and literature. The most distinguished of these professors were Nicholas aud Danie! Bernonillt, the two De Lisles. Bulfinger, and Woltt.

During the shoit reign of Peton II. the selaries of the nembers were discontinued, and the academy utterly neglected by the Court; but it was again patronised by the Empress Anne, who even added a seminary for the educa. tion of youth under the superintendence of the professors. Buth institations flourished for, some time under the direction of Baron Korf; but upon his death, towards the end of Anne's reign, an ignorant person being appointed president, many of the most able members quitted Russia. At the accession of Elizabeth, howerer, new life and rigour were infused into the academy. The original plan was enlarged and improved; some of the most learned forcigners were again drawn to St Petersburg; and, what was consiciered ns a good omen for the literature of Russia, two natives, Lomonosof and Rumovsky, men of genius and ablaties, who had prosecuted their studies in foreign universities, were cnrolled among its members. Lastly, the annual income was increased to $£ 10,659$, and sundry other advan: tages were conferred upon the institution.

The Empress Catharine II., with her usual zeal for prumoting the diffision of knowledge, took this useful society under her immediate protection. She altered the court of directors greatly to the advantage of the whole body, corrected many of its abuses, and infused a new vigour and spirit into their researches. By Catharine's particular recommendation the most ingenious professors visited the various provinces of her vast dominions; and as the funds of the academy were not sufficient to defray the whole expense of these expeditions, the empress supplied the deficiency by a grant of $£ 2000$, which was renewed as micasion required.

The purpose and objert of these travels mill annear from the instructions given by the academy to the several persons who engayed in them. They ware ordered to iustitute inquiries respecting the different sorts of earths and waters; the best methods of cultivating barren and desert spots; the loeal disurders incident to men and ammals, together with the most cfficacious means of relieving them; the breeding of eattle, marticularly of sheep; the rearing of becs and silk-worms; the different places and ohjects for fishing and hunting; minerals of all kinds; the arts aud trades; and the formation of a Flora Russica, or collection of indigenous plants. They were particularly instructed to rectiiy the longitude and latitude of the principal towns; to luake astronomical, geographical, and metcorological observa tions; to trace the courses of rivers; to construct the must exact charts; and to be very distinct and accurate in re marking and describing the manners and customs of the different races of people, their dresses, languages, autiquites, traditions, history, religion; in a word, to gain every information which might tend to illustrate the real state of the whole Russian empire. More ample instruc. tions cannot well be conceived; and they appear to have been very zealously and finthfully executed. The consequence was that, at that time, no country could boast, within the space of so few years, such a number of excellent publications on its internal state, its natural productions, its topography, geograpby, and history, and on the manners, customs, and languages of the different tribes who inhalit it, as issued from the press of this academy. In its researehes in Asiatic languages, and general knewledge of Oriental customs and religoons, it proved itself the worthy riva! of our own Royal Asiatic Society

The first transactions of this society were published in 1728, and entitled Commentarii Academio Scientian um Imperialis Petropolitance ad annum 1726, wits a dedica. tion to Peter II. The publication was continued ander this form until the year 1747, when the transactions wero called Sovi Commentarii Academice, \&e.; and in 1777, the academy again changed the title into Acta Acrademioc S'cien. tiarum Imperialis Petropolitance, and likewise made some alteration in the arrangements and plan of the work. The papers, which had been hitherto $\mathrm{J}^{\text {ublished in the Latin }}$ language only, were now written indifferently either in that language or in French, and a preface added, entitled Partie Mistorique, which contains an account of its proceedings, meetings, the admission of new members, and other remarkable oceurrenecs. Of the Commentarics, 14 volumes were published: the first of the Nerw Commen. taries made its appearance in 1750, and the twenticth in 1776. Under the new title of Acta Academia, a number of volnmes have been given to the public; and two are printed every year. These transactions abound with ingenious and claberate disqusitions upon various parts of science and natural history; and it may not be an exaggeration to assert, that no soccety in Europe has more distinguished itself for the excellence of its publications, particularly in the more abstruse parts of pure and mixed mathematics.

The aeademy is still composed, as at first, of 15 prufessors, besides the presidunt and Aircutor. Each of these professors has a house and an annual stipend of from $£ 200$ to $£ 600$. Besides the professors, there are four adjuncts, with pensions, who are present at the sittings of the society, and succeed to the first vacancies. The direction of the academy is generally entrusted to a person of distinction.

The buildings and apparatus of this aeademy are on a vast scale. There is a fine library, consisting of 36,000 curious books and manuscripts; tngether with an extensivo museum, in which the various branches of natural history, \&c., are distributed in different apartments. The latter is extremely rich in native productions, having been consi-
derably augnented by the collections made by Pallas, Gmelin, Guldenstaedt, and other professors, during their expeditions through the various parts of the Russian empire. The stuffed animals and birds occupy one apartment. The chamber of rarities, the cabinet of coins, \&c., contain innumerable articles of the highest curiosity and value. The motto of the society is exccedingly modest; it consists of only one word, Paulatim.
Sweden.-The Academy of Sciences at Srockholm, or the Royal Swedish Academy, owes its institution to six persons of distinguished learning, among whom was the celebrated Linnæus. They originally met on the 2d of June 1739, when they formed a private society, in which some disscrtations were read; and in the end of tho same year their first publication made its appearance. As the meetings continued and the members increased, the society attracted the notice of the king; and, accordingly, on the 51 st of March 1741, it was incorporated under the name of the Royal Swedish Academy. Not receiving any pension from the crown, it is.merely under the protection of the king, being directed, like our Royal Society, by its own members. It has now, however, a large fund, which has chiefly arisen from legacies and other donations; but a professor of experimental philosoply, and two secretaries, are still the ouly persons who receive any salaries. Each of the members resident at Stackholm becomes president by rotation, and contiuues in office during three months There are tro kinds of members, native and foreign; the election of the former take places in April, that of the latter in July; and no money is paid at the time of admission. The dissertations read at each meeting are colleeted and published four times in the yoar: they are written in the Swedish language, and printed in octavo, and the annual publications make a volume. The first 40 volumes, which were completed in 1779, are called the Old Transactions.
Denmark.-The Royal Academy of Sciences at Copenhayen owes its institution to the zeal of six individuals, whom Christian VI., in 1742, ordered to arrange his cabinct of medals. These persons were John Gram, Joachim Frederic Ramus, Christian Louis Scheid, Mark Woldickey, Erie Pontopidan, and Bernard Moclmans who, oceasionally mecting for this purpose, extended their designs; associated with them others who were eminent in several branches of science; and forming a kind of literary society, employed themselves in searciing into, and explaining the history and antiquities of their country. The Count of Holstein, the first president, warmly patronised this society, and recommeuded it so strongly to Christian VI. that, in 1743, his Danish majesty took it under kis protection, called it the Royal Academy of Sciences, endowed it with a fund, and ordered the members to join to their former pursuits natural history, physics, and mathematics. In consequence of the royal favour the members engaged with fresh zeal in their pursuits; and the academy has published 15 volumes in the Danish language, some of which have been translated into Latin.
England.-In 1616 a scheme for founding a Royal Aeademy was started by Edmund Bolton, an eminent scholar and antiquary. Bolton, in his petition to King James, which was supported by Gcorge Villiers, Marquis of Buckingham, proposed that the title of the academy should be "King James, his Academe or College of honour." In the list of memters occurs the name of Sir Kenelm Digby, one of the original members of the Royal Society. The death of the kiug proved fatal to the undertaking. In 1635 a second attempt was made to found an academy, under the patronage of Charles I., with the title of "Minerva's Musæum," for the instruction of young noblemen in the liberal arts and sciences, but the project was sonn dropped. About 1615 some of the more ardent followers
of Bacon used to mect, some in London, some at Oxford, for the discussion of subjects connected with experimental science. This was the origin of the Royal Society, which received its charter in 1662 . See Royal Society.

Ireland.-The Royal Irish Academy arose out of a society established at Dublin about the year 1782, and consisting of a number of gentlemen, most of whora belonged to the university. They held weekly meetings, and read essays in turn ou various subjects. The members of this society afterwards formed a more extensive plan, and, admitting only such names as might add dignity to their new institution, became the founders of the Royal Irish Academy. They professed to unite the advancement of science with the history of mankind and polite literature. The first volume of their transactions (for 1787) appeared in 1788, and seven volumes were afterwards published. A society was formed in Dublin, similar to the Royul Society in London, as early as the year 1683; but the distracted state of the country proved unpropitious to the cultivation of philosophy and literature.

Holland. -The Royal Academy of Sciences at Amsterdam, erected by a royal ordinance 1852, succeeded the Royal Institute of the Low Countries, founded by Louis Napoleon, King of Holland, 1808. In 1855 it had published 192 volumes of proceedings, and received an annual subsidy of I 4,000 florins from the state.

Spain.-Tho Academy of Sciences at Madrid, founded 1774, after the model of the French Academy.
Portugal.-The Academy of Sciences at Lisbon is divided into three classes-natural history, mathematics, and national literature. It consists of 24 ordmary and 36 extraordinary members. Since 1779 it has published Memorias de Letteratura Portugueza; Memorias Economicas; Colleçao de Livros ineditos di Historia Portugueza.
II. Academies of Beiles Lettres.-Italy.-Italy in the 16th century was remarkable for the number of its literary academies. Tiraboschi, in his Itistory of Italian Literature, has given a list of 171 ; and Jarkius, in his Specimen Historice Academiarum Conditarum, enumerates nearly 700. Many of these, with a sort of Socratic irony, gave themselves names expressive of ignorance or simply ludicrous. Sush were the Lunatici of Naples, the Estravaganti, the Fulminales, the Trapessati, the Drousy, the Sleepers, the Anxious, the Confused, the Unstable, the Fantastic, the Transformed, the Etherial. "The first academies of Italy chiefly directed their attention to classical literature; they compared manuscripts; they suggested new readings, or new interpretations; they deciphered inscriptions or coins; they sat in judgment on a Latin ode, or debated the propriety of a phrase. Their own poctry had, perhaps, never been neglected; but it was not till the writings of Bembo furnished a new code of criticism in the Italian language, that they began to study it with the same miputeness as modern Latin." "They were encouragers of a numismatic and lapidary erudition, elegant in itself, and throwing for ever little specks of light on the still ocean of the past, but not very favourable to comprehensive observation, and tending to bestow on an unprofitable pedantry the honours of real learning." ${ }^{1}$ The Italian nobility, excluded as they mostly were from politics, and living in citics, found in literature a oonsolation and a carcer. Sucb academies were oligarehical in their constitution; they encouraged culture, but tended to hamper genius and extinguish originality. Of their academies, by far the most celebrated was the Accademia della Crusca or Furfuratorum; that is, of Bran , or of the Sifted. The title was berrowed from a previous society at Perugia, the Accademia degli Scossi, of the Well-shaken. Its device

[^10]was a sieve; its motto, "Il pidu bel fior ne coglie, it collects the finest flour of it ; its principal object the purification of the lamguage. Its great work was the Vocabulario della Crusca, the first edition of which was published 1613. It was composed avowedly on Tuscan principles, and regarded the 14th century as the Augustan period of the language. Beni assailed it in his Anti-Crusca, and this exclusive Tuscan spirit has disappeared in subsequent editions. The Accademia della Crusca is now incorporated with tro older societies-the Accademia degli Apatici (the Impartials) and the Accademia Fiorentiua.

Among the numerous other literary academies of Italy we may mention the Academy of Naples, founded about 1440 by Alfonso, the king ; the Academy of Florcnce, founded 1540 , to illustrate and perfect the Tuscan tongue, especially by a close study of Petrarch ; the Intronatiof Siena, 1525; the Infiammati of Padua, 1534; the Rozzi of Siena, suppressed by Cosmo, 1568.

The Academy of Humourists, Umoristi, had its prigin at Rome in the marriage of Lorenzo Marcini, a Roman gentleman, at which several persons of rank were guests. It was carnival time, and so to give the ladies some diversion, they betook themselves to the reciting of verses, sonnets, speeches, first cxtempore, and. afterwards premeditately, Which gave them the denomination of Belli Ifumori. After some experience, and coming more and more into the taste of these exercises, they resolved to form an academy of belles lettres, and changed the title of Belli Humori for that of Humoristi.

In 1690 the Academy or Society of Arcadians was establisbed at Rome, for the purpose of reviving the study of poetry. The founder Crescimbeni is tho author of a well-known history of Italian poetry. It numbered among its members many princes, cardinals, a-d other ecelesiastics; and, to avoid disputes about pre-eminence, all appeared masked after the manner of Arcadian shepherds. Within ten jears from its first establishraent the number of academicians amounted to 600 .

The Royal Academy of Savoy dates from 1719 , and was made a royal academy by Charles Felix in 1848. - Its emblem is a gold orange tree full of flowers and fruit; its motto "Flores fructusque percnnes," being the same as those of the famous Florimentane Academy, founded at Anuecy by St Francis de Sales. It has published valuable memoirs on the history and antiquities of Savoy.

Germany. - Of the German literary academies, the most celebrated was Die Fruchtbringende Gescllschaft, the Fruitful Society, established at Weimar 1617. Five princes enrolled their names among the original members. The object was to purify the mother tongue. The German academies copied those of Italy in their quaint titles and petty ceremouials, and exercised little permanent influence on the language or literature of the country.

France.-The French Academy was established by order of the king in the year 1635, but in its original form it came into existence some four or five years earlier. About the year 1623 certain literary friends in Paris agrecd to meet weekly at the house of one their number.' These meetings were quite informal, but the conversation turned mostly on literary topics; and when, as was often the case, one of tho number had composed some work, be read it to the rest, and they gave their opinions upon it. The place of meeting was the house of MI. Conrard, which was chosen as being the most central. The fame of these meetings, though the members were bound over to secrecy, reached at length the ears of Cardinal Richelieu, who conceived so high an opinion of them, that he at once promised them his protection, and offered to incorporate them by letters patent. Nearly all the members would have preferred the charms of privacy; but, consideringe the risk they would run in
incnrring the cardinal's displeasure, and that hy the letter of the law all meetings of any sort or kind were prohibited, they expressed their gratitude for the high honour the cardinal thought fit to confer on them. They proceeded at once to organise their body, settle their laws and consti ${ }^{4}$ u. tion, appoint officers, and choose their name. Their officers consisted of a director and a chancellor, both chosen by lot, and a permanent secretary, chosen by votes. They elected besides a publisher, not a member of the budy. The director presided at the meetings, keing considered as primus inter pares, and performing mucl the same part as the speaker in the English Honse of Commons. The chancellor kept tho scals, and sealed all the official documents of the academy. The office of the sccretary cxplains itself. The cardinal was ex officio protecter. The meetings were weekly as before.

The letters patent were at once granted by the king, but it was only after violent opposition and long delay that the president, who was jealons of the cardinal's authority, consented to grant tho verification required by the old constitution of France.
The object for which the academy was founded, as set forth in its statutes, was the purification of the French language. "The principal function of the academy shall be to labour with all care and diligence to give certain rulcs to our language, and to render it pure, eloquent, and capable of treating the arts and sciences" (Art. 24). They proposed "to cleanse the language from the impuritios it has contracted in the months of the common people, from the jargon of the lawyers, from the misusages of ignorant courtiers, and the abuses of the pulpit."-Leiter of Aculcmy to Cardinal Richelieu.

Their numbers were fixed at forty. The original members who formed the nueleus of the body were cight, and it was not till 1639 that the full number was completed. Their first undertaking consisted of essays written by all the members in rotation. To judge by the titles and specimens which have come down to us, these possessed no special originality or merit, but resembled the $\overline{\epsilon \pi \kappa \delta} \delta i \xi \in \epsilon s$ of the Grcek rlletoricians. They next, at the instance of Cardinal Richelieu, undertook a criticism of Corneille's Cid, the most popular work of the day. It was a rule of the academy that no worls could be criticised exeept at the author's request. It was only the fear of incurring the cardinal's displeasure which wrung from Corneille an unwilling consent. The critique of the academy was rewritten several times before it met with the cardinall's approbation. After six months of elaboration, it was published under the title, Sentinents de l'Académie Françoise sur le Cid. .This judgment did not satisfy Corneillc, as a saying attributed to him on the oecasion shows. "Horatius," he said, referring to his last play, "was condemned by the Duumviri, but he was absolved by the people." But the crowning labour of the acadcmy, commenced in 1639, was a dictionary of the French lauguage. By the twenty-sixth article of their statutes, they were pledged to compose a dictionary, a grammar, a treatise on rhetoric, and one on poetry. M. Chapelain, one of the original members and leading spirits of the academy, pointed out that the dictionary would naturally be the first of these works to be undertaken, and drew up a plan of the work, which was to a great extent carried out. A catalogue was to be made of all the most approved authors, prose and verse: these were to be distributed among the members, and all words and phrases of which they alproved to be narked by them in order to be incorporated in the dietionary. For this they resolved themselves into two committees, which sat on other than the regular days. MI. de Vaugelas ${ }^{1}$

[^11]was appointed editor in chief. To remunerate him for his labours, he received from the cardinal a pension of 2000 fraucs. The first edition of this dictionary appeared in 1691, the last Complement in 1854.

Instead of following the history of the French Academy,which, like its two younger sisters, the Academy of Sciences and the Academy of Inscriptions, was suppressed in 1793, and reconstituted in 1795, as a class of the Insti-tute,-a history which it would be impossible to treat adequately in the limit of an article, we will attempt briefly to estimate its influence on French literature and language, and point nut its principal merits and defects. To begin with its merits, it may justly boast that there is hardly a sungle name of the first rank among French litterateurs that it has not eurolled among its members. Moliere, it is true, was rejected as a player; but we can hardly blame the academy for a social prejudice which it shared with the age; and it is well known that it has, as far as was in its power, made the amende honorable. In the Salle des Seances is placed the bust of the greatest of modern comedians, with the inscription, "lien ne manque à sa gloire ; il manquait à la nóre." Deseartes was excluded from the fact of his residing in Holland. Scarron was confined by paralysis to his own house. Pascal is the only remaining exception, and Pascal was better known to his contemporaries as a mathematician than a writer. His Lettres Provinciales wero published anonymously; and just when his fame was rising be retired to Port-Royal, where he lived the life of a recluse. On the other band, it cannot be denied that the fauteuils nave often been ocenpied by men of no mark in literature. Nor is the academy wholly exonerated by. ML. Livet's incenious defence, that there are but eight marshals in the French army, and yet the number has never appeared too restricted ; for its most ardent admirers will not assert that it has, as a rule, chosen the forty most distinguished living authors. Court intrigue, rank, and finesse have too often prevailed over real merit and honesty Though his facts are incorrect, there is much truth in Courier's caustic satire :-" "Dans une compargnie de gens faisant profession d'esprit ou de savoir, nul ne veut prés de soi un plus habile que soi, mais bien un plus noble, un plus riche : un duc et puir honore l'Acadúmie Française, qui ne reut point de Boileau, ${ }^{1}$ refuse la Bruyère, fait attendre Voltaire, mais reçait tout d'abord Chapelain et Conrart."

We have next to consider the influence of the French Academy on the language and literature, a subject on which the most opposite opinions have been adrancod. On the one hand, it has been asserted that it bas corrected the judgment, purified the taste, and formod the language of Fronch writers, and that to it we owe the most striking characteristics of French literature, its purity, delicacy, and Hcxibility. Thus Mr Matthew Arnold, in his well-known Essay on the Literary Infiwence of Acadcmies, has pronounced a glowing panegyric on the French Academy as a high court of letters, and rallying point for cducated opinion, as asserting the authority of a master in matters of tone and taste. To it he attributes in a great measure that thoroughness, that openness of mind, that absence of vulgarity which he finds everywhere in French literature ; and to the want of a similar irstitution in England be traces that eccentricity, that proviucial spirit, that coarscness, which, as he thinks, is barcly compensated by English genius. Thus, too, M. Iendn, one of its most distinguished nving members, says that it is orring to the academy " 9 w'on

[^12]peut tout dire eane sppareil stholastıque avec la langue des gens du monde." 'Ah ne dites," he exclaims, "qu'ila n'ont rien fait, ces obscures benux esprits dont la vie se passe à instruire le procès des mots, à peser les syllables. Ils ont fait un chef-d'œuvre--la langue française." On the other hand, its inherent defects have been so well summed up by M. Lanfrey, that we cannot do better than quote from his recent Ifistory of Napoleon. "This institution," he says, speaking of the French Academy, "had never shown itself the enemy of despotism. Founded by the monarchy and for the morarchy, cminently favourable to the spirit of intrigue and favouritism, incapable of any sustained or combined labour, a stranger to those great works pursned in common which legitimise and glorify the existence of scientific bodies, occupied exclusively mith learned triffes, fatal to emulation, which it pretends to stimnlate, by the compromises and calculations to which it subjects it, directed in everything by petty considerations, and wasting all its energy in childish tournaments, in which the flatteries that it showers on others are only the forctaste of the compliments it expects in return for itself, the French Academy seems to have received from its founders the special mission to transform genius ioto bel esprit, and it would be bard to produce a man of taicnt whom it has not demoralised. Drawn in spite of itself towards politics, it alternately pursues and avoids them; but it is specially attracted hy the gossip of rolitics, and whenever it has so far emancipated itself as to go iuto opposition, it does so as the champion of ancient prejudices. If we examine its influence on the national genius, we shall see that it has given it a flexibility, a brilliancj, a polish, which it never possessed bcfore; but it has done so at the expense of its masculine qualities, its originality, its spontaneity, its vigour, its natural grace. It has disciplined it, but it has emasculated, imporcrished, aud rigidified it. It sees in taste, not a sense of the beautiful, but a certain type of correctness, an clegant form of mediocrity. It has substituted pomp for grandeur, school rontine for individual inspiration, claborateness for simplicity, fadeur and the monotony of literary orthodoxy for varicty, the source and spring of intellectual life; and in the works prodnced under its auspices we discoser the rhetorician and the writer, never the man. By all its traditions the academy was made to be the natural oruament of a monarchical society. Richelieu conceived. and created it as a sort of superior centralisation applied to intellect, as a high literary court to maintain intellectual unity, and protest against innoration. Louaparte, aware of all this, had thought of re-establishing its ancient privileges; but it had in his eyes one fatal defect-esprit. Kings of France could condone a witticism cven against themselves, a parvenu could not."

In conclusion, we would briefly state our own opinion. The influence of the French Academy has been conservative rather than creative. While it has raised tho geneml standard of miting, it has tended to hamper and crush originality: It has done much by its example for style, but its attempts to impose its laws on language have, from the nature of the case, failed. For, however perfectly a dictionary or a grammar may roprosont the existing language of a nation, an original genius is certain to arise-a Victor ITugo, or an Alfred de Musset, who will sct. at dofiance all dictionaries and academic rules.

Spain.-The Royal Spanisin Academy at Madrid held its first meeting in July 1713, in the palace of its fonnder, the Duke d'Escalona. It consisted at first of 8 academicians, including the duke; to which number 14 others were afterwards allded, the founder being chosen president or director. In 1714 the king granted them the royal confirmation and protection. Their derice is a cricible in
the middle of the fire, with this motto, Limpia, fixu, y da esplendor-" "It purifies, fixes, and gives briglatness." The number of its members was limited to 24; the Duke d'Escalona was chosen director for life, but his successors were elected yearly, and the secretary for life. Their object, as marked out by the royal declamtion, was to cultivate and improve the national language. They were to begin with choosing carefully such words and phrascs as have been used by the best Spanish writers; noting the low, barbarous, or obsolete ones; and composing a dietionary whercin these might be distinguished from the furmer.

Sueden.-The Rayal Swedish Academy was founded in the year 1786, for the purpose of purifying and perfecting the Swedish language. A medal is struck by its dircetion crery year in honour of some illustrious Swede This aeademy does not publisb its transactions.

Belgium.-Eelgium has always been famous for its literary societies. The little town of Diest boasts that it possessed a society of pocts in 1302, and the Catherinists of Alost date from 1107. Whether or not there is any foundation for these claims, it is certain that numerous Chambers of Rhetoric (so academies were then called) existed in the first years of the rule of the house of Burguady.

The present Royal Icademy of Belgium was founded by the Count of Coblenz] at Brussels, 1769. Count Stahrenberg obtained for it in 1772 letters patent from Maria Theresa, who also granted pensions to all the members, and a fund for printing their works. All academicians were ipso facto ennobled. It was reorganised, and a class of fine arts added in 1845 through the agency of M., Van de Weyer, the learned Belgian ambassador at London. It has devoted itself principally to national history and antiquitics.
III. Academes of Archeology and History.-Italy.-Under this class the Academy of Herculaneum properly ranks. It was established at Naples about 1755, at which period a muscum was formed of the antiquities found at IIerculaneum, Pompeii, and other places, by the Marquis Tanucci, who was then minister of state. Its object was to explain the paintings, \&c., which were discovered at those places; and for this purpose the members met every fortnight, and at each mecting three paintings were subinitted to three academicians, who made thicir report on them at their next sitting. The first volume of their labours appeared in 1775 , and they bave been continued under the title of Antichità odi Ercolano. They contain engravings of the principal paintings, statues, bronzes, marble figures, medals, utensils, \&c., with explanations. In the year 1807, an Academy of History and Antiquities, on a new plan, was established at Naples by Joscph Bowaparte. The number of members was limited to forty; twenty of whom were to be appointed by the king, and these twenty were to present to him , for his choice, three names for each of those wanted to complete the full number. Eight thousand ducats were to be annually allotted for the current expenses, and two thousand for prizes to the authors of four works which should be deemed by the a a ademy most deserving of such a reward. A grand meeting was to be beld every year, when the prizes were to be distributed, and analyses of the works read. The first meeting took place on the 25th of "April 1807; but the subscquent changes in the political state of Naples prevented the full and permanent establishment of this institution. In the same year an academy was established at Florence for the illustration of Tuscan antiquities, which published some volumes of memoirs.

France.-The old Academy of Inscriptions and Belles Lettres was an off-shoot from the French Academy, which
then at least contained the élite of French learning. Louis XIV. was of all Freach kings the one most occupicd wath his own aggrandiscinent. Literature, and even science, he only encouraged so far as they redounded to his own glory. Nor were literary men inclined to assert their independence. Boileau well represented the spirit of the age when, in dedicating his tragedy of licrence to Colluert, he wrote"The least things become important if in any degree they ean serve the glory and pleasure of the king." Thus it was that the Acadcmy of Inscriptions arose. At the suggestion of Culbert, a eompany (a committec we should now call it) liad been appointed by the king, chusen from the French Acadeny, charged with tho office of furnishing inscriptions, devices, and legends for medals. It consisted of four academicians: Chapelain, then considered the poet laureate of France, one of the authors of the critique on the Cid (sce above); labbé de Bourzcis; Françuis Carpenticr, an antiquary of ligh repute among lis contem. porares; and l'ablé de Capagnes, who owed his appointment more to the fulsome thattery of his odes than his really learned translations of Cicero and Sallnst. Thìis company used to mect in Colbert's library in the winter, at his country-house at Sceatux in the summer, generally on Wednesdays, to serre the convenience of the minister, who was constantly present. Their meetings were principally occupied with discussing the inscriptions, statucs, and pictures intended for the decoration of Versailles; but M. Colbert, a really learned man and an entlusiastic collector of manuscripts, was often pleased to converse with them on matters of art, history, and antiquities. Their first published work was a collection of engravings, accumpanied by descriptions, designed for some of the tapestries at Versailles. Louvois, who succeeded Collucrt as a superintendent of buildings, revived the company, which had begun to relax its labours. Felibien, the learned architect. and the two great poets Racine and Boileau, were addec to their number. A scries of medals was commenced, entitled Médailles de la Grande Histoive, or, in other words, the history of le Grand Monarque.

Put it was to M. de l'ortchatrain, comptroller-general of finance and sceretary of state, that the acudeny owed its institution. He added to the company Renaudot and Tuurreil, both men of vast learning, the latter tutor to his son, and put at its head his nephew, l'abbé Bignon, libmrinn to the king. By a new rcgulation, dated the 16 th July 1701, the Royal Academy of Inscriptions and Medals was instituted, 'bcing composed of ten honorary members ten pensioners, ten associates, and ten pupils. On its constitution we need not dwell, as it was an almost exact copy of that of the Academy of Scieuce. Among the regulations we find the following, which indicates clearly the transition from a staff of learncd officials to a learned body:-" The academy shall concern itself with all that can contribute to the perfection of inseriptions and legends, of designs for such monuments and decorations as may bo submitted to its judgment; also with the description of all artistic works, present and future, and the historical explanation of the subject of such works: and as the knowledge of Greek and Latin antiquities, and of these two languages, is the best guarantee for success in labours of this class, the academicians shall apply themselves to all that this division of learning includes, as one of the most worthy objects of their pursuit."

Among the first honorary members we find the indefatigable Mabillon (excluded from the pensioners by reason: of his orders), Père La Chaise, the king's confessor, and Cardinal Rohan; among the associates Fontenelle, and Rollin, whose Ancient IIistory was submitted to the academy for revision. In 1711 tney completed l'listoire Métallique du Roi, of which Saint-Simon was asked to
writo the preface. In 1716 the regent changed its title to that of the Academy of Inscriptions and Belles Lettres, a title which better suited its new character.

In the great battle between the Ancients and the Moderns which divided the learned world in the first half of the 18th century, the Academy of Inscriptions naturally espoused the cause of the Ancients, as the Academy of Sciences did that of the Moderns. During the earlier years of the French Revolution the academy continued its labours uninterruptedly; and on the 22 d of Jancary 1793, the day after the death of Leuis XVI., we find in 'the Proceedings that M. Brequigny read a paper on the projects of marriage between Queen Elizabeth and the Dukes of Anjou and Alencon. In the same year were published the 45 th and 46 th vols. of the Mémoires de l 'Académie. On the 2d of August of the same year the last séance of the old academy was held. More fortunate than its sister Academy of Sciences, it lost only thrce of its members by the guillotine. One of these was the astronomer Sy'vain Bailly. Three others sat as members of the Convention ; but for the honour of the academy, we must add that all three were distinguished by their moderation.
In the first draught of the new Institute, October 25, 1795, no class corresponded exactly to the old Academy of Inscriptions; but most of the members who survived found themselves re-elected either in the 2 d class of moral and political science, under which history and geography were included as scctions, or more generally under the 3d class of literature and fine arts, which embraced ancient ianguages, antiquities, and monuments.

In I816 the academy received again its old namc. The Proceedings of the Society embraco a rast field, and are of very various merits. Perhaps the subjects on which it has shown most originality are comparative mythology, the history of science among the anclents, and the geography and antiquities of France. The old academy las reckoued among its members De Sacy the Orientalist, Dansse de Villoison the philologist, Du Perron the traveller, Sainte-Croir and Du Theil the antiquarians, and Le Beau, who has been named the last of the Romans. The new academy has already inscribed on its lists the well-known names of Champellion, A. Rémusat, Raynouard, Burnouf, and Augustin Thierry.

Celtic Academy.-In consequence of the attention of several literary men in Paris having been directed to Celtic antiquities, a Celtic Academy was established in that city in the year 1800. Its objects were, first, the elucidation of the distory, customs, antiquities, manners, and monuments of the Celts, particularly in France; secondly, the etymology of all the European languages, by the aid of the Celtol3ritish, Welsh, and Erse ; and, thirdly, researches relating to Druidism. The attention of the members was also particularly called to the history and settlements of the Galatro in Asia. Lenoir, the keeper of the museum of French monuments, was appointed prosident. The academy still exists as La Société Royale des Autiquaires de France.
IV. Academies of Medicine and Surgery.-Germany. - The Academy of Natura Curiosi, called also the Leopoldine Acadcmy, was founded in 1602, by J. L. Bausch, a physician of Leipsic, who, imitating the example of the English, published a general invitation to medical men to communicate all extraordiuary cases that occurred in the course of their practice. The works of the Naturce Curiosi were at first published separately ; but this being attended with considerable inconvenience, a new arrangement was formed, in 1770, for publishing a volume of observations annually. From some cause, however, the first volume did not make its appearance until 1784 , when it came Sorth under the title of Ephemerides. In 1687, the Emperor

Leopold took the society under his protection, and established it at Vienna; hence the title of Leopoldine which it in consequence assumcd. But though it thus acquired a name, it had no fixed place of meeting, and no regular assemblies; instead of which there was a kind of bureau or ofice, first establishod at Bresluu, and afterwards removed to Nuremberg, where comnunications from corre spondents were received, and persons properly qualified admitted as members: By its constitution the Leopoldine Academy consists of a president, two adjuncts or secretaries, and colleagues or members, without any limitation as to numbers. At their admission the last come under a two fold'obligation-first, to choose some subject for discussion out of the animal, vegetablé, or mineral kingdom, provided it has not been previously treated of by any colleague of the academy; and, secondly, to apply themselves to furnish materials for the annual' Eplemerides. Each member also bears about with him the symbol of the academy, consisting of a gold ring, whereon is represented a book open, with an eye on one side, and on the other the academical motto of Nunquam otiosus.
Tho Academy of Surgery at Vieuna was instituted by the present emperor, under the direction of the celebrated Brambella In it there were at first only two professors; and to their charge the instruction of a hundred and thirty young men was committed, thirty of whom had formerly been surgeons in the army. But latterly the number botb of teachers and pupils was considerably increased. Gabrielli was appointed to teach pathology and practice Boecking, anatomy, physiology, and physics; Streit, medical and pharmaceutical surgery; Hunczowsky, surgical opo rations, midwifery, and chirurgia forensis; and Plenk, chemistry and botany. To these was also added Beindel, as prosesutor and extraordinary professor of surgery and anatomy. Resides this, the emperor provided a large and splendid edifice in Vienna, wrich affords accommodatic.. both for the teachers, the students, pregaant women, patients for clinical lectures, and servants. For the use of this academy the emperor also purchased a medical library, which is open every day; a complete set of chirurgical instruments; an apparatus for experiments in natural philosophy; a collection of natural history; a number ot anatomical and pathological preparations; a collection of preparations in wax, brought from Florence; and a variety of other useful articles. Adjoining the building there is also a good botanical garden. With a view to eucournge emulation among the students of this institution, three prize medals, each of the value of 40 florins, are annually bestowed on those who return the best answers to questions proposed the year beforc. These prizes, however, are not entirely founded by the emperor, but are in part owing to the liberality of Brendellius, formerly protochirurgus at Vienna.
France-Royal Academy of Medicine.-Mcdicine is a science which has always engaged the attention of the kings of France. Charlemagne established a school of medicine in the Lourre, and various societies have been founded, and privileges granted to the faculty by his suc 1 cessors. The Royal Academy of Medicine succeeded to the old Royal Society of Meciiciue and the Academy of Surgery. It was erected by a royal vrdinance, dated Decenben 20, 1820. It was divided into three sections-medicine, surgery, and pharmacy. In its constitution it closely resembled the Acaderny of Scicnces (vid. sup.) Its functiou was to preserve or propasate vaccine matter, and answer inquiries addressed to it by the Governmert on the subject of epidemics, sanitary reform, and public health generally. It has maintained an enormous correspondence in aلl quarters of the globe, and published extensive minutes.
V. Academes of the Flve Abts.- Rusiuu. - The
academy at St Petcrshurg was established by the Empress Elizabeth, at the suggestion of Count' Shuvaloff, and annexed to the Academy of Sciences. The fund for its support was 2.000 per annum, and the foundation admitted forty scholars. Catharine II. formed it into a seprate institution, augmented the onnual revenue to $£ 12,000$, and iucreased the number of scholars to three hundred; she also constructed, for the use and accommodation of the members, a large circular building, which fronts the Neva. The scholars are admitted at the age of six, and continue until they have attaincd that of eighteen. They are cluthed, fed, and lodged at the expense of the crown, and are all instructed in reading and writing, arithunctic, the l'rench and German langnages, and drawing At the age of fourteen they are at liberty to choose :iny of the following arts, divided into four classes, viz., first, painting in all its branches of history portraits, warpicces, and landscapes, architecture, mosaic, enamelling, dec. ; secondly, engraving on copperplates, seal-cutting, \&\&.; thirdly, carving ou wood, ivory, and amber; i iurthly, watchmakiug, turuing, instrument making, casting statues in bronze and other metals, imitating gems and medals in paste and other compositions, gilding, and varnishing. Prizes are annually distributed to those who excel in any particular art; and, from those who have obtained four prizes, twelve are selected, who are sent abroad at the charge of the crown. A certain sum is paid to defray their travelling expenses; and when they are settled in any town, they receive an annual salary of $£ 60$, which is continued during four years. There is a small assortment of paintings for the use of the scholars; and those who have made great progress are permitted to copy the pictures in the imperial collection. For the purpose of design, there are models in plaster, nl! done at Rome, of the best nutique statucs in ltaly, and of the same size with the origiuals, which the artists of the academy were employed to east in bronze.

Prunce.-The Academy of Painting and Sculpture at Paris was founded by Louis XIV. in 1648, under the title of Académic Royale des Beaux Arts, to which was afterwards united the Academy of Architecture, erected 1671. The neademy is composed of painters, sculptors, architects, engravers, and musical composers. From among the members of the society, who are painters, is chosen the director of the French Acalémie des Beaux Arts at Berae, also instituted by Louis XIV. in 1677.' The director's province is to superintend the studies of the painters, sculptors, d.c., who, laving been chosen by competition, are sent to Italy at the expense of the Government, to complete their studies in that country. Most of the celebrated French painters have berun their career in this way.

The Royal Academy of Music is the name whieh, by a strange pertersion of language, is given in France to the grand opera. In 1571 the poct Baif established in his house an academy or school of music, at which ballets and masquerades were given. In 1645 Mazarin brought frum ltaly a troupe of actors, and established them in the Rue du Petit Bourbon, where they executed Jules Strozzi's "Achille in Sciro," the first opera performed in France. After Molicre's death in 1673, his theatre in the Palais Iinyal was given to Sulli, and there were performed all Gluck's great operas; there Vestris danced, and there was produced Jcan Jacques Roussean's "Devin du Village."

Italy.-In 1778 an Academy of Painting and Sculpture was established at Turin. The meetings. were beld in the palace of the king, who distributed prizes among the most successful members. In Milan an Academy of Architecture was established so early as the year 1380, by Galeas Visconti. About the middle of the last century an Academy of the Arts was established there, after the
example of those at Paris and Rome. The pupils were furnished with originals and models, and prizes were digtributcd annually. The prize for painting was a gold medal, and no prize was bestowed till all the competing picces had been subjected to the examination and criticism of competent judges. Before the effects of the French Revolution reached Italy this was one of the best establishments of the kind in that kingdom. In the hall of the academy were some admirable picces of Correggio, as well ns scveral ancient paintings and statues of great merit,particulariy a small bust of Vitellins, and a statue of Agrippina, of most exquisite beauty, though it wants the head and arms. The Academy of the Arts, which had becn long established at Florence, fell into decay, but was restored in the end of last centary. In it there are halls for nude and plaster figures, for the use of the sculptor and the painter. The hall for plaster fignres had models of all the finest statues in Italy, arranged in two lines; bu: the treasures of this and the other institutions for the fine ares were greatly diminished during the occupancy of Italy by the French. In the saloon of the Academy of the Arts at Modena there are many casts of antique statues; but after being plundered by the Frencl it dwindled into a petty school for drawings from living models; it contains the skull of Corregglo. There is also an Academy of the Fine Arts in Mantua, and another at Venice.
Spain.-In Madrid an Academy for Painting, Scnlpture, and Architecture, was founded by Philip V. The minister for foreign affairs is president. Prizes are distributed every three years. In Cadiz a few students are supplied by Government with the means of drawing and modelling from figures; and such as are not able to purchase the requisite instruments are 1 ,rovided with them.

Sweden.-An Academy of the Finc Arts was founded at Stockholm in the year 1733 by Count Tessin. In its hall are the ancient figures of plaster presented by Louis XIV. to Charles XI. The works of the students are publicly exhibited, and prizes are distributed aunually. Sucn on them as display distinguished ability obtain pensions from Government, to enable them to reside in Italy for some years, for the purposes of investigation and improvemeat. In this academy there are nine professors, and generally about four hundred students. In the year 1705 an Academy of Yainting, Sculpture, and Architecture was established at Vienna, with the view of encouraging and promoting the fine arts.
England.-The Royal Academy of Arts in Lundon was instituted for the encouragement of designing, painting, sculpture, \&e., in the year 1768, with Sir J. Reynolds for its president. This academy is under the imnediate patronage of the queen, and under the direction of furty artists of the first rank in their several professions. It firnishes, in winter, living models of different characters to draw after; and in summer, models of the sume kind to paint after. Nine of the ablest academicians are annually elected out of the forty, whose business it is to attend by rotation, to set the figures, to cxamine the performance of the students, and to give them necessary instructions. There are likemse professors of painting, sculpture, architecture, anatomy, and chemistry, who annually read public lectures on the subjects of their several departments ; besides a president, a council, and other officers. The admission to this acalemy is free to all students properly qualified to reap advantage from the studies cultivated in at ; and there is an annual exhibition at Burlington House of paintings, sculptures, and designs, open to all artists of distinguished merit.
The Academy of Ancient Music was established in London in 1710. by several persons of distinction, and other
umateurs, in conjunction with the most eminent masters of the time, with the riew of promoting the study and practice of rocal and instrumental harmony. This institution, which had the advantage of a library, consisting of the most celebrated compositions, both foreign and damestic, in mauuscript and in print, and which was aided by the performances of the gentlemen of the chapel royal, and the choir of St Paul's, with the boys belonging to each, continued to flourish for many years. In 1731 a charge of plagiarism brought asainst Bononcini, a member of the academy, for claiming a madrigal of Lotti of Venice as his own, threatened the existence of the institution. Dr Greene, who had introduced the madrigal into the acadomy, took part with Bononcini, and withdrew from the onciety, taking with him the beys of St Paul's. In 1734 Mr Gates, another member of the society, and rasster of the children of the royal chapel, also retired in disgust; so that the institution was thus deprived of the assistance which the boys afforded it in singing the soprano parts. From this time the academy became a seminary for the instruction of youth in the principles of music and the laws of harmony. Dr Pepnsch, who was one of its founders, was active in accomplishing this measure; and by the expedient of educating boys for their purpose, and admitting auditor mombers, the subsistence of the academy was continuer. The P.oyal Academy of Music
was formed by the principal nobility and gentry of the kingdom, for the performance of operas, composed by Handel, and conducted by him at the theatre in the Hay. market. The subscriz…v ameunted to $£ 50,000$, and the king, besides subscribing $£ 1000$, allowed the sucicty to assume the title of Royal Acaderny. It consisted of a governor, deputy-governor, and twenty directors. 1 contest between Handel ald Senesino, ono of the performer, in which the dirccters took the part of the latter, occisioned the dissolution of the academy, after it had subsisted with reputation for more than nine years. The present Royal Academy of Music dates from 1822, and was incorperated in 1830 under the patronage of the quecn. It instructs pupls of both sexes in music, cbarging 33 guircas per annum; but many receive instruction frce. It also gives rublic concerts. In this institution the leading instrumentalists and vocalists of England have received their education. (Sce NIfsical Directory published by Rudall, Carte, and Co.)

Acadeary is a term also applied to those royal collegiate seminarics in which young men are educated for the navy and army. In our country there are three colleges of this description-the Royal Naval College at Portsmourh, the Royal Military Academy at Woolwich, end the nojoal Military Collcge, Sandhurst.
(F. s

ACAUIE, or ACADla, ide name barne by Nova Scotia while it remained a French settlement.

ACALEPHふ (from áкаlク́фŋ, a nettle), a name given to the animals commonly known as jelly-fish, sea-blubber, Isedusce, sea-nettles, \&c.

ACANTHOCENHALA (from äкаv θ a, a thorn, snd $\kappa \in \$ a \lambda \dot{\eta}$, the kead). a group of parasitic worms, having the heads armed with spinss or books.

ACANTHOPTERYGLI (from ünav θa, a thorn, and $\pi \tau \epsilon \rho v \xi$, a wing), an order of fishes, having bony skeletons with prickly spinous processes in the dorsal fins.

ACAANTHUS, a genus of plants belonging to the natural order Acanthacce. The species are natives of the southern parts of Europe. The most common species is the Acanthus mollis or Brankursine. It has large, deeply-cut, hairy, bining leaves, which are supposed to have suggested the decoration of the Corinthian column. Another species, Acanthus spinosus, is so called from its spiny leaves.

ACAPULCO, a town and port in Mraxico, on a bay of the Pacific Ocean, about 190 miles S.S.W. of Mexico, in N. lat. $16^{\circ} 50^{\prime}$, W. long. $99^{\circ} 46^{\prime}$. The herbour, which is the best on the Pacific coast, is almost completely landlocked. It is easy of access, and tho anchorage is so secure that beavily-laden ships can lie close to the rocks which surround it. The town lies N.W. of the harbour, and is defended by the castle of San Diego, which stands on an eminence. During a part of the dry season the air is infected with the putrid effluria of a mornss eastrard of the town. This; together with the heat of the climete, aggravated by the reflection of the sun's rays from the granite rocks that caviron the town, renc. - it very unhealthy, especially to Europeans, though a Por ve cut through the rocks, to let in the sea breeze, has tencia. inprore its salubrity. Acapu'so mas in former times tice great depôt of the trade of Spain with the East Indies. A galleris sailed from this port to Manilla in the Pbilippine Islands, and another returned once a year laden with the treasures and luxuries of the East. On the arrival of this Ealleon a great fair was held, to which merchants recreted from all parts of Mexico. 'Llut trado berween Acapulco
and Na_{2}.lla was annihilated when Mcxico became inde pendent, and, from this cariee, and aso on account of the frequent earthquakes by which the town has been visited, it had sunk to comparative insignificance, when the dis. covery of gold in California gave its trade a fresh impetus. It is now the most important seaport in Mexico, and is regularly touched at by the Pacific mail stamers. Besidea having a large transit trade, it exports wool, skins, cocoa, cochineal, and indigo; and the imports includa cottons, silks, and hardware. Pepulation about 5000.

ACARNANLA, a province of ancient Greece, now called Carnia. It was baunded on the N. by the Ambracian guff on inc N. $\frac{\text { in }}{\text { in }}$ Atophilochia, on the W. and S.W. by the Ionian Sea, and on the E. by Etolia. It was a hilly country, with numerous lakes and tracts of ricb pasture, and its hills are to the present day crawned with thick wood. It ซृas celebrated for its exrollo ${ }^{+}$hroed of herses. The Acarnanians, according to Mr Grotc, though admitted as Grecks to the Pan-Hellenic games, were more akin in character and menners to their barbarian neighboury of Epirus. Up to the time of the Peloponnesian war, they are mentioned only as a race of rude sher luws, uirided into numerous petty tribes, and engaged in continual strife and rapine. They were, however, favourably distinguished from their Etolian neighbours by the fidelity and stead. fastness of their character. They were good soldiers, and excelled as slingers. At the date above mentioned they begin, as the allies of the Athenians, 10 make a more pro minent figure in the bistory of Greece. The chief tamp was Stratos, and subsequently Lelicis.
$\triangle C A R U S$ (fram ásapı, a mite), a genus of Arachnides, represcnted by the cheese mite and other forms.

ACCELERATION is a term emplojed to denote generally the rate at which tho velocity of a body, whose motion is not uniform, either increases or decreases. As the velocity is continually changing, and cannot therefore be estimated as in miform motion, by the space actually passed over in a certain timc, its ralue at any instant has to be measured by the space the body would describe in the annit of ${ }^{\prime \prime}$
suestion the motion becune and continned uniform. If the motion is such that the velocity, thus measured, increases or decreases by equal amounts in equal intervals of time, it is said to be uniformly accelerated or' retarded. In that case, if f denote the amount of increase or decrease of velocity corresponding to the unit of time, the whole of such increase or decrease in t units of time will evidently be $f t$, and thercfore if u be the initial and v the final velocity for that interval, $v=u \neq f t$,-t the upper sign applying to accelerated, the lower to retarded, motion. To find the distance or space, s, gone over in t units of time, let t be divided into n equal intervals. The velocities at the end of the successive intervals will be $u \pm f \frac{t}{n}, u \neq f \frac{2 t}{n}$, $u \neq f \frac{3 t}{n}, d e$. Let it now be supposed that during each of these small intervals the body has moved uniformly with its velocity at the end of the interral, then (since a body moring uniforndy for x sceonds with a velocity of y feet per second will move through $x y$ feet) the spaces described in the successive interrals would be the product of the velocities given abore by $\frac{t}{n}$, and the whole space in the time t would be the sum of these spaces; i.e.,

$$
\begin{gathered}
s=u \frac{t}{n}(1+1 \ldots \text { repented } n \text { times }) \pm f \cdot \frac{t^{2}}{n^{2}}(1+2+3 \ldots .+n) \\
=u t \pm f \cdot \frac{t^{2}}{n^{2}} \cdot \frac{n(n+1)}{2}=u t \pm \frac{1}{2} f t^{2}\left(1+\frac{1}{n}\right) .
\end{gathered}
$$

It is evident, however, that as the increase or decrease of velocity takes place contmuously, this sum will be too large; but the greater n is taken, or (which is the same thing) the smaller the intervals are during which the velocity is supposed to be uniform, the nearer will the result be to the truth. Hence making n as large as possible, or $\frac{1}{n}$ as small as possible, i.e., $=0$, we obtain as the
 from rest, $u=0$, and the above formule become $v=f t$, $s=\frac{1}{2} f^{2}$.

We have a familiar instance of uniformly accelerated and uniformily retarded motion in the case of bodies falling and rising vertically near the earth's surface, where, if the resistance of the air be neglected, the velocity of the body is inereased or diminished, in consequence of the carth's attraetion, by a uniform amount in each second of time. To this amount is given the name of the acceleration of sravity (usually denoted by the letter g), the ralue of which, in our latitudes and at the surface of the sen, is very nearly 32 feet per second. Hence the space a body falls from rest in any number of scconds is readily found by multiplying $16 \frac{1}{12}$ feet by the square of the number of seconds. For a fuller afrount of accelerating foree,-expressed in the notation of the Differential Calculus by $f= \pm \frac{d v}{d t}$ or $f= \pm \frac{d^{2} s}{d t^{2}}$, 一the reader is referred to the article Dymamics.

ACCENT, in reading or speaking, is the stress or pressure of the voice upnn a ayllable of a word. The derivation of the term (Lat̂. accentus, quasi adcantus) clearly shows that it was employed by the classical grammatians to express the production of a musical effect. Its origin is therefore $t: y$ be sought in the natural desire of man to gratify tae ear by modulated sound, and probably no language cxists in which it does not play a more or less itrpurtant part. - "Only a machine," says Professor Blackie (lace and Power of Accent in Langunge, in the Transactions" of the Royal Society of Edinburg.?, 1871), "could
produce a continuous series of sounds in undistinguished monotonous repetitions like the tüm, tŭ:n, tüm, of a drum; a rational being using words for a rational purpose to manifest bis thoughts and feelings, necessarily accents both words and sentences in some way or other." That tho accentuation of some languages is moro distiuct, various, and effective than that of others is beyond question, but there are none, so far as we know. in which its power is not felt. The statement sometimes made, that the French have no aecent in their words, can only mean that their accent is less emphatic or less variously so than that of certain other nations. If it means more, it is now merely an error, but an absurdity. From this conception of the subject, it is obvious that accent must be fundamentally the same thing in all languages, and must ain more or less successfully at the same results, however diverse the rules by which it is governed. But there are, nevertheless, important differences between the conditions under which accent operated in the classical, and those in which it operates in modern tougues. It did not wholly determine the rhythm, nor in the least affect the metre of classical verse; it did not fix the quantity or length of classical syllables. It was a musical element superadded to the measured structure of prose and verse.

Passing over the consideration of the accentual system of the Hebrews with the single remark, that it exhibits, though with more elaborate and complicated expression, most of the characteristics both of Greek and English accent, wo find that the Greeks employed three grammatical accents, viz., the acute accent ('), which shows when the tone of the voice is to be raised ; the grave accent (() , when it is to be depressed; and the circumflex accent ((^), composed of both: the acute and the grave, and pointing out a kiad of undulation of the voice. The Latins have made the same use as tho Greeks of these three accents, and various modern nations, French, Eaglish, de, have also adopted them. As to the Greek accents, now seen both in manuscripts and primted books, there has been great dispute about their antiquity and use. But the fullowing things seem to be undoubtedly taught by the ancient grammarians and rhetoricians:-(1.) That by accent ($\pi \rho \circ \sigma \omega \delta i$ a, Tóvos) the Greeks understood the eleration or falling of the voice on a particular syllable of a word, either absolutely, or in relation to its position in a sentence, aceompanied with an intension or remission of the vocal utterance on that syllable (emítacts, ävects), occasioning a marked predominance of that syllable over the other syllables of the word. The predoninance thus given, however, had no effect whatever on the quantity -long or short-of the accented syllable. The accented syllable in Greek as in English, might be long or it might be short ; elevation and emphasis of utterance beinis one thing, and prolongation of the vocal sound quite auother thing, as any one acquainted with the first elements of music will at once perceive. The difficulty which many modern scholars have experienced in conceiving how a syllable could be accented and not lerigthencd, has arisen partly from a complete want of distinct ideas on the nature of the elements of which human speech is composed, and partly also from a vicious practice which has long preyailed in the English schools, of reading Greek, not according to the laws of its own accentuation, but according to the accent of Latin handed down to us through the lioman Catholic Church. For the rules of Latin accentuation are, ns Quintilian and Cicero and the grammarians expressly mention, very different from the Greek; and the long syllable of a word Las the accent in Latin in a hundred enses, where the musical habit of the Greek ear placed at upon the short. There is, besides, a rast number of words in Greek accented on the last syllable (like voluntee'r, ambusca'de, in English), of which not a single instance occurs in the Latin lan-

5ago. Partly, however, from ignorance, partly from carelessness, and partly perhaps from stupidity, our scholars transferred the pronunciation of the more popular learned language to that which was less known; and with the belp of time and constant usage, so habituated themselves widentify the accented with the long syllable, according to the analogy of the Latin, that they began seriously to doubt the possibility of pronouncing otherwise. English scholars have long ceased to recognise its existence, and persist in reading Greek as if the accentual marks tneant nothing at all. Even those who allow (like Mr W. G. Clark and Professor Munro) that ancient Greek accent denoted an elevation of voice or tone, are still of opinion that it is impossible to reproduce it in modern times. "Here and there," says the former (Cambridgc Jourral of Philology, vol. i. 1868), "a person may be found with such an exquisite ear, and such plastic organs if speech, as to be able to reproduce the ancient distinction between the length and tone of syllables accented and unacceuted, and many not so gifted may fancy that they reproduce it when they do nothing of the kind. For the mass of boys and men, pupils as well as teachers, the distinction is practically impossible." But, in spite of such pessimist views, it may, on the whole, be safely asserted that since the appearance of a more philosophical spirit in philology, under the guidance of Hermann, Boeckh, and other master-minds among the Germans, the best graumarians have come to recognise the importance of this element of ancient Hellenic enunciation, while not a few carry out their principles into a consistent practice. The only circumstance, indeed, that prevents our English scholars from practically recognising the element of accent in classical teaching, is the apprehension that this would interfere seriously with the practical inculcation of quantity; an apprehension in which they are certainly justified by the practice of the modern Gree's, who have given such a predominance to accent, as altogether to subordinate, and in many cases completely overwhelm quantity; and who also, in public token of this departure from the classical habit of pronunciation, regularly compose their verses with a reference to the spoken acciet only, leaving the quantity -as in modern language geneially-altogether to the discretion of the poet. But, as experiment will teach any one that there is no necessity whatever in the nature of the human voice for this confusion of two essentially different elements, it is not unlikely that English scholars will soon follow the example of the Germans, and read Greek prose at least systematically according to the laws of classical speech, as handed down to us by the grammarians of Alexandria and Byzantium. In the recitation of classical verse, of course, as it was not constructed on accentual principles, the skilful reader will naturally allow the musical accent, or the emphasis of the rbythm to overbear, to a great extent, or altogether to overwhelm, the ascent of the individual word; though with regard to the recitation of verse, $1 t$ will always remain a problem how far the ancients themselves did not achiere an "accentuum cum quantitate apta conciliatio," such as that which Hermann (De emendanda ratione, dic.) describes as the nerfection of a polished classical enunciation. A bistoric survey of the course of learned opinion on the subject of accent, from the age of Erasmus down to the present day, forms an interesting and important part of Professor Blackie's essay quoted above. See Pennington's work on Greek Pronunciation, Cambridge, 1844 ; the German work ou Greek Accent by Göttling (English), London, 1831; and Blackie's essay on the Place and Power of Accent, in the Transactions of the Royal Society of Edinburgh, 1870-71.
If there is any perplexity regarding the nature or influtnce of classical accent, there is none about English. it
does not conflict or combine with the modulations of quantity. It is the sole determining element in our metrical system. Almost the very earliest of our authora, the Veuerable Bede, notices this. In defining rhythm he says-" It is a modulated composition of words, not according to the laws of metre, but adapted in the number of its syllables to the judgment of the ear, as are the verses of our vulyar poets" (Bede, Op. vol i. p. 57, ed. 1553). We have, of course, long vowels and short, like the Greeks and the Romans, but we do not regulate our rerse by them; and our mode of accentuation is sufficiently despotic to occasionally almost change their character, so that a long vowel shall seem short, and vice versa. In reality this is not so. The long vowel remains long, but then its length gives it no privilege of place in a verse. It may modify the enunciation, it may increase the roll of sound, but a short vowel could take its place without a violation of metre. Take the word far, for ezample; there the rowel α is long, yet in the line

> "O Moon, far-spooming Ocean boris to thee,
it is not necessary that the a in far should be long; a short vowel would do as well for metrical purposes, and would even bring out more distinctly the accentuation of the syllable spoom.
Originally English accent was upon the root, and not upon inflectional syllables. Götlling finds the same principle operating in Greek, but in that language it certainly never exercised the universal sway it does in the earlier forms of English. In the following passage from Beowulf, the oldest monument of English literature, belonging, in its first form, to a period even anterior to the invasion of Britain by the Angles and Saxons, we shall put the accented or emphatic syllables in italics:-

Strúel waes stán-fah . . The street was of variegated stone	
gumum aet-gaedero	the men together;
yuad-byrne scán.	the war-corselet shone
neard, hond-locen	hard, hand-locked;
hring-íren scír .	the ring-iron bright
song in searwum	sang in their trappin
pá hie tó vile furium	when they to the hall formard
in hyra gryre-geatwum	in their terribie armour
gargan cwomon .	came to go.

It will be observed that in these verses the accent (not to be confounded with the mark which is tsed in Anglo-Sason to show that the rowel orer which it is placed is long) is incraiably on a monosyllable, or on the root part of a word of more than one syllable. The passage is also a good illustration of what has previously been stated, that the metre or rhythm in English is determined not by the vowel-quantity of a syllable, but by the stress of the voice on particular syllables, whether the romels are long or short. In the older forms of English verse the acceut is somewhat irregular; or, to pat it more accurately, the number of syllables intervening between the recurrent accents is not definitely fixed. Sometimes two or more interrene, sometimes none at all. Take, for example, the opering lines of Langland's poom, entitled tho Fision of Piers the Plowmaiu:-

But no matter how irregular the time elapsing betreen the
recurrence of the accents, they are always on the rootsyllables.

The Norman Conquest, however, introduced a different system, which gradually modified the rigid uniformity of the native English accentuation. The change is visible as early as the end of tho 12tb century. By the middle of the 14th, that is to say, in the age of Chaucer, it is in full operation. Its origin is thus explained by Mr Marsh, in Lis Origin and History of the Einglish Language (Lond., 1862):-"The vocabulary of the French language is derived, to a groat extent, from Latin words deprived of their terminal inflections. The Fresch adjectives mortal and fatal are formed from the Latin mortalis and fatalis, by dropping the inflected syllable; the French nouns nation and condition from the Latin accusatives nationem, conditionem, by rejecting the em final. In most cases, the last syllable retained in the French derivatives was prosodically long in the Latin original ; and either because it was also acceuted, or because the slight accent which is perceirable in the French articulation represents temporal length, tho stress of the voice was laid on the firal syllable of all these words. When we borrowed such words fromi the French we took them with their native accentuation; and as accent is much stronger in English than in Freach, the final syllable was doubtless more forcibly enunciated in the fotmer than in the latter language." The new mode of accentuation soon began to affect even vords of pure English origin-l.g., in Robert of Gloucester we find falshede instead of falshede, tidinge instead of tidinge, trewehede instead of trewehede, gladdore instead of gladdore, wisliche instead of wisliche, begynnyng instead of begynnyng, endyng instead of endying. In the Proverbs of IIendyng we have nothyng for nothing, Labben for habben, fomon for fomon; in Robert of Brunne, halydom for halydom, clothyng for clothing, gretand for gretand. Chaucer furnishes numerous instances of the same foreign influence rerolutionising the native accent; fredom for fredom, hethenesse for hethenesse, worthinesse for woritinesse, lowly for lowly, wynnynge for wynnynge, weddynge for weddynge, comynge for comynge; and it is traceable even in Spenser. On the other hand, a contrary tendency must not be overlooked. We see $\approx n$ effort, probably unconscious, to compel words of French origin to submit to the rule of English accentuation. It is noticeable in the century before Chaucer: in Chaucer himself it begins to work strongly; mortal becomes mortal; tempest, tempest ; substance, substance; amyable, amyable; mossel, morsel ; servise, serviso ; duchesse, duchesre ; cosyn, cosyn, \&c. ; while a mpultitude of words oscillate betreeen the rival inodes of accentuation, now following the French and now the English. Before and during the Elizabethan period, the latter began to prove tho stronger, and for the last 300 years it may be said to lave, for the most part, Anglicised the accent and the nature of the foreign additions to our vocabulary. Nevertheless, many French words still retain their own accent. Morris (Listorical Outlines of English Accidence, p. 75) thus classifies these:-
"(1.) Nouns in -ade, -ier (-eer), - e, -ee, or -oon, -ine, (-in), as;cascade', crusade', \&c.; cavalicr', chandelier', \&c. ; gazsttcer', pioncer', \&c. (in conformity with these we say harpoonecr', mountainesr'); legalee', payee', \&c. ; balloon", cartoon', \&c.; chagrin', violin', \&c.; routine', marine', \&tc.
"Also the following roods:-cadet", bruncte", gazetle', cravat", canal', control', gazelle', amalcur', futigue', antique', police', \&c.
"(2.) Adjectives (a) from Lat adj. in us, as august, benign', robust', \&c.; (b) in ose, as morose', verbose', \&ce; (c) esque, as burlesque, grotesque', \&ic.
(3.) Some verbs, as baplizc', cajole', carcss', carowsc', chaskise', sscape', ssteem', \&c."
To these may be added the Greek and Latio words which have been introduced into E'nglish for sceientific and other learned purposes, and which, not having been altered in form, retain their original accentuation-as auro'ra,
coro'na, colos'sus, idéa, hypoth'esis, casu'ra, dice'resis, diagno'sis, dilu'vium, diplóma, eflu'vium, elys'iun, dec. ; besides the still larger number that have suffered a slight modifi. cation of form. but no change of accent, as dialectic, diaqnos'tic, eflores'cent, ellip'tic, emer'sion, emol'tient, \&ic. The Italian contributions to our tongue retain their original accent when the form is untouched, as mulat'to, soria'ta, vol. ca'no, but lose it when the form is shortened, as ban'dit (It. bandito).

A clange in the position of the accent serves a variety of purposes in English. It distinguishes (1.) a nour from a verb, as ac'cent, accent'; aug'ment, augment'; tor'ment, torment'; com'ment, comment'; con'sort, consort'; con'test, contest'; con'trast, contrast'; di'gest, digest'; dis'count, discount'; in'sult, insult', \&e. ; (2.) an adjective from a verb, as ab'sent, absent'; fre'queut, frequent'; pre'scat, prescnt'; com'pound, compound', \&c. ; (3.) an adjective from a noun, as ex'pert, expert'; com'pact, compact'. It also denotes a difference of meaning e.g., con'jure, conjure': ir'ecnse, incense'; au'gust, august'; su'pine, supine'.

Accent has exercised a powerful influence in changing the forms of words. The unaccented syllables in tho course of time frequently dropped off. This process was necessarily more rapid and thorough in English than in many other languages which were not subjected to equal strain. The Norman Conquest made bavoc of the English tongue for a time. It was expelled from the court, the schools, the church, and the tribunals of justice ; it ceased to be kpoken by priests, lawyers, and nobles; its only guardians were churls, ignorant, illiterate, indifferent to grammar, and careless of diction. Who can wonder if, in circumstances like these, it suffered disastrous eclipse? The latter part of the Anglo-Saxon Chronicle furnishes melancholy evidence of the chaos into which it had fallen, yet out of this chaos it rose again into newness of life, reforming and re-accenting its half-ruined vocabulary, and drawing from the very agent of its destruction the elementa of a richer and more plastic expression. For it cannot be doubted that the irregularities now existing in English accent, thongh perplexing to a foreigner, copiously vary the modulation, and so increase the flexibility and power of the language. Tho older forms of English, those in uso before the Conquest, and down to the period of Chaucer, are stiff, monotonous, and unmusical. A hard strength is in the verso, but no liquid sweetness or nimble grace. Now, it is possible, in spite of our deficiency in vowel endings, to produco the noblest melody in accent words known to the modern world. Almost every Lind of metre, swift or slow, airy or majestic, has been successfully attempted since the ago of the Canterbury Tales. When we compare the drone of Caedmon with the aerial melody of the Skylark, the Cloud, and the Arethusa of Shelley, we see what an infinite progress has been made" by the development of accent in the rhythro of our native tongue.

See Lectures on the English Linguage, by G. P. Marsh (Lond. 1861); the Origin and History of the English Language, dec., by G. P. Marsh (Lond. 1862) ; Historische Grammatik der Englische Sprache, von. C. Fricdrich Koch (1863-69) ; The English Language, by F. G. Latham (1855) ; Philological Essays, by the Rev. Richard Garnett (Lond. 1859); On Early English Pronunciation, with especial reforence to Shatspere and Chaucer, by A. J. Ellis (Lond. 1567-71) ; IFistorical Outlines of English Accidence, by Dr R. Morris (Lond. 1872).
($\mathrm{J}, \mathrm{M}, \mathrm{R}$.)
ACCIPPTALCE is the act by which a person binds himself to comply with the request contained in a bill of exchange addressed to bim by the drawer. In all cases it is understood to be a promise to pay the bill in money, the law not recognising an acceptance in which the promise is
to pay in some other way, as, for czample, partly in money and partly by another bill. Acceptance may be absolute, conditional, or partial. Absolute acceptance is an engagement to pay the bill strictly according to its tenor, and is snade by the drawee subscribing his name, with or without the word "accepted," at the bottom of the bill, or across the face of it. Conditional acceptance is a promise to pay on a contingency occurring, as, for example, on the sale of :ertain goods consigned by the drawer to the acceptor. No contingency is allowed to be mentioned in the body of the bill, but a contingent acceptance is quite legal, and equally binding with an absolute acceptance upon the acceptor when the contingency has occurred. Partial acceptance is Where the promise is to pay only part of the sum mentioned in the bill, or to pay at a different time or place from those specified. In all cases acceptance involves the signature of the acceptor either by himself or by some person duly authorised on his behalf. A bill can be accepted in the first instance only by the person or persons to whom it is addressed; but if he or they fail to do so, it may, after being protested for non-acceptance, be accepted by another "supra protest," for the sake of the honour of one or more of the parties concerned in it.

ACCESSION is applied, in a historical or constitutional sense, to the coming to the throne of a dynasty or line of sovereigns, as the accession of the House of Hanover. The corresponding term, when a single sovereign is spoken of, is "succession." In law, accession is a method of acquiring property, by which, in things that have a close connection with or dependence on one another, the property of the principal draws after it the property of the accessory, according to the principle, accessio cedet principali, or accessorium sequitur principale. Thus, the owner of a cow becomes likewise the owner of the calf, and a landowner becomes proprietor of what is added to his estate by alluvion. Accession produced by the art or industry of man has been called industrial accession, and may be by specification, as when wine is made out of grapes, or by confusion or commixture. Accessiou sometimes likewise signifies consent or acquiescence. Thus, in the bankrupt law of Scotland, when there is a settlement by a trust-deed, it is accepted on the part of each creditor by a deed of accession.

ACCESSORY, a person guilty of a felonious offence, not as principal, but by participation; as by advice, command, aid, or concealment. In treason, accessories are excluded, every individual concerned being considered as a principal. In crimes under the degree of felony, also, all persons conccrned, if guilty at all, are regarded as principals (See 24 and 25 Vict. c. 94. s. 8.) There are two kinds of accessories-before the fact, and after it. The first is he who commands or procures another to commit felony, and is not present himself; for if he be present, he is a principal The second is he who receives, assists, or comforts any man that has done murder or felony, whereof he has knowledge. An accessory before the fact is liable to th. same punishment as the principal; and there is now indeed no practical difference between such an accessory and a principal in regard either to indictment, trial, or punishment (24 and 25 Vict. c. 94). Accessories after the fact are in enencral punishable with imprisonment for a period not exceeding two ycars (ib. s. 4). The law of Scotland makes no distinction between the accessory to any crine (called art and part) and the principal. Except in the case of treason, accession after the fact is not noticed by the law of Scotland, unless as an element of evidence to nrove previous accession.

ACCIAJUOLI, Donato, was born at Florence in 1428. He was famous for his learning, especially in Greek and mathematics, and for his services to his mative statc. Harines proviously been intrusted with several important
embassies, he became Gonfalonier of Florence in 1473. He died at Milan in 1478, when on his way to l'aris to ask the aid of Louis XI. on behalf of the Florentines against Pope Sixtus IV. His body. was taken back to Florence, and buried in the church of the Carthusians at the public expense; and his daughters were portioned by his fellowcitizens, the fortune he left being, owing to Lis probity and disintercsteduess, very small. He wrote a Latín translation of some of Plutarch's Lives (Florence, 1478); Commentaries on Aristotle's Ethics and Politics; and the lives of Hannibal, Scipio, and Cbarlemagne. In the work on Aristotle he had the co-operation of his master Argyropylus.

ACCIDENT. An attribute of a thing ce class of things, which neither belongs to, nor is in any way dcducible from, the essence of that thing or class, is termed its accident. An accident may be either inseparable or separable: tho former, when we can conceive it to be absent from that with which it is found, although it is dlways, as far as we know, present, i.e., when it is not necessarily but is universally present; the latter, when it is ncither necessarily nor universally present. It is often difficult to determine whether a particular attribute is essential or accidental to the object we are investigating, subsequent research frequently proving that what we have described as accidental ought to be classed as essential, and vice versa. Practically, and for the time being, an attribute, which neither directly no: indirectly forms part of the signification of the tern used to designate the object, may be considered an accident; and many philosophers look upon this as the only intelligible ground for the distinction. Propositions expressing the relation between a thing or class and an accident, and also between a thing or class and its property (i.e., something deducible from, but not strictly forming part of, its essence), are variously styled "accidental," "synthetical," "real," "ampliative," in contradistinction to "essential," "analytical," "verbal," and "explicative" propositions. The former give us information that we could not have discovered from an analysis of the subject notion-e.g., " man is found in New Zealand ;" the latter merely state what we already know, if we understand the meaning of the language employed, e.g., "man is rational."

ACCIUS, a poet of the 16 th century, to whom is attributed A Paraphrase of Esop's Fakles, of which Julius Scabger speaks with great praise.

ACCIU'S (or AtriUs), LUCIUs, a Latin tragic poet, was the son of a freedman, born, according to St Jerome, in the year of Rome 583, though this appears somewhat uncertain. He made himself known before the deatb of Pacuvius by a dramatic piece, which he exhilited the same year that Pacuvius brought one on the stage, the latter being then eighty years of age, and Accius only thirty. We do not know the name of this piece of Accius's, but the titles of several of his tragedies are mentioned by various authors. He wrote on the most celebrated storics which had bcen represented on the Athenian stage; but he did not always take his subject from Grecian story; for be composed at least one dramatic picce wholly Fioman, entitled Crutus, and referring to the expulsion of the Tarquins. Only fragments of his tragedies remain. He did not confune himself to dramatic writing, having left other productions, jarticularly his Annals, mentioned by Macrobius, Priscian, Festus, and Nonnius Marccllus. He las been censured io: the harshness of his style, but in cther respects be lras been esteemed a great poet. He dicd at an advanced age ; and Cicero, who evidently attarhes considerable weight to his opinions, speaks of laving ennversed with him in his youth.

ACCLANATION, the axression of the opinion. fareurable or unfarourable, of any asscmbly by means of the voice. Applause denotes strictly a similar expression by
clapping of hands, but this distinction in the usage of the words is by no means uniformly maintained. Among the Romans acclamation was varied both in form and purpose. At marriages it was usual for the spectators to shout I_{0} Hymen, IIymenace, or Talassio; a victorious army or general was greeted with Io triumphe; in the theatre acclamation was called for at the close of the play by the last actor, who said, Plaudite; in the senate opinions were expressed and votes passed by acclamation in such forms as Omnes, omnes, ERuum est, Justum est, \&c ; and the praises of the emperor were celebrated in certain pre-arranged sentences, which seem to have been chanted by the whole body of senators. The acclamations which authors and poets who recited their works in public received were at first spontaneons and genuine, but in time became very largely mercenary, it being customary for men of fortune who affected literary tastes to keep applanders in their service and lend them to their friends. When Nero performed in the theatre lis praises were chanted, at a given signal, by five thousand soldiers, who were called Auguseals. The whole was conducted by a music-master, mesochorus or phausarius. It was this case of Nero which, occurring to the recollection of the French poet Dorat, may be said to have originated the well-known Paris claque. Buying up a number of the tickets for a performance of one of his plays, he distributed them gratuitously to those who pro mised to express approbation. From that time the claque, or organised body of professional applauders, has been a recognised institution in connection with the theatres of Paris. In the carly ages of the Christian church it was by no means uncommon for an audience to express their approbation of a favonrite preacher during the course of his sermon. Chrysostom especially was very frequently interrupted both by applause and by acclamations. In ecelesiastical councils rote by acclamation is very common, the question being usually put in the form, placet or non placet. This differs from the acclamation with which in other assemblies a motion is said to be carried, when, no amendment being proposed, approval is expresscd by shouting such words as Aye or Agreed.

ACCLIMATISATION is the process of adaptation by which animals and plants are gradually rendered capable of surviving and flourishing in countries remote from their original habitats, or under meteorological conditions different from those which they have usually to endure, and which are at first injurious to them.

The subject of acclimatisation is very little understood, and some writers have even denied that it can ever take place. It is often confounded with domestication or with naturalisation; but these are both very different phenoinena. A domesticated animal or a cultivated plant need not necessarily be acclimatised; that is, it need not be capable of enduring the severity of the seasons without protection. The canary bird is domesticated but not acclimatised, and miny of our most extensively cultivated plants are in the same category. A naturaliscd animal or plant, on the other hand, must be able to withstand all the vicissitudes of the seasons in its new home, and it may therefore be thouglat that it must have become acclimatised. But in many, perhaps most cases of naturalisation, there is no evidence of a gradual adaptation to new conditions which swere at first injurious, and this is essential to the idea of acclimatisation. On the contrary, many species, in a new country and under somewhat different climatic conditions, seem to find a more congenial abode than in their native land, and at once flourish and increase in it to such an extent as often to exterminate the indigenous inhabitants. Thus Agassiz (in his work on Lake Superior) tells us that the road-side weeds of the north-eastern United States, to the number of 132 species, are all European, the native weeds having dis-
appeared westwards; while in New Zealand there are, according to Mr T. Kirk (Transactions of the New Zealand Institute, vol. ii. p. 131), no less than 250 species of naturalised plants, more than 100 of which spread widely over the country, and often displace the native vegetation. Among animals, the European rat, goat, and pig, are nataralised in New Zealand, where they multiply to such an extent as to injure and probably exterminate many native productions. In neither of these cases is there any indication that acclimatisation was necessary or ever took place.

On the other hand, the fact that an animal or plant cannot be naturalised is no proof that it is not acclimatised. It has been shown by Mr Darwin that, in the case of most animals and plants in a state of nature, the competition of other organisms is a far more efficient agency in limiting their distribution than the mere influence of climate. We have a proof of this in the fact that so few, comparatively, of our perfectly hardy garden plants ever run wild; and even the most persevering attempts to naturalise them usually fail. Alphonse de Candolle (Géograpäue Botanique, p. 798) informs us that several botanists of Paris, Genera, and especially of Montpellier, have sown the seeds of many hundreds of species of exotic hardy plants, in what appeared to be the most favourable situations, but that in hardly a single case las any one of them become naturalised. Attempts have also been made to naturalise continental insects in this country, in places where the proper food. plants abound and the conditions seem generally favourable, but in no case do they seem to have succeeded. Eren a plant like the potato. so largely cultivated and so perfectly hardy, has not established itself in a wild state in any part of Europe.

Different Degrces of Climatal Adaptation in Animals and Plants.-Plants differ greatly from animals in the closeness of their adaptation to meteorological conditions. Not only will most tropical plants refuse to live in a temperate climate, but many species are seriously injured by removal a few degrees of latitude beyond their natural limits. This is probably due to the fact, estabushed by the experiments of M. Becquerel, that plants possess no proper temperature, but are wholly dependent on that of the surrounding medium.

Animals, especially the higher forms, are much less sensitive to change of temperature, as shown by the extensive range from north to south of many species. Thus, the tiger ranges from the equator to northern Asia as far as the river Amour, and to the isothermal of 32° Fahr. The mountain sparrow (Passer montana) is abundant in Java and Singapore in a uniform equatorial climate, and also inhabits this country and a considerable portion of northern Earope. It is true that most terrestrial animals are restricted to countries not possessing a great range of temperature or very diversified climates, but there is reason to believe that this is due to quite a different set of causes, such as the presence of enemies or deficiency of appropriate food. When supplied with food and partially protected from enemies, they often show a monderful capacity of enduring climates very different from that in which they originally flonrished. Thas, the horse and the domestic fowl, both natives of very warm countries, flourish without special protection in almost every inhabited portion of the globe. The parrot trilee form one of the most pre-eminently tropical groups of birds, only a few species extending into the warmer temperate regions; yet even the most exclusively tropical genera are by no means delicate birds as regards climate. In the Annals and Magazine of Natural Mistory for 1868 (p. 381) is a most interesting account, by Mr Charles Buxton, M.P., of the naturalisation of parrots at Northreps Hall, Norfolk. A considerable number of

African and Amazonian parrots, Bengal parroquets, fous species of white and rose crested cockatoos, and two species of crimson lories, have been at large for many years. Several of these birds have bred, and they almost all live in the woods the whole year through, refusing to take shelter in a house constructed for their use. Even when the thermometer fell 6° below zero, all appeared in good spirits and vigorous health. Some of these birds have tived thus exposed for nearly twenty. years, enduring our cold easterly winds, rain, hail, and snow, all through the winter, -a marvellous contrast to the equable equatorial temperature (hardly ever less than 70°) which many of them had been accustomed to for the first jear or years of their existence.

Mr Jenner Weir records somemhat similar facts in the Zoologist for 1865 (p. 9411). He keeps many small birds in an open aviary in his garden at Blackheath, and among these are the Java rice bird (Padda oryzivora), two West African weaver birds (Hyphantomis tcxtor and Euplectes sanguinirostris), and the blue bird of the southern United States (Spiza cyanea). These denizens of the tropics prove quite as hardy as our native birds, having lived during the severest winters without the slightest protection against the cold, even when their drinking water had to be repeatedly melted.
Hardly any group of Mammalia is more exclusively tropical than the Quadrumana, yet there is reason to believe that, if other conditions are favourable, some of them can withstand a considerable degree of cold. The Semnopithecus schistaceas was found by Captain Hutton at an èlevation of 11,000 feet in the Himalayas, leaping actively among firtrees whose branches were laden with snow-wreaths. In Abyssinia a troop of dog-faced baboons were observed by Mr Blandford at 9000 feet above the sea. We may therefore conclude that the restriction of the monkey tribe to warm latitudes is probably determined by other causes than temperature alone.

Similar indications are given by the fact of closely allied species inhabiting very extreme climates. The recently extinct Siberian mammoth and woolly rhinoceros were closely allied to species now inhabiting tropical regions exclusively. Wolves and foxes are found alike in the coldest and hottest parts of the earth, as are closely allied species of falcons, owls, sparrors, and numerous genera of waders and aquatic birds.

A consideration of these and many analogous facts might induce us to suppose that, among the higher animals at least, there is little constitutional adaptation to climate, and that in their case acclimatisation is not required. But there are numerous examples of domestic animals which show that such adaptation does exist in other cases. The gak of Thibet cannot long survive in the plains of India, or even on the hills below a certain altitude; and that this is due to climate, and not to the increased density of the atmosphere, is shown by the fact that the same animal appears to thrive well in Europe, and even breeds there readily. The Newfoundland dog will not live in India, and the Spanish breed of fowls in this country suffer more from frost than most others. When we get lower in the scale the adaptation is often more marked. Snakes, which are so abundant in warm countries, diminish rapidly as we go north, and wholly cease at lat. 62°. Most insects are also very susceptible to cold, and seem to be adapted to very narrow limits of temperature.

From the foregoing facts and obserrations tre may conclude, firstly, that some plants and many animals are not constitutionally adapted to the climate of their native coluntry only, but are capable of enduring and flourishing under a more or less extensive range of temperature and ather climatic conditions; and, secondly, that most plants
and some anmals are, more or less closeiy, adapted to clinntes similar to thuse of theur native habitats. In order to domesticate or naturalise the former class in countries not extremely differing from that from which the species was brought, it will not be necessary to acclimatise, in the strict sense of the word. In the case of the latter class, however, acclimatisation is a necessary preliminary to naturalisation, and in many cases to useful domestica. tion, and we have therefore to inquire whether it is possible.

Acclimatisation by Individual Adaptation.-It is eri. dent that acclimatisation may occur (if it occurs at all) in two ways, either by modifying the constitution of the individual submitted to the new conditions, or by the prodaction of offspring which may be better adapted to those conditions than their parents. The alteration of the constitution of indiriduals in this direction is not easy to detect, and its possibility has been denied by many writers. Mr Darwin believes, however, that there are indications that it occasionally occurs in plants, where it can be best observed, owing to the circumstance that so many plants are propagated by cuttings or buds, which really continue the existence of the same individual almost indefinitely. He adduces the example of vines taken to the Wcst Indies from Madeira, which have been found to succeed better than those taken directly from France. But in most cases habit, however prolonged, appears to have little effect on the constitution of the individual, and the fact has no doubt led to the opinion that acclimatisation is impossible. There is indeed little or no evidence to show that any animal to which a new climate is at first prejudicial can be so acclinatised by habit that, after subjection to it for a few or many seasons, it may live as healthily and with as little care as in its native country; yet we may, on general principles, believe that under proper conditions such acci matisation would take place. In his Principles of Biology (chap. v.), Mr Herbert Spencer has shown that evcry organ and every function of living beings undergoes modification to a limited extent under the stimulus of any new conditions, and that the modification is almost always such as to produce an adaptation to those conditions. We may fecl pretty sure, therefore, that if robust and healthy individuals are chosen for the experiment, and if the change they a:e subjected to is not too great, a real individual adaptation to the new conditions-that is, a more or less completc acclimatisation-will be bronght about. If now animals thus modified are bred from, we know that their descondants will inherit the modification. They will thus start more favourably, and being subject to the influence of the same or a slightly more extreme clinate during their mhole lives, the acclimatisation will be carried a step further; and there seems no reason to doubt that, by this process alone, if cautiously and patiently carried out, most animals which breed freely in confinement could in time be acclimatised in almost any inhabited country. There is, however, a much more potent agent, which renders the process of adaptation almost a certainty.

Acclimatisation by Variation.-A reass of evidence exists showing that variations of every conceivable kind occur among the offspring of all plants and animals, and that, in particular, constitntional variations are by no means uncommon. Amons cultivated plants, for example, hardier and more tender rarieties often arise. The following cases are given by Mr Darwin :-Among the numerous fruit-trees raised in North America, some are well adapted to the climate of the Northern States and Canada, while others only succeed well in the Southern States. Adaptation of this kind is sometimes very close, so that, for example, few English varicties of wheat will thrive in Scotland. Seedwheat from India produced a miscrable crop when planted
by the Rer. M. J. Berkeley on land which would have produced a good crop of English wheat. Conversely, French wheat taken to the West Indies produced only barren spikes, while nativo wheat by its sido yielded an enormous harvest. Tobacco in Sweden, raised from homegrown seed, ripens its seeds a month earlier than plants grown from foreign sced. In. Italy, as long as orange trees were propagated by grafts, they were tender; but after many of the trees were destroycd by the severe frosts of 1700 and 1763 , plants were raised from seed, and these were found to be hardier and more productive than the former kinds. Where plants are raísed from seed in large quantities, varieties always occur differing in constitution, nis well as others differing in form or colour ; but the former minnot be perceived by us unless narked out by their behaviour under exceptional conditions, as in the following cases. After the severe winter of 1860-61, it was observed chat in a large bed of araucarias some plants stood quite ruhurt among numbers killed around them. In Mr Darwin's garden two rows of ecarlet runners were entirely killed by irost, except three plants, which had not even the tips of their leaves browned. A very excellent example is to be found in Chinese history, according to M. Huc, who, in his L'Empire Chinois (tom. ii. p. 359), gives the following extract from the Memoirs of the Emperor Nhang:-"On the 1st day of the 6th moon I was walking in some fields where rice had been sown to be ready for the harvest in the 9 th moon. I observed by chance a stalk of rice which was already in ear. It was higher than all the rest, and was ripe enough to be gathered. I ordered it to be brought to me. The grain was very fine and well grown, whieh gave me the idea to keep it for a trial, and see if the following year it would preserve its precocity. It did so. All the stalks which came from it showed ear before the usnal time, and were ripe in the 6th moon. Each year has multiplied the produce of the preceding, and for thirty years it is this rice which has been served at my table. The grain is elongate, and of a reddish colour, but it has a srreet smell and very pleasant taste. It is called $Y w-m i$, Imperial rice, because it was first cultivated in my gardens. It is the only sort which can ripen north of the great wall, where the winter ends late and begins very early; but in the southern provinces, where the climate is milder and the land more fertile, two harvests a year may be casily obtained, and it is for me a sweet reflection to have procured this advantage for my people." M. Hue adds his testimony that this kind of rice fourishes in Mandtchuria, where no other will grow. We have here, therefore, a perfect example of acclimatisation by means of a spontaneous constitutional variation.

That this kind of adaptation may be carried on step by step to more and more extreme climates is illustrated by the follorwing examples. Sweet-peas raised in Calcutta from seed imported from England rarely blossom, and never yield seed; plants from French seed flower better, but are still sterile; © but those raised from Darjecling sced (originally imported from England) bath flower and seed profusely. The peach is believed to have been tender, and to have ripened its fruit with difficulty, when first introduced into Grecee; so that (as Darwin observes) in travelling northward during two thousand jears it must have become much hardier. Dr Hooker ascertained the average vertical range of flowering plants in the Himalayas to be 4000 feet, while in nome cases it extended to 8000 feet. The same species can thus endure a great difference of tempcrature; but the important fact is, that the individuals have become acclimatised to the altitude at which they grow, so that seeds gathered near the upper limit of the range of a species will io more hardy than those gathered near the luwer limit. This mas prover by Dr Honker to be the case with

Himalayan conifers and rhododendrons, raised in this country from seed gathered at different altitudes.

Aroong animals exactly analogous facts occur. Mr. Roulin states that when geese were first introduced into Bogota they laid few ergs at long intervals, and few of the young survived. By degrees the fecundity improved, and in about twenty years became equal to what it is in Europe. Tho same author tells us that, according to Garcilaso, when fowls were first introduced into Peru they were notfertile, wherens now they aro as muah so as in Europe. Mr Darwin adduces the following exar ples. Mcrino sheep bred at the Cape of Goorl Hope have been found far better adapted for India than those imported from England; and while the Clinese variety of the Ailanthus silk-moth is quite hardy, the variety found in Bengal will only flourish in warm latitudes. Mr Darwin also calls attenticu to the circumstance that writers of acricultaral works generally recommend that animals should be remored from ore district to another as little as possible. This adrice occur3. even in classical and Chineso agricultural books as well as in those of our own day, and proves that the close adistation of each variety or breed to the country in which. it originated has always been recognised.

Constitutional Adaptation often accompanicd by External Modificatien.-Although in some cases no perceptible altcration of forin or structure occurs when constitutional adapia. tion to climate has taken place, in others it is very markel Mr Darwin has collectedalargenumber of cases in his A nimals and Plants under Domestication (roL ii. p. 277), of which the following are a few of the mast remarkable. Dr Falconer observed that several trees, natives of cooler climates, assumed a pyramidal or fastigiate form when grown in the plains of India; cabbages rarely produce heads in hot climates; the quality of the wood, the medicinal products, the odour and colour of the flowers, all change in many cases when plants of one country are grown in another. One of the most curious observations is that of Mr Mechan, who "compared twenty-nine kinds of American trees belonging to various orders, with their nearest Europeara allies, all grown in close proximity in the same garden, and under as nearly as possible the same conditions. In the American species Mr Mcehan finds, with the rarest exceptions, that the leaves fall carlier in the season, and assume before falling a brighter tint; that they are less deeply toothed or serrated; that the buds are smaller; that the trees are more diffuse in growth, and have fewer branchlets; and, lastly, that the seeds are smaller;-all in comparison with the European species." Mr Darwin concludes that there is no way of accounting for these uniform differences in the two series of trees than by the long-continued action of the different climates of the two continents.

In animals.. equally remarkable changes occur. In Angora, not only goats, but shepherd-dogs and cats, have fine fleecy lair; the wool of sheep changes its character in the West Indies in three generations; 1I. Costa states that young oysters, taken from the coast of England, and placed in the Mediterrancan, at once aitered their manner of growth and formed prominent diverging rays, like those on the shells of the proper Mediterranead oyster.

In his Contributions to the Theory of Natural Selection (p. 167), Mr Wallace has recorded eases of simultaneous. variation among insects, apparently due to climate or other strictly local causes. Ife finds that the butterflics of the family Papilioniche, and sorne others, become similarly modified in different islands and groups of islands. Thus, the species inhabiting Sumatra, Java, and Borneo, are almost always much sinaller than the closely allied species of Celebes and the Moluccas; the species or varieties of the small island of Amboyna are iares than the same
species or closcly allied forms inhabiting the surrounding islands; the species fcund in Celebes possess a peculiar furm of wing, quite distinct from that of the same or clusely allied specics of adjacent islands; and, lastly, numerous species which have tailed wings in India and the western islands of the Archipelago, gradually lose the tail as we proceed eastward to New Guinea and the Pacific.

Many of these curious modifications may, it is true, be due to other causes than climate only, but they serve to show how powerfully and mysteriously local conditions affect the form and structure of both plants and animais; and they render it probable that changes of constitution are also continually produced, althougl we have, in the majority of cases, no means of detecting them. It is aiso impossible to determine how far the effects described are produced by spontaneous favourable variations or by the direct action of local conditions; but it is probable that in every case both canses are concerned, although in constantly varying proportions.

The Influence of IIereclity.-Adaptation by variation would, however, be a slow and uncertain process, and might for considerable periods of time cease to act, did not heredity come into play. This is the tendency of every organism to produce its like. or more exactly, to produce a set of newforms varying slightitly from it in many directions-a group of which the parent form is the centre. If now one of the most extreme of these variations is taken, it is found to become the centre of a new set of variations; and by continually taking the extreme in the same direction, an increasing variation in that direction can be effected, until checked by becoming $s 0$ great that it interferes with the healthy action of the organism, or is in any other way prejudicial. It is also found that acquired constitutional peculiarities are equally hereditary; so that by a combination of those two modes of variation any desircd adaptation may be effected with greater rapidity. The manner in which the form or constitution of an organism can be made to change continuonsly in one direction, by means of variations which are indefinite and in ail directions, is often misunderstood. It may perhaps be illustrated by showing how a tree or grove of trees might, by natural causes, be caused to travel during successive generations in a definite course. The tree has branches radiating out from its stem to perhaps twenty feet on every side. Seeds are produced on the extremities of all these branches, drop to the ground, and produce seedlings, which, if untouched, would form a ring of young trees around the parent. But cattle crop off every seedling as soon as it rises abore the ground, and none can ever arrive at maturity. If, however, one side is protected from the cattle, joung trees will grow up on that side only. This protection may exist in the case of a grove of trees which we may suppose to occupy the 'whole space between two deop ravines, the cattle existing on the lower side of the mood only. In this case young trees would reach maturity on the upper side of the mood, while on the lower side the trees would successively dic, fall, and rot away, no young ones taking their place. If this state of things continued unchanged for some centuries, the rood might march regularly up the side of the mountain till it occupied a position many miles away from where it once stood; and this would hare taken place, not because more seed was produced on one side than the other (there might even be very much less), nor because soil or climate were better on the upper side (they might be worse), nor because any intelligent being chose which trees should be allowed to live and which should be destroyed;-but simnly because, for a scries of gencrations, the conditions permitted the existence of young trees on one side, and wholly prevented it on the other. Just in an analogous way animals or plants aro caused to vary in definite directions, either by
the influence of natural ageneies, which render existence impossible for those that rary in any other direction, or by the action of the judicious breeder, who carefully selects favourable variations to be the parents of his future stock; and in either case the rejected variations may far outnumber those which are preserved.

Evidence has been adduced by Mr Darwin to show that the tendency to vary is itself hereditary; so that, so far from variations coming to an end, as some persons imagine, the more extensively variation las occurred in any species in the past, the more likely it is to occur in the future. 'l'here is also reason to belicre that individuals which havo varied largely from their parents in a special direction will have a greater tendency to produce offspring varying in that direction than in any other; so that the facilities for adaptation, that is, for the production and increase of favourable variations in certain definite directions, are far greater than the facilities for locomotion in one direction in the hypothetical illustration just giver.

Selection and Survival of the Fittest as Agents in Naturalisation. - We may now take it as an established fact, that rarieties of animals and plants occur, both in domesticity and in a state of nature, which are better or worse adapted to special climates. There is no positive evidence that the influence of new climatal conditions on the parents has any tendency to produce variations in the offspring better adapted. to such conditions, although some of the facts mentioned in the preceding sections render it probable that such may be the case. Neither does it appear that this class of variations are very frequent. It is, however, certain that whenever any animal or plant is largely propagated constitutional variations will arise, and some of these mill be better adapted than others to the climatal and other conditions of the locality. In a state of nature, every recurring severe winter or otherwise unfavourable season, weeds out those individuals of tender constitution or imperfect structure which may have got on very well during favourable years, and it is thus that the adaptation of the species to the climate in which it has to exist is kept up. Under domestication the same thing occurs by what Mr Darwin has termed "unconscious selection." Each cultivator seeks out the kinds of plants best suited to his soi: and climate, and rejects those which are tender or otherwise nnsuitable. The farmer breeds from such of his stock as he finds to thrive best with him, and gets rid of those which suffer from cold, damp, or disease. A more or less. close adaptation to local conditions is thus brought about, and breeds or races are produced which are sometimes liable to deterioration on removal even to a short distance in the same country, as in numerous cases quoted by Mr_{5} Darwin (Animals and Plants under Domestication, rol. ii. p. 273).

The Method of Acclimatisation.-Taking into consideration the foregoing facts and illustrations, it mayve considered as proved-1st, That habit has little (though it. appears to have some) definite eficct in adapting the constitution of animals to a new climate ; but that it has a dccided, though still slight, influence in plants when, by the process of propagation by buds, shoots, or grafts, the individual can be kept under its influence for long periods; $2 d$, That the offspring of both plants and animals vary in their constitutional adaptation to climate, and that this adaptation may be kept up and increased by means of heredity; and, $3 d$, That great and sudden changes of climate often check reproduction even when the health of the indiriduals does not appear to suffer. In order, therefore, to have the best chance of acclimatising any animal or plant in a climate rery dissimilar from that oi its native country, and in which it has been prorcd that the species in question cannot live and maintain itself
without acclimatisation, we must adopt eome such plan as the following :-

1. We must transport as large a number as possible of adult healthy individuals to some intermediate station, and increase them as much as possible for some years. Favourable variations of constitution will soon show themaelves, and these should be carefully sclected to breed from, the tender and unhealthy individuals being rigidly climinated.
2. As soon as the stock has been kept a sufficient time to pass through all the ordinary extremes of climate, a number of the hardicst may be removed to the more remote station, and the same process gone through, giving protection if necessary while the stock is being increased, but as soon as a large number of healthy individuals are produced, subjecting them to all the vicissitudes of the climate.

It can hardly be doubted that in most cases this plan would aucceed. It has been recommended by Mr Darwin, and at one of the carly meetings of the Société Zoologique d'Acclimatisation, at Paris, M. Geoffroy St Hilaire insisted that it was the only method by which acclimatisation was possible. But in looking through the long series of volumes of Reports published by this Society, there is no sign that any systematic, attempt at acclimatisation has even once been made. A number of foreign animals have been introduced, and more or less domesticated, and some useful exetics have been cultivated for the purpose of testing their applicability to French agriculture or horticalture; but neither in the case of animals nor of plants has there been any systematic effort to modify the constitution of the species, by breeding largely and selecting the favourable variations that appeared.

Take the case of the Eucalyptus globulus as an example. This is a Tasmanian gum-tree of very rapid growth and great beanty, which will thrive in the extreme south of France. In the Bulletin of the Society a large number of attempts to introduce this tree into general cultivation in other parts of France are recorded in detail, with the failure of almost all of them. But no precautions such as those above indicated appear to have been taken in any of these experiments; and we have no intimation that either the Society or any of its members are making systematic efforts to acclimatise the tree. The first step would be, to obtain seed from healthy trees growing in the coldest climate and at the greatest altitude in its native country, sowing these very largely, and in a variety of soils and situations, in a part of France where the climate is somewhat but not much more extreme. It is almost a certainty that a number of trees would be found to be quite hardy. As soon as these produced sced, it should be sown in the same district and farther north in a climate a little more severe. After an exceptionally cold season, seed should be collected from the trees that suffered least, and ahould be sown in various districts all over France. By such a process there can be hardly any doubt that the tree would be thoroughly acclimatised in any part of France, and in many other countries of central Europe; and more good would be effected by one well-directed effort of this kind than by hundreds of experiments with individual animals and plants, which only serve to show us which are the species that do not require to be acclimatised.
Acclimatisation of Man.-On this subject we have, unfortunately, very little direct or accurate information. The general laws of heredity and variation have been proved to apply to man as well as to animals and plants; and numerous facts in the distribution of races show that man must, in remote ages at least, have been capable of constitutional adaptation to climate. If the human race constitutes a aingle apecies, then the mere fact that man now inhabits every region, and is in each case constitutionally adapted to the climate, proves that acclimatisation has occurred. But we
have the same phenomenon in single varieties of man, such as the American, which inhabits alike the frozen wastes of Hudson's Bay and Terra del Fuego, and the hottest regions of the tropics,-the low equaterial valleys and the lefty plateaux of the Audes. No doubt a sudden transfererice to an extreme climate is often prejudicial to man, as it is to most animals and plants; but there is cevery reason to believe that, if the migration occurs step by step, man can be acclimatised to almost any part of the earth's surface in comparatively few generations. Some eminent writers have denicd this. Sir Ranald Martin, from a consideration of the effects of the climate of India ou Europeans and their offspring, believes that there is no such thing ${ }^{38}$ acclimatisation Dr Hunt, in a report to the British Association in 1861, argucs that "time is no agent," and -"if there is no sign of acclimatisation is one generation. there is no such process." But he enturely ignores the effect of favourable variations, as well :is the direct influence of climate acting on the organisatio a from infancy.
Professor Waitz, in his Introduction ts Antiropology, adduces many examples of the comparatively rapid conatitutional adaptation of man to new climatic conditions. Negroes, for example, who have beert for three or four generations acclimatised in North Americ* on returning to Africa become subject to the same locai diseases as other unacclimatised individuals. He well remarks, that the debility and sickening of Europeans in many tropical countries aro wrongly ascribed to the climate, but are rather the consequences of indolence, sensual gratification, and an irregular mode of life. Thus the English, who cannot give up animal food and spirituous liquors, are lese able to sustain the heat of the tropics than the more sobes Spaniards and Portuguese. Tho excessive mortality 0^{4} European troops in India, and the delicacy of the children of European parents, do not affect the real question of acclimatisation under proper conditions. They only show that aeclimatisation is in most cases necessary, not that it cannot take place. The best examples of partial or complete acclimatisation are to be found where European races have permanently settled in the tropics, and bave maintained themselves for several generations. There are, homever, two sources of inaccuracy to be guarded against, and these are made the most of by the writers above referred to, and are supposed altogether to invalidate results which are otherwise epposed to their views. In the first place, we have the possibility of a mixture of native blood haring occurred; in the second, there have almost always been a succession of immigrants from the parent country, who continually intermingle with the families of the early settlers. It is maintained that one or other of these mixtures is absolutely necessary to enable Europeans to continue long to flourish in the tropics.

There are, however, certain cases in which the sources of error above mentioned are reduced to a minimum, and eannot seriously affect the results; such as those of the Jews, the Dutch at the Cape of Good Hope and in the Molnccas, and the Spaniards in South America.

The Jews are a good example of acclimatisation, becaust they have been cstablished for many centuries in climates very difforent from that of their native land; they keep themselves almost wholly free from intermixture with the peoplc around them; and they are often so populous in a country that the intermixture with Jewish immigrants frem other lands cannot seriously affect the local purity of the race. They bave, for instance, attained a population of near two millions in such severe climates as Poland and Russia; and according to Mr Brace (Races of the Old World, p. 185), "their increase in Sweden is said to be greater than that of the Christian population; in the towns of Algeria they are the only race able to maintain its numbers: and in

Cochin China and Aden they succeed in rearing children and forming permanent communities."

In some of the hottest parts of South America Europeans are perfectly acclimatised, and where the race is kept pare it seems to be even improved. Some very valuable notes on this subject have been furinshed to the present writer by the well-known botanist Dr Richard Spruce, who resided many years in South America, but who has hitherto been prevented by ill health from giving to the world the results of his researches. As a careful, jndicions, and accurate obserser, both of man and nature, he has few superiors. He says-
"The white inhabitants of Gaayaquil (lat. $2^{\circ} 13^{\prime}$ S.) are kept pure by careful selection. The slightest tincture of red or black blood bars entry into any of the old iamilies who are descendants of Spaniards from the Provincias Fascongadas, or those bordering the Bay of Biscay, where the morals are perhaps the purest (as regards the intercourse of the scxes) of any in Europe, and where for a girl, even of the poorest class, to hare a child before marriage is the rarest thing possible. The consequence of this careful breeding is, that the momen of Guayaquil are considered (and justly) the finest along the whole Pacific coast. They are often tall, sometimes very handsome, decidedly healthy, although pale, and assuredly prolific enough. Their sons are big, stout men, but mben they lead inactive lires are apt to become fat and sluggish. Those of them, homever, who have farms in the sarannahs, and are accustomed to take long rides in all weathers, and those whose trade obliges them to take frequent journeys in the mountainous interior, or even to Europe and North America, are often as active and as little burdened with superfinous flesh as a Scotch farmer.
"The oldest Christian tomn in Peru is Piura (lat. 5° S.), which raas founded by Pizarro himself. The climate is very hot, especially in the three or four months following the southern solstice. In March 1843 the temperature only once fell as low as $\delta 3^{\circ}$, during the whole month, the usual lowest night temperature being 85°. Yet people of all colours find it very healthy, and the whites are very prolific. I resided in the town itself nine months, and in the neighbourhood seven months more. The population (in 1863-4) was about 10,000, of which not only a considerable proportion was white, but was mostly descended from the first emigrants after the conquest. Purity of descent was not, however, quite so strictly maintained as at Guayaquil. The military adventurers, who bave often risen to high or eren supreme rank in Peru, have not seldom been of mixed race, and fear or farour has often arailed to procure them an alliance with the cldest and purest-blooded families."

These instances, so well stated by Dr Spruce, seem to demonstrate the complete acclimatisation of Spaniards in some of the hottest parts of South America. Although we have here nothing to do with mired races, yet the want of fertility in these has been often taken to be a fact inherent in the mongrel race, and has been also sometimes held to prove that neither the European nor his half-bred offspring can maintain themselves in the tropics. The following observation is therefore of interest :-
"At Guayaquil for a lady of good family-married or unmarried-to be of loose morals is so uncommon, that when it does happen it is felt as a calamity by the whole community. But here, and perhaps in most other tomns in South America, a poor girl of mixed race-especially if good-looking-rarely thinks of marrying one of her own class until she has-as the Brazilians say-'approveitada de sua mocidade' (made the most of her yointh) in receiving presents from gentlemen. If she thus bring a good dowry to her husband, he does not care to inquire, or is not
sensitive, about the mode in which it was acquired. The consequences of this indiscriminate scxual intercourse, especially if much prolonged, is to diminish, in some cases to paralyse, the fertility of the female. And as among people of mixed race it is almost universal, the population of these must fall off both in numbers and quality."

The following example of divergent acclimatisation of the same race to hot and cold zones is very interesting, and will conclude our extracts from Dr Spruce's raluable notes:-
"One of the most singular cases connected with this subject that have fallen under my own observation, is the difficulty, or apparent impossibility, of acclimatising the Red Indian in a certain zone of the Andes. Any person who has compared the physical characters of the native races of South America must be convinced that these have all originated in a common stirps. Many local differences exist, but none capable of invalidating this conclusion The warmth yet shade-loring Indian of the Amazon; the Indian of the hot, dry, and treeless coasts of Feru and Guayaquil, who exposes his bare head to the sun with as much zest as an African negro; the Indian of the Andes, for whom no cold seems too great, who goes constantly bare-legged and often bare-headed, through whose rude straw but the piercing wind of the paramos sweeps, and chiuls the white man to the very bones;-all these, in the colour and texture of the skin, the hair, and other important features, are plainly of one and the same race.
"Now there is a zone of the equatorial Andes, ranging between about 4000 and 6000 feet altitude, where the very best Havoured coffee is grown, where cane is less luxuriant but more saccharine than in the plains, and which is therefore very desirable to cultivate, but where the red man sickens and dies. Indians taken down from the sierra get ague and dysentery. Those of the pinins find the temperature chilly, and are stricken down with influenza and pains in the limbs. I hare seen the difficulty experienced in getting farms cultivated in this zone, on both sides of the Cordillera. The permanent residents are generally limited to the major domo and his family; and in the dry season labourers are hired, of any colour that can be obtained-some from the low country, others from the highlands-for three, four, or five months, who gathes in and grind the cane, and plant for the harrest of the following year; but a staff of resident Indian labourers, such as exists in the farms of the sierra, cannot be kept up in the Yungas, as these half-rarm ralleys are called. White men, who take proper precautions, and are not chronically soaked with caas-spirit, stand the climate perfectly, but the creole whites are still too much caballeros to derote themselves to agricultural mork.
"In what is now the sepublic of Ecuador, the only peopled portions are the central valley, between the tro ridges of the Andes-height 7000 to 12,000 feet-and the hot plain at their western base; nc: do the rooded slopes appear to have been inhabited, except by scattered sarase hordes, eren in the time of the Incas. The Indians of the highlands are the descendants of others who have inhabited that region exclusively for untold ages; and a similar affirmation may be inade of the Indians of the plain. Now. there is little doubt that the progenitors of both these sections came from a temperate region (in North America); so that here we have one moiety acclimatised to endure extreme beat, and the other extreme cold; and at this day exposure of either to the opposite extreme (or even, as we have seen, to the climate of an intermediate zone) is almays pernicious and often fatal. But if this great difference has been brought about in the red man, might not the same have happened to the white man? Plainly it might, time being given; for one cannot doubt that the inberent adapta-
bility is the same in both, or (if not) that the white man pussesses it in a higher degree."

The observations of Dr Spruce are of themselves almost conclusive as to the possibility of Europeans becoming aeclunatised in the tropics; and if it is objected that this evidence applies only to the dark-haired southern races, we are fortnnately able to point to facts, almost equally well autheaticated and conclusive, in the ease of one of the typical Germanic races. At the Cape of Good Hope the Dutch have been settled and nearly isolated for about 200 years, and have kept themselves almost or quite free from native intermixture. They are described as being still perfectly fair in complexion, while physically they are the finest body of men in the colonyं, being very tall and strong. They marry young, and havo large families. The population, according to a census taken in 1798, was under 22,000. In 1865 it was near $\mathbf{1 8 2 , 0 0 0}$, the majority being (aecurding to the Statesman's Year Book for 1573) of " Dutch, German, or French origin, mostly descendants of original settlers." We have here a population which has dombled itself every twenty-twu years ; and the greater part of this rapid increase must certainly be due to the old European immigrants. In the Moluccas, where the Dutch have had settlements for uearly $2 j 0$ years, sume of the inhabitants trace their descent to carly immigrants; and these, as well as unust of the people of Ditch descent in the East, are quite as fair as tlicir European ancestors, enjoy excellent bealth, and are very prolific. But the Dutch accommodate themselves admurably to a tropical climate, doing mnch of their work early in the morning, dressing very lightly, and living a quiet, temperate, and cheerful life. They also pay great atteation to drainage and gencral cleanliness. In addition to these examples, it may be maintained that the rapid increase of English-speaking populations in the United States and in Australia, only a comparatively small portion of which can be due to direct immigration, is far from supporting the view of Dr Knox, that Europeans cannot permanently maintain themselves in those countries. Mr Brace expressly denies that the American physique has degenerated from the English type: He asserts that manufacturers and others find that "for labours requiring the utmost physical endurance and muscular porer, such as iron-puddling and lumbering in the forests and on the streams, and pioneer work, foreigners are never so suitable as native Americans. The reports of the examining surgeons for volunteers-such as that of Dr W. H. Thomson to the Surgeon-General in 1862, who examined 9000 men -show a far bigher average of physique in the Americans examined than in the English, Germans, or Irish. It is a fact well known to our life insurance companies, that the average length of life here is greater than that of the English tables."-The Races of the Old World, p. 375. Although the comparisons here instituted may not be quite fair or conelusive, they furnish good arguments against those who maintain that the Americans are physically deteriorating.

On the whole, we seem jnstified in concluding that, under favourable conditions, and with a proper adaptation of means to the end in view, man may become acclimatised rith at least as much certainty and rapidity (counting by generations rather than by years) as any of the lower animals. (A. Ru w.)

ACCOLADE (from collum, the neek), a ceremony anciently used in conferring knighthood; but whether it was an embrace (according to the use of the modern French word, accolade), or a slight blow on the neck or check, is not agreed. Both these customs appear to be of great antiquity. Gregory of Tours writes that the early kings of France, in conferring the gilt shoulder-belt, kissed the knights on the left cheek; and William the Cunqueror is said to have made use of the blow in conferriug the honour of knight-
hood on his son Henry. At first it wus givea with the naked fist, a veritable box on the ear, but fur this was substitnted a gentle stroke on the shoulder with the flat of the swurd. A custom of a similar kind is still fullowed in bestowing the honour of knighthood.

ACCOLTI, Benemict, was born in 1415 at Arezzo, is Tuseany, of a noble family, several members of which wers distinguished like himself for their attainments in law. He was for some tine professor of jurisprudence in the University of Florence, and on the death of the celebrated J'ucrio in 1459 became chancellor of the Florentine republic. He died in 1466. In conjunction with his brother Leonard, he wrote in Latin a histury of the first ernsade, entitled De Sellu a Cliristianis contra Barbaros, pro Christi Sepulchro et Judcia recuperandis, libri tres, which, thongh itself of little interest, furnished Tasso with the historio basis for his Jerusalem Delivered. This work appeared at Venice in 1432, and was translated into Italian in 1543 , and into French in 1620. Another work of Accolti's-De Prastantia Virorun sui Sivi-was published at Parme in 1659.

ACCOLTI, Bervard (1465-1535), son of the preceding, known in his own day as l 'Unico Aretino, acquired great fame as a reciter of impromptu verse. He was listened to by large crowds, composed of the most learued men and the most distinguished prelates of the age. Among others, Cardinal Bembo has left on record a testimony to his extraordinary talent. His high repntation with his contemporaries seems scarcely justificd by the poems he published, though they give evidence of brilliant fancy. It is probable that he succeeded better in his extemporary productions than in those which were the fruit of deliberation. His works, under the title Virginia, Comedia, Capitoli e Strambotti di 3 Messer Bernardo Accolit Aretino, vicre published at Florence in 1513, and have been several times reprinted.

ACCOLTI, Pietro, brother of the preceding, was born at Florence in 1455, and dicd there in 1549. He was abbreviator under Leo X., and in that capacity drew up in 1520 the famous bull against Luther. In 1527 he was made a cardinal by Clement VII., who had employed him as his secretary.

ACCOMMODATION, a term used in Biblical interpretation to denote the presentation of a truth not absolutely as it is in itself, but relatively or under some modification, with the view of suiting it either to some other truth or to the persons addressed. It is generally distinguished inte formal and material,-the accommociation in the one case being confined to the method of teachng, and in the other being extended to the matter taught. To the former head may be referred teaching by symbols or parables, by progresuive stages graduated according to the capacity of the leamer, by the application of propheey to sccondary fulfilments, sce. To the latter head are to be referred the allegations of the anti-supranaturalistic school, that Christ and the writers of Scripture modificd or perverted the truth itself in order to sccure wider acceptance and speedier success, by speaking in accordance with cuntemporary ideas rather than with absolnte and eternal trutif.

ACCOMSODATION, in commeree, denotes generally temporary pecuniary aid given by one tracier to another, or by a banker to his cnstomers, but it is used more particularly to describe that class of bills of exchange which represents no actual exchange of real valuo between the parties.

ACCORA3BONI, Vittoria, an Italian lady remarkable for her extraordinary beauty and her tragic history. Her contemporarics regarded her as the most captivating woman that had cerer been seen in Italy. She was sought in marriage by Paolo Giordano Orsini, Duke of Braceiano, who, it was generally beliered, had murdered his wife,

Siabella de Medici, with his own Land; but her father \mid Ausonurm, Solinum, et Ovidium, pronted at Rome, in folio, gave her in preference to Francesco Peretti, neplew of Curdinal Montalto. Peretti was assassinated (1581), and a fow dars afterwards Vittoria fled from the house of the Cardinal, where she had resided, to that of the Duke of Bracciano. The opposition of Pope Gregory XIII., who even trent so far as to confine Vittoria to Fort St Angelo for nearly a year, did not prevent her marriage with the duke. On the accession of Montalto to the papal throne as Sixtus V. (15S5), the duke thought it prudent to take refuge with his wife in the territory of the Venetian тepublic. After a few months' residence at Salo, on the Lake of Cawda, he died, bequeathing nearly the whole of his large fortune to his midow. This excited the anger of Lulorico Orsini, a relatire, who caused Tittoria to be mirdered in her residence at Padau (Dec. 22, 1585). The history of this beantiful and accomplished but mortuuate moman las been mitten by Adry (1500), and recently by Count Gnoli, and forms the basis of Webster's tragedy, The Thite Devil, and of 'lieck's romance, Vitturia Accoramboni.
ACCOIIDION (from the French accord), a small musical instrument iu the shope of a bellows, which produces sounds by the action of wind on metallic recds of rarious sizes. It is played by being held in both hands and pulled backmards and formards, the fingers being left free to touch the key's, which are ranger along each side. The instrument is akin to the concertina, but differs from it in laving the chords fixed by a mechanical arrangement. It is manufactured clictly in Paris.

ACCOORSO (in Latin Accursius), Fravcis, an eminent Anwyer, born at Florence about 11S2. After practising for some time in his native city, be mas appointed professor at Bologna, where he had great success as a teacher He undertook the great work of arranging into one body the almost inmmerable comments and remarks upon the Code, the Institutes, and Digests, the confused dispersion of thich anuong the morks of different miters caused much obscurity and contradiction. When he was employed in this work, it is sand that, bearinc of a similar one proposed and begun by Olufred, another larger of Bologna, he feigned indisposition, interrupted his public lectures, and shut binself up, till be lad, with the utmost expedition, accomplished his design. His work has the rasue title of the Great Gloss, and, though written in barbaruus Latin, has more method than that of any preceding writer on the subject. The best editınn of it is that of Gurlefroi. published at Lyons in 1589, in 6 vols. folio. Accursius was greatly extolled by the lawjers of his omn and the immediately succeeding age, and he was eren called the Idol of Jurisconsulte, but those of later times formed a much lower estimate of his merits. There ran be no doubt that be has disentangled with much skill the sense of many laws; but it is equally undeniable that his ignoronce of history and antiquities has often led him into absurdities, and been the cause of many defects in lise explanations and commentaries. Ho died at, Bologna in 1260. His eldest son Francis, who filled the chair of law at Bologna with great reputation, was invited to Oxford by King Edmard I., and in 1255 or 1276 read lectures on law in that universits. In 1280 he returned to Bolngna. where he died in 1293.

Accorso (or Accursius), Mariasgizo, a leamed and ingenious critic, was born at Aquila, in the kinglom of Naples, about 1490. He was a great favourite with Charles V., at whose court he resided for thirty-three yenrs. and by whom he ras employed on various forcign missions. To a perfect knowledge of Greck and Latin he ndded anintimate arquaintance with scveral modern langnages. In discovering and collating ancient manuscripts, for which his travels abroad gare him special npportunities. be displayed mincommon diligence. His work entitled Diatribm in
in 1524 , is a simgular monument of crudition and critical skill. He bestowed, it is said, unusual pains on Claudian, and made, from different manuseripts, above seven hundred corrections on the works of that poct. Unfurtunately these criticisms were never published. He was the first editor of the Letters of Cassiodorns, with his Treatise on the Soul; and his edition of Ammicuns Ifarcellinus (1533) contains five books more than any former one. The affected use of autiquated terms, introduced by some of the Latin writers of that age, is humorously ridiculed by him, in a dialogue published in 1531 (republished, with his nanıc, in 1574), entitled Osco, Volsco, Romanaque Eloquentia Interlocr. toribus, Dialogus Ludis Romanis actus. Accorso was accused of plagiarism in his notes on Ausonins; and the determined manner in which he repelled, by a inost solemn oath, this charge of literary theft, presents us with a singular instance of anxiety and care to preserve a literary reputathon unstained.

ACCOUNT, a Stock Exchauge term: e.g., "To Buy or Sell for the Account," \&ec. The word has different, though kindred, significations, all derired from the nunking up and settling of accounts on particular days, in which stricter sense the mord "Scttlement" is more specinlly used.

The financial importance of the Account may be gathered froin the Cleaning House retums. Confining ourselves to the six years, from the 30th of April 1867 to the 30th of April 1873, we have the following figures, fumished hy the Clearing House to Sir John Lubbock, aud comuanicated by him to the Times:-

	On fonths	e	
67 to 1268	£14\%,113,000	£ $444,443,000$	2132,2!3,000
1868 to 1869	161,861,000	55n,622.000	142,250,010
1869 to 1s70	163,523,000	594,763,000	143,822,000
1870 to 18.1	186,517,000	635,946,000	169,1+1,000
1871 to 18.2	2-9,629,000	942,446,000	23:3, $843,0 \cap 0$
1872 to 1873	2085,965,000	1,032,474,000	243,561,000

During the year ending April 30, 1873, the fotal amonnt of hills, cherisa, der., paid at the Clearing House showed an increase of $£ 613, \dot{\operatorname{tin}} 33,100$ during the sime period ending April 1852, and of f2,if5.0.24,000 over 1868 . The anounts passing thraugl on tha 4tis of the month amounted to $\pm 265,965,0$ no, showing an merense of $£ 36,336,000$ over 18i2. The pa;ments on Siock Erchunge Account Days formed a sum of $£ 1,032,4 i 4,60$, being an inerease of $£ \Omega 0.025,000$ over 1872. The proments on Consols Account Days for the same period amounted to $i 243,561,000$, giving au increase of $£ 9,11 \$, 000$ orcr 1872 .

In English and Indian Government Securities, the settlements are monthly, and for foreign, railnay, and other securities, generally speaking, they are fortnightly. It folloms therefore that in 1867-1868, an oruinnry Stock Exchange Account Day inrolred payments, on Stock Exchange accounts only, averaging ahout $£ 10,000,000$ sterling, and in 18:2-3 something like £25,000.000 sterling; and these suins again, enormous as they are, represent for the most part only the balance of much larger transactions. The London Account is, in fact, probably the greatest and most important periodical event in the financial world. The great European. centres hare their own Accomnt Days and methods of settlement, but the amonnts dealt in are very much less than on the London market. The leading cities in the United lingdon hare also their Stock Exclianges, but their practice fullows more or less that of London, where the bulk of their business is transacted hy means of post and telegraph.

The Account in Consols or other English Government Securities, or in the securities of the Government of India, or in Bank of England Stock, or other Stocks transferable at the Bank of England, extends over a month, the scttlements being monthly, and in them the committce of the Stock Exchange does not take cognisance of any barmin for a future account if it shall have been effected more
than eight days previously to the close of the existing account.

The Account in Securities to Bearer, and, with the above exceptions, in Registered Sccurities also, extends over a period of from twelvo to nineteen days. This period is in cach case terminated by the "settlement," wbich occurs twice in each month (generally abont the middle and ond), on days fixed by the committee for general purposes of tho Stock Exchange in the preecding month.

This "settlement" occupies three continuous days, which are all termed Account days, but the third day is the true Account, Settling, or Pay Day.

Continuation or Carrying-ever is the operation by which the aettlernent of a bargain transacted for money, or for a given account, may for a consideration (called either a "Contango" or a "Backwardation") be deferred for the period of auotier account. Such a continuation is equivalcent to a sale "for the day," and a repurchase for the succeeding account, or to a purchase "for the day," and a re-sale for the saccecding account. The price at which such transactions are adjusted is the "Making-UP" price of the day.

Contango is a technical term which expresses the rate of interest eharged for the loan of money upon the security of stock transferred for the period of an account or otherwise, or the rate of interest paid by the buycr to the eeller to be allowed to defer paying for the stock purchased, until the next settlement day.
Backwardation, or, as it is more often called, Back (for brevity), in contradistinction to contango, is the amount charged for the loan of stock from one account to the other, and it is paid to the purchaser by the seller in order to allow the seller to defer the delivery of the stock.
A Bull Account is one in which either the purchases have predominated over the sales, or the disposition to purclase has been more marked than the disposition to sell.
A Bear Account is one in which either the sales have prenonderated over the purchases, or in which the disposition to sell has been more strongly displayed than the disposition to huy.
Sometimes the Bull or the Bear disposition extends to the great majority of securities, as when thera are geseral full or general rises. Sometimes a Bull Account in one set of securities is contemporaneous with a Bear Account in another.-Vide Cracroft's Stock Exchange Mranuat.

ACCOUNTANT, earlier form Accomptant, in the most general sense, is a person skilled in accounts. It is applied to the person whe bas the elarge of the accounts in a public office or in the connting-house of a large private business. It is also the designation of a distinct profession, which deals in any required way with mereantile accounts.

ACCOUN'LANT-GENERAL, an officer in the English Sonrt of Chancery, who receives all monies lodged in court, snd by whom they are deposited in bank and disbursed.

ACCRA or ACRA, a town, or rather a collection of forts, in a territory of the same name, on the Gold Coast of Afice, about 75 miles east of Cape Coast Castle. Of the forts, Fort St James is a British settloment, Crivecour was established by the Duteh, and Christianborg by the Danes; but the two last have since been ceded to BritainChristianborg in 1850, and Crèveccear in 1871. Accra is considered to be one of the healthiest stations on the west coast of Africa, and has some trade in the productions of the interior,-ivory, gold dust, and palm-oil; while cotton goods, tobaeco, rum, and beads are imported in exchange. It is the residence of a British civil commandart.

ACCRINGTON, an important manufacturing town of England, in Lancashirc, lies on the banks of a stream called the Hindburn, in a deep valley, 19 miles N. from Manchester and 5 miles E. of Blackburn. It has increased rapidly in recent years, and is the ecintre of the Nanchester cottonprinting trade. There are large cotton factories and printworks, besides bleach-ficlds, \&c., employing many hands Cosal^{2} is extensively wrought in the neighbourhood. The cown has a good appearance, and among the more handsome buildings are a fine church, in the Gothic style, erected in 1838, and the Peel Institution, an Italian structure, containing an assembly room, a lecture room, dc., The sanitary arrangements generally are good, and a reservoir capable
of containing $140,000,000$ gallons has been constructed for the water supply of the town. Aecrington is a station ors the Lancashire and Iorkshire Railway. The population of the two townships of Old and New Accrington was in 186i, 17,688; and in 1871, 21,788.

ACCUM, Frederick, ehemist, borr at Buickeburg in 1769, eame to London in 1793 , and was appointed teacher of chemistry and mineralocy at the Surrey Institution in 1801. While oceupying this position he published several scientific manuals (Chemistry, 1803; Mineralogy, 1808; Crystallography, 1813), but his namo mll bo chiefly remembered in connection with gas-lighting, the mtroduction of which was mainly due to him and to the enterprising printseller, Ackemann. His excellent Practical T'reatise on Gaslight appeared in 1815; and ho rendered another valuable serviee to society by his Treatise on Adulierations of Food and Cuiinary Poisons (1820), which attracted much notice at the time it appeared. Both works, as well as a number of his smaller publications, were translated into German. In consequence of charges affecting his honesty, Accum left Loadon for Germany, and in 1822 was appointed professor in the Indnstriat Institute and Academy of Arclitecture at Derlan. He died there in 1838.

ACCUMULATOR, a term applici frequently to a powerful electrical machne, whech generates or accumulates, by means of friction, electric currents of high ten-sion,-manifested by sparks of considerable length. Accumulators have been employed in many places for exploding torpedues and mines, for blasting, \&e. An exceedingly powerful apparatus of this kind was employed by the Confederate authorities during the civil war in America for diselarging submarine and river torpedoes. Whatever the nature of the materials emplosed in the construction of the aceumulator, or the form which it may assume mechanically, it is smply a modification of, or an improvement upon, the ordinary cylindrical or the plateglass frictional electrical machine, - tho fundamental scientific principles being the sarne in nearly every case. The exciting body consists generally of a large dise or circular plate of rulcanite,-more frequently termed by elcetricians "ebonite," in consequence of its rescmblance, in point of harlness and of polish, to polisled ebony, - the vulcanite dise taking the place of the ordnary circular plato of thick glase

ACE, the received name for the single point on eards or dice-the nnit. Mr Fox Talbot has a speculation (English Etymologies, p. 262) that the Latins invented, if not the game of dice, at least the name for the single point, which - they called unus. The Greeks corruptcd this into ovos, and at length the Germanic races, learning the game from the Greeks, translated the word into ass, which has now become ace. The fact, however, is, that the root of the word lies in the Latin as, the monetary unit, which is to be identified with the Greek cis; Dorie, ais or äs.

ACEPHALA, a name snmetimes given to a section of the molluscons animals, which are divided into encephalo and acephala, according as they have or want a distinetly differentiated lead. The Aceplala, or Lamellibranchiato, as they are also called, are commonly known as bivalve shell-fish.

ACEPHALI (from áprivative, and $\kappa \in \phi \quad \lambda \dot{\eta}$, a head), a term applied to several sects as having no head or leader; and in particular to a sect that separated itself, in the end of the 5 th century, from the rule of the patriarchs of Alezandria, and remained without king or bishop for more than 300 years (Gibban, c. xlvii.)

Aceprali was also the name given to the levellers i:s the reign of Henry I., who are said to have been so poor as to have no tenements, in virtue of which they migh: acknowledge a superior lord

Acepiali, or Accunalous Persons, fabulous monsters, described by some ancient naturalists and geographers as having no heads.
ACER. See Maple.
ACERBI, Givseppe (Josera), an Italian traveller, born at Castel-Goffredo, near Mantua, on the 3d May $17 \% 3$, studied at Mantna, and devoted Limself specially to natural science. "Iu 1798 ho undertook a journey through Denmark, Swederi, Finland, and Lapland; and iu the following year he reached the North Cape, which no Italian had previously visited. He was accompanied in the latter part of the journey by the Swedish colonel Skioldebrand, an excellent landscape-painter. On his return Acerbi stayed for some time in England, and published his Travels through Sweden, \&c. (Loudon, 1802), which was translated into German (Weimar, 1803), and, under the author's personal superintendence, into French (Paris, 1804). The French translation received uumerous corrections, but even in this amended forn the work coutains many mistakes. Acerbi rendered a great service to Italian literature by starting the Biblioteca Italiana (1816), in which he opposed the protensions of the Academy della Crusca. Being appointed Austrian consul-general to Egypt in 1826, he entrusted the management of the Rizlioteca to Gironi, contributing to it afterwards a series of valuable articles on Egypt. While in the East he obtained for the muscums of Vieuma, Padua, Milan, and Pavia many objects of interest. He returned from Esypt in 1836, and took up his residence in lis uative place, where he occrpied himself with his favourite study till his death in Angust 1846.

AcelinuS, the latinised nane by wnich Sebastian Fabian Klonowicz, a celebrated Polish peet, is generally known, was born at Sulmierzyce in 1551 , and died at Lublin in 1608. He was for some time burgemaster and oresident of the Jews' civil tribunal in the latter town, where he had taken up his residence afler studying at Cracow. Thengh himself of an amiable disposition, his domestic life was very unhappy, the extravagance and miscondnct of his wife driving him at last to the public huspital of Lublin, where he ended his days. He wrote buth Jatin and Polish poems, and the genius they displayed wou fur him the name of the Sarmatian Ovid. The titles of fourteen of his works are known; but a number of these were totally destroyed by the Jesuits and a section of the Polish nobility, and copies of the others are for the same reason exceedingly rare. The Victoria Deornn nbi.continetur Veri Herois Educatio, a poem in fortyfour cantos, cost the poet ten years' labour.

ACERRA, in Antiquity, a little box or pot, wherein were put the incense and perfumes to be burned on the altars of the gods, and before the dead. It appears to have been the same with what was otherwise called thuribulum and pyxis. The censers of the Jews were acerrec; and the linmanists still retain the use of acerrec, under the name of incense pots.

The nane acerra was also applied to an altar erected among the Remans, near the bed of a person recently deveased, on which his friends offered incense daily till his buifial. The real intention probably was to fumigate the apartment. The Chinese have still a somewhat similar custom.

ACERRA, a town of Italy, in the province of Terra di Lavoro. situated on the river Agno, 7 miles N.E. of Naples. with which it is conuected by rail. It is the ancicnt Acerrae, the inhabitants of which were admitted to the privilcges of Roman citizeuship so early as 332 b.c., and which was plundered and burnt by Hannibal during the second Punic war. A few inscriptions are the only traces time has left of the ancient city. The town stands
in a fertile district, but is rendercd very unhealthy by the malaria rising from the artificial water-courses of the surrounding Cainpagna. It is the scat of a bishop, and has a cathedral and seminary. Flax is grown in the neighbourhood. Population, 11,717.
ACETIC ACID, one of the most important organc acids It occurs naturally in the juice of many plants, and in certain aninal secretions; but is gencrally obtained, on the large scale, from the oxidation of spriled wines, or from th: destructive distillation of wood. In the forncr process it is obtained in the form of a dilute aqueous solution, iu which also the colouring matters of the wine, salts, \&c., are dis. solved ; and this impure acetic acid is what wo ordinarily term vinegar. The strongest vinegar sold in comucree contains 5 per cent. of real acctic acid. It is used as a mordant in calico-printing, as a local irritant in medicinc, as a condimeut, and in the prcparation of various acetates, varnishes, \&c. Pure acetic acid is got frem the distillation of wood, by neutralising with lime, separating the tarry matters from the solution of acctate of lime, evaporating off the water, and treating the dry residuc with sulphuric acid. On applying heat, pure acctic acid distills over as a clear liquid, which, after a short time, if the weather is cold, becomes a crystalline mass known by the name of Glacial Acctic Acid. For synthesis, properties, dc., ser Chemistry.

ACHAIA. in Ancient Geograpny, a mame differently applied at different periods. In the earliest tines the name was borne by a small district in the south of Thessaly, and was the first residence of the Achæans. At a latcr perind Achaia Propria was a narrow tract of country in the nurth of the Peloponnesus, running 65 miles aloug the Gulf of Corinth, and bounded by the Ionian Sea nn the W., by Elis and Arcadia on the S., and by Sicyenia on the E. On the south it is separated from Arcadia by lofty mountains, but the plains between the mountains and the sea are very fertile. Its chicf town was Patro. The name of Achaia was afterwards employed to denote collectively the states that joined the Achæan League. When Greece was subdued by the Romans, Achaia was the name given to the most southerly of the provnces into which they divided the country, and included the Peloponnesis, the grcater part of Greece Proper, and the islands.

Acheoans and the Achean League.-The carly inhabitants of Achaia were called Achceans. The name was given also in those times to some of the tribes occupying the eastern portions of the Pelopennesus, particularly Argos and Sparta Afterwards the inhabitants of Achaia Prepria appropriated the name. This republic was not considerable, in early times, as regards either the number of its troops, its wealth, or the extent of its territory, but was famed for its heroic virtues. The Crotorians and Sybarites, to re-establish order in their towns, adopted the laws and customs of the Achæans. After the famous battle of Leuctra, a difference arose betwixt the Lacedæmonians and Thebant, who held the virtue of this people in such veneration, that they terminated the dispute by their decision. The government of the Acbæans was democratical. They preserved their liberty till the time of Philip and Alexander; but in the reign of these princes, and afterwards, they were either subjected to the Macedonians, who had made themselves masters of Greece, or oppressed by domestic tyrants. Tho Achean commonwealth consisted of twelve inconsiderable towns in Pelopomnesus. About 280 years bcfore Christ the republic of the Achæans recovered its old institutions and unanimity. This was the renewal of the ancient confeleration, which subsequently became so fameus under the name of the Acheas League-having for its ohject, not as formerly a comnon worshup, but a substantial political uniul. Though dating from the year b.c. 280 . its import
a:ce may be referred to its connection with Aratus of Sieyon, about 30 years later, as it was further augmented by the splendid abilitics of Philopœemen. Thus did this people, so celebrated in the heroid age, once moro emerge from comparative obscurity, and become the greatest among the states of Gicece in the last days of its national independence. The inhabitants of Patree and of Dyme were the first assertors of ancient liberty. The tyrants were banished, and the towns agaiu made one commonwealth. A public council was then h ld, in which affairs of importance were discussed and determined; and a register was provided for recording the transactions of tho council. This assembly had two presidents, who were nominated alternately by the different towns. But instead of two presidents, they soon elected but one. Many neighbouring towns, which admired the constitution of this republic, founded on equality, liberty, the love of justice, and of the public good, were incorporated with the Achrans, and admitted to the full enjoyment of their laws and privileges. The Achæan League affords the most perfect example in antiqnity of the federal form of government; and, allowing for difference of time and place, its resemblance to that of the United States government is very remarkable. (Sce Arts. Ampiictyony and Federal Government; also Freeman's Federal Government, 2 vols. 8 vo. 1863, and Comparative Politics, 8vo. 1873; Droysen, Geschichte des Hellenismus, 2 vols.; Helwing, Geschichte des Achaïschen Bundes.)
ACHAN, the son of Carmi, of the tribe of Judah, at the taking of Jericho concealed two hundred shekels of silver, a labylonish garment, and a wedge of gold, contrary to the express command of God. This sin proved fatal to the Israclites, who were repulsed at the siege of Ai. In this emergency Joshua prostrated himself before the Lord, and begged that he would have mercy upon his people. Achan was discovered by casting lots, and he . and his clildren were stoned to death. This expiation being made, Ai was taken by stratagem. (Josh. vii. viii.)

ACHARD, Franz Carl, a Prussian chemist, born at Berlin on the ${ }^{\circ} 28$ th April 1753, was the first to turn Marggraff's discovery of the presence of sugar in beet-root to commercial aecount. He erected a factory on an estate. in Silesia, granted to him about 1800 by the king of Prussia, and produced there large quantities of sugar to meet the searcity occasioned by the closing of the West Indian ports to continental traders. In 1812 a similar establishment was erected by Napoleon at Rambouillet, althongh the Institute of France in 1800, while honouring Achard for his rescarches, had declared his process to have littlo practical value. At the close of the war the mannfacture of beet-root sugar was protected by duties on other sugars that were almost prohibitive, so that the real worth of Achard's discoveries could not be tested. Achard was a frequent contributor to the Memoirs of the Academy of Berlin, and publishod in 1780 Chymisch-Physische Schriften, containing descriptions and results of his very numerous and carefully conducted experiments on the adhesion of bodies. He died in 1821.

ACHARIUS, Erik, a Swedish physician and botanist, born at Gefle in 1757. The son of a comptroller of cnstoms, be studied first in his native town, and then in 1773 at the University of Upsal, where Linnæus was one of his teachers. In 1782 he took the degree of Mi.D. at the University of Lund, and practised thereafter in various districts of Sweden. But the direction of his studies lad been determined by his contact with Linnxus, and he found his appropriate sphere when he was appointed Professor of Dutany at the Wadstena Academy in 1801. Five years before he had been admitted a member of the Academy at Storkholm. He devoted himself to the study of the cryptogamic orders of plants, and especially of the
family of lichens. 'All his publientions were connreted with this subject, the Lichenographia Universalis (Göttingen, 1801) being the most important. Aclarins diat of apoplexy in 1819. Ilis name has beeu given ly botanists to more than one species of plauts.

ACHATES, the faithful friend and companion of Eneas, ${ }_{5}$ celebrated in Virgil's, Lincid as fidus Achates.

ACHEEN. Sce Ácuí.
ACHELOUS, the largest river in Greece, rises in Mount Pindus, and dividing Aitolia from Acarnania, falls intor the Ionian Sea. In the lower part of its course the river winds in an extraordinary manner through very fertile but mairshy plains. Its water descends from the monutains, heavily charged with fine mud, which is deposited along its banks and in the sea at its nouth, where a number of small islands have gradually been formed. It was formerly called Thoas, from its impetuosity in its upper portion, and Homer gave it the name of king of rivers. It has a course of 130 miles. The epithet Acheloius is used for aqueus (Virgil), the ancients calling all water Achelous, according to Ephorus. The river is now called Aspro Potamo.

ACHENWALL, Gottrried, a German writer, celebratcd as having formulated and developed the science(Wissenschaft der Staaten), to which he was the first toapply the name scientia stutistica, or statistics. Born at Elbing, in East Trussia, in October 1719, ho studied at Jena, Halle, and Leipsic, and took a degree at the lastnamed university. Ho removed to Marburg in 1746, where for two years he read lectures on history, and on the law of nature and of nations. Here, too, he commenced those inquiries in statistics by which his name becameknown In 1748, having beea invited by Münchhausen, the Hanoverian minister, to occupy a chair at the university, he removed to Göttingen, where he resided till his death in 1772. His chief works were connected with statistics. The Staatsverfassungen der europaizschen Reiche appearcd first in 1752, and revised editions-corrected from information which he travelled through England, France, and other countries to collect-were published in 1762 and 1768. He was marricd in 1752 to a lady named Walther, who obtained some celcbrity by a volunier of pooms pullished in 1750, and by other writings.

ACherion, in Classical Arythology, the son of Ceres, whe, for supplying tho Titans with drink when they were in contest with Jupiter, was turned into a river of IIades, over which departed souls were ferrici on their way tor Elysium. The name cventually was used to designate the whole of the lower world.

ACHiLL, or "Eagle" Island, off the west coast of Ireland, forms part of the county of Mayo. It is of triangular shape, and extends 15 miles from east to west, and 18 from north to south, its total area being 51,521 acres. The island is very momutainous; its extreme western point Achill Head, is a bold and rugged pronontury rising to a height of 2222 fcet above the sea. Large bogs, incapable of cultivation, alternate with the hills of this desolate isle, of whose extensive surface not more than 500 acres have been reclaimed. The inhabitants carn a scanty subsistence by fishing and tillage; their dwellings are miserahle hovels. There is a mission-station on the island, and remains of ancient churehes are still extant.

ACIIILLES ('Axilleús). When first taken up by the legendary history of Grecee, the ancestors of Achilles were settled in Phthia and in Algina. That their original seat, howeser, was in the neighbourlood of Dodona and the Achelous is made out from a combination of the followinit facts: That in the Iliad (xvi. 233) Achilles prays to Zeus of Dodona; that this district was the first to bear the name of Hellas; that the followers of Achilles at Tiroy were the only persons named Hellenes in the time of Horuer-
(Thucyd. i. 3 ; of. Ilixr, ii. 684, where the more usual name of Myrmidones also occurs); that in Egina Zeus was styled "Helianios;" and that the name of Selloi, applied to the pricsthood at Dodona, is apparently idcutieal with the name Hellones. Whether from this local connection the derivation of the name of Achillcs from the same root as 'AXen仑̂os should be preferred to the other derivations, such as
 the Ilinns," remains undecided. But this is gained, that we sec in what manner the legend of Achilles land its root in the earlier Pelaggec religrion, his adhereuce to which in the prayer just cited would otherwise appear very strange on the part of a here who, throlghl the influence of Humcr and his successors, is complictely identified with the Olympian system of gods. According to the genealogy, Eacus had twe sons, Pcleus and Telamon, of whom the former became the father of Achilles-the latter, of Ajax; but of this relationship between Achilles and Ajax there is no sign in the llicul. Peleus ruled in Plithia; and the gods remarking his piety, rewarded him with, among ether presents, a wife in the person of the benutiful nereid Thetis. After her son was born, 'Thetis appears to have returned to her life in the sea. The boy was placed under his father's friend, the centaur Cheiron. When six years old he slew tions and boars, and could run down a stag. When nine, he was removed fiom his instruction to the istand of Scyrus, where, dresscd as a girl, he was to be brought up ameng the danghters of Lycomedcs, lis mother proferring fur himi a long inglorious life to a brief but splendid carecr. The same desire for his safety is apparent in other legends, which describe her as trying to make him invulnerable when a child by placing him in boiling water or in a fire, aud then salving him with ambrusia; or again, in later stury, by dipping him in the river Styx, from which he came out, all but the heel which she held, proof against wounds. When the aid of Achilles was found indispensable to the expedition against Troy, Odysseus set out for Scyrus as a pedlar, spread his wares, including a shield and spear, before the king's daughters, among whom was Achilles in disguise. Then he caused an alarm of danger to be sounded, upon which, while the girls fled, Achilles seized the arms, and thus revealed himself. Provided with a contingent of 50 ships, and accompanied by the aged Plocuix and Patroclus, he joined the expedition, which after occupying nive years in raids upon the towns in the neighbourhood of Troy and in Mysia, as detailed in the epic poem entitled the Cypria, culminated in the regular sicge of Troy, as described in the Iliad, the grand object of which is the glorification of our hero. Estranged from his cemrades, because his captive Briseïs had been taken from him, Achilles rcmained inexorable in his tent, while defeat attended the Greeks. At length, at their greatest need, he yielded so far as to allow Patroclus to take his chariet and to assume his armour. Patroclus fell, and the news of his death roused Achilles, who, now equipped with new armeur fashioned by Heplixstus, drove back the Trojans, slew Hector, and after dragging his body thrice round the Trojan walls, restored it to Priam. With the funeral rites of Patroclus the Iliad concludes, and the story is taken up by the Althiopris, a poem by Arctinus of Milctus, in which is described the combat of Achilles first with the awazen Penthesilea, and next witia Memnon. When the latter fell, Achilles drove back the Trojans, and, impelled by fate, himself advanced to the Screan gate, where an arrow frem the bow of Paris struck his vulnerable heel, and be fell, bewailed through the whele camp. (1. s. ar.)

ACHILLES TATIUS, a Greck writer, born at Alexandria. The precise time when he flourished is uncertain, but it cannot have beco carlicr than the 5 th contury, as in his priucipal work he evidently initutes Heliodurus. Suidas,
who calls him Achilles Statius, says that he was convertea from heathenism and becane a Christian bishon, but this is doubtful, the more so that Suidas also attributes to him a work on the sphere ($\pi \in \rho i \sigma \phi a i p a s)$ which is referred to by Firnicus ($330-50$), and must, therefore, have becu written by another persoL. The erotic romance of Aclillcs Tatius, entitled The Loves of Clitophon und Leucippe, is almost cortainly the work of a heathen writer. The style of the work is ornate and rheterical, while the story is often unnatural, and sometines coarse, and the development of the plot irregular and frequently interrupted. Ite popularity at the time it appeared is proved by the many manuscripts of it which still exist, and the value attached to it by modern scholars and critics is seen in the frequency with which it has been reprinted and trauslated. A Latin translation by Annibal Crucceius was published, first in part at Leyden in 1544, and then complete at Basel in 1554. The Greek text was first printed by Commelin, at Heidelberg, in 1601. Other editions by Salmasius (Lcydeu, 1640), Mitscherlich (Biponti, 1792), and Jacobs (Leipsic, 1821), have been superseded hy the editious of Hirschig (Paris, 1856), and Hercher (Leipsic, 1857). An English translation by A. H. (Anthouy Hodges) appeared at Oxfurd in 1638 .
ACHILLLNI, Alexander (1463-1512), a uative of Bologna, was celebrated as a lecturer both in medicine and in philosoplyy, and was styled the second Aristotle. -He and Mundinus were the first at Dologua to avail themselves of the permission given by Frederick IL to dissect dead bodies. His philosophical worls were printed in one volume folio, at Veuice, in 1508, and reprinted with cunsiderable additions in 1545,1551 , and 1568. He also wrote several medical works, chielly on anatomy.

ACHiN (pronounced Atcheen), a town and alse a state of Northern Sumatra; the one state of that island which has been powerful at any time since the discovery of the Cape route to the East, and the only one that still remains iudepcudent of the Dutch, though that independence is now menaced.
De Barros names Achin among the twenty-nine states that divided the sea-board of Sumatra when the Portuguese took Malacca. Northern Sumatra had been visitcd by several European travellers in the Middle Ages, such as Narce Polo, Friar Odorico, and Nicolo Conti Some of these as well as Asiatic writers mentien Lambri, a state which must bave nearly occupied the position of Aclifn. But the first royager to visit Achin, by that name, nas Alvaro Tellez, a captain of Tristan d'Acunha's ficet, in 1506. It was then a more dependency of the adjoining state of Pedir; and the latter, with Pasci, formed the only states on the coast whose cliefs claimed the title of Sultun. Yct before twenty years had passcd Áclín had not only gained independence, but had swallowed up all other states of Northern Sumatra It attained its climax of power in the time of Sultan Iskandar Muda (1607-1636), under whom the subject coast extended from Aru opposite Malacca round by the north to Padang on the west coast, a sea-board of net less than 1100 miles; and besides this, the king's supremacy was owned by the large island of Nyás, and by the continental Malay statcs of Johōr, Pâháng, Qucdah, and Perik.

The present limits of Achin supremacy in Smantra are reckencd to be, on the cast coast the River Tamiang, in about $4^{\circ} 25^{\prime} \mathrm{N}$. lat., which forms the frontier of territurics iributary to Siak; and on the west coast a line in abuut $2^{\circ} 48^{\prime}$ N., the fronticr of Trumon, a small modern state lying betwecu Achin and the Dutch goverument of Padang. Even within these limits the actual power of Achin is procarious, and the interior beundary can be laid down only from conjecture. This interier conutry is totally mex. plorcd. It is believed to be inhabited by tribes kiudred
to the Battas, that remarkable race of anthropophari who adjoin on the south. The whole area of Achin territory, defined to the best of our ability, will contain about 16,400 English square miles. A rate of 20 per square mile, perhaps somewhat too large an average, gives a probablo population of 328,000 .

The production of rice and pepper forms the chief industry of the Achin territory. From Pedir and other ports on the north coast large quantitics of betel-nut are exported to continental India, to Burmah, and to Penang for China. Some pepper is got from Pedir, bnt the chicf export is from a number of small ports and anchorages on the west coast, where vessels go from port to port making up a cargo. Achin ponies are of good repute, and are exported. Minor articles of export are sulphur, iron, sappan-wood, gutta-percha, dummer, rattans, bamboos, bemzoin, and camplor from the interior forests. The camphor is that from the Dryabalanops camphora, for which so high a price is paid in China, and the whole gocs thither, the bulk of that whole being, however, extremely small. Very little silk is now prodnced, but in the 16 th century the quantity seems to have been considerable. What is now wanted for the local textures, which are in some esteenn, is imported from China.

The chief attraction to the considerable trade that existed at Achin two centuries ago must have been gold. No place in the East, unless Japan, was so abundantly supplied with gold. We can form no estimate of the annual export, for it is impossible to accept Valentyn's statement that it sometimes reached 80 bahars (512,000 ounces!). Crawford (1820), whe always-reckoned low;' calculated the whole export of Sumatra at 35,530 ounces, and that of Achin at 10,450; whilst Anderson (1826), who tends to put figures too high, reckoned the whole Achin export alone at 32,000 onnces. The chief imports to Áchín are opium (largely consumed), rice (the indigenous supply being inadequate), salt, iron ware, picce-goods, arms and ammunition, vessels of copper and pottery, China goods of sorts, and a certain kind of dried fish.

The great repute of Achin at one time as a place of trade is shown by the fact, that to this port the first Dutch (1599) and first English (1602) commereial ventures to the Indies were directed. Lancaster, the English commodore, carried letters from Queen Elizabeth to the king of Achin, and was well received by the prince then reigning, Aláuddín Shàh. Another exohange of letters took place between King James I. and Iskandar. Muda in 1613. But native caprice and natural jealousy at the growing force of the European nations in those seas, the reckless rivalries of the latter and their fierce desire for monopoly, were alike destructive of sound trade; and the English factory, though several times set up, was never long maintained. The French made one great effort under Beaulieu (1621) to establish relations with Achin, but nothing came of it.

Still the foreign trade of \AA chin, though subject to spasmodic interruptions, was important. Dampier and others speak of the number of foreign merchants settled there, English, Dutch, Danes, Portuguese, Chinese, Panyans from Guzerat, dec Dampier say's the roads were rarely without ten or fifteen sail of different nations, bringing rast quantities of nee, as well as silks, chintzes, muslins, and opium. Besides the Chinese merchants settled at Achin, others uscd to come annually with the junks, icn or twelve in number, which arrived in June. A regular fair was then established, which lasted two months, and was known as the China camp, -a lively scene, and great resort of foreigners.

The Achinese are not identical with the Malays proper either in aspect or language. They are said to be taller,
handsomer, and darker, as if with a misture of blood from India proper. Their language is little known; but though it has now absorbed mnch Malay, the original part of it is said to have characteristics connecting it both with tho Batta and with the Indo-Chinese tougues. The Achin literature, however, is entirely Malay; it embraces poetry, a good deal of theology, and several chronicles.

The name of the state is properly Acheh. This the Portuguese made into Achem; whilst we, with the Dutch, learned to call it Achin. The last appears to have been a Persian or Indian form, suggested by jingling analogy with Míchín (China).

The town jtself lies very near the north-west extremity of Sumatra, known in charts as Achin Head. IIere a girdle of ten or twelvo sinall islands affords protection to the anchorage. This fails in N.W. whinds, but it is said that vessels may find safe riding at all scasons by shifting their berths. The town lies betwcen two and three miles from the sea, chiefly on the left bank of a river of no great size. This forms a swampy delta, and discharges by three months. The central and chief mouth is about 100 yards wide, and has a depth of 20 to 30 feet within the bar. But the latter has barely 4 feet at low tide; at high tido it admits native craft of 20 or 30 tons, and larger craft in the rainy scason. The town, like most Malay towns, consists of detached houses of timber and thatch, clustered in enclosed groups called Kampongs, and buried in a forest of fruit-trees. The chief feature is the palace of the Sultan, which communicates with the river by a canal, and is cnclosed, at least partially, by a wall of cut stone.

The valley or alluvial plain in which Achín lics is low, and subject to partial inundation; but it is shut in at a short distance from the town, on the threc landward sides, by hills. It is highly cultivated, and abounds in small villages and kampongs, with white mosques interspersed. The hills to the eastward are the spurs of a great volcanic mountain, upwards of 6000 feet in height, called by natives Yamuria, by mariners "the Golden Mountain." I Of the town population we find no modern estimate.

The real original territory of the Achinese, called by them Great Achín (in the sense of Áchín proper), consists of threc districts immediately round the city, distinguished respectively as the 26 , the 25 , and the 22 mukims ${ }^{2}$ (or hundreds, to use the nearest English term).

Each of these three districts has two heads, called panglemas; and these, aceording to some modern accounts, constitute the council of state, who are tho chief administrators, and in whose hands it lies to depose the sovereign or to sanction his choicc of a successor. Late notices speak of a chicf minister, apparently distinct from these; and another important member of the government is the Shábandar, who is over all matters of customs, shipping, and commerce.

The court of Achin, in the 17 th centnry, maintained a good deal of pomp; and, according to Beanlieu, the king had always 900 elephants. These animals, though found throughout Sumatra, are now no longer tamed or kept.

Hostilities with the Portnguese began from the time of the first independent king of Achin; and. they had little remission till the power of. Portugal fell with the loss of Malacca (1641). Not less than ten times before that event were armaments despatched from Achin to reduce Malacca, and more than once its garrison was very hard pressed. Onc of these armadas, equipped by Iskandar Muda in 1615, gives an idea of the king's resources. It consisted of 500 sail, of which 250 were galleys, and

[^13]among these a hundred were greater than any then usea in Europe. 60,000 men were embarked, with the king and his women.

On the death of Iskandar's successor in 1641, the widow was placed on the throne; and as a female reign favoured the oligarchical tendencies of the Malay chiefs, three more queens were allowed to reign successively. Though this series of female sovereigns lasted only fifty-eight years altogether, so dense is apt to be the ignorance of recent history. that long before the end of that period it had become in accepted belief among foreign residents at Ácnín that there never had been any sovereigns in Achin except females; and hence, by an easy inference, that the Queen of Sheba had been Queen of Áchín!

In 1699 the Arab or fanatical party suppressed female government, and put a chinf of Arab blood on the throne. The remaining history of Achín is one of rapid decay. Thirty sovereigns in all have reigned from the beginning of the 16 th century to the present day.

After the restoration of Java to the Netherlands in 1816, a good deal of weight was attached by the neighbouring English colonies to the maintenance of our influence in Áchín; and in 1819 a treaty of friendship was concluded with the Calcutta Government, which excluded other Furopean nationalities from fixed residence in Áchín. When the home Government, in 1824, mado a treaty with the Netherlands, surrendering our remaining settlements in Sumatra in exchange for certain possessions on the continent of Asia, no reference was made in the articles to the Indian treaty of 1819; but an understanding was exchanged that it should be modified by us, whilst no proceedings hostile to Áchín should be attempted by the Dutch.

This reservation was formally abandoned by our Government in a convention signed at the Hague, November 2, 1871; and little more than a year elapsed before the government of Bataria declared wrar upon Achín. Dơbbtless there was provocation, as there always will be between such neighbours; but the necessity for war has been greatly doubted, even in Holliand. A Dutch force landed at Achín in April 1873, and attacked the palace. It was defeated with considerable loss, including that of the general (Köhler). The approach of the south-west monsoon was considered to preclude the immediate reneral of the attempt ; but hostilities were resumed, and Achín fell in January 1874.
(De Barros; Faria y Souza; Valentyn, vol v.; Beaulieu (in Thérenot's Collection); Dámpier; Marsden; Crawfurd's Hist. and Deel. of the Ind. Arechip.; J. of Ind. Archip.; Dulaurier in J. Asiatique, 3d s. rol. riii.; Anderson's Acheen, 1840; Veth, Atchin, \&c. Leyden, 1873, dc.) (\quad (. у.)

ACHMET, or Ahmed, the name of three emperors or sultans of Turkey, the first of the name reigning from 1603 to 1617 , the second from 1691 to 1695 . Achmet III. succeeded his brother Mustapha II., whom the Janissaries deposed in 1703. After the battle of Pultowa in 1709, Charles XII. of Sweden took refuge with him, and incited him to war with Peter the Great, Czar of Russia. Achmet recovered the Morea from the Venetians (1715); bla his his expedition into Hungary was less fortunate, his army belug defeated at Peterwardein by Prince Eugene in 17i16, and again near Belgrade the year after. The empire was distracted kuring his reign by political disturbances, which were occasioned, in part at least, by his misgovernment; and the discontent of his soldiers at last (1730) drceve hin from the throne. He died in prison in 1736 .
ACHRAY, a small picturesque lake in Perthshire, near Loch Katrine, 20 miles W. of Stirling, which has obtained notoriety from Scott's allusion to it in the Lady of the Lake. ACHROMATIC CLASSES are so named from being epecially constructed with a view to prevent the confusion
of colours and distortion of images that result from the use of lenses in optical instruments. When white light passes through a lens, the different-coloured rays that constitute it are refracted or bent aside at differen't angles, and so converge at different foci, producing a blurred and coloured image. To remedy this compound lenses havo been devised, which present a well-defined image, unsurrounded by coloured bands of light. To instruments fitted with lenses of this kind has been given the name achromatic, from $\dot{\alpha}$ privative, and $\chi p \bar{\omega} \mu a$, colour. The celebrated optician, John Dollond, was the first to surmount this practical dificulty, about the year 1757, by the use of a combination of crown and flint glass. See Optics, Microscope, dic.

ACI REALE, a city and seaport of Sicily, in the Italian provinco of Catania, near the base of Mount Etna. It stands on solidified lava, which has here been deposited by different streams to a depth of 560 feet. The town, which has been almost entirely re-erected since the earthquake of 1693 , is built of lava, contains many handsome edifices, and is defended by a fortress. Linen, silks, and cutlery are manufactured, and the trade in cotton, flax, grain, and wines is considerable. The place is celebrated for its cold sulphurous mineral waters. Near Aci Reale is the reputed scene of the mythical adrentures of Acis and Galatea; and on this account several small towns in the neighbourhood also bear the name of Aci, such as Aci Castello, Aci Terra, \&c. Aci Reale has a population of 24,151.

ACID, a general term in chemistry, applied to a group of compound substances, possessing certain very distinctive characteristics. All acids have one essential property, viz., that of combining chemically with an alkali or base, forming a new compound that has neither acid nor alkaline characters. The new bodies formed in this way are termed salts. Every acid is therefore capable of producing as many salts as there are basic substances to be neutralised; and this salt-forming power is the best definition of an acid substance.

The majority of acids possess the following contingent properties:-

1. When applied to the tongue, they excite that sensation which is called sour or acid.
2. They change the blue colours of vegetables to a red. The vegetable blues employed for this purpose are generally tincture of litmus and syrup of violets or of rarlishes, which have obtained the name of re-agents or tests. If these colours have been previously converted to a green by alkalies, the acids restore them.

All these secondary properties are rariable; and if we attempted to base a definition on any one of them, many important acids would be cxcluded. Take the case of a body like silica, so widely diffused in nature. Is pure silicious sand or flint an acid or a neutral substance? When it is examined, it is found to be insoluble in water, to be devoid of taste, and to possess no action on regctable colouring matters; yet this substance is a true acid, because when it is heated along with soda or lime, it forms the new body commonly called glass, which is chemically a salt of silicie acid. Many other acids resemble silica in properties, and would be nistaken for neutral bodies if the salt-forming power was orerlooked.
Another method of regarding an acid, which is found of great importance in discussing chemical reactions, is to say an acid is a salt whose base is water. This definition is rery apparent if we regard what takes place in separating the acid from a salt. In this decomposition the acid would appear to be left without having any substitute for the remored alkali. This is not however the case, as uater is found to enter into union instead of the base. Thus every true acid must contain hydrogen; and if this is displaced
by a metal, saits aro formed directly. an acid is therefore a salt, whose metal is kydrogen. The full importance of tho definition of an acid will be learned under the heading Cefemistry.

ACIDALIUS, Vatears, a very distinguished scholar and critie, born in 1567 at Wittstock, in Brandenburg.' After studying at Rostock and Helmstaedt, and residing about threo years in Italy, he took up his residence at Breslau, whero he professed tho Roman Catholic religion. His cxcessive application to study was supposed to havo caused his untimely death, which occurred in 1595, when he had just completed his trenty-eighth year. Ho mroto notes on Tacitus and Curtius, a commentary on Plautus, and a number of poems, which are inserted in tho Delicice of the German poets. Baillet garo him a place among his Enfans Célébres, and tells that he wrote the commentary on Plautus and several of the Latin poems when he was only seventeen or eighteen years of age.

ACINACES, an ancient Persian sword, short and straight, and worn, contrary to tho Roman fashion, on tho right side, or sometimes in front of the body, as shown in tho bas-reliefs found at Persepolis Among the Persian nobility they were frequently made of gold, being worn as a badge of distinction. The acinaces was an object of religious morship with tho Scythians and others (Herod. iv. 62).

ACIS, in Mythology, the son of Faunus and the nymph Symæthis, was a beautiful shepherd of Sicily, who being bcloved by Galatea, Polyphemus the giant was so enraged that he crushed his rival rwith a rock; and his blood gushing forth from under the rock, was metamorphosed into the river bearing his name (Ovid, Met. xiii. 750; Sil. Ital. xiv. 221). This river, now Fiume di Jaci, or Acque Grandi, rises under a bed of lara on the eastern base of Etna, and passing Aci Reale, after a rapid course of one mile, falls into the sea. The waters of the stream, once celebrated for their purity, are now sulphureous.

ACKERMANN, John Christiav Gortrieb, a learned physician and professor of medicine, born at Zeulenroda, in Upper Saxony, in 1756. At the carly age of fifteen he became a student of medicine at Jena, whero he soon attracted the favourable notico of Baldinger, who undertook the direction of his stadies. When Baldinger was transferred to Göttingen in 1773, Ackermann went with him, and afterwards studied for two years at Halle. A few years' praetice at Stendal ($1778-99$), where there were numerous factories, enabled him to add many valuablo original observations to his translation of llamazzini's Treatise of the Diseases of Artificers (1780-83). In 1786 he becamo professor of medicine at the university of Altorf, in Franconia, oceupying first the chair of chemistry, and then, from 1794 till his death in 1801, that of pathology and therapcutics, Dr Ackermann's knowledgo of the history of medicino may bo estimated by his valuablo contributions to Harless's edition of Fabricius' Bibliotheca Graca. Ho wroto numerous original works, besides translations.

ACCEMETA (⿺ккоíүтоs, slecpicss), an order of monks instituted by Alexander, a Syrian, about the middlo of the 5 th century. Founding on the precept, Pray without ceasing, they celebrated divine scrvico uninterruptedly night and day, for which purpose they divided themselves into threo sections, that reliered each other in turn. The chief scat of the Acœmetæ was tho cloister Studium at Constantinople, whence they were sometimes called Studites. Having adopted the monophysite heresy, they were put under tho Papal ban about the year 536.

ACOLYTE (from ảkúdovOos, an attendant), ono of a minor order of clergy in tho ancient church, ranking next to the sub-deacon. We learn from the canons of the
fourth Couneil of Carthage that the archdeacon, at their ordination, put into their hands a eandlestick with a taper and an empty pitcher, to imply that they wero appointed to light the candles of tho church and to furnish wine for the cucharist. Their dress, was the cassock and surplice. The namo and olliee still exist in the church.

ACONCAGUA, a province of Chile, South America, is about 100 miles long by 40 miles wide, and lies between $31^{\circ} 30^{\prime}$ and $33^{\circ} 20^{\prime} \mathrm{S}$. lat., and 70° and $71^{\circ} 30^{\prime} \mathrm{W}$. long., between the provinces of Valparaiso and Santiago on the N. and Coquimbo on tho S. A large part of the provinee is mountainous, but it contains several rich and fertile valleys, which yield wheat, maize, sugar-cane, fruits, and garden produce in abundance. In tho agricultural districts there are raised from 50 to 60 fanegas of wheat for every quadra, equal to about 35 bushels per English acre. The province has also mineral resources, but not to sueh extent as Coquimbo or Atacama. Its chief town is San Felipe. The mountain Aconcagua, one of the loftiest peaks of tho Andes, rises to the height of 23,910 feet abore the sea on the frontier betreen this province and Mendoza, a department of the Argentine Republic. A river of the same name rises on the south side of the mountain, and after a course of 230 miles falls into the Pacific 12 miles N. of Valparaiso. Population (1870), 134,178.

ACONTTE, Aconitum, a genus of plants commonly known as Aconite, Monkshood, Friar's Cap, or Helmet flower, and embracing about 18 speeics, chietly natives ot the mountainous parts of the nortiern hemisphere. They are distinguished by having one of the five bluo or yellow coloured scpals in the form of a helmet; hence the English name. Two of the petals placed under the hood of the ealyx are supported on long stalks, and have a hollow spur at their apex. The genus belongs to the natural order Ranunculaccæ, or tho Buttereup.family. Aconitum Napellus, common monkshood, is a doubtful native of Britain. It is an energetic irritant and narcotic poison. It causes death by a depressing effect on the nervous system, by produeing palsy of the muscles eoncerned in breathing, and by fainting. A tincture prepared oy the action of spirit on the roots is used medicinally to allay pain, especially in cases of tic. Its roots have occasionally been mistaken for horse-radish. The Aconite has a short underground stem, from which dark-eoloured tapering roots descend. Tho crown or upper portion of the root gives rise to new plants. When put to the lip, the juico. of the Aconite root produces a feeling of numbness and tingling. Tho horseradish root, which belongs to the natural order Crucifere, is muck longer than that of the Aconite, and it is not tapering; its colour is yellowish, and-the top of the root has the remains of the leares on it. It has a pungent taste. Many species of Aconito aro cultivated in gardens, somo having bluo and others yellow flowers. Aconitum Iycoctonum, Wolfsbane, is a yellow-flowered species common on the Alps of Switzerland. One species, Aconitum heterophyllum, found in thio East Indics, and called Butees, has tonic properties in its roots. The roots of Aconitum ferox supply the famous Indian (Nipal) poison called Bikh, Bish, or Nabee. This species is considered by Hooker and Thomson as a varicty of Aconitum Napollus. Aconitum palmatum yiclds another of the celcbrated Bikh poisons. Aconitum luridum, of the Himslayas, also furnishes a poison.
\triangle CONTIUS, the Latinised form of the name of Giacomo Aconctn, a philosopher, jurisconsult, engineer, and theologian, born at Trent on the 7th Scptember 1492. Ho embraced the reformed rcligion; and after having taken refuge for a timo in Switzerland and Strasburg, ho came to England about 1558. He was very favcurabiy reccived by

Qucen Elizabeth, at whose court, it is said, though on doubtful authority, that he resided for a considerable period. With the sanction of Parliament, he carried on for several years extensive works for the embankment of the Thames, and so reclaimed a large quantity of waste land, part of whieh was bestowed upon him by way of recompense. His gratitude to Queen Elizabeth was expressed in the dedieation to her of his celebrated Collection of the Stratagems of Satan, which has been often translated, and has passed through many editions. Various opinions have been given of this work, which adrocated toleration to an extent that many considered indifference. The nature of its doetrine may perhaps be best gathered from the faet that it gained for the author the praise of Arminius, and the strong condemnation of the Calvinists. Acontius also wrote a treatise, Dè Methodo, which was published at Basel in 1558. He died in London about the year 1566.
ACORUS, a genus of monoeotyledonous plants belonging to the natural order Aroideæ, and the sub-order Orontiaceæ. Acorus Calamus, sweet-sedge or sweet-lag, is a native of Britain. It has an agreeable odour, and has been used as a strengthening remedy, as well as to allay spasms. The starchy matter contained in its running stem or rhizome is associated with a fragrant oil, and it is used as hairpowder. Confeetioners form a candy from the rhizomes of the plant, and it is also used by perfumers in preparimg aromatic rinegar.

ACOSTA, Christoval d', a Portuguese naturalist, born at Mozambique in the early part of the 16 th century. On a voyage to Asia he was taken captive by pirates, who ezacted from him a very large ransom. After spending some years in India; ehiefly at Goa, it Portuguese colony, he returned home, and settled as a surgeon at Burgos. Here he published his Tratado de las drogas y medecinas de las Indias orientales (1578). This work was translated into Latin, Italian, and French, became well known throughout Europe, and is still consulted as an authority. Acosta also wrote an account of his travels, a book in praise of wumen, and other works. He died in 1580 .

ACOSTA, Josepr D', a celebrated Spanish author, was born at Medina del Campo about the year 1539. In 1571 he went to Peru as a provincial of the Jesuits; and, after remaining there for seventeen years, he returned to his native country, where he became in succession visitor for his order of Aragon and Andalusia, superior of Valladolid, and rector of the university of Salamanca, in which city ho died in February 1600. About ten years before his death he published at Seville his valuable Historia Natural y Moral de las Indias, part of which had previously appeared in Latin; with the title De Natura Novi Orbis, libri duo. This work, which has been translated into all the principal languages of Europe, gives exceedingly valuable information regarding the condition of South America at the time. On the subject of climate Acosta.was the first to propound the theory, afterwards advocated by Buffon, which attributed the different degrees of heat in the old and new continents to the agency of the winds. He also contradicted, from his own experience, the statement of Aristotle, that the middle zone of the earth was so scorched by the sun as to be destitute of moisture, and totally uninhabitable. Even after the discevery of America this Aristotelian dogma was an article of faith, and its denial was one ground of the charge of scepticism and atheism brought against Sir Walter Raleigh. Acosta, however, boldly declared that what he had seen was so different from what he had expeeted, that he could not but "langh at Arstomes meteors and his philosophy." In speaking of the conduct of his countrymen, and the means they employed for the propagation of their faith, Acosta is in no respect superior to the other prejudiced writers of his country and age. Though he
acknuwledges that the career of Spanish conquest was marked by the most savage cruelty and oppressiun, he yet represents this people as chosen by Cod to spread the gospel annonet the nations of Amcriea, and recounts a varicty of niracles as a proof of the constant interposition of 1leaveu in favour of the mereiless and raphinions invaders. Bussides lis History, Acosta wrote the following works:-1. De Promulgatione Evangelii apud Barbaros; 2. De Cluristo Litrelato; 3. De Temporieus Novissimis, lib. vi.; 4. Concionum tomi iii.

ACOSTA, Uriel d', a Portuguese of noble family, was born at Oporto towards the cluse of the 16th century. His father being a Jewish convert to Cluristianity, he was brought up in the Roman Catholic faith, and strictly observed the rites of the chureh till the course of his inquiries led him, after much painful doubt, to abandon the religion of his youth for Judaism. Passing over to Amsterdam, he was reeeived into the synagogue, having his mame changed from Gabriel to Uriel. He soon discovered, however, that those who sat in Moses' seat were shameful perverters of the law; and his bold protests served only to exasperate the rabbis, who finally punished his contumacy with the greater excommunication. Persecution seemed only to stimulate his temerity, and he soon after pmblished a defence, Examen das tradicoens Phariseas, doc, in which he not merely exposed the departures of the Jewish teachers from the law, but combated the doctrine of a future iife, holding himself supported in this pasition by the silence of the Mosaic Books. For this he was imprisoned aud fined, besides incurring public odium as a blasphemer and atheist. Nothing deterred, he pursued his speculations, which ended in his repudiating the dirine authority of the law of Dloses. Wearied, however, by his melancholy isolation, and longing for the benefits of society, be was driven, in the inconsistency of despairing scepticism, to seek a return to the Jewish commution. Haring recanted his heresies, be was readmitted after an excomnunication of fifteen rears, but was soon excommunicated a seeond time. After seven years of miserable exclusion, he once more sought admission, and, on passing through a humiliating penance, was again received. These notices of his singular and unhappy life are taken from his autobiography, Exemplar Humance Fitce, published, with a "refutation," by Limborch, and republished in 1847. It has been said that he died by his own hand, but this is, to say the least, doubtful. His eventiful history forms the subject of a tale and of a tragedy by Gutzkow.
ACOTYLEDONES, the name given to one of the Classes of the Natural System of Botany, embracing flowerless plants, such as ferns, lycopods, horse-tails, mosses, liverworts, lichens, sea-weeds, and mushrooms. The name is derived from the character of the embryo, which has no cotyledon. Flowering plants have usually one or two cotyledons, that is, seed-leares or seed-lobes connected with their embryo; while in flowerless plants the body representing the embryo consists of a eell, called a spore, without any leaves. Tha plants hare no flowers, and their organs of reproduction are inconspicuous, hence they are called by Linnæus eryptogamous. Some flowering plants, sach as dodders, have no cotyledons; and some have the cotyledons divided into more tinan two, as in conifers. Some acotyledonous spores, when sprouting, produce a leaf-like expansion catled a pro, thallos, on which the organs of reproduction, consisting of antherldia and archegonia, are produced. This is well seen in the case of ferns. In the interior of the antheri dian cells, moving filamentous bodies, called spernatozoids, have been observed. These fertilise the arehegonial cells, whence new plants are produced. In the article Botary these plants will be noticed under Chass III. of the NTatural System.

ACOUSTICS

1. ACOUSTICS (from dкoviw, to hear) is that branch of Natural Philosophy which treats of the nature of sound, and the laws of its production and propagation, in so far as these depend on physical principles. The deseription of the mechanism of the organ of voice and of the ear, and the difficult questions connected with the processes by which, when sound reaches the drum of the ear, it is transmitted to the brain, must bo dealt with in separate articles of this rrork. It is to the physical part of the science of acoustics that the present artiele is restricted.

Part I.

General notions as to Vibrations, Waves, de.
2. We may easily satisfy ourselves that, in every instance in which the sensation of sound is excited, the body, whence the sound proceeds, must have been thrown, by a blow or other means, into a state of agitation or tremor, implying the existence of a vibratory motion, or motion to and fro, of the particles of which it consists.

Thus, if a common glass-jar be struck so as to yield an audible sound, the existence of a motion of this kind may be folt by the finger lightly applied to the edge of the glass; and, on increasing the pressure so as to destroy this motion, the soand forthwith ceases. Small pieces of cork put in the jar will be found to dance about during the continuance of the sound; water or spirits of wine poured into the glass will, under the same circumstances, exhibit a rufled surface. The experiment is usually performed, in a mose striking manner, with a bell-jar and a number of swall light wooden balls suspended by silk strings to a fixed frame above the jar, so as to be just in ecntact with the widest part of the glass. On drawing a violin bow across the edge, the pendulums are thrown off to a considerable distance, and falling back aro again repelled, \&e.

It is also in many cases possible to follow with the eye the motions of the particles of the sounding body, as, for instance, in the case of a violin string or any string fixed at both ends, when the string will appear, by a law of opties, to oceupy at onee all the positions which it successively assumes during its vibratory motion.
3. It is, moreover, essential, in order that the ear may he affected by a sounding body, that there be interposed between it and the ear one or more intermediate bodies (media), themselves capable of molecular vibration, which shall receive such motion from the source of sound, and transmit it to the external parts of the car, and especially to the membrana tympani or drum of the ear. This statement is confirmed by the well-known effect of stopping the ear with soft cotton, or other substance possessing little elasticity.

The air around us forms the most important medium of communication of sound to our organs of hearing; in fact, were air devoid of this property, we should practically be without the sense of hearing. In illustration of the part thus assigned to the atmosphere in acoustics, an apparatus has been constructed, consisting of a glass receiver, in which is a bell and a hammer connceted with elock-work, by which it can be mado to strike tho bell when required. The receiver is elosed air-tight by a metal plate, through which passes, also air-tight, into the interior, a brass rod. By properly moving this rod with the hand, a detent is released, which cheeks the motion of the wheel-work, and the lrammer strikes the bell continuously, till the detent is proshed into its original position. As long as the air in
the receiver is of the usual atmospheric density, the sound is perfectly audible. But on rarefying the air ly means' of an air-pump (the clock-work apparatus having been separated from the plate of the pump by means of a padding of soft cotton), the sound grows gradually fainter, and at last becomes inaudiblo when the rarefaction of the air has reached a very low point. If, however, at this stage of the experiment, the metal rod be brought into contact with the bell, the sound will again be heard clearly, because now there is the necessary communication with the ear. On readmitting the air, the sound recovers its original intensity. This experiment was first performed by IIawksbee in 1705.
4. Inasmuch, then, as sound necessarily implies the Laws of existence in the sounding lomly, in the air, \&c., and (wo vibratory may add) in the ear itself, of vibratory motion of the par- mevion ticles of the various media concerned in the phenomenon, a general reference to the laws of such motion is essential to a right understanding of the principles of acousties.

The most familiar instance of this kind of motion is afforded by the pendulum, a small heavy ball, for instance, attached to a fine string, which is fixed at its other end. There is but one position in which the ball will remain at rest, viz., when the string is vertical, there being then equilibrium between the two forces acting on the body, the tension of the string and the earth's attractive foree or gravity. Thus, in the adjoining fig., if C is the point of suspension, and CA the vertical through that point of length l, equal to the string, A is the equilibrium position of the particle.

Let now the ball be removed from A to P, the string being kept tight, so that P describes the arc AP of a circle of radius equal to l, and let the ball be there dropped. The tension of the string not being now directly opposite in direction to gravity (g), motion will ensne, and the body will retrace the arc PA. In doing so, it will continually increase its velocity until it reaches the point A, where its velocity will be a maximum, and

Fig. 1 will consequently pass to the other side of A towards Q. But now gravity tends to draw it baek towards A, and hence the motion becomes a retarded one; the velocity continually diminishes, and is ultimately destroyed at some point Q, which would be at a distance from A equal to that of P, but for the existence of friction, resistance of the air, \&ic., which make that distance less. From Q it will next move down with accelerated motion towards A, where it will have its greatest velocity in the direction from left to right, aud whence it will pass onwards towards P, and so on. Thus the body will vibrate to and fro on either side of A , its amplitude of vibration or distance between its extreme positionsgradually diminishing in consequence of the resistances before mentioned, and at last being sensibly reduced to nothing, the body then resuming its equilibrium-position A.

If the amplitude of vibration is restricted rithin inconsiderable limits, it is easy to prove that the motion takes place just as if the string were removed, the ball deprived altogether of weight and urged by a force directed to the point A, and proportional to the distance from that point. For then, if m be any position of the ball, the chord $m \mathrm{~A}$ may be regarded as coineident with the tangent tc. the
circle at m, and therefore as being perpendicular to $\mathrm{C} m$. Hence g, acting parallel to CA, being resolved along $\mathrm{C} m$ and $m \mathrm{~A}$, the forner component is counteracted by the tension of the string, and there remains as the only effective acceleration, the tangential component along $m A$, Which, by the triangle of forces, is equal to $g \cdot \frac{\mathrm{~A} m}{\mathrm{C} m}$ or $\frac{g}{l} \cdot \mathrm{~A} m$, ayd is therefore proportional to Am.

On this supposition of indefinitely small vibrations, the pendulum is isochronous; that is, the time accupied in passing from one extreme position to the other is the same, for a given length l of the pendulum, whatever the extent of vibration.

We conclude from this that, whatever may be the nature of the forces by which a particle is urged, if the resultant of those forces is directed towards a fixed point, and is proportional to the distance from that point, the particle will oscillate to and fro about that point in times which are independent of the amplitudes of the vibrations, provided these are very small.
5. The particle, whose vibratory motion we have been considering, is a solitary particle acted on by external forces. But, in acoustics, we have to do with the motion of particles forming a connected system or medium, ir which the forces to be considered arise from the mutual actions of the particles. These forces are in equilibrium with each other when the particles occupy certain relative positions. But, if any new or disturbing force act for a short time on auy one or more of the particles, so as to cause a mutual approach or a mutual recession, on the removal of the disturbing force, the disturbed particles will, if the body be clastic, forthwith move towards their respective positions of equilibrium. Hence arises a vilratory motion to and fro of each about a given po.nt, aualoguns to that of a pendulum, the velocity at that punt being always a maximum, alternately in opposite directions. Thus, for example, if to one extremity of a pipe containing air were applied a piston, of section equal to that of the pipe, by pushing in the piston slightly and then removing it, we should cause particles of air, forming a thin section at the extremity of the pipe, to vibzate in directions parallel to its axis.

In order that a medium may be capable of molecular ribrations, it must, as we have mencioned, possess elasticity, that is, a tendency always to return to its original condition when slightly disturbed out of it.
6. We now proceed to show how the disturbance whereby certain particles of an elastic medium are displaceis from their equilibrium-positions, is successively transmitted to the remaining particles of the medium, so as to cause these also to vibrate to and fro.

Let us consider a line of such particles y, x, a, b, , c.

$$
y \quad x a_{1} a a_{2} b c c d e f f g h \text { i } \quad i \quad l \text { me } \quad n \quad 0 \quad p
$$

equidistant from each other, as above; and suppose one of them, say a, to be displaced, by any means, to a_{1}. As we have seen, this particle will swing from a_{1} to a_{2} and back again, occupying a certain time T, to complete its double vibration. But it is obvious that, the distance between a and the next particle b to the right being diminished by the displacement of the former to a_{1}, a tendency is gencrated in b to move towards a_{1}, the mutual forees being no longer in equilibrium, but having a resultant in the direction $b a_{1}$. The particle b will therefore also suffer dispilacement, and be compelled to swing to and fro about the point b. For similar reasons the particles c, d. . . will all likewise be thrown into vibration. Thus it is, then, that the disturbance propagates itself in the direction under eonsideration. There is evidently also, in the case sup-
posed, a trausmission from a to x, y, \&ic., i.e, in the opposite direction.

Confining our attention to preseration in the direction $a b c$. . ., we have next to remark that each particle in that line will be affected by the disturbance always later than the particle immediately preceding it, so as to le found in the same stage of vibration a certain interval of time after the precediug particle.
7. Two particles which are iis the same stage of vibra. tion, that is, are equally dieplaced from their equilibriumpositions, and are moving in the same direction and with equal velocities, are said to be in the same phcise. Hence we may express the preceding statement more brieffy thus. Two particles of a disturbed mediun at different distances from the centre of disturbance, are in the same phase at difficrent times, the one whose distance from that ceutre is the greater being later than the other.
8. Let us in the meantime assume that, the intervals $a b, b c, c d \ldots$ being equal, the intervals of time which elapse between the like phases of b and a, of c and $b \ldots$ are also equal to each other, and let us consider wiat at any given instant are the appearances presented by the different particles in the row.
T being the time of a complete vibration of eacl particle, let $\frac{\mathrm{T}}{p}$ be the interval of time requisite for auy phase of u to pass on to b. If then at a certann instant α is risplaced to its greatest extent to the right, b will be somewhat shiurt of, but moving tortards, tet corremponding pusition, c sill further short, and so on. Proceeding in this way, we shals come at length to a particle p, fut which the distance $a p=p . a b$, which therefore lags in its vibrations luhind a ly a time $=\mu \times \frac{T}{p}=T$, and is consequently precisuly in the same phase as a. And between these two particles a, p, we shall evilently have partucles in ait the persstble phases of the vibratory motiou. At h, which is at distance from $a=\frac{1}{2} a p$, the difference of pluase. compared with a, will be $\frac{1}{2} \mathrm{~T}$, that is, 4 aill, at the given instant, be displaced to the groatest extent on the opposite side of its equilibrium-position from that. in which a is displaced; in other words, h is in the exactly opposite phase to a.
9. In the case we have just been considerng, the vilrations of the particles lave been supposed to take place in a direction coincident with that in whech the diffurvence passes from one particle to unuther. The vibsutions are then termed longitudinal.

But it need scarcely he observed that the ribrations may take place in any direction whatever, and may even be curviliuear. If they take place in directions at right angles to the line of prugicss of the disturbance, they are said to be transversal.
10. Now the reasoning employed in the preceding case will evidently admit of gencral application, and wiil, in particular, hold for transversal vibrations. Hence if we mark (as is done in fig. 2) the pusitions $a_{1} b_{1} c_{1} \ldots$, occupised by the warious particles, when swiuging transversely, at the instant at which a has its maximum disylacement abore its equilibrium-position, and trace a sontinuous line running through the points so found, that line will by its ordinates indicate to the cye the state of mution at the given instaut.

Fig. 2.
Thus α and p are in the same phase, as are also b and ψ, c and r, sc. a and h are in opposite phases, as are also $\dot{\Delta}$ and i, c and k, da.

Distances $a p, b q$, \&c., separating particles in the same phase, and each of which, as we have secu, is passed over by the disturbance in the time T of a complete vibration, include within them all the possible phases of the mution.

Beyond this distance, the curve repeats itsclf exactly, that is, the phases recur in the same order as before.

Now the figure so traced offers an ubvious resemblance to the undulating surface of a lake or other body of water, after it has been disturbed by wind, exhibiting a wave with its trough $\mathrm{A} h_{2} \mathrm{~B}$, and its crest $\mathrm{B} p_{1} \mathrm{C}$. Hence have been introduced into Acoustics, as also into Optics, the terms varve and undulation. The distance ap, or $b q \ldots$ or A C, which separates two particles in same phase, or which inciades both a wave-crest and a wave-trough, is termed the length of the wave, and is usually denoted by λ.

As the curve repeats itself at intervals each $=\lambda$, it follows that particles are in the same phase at any given moment, when the distances between them in the direction of transmission of the disturbance $=\lambda, 2 \lambda, 3 \lambda \ldots$ and generally $=n \lambda$, where n is any whole number.

Particles such as a and h, b and i, \&c., which aro at distances $=\frac{1}{2} \lambda$, being in opposite phases, so will also be particles separated by distance, $\frac{1}{2} \lambda+\lambda=\frac{3}{2} \lambda$, or, in general, by $\frac{1}{2} \lambda+m \lambda=(2 m+1) \frac{\lambda}{2}$, that is, by any odd multiple of $\frac{\lambda}{2}$.

Wave of velocities

Waves for
lougitu.
dinal vibrations
11. A like construction to the one just adopted for the displacements of the particles at any given instant, may be also applied for exhibiting graphically their velocities at the same instant. Erect at the various points $a, b, c, d c$., perpendiculars to the line joining them, of lengths proportional to and in tho direction of their velocities, and draw a line through the extreme points of these perpendiculars; this line will answer the purpose required. It is indicated by dots in the previous figure, and manifestly forms a wave of the same length as the wave of displacements, but the highest and lowest points of the one wave correspond to the points in which the other wave crosses the line of equilibrium.
12. In order to a graphic representation of the displacements and velocities of particles vibrating longitudinally, it is convenient to draw the lines which represent those quantitics, not in the actual direction in which the motion takes place and which coincides with the line $a b c \ldots$, but at right angles to it, ordinates drawn upwards indicating displacements or velocities to the right (i.e., in the direction of transmission of the disturbance), and ordinates drawn downwards indicating displacements or relocities in the opposite direction. When this is done, waves of displacement and relocity are figured identically with those for transversal vibrations, and are therefore subject to the same resulting laws.
13. But not only will the abore waves enable us to sce at a glance the circumstances of the vibratory motion at the instant of time for which it has been constructed, but alwo for any subsequent moment. Thus, if we desire to consider what is going on after on interval $\frac{T}{p}$, we have simply to conceive the whole wave (whether of displacement or velocity) to be moved to the right through a distance $=a b$. Then the state of motion in which a was before will have been transferred to b, that of b will have been transferred to c, and so on. At the cnd of another such interval, the state of the particles will in like manner be represented by the wave, if pushed onward through another equal space. In short, the whole cireumstances may be pictured to the cye by two waves (of displacement
and of velocity) advancing continuously in the line $a b c \ldots$ with a relocity V which will take it orer the distanco $a b$ in the time $\frac{T}{v}, V^{\prime}$ being therefore $=\frac{a b}{\frac{T}{p}}=\frac{p \cdot a b}{T}=\frac{A C}{T}$ or $V=\frac{\lambda}{T}$.

This is termed the velocity of prnnngation of the mave, and, as we see, is cqual to the length of the wave divided by the time of a complete vibration of cach particle.

If, as is ustually more convenient, Te express T in terms of the number n of complete ribrations performed in " given time, say in the unit of time, we shall have $\frac{1}{T}=n$. and bence

$$
\mathrm{V}=n \lambda
$$

14. There is one very important distinction between the troo cases of longitudinal and of trausversal vibrations which now claims our attention, viz., that whereas vilrations of the latter kind, when propagated from particle to particle in an clastic medium, do not alter the relative distances of the particles, or, in other words, cause no change of density throughout the medium; longitudinal vibrations, on the other hand, by bringemg the particles nearer to or further from one another than they are when undisturbed, are necessarily accompanied by alternate condensatious and rarcfactions.

Thus, in fig. 2, we see that at the instant to which that fig. refers, the displacements of the particles immediately adjoining α are equal and in the same direction; hence at that moment the density of the medium at a is equal to that of the undisturbed medium. The same applics to the points h, p, $f c$., in which the displacements are at thein maxima and the velocities of vibration $=0$.

At. any point, such as c, between a and Λ, the displacements of the two adjoining particles on cither side are both to the right, but that of the preceding particle is now the greater of the two, and hence the density of the medium throughout $a \mathrm{~A}$ exceeds the undisturbed density. So at any point, such as f, hetween A and. h, the same result holds good, becauso now the displacements are to the left, but are in excess on the right side of the point f. Frem n to h, therefore, the medium is condensed.

From h to B, as at k, the displacements of the t mo particles on either side are both to the left, that of the proceding particle being, however, the greater. The medium, thereforc, is here in a state of rarcfaction. And in like manner it may be shown that there is rarefaction from B to p; so that the medium is rarefied from h to p.

At A the condensation is a maximum, because the displacenzents on the two sides of that point are equal and both directed torvards A. At B, on the other hand, it is the rarefaction which is a maximum, the displacements on the right and left of that point being again cqual, lut directed outwards from B.
It clearly follows from all this that, if we trace a curve of which any ordinate shall be proportional to the difference between the density of the corresponding point of the disturbed medium and the density of the undisturbed medium-ordinates drawn upwardsindicating condensation, and ordinates drawn downwards rarefaction-that curve will cross the line of rest of the particles $a b c \ldots$ in the same points as does the curve of relocities, and will therefure be of the same length λ, aud will also rise above that line and dip below it at the same parts. But the connection between the wave of condensation and rarefaction and the ware of velocity, is still mure intiniale, when the extent to which the particles are displaced is very small, as is always the case in acoustics. For it may be shown that then the degrce of condensation or rarefaction at any foint of the medium is proportional to the velocity of vibration at that point. The same ordinates, therefore, will repro
seut the dogrecs of condensation, which represent the selocities, or, in other words, the wave of condensation and rarefaction may be regarded as coincident with the velocity wave.

Part II.

Felocity of propagation of waves of Tonsitudinau disturbance through any elastic medium.
1 15. Sir Isaac Nenton was the first who attempted to determiue, on theoretical grounds, the velocity of sound in air and other fluids. The formula obtained by him gives, however, a numerical value, as regards air, falling far short of the result derived from actual experiment; and it was not till long afterwards, when Laplace took up the question, that complete coincidence was arrived at between theory and observation. We are indebted to the late Professor Tankine, of Glasgow (Phil. Trans. 1870, p. 277) ${ }^{1}$, for a very simple and elegant investigation of the question, which we will here reproduce in an abridged form.
Let us conceive the longitudinal disturbance to be propagated through a medium contained in a straight tube having a transverse section equal to unity, but of indefinite length.

Let two transverse planes $A_{1} A_{2}$ (fig. 3) be conceived
as moving along the interior of the tube in the same direction and with the same velocity V as the disturbance-wave itself.

Fig. 3.
Let $u_{1} u_{2}$ be the velocities of displacement of the particles of the medium at $A_{1} A_{2}$ respectively, at any given instant, estimated in the same direction as V ; and $\rho_{1} \rho_{2}$ the correeponding densities of the medium.

The disturbances under consideration, being such as preserve a permanent type throughout their propagation, it follows that the quantity of matter betreen A_{1} and A_{2} remains constant during the motion of these planes, or that as much must pass into the intervening space through one of them as issues from it through the other. Now at A_{1} the velocity of the particles relatively to A_{1} itself is $\mathrm{V}-u_{1}$ invards, and consequently there flows into the space $A_{1} A_{2}$ through A_{1} a mass $\left(\mathrm{V}-u_{1}\right) \rho_{1}$ in the unit of time.
Forming a similar expression as regards A_{2}, putting m for the invariable mass through which the disturbance is propagated in the unit of time, and considering that if ρ denote the density of the undisturbed medium, m is eridently equal to $\nabla \rho$, we have-

$$
\begin{equation*}
\left.\mathrm{V}-u_{\mathrm{t}}\right) \rho_{1}=\left(\mathrm{V}-v_{2}\right) \rho_{2}=\mathrm{V} \rho=m . \tag{1.}
\end{equation*}
$$

Now, $p_{1} p_{2}$ being the pressures at A_{1}, A_{2} respectively, and therefore $p_{2}-p_{1}$ the force generating the accelcration $u_{2}-u_{1}$, in unit of time, on the mass m of the medium, by the second law of motion,

$$
\begin{equation*}
p_{3}-p_{1}=m\left(u_{2}-u_{1}\right) \tag{2.}
\end{equation*}
$$

Eliminating u_{1}, u_{3} from these equations, and putting for $\frac{1}{\rho_{1}}, \frac{1}{\rho_{2}}, \frac{1}{\rho}$ the symbols s_{1}, s, s (which therefore denote the volumes of the unit of mass of the disturbed medium at A_{1}, A_{2}, and of the undisturbed medium), we get:

$$
m^{2}=\frac{p_{2}-p_{1}}{s_{1}-s_{2}} \text { and } \mathrm{V}^{2}=s^{2} \frac{p_{2}-p_{1}}{s_{1}-s_{3}}
$$

Now, if (as is generally the case in sonnd) the changes of pressure and volume occurring during the disturbance of the medium are very small, we may assume that these changes are proportional one to the other. Hence, denoting the ratio which any increase of pressure bears to the diminution of the unit of volume of the substance, and
' See also Maxwell Theory of पeat, f. 203.
which is termed the elasticty of the substarice, by e, wo shall obtain for the relecity of a wave of longitudinal displacerients, supposed small, the equation:

$$
\left.\begin{array}{rl}
\mathrm{V} & =\sqrt{\frac{c s}{e}} \tag{I.}\\
\text { or } \mathrm{V} & =\sqrt{\frac{e}{0}}
\end{array}\right\}
$$

16. In applying this formula to the determination of the relocity of sound in any particular medium, it is requisite, as was shown by Laplace, to take into account the thermic (ffects produced by the condensations and rarefactions which, as we have seen, take place in the substance. The heat generated during the sudden compression, not being conveyed away, raises the value of the elasticity above that which otherwise it mould have, and which was assigned to it by Sir Isaac Newton.

Thus, in a perject gas, it is demonstrable by the prity ciples of Thermodynanics, that the elasticity e, which, in the undisturbed state of the medium, would be simply equal to the pressure p, is to be made equal to γp, where y is a number exceeding unity and represents the ratio of the specific heat of the gas under constant pressure to its specific heat at constant volume.

Hence, as air and most other gases may be practically regarded as perfect gases, we have for them:

$$
\begin{equation*}
V=\sqrt{\gamma p^{p}}=\sqrt{\frac{p}{p}} \tag{II}
\end{equation*}
$$

17. From this the following inference may be drawn:- Velocity od The velocity of sound in a given gas is unaffected by change of pressure if unattended by change of temperature. For, by Boyle's law, the ratio $\frac{p}{\rho}$ is constant at a given temperature. The accuracy of this inference has been confirmed by recent experiments of Regnault.
18. To ascertain the influence of change of temperature Effect of on the velocity of sound in a gas, we remark that, by Gay change of Lussac's law, the pressure of a gas at different tempera- teniperatures varies proportionally both to its density ρ and to tare $1+a t$, where t is the number of degrecs of temperature above freezing point of water (32° Fahr.), and ais the expansion of unit of volume of the gas for every degree above. 32°.
If, therefore, p, p_{0}, ρ, ρ_{0} denote the pressures and densities corresponding to temperaturcs $32^{\circ}+t^{\circ}$ and 32°, we have:

$$
\frac{p}{p_{0}}=\frac{p}{p_{0}}(1+a t)
$$

and hence, denoting the corresponding velocities of sound by V, V_{0}, we get:

$$
\stackrel{\nabla}{\overline{\mathrm{V}}_{0}}=\sqrt{ }(1+a t)
$$

whence, a being always a very small fraction, is obtained very nearly:

$$
\frac{\mathrm{V}}{\mathrm{~V}_{0}}=1+\frac{\alpha}{2} t \text { and } \mathrm{V}-\mathrm{V}_{0}=\frac{\alpha}{2} \cdot t \cdot \mathrm{~V}_{0^{\circ}}
$$

The velocity increases, therefore, by $\frac{a}{2} V_{0}$ for cvery dogree of rise of temperature above 33°.
19. The general expression for V given in (II.) may be inother put in a different form : if we introduce a height H of the express!or put in a different form: if we introduce a height H of the for V . gas, regarded
everting the
ressure p, then $p=g \rho H$, where g is the acceleration of grarity, and there results:

$$
\begin{equation*}
\mathrm{V}=\sqrt{2 g \mathrm{H}} \tag{III.}
\end{equation*}
$$

Now $\sqrt{g \mathrm{H}}$ or $\sqrt{29 \cdot \frac{\mathrm{H}}{2}}$ is the veiocity U which would be acquired by a body falling in vacuo from a height $\frac{5}{3}$ Hence $\mathrm{V}=\mathrm{U} \sqrt{ }$.

If y wero equal to $1, \Gamma=U$, which is the result obtained by Newton, and would indicate that the velocity of sound in a gas equals the vclocity of a body falling from a height equal to balf of that of a homogeneous atmosphere of the gas.
20. In common dry air at 32° Fahr., g being $32 \cdot 2 \mathrm{ft}$., and the mercurial barometer 30 ins or 2.5 ft ., the density of air is to that of mercury as $1: 10,485 \cdot 6$; bence H. $10,458 \cdot 6 \times 2.5 \mathrm{ft}=26,214 \mathrm{ft}$.
and, by $\S 18$, the inerease of veloeity for each degree of rise of temperat $1 \frac{1}{9} \mathrm{ft}$. very nearly.
21. If the value of γ were the same for different gases, it is obrious from formula $\Gamma=\sqrt{\gamma \frac{p}{p}}$ that, at a given temperature, the velocities of sound in those gases would be to each other inversely as the square roots of their densities. Regnault has found that this is so for common air, carbonic acid, nitrous oxide, hydrogen and ammoniacal gas (though less so as regards the two last).
22. The experimental determination of the velocity of mond in air has been earried out by aseertaining accurately the time intervening between the flash and report of a gun as observed at a given distance, and dividing the distance by the time. A discussion of the many experiments condueted on this principle in varions countrics and at various periods, by Yan Der Kolk (Lond. and Edin. Phil. Mag., July 1865), assigns to the velocity of sound in dry air at 32° Falle., 1091 ft .8 in . per second, with a probable crror of $\pm 3.7 \mathrm{ft}$. ; and still more recently (in 1871) Mr Stone, the Astronomer Royal at the Cape of Good Hope, has found 1090.6 as the result of eareful experiments by himself there. The eoincidence of these numbers with that we have already obtained theorctically sufficiently establishes the general accuracy of the theory.
23. Still it cannot be overlooked that the formula for V is founded on assumptions which, though approximately, gre not strietly correct. Thus, the air is not a perfect gas, nor is the variation of clastie force, caused by the passage through it of a wave of disturhance always very small in comparison with the elastic foree of the undisturbed air. Earnshaw (1858) first drew attention to these points, and came to the cotclnsion, that the relocity of sound increases with its londness, that is, with the riolence of the disturbance. In confirmation of this statement, he appeals to a singular fact, viz., that, during experiments made by Captain Parry, in the North Polar Regions, for determining the velocity of sound, it was invariably found that the report of the discharge of cannon mas heard, at a distance of $2 \frac{1}{2}$ miles, perceptibly earlicr than the sound of the mord fire, which, of course, preceded the discharge.

As, in the course of propagation in unlimited air, there is a gradual decay in the intensity of sound, it would follow that the velocity must also gradually decrease as the sonnd proceeds onwards. This curious inference has been verified experimentally by Regrault, who found the velocity of sound to have decreased by 2.2 ft . per second in passing from a distance of 4000 to one of 7500 feet.
24. Among other interesting results, derived by the securate metheds allopted-by Regnault, but Thich want of space forbids us to describe, may be mentioned tho dependence of the velocity of sound on its pitch, lower notes being, cat. par., transmitted at a more rapid rate than higher ones. Thus, the fundamental note of a trumpet travels feater than its harmonics.
25. The re'ncity of sound in liquide s.nd solius ? the ris placements being longitudinal), may beobtained by formuta (I.), neglecting the thermic effects of the compressions and expansions as being comparatively inconsiderable, and may be put in other forms:

Thus, if we denote by the change in length of se foot of a column of the substance produced by its own meight w, then e being $=\frac{w}{2}$ or $\frac{g \rho}{\varepsilon}$, we have $\frac{e}{\rho}=\frac{g}{}$ and hence:

$$
\begin{equation*}
\nabla=\sqrt{\circ} \tag{IV.}
\end{equation*}
$$

or, replacing $\frac{1}{2}$ (which is the length in feet of a column that would be increased 1 foot by the weight of 1 cubio foot) by l,

$$
\begin{equation*}
V=\sqrt{g l} \tag{V.}
\end{equation*}
$$

which shows that the relocity is that due to a fall through $\frac{l}{2}$.
Or, again, in the case of a liquid, if η denote the change of volume, which would be produced by an increase of pressure equal to one atmosphere, or to that of a column H of the liquid, since t is the change of rolume due to weight of a column 1 of the liguid, and $. \therefore \frac{n}{2}=\frac{11}{2}$ and $\frac{1}{1}$ $=\frac{H}{n}$, we get

$$
V=v^{\prime} \frac{g H}{n}
$$

Ex. 1. For water, $\frac{1}{n}=20,000$ very nearly; $\mathrm{B}=34 \mathrm{ft}$ and henco $\mathrm{V}=4680$ feet.
This number coincides rery closely with tho value obtained, whether by direct experiment, as by Coliaion and Sturm on the Lake of Genera in 1826, who found 4708 , or by indirect means. Which assign to the relocity in the water of the River Seine at 50° Fahr. a velocity of 4714 fto (Wertheim).
Ex. 2. For iron. Let the weight necossary to dow je the length of an iron bar be $4 \leq 00$ millions of lis. ois the square foot. Ther a length l will bo extended to $l+l$ by a force of $\frac{4260 \text { millions lbs. }}{l}$ on the sq. ft . This, theref re, by our definition of l, must be the weight of a cubic soot of the iron. Assuming the density of iron to be $7 \cdot 8$, and 62.32 lbs . as the weight of a cubic foot of water, we got 7.8×62.32 or 486 lbs . as the weight of an equal bulz of iron. Hence $\frac{4260 \text { millions }}{l}=486$ and $l=\frac{4260}{456}$ millicns,

$$
\text { which gives } V=\sqrt{g l}=\sqrt{\frac{32 \cdot 2 \times 4260}{486} \text { millions }}
$$

$$
=\sqrt{\frac{4260}{15}} \times 1000=1000 \sqrt{284}
$$

or $\mathrm{V}=17,000$ feet per seccad nearly.
As in the case of water and iron, so, in general, it mag be stated that sound travels faster in liquids than in air, and still faster in eolids, the ratio $\frac{e}{\rho}$ being least in gases and greatest in solids.
26. Biot, about 50 years ago, arailed bimself of the Expen. great difference in the velocity of the propagation of sound mental d through metals and through air, to determine the ratio of termina: the one relocity to the other. A bell placed near one ex- tion of v tremity of a train of iron pipes forming a joint length of in solida npwards of 3000 feet, being struck at the same instant of the same extremity of the pipe, a person placed at the other extremity heard first the somnd of the blow on the pipe, conveyed through the aron, and then, after an intervai
of time, which was noted as accurately as possible, the sound of the bell transmitted through the air. The result was a velocity for the irca of 10.5 times that in air. Similar experiments on iron telegraph wire, made more recently near Paris by Wertheim and Brequet, have led to an almost identical nomber. Unfortunately, owing to the metal in those experiments not forming a continuous whole, and to other causes, the results obtained, which fall short of those otherwise found, cannot be accepted as correct.

Other means therefore, of an indirect character, to which we will refer bereafter, have been resorted to for determining the velocity of sound in solids. Thus Wertheim, from the pitch of the lowest notes produced by longitudinal friction of wires or rods, has been led to assign to that velocity values ranging, in different metals, from 16,822 feet for iron, to 4030 for lead, at temperature 68° Fahr., and which agree most remarkably with those calculated by means of the formula $V=\sqrt{\frac{e}{\rho}}$. He points out, however, that these values refer only to solids whose cross dimensions are small in comparison with their length, and that in order to obtain the velocity of sound in an unlimited solid mass, it is requisite to multiply the value as above found by $\sqrt{\frac{3}{2}}$ or $\frac{5}{3}$ nearly. For while, in a solid bar, the extensions and contractions due to any disturbance take place laterally as well as longitudinally ; in an extended solid, they can only occur in the latter direction, thus increasing the value of e.
27. To complete the discussion of the relocity of the propagation of sound, we have still to consider the case of transyersal vibrations, such as are executed by the points of a stretched wire or cord when drawn out of its position of eest by a blow, or by the friction of a violin-bow.

Fig. 4.
locity of pagsa of nsversal
अations. turbed, mnp when displaced. We will suppose the amount of displacement to be very small, so that we may regard the distance between any two given points of it as remaining the same, and also that the tension P of the string is not changed in its amount, but only in its direction, which is that of the string.

Take any origin 0 in ox; and $a b=b c=d x$ (a rery small quantity), then the perpendiculars $a m, b n, c p$, are the displacements of $a b c$. Let k, l be the middle points of $m n$, $n p$; then $k l$ (which $=m n$ or $a b$ very nearly) may be regarded as a very small part of the string acted on by two forces each - P , and acting at n in the directions $n p, n m$. These give a component parallel to $a c$, which on our supposition is negligible, and another F along $n b$, such that

$$
\mathrm{F}=\mathrm{P}\left(\sin \theta-\sin \theta^{\prime}\right)=\mathrm{P} \cdot\left(\frac{n q}{m n}-\frac{p r}{n q}\right)=\mathrm{P} \cdot \frac{n q-p r}{\partial x} .
$$

Now if $c=a$ length of string of weight equal to P, and the string be supposed of uniform thickness and density, the weight of $H=\frac{P}{c} \cdot k=\frac{P}{c} \cdot \delta x$, and the mass m of $k l=$ $\frac{\mathrm{P}}{\mathrm{gc}} \delta \delta$.
Hence the acceleration f in direction $n b$ is-

$$
f=\frac{\mathrm{F}}{m}=g c \frac{n q-p r}{i c^{2}}
$$

If we denote $m a$ by y, oa by x, and the time by t, we shall readily see that this equation becomes ultimately,

$$
\frac{d^{2} y}{d t^{2}}=g c \frac{d^{2} y}{d x^{2}}
$$

which is satisfied by putting

$$
y=\phi(x+\cdot \sqrt{g c} . t)+\psi(x-\sqrt{g c} . t)
$$

where ϕ and ψ indicate any functions.
Now we know that if for a given value of t, x be in. creased by the length λ of the wave, the value of y remains unchanged; hence,

$$
\phi(x+\sqrt{g c .} t)+\& c .=\phi(x+\lambda+\sqrt{g c .} t) d c
$$

But this condition is equally satisfied for a given rasue of x, by increasing $\sqrt{g c_{0}} t$. by λ, i.e., increasing t by $\frac{\lambda}{\sqrt{g c}}$. This therefore must $=T$ (the time of a complete vibratiou of any point of the string). But $V=\frac{\lambda}{T}$. Hence,

$$
\mathrm{V}=\sqrt{g c} \cdot \cdot \cdot \cdot \cdot(\mathrm{~V} \Pi .)
$$

is the expression for the velocity of sound when due to very small transversal vibrations of a thin wire or chord, which velocity is consequently the same as would be acquired by a body falling through a heigbt equal to one half of a length of the chord such as to hare a weight equal to the tension.

The above may also be put in the form-

$$
\mathrm{V}=\sqrt{\frac{g \mathrm{P}}{w}}
$$

where P is the tension, and w the weight of the unit of length of the chord.
28. It appears then that while sound is propagated by Comparn longitudinal vibrations through a given substance with the son of V same velocity under all circumstances, the rate of its trans- for trans mission by transversal vibrations through the same sub- forsal anm stance depends on the tension and on the thickness. The tudinal former velocity bears to the latter the ratio of $\sqrt{l}: \sqrt{c}$, vibration (where l is the length of the substance, which would bs lengthened one foot by the weight of one foot, if we take the foot as our unit) or of $\sqrt{\frac{l}{c}}: 1$, that is, of the square root of the length which would be extended one foot by the weight of c feet, or by the tension, to 1. This, for ordinary tensions, results in the velocity for longitudinal vibrations being very much in excess of that for transversal vibrations?
29. It is a well known fact that, in all but very exceptional cases, the loudness of any sound is less as the distance increases between the source of sound and the ear. intensitf The law according to which this decay takes place is the sounds same as obtains in other natural phenomena, viz., that in an unlimited and uniform medium the loudness or intensity of the sound proceeding from a rery small sounding body (strictly speaking, a point) varies inversely as the square of the distance. This follows from considering that the ear AC receives only the conical portion OAC of the whole volume of sound emanating from O , and that in order that an ear BD, placed at a greater distance from O , may admit the same quantity, its area must be to that of AC : as OB^{2} : $O A^{2}$. But if $A^{\prime}=A C$ be situated at same dis-

Fig. 5.
tance as BD , the amount of sound received by it and by BD (and therefore by AC) will be as the area of A^{1} or AC to that of BD. Hence, the intensities of the sound as
heard by the same car at the distances $O A$ and $O B$ are to each other as OB^{2} to OA^{2}.

Infaence of

 IIminished lensity of the arr on intensity of mund.30. In orde- to verify the abovo law when the atmo sphere forms the intervening medium, it would be necessary to test it at a considerablo eleration above the earth's surface, the ear and the source of sound being separated by air of constant density. As the density of the air diminishes, we should then find that the loudness of the -sound at a given distance mould decrease; as is the case in the air-pump experiment previously described. This arises from the decrease of the quantity of matter impinging on the ear, and the consequent diminution of its vis-viva. The decay of sound due to this cause is obserrable in tho rarefied air of high mountainous regions. De Saussure, the celebrated Alpine traveller, mentions that the report of a pistol at a great elevation appeared no louder than would a small cracker at a lower level.

But it is to be remarked that, according to Poisson, when air-strata of different densities are interposed between the source of sound and the ear placed at a given distance, the intensity depends only on the density of the air at the source itself; whence it follows that sounds proceeding from the surface of the earth may bo heard at equal distances as distinctly by a person in a floating balloon as by one situated on the surface itself; whereas any noise origimating in the balloon would be heard at the surface as faintly as if the ear wero placed in the rarefied air on a level with the balloon. This was exemplified during a halloon ascent by Claisher and Coxwell, who, when at an elevation of 20,000 feet, heard with great distinctness the whistle of a locomotive passing beneath them.

Part III.

Reflexion and Refraction of Sound.

Laws of refraction

Refraction in to or from the normal ac. cording to relative values of the relocrties.
Limiting anyle and total rofedon.
31. When a wave of sound travelling through one medium meets a second medium of a different kind, the vibrations of ite own particles are communicated to the particles of the new medium, so that a wave is excited in the latter, and is propagated through it with a velocity dependent on the density and elasticity of the second medium, and therefore differing in general from the previous velocity. The direction, too, in which the new mave travels is different from the previous one. This change of direction is termed refraction, and takes place according to the same laws as does the refraction of light, viz., (1.) The new direction or refracted ray lies always in the plane of incidence, or plane which contains the incident ray (i.e., the direction of the mave in the first medium), and the normal to the suriace separating the two medis, at the point in which the incident ray meets it; (2.) The sine of the angle between the normal and the incident ray bears to the sine of the angle between the normal and the refracted ray, a ratio which is constant for the same pair of media.

For a theoretical demonstration of these laws, we must refer to the art. Op=ICS, where it will be shown that the ratio inrolved in the second law is always equal to the ratio of the velocity of the wave in the first medium to the velocity in the second; in other words, the sines of the angles in question are zirectly proportional to the velocities.
32. Hence sonorous myss, in passing from one medium fnto another, are bent in towards the normal, or the reverse, according as the velocity of propagation in the former exceeds or falls short of that in the latter. Thus, for instance, scand is refracted tovards the perpendicular when passing into air from water, or into carbonic acid gas from air ; the converse is the case when the passage takes place the opposite way.

Fig. 6.
33. It further follow, as in the analogous case of light,
that thero is a certain oangle termed the limiting angle, whoso sine is found by dividing the less by the greater velocity, such that all rays of sound mecting the surfaco separating two different bodies will not pass onward, but suffer total reflexion back into the first body, if the velocity in that body is less than that in the other body, and if tho angle of incidenco excceds the limiting angle.

The velocities in air and water being respectively 1090 and 4700 feet, the limiting angle for theso media may bo casily shown to be slightly above $15 \frac{1}{2}^{\circ}$. Hence, rays of sound proceeding from a distant source, and therefore nearly parallel to each other, and to PO (fig. 6), the angle POM being greater than $15 \frac{1}{2}^{\circ}$, will not pass into tho water at all, but suffer total reflexion. Under such circumstances, the report of a gun, however powerful, would be inaudiblo by an ear placed in the water.
34. As light is concentrated into a focus by a conver Acoustue glass lens (for which the velocity of light is Icss than for lense, the air), so sound ought to be made to converge by passing through a convez lens formed of carbonic acid gas. On the other hand, to produce convergence with water or hydrogen gas, in both which the velocity of sound exceeds its rate in air, the lens ought to be concare. These results have been confirmed experimentally by Sondhaus and Hajech, who also succeeded in verifying the law of tho equality of tho index of refraction to tho matio of the veloeities of sound.
35. When a wave of sound falls on a surface separating Laws of two media, in addition to the refracted wave transmitted rellexion. into tho new medium, which we have just been considering, there is also a fresh wave formed in the new medium, and travelling in it in a differcnt direction, but, of course, with the same velocity. This reflected wave is subject to the same laws as regulate the reflexion of light, viz., (1.) the coincidence of the planes of incidence and of reflexion, and (2.) the equality of the angles of incidence and reflexion, that is, of the angles made by tho incident and reflected rays with the normal.
36. As in an ellipse (fig. 7), the normal PG at any point Reflerion bisects the angle SPH (S, H being the foci), rays of sound diverging from S, and falling on the spheroidal surface formed by the revolution of the ellipse about the longest diameter AB , will be reflected to H. Also, since SP

Fig. 7. +PH is always $=\mathrm{AB}$, the times in which the different rays will reach II will all be equal to each other, and bence a crash at S will be heard as a crash at H .
37. At any point P of -a parabola (fig. 8) of which S is Refleatco tho focus, and $A X$ the axis, the normal ,PG bisects the by parto
anglo SPX, PX being dramn parallel to AX.

Henco rays of sound diverging from S, and falling on the paraboloid formed by the revolution of the parabola about its axis, will all be reflected in directions parallel to the aris. And vice verua rays of sound $X P, X Q$,

Fig. 8. sic., from a very distant source, and parallel to the axis of a paraboloid, will be reflected into the focus. Con sequently, if two reflecting paraboloids be placed at a considerable distance from and opposite to each other, with their axis coincident in direction (fig. 9), tho tick of a satch placed at the focus S of one will be heard dip tinctly by nn ear at S^{\prime} the focus of the other.
38. As a luminous object may give a succession of images when placed between two or more reflecting surfaces, so also in like circumstances may a sound suffer repetition.

To these principles are easily traceable all the peculiarities of echoes. A vall or steep cliff may thus send back, somewhat reduced in intensity, a shout, the report of a pistol, \&c. The time

Fig. 9. which elapses between the sound and its echo may be easily deduced from the known velocity of sound in air, if tae distance of the wall be given. Thus, for a distance of 37 yards, the interval will be fonnd by dividing the clouble of that or 74 yards by 370 yards, the velocity of sound at 50° Fahr., to amount to $\frac{1}{6}$ of a second. Hence, if we assume that the rate at which syLables can be distinctly uttered is five per second, the wall must be at a distance exceeding 37 yards to allow of the echo of a word of one syllable reaching the ear after the word has been uttered 74 yards for a word of two syllables, and so on.
If the reffecting surface consists of one or more walls, cliffs, \&c., forming together a near approach in shape to that of a prolate spheroid or of a double parabolic surface, then tro points may be found, at one of which if a source of sound be placed, there will be produced, by convergence, a distinct echo at the other. As examples of this lay be mentioned the whispering gallery in St Paul's, Iondon, and the still more remarkable case of the Cathedral of Girgenti in Sicily mentioned by Sir John Herschel.
39. On similar principles of repeated reflusion may be explained the well-known fact that sounds may be conveyca to great distances with remarkably slight loss of intensity, on a level piece of ground or smooth shect of water or ice, and still more so in pipes, chimneys, tumnels, Sc. Thus, in one of Captain Parry's Polar expedjtions, a conversation was on one occasion carried on, at a distance of $1 \frac{1}{4}$ mile, between two individuals separated by a frozen sheet of water. M. Biot heard distinctly from one end of the train of pipes of a mile long, previously referred to. a low whisper proceeding from the opposite end.

Practical illustrations are afforded by the system of communication by means of tubing now so extensively adopted in public and private buildings, and by the speaking trumpet and the par irumpet.
40. The prolonged roll of thunder, with its manifold varieties, is partly to be ascribed to reflecion by mountains, clouds, dc. ; but is mainly accounted for on a different acoustic principle, viz., the comparatively low rate of transmission of sound through air, as was first shown by Dr Hooke at the close of the 17th century. The explanation will be more easily understood by adverting to the case of a volley fired by a long line of troops. A person situated at a point in that line produced, will first it is evident hear the report of the nearest musket, followed by that of the one following, and so down to the last one in the line, which will close the prolonged roll thus reaching his ear; and as each single report will appear to him less intense according as it proceeds from a greater distance, the roll of musketry thus heard will be one of gradually decreasing loudress. But if he were to placc himself at a relatively great distance right opposite to the centre of the line, the separate reports from each of the two wings would reach him nearly at the same moment, and hence the sound of the rolley would now approach more nearly to that of a single loud crash. If the live of
soldiers formed an arc of a circle having its centre in his position, then the distances gone over by the separate reports being equal, they would reach his ear at the same absolute instant of time, and with exactly equal intensities; and the effect produced would be strictly the same as that of a single explosion, eqnal in violence to the sum of all the separate discharges, nccurring at the same distance. It is easy to see that, by varying the form of the line of troops and the position of the observer, the sonorous effcet will be diversified to any extent desired. If then we keep in view the great diversity of form exhibited by lightning-lashes, which may bo regarded as being lines, at the points of which are generated explosions at the same instant of time, and the variety of distance and relative position at which the observer may bo placed, we shall feel no difficulty in accounting for all those aconstic pheno mena of thunder to which Hooke's theory is applicable.

Part IV.

The Principles of Musical Harmony.

41. A few words on the subject of musical hurmony must be introduced here for the inmediate purposes of this article, further details being reserved for the special article on that subject.
Sounds in general exhibit three diffcrent qualities, so far as their effect on the car is concerned, viz., loudness, pitch, and timbre.
Londness depends, coet. par., on the violence with which Loudness the vibrating portions of the ear are excited; and there- uepenis on fore on the extent or amplitude of the vibrations of the exteut of body whence the sound proceeds. Hence, after a bell has been struck, its effect on the ear gradually diminishes as its vibration becomes less and less extensive. By the theory of vibrations, loudness or intensity is measured by the vis-viva of the vibrating particles, and is consequently proportional to the square of their maximum velocity or to the square of their maximum disolacement. Helmholtz, however, in his remarkable work on the perception of tone, observes that notes differing in pitch difficr also in loudness, where their vis viva is the same, the higher note always exhibiting the greater intensity.
42. Difference of pitch is that which finds expression in Mitch dethe common terms applied to notes: Acute, shrill, high, nends or sharp, grave, deep, low, flat. We will point out presently in rapidity of what manner it is established that this quality of sound dopends on the rapidity of vibration of the particles of air in contact with the external parts of the ear. The pitch of a note is higher in proportion to the number of ribrations of the air corresponding to it, in a given time, such as one second. If n denote this number, then, by $\S 13, n=\frac{\mathrm{V}}{\lambda}$, and hence, ∇ being constant, the pitch is higher the leas the length λ of the wave.
43. Timbre, or, as it is termed by German authors, Timbm Zlang-farbe, readered by Tyndallinto clang-colour or clangtint, but foi which we would substitute the expression acoustic colour, deuotes that neculiarity of impression produced on the ear by sounds otherwise, in pitch, loudness, \&c., alike, whereby they are recognisable as different from each other. Thus human roices are readily interdistinguishable; so are notes of the same pitch and intensity, produced by different instruments. The question whence arises this dis. tinction must be deferred for the present.
44. Besides the three qualities above mentioned, there exists another point in which sounds may be distinguished among each other, and which, though perhaps reducible to differcnce of timbre, requires some special remarks, viz., that by which sounds are characterised, either as noises on as musicat notes. A musical note is the result of atgular,
pariodic vibrations of the air-particles acting on the car, and thereforo also of the body whence they preceed, each particle passing through the same phase at stated intervals of time. On the other hand, the motion to which noise is due is irregular and flitting, alternately fast and slow, and creating in the mind a bewildering and confusing effect of a more or less unpleasant elaracter. Noise may also be produced by combining in an arbitrary manner several musical notes, as when one leans with the fore-arm against the koys of a piane. In fact, the composition of regular periodic motious, thus effected, is equivalent to an irregular motion.
45. We now proceed to state the laws of musical harmony, and to describe certain instruments by means of which they admit of being experimentally established. The chief of these laws are as follow:-
(1.) The notes employed in musie alw:ays correspond to certain definite and invariable ratios between the numbers of vibrations performed in a given time by the air when conveying theso notes to the ear, and these ratios are of a very simple kind, being restricted to the various permutations of the first four orime numbers $1,2,3,5$, and their powers.
(2.) Two notes are in unison whose corresponding vibrations are exceuted exactly at tho same rate, or for which (denoting by $n_{1} n_{1}$ the numbers per second) $\frac{n_{1}}{n}=1$. This atio or interval (as it is termed) is the simplest possible.
(3.) The next interval is that in which $\frac{n_{1}}{n}=2$, and is termed the octave.
(4.) The interval $\frac{n_{1}}{n}=3$ is termed the twelfth, and if we rednco the higher note of the pair by an $8^{v o}$, i.e., divide its number of vibrations by 2 , we obtain the interval $\frac{n_{2}}{n}=\frac{3}{2}$, designated as the interval of the fifth.
(5.) The interral $\frac{n_{1}}{n}=.5$ las no particular name attached to it, hut if we lower the higher note by two $8^{\text {rew }}$ or divide n_{1} by 4 , we get the interval $\frac{n_{3}}{n}=\frac{6}{4}$, or the interval of the major third.
(G.) The interval $\frac{n_{1}}{n}=\frac{5}{3}$ is termed the maior sixth.
(7.) The interval $\frac{n_{1}}{n}=\frac{2 \times 3}{5}=\frac{6}{5}$ is termed the minor third.
(8.) The interval $\frac{n_{3}}{n}=\frac{2 \times 2}{3}=\frac{4}{3}$ is termed the fourth.
(9.) The interval $\frac{9}{8}$ which, being $=\frac{3}{2} \times \frac{3}{2}$, may be re-
garded as formed by taking in the first place a note onefifth higher than the key-note or fundamental, i.e., higher than the latter by the interval $\frac{3}{2}$, thence ascending by another fifth, which gives $1.5 \frac{3}{2} \times \frac{3}{2}$ and lowering this by an octave, which results in $\frac{9}{-8}$, which is called the second. (10.) The interval $\frac{15}{8}$ or $\frac{3}{2} \times \frac{5}{4}$ may be regarded as the major third. ($\frac{5}{4}$) of the fifth $\left(\frac{3}{2}\right)$, and is called the interval of the seventh.
46. If the key-note or fundamental be denoted by C , and the notes, whose interrals above C are those just enumerated, $1, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{A}, \mathrm{B}, \mathrm{C}$, we form what is
known in musie as the natural or diatonic scale, in which therefore the intervals reckoned from C are successively

$$
\frac{9}{8}, \frac{5}{4}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}, \frac{15}{8}, 2
$$

and therefore the interrals bctween eacn note and the one following are

$$
\frac{9}{8}, \frac{10}{9}, \frac{16}{15}, \frac{9}{8}, \frac{10}{9}, \frac{9}{8}, \frac{16}{15}
$$

Of theso last interrals the first, fourth, and sixth are each $=\frac{9}{8}$, which is termed a major tone. The second and fifth are each $=\frac{10}{9}$, which is a ratio slightly less than' the former, and hence is called a minor tone. The third and seventh are each $=\frac{16}{15}$, to which is given the namo of semi-tone.

By interposing an additional note between each pair of notes whose interval is a major or a minor tone, the resulting series of notes may bo made to exhibit a nearer approach to equality in the intervals successively separating them, which will be very nearly semi-tones. This sequence of twelve notes forms the chromatic scale. The note interposed between C and D is either C sharp ($C=\frac{1}{4}$) or D flat (Db), according as it is formed by raising C a semi-tone or lowering D by the same amount.
47. Various kinds of apparatus have been contrived with a view of confirming experimentally the truth of the laws of musical harmony as above stated.

Savart's toothed wheel apparatus consists of a brass wheel, whose edge is divided into a number of equal projecting teeth distributed uniformly over the circumference, toothec jeting teeth distributed uniformly over the eircumference, wheen $3_{6 \rightarrow}$ and which is capable of rapid rotation about an axis per-paratun pendieular to its plane and passing through its centre, b \dot{y} means of a series of multiplying wheels, the last of which is turned round by the hand. The toothed wheel being set in motion, the edge of a card or of a funnel-shaped piece of common note paper is held against the teeth, when a note will be heard arising from the rapidly suo ceeding displacements of the air in its vicinity. The pitcb of this note will, agreeably to the theory, rise as the rat9 of retation increases, and becomes steady when that rotation is maintained uniform. It may thus be brought into unison with any sound of which it may be required to determine the corresponding number of vibrations per second, as for instance the note A_{3}, three $8^{\text {ven }}$ higher than the A which is indicated musically by a small circle placed between the second and third lines of the G clef, which A is the note of the tuning-fork usually employed for regulating concert-pitch. As may be given by a piano. Now, suppose that the note produced with Savart's apparatus is in unison with A_{3}, when the experimenter turne round the first wheel at the rate of 60 turns per minute or one per second, and that the circumferences of the various multiplying wheels are such that the rate of revolution of the toothed wheel is thereby increased 44 times, then the latter wheel will perform 44 revolutions in a second, and hence, if the number of its teeth be 80 , the number of taps imparted to the card every second will amount to 44×80 or 3520 . This, therefore, is the number of vibrations corresponding to the note A_{3}. If we divide this by 2^{3} or 8 , we obtain 440 as the number of vibrations answering to the note A. This, however, tacitly assumes that the bands by which motion is transmitted from wheel to wheel do not slip during the experiment. If, as is always more or less the case, slipping oceurs, a different mode for determining the rate at which the toothed wheel revolves, such as is employed in the gyren of De la Tour (vide below), must be adopted.

If, for the single toothed wheel, be substituted a set of four with a common axis, in which the teeth are in the ratios $4: 5: 6: 8$, and if the card be rapidly passed along their edges, we shall hear distinctly produced the fundamental chord $\mathrm{C}, \mathrm{E}, \mathrm{G}, \mathrm{C}_{1}$ and shall thus satisfy ourselves that the intervals $\mathrm{C}, \mathrm{E} ; \mathrm{C}_{1} \mathrm{G}$, and CC_{1} are (as they ought to be) $\frac{5}{4}, \frac{3}{2}$, and 2 respectively.
48. The syren of Seebeck is the simplest form of apparatus thus designated, and cousists of a large circular dise of pasteboard mounted on a central axis, about which it may be made to revolve with moderate rapidity. This disc is perforated with small round holes arranged in circles about the centre of the disc. In the first series of circles, reckoning from the centre, the openings are so made as to divide the respective circumferences, on which they are found, in aliquot parts bearing to each other the ratios of the numbers $2,4,5,6,8,10,12,16,20,24,32,40,48$, 64. The second series consists of circles each of which is formed of two sets of perforations, in the first circle arranged as $4: 5$, in the next as $3: 4$, then as $2: 3,3: 5,4: 7$. In the outer series is a circle divided by perforations into four sets, the numbers of aliquot parts being as $3: 4: 5: 6$, followed by others which we need not further refer to,

The disc being started, then by means of a tube held at one end between the lips, and applied near to the disc at the other, or more easily with a common bellows, a blast of air is made to fall on the part of the disc which contains any one of the above circles. The current being alternately transmitted and shut off, as a hole passesion and off the aperture of the tube or bellows, causes a vibratory motion of the air, whose rapidity depends on the number of times per second that a perforation passes the mouth of the tube. Hence the note produced with any given circle of holes rises in pitch as the disc revolves more rapidly; and if, the revolution of the disc being kept as steady as possible, the tube be passed rapidly across the eircles of the first series, the notes heard are found to produce on the ear, as required by theory, the exact impression corresponding to the ratios $2: 4: \& c$., i.e., of a series of notes, which, if the lowest be deneted by C, form the sequence $\mathrm{C}_{1} \mathrm{E}_{1} \mathrm{G}_{1} \mathrm{C}_{2}$ \&c., \&c. In like manner, the first circle in which we have two sets of holes dividing the circumference, the one into say 8 parts, and the other into 10 , or in ratio $4: 5$, the note produced is a compound one, such as would be obtained by striking on the piano two notes separated by the interval of a major third $\left(\frac{5}{4}\right)$. Similar results, all agreeing with the theory, are obtainable by means of the remaining perforations.

A still simpler form of syren may be constituted with a good spinning top, a perforated card disc, and a tube for blowing with.
49. The syren of Cagnard de la Tour is founded on the same principle as the preceding. It consists of a cylindrical chest of brass, the base of which is pierced at its centre with an opening in which is fixed a brass tube projecting outwards, and intended for supplying the cavity of the cylinder with compressed air or other gas, or even liquid. The top of the cylinder is formed of a plate perforated near its edge by holes distributed uniformly in a circle concentric with the plate, and which are cut obliquely through the thickness of the plate. Immediately above this fixed plate, and almest in contact with it, is another of the same dimensions, and furnished with the same number, n, of openings similarly placed, but passing obliquely through in an opposite direction from those in the fixed plate, the one set

Fig. 10.

This second plate is capable of rotation about a steel axis perpendicular to its plane and passing through its centre. Now, let the movable plate be at any time in a position such that its holes are immediately above those in the fixed plate, and let the bellows by which air is forced into the cylinder (air, for simplicity, being suppused to be the fluid employed) be put in action ; then the air in its passage will strike the side of each opening in the morable plate in an oblique direction (as shown in fig. 10), and will therefore urge the latter io rotation round its centre. After $\frac{1}{n}$ th of a revolution, the two sets of perforations will again coincide, the lateral impulse of the air repeated, and hence the rapidity of rotation increased. This will go on continually as long as air is supplied to the cylinder, and the velocity of retation of the upper plate will be accelerated up to a certain maximum, at which it may be maintained by keeping the force of the current constant.

Now, it is evident that each coincidence of the perforations in the two plates is follewed by a non-ccinciderice, during which the air-current is shut off, and that consequently, during each revolution of the upper plate, there occur n alternate passages and interceptions of the current. Hence arises the same number of successive impulses of the external air immediately in contact with the movable plate, which is thus thrown inte a state of vibration at the rate of n for every revolution of the plate. The result is a note whose pitch rises as the velocity of rotation increases, and becomes steady when that relocity reaches its constant value. If, then, we can determine the number m of revolu'tions performed by the plate in every second, we shall at once have the number of vibrations per second corresponding to the audible note by multiplying n by n.

For this purpose the steel axis is furnished at its upper part with a screw working into a toothed wheel, and driving it round, during each revolution of the plate, through a space equal to the interval between two teeth. An index resembling the hand of a watch partakes of this motion, and points successively to the divisions of a graduated dial. On the completion of each revolution of this tocthed wheel (which, if the number of its teeth be 100 , will comprise 100 revolutions of the movable plate), a projecting pin fixed to it catches a tooth of another toothed wheel and turns it round, and with it a corresponding index which thus records the number of turns of the first toothed wheel. As an example of the application of this syren, suppose that the number of revolutions of the plate, as. shown by the indices, amounts to 5400 in a minute of time, that is, to 90 per second, then the number of vibrations per second of the note heard amounts to $90 n$, or (if number of holes in each plate $=8$) to 720.
50. Dove, of Berlin, has produced a modification of the Dove' syren by which the relations of different musical netes syren. may be more readily ascertained. In it the fixed and morable plates are each furnished with four concentric series of perforations, dividing the circumferences into different aliquot parts, as p. ex., $8,10,12,16$. Beneath the lower or fixed plate are four metallic rings furnished with holes corresponding to those in the plates, and which may be pushed round by projecting pins, so as to admit the air-current through any one or more of the sories of perforations in the fixed plate. Thus, may be obtained, either separately or in various combinations, the four notes whose vibrations are in the ratios of the above nombers, and which therefore form the fundamental chord (CEGC_{1}). The inventor has given to this instrument the name of the -many-roiced syren.
51. Helmholtz has further adapted the syren for more Helmextensive use, by the addition to Dore's instrument of doablo another chest containing its own fixed and movable per-syren.
furated puates and perforated rings, bollu the moveable plates being driven by the same current and revolving about a common axis. Annexed is a figure of this instrument (fig. 11).
52. The relation between the pitch of a note and the frequency of the corresponding vibmtions has also been studied by graphic methods. Thus, if au elastic metal slip or a pig's bristle be attached to vie prong of a tuningfork, and if the fork, while in ribration, is moved rapidly over a glass plate coated with lamp black, the attached slip touching tho plate lightly, B xayy line will be traced on the plate answering to the ribrations to and fro of the :ork. The same result wiH be obtained with a stationary fork and a movable glass plate; and, if the time oc cupied by the plate in moving through a given distance can

Fig. 11. be aseertained, and the number of complete undulations exlibited on the plate for that distanee, which is eridently the number of vibrations of the fork in that time, is reckoned, we shall have determined the numerical vibra-tion-value of the note yielded by the fork. Or, if the same plate bo moved in contact with two tuning-forks, we shall, by comparing the number of sinuosities in the one trace with that in the other, be enabled to assign the ratio of the corresponding numbers of vibrations per second. Thus, if the one note be an octave higher than the other, it will give double the number of wares in the same distance. The motion of the plate may be simply produced ly droppiag it between two vertical grooves, the tuning-forks being properly fixed to a frame above.
53. Greater accuracy may be attained with the so-called Vibrograph or Phonautograph (Duhamel's or Ǐœnig's), consisting of a glass cylinder coated with lamp-black, or, better still, a metallic eylinder round whieh a blackened shect of paper is wrapped. The eylinder is mounted on a horizontal axis and turned round, while the pointer attached to the ribrating body is in light contact with it, and traces therefore a wary circle, which, on taking off the paper and flattening it, becomes a wavy straight line. The superiority of this arrangement arises from the comparative facility with which the number of revolutions of the cylinder in a given time may be ascertained. In Kœnig's phonautograph, the axis of the cylinder is fashoned as a screw, which works in fixed nuts at the ends, causing a sliding as well as a rotatory motion of the cylinder. The linea traced out by the vibrating pointer are thus prevented from overlapping when more than one turn is given to the cylinder.

Any sound whatever may be made to record its trace on the paper by means of a large parabolic eavity resembling a speaking-trumpet, which is freely open at the wider extrenity, but is closed at the other end by a thin stretched membrane. To the centre of this membrane is attached a small feather-fibre, which, when the reflector is suitably nlaced, touches lightly the surface of the revolving cylinder. Any cound (such as that of the buman voice) transmitting its rays into the reflector, and communicating vibratory motion to the membrace, will cause the feather to trace a sinuous line on the peper. If, at the same time, a tuningfork of known number of vibrations per second be made to trace its own line closo to the other, a comparison of the two lines gives the number corresponding to the sound ander consideration.

-Part ∇.
 Stationary Waves.

54. We hare hitherto, in treating of the propagation of Etationary waves of sound, assumed that the medium through which raves proit took place was unlimited in all directions, and that the source of sound was single. In order, however, to understand the prineiples of the production of sound by musical cressivo two apwo opinstruments, we must now direct our attention to the case wavea of two waves from different sources trurelling through tho same medium in opposite directions. Any particle of the medium being then affected by two different ribrations at the same instant will necessarily exhibit a different stato of motion from that due to either wave acting separately from the other, and we have to inquire what is the resulc of this mutual interference (as it is termed) of the two given waves. Supposing, as sufficient for our purpose, that tho given waves are of equal lengths and of equal amplitudes, in other words, that the corresponding notes are of the same pitch and equally loud; and supposing, further, that they are adrancing in exaetly opposite directions, we shall now show that the result of the mutual interference of two such waves is the production of a stationary wave, that is, taking any line of particles of the medium alung the direction of mation of
the component waves, cer- $\frac{1}{a}$ b $\quad \frac{1}{c} \quad \underset{d}{d}$ tain of them, such as a, c,
e . . . at intervals each
Fig. 12.
$=\frac{\lambda}{2}$, will remain constantly in their usual undisturbed pos? tions. All the particles situated between a and c will vibrate (transversely or longitudinally, as the case may be) to and fro in the same direction as they would if affected by only one of the interfering vaves, but with different amplitudes of vibration, ranging from zero at a to a maximum at b and theuce to zero at c. Those betwecn \& and e will vibrate in like manner, but always in an opposito direction to the similarly placed particles in $a c$, and so on alternately.

The annexed figures will represent to the eye tne states of motion at iutervals of time $=\frac{1}{4}$ of the time T ' of a complete vibration of the Darticles. In fig. 13,1 , the particies in

Fig. 13.
$a c$ are at their greatest distances from tneir undisturbed positions (above or to the right, according as the motion is transversal or longitudinal). In fig. 13,2, they are all in their undisturbed positions. In fig. 13, 3, the displace ments are all reversed relatively to fig. 13, 1. In fig. 13, 4, the particles are again passing through their equilibrium positions, resuming the positions indicated in fig. 13, 1, after the time T.

The points ace, \&e., which romain stationary are termed Noles arl nodes, and the vibrating parts between them vertral 'eutral segments.

54a. Proof. In fig. 14, 1, the full curved line represente Proof. the two interfering waves at an instant of time such that, ${ }^{10}$
in their progress towards each other, they are then coincident. It is obvious that the particles of the medium will at the moment in question be displaced to double the extent of the displacement producible by either wave alone, so that the resultant wave may be represented by the dotted curve. In fig. 14, 2, the two interfering waves, represented by the full and dotted curves respectively, have each

Fig. 14.
passed over a distance $=\frac{1}{4} \lambda$, the one to the right, the other to the left, and it is manifest that any disturbance of the medium, producible by the one wave, is completely neutralised by the equal and opposite action of the other. Hence, the particles of the medium are now in their undisturbed positions. In fig. 14, 3, a further advance of the tro waves, each in its own direction, over a space $=\frac{1}{1} \lambda$, has again brought them into coincidence, and the result is the wave represented by the dotted line, which, it will be romarked, has its cresis, where, in fig. 1, are found troughs. In fig. 14, 4 , after a further advance $=\frac{1}{4} \lambda$, we have a repetition of the case of fig. 14, 2, the particles are now again unaffected by the waves. A still further adrance of $\frac{1}{4} \lambda$, or of λ reckoned from the commencement, brings us back to the same state of things as subsisted in fig. 14, 1. An inspection and inter-comparison of the dotted lines in these figures are now sufficient to establish the accuracy of the laws, before mentioned, of stationary waye.

Part VI.
Musical Strings.
55. We have in musical strings an instance of the occurrence of stationary waves.

Let AB (fig. 15) be a wire or string, supposed meanwhile to be fixed only at one extremity B, end let the wire be, at any part excited (whether by passing a riolin bow across or by friction

Fig. 15. along it), so that a wave (whether of transversal or longitudinal vibrations) is propagated thence towards B. On reaching this point, which is fixed, reflexion will occur, in consequence of which the particles there will suffer a complete reversal of velocity, just as when a perfectly elastic ball strikes against a smooth surface perpendicularly, it rebounds with a velocity equal and opposite to . Wat it prariously had. Hence, the displacement due to
the incident wave bcing BM, the displacement after reflexion will be BN.equal and opposite to BM, and a reflected wave will result, represented by the faint lino in the fig., which will travel with the same relocity, but in the opposite direction to the incident wave fully lined ins the fig. The interference of these two oppositely pro. gressing waves will consequently give riso to a stationary wave (fig. 16), and if tre take on the wire distances $\mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \& \mathrm{c} .=\frac{1}{2} \lambda$,

Fig. 16. the points B, C, D, E, . . . will be nodes, each of which separate portions of the wire vibrating in opposite direc. tions, i.e., ventral segments.
56. Now, it is obvious that, inasmuch as a node is a point which remains always at rest while other parts of the meaium to which it belongs are vibrating, such point may be absolutely fixed without thereby interfering with the oscillatory motion of the medium. If, therefore, a length AB of wire be taken equal to any multiple of $\frac{\lambda}{2}$, A may bo fixed as well as B, the motion remaining the same as before, and thus we shall hare the usual case of a minsical string. The two extremities being now both fixed, there will be repeated reflexions at both, and a conscquent persistence of two progressive waves advancing in opposite directions and producing together the stationary wave above figured.
57. We learn from this that a musical string is suscep: Fund tible of an infinite variety of modes of vibration corre- mental snd sponding to different numbers of subdivision into ventral barmonics segments.

Thus, it may have but one ventral segment (fig. 17), or but two nodes formed by its
fixed extremities. In this case, the note emitted by it is the lowest which can possibly be

Fig. 17. obtained from it, or, as it is called, its fundamental note. If l denote the length of the wire, by what has becn already proved, $l=\frac{\lambda}{2}$, and therefore the length of the wave $\lambda=$ 22. Hence, V being the velocity of propagation of the wave through the wire, the number n_{1} of vibrations performed in the unit of time with the fundamental note is $\frac{\mathrm{V}}{2 l}$.

The next possible sub-division of the wire is into two ventral segments, the three nodes being the two fixed ends A, B, and the middle point C (fig. 18). Hence, $l=\lambda$,

Fig. 18. and the number of vibrations n_{3} $=\frac{\mathrm{V}}{\mathrm{l}}$ or double of those of the fundamental. The note, therefore, now is an $8^{\text {ro }}$ higher.

Reasouning in a like manner for the cases of three, four, \&c., ventral segments, we obtain the following general law, which is applicable alike to transerersely and to longi' tudinally ribrating wires:
A wire or string fixed at both ends is capable of yielding, in: addition to its fundamental note, any one of a scries of notes correspording to 2, 3, 4 times, de., the number of vibrations per second of the jurdamental, viz., he octave, tueljth, double octave, ác.

These higher notes are termed the harmonics or (by the Germans) the overtones of the string.

It is to be remarked that tho overtones are in general fainter the higher they are in the series, because, as the. number of ventral sêgments or independently vibrating parts of the string increases, the extent or emplitude of May be the vibrations diminishes.
58. Not only may the fundamental and its harmonics gettert.

Domparion of funlamentals at strings nbrating transverse tr and lon ftudinall
be obtained independently of eaeh other, but they are also to be heard simultancously, particularly, for the reason just given, those that are lower in the seale. A practised ear easily diseerns the coexistence of these various tones when a pianoforte or violin string is thrown into vibration. It is evident that, in such case, the string, while vibrating as a whole between its fixed extremities, is at the same time executing subsidiary oscillations about its middle point, its points of trisection, dic., as

Fig. 19. shown in fig. 19, for the fundamental and the first harmonic.
59. The easiest means for bringing out the harmonics of a string consists in drawing a violin-bow across it near to one end, while the feathered end of a quill or a hair-pencil is held lightly against the string at the point which it is intended shall form a node, and is removed just atter the bow is withdrawn. Thus, if a node is made in this way, at $\frac{1}{3}$ of $A B$ from A, the note heard will be the twelfth. If light paper rings be strung on the cord, they will be driven by the vibrations to the nodes or points of rest. which will thus be elearly indieated to the eye.
60. The formula $n_{1}=\frac{V}{2 l}$ shows that the pitch of the fundamental note of a wire of given length rises with the veloeity of propagation of sound through it. Now we have learned (§28) that this velocity, in ordinary circumstances, is enormously greater for a wire vibrating longitudinally than for the same wire vibrating transversely. The fundamental note, therefore, is far higher in pitch in the former than in the latter case.

As, however, the quantity V depends, for longitudinal vibrations, solely on the nature of the medium, the pitch of the fundamental note of a wire rubbed along its length depends-the material being the same, brass for instanceon its length, not at all on its thickness, \&c.

But as regards strings vibrating transversely, such as are met with in our instrumental musie, V , as we have seen (§27), depends not only on the nature of the substance used, but also on its thickness and tension, and hence the pitch of the fundamental, even with the same length of string, will depend on all those varions cireumstances.
61. If we put for V its equivalent expressions before given, we have for the fundamental note of transversely vibrating strings:

$$
n=\frac{\sqrt{g c}}{2 l} \quad \text { or } n=\frac{1}{2 l} \sqrt{\frac{9 P}{20}},
$$

whence the following inferences may be easily drawn:
If a string, its tension being kept invariable, have its length altered, the fundamental note will rise in pitch in exact proportion with its diminished length, that is, n varies then inversely as l.

Hence, on the violin, by placing a finger successively on any one of the strings at $\frac{8}{9}, \frac{4}{5}, \frac{3}{4}, \frac{2}{3}, \frac{3}{5}, \frac{8}{15}, \frac{1}{8}$, we shall obtain notes corresponding to numbers of vibrations bearing to the fundamental the ratios to unity of the following, riz, $\frac{9}{8}, \frac{5}{4}, \frac{4}{3}, \frac{3}{2}, \frac{15}{8}, 2$, whiel notes form, therefore, with the fundamental, the complete seale.
62. By tightening a musical string, its length remaining unchanged, its fundamental is rendered higher. In fact, then, n is proportional to the square root of the tension. Thas, by quadrupling the tension, the note is raised an octave. Hence, the use of keys in tuning the violin, the pianoforte, \&ce.
63. Equal lengths of strings of the same density and equally stretched, but of different thicknesses, give funda-
mentals which are higher in pitch in proportion to dims nution of thiekness (i.e., n varies inversely as the thickness), Thus, of two strings of same kind of gut, same length ane same tension, if one be twice as thick as the other, its fundamental will be an octave lower. Hence, three of the strings of the violin, though all of gut, have differen fundamentals, beeause unequally thick.
64. Equally long and equally stretehed strings or wires $n \propto$ of different thickness and different material, have funda- 1 mentals higher in pitch the less the weights of the strings; $\sqrt{\text { weight }}$ n here varies inversely as the square root of the weight w length. of a given length of the string.
65. If, in last case, the thicknesses of the strings noe which are to be compared together are equal, then n varies
inversely as the square root of the density.

Hence, in the violin and in the pianoforte, the lower notes are obtained from wires formed of denser material. Thus, the fourth string of the violin is formed of gut covered with silver wire.
66. A highly ingeniuus and instructive method for Melde'sexillustrating the above laws of masical strings, has been perimental recently contrived by M. Melde, and consists simply in illustrarecently contrived by M. Melde, and consists simply 14 illustr
attaching to the ventral segment of a vibrating body, such as a tuning-fork or a bell-glass, a silk or cotton thread, the other extremity being either fixed or passing over a pulley and supporting weights by which the thread may be stretched to any degree required. The ribrations of the larger mass are communieated to the thread which, by proper adjustment of its length and tension, vibrates in unison and divides itself into one or more ventral segments easily discernible by: a spectator. If the length of tho thread be kept invariable, a certain tension will give but one ventral segment; the fundamental note of the thread is then of same pitch as the note of the body to which it is attached. By redueing the tension to $\frac{7}{4}$ of its previous amount, the number of ventral segments will be seen to bo increased to two, indicating that the first harmonic of the thread is now in unison with the solid, and consequently that its fundamental is an octave lower than it was with the former tension; thus confirming the law that n varies as $\sqrt{ } \mathrm{P}$. In like manner, on further lowering tho tension to $\frac{1}{8}$, three ventral segments will be formed, and so on.

The law that, cot. par., n varies inversely as the thickness may be tested by forming a string of four lengths of the single thread used before, and consequently of double the thickness of the latter, when, for the same length and tension, the compound thread will exhibit double the number of ventral segments presented by the single thread. The other laws admit of similar illustration.

Part VII.

Stiff Rods, Plates, de.

Stiff Rods, Plates, dic.
67. If, instead of a string or thin wire, we make uso of Rod, fixed a rod or narrow plate, sufficiently stiff to resist flexure, we at one end may cause it to vibrate transversely when fixed at one end only. In this case the number of vibrations corresponding to the fundamental note varies as the thickness directly, and as the square of the length inversely.
The annexed figures reof the length inversely. present the modes of ribration corresponding to the fundamental and the first two overtones, the rod passing to and fro between the positions AGKC and AHLD. In all casee A
$\sqrt{\text { density. }}$
\qquad -
\qquad

[^14]

\qquad

[^15]
 the

being fixed is necessarily a node, and B being free is the middle of a ventral segment. We have thus a succession of eases in which the rod contains $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \& c$. ventral segments. The numbers of ribrations per second are as the squares of these, or, as $1: 9: 25: \& c$. The reason of this is, that (taking the case of fig. 20,3) the part FB , which may be regarded as an independent rod fixed at the end F , is evidently $\frac{1}{6}$ of the length of AB , and consequently, since $n \propto \frac{1}{v^{2}}$, has a proper note of 5^{2} or 25 times the rapidity of vibration in fig. 20,1 .
By attaching, with a little bees' wax, stiff hog's bristles to jone prong of \vec{a} tuning-fork, or to the edge of a bellglass, or even a commen jar, and clipping them on trial to snitable lengths, we shall find that, on drawing a note in the usual way from the tuning-fork or glass, the bristles will divide into one or more separately vibrating segments, as in the above figs.
68. The tuning-fork itself may be regarded as belonging to the elass of stiff rods. When emitting its fundamental note, it vibrates, as in fig. 21, with nodes at b and d and extreme positions abcde and $f b g d h$.
69. The transversal vibrations of thin square, circular, and other plates of metal or glass, are interesting, because, if these are kept in a horizental position, light dry sand

Fig. 21. or powder sifted over the upper surface, will be thrown off the ventral segments to the nodal lines, which will thus be rendered manifest to the eye, forming what are termed Chladni's figures. As in the case of a musical string, so here we find that the pitch of the note is higher for a given plate the greater the number of ventral segments into which it is divided; but the converse of this does not hold good, two different notes being obtainable with the same number of such segments, the position of the nodal lines bscing, however, different.
70. The upper line of annexed figures shows how the sand arranges itself in three cases, when the plates are square. The lower line gives the same in a sort of

at the same time, one or more other nodal points cught to be touched with the fingers while the bow is being applied. In this way, any of the pessible configurations may be easily produced.
71. By similar methods, a circular plate may be made Circular to exhibit nodal lines dividing the surface by diametral plates. lines into four or a greater, but always, even, number of sectors, an odd number being incompatible with the general law of stationary waves that the parts of a body adjoining a nodal line on either side must always vibrate oppositely to each other.
Another class of figures consists of circular nodal lines along with diametral (fig. 23).

Circular nedal lines unaccompanied by intersecting lines cannot be pro-

Fig. 23. duced in the manner described; but may be got either. by drilling a small hole through the centre, and drawing a horse-hair along its edge to bring out the note, or by attaching a long thin elastic rod to the centre of the plate, at right angles to it, holding the rod by the middle and rubbing it Iengthwise with a bit of cloth poridered with resin, till the rod gives a distinct note; the, vibrations are communicated to the plate, which cons:quently vibrates transversely, and causes the sand to heap itself into one or more concentric rings.
72. The theory of the vibrations of plates has not yet Theory been put on a quite satisfactory basis. The following law ofChladni e may, however, be regarded as confirmed by experiment, figures. viz., that when two different plates of the same substance present the same nodal configuration, the numbers of vibrations are to each other directly as the thicknesses, and inversely as the superficial areas.
73. Paper, parchment, or any other thin membrane Fibratione, stretched over a square, circular, icc., frame, when in the of memvicinity of a sufficiently powerful vibrating body, will, branes through the medium of the air, be itsolf made to ribrate in unison, and, by using sand, as in previous instances, the nodal lines will be depicted to the eje, and seen to vary in form, number, and position with the tension of the plate and the pitch of the originating sound. The membrana tympani or drum of the ear has, in like manner und on the same principles, the property of repeating the vibrations of the external air which it communicates to the internal parts of the ear.
74. Rods vibrating longitudinally are, as we have already remarked, subject to the laws of stationary waves. If, for instance, a weoden rod fixed at one end, be rubbed near the top between the finger and thumb previously coated with powdered resin, it will yield a fundamental note when it so vibrates as to have only one node (at the fixed extremity) and half a ventral segment reaching from that extremity to the other, that is, when the length l of the rod is $\frac{1}{4} \lambda$, or $\lambda=4 l$, and therefore $n=\frac{V}{4 l}$. But it may also give overtones corresponding to $2,3, \& c$. nodes, the free end being always the middle of a ventral segment, and for which therefore the lengths of waves are $\frac{4 l}{3}, \frac{4 l}{5}$, dic. (as will be easily seen by referring to figs. in $\S 6 T$, which may equally represent transversal and longitudinal displacements). Hence, the fundamental and harmonics of a rod such as we are now considering, have vibraticns whose rates are as the successive odd numbers.
A series of like rods, each fixed at one end into a block of wood, and of lengths bearing to each other, the ratios 1 : $\frac{8}{g}$: \&c. (as in § 61), will give the common scale when rubbed in the manner already meutioned. This follows from the fandamental baving $n=\frac{V}{4}$, and therefore $n \propto \frac{1}{6}$
\qquad

\qquad . -

Glass rods or tubes may also be made to vibrate longiaudinally by means of a moist piece of cloth; but it is advisable to clamp them firmly at the centre, when each aalf will vibrate according to the same laws as the wooden rods above. The existence of a motion of the particles of glass to and fro in the direction of its length may be well chibited, by allowing a small ball of stone or metal uspended by a string to rest against one extremity of the rod, when, as soon as the latter is made to sing by friction, the ball will be thrown off with considerable violence.

Part VIIL

Theory of Pipes

Air is the arsential source of sound in pipes.

Principles

 of Bermouilli's atheory.75. The congitudinal vibrations of air enclosed in pipes are of greater practical importance than those of other bodies, because made available to a very great extent for musical purposes. In the 』ute, horn, trumpet, and other wind instruments, it is the contained air that forms the essential medium for the production of sound, the wood or metal enclosing it having no other effect but to modify the timbre or acoustic colour of the note.
76. In dealing with the theory of pipes, we must treat the air precisely in the same manner as we have dealt with elastic rods vibrating lengthwise, a pipe stopped at both ends being regarded as equivalent to a rod fixed at both ends, a pipe open at both ends to a rod free at both ends, and a pipe stopped at one end and open at the other to a rod fixed at one end and free at the other. When therefore the air within the pipe is anywhere displaced along tho length of the pipe, two waves travel thence in opposite directions, and being reflected at the extremities of the pipo, there results a stationary wave with one or more fixed nodal sections, on one side of which the air is at any moment being displaced in one direction, while on the other side it is displaced in the opposits. Heace, when the air on both sides of the aode is moving in towards it, there is condeusation going on at the node, followed by rarefaction on the reversal of the motion of the air. The full lines in annexed Gigs. are curres of displacements, the dotted lines curres of velocity and density (vid. § 10 and 14).

As a stopped end prevents any notion of the air, a nedal section

Fig. 24. r always found there. And as, at the open ead, we may conceive the internal air to be maintained at the same density as the external air, we may tssume that such end coincides with the middle of a ven:ral segment.

From these assumptions, which form the basis of Barnouilli's Theory of Pipes, we infer:
77. That in a pipe stopped at both ends, as in a rud Exed at both ends, the fundamental 2ote (fig. 25,1), corresponds to $\lambda=2 l$, and therefore to $n=\frac{y}{2 l}, \nabla$ denoting the velocity of sound in air, and the overtones to numbers of vibrations $=2 n, 3 n$, and so on. Fig. 25, 2,

Fig. 25. represents the octave.
78 That in a pipe open at both ends the same holds good as in the prerious case. For (fig. 26,1) $\Delta C=\frac{1}{4} \lambda$ $\therefore \lambda=4 A C=2 l$, and in fig. $26,2, A D=\frac{\dot{c}}{} \lambda$, and also stopped at $=\frac{1}{4} l \therefore \lambda=l$, or $\frac{1}{2}$ its value for the fundamental; and one end - 01 l
the other (or, as it is usually termed, a stopped pipe, case 77, being purely imaginary), the fundamental note has n a $\frac{V}{4}$, and tho overtones correspond to $3 n, 5 n$. . .

For, in fig. $27,1, A B$ or $l=\frac{1}{4} \lambda$, and in fig. 27,3, CB or $\frac{1}{4} \lambda$ is evidently $=\frac{3}{3} \mathrm{AB}$ or $\frac{1}{3} l$, wheneo $\lambda=\frac{f}{3} l$, which being $\frac{1}{3}$ of value of λ in previous case, shows that the number

Fig. 26 of vibrations is three times greater. Similarly for the other overtones.
80. It follows from the above, that a given pipe (whether open or stopped) may bo made to emit, in addition to or in combination with its fundamental, a series of overtones, which, in an open pipe, follow the natural numbers, and hence are the octave, twelfth, \&c., but, in a stopped pipe, follow the odd numbers, so as to want the octave and other notes represented by tho

even numbers. The succession of overtones may bo practically obtained by properly regulating tho forco of the blast of air by which tho air-column is put into vibration.
81. If the fundamental notes of two pipes of equal Notes r. lengths, but of which one is open, the other stopped, be open as compared together, they will be found to differ in pitch by ${ }^{\text {stnppe. }}$ an octave, the stopped being the lower. This fact is in equai keeping with the theory, for the numbers of vibrations length. being respectively $\frac{V}{2 l}$ and $\frac{V}{4 l}$, are in the ratio of 2 to 1
82. By altering the length of the same pipe, we can rary the pitch of tho fundamental at pleasure, since n raries inversely as l. This is effected in tho flute and some other wind instruments by means of openings along part of the pipe, which, being closed or opened by means of keys and of the fingers, increase or diminish the length of the ribrating air-column. In this manner the successive notes of the scale are usually obtained within the range of an octave. The scale is further extended by bringing into play the higher harmonics.
83. Since in an open pipe $n=\frac{\mathrm{V}}{2 l}$, and therefore $l=\frac{\mathrm{V}}{2 n}$, Lengtb if for V we 'put 1090 ft ., and for $n 264$, which is the number of vibrations per second usually assigned to the note C , we get $l=2 \mathrm{ft}$. very nearly. This. accordingly, is the length of the so-called C open pipe. The C stopped pipe must, by what has been stated above, bo 4 feet in length.
84. Conversely it is obvious that the velocity V of sound in air, and gencrally in any gas, may be deduced from the equation $\nabla=2 n l$, and that if two pipes of equal length contain respectively air and any other gas, the velocities in the two media being to each other directly as the number of vibrations of the notes they respectively emit, we may, from the rell-ascertained value of the velocity in air, determine in this way the relocities in other gases, and thence the values of their coefficients γ (vid. § 21).
85. While the inferences drawn by means of Eernouilli's theory agree, to a certain extent, rith actual obserration, there nro discrepancies between the two which point to the existence of some flaw in one or both of the hypotheses on which the theory rests. In truth, the conditions assumed by Dernouilli are such as do not fully occur io
practice. The stonped extremity of a pipe is aimays to sume extent of a yielding nature, and does not therefore exactly coincide with a nodal surface; nor can the internal air immediately adjoining the open end be perfectly free from variation of density during the vibrations of the whole mass, particularly so at the embouchure, where the blast is introduced by which the tone is originated It would appear from recent experiments that the pitch of a pipe is somewhat lower than the above theory would indicate.
86. The reed-pipe differs in many respects from the simple pipe which we havo been considering. A small elastic strip of metal, fixed at one extremity (the reed), lies over a slit of the same shape, and is set in transverse vibration by a current of air acting underneath. If, as is the case in the accordion and harmonium, the reed is unprovided with a pipe, the pitch of its note is regulated altogether by the dimensions of the reed, in conformity with the law of tranversely vibrating plates; although, it is to be remarked, the note is really due to the vibrations of the air which alternately escapes through the slit of the reed, and is prevented doing so exactly as often as the reed executes a movement to and fro. The proper note of the reed itself is very poor and faint.
87. In the reed-pipe there is added above the reed $\&$ pipe the air in which partakes of the vibratory motion, and improves the quality of the sound. The pitch is, however, not affected by this pipe, unless it exceed a certain length l, when the pitch begins to fall, and continues to do so as l is, increased, till, when the length of pipe is $2 l$, the note is again restored to its original pitch, \&cc.
88. M. Weber, to whom we are indebted for these and other curious facts respecting reed pipes, has explained them thus:-If the reed be exactly at that part of the vibratigg air-column where the air-displacements are at their maximum, and where consequently the air suffers no variation of density during the vibratory motion of the column, the oscillations of the reed are not at all affected by the air-vibrations, and consequently the pitch of the reed-pipe is the same as that of the reed itself. But if the reed be situated at any other part of the air-column, and especially at a nodal section, where the air is undergoing alternate condensation and rarefaction, then, when the airblast from the wind chest pushes in the reed, the air in the pipe is in the act of rarefaction; and consequently tends to accelerate the reed inwards, whereas the elasticity of the reed tends in an opposite direction. When, again, the reed is passing to the other extreme of its ribration, the air in the pipe is in the act of condensation, and tends to accelerate the reed outwards or in the opposite direction to the elasticity of the reed. Hence the reed is affected just as if its elasticity, and therefore the rapidity of its ribrations, were diminished, and thus the pitch is lowered.

Part IX.

Singing Flamcs.

89. The chemical or gas harmonicon, which consists of a small flame of hydrogen or of coal gas, burning at the lower part of the interior of a glass tube, and giving out a very distinct note, exhibits considerable analogy with the reed-pipe. For, as Sondhaus seems to have established, the primary cause of the note lies in the oscillations of the gas within the burner and the feeding-pipe, which therefore play exactly the same part as does the reed portion of the reed-pipe. The air in the glass tube being heated by the flame ascends, and the pressure above the flame being thence diminished, the flame is forced upwards by the gas deneath, until an influx of atmospheric air at the top of the tube forces the llame back. Thus a periodic agitation
of the flame ensues, accompanied by'a corresponding dis. turbance of the air-column in the glass tube. The size of the flame and its position within the tube must be so regulated as to bring out the best possible note, which will then be found to be the same as the air in the tule would itself emit, according to the larss of pipes, allowance being made for the high temperature of the air. A series of tubes may thus be arranged of suitable lengths to give the common scale. It sometimes hannens, particularly with short tubes, that the note wili not come out spontaneously, all that is required, then, is either by blowing gently at the top of the tube, or by singling in unison with the expected note, to give to the air the requisite initial morement.
The flame, which burns steadily with a yellowish light before the tube sounds, will, as soon as the note is heard, be seen to flicker up and down, changing rapidly from yellow to blue and blue to yellow, its intensity also changing periodically. These fllctuations are best seen by riewing the image of the flame reflected by a small plane mirror, held in the hand and moved to and fro. Before the note is heard, the image of the then quiescent flame, being impressed on different points of the retina, appears as a continnous leminous strip; but, when the harmonicon speaks, the various images become quite detached from one another, showing that the portion of the retina over which the reflected light passes is sensibly affected only at certain points of it, which evidently correspond to the instants of time at which the flame, in its periodical fluctuations, is at its brightest.
90. Naked flames, that is, flames unaccompanied by tubes, Naked may also give ont musical notes, and many singular in- fames. stances are mentioned hy Tyndall and others of theis sensitiveness to external sounds.
91. Koenig of Paris has constructed an apparatus in- Flame tended to indicate the modes of ribratiun of the different manometer. parts of vibrating bodies, such as columns of eir, \&c., by means of flames, and to which he has given the name of the Flame Manometer. We will here describe its application to the case of organ-pipes. An open pipe has three apertures along one side, oue at the middle, 0 (fig. 28), i.e., at a node of the fundamental tone, and the two others, a, b, half way between 0 and the extremitics of the pipe, and coinciding therefore with the nodes of the first cvertone or octave. These openings are closed by thin flexible membranes forming the ends of small boxes or capsules, the spaces within which communicate by caoutchoue tubes with a coal-gas reservoir, and also by separate tubes with small gas burners arranged on a vertical stand. The gas being introduced, and the three flames kindled and adjusted to equal heights of about $\frac{3}{4}$

Fig. 28. of an inch; if the pipe be made now to utter its first overtone, the flame connected with o will remain stationary and of the same brightness as before, but those commnnicating with a and b will become longer and thinner, and assume a bluish and faint luminosity. But, if the fundamental be brought out of the pipe, then it is o's flame that is violently affected, while those of α and b are scarcely affected at all. If the flames be originally made less in height (say $\frac{1}{3}$ inch), thase of a and b in the former case, and of 0 in the latter, will be extinguished. These results are due to the condensations and rareiactions of the air in the pipe which are at their maximum at a node, causing the membrane placed there to vibrate outwards and inwards, and bence to force more or less of the gas into the burner.

In order to compare together the notes of different pipes, four plane reflecting surfaces are centuected together in the form of a cube, which is mounted on a vertical axis about which it is capable of being turned round. Fach pipe is
furnished with ono opeuing, a memoraue, de. (as above), at its middle. As pointed out ($\$ 87$), if euy of the pipes be made to sound, the reflector being at the same time put in motion, a series of separate images will be seen. On sounding another pipe, whose fundamental is an octave higher, we shall have a second line of images separated from each other by half the interval of those in the former series. This is best obsersed when the two flames aro placed in the same vertical ling. If the noto of the second pipe is a fifth higher than the first, and consequently its vibrations to those of the first as 3 to 2 , then the samo space which contains two images of the lower note will contain three of the higher, and so on, for other combinations. When more complicated ratios are to be tested, it is preferable to connect both capsules with the same burner, aither with or without the reflector.

Part X .

Communication of Vibrations.
92. The communication of sonorous vibrations from one body to another plays so essential a part in acoustics that a few words must here bo given to the subject. It appeare to be well established that while the vibrations of a solid aro in general most readily communicated to other solids in contact with it, they are not so to liquids, and still less so to air and other seriform fluids. Thus, a tuning-fork is inaudible at any moderate distance unless applied to a table, by whose extended surface the air can be more intensely affected. So likewise a masioal string sounds very poorly unless conneeted with a resonant cavity or wooden chest, to the wood of which it first imparts its vibratory motion, which then prodaces stationary wawes in the continued air.
93. A few years ago M. Kundt made known a method founded on the communicability of vibration, by which the velocities of sound in different medie may be compared together with great facility. Take a glass tube 3 feet or upwards in length, drop into it a small quantity of the fine powder of the club-moss er lycopodium, and turn the tube round so as to sprcad the powder over the internal surface If the tube. Stop bothends of the tube with corks, clamp it at its centre, and rub one of its halves lengthwise with a inoist cloth, so as to cause the glass to sound a note. It will then be found that, the air within the tube taking up the motion, and a stationary wave being formed in $i t$, the powder is driven off from tho ventral segments and forms little heaps at the nodes. The dust-heaps are, by the laws of stationary waves, separated therefore from each otker by intervals each equal to half the length of an air-wave, or
$\frac{1}{2}$. If, then, the number of heaps $=m$, and the length of the tube $=l ; \lambda=\frac{2 l}{m}$.

But, by the laws of longitudinal vibrations of rods, the length λ^{\prime} of the glass-wave $-4\left(\frac{l}{2}\right)=2 l$. Hence $\frac{\lambda^{\prime}}{\lambda}=m$, that is, the number of dust-hcaps is equal to the ratio of the lengths of s wave of sound in glass and in sir, and consequently to the ratio of the velocities of sound in those media. (For the vibrations being in unison, their number in a given time must be the same for the glass and the sir, i.e., $\frac{V}{\lambda^{\prime}}=\frac{V}{\lambda^{\prime}} ; V, V^{\prime}$ being the velocities).

Kundt found 16 to bo the number of heaps; prior experiments of a different kind had, as we have before mentioned, given this as the number of times that the velocity of sonnd in glass exceeds its velocity in air.

Instead of producing the air-vibrations by friction of the tube containing the air, it is preferable to make use of a smaller tube or rod, furnished with a cork at one end, which
fits like a piston into the tube, and projecting at its oater end through an opening in the cork which closes the airtube. The rod thus iuserted is the one which is rubbed longitudinally and communicates its vibrations to the air in the enclosing tube. By means of an apparatus of this kind, Kundt determined the ratio to tho velocity of sound in air of its velocity in various solids, and also (replacing the air in tho tube by different gases) of its velocity in these gases.

Part XI.
 Interference of Sound.

94. When two or more sonorous waves travel throngh the same medium, each particle of the air being simultaneously affected by the disturbances due to the different waves, moves in a different manner than it would if only acted on by each wave singly. The waves are said mutually to interfere. We shall exemplify this subject by considering the case of two waves travelling in the same direction through the air. We shall then obviously be led to the following results:-
95. If the two waves are of equal length λ, and are in Two w the same phase (that is, each produting at any giveu of equi moment the same state of motion in the air-particles), their lensthe combined effect is equivalent to that of a wave of the same length λ, but by which the excursions of tho particles are increased, being the sum of those duo to the two component waves respectively.

If the two interfering waves, being still of same length λ, be in opposito phases, or so that
 one is in advance of the other by $\frac{\lambda}{2}$, and consequently one produces in the air the opposite state of motion to the other, then the resultaut wave is one of the same length λ, but by which the excursions of the particles are decreased, being the difference between those due to the component waves. If the amplitudes of vibration $v^{\text {rhich }}$ thus mutually interfere are moreover equal, the effect is the total mutual destruction of the vibratory motion
"Hus we learn that two musical notes, of the same pitch, conveyed to the car through the air, will produce the effeet of a single note of the same pitch, but of increased loudness, if they are in the samo phase, but affect the ear very slightly, if at all, when in opposite phases. If the difference of phase be varied gradually from zero to ${ }_{2}^{\frac{1}{2}} \lambda$, the result ing sound will gradually decrease from a maximum to a minimum
96. Among the many experimental confirmations which Experi may be adduced of these proportions. we will mention the following:-

Take a circular plate, such as is arailable for the production of Chladni's figures ($\$ 71$), and cut out of a sheet of pasteboard a piece of the shape ABOCD (fig. 30), cousisting of two eircular quadrants of the same diameter

Fig. 30: as the plate. Let, now, the plate be me - 1 me Vibrati plate. made in the usual manner to vibrate so as to exhibit two nodal lines coinciding with two reetangular diameters. If the ear be placed right above the centre of the plate, the sound will be scarcely audible. But, if the pasteboard be interposed so as to intercept the vibrating segments $A O B$; DOC, the note becomes much more distinct. The reason
of tiis is, that the segments of the plate AOD, BOC always vibrate in the same direction, but oppositely to the segments AOB, DOC. Hence, when the pasteboard is in its place, there are two waves of same phase starting from the two former segments, and reaching the ear after equal distances of transmission through the air, are again in the same phase, and produce on the car a conjunct impression. But when the pasteboard is removed, then there is at the ear opposition of phase between the first and the second pair of wares, and consequently a minimum of sound.
97. A tubular piece of wood shaped as in fig. 31, and having a piece of thin membrane stretched over the opening at the top C , scme dry sand being etrewn over the membrane, is so placed over a circular or rectangular vibrating plate, that the ends A, B lie orer the segments of the plate, such as $A O D, C O B$ in the previous fig., which
 re is be set in violent movement. But if the same ends A, B, be placed over oppositely vibrating segments (such as IOD, COD), the sand will be scarcely, if at all, affected.
98. If a tuning-fork in vibration be turned round before the ear, four positions will be found in which it will be inaudible, owing to the mutual interference of the oppositely vibrating prongs of the fork. On interposing the hand between the ear and either prong of the fork when in one of thoss positions, the sound becomes audible, because then one of the two interfering waves is cut off from the ear. This experiment may be varied by holding the fork over a glass jar into which water is poured to such a depth that the eir-column within reinforces the note of the fork when suitably placed and then turning the fork round.
99. Helmholtz's double syren (§51) is well calculated for the investigation of the laws of interference of sound. For this purpose a simple mechanism is found in the instrument, by means of which the fixed upper plate can be turned round and placed in any positiou relatively to the lower one. If, now, the apparatus be so set that the notes from the upper and lower chest are in unison, the upper fixed plate may be placed in four positions, such as to cause the air-current to be cut off in the one chest at the exact instant when it is freely passing through the other, and vice versa. The two waves, therefore, being in opposite phases, neutralise one another, and the result is a faint sound. On turning round the upper chest into any intermediate position, the intensity of the sound will increase up to a maximum, which occurs when the air in both chests is being admitted and cut off conternporaneously.
100. If two pipes, in exact unison, and furnished with flame manometers, are in communicatiou with the same wind-chest, and the two flames be placed in the same vertical line, on introducing the current from the bellows, we shall find that the two lines of reflected images will be so related that each image in one lies between two images in the other. This shows that the air-ribrations in one pipe are always in an opposite phase to the other, or that condensation is taking place in the one when rarefaction accurs in the other. This arises from the current from the bellows passing alternately into the one and the other pipe. There will also be a remarkable collapse of the sound when both pipes communicate with the wind-chest compared with that produced from one pipe alone.
101. If the two interfering waves are such as produce vibrations whose numbers per second are n, n^{\prime} respectively, these being to each other in the ratio of two integers m, m^{\prime} when expressed in its lowest terms, then the lengths of the waves $\lambda, \lambda^{\prime}$ being inversely as n to n^{\prime}, will be to each other as $m^{\prime}: m$, and consequently $m \lambda=m^{\prime} \lambda^{\prime}$. Particles thercfore of the air separated by this distance from each
other will be in the same phase, that is, the length of tha resultant wave will be $m \lambda$ or $m^{\prime} \lambda^{\prime}$, and if N^{\prime} denoterthe corresponding number of vibrations $\mathrm{N}=\frac{n}{m}$ or $\frac{n^{\prime}}{m_{i}^{\prime}}$.

Thus, for the fundamental anci its octave $\frac{n}{n^{\prime}}=\frac{1}{2}$, and therefore $\mathrm{N}=n$ or $\frac{n}{2}$; that is, the note of interference is of the same pitch as the fundamental.
For the fundamental and its major third, $\frac{n}{n^{\prime}}=\frac{4}{5}$. Hence $\begin{gathered}\text { Finda. } \\ \text { meatal } \\ \text { majorthird }\end{gathered}$ $\mathrm{N}=\frac{n}{4}$ or $\frac{n^{\prime}}{5}$, that is, the resulting sound is two octaves lower than the fundametal.

For the fundamental and its major sixth, $\frac{n}{n^{\prime}}=\frac{3}{5} ; \mathrm{N}_{\substack{\text { mental } \\ \text { mand } \\ \text { mund }}}^{\substack{n^{\prime}}}$ therefore $=\frac{n}{3}$ or $\frac{n^{\prime}}{5}$, and the resulting sound is a twelfth ixixth below the lower of the two interfering notes.

If m and m^{\prime} differ by 1 , then $\mathrm{N}=n-n^{\prime}$; for $m-m^{\prime}$ or $1=\frac{n}{N}-\frac{n^{1}}{N}$. Hence, if the ratio of the vibrations $\frac{\text { Case of }}{m-m^{\prime}-1}$. of two interfering sounds is expressible in its lowest terms by numbers whose difference is unity, the resulting note has a number of vibrations simply equal to the difference of those of the interfering notes.

The results stated in this section may be tested on a har. monium. Thus, if the notes B, C, at the extreme right of the instrument be struck together, there will be heard an interference note four octaves lower in pitch than the above C , because the interval in question being a semitone, is $\frac{18}{18}$, and, consequently, by last case, the interferenco note is lower than the C by interval $\frac{1}{16}$.

Other notes may be heard resulting from the mutual interference of the overtones.
102. When two notes are not quite in tune, the resulting Beasen sound is found to alternate between a maximum and minimum of loudness recurring periodically. To these periodical alternations has been given the name of Beats. Their origin is easily explicable. Suppose the two notes to correspond to 200 and 203 vibrations fier second; at some instant of time, the air-particles, througb which the wares are passing, will be similarly displaced by both, and consequently the joint effect will be a sound of some intensity. But, after this, the first or less rapidly vibrating note will fall behind the other, and cause a diminutiou in the joint displacements of the particles, till, after the lapse of $\frac{1}{6}$ of a second, it will have fallon behind the other by $\frac{1}{2}$ a ribration. At this moment, therefore, opposite displacements will be produced of the air-particles by the two notes, and the sound due to them will be at a minimum. This will be followed by an increase of intensity until the lapse of another sisth of a second, when the less rapidly vibrating note will have lost another half-vibration relatively to the other, or one vibration reckoning from the original period of time, and the two compovent vibrations will again cons spire and reproduce a marimum effect. Thus, an inter: val of $\frac{1}{3}$ of a second elapses between two successive maxima or beats, and there are produced three beats per second. By similar reasoning it may be shown that the number of beats per second is always equal to the difference between the numbers of vibrations in the same time corresponding to the two interfering notes. The more, therefore, these are out of tone, the more rapidly will the beats follow each other.

Beats are also heard, though less distinctly, when other concerds such as thirds, fifths, \&c., are not perfectly in tune; thus, 200 vibrations and 303 vibrations per secoud, which form, in combination, an imperfect fifth, produce beats occurring at the rate of three per second.
103. The phenomena of beats may be easly obserred with two organ-pipes put slightly out of tuno by placing the hand near the open end of one of them, with two musical strings on a resonant chest, or with two tuningforks of same pitch held over a resonant cavity (such as a giass jar, vid. $\$ 97$), one of the forks being put out of tine by loading one prong with a small lump of bees'-wax. In the last instance, if the forks are fixed on one solid piece of wood which can be grasped with the hand, the beats will be sctually felt by the hand. If one prong of each fork be furnished with a small plain mirror, and a beam of light from a luminous point be reflected successively by the two mirrors, so as to form an image on a distant screen, when one fork alone is put in vibration, the image will move on the screen and be seen as a line of a certain length. If both forks are in vibration, and are perfectly in tune, this line may either be inereased or diminished permanently in length, accordiug to the difference of phase between the two sets of vibrations. But if'the forks bo not quite in tune, then the length of the image will be found to fluctuate between a maximum and a minimum, thus making the beats sensible to the eye. The vibrograph $(\$ 52,53)$ is also well suited for the same purpose, and so in an especial manner is Melmholtz' donble syren (\$51), in which', by continually turning round the upper box, a note is produced by it more or less out of tune with tho note formed by the lower chest, according as the handle is mored more or less rapidly, and most audible beats ensue. .The gas harmonica and the flame manometer also afford excellent illustrations of the laws of beats.
104. Advantage has been taken of these laws for the purpose of determining the absolute number of vibrations per second correspending to any given note in musie, whence may be derived the number for all the other notes (§ 45). The human ear may be regarded as most correctly sppreciating two notes differing by an octare. Two tuningforks then are taken, giving respectively the note A and its lower octare, and a number of other forks are prepared intermediate in pitch to these, say 54, and by means of bees'-wax these are so tuncd, that the first gires four beats with the A fork, the second four beats with the fourth, and so on up to the last, which also gives four-beats with the A $_{1}$ fork. Now, if $n=$ the unknown number of ribrations for the note A, $n-4, n-8 \ldots n-55 \times 4$, will be the numbers for all the successive forks down to the A_{1} fork, Which being an octare below A, we have $\frac{n-55 \times 4}{n}=\frac{1}{2}$ and consequently $n=440$.
Taxing by beate.

The anm-

 ber of vi-
a note

sound by beats.
105. Deats also afford an excellent practical guide in the tuning of instruments, but more so for the higher notes of the register, inasmuch as the same number of beats, that is, the same difference between the numbers of vibrations, for two notes of ligh pitch, indicates greater deriation from perfect unison, than it does for two notes of low pitch. Thus, two low notes of 32 and 30 vibrations respectively, whose interval is therefore $\frac{32}{30}$ or $\frac{16}{15}$ i.e., a semitone, give two beats per second, while the same number of beats are given by notes of 32×16 (four octaves higher than the first of the preceding) or 512 and 514 vibrations, which are ouly slightly out of tune.
106. As the interval between two notes, and consequently the number of beats increases, the effect on the ear becomes more and more unpleasant, and degenerates at last intc an irritatincु rattle. With the middle notes of the musical register, this result occurs when the number of beats comes ny to 20 or 30 per second, the musical interral between the two interfering notes being then between half and a whole tone. Helmboltz attributes the disagreeable impression of beats on the ear, to the same physiological cause
to which is due the painful effect on the eje of a faint flickering light, as, for instance, the light streaming through a wooden paling with Enterrening openings when the individual affected is passing alongside. In this case, the retina, which, when continuously recciving the same amount of light, thereby loses its sensitiveness in a great degree, is unable to do so.

It is, however, remarked by the above-mentioned author that the same number of beats, which has so irritating an effect when due to two notes in the middlo of the register, is not attended by the same result when dne to notes of much lower pitch. Thus, the notes C, D forming a tone give together 33 beats per second, while a note two octaves lower than C also gives 33 beats with its fifth; yet the former combination forms a discord, the latter a most pleasing concord.
107. When the number of beats reaches to I32 o1 Diferen upwards per sccond, the result is a continuons and not tones. unpleasing impression on the ear, and it was formerly hela that the effect was always equivalent to that of a noto having that number of vibrations. Helmholtz has shown that this opinion is inaccurate, cxcept when the interfering tones are very loud, and consequently accompanied by very considerable displacements of the particles of the vibrating medium. These resultant tones being, as to their vibration-number, equal to the difference between the numbers corresponding to the two primaries, are termed difference-tones, and may be best observed with the double syren. The same author was led also, on theoretical grounds, to surmise the formation of summation-tones by Summ the interference of two loud primarios, the number of tion-ton resultant vibrations being then equal to the sum of the numbers for the two components, and appealed for experimental proof to his syren. But, at the last meeting of the British Association (1872), Koenig, the celebrated Parisian acoustician, maintained that the notes of the syren, thus held to be summation-tones, were in reality the differencetones of the harmonics.
108. By reference to the lars of the interference of Helm: vibrations, Helmholtz has been enabled to offer a bighly satisfactory explanation of the cause whence arises difference of quality or timbre or acoustic colour between different sounds. He has shown conclusively that there are but few sounds which are of a perfectly simple character, that is, in which the fundamental is not accompanied by one or more orertones. Now, when a note is simple, thero can be no jarring on the ear, because there is on room for interference of sound. Hence, the softness of the tuningfork when its fundamental is reinforeed by a resonant cavity, and also of the flutc. The same character of suftness belongs also to those instruments in which the porerful harmonics are limited to the ribration ratios $2,3 \ldots$. f ($\$ 57,80$); because the mutual interference of the fundamental and their harmonies give rise to concords only. The piano, the open organ pipe, the violin, and the softer tores of the human voice, are of this class. But if the odd harmonics alone are present, as in the narrow stopped organ pipe, and in the, clarionet, ther the somnd is poor, and eren nasal; and if the higher harmonics beyond the sixth or serenth are very marked, the result is very harsh (as in reed-pipes).
109. The human, voice (for a description of the organ in which it originates, we refer to Art. Physiology- Voice and Speech) is regarded by the best authorities as being analorous to a reed-pipe, the rocal chords forming the recd, and the eavity of the mouth the pipe, and, like the reed, is rich in larmonics, as many as sixteen having been detected in a bass voice. But their number and relative inteasities differ much in different individuals, or even in the same person at different times; and it is on this variety that, agreeably to Helm-
holtz's theory of timbre, the peculiaritics depend by which any oue voice may be unmistakably distinguisbed from every other. Voices in which overtones abound ure sharp, and even rough; those in which they are few or faint; are soft and sweet. In every voice, however, the number and relative intensity of the overtones depend on the form assumed by the cavity of the mouth, which acts relatively to the vocal chords precisely as a resonator does to a tuning-fork, or a pipe to a reed. This may be easily tested by holding a tuning-fork before the open mouth, when, by giving to the cavity a suitable form, the fundamental or somo overtone of the fork may be heard distinctly reverberated from the interior of the mouth. Each vowel sound, as Helmholtz has shown, is simply the result of the reinforcements by the air in the cavity of the mouth, and its prolongation towards the larynx, of one or in some cases two overtones of determinate pitch, contained in the sound which proceeds from the vocal chords. ussigns the following notes as characteristio of the simpler vowel sounds (adopting the foreign pro-nunciation):-To U, the note Bb below the line in the G clef, corresponding to 225 vibrations per sccond; to O, the next higher octave, consequently of
double the number of vibrations, and thence ascending by octaves for A, E, and I, the last of which is therefore characterised by a note of 3600 vibrations per second.

The above theory of rowel sounds may be satisfactorily confirmed by means of tuning-forks, vibrating in front of resonant cavities, which can, by suitable combination, be made to utter any vowel sound.

Works on Acoustics.

Chladni, Traité d'Acoustique. Paris, 1809.
Herschel, Sir John. Encycl. Metrop., art. "Sound." Lou don, 1830.
Tyndall, Lectures on Sound, 2d edit. London, 1869.
Helmholtz, Die Lehre von der Tonempfindungen, 3d edit. Braunschweig, 1870, of which there is a French translation, and an English one is promised.
Besides the above, some account of the subject is to be found in such general works on Physics as Ganot's, 14tt edit., Paris, 1870, of which a translation is published by Lengmans, London; Deschanel's Natural Philosophy, translated by Prof. Everett, London, 1873; Jamin, Cours ds Physique, 3d edit., Paris, 1871; Wiulner, Physik, 2d edit., Leipzig, 1870.
(D. T.)

ALPHABETICAL INDEX.

The numerals refer to the sections.

Air, essential for hearing, rclocity of sound in,
Amplitude of vibratious,
Bests, how produced, examples of, application to finding x for any note, tuning by, tanid effect of, on ear,
Bell in racuo,
Cbemical barmonicon, .
Chladni's figures,
Commnnication of vibrations,
De la Tour's syten,
Density, variations in, by longitudinal vibrations,

Diatonic scale,

Difference tones, .
Dave's syтen,
Echoes,
Elasticity,
Flames, singing,
Flame manometer,
Fundamental nuto,
Gas harmonica,
Gases, velocity of sornd in,
Harmonics in strings,
rods, pipes,
Harmony, laws of,
Melmholtz, hia double syren, ou resultant tones,
on timbre,
Entensity of sound-
at different distances,
in air of different densities,
promoted by sheet of water, \&c., depends on amplitude of vibrations,
Interference of soundlews of,
examples of,

$$
.54,95
$$

intervals, musical,
88 to 100
Evenig's rhor.autograph, flame manometer,
denialof summation-tones,
Enndt's experiments,
Lsplace'a corrected relocity sound in sir,
Lenses, acoustic.
Liquids, velocity of sorind in,
Longitudinal ribrations,
91, 100
 of sound,
Reeds and reed-pipes, : :
Reflexion, lasms of, Refraction, total, Rods, trausversal vibrations of,
longitudinal vibrations of, . Savart's toothed wheel apparatus, Scales, diatonic and clromatic, Seebeck's syren, .
Solids, velocity of sonad is (longi-
tudinal),
Solids, velocity of sound in (trans. versal),
Solids, relocity of sound iv, Kundt'a method,
Statiouary wares,
Strings, musical, $12 \pi s$ of,
fundameutal uud
overtones of,
overtones
how obtained from.

Strings, musical, comparison of fundamental notes due to transversal and longitudinal ribrations, .

60
influence on pitch of length, tension, \&c.,
Melde's experimental illustrations,

Spheroidal reflcctors,

36

Summation tones, . . . 106
Syren of Scebeck,
of De la T'our,
of Dore,
of Helmholtz,
Thunder, roll of, .
Timbre,
Tones, major, minor, aul scini,
Transrersal vibrations, . . $\Omega, 2$
Tuning by beats,
Tuning forks, modo of vibration, interference in beats in $\quad 97$
Veatral segments, $\quad . \quad 5$
sound due to, : \quad a ars of,
of pendulum,
transmission of, \quad : 6
longitudinal and trans-
versal, \quad.
relation betwecn frequency of, and length
of mave,
communication of,
number of, for any note
determined by beats,
Vibrograpk,
Toice, its sest in vocal chords, ! $\quad 09$
Forel scunds, how accounted for, 108
Water, relocity of sound in, $\quad: \quad 10,12$
Waves of displaecment,
of relocity, . . . 11, 12
of condeusation and rare-
faction,
14
leugths of,
relation of, to n
propagatiou of,
13
Weber's theory of reed-pipes, : 88

AGQUT, a town of Northern Italy, in the province of sessandria, 18 miles S.S.W. of the city of that name, on the left bank of the Bormide It is a place of great antiquity; and its hot sulphur baths, which are still much frequented, were known to the Romans, who gave the place the name of Aquce Statiello. There are still to be found numerous ancient inscriptions, and the remains of a Roman aqueduct. The town is the seat oi a bishop, and has a fine cathedral, several convents, and a royal college. Good wine is produced in the sineyards of the district, and great attention is given to the rearing of silk-worms. There are also considerable silk manufactures. Population, 8600.

ACRE, a measure of surfacc, being the principal denomination of land-measure used in Great Britain. The word (akin to the Saxon acer, the Gcrman acker, and the Latin ager, a field) did not originally signify a determinate quantity of land, but any open ground. The English standard or imperial acre contains 4840 square yards, o. 10 square chains, and is also divided into roods, of which it contains 4 , the rood 8 gain being divided in 40 perches. The imperial acre has, by the Act 5 Geo. IV. c. 74, superseded the acres, of very differcnt extent, that werc is use in different parts of the country. The old Scottish acro was equal to 1.26118345 imperial acres. The Irish acre contains 7840 square yards. The acre is equivalent to -40467, i.e., about $\frac{2}{8}$ ths, of the French hectare (now the basis of superficial measurement in Germaný, Italy, and Spain, as well as in France), 7 of the Austrian jock, 37 of the Russian desätine, and 1.62 ancient Roman jugera. The hectare coiresponds to 2 acres 1 rood 35.38 perches.

ACRE, Akka, or St Jeav D'Acre, a town and seaport of Syria, and in aucient times a celebrated city. No town has experienced greater changes from political revolutions and the calamities of war. According to some this was the Accho of the Scriptures; and its great antiquity is proved by, fragments of houses that have been found, consisting of that highly sun-burnt brick, with a mixture of cement and sund; which wis only used in erections of the remotest ages. It was known among the ancients by the name of Ace, but it is only from the period when it was taken possession of by Ptoleny Soter, king of Egypt, and received from lim the name of Itolemais, that history gives any certain account of it. When the empire of the Romans began to cxtend over Asia, Ptolemais came into their possession. It is mentióned by Strabo as a city of great importance; and finc granite and marble pillars, monumonts of its ancient grandeur, are still to be seen. During the Middle Ages Ptolemais passod into the hands of the Saracens. They were expelled from it in 1110 by the Crusaders, who made it their principal port, and retained it until I187, when it was recoverel by Saladin. In 1191 it was retaken by Richard I. of England and Philip of France, who purchased this conquest by the sacrifice of 100,000 troops. They gave the town to the knights of St John of Jerusalem, from whom it received the name of St Jean D'Acre. In their posscssion it remained for a century, though subject to continual assaults from the Saracens. It was at this time a large and extensive city, populo 1 s and wealthy, and contained numerous churches; convents, and hospitals, of which no traces now remain. Acre was finally lost to the Crusaders in 1291, when it was taken by the Saracens after a bloody.siege, during which it suffered severely. From this time its prosperity rapidly declined. In 1517 it fell into the hands of the Turkish sultan, Selim I.; and in the beginning of the 18 th century, with the exception of the resideaces of the French factors, a mosque, and a few poor cottages, it presented a vast scene of ruin. Towards the end of that century Acre was much strengthened and improred by the Turks, particulariy by Djezzar Pacha, and again rose to some importance. It is memor-
able in modern history for the gallantry with which it was defended in 1799 by the 'lurks, assisted by Sir Sydncy Smith, against lomaparte, who, after spending sixty-ono days before it, was obliged to retreat. It continucd to enjoy an iucreasing degree of prosperity till 1832. Though fettered by imposts and monopolies, it carried on a considerable forcign trade, and had resident consuls from most of the great states of Eurojc. On the revolt of Mchenct Ali, the pacha of Egypt, Acre was hesieged by his son, Ibrahim Tacha, in the winter of 18.11-32 The sicge lasted five months and twenty-one days, and, before the city was taken, its public and private buildings were mostly destroyed. Its fortifications were subscquently repaired and improved by the Egyptians, in whose hands io remained until 3 d Nov. 1840 , when the town was reduced to ruins by a three hours' bombardment from the British ficet, actiug as the allies of the sultan. The Turks were again put in posscssion of it in 1841.

Acre is situated on a low promontory, at the northern extrcmity of the Bay of Acre. The bay affords no shelter in bad weather; and the port is scarcely capable of containing a dozen boats. Vessels coming to this coast, therefue, generally frequent the anchorage of Caiffa, on the south side of the bay. Aere is 80 miles N.N.W. of Jerusalem, and 27 S . of Tyre. Population, 10,000.

ACROBAT (from úкроßaт'́ ω, to walk on tiptoe), a rope dancer. Evidence exists that there were very skilful performers on the tight-rope (funambuli) among the ancient Romans. Modern acrobats generally se a long pole, loaded at the ends, and by shifting this are cnabled to maintain, or readily to recover, their cauilibrium. By an extension of the meaning of the term, acrobatic feats now include trapèze leaping and similar perturmances.

ACROCERAUNIA, in Ancient Geography, a promontory in the N.W. of Epirus, which terminates the Montes Ceraunii, a range that runs S.E. from the promontory along the coast for a number of miles, and is supposed to have derived its name from being often struck with, lightning. The cape (now called Glossa by the Greeks, and Linguetta by the Italians) is in lat. $40^{\circ} 25^{\prime} \mathrm{N}$.

ACROGEN EE is the name applied to a division of acoty Jedonous or cryptogamous plants, in which leaves are present along with vascular tissuc. In the higher divisions of Acrogens, as ferns and lycopods, the tissuc consists of scalariform vessels, while in the lower divisions spiral cells are observed, which take the place of vessel. The term Acrogen means summit-grower, that is, a plant in which the stem increases specially by the summit. this is not, however, strictly accurate.
 in the history of plastic art, in which the trunk of the figure was of wood, and the head, hands, and feet of marble. The wood was concealed either by gilding or, more commonly, by drapery, and the marble parts alone were exposed. Acroliths are frequently mentioned by Pausanias, the best known specimen being the Mincraa Areia of the Platrans.
$A C R O N$, a celcbrated physician, born at Agrigentum in Sicily, who was contemporary with Empedocles, and must therefore have lived in the 5th century before Christ. The successful measure of lighting large fires, and purify* ing the air swith perfumes, to put a stop to the pestilence that raged in Athens (430 B.c.), is said to have originated with him; but this has been questioned on chronological grounds. Pliny is mistaken in saying that Acron was the founder of the sect of the Empirici, which did not exist until the 3 d century before Christ. The error probably arose from a desire on the part of the sect to establish for itself a greater antiquity than that of the Dogmatic. Suidas gives the titles of several works written by Acron
on mesical subjects, in the Doric dialect, but none of these now exist.

ACROPOLIS ('Aкро́то入ıs), a word signifying the upper town, or chief place of a city, a citadel, usually on the summit of a rock or hill. Such buildings were common in Greek cities; and they are also found elsewhere, as in the case of the Capital at Rome, and the Antenia at Jerusalem; but the most celebrated was that at Athens, the remains of which still delight and astonish travellers. It was enclosed by walls, pertions of which show traces of extreme antiquity. It had nine gates; the principal one was a splendid structure of Pentelican marble, in noble Doric architecture, which bore the name of Propylaia. Besides other beautiful edifices, it contains the Map θ evév, or temple of the virgin geddess Athene, the most glorious monument of ancient Grecian architecture.

Ground plan of the Acropolis of Athens.
a, Pedestal of Rome and Augestus.
$b, c_{3} d$, Sites of temples of Minervo, Diana, and Venus.
e. Erectheiam.
f. Dionysiac theatre.
g. Cdeon of Herodes
h and o_{4} Grottoes.
i, Buined mosque.
k, L Gate and portico.
m, Choragic monament of Thrasycles,
now church of our lady of the grotto. n, n, Remains of Pelasgic wall. n, n, Walls of ontworks, \&c.
p, Gate to Propylæa.
g, Gate to Pro
u, r_{1}, Ancient malls.
ACROSTIC (from üкpos and σ тíxos, meaning literally the extremity of a verse), is a species of peetical composition, so constructed that the initial letters of the lines, taken consecutively, form cortain names or other particular words. This fancy is of considerable antiquity, one of the most remarkable examples of it being the verses citcd by Lactantius and Eusebius in the 4th century, and attributed to the Erythræan sibyl, the initial letters of which form the words 'Inoô̂s Xipıotòs ©coû viòs $\sigma \omega \tau \mathfrak{\eta} \rho:$ "Jesus Christ, the Son of God, the Saviour," with-the addition, according to some, of ofavpós, "the cross." The initials of the shorter form of this again make up the word i $\chi \theta$ vis, 10. Which a mystical meaning has been attached (Augustine, De Civitate Dei, 18, 23), thus constituting anether kind of acrostic. The arguments of the comedies of Plautus, with acrostics on the names of the respective plays, are probably of still carlier date. Sir John Davies (15701626) wrote twenty-six elegant Hymns to Astroce, each an acrostic on "Elizabetha Regina;" and Mistress Mary Fage, in Fame's Roule, 1637, commemorated 420 celebrities of her time in acrostic verses. The same form of composition is often to be met with in the writings of more recent rersifiers. Sometimes the lines are so combined that the final letters as woll as the initials are significant. Edgar Allan Poe, with characteristic ingenuity, worked two names-one of them that of Frances Sargent Ossood-inte verses in such a way that the letters of the names corresponded to the first letter of the first line, the second letter of the second, the third letter of the third, and so on.

Generally speaking, acrostic verse is not of much value, and is held in slight estimation. Dr Samuel Butler says, in his "Character of a Small Poet," "He uses to lay the outsides of his verses even, like a bricklayer, by a line of rhyme and acrostic, and fill the middle with rubbish." Addison (Spectator, No. 60) found it impossible to decide whether the inventor of the anagram or the acrostic were the greater blockhead; and, in describing the latter, says, "I have seen seme of them where the verses have not only been edged by a name at each extremity, but have had the same name running dewn like a seam through the middle of the poem." And Dryden, in Mac Flecknoe, scornfully assigned Shadwell the rule of

"Some peaceful province in acrostic land."

The name acrestic is also applied to alphabetical or "abecedarian" verses. Of these we have instances in some of the Hebrew psalms (e.g., Ps. xxv. and xxsiv.), the successive verses of which begin with the letters of the alphabet in their order. The structure of Ps. cxix. is still more elaborate, each of the verses of each of the twentytwo parts commencing with the letter which stands at the head of the part in our English translation. Alphabetical verses have been constructed with every word of the successive lines beginning with the successive letters of the alphabet.

By an extended use of the term acrostic, it is applied to the formation of words from the initial letters of other words. 'I $\chi \theta$ v's, referred to above, is an illustration of this. So also is the word "Cabal," which, though it was in use before, with a similar meaning, has, from the time of Charles II., been associated with a particular ministry, from the accident of its being composed of Clifford, Ashley, Buckingham, Arlington, and Lauderdale. Akin to this are the names by which the Jews designated their Rabbis; thus Rabbi Meses ben Maimon (better known as Maimonides), was styled "Rambam," from the initials R. D. B. M.; Rabbi David Kimchi (R.D. K.), "Radak," \&c.

A species of puzzle, scarcely knewn twenty years age, but very common now (see English Catalogue, 1863-71, s. v. Acrostics), is a combination of enigma and double acrostic, in which words are to be guessed whese initial and final letters form other words that are also to be guessed. Thus Sleep and Dream may hare to be discovered from the first and last letters of Sound, Lorer, Europe, Elia, and Palm, all expressed enigmatically.

ACT, in Dramatic Literature, signifies one of those parts into which a play is dirided to mark the change of of time or place, and to gire a respite to the actors and to the audience. In Greek plays there are no separate acts, the unities being strictly observed, and the action being continuous from beginning to end. If the principal actors left the stage the chorus took up the argument, and contributed an integral part of the play, though chiefly in the form of comment upon the action. When necessary, another drama, which is etymologically the same as an act, carried on the history io a later time or in a different place, and thus we have the Greck trilogies or groups of three dramas, in which the same characters reappear. The Roman poets first adopted the division into acts, and suspended the stage business in the intervals between them. Their number was usually five, and the rule was at last laid down by Horace in the Ars Poetica-
"Neve minur, neu sit quinto productior actu
Fabula, qure posci rult, et spectata reponi."
"If sou would have your play deserve success,
Give it five acts complete, ner more nor less."

- Francis.

On the reviral of Icters this rule was almost, unirersally observed by dramatists and that there is s.u inherent.con.
venience and fitness in the number fire is evident from the fact that Shakespeare, who refused to be trammelled by merely arbitrary rules, adopts it in all his plays. Some critics have laid down rules as to the part each act should sustain in the development of the plot, but these are not essential, and are by no means universally recognised. In comedy the rule as to the number of acts has not been so strictly adhered to as in tragedy, a division into two acts or three acts being quito usual since the time of Molière, who first introduced it.

It may be well to mention here Milton's Samson Agonistes as a specimen in English literature of a dramatic work founded on a purely Greck model, in which, consequently, there is no dirision into acts.

ACT, in Law, is an instrument in writiug for declaring or justifying the truth of anything; in which sense records, decrecs, sentences, reports, certificates, \&c., are called acts. The origin of the legal use of the mord Act is in the acta of the Roman magistrates or people, of their courts of law, or of the senate, meaning (1) what was done before the magistrates, the people, or the semate; (2) the records of such public proceedings.
ACT OF PARLIAMENT. An Act of Parliament may be regarded as a declaration of the Legislature, enforcing certain rules of conduct, or defining rights and conferring them apon or withholding them from certain persons or classes of persons. The collective body of such declarations constitutes tho statutes of the realm or written law of the nation, in the widest sense, from Anglo-Saron times to the present day. It is not, however, till Magna Charta that, in a more limited constitutional sense, the statutebook is generally held to open, and the Parliamentary records only begin to assume distinct outlines late in the reign of Edward I. The maladministration of the common lary by tho royal judges had gradually taught the people tho recessity of obtaining written declarations of their rights-often acknowledged, still oftener violated. Insensibly almost, the Commons, whose chief function it origin. ally was to vote supplies to the cromn, began to couple their grants with petitions for the redress of grievances. The substance of these petitions and of the royal responses was in time made the groundwork of Acts which, as framed by court redactors, and appearing annexed to proclamationwrits after the dissolution of Parliament, were frequently found scriously to misrepresent its will. To check- this evil an Act was passed (8 Henry IV.), authorising the Commons to be represented at the engrussing of the Par. liament roll; hut even this surveillance was not enough, for in the becinning of the reign of Henry V. it was enacted, at the instance of the Commons, that in regard to their petitions the rogal reerogative should in future be limited to granting or refusing them simpliciter. In this way it became a fixed constitutional principle that an Act of Parliament, to be ralid, must express concurrently the will of the entire Legislature. It was not, however, till the reign of Henry VI. that it became customary, as now, to introduce bills into Parliament in the form of finished Acts; and the enacting clause, regarded by constitutionalists as tho first perfect assertion, in words, of popular right, came into general use as late as the reign of Charles II It is thus expressed:-"Be it cnacted by the King's most excellent Majesty, by and with the adrice and consent of the Lords Spiritual and Tcmporal and Commons in this present Parliament sssembled, and by the authority of the same." The use of the preamble with which Acts are usually prefaced, is thus quaintly set forth by Lord Coke, "The rehearsal or preamble of the statute is a good meane to find out the meaning of the statate, and, as it were, a key to open the understanding thereof." Originally, the collective Acts of each session formed but one statute, to
which a general title was attached, and for this reason an Act of Parliament is almays cited as the shapter of a rarticular statute-e.g., 24 and 25 Vict, c. 101. Titles nerc, homerer, prefixed to individual Acts us carly as 1488. Since 33 Gco. IIL c. 13, an Act of Parliament is complete whenever it reccires the royal assent, and takes effect from that date, unless the Act itself fir somo other. British Acts require no formal promulgation, for it is presumed that every subject of the ralm is cognisant of the resolutions of Parliament, either by himself or his representative therein.

3 Iodern Acts of Parliament are-1. Public. These are binding on all citizens, and are cx efficio cogrisable by the judges. Since 1850 every Act is held to be public unless the contrary be expressly declared. 2. Private Acls. These relate to particular classes, persons, or places. Private Acts are (1.) Pcrsonal, viz., those arhich relste to name, naturalisation, estate, \&cc., of particular persons. (2.) Local, affecting bridges, canals, docks, turapikes, railways, sce. To. prevent such Acts from being unduly passed, the promoters of privato bills aro required to comply with the starding orders of the two llouses, by which privato bill procedure is regulated. Acts of P'srlizment, for convenience of reference, aro classificd as Public General Acts, Local and Personal Acts declared Public, Privste Acts printed, and Prirato Acts not printcd. Public General Acts (if no cxception be crppessed), extend to Great Britain and Ireland, exclusirely only of the Channcl lslands and the Isle of Man.
The first complete edition of English Acts of Parliament published by state anthority sppearcd between the years 1810 and 1824. It includes the early charters, and ends with the reiga of Queen Anne. Many private editions of the statutes had appeared previous to that of the Record Commissioners. The practice of printing Acts of Parliament commenced in the reign of Richard II. The charters and Acts were written in Latin till the Statutum de Scaccario, 51 1lenry III. (1266), which is in Freach. Tho Acts of Edmard I. are indiso criminately in Latin or French; bat from the fourth ycar of Henry VII. Acts are exclnsively in English.

Scolch. Acts. - The earliest attempts at a written record of the proceedings of the Parliament of Scotland consisted of detached instiuments or indentures, and the next step was the entering of theso detached instruments on a rall for more permanent preservation. No such record, however, is preserved before the disputed auccession, which comraenced in 1839. The earliest roll of placita in parliamento is dated 1292; but the Blak Buik, containing a series of proceedings in Parlisment from 1357 to 1402, is the most important of the earliest records of Parliament. The original books of Parliament of the reigns of James I. and James 1I. are not I reserved, bat fros the year 1\&66 down to the Union a Voluminous, but not anbroken, series has beed preaeryed. Down to the reign of Jamea F., scarcely any Act in the eriginal registers is distinguished by a title or rubric; and ever afler that period the practico has not in this respect been uniform. In like manner there is no numeration of the Acts of Parliament during this perled. The language of the earliest Scotch records is in Latin ; but as carly as 1393 some of the proccedings of Parliament or tha Council-General were written in Scots, and subsequently to 1424 slways in that language. Unlike the English Acts, French was never used in Scotch legislation. In 1541 a sclection of the Acts of James V, was printed. . The first edition of the Acts was published in 1560, the second in.1597, the third in 1681; and the great national work, the complete record of Parlia, ment, has just been completed, with a general index to the whole Acts from 1124 to 1707, which forms the grest repertory of the legal, constitutional, and political history of Scotland. In 1540 an Act was passed requiring all the Acts of Parliament to be pronounced in presence of the king and the estates, -the assent of tha king being indicater by his touching them with the oceptre; and in 1641 it Wes ordained that tho Acts passed in 1840 be published in the king's name, and with the consent of the estates. But during the civil war the Acts of Parlianent were passed in name of the estates alone. These Acts, however, were rescinded after the restoration of Charles II. by Act 1661, c. 126, because "the powcr of making laws is an essential privilege of the royal prerogative." In 1457 an Act was passed for proclaiming the Acts of Parliament in the shires and burghs, that none be ignorant; and in 1581 it was ordained that Acts need not be proclaimed at the market-cross of the head burgh of each shire, but at the market-cross of Edinburgh only, the lieges obesing the立 iorty days thereafter. The clerk of register was always bound to gire extracts of Acts to the lieges in their particular affairs. In 1425 a committee, consisting of an equal number of each estate, was appointed to amend tho books of law ; and in 1567 a commission was issued to codify the laws, ciril and municipal, divicing them into heads like the Roman law, -the beads as they are ready to be brought to Parliament to be confirmed. Lord Bacon recoummended the Scotch Acts for their "excelent brevity." His lordship's praise applies very properly to the Acts down to the.
reign of Queen Mary and the early part of the reign of James V1.; but the logomachy of subsequent legislation is intolerable to the consulter.
Irish Acts may be said to commence A.D. 1310, in the reign of Edward II., and to close with the union with the British Parliament in 1801. From the former date, however, there is a break till 1429. In 1495 Poyning's Lavo provided that no bill should be introduced into the Irish Parliament which has not previously received the rojal assent in England; and till 1782° the Parliament of Ireland remained in tutelage to that of England. Since 1801 it has been incorporated with the Parliament of Great Britain.
ACT OF SEDERUNT, in Scotch Lar, an ordinance for regulating the forms of procedure before the Court of Scssion, passed by the judges in virtue of a power conferred by an Act of the Scotch Parliament, 1540, c. 93. In former times this power was in several instances clearly exceeded, and such. Acts of Sederunt required to be ratified by the Scotch Parliament; but for more than a century and a half Acts of Sederunt have been almost exclusively confined to matters relating to the regulation of judicial procedure. Many recent statutes contain a clause empormering the court to make the necessary Acts of Sederuint. A quorum of nine judges is required to pass an Act of Sederunt.
ACTS OF THE APOSTLES, the fifth among the canonical books of the New. Testament. What has to be sad on this book will naturally fall under the followiug heads: The state of the text; the authorship; the object of the rork; the date and the place of its composition.
The State of the Text. -The Acts is found in two MSS. generally assigned to the 4th century, the Codex Sinaiticus, in St Peters'ourg, and the Codex Faticanus, in Rome; in one MS. assigned to the 5th century, the Codex Alexandrinus, in the British Museam ; in two MSS. belonging to the 6th century, the Codex Betce, in Cambridge, and the Codex Laudianus, in Oxford; and in one of the 9th century, the Codex Palimpsestus Porfirianus, in St Petersburg, with the exception of chapter first and eight rerses of chapter second. Large fragments are contained in a MS. of the 5th century, the Codex Ephrami, in Paris. Fragments are contained in five other MSS., none of which is later than the 9th century. These are all the uncial MSS. containing the Acts or portions of it.
The MSS. in Oxford and Cambridge differ widely from the others. This is especially the case with the Cambridge MS., the Codex Bezie, which is said to contain no less thau six hundred interpolations. Scrivener, who has edited this MS. with great care, says, "While the general course of the history and the spirit of the work remain the same as in our commonly received text, we perpetually encounter long passages in Codex Beze which resemble that text only as a loose and explanatory paraphrase recalls the original form from which it sprung; save that there is no difference in the language in this instance, it is hardly an exaggeration of the facts to assert that Codex D [i.e., Codex Beza] reproduces the textus receptus of the Acts much in the same way that one of the best Chaldee Targums does the Hebrers of the Old Testament, so wide are the rariations in the diction, so constant and inveterate the practice of expanding the narrative by means of interpolations." Scrivener here assumes that the additions of the Codex Bezee are interpolations, and this is the opinion of nearly all critics. There is one, however, Bornemann, who thinks that the Codex Be:ce contains the original text, and that the others are mutilated. But even supposing that we were quite sure that tho additions were interpolations, the Codex Bezce makes it more difficuls to determine what the real text was. Scrivener, with good reason, supposes that the Codex Berce is derived from an original which would most likely belong to the third century at the latest.

Autiorahip of the Tork.-In treating this subject we begin with the external ovidence.

The first mention of the authorship of the Acts in a $\overline{r e l l}$ authenticated book occurs in the trea ise of Irenæus against heresies, writter between the year3 182 and 188 A.D. Irenæus names St Luke as the author, as if the fact Trcre well known and undoubted. He astributes the third Gospel to him, and calls him "a follower and disciple of apostles" (H. iii 10, 1). He states that "he was inseparable from Paul, and was his fellom-morker in the gospel" (H. iii 14, 1). The neat mention occurs in the Stromata of Clemens Alexandrinus, written about 195 A.D., where part of St Paul's speech to the Athenians is quoted with the words, "Even as Luke also, in the Acts of the Apostles, records Paul as saying" (Strom. 8. zii. 82, p. 696, Pott). The Acts of the Apostles is quoted by Tertullian as Scripture, and assigned to St Luke ($\alpha, \downarrow v .1$ Mar. $\nabla .2$ and 3). Origen speaks of "Luke who wrote the Gospel and the Acts" (Eus. H. E. vi. 25); and Eusebius includes the Acts of the Apostles in his summary of the books of the New Testament (IIist. Eccl. iii. 25). The Muratorian canon, generally assigned to the end of the second or beginning of the third century, includes the Acts of the Apostles, assigns it to St Luke, and says that he was an eye-mitness of the facts recorded. There is thus unanimous testimony up to the time of Eusebius that St Luke was the author of the Acts. This unanimity is not disturbed by the circumstance that some hereties rejected the work, for they did nut deny the authorship of the book, but refused to acknowledge it as a source of dogmatic truth

After the time of Eusebius we find statements to the effect that the Acts was little known. "The existence of this book," Chrysostom says, "is not known to many, nor the person who wrote and composed it." And Fhotius, in the ninth century, says, "Some maintain that it was Clement of Rome that was the writer of the Acts, others that it was Barnabas, and others that it was Luke the Erangelist."

Irenæus makes such copious quatations from the Acts that we can feel sure that he had before him substantially our Acts. We cannot go further back than Irenæus with certainty. If, as we shall see, the writer of the Acts was also the mriter of the third Gospel, we hare Justin Martyr's testimony (about 150 A.D.) for the existence of the third Gospel in his day, and therefore a likelihood that the Acts existed also. But-tre have no satisfactory evidence that Justin used the Acts, and there is nothing in the Apostolic Fathers, nor in any work anterior to the Letter of the Churches of Fienne and Lyons, Written probably soon after 177 A.D., to prove the existence of the Acts.

The meight of external evidence therefure goes entirely for St Luke as the author of the Acts. But it has to be noticed, that the earliest testimony is more than a hundred years later than the events described in the Acts. We have also to take into account that Ireneus was not critical. We find him calling the Pastor of Hermas Scripture; Clemens Alexandrinus also calls the Pastor inspired; and Origen not merely attributes inspiration to the work, but makes the author of it the Hermas mentioned in the Epistle to the Romans. All scholars reject the testimony of Irenæus, Clemens Alexandrinus, and Origen in this matter. The question arises, How far are wo to trus: them in others of a similar nature?

We turn to the internal evidence. And in the very commencement we find the author giving himself out as the person who wrote the third Gospel. This claim has been almost universally acknowledged. There is a remark. able similarity of style in both. The same peculiar modes of cxpression continually occur in both; and throughout both there exist continual references backward and fer.
ward, which imply the same authorship. There are some difficulties in the way of this conclusion. Two of these deserve special notice. If we turn to the last chapter of the Gospel, we find it stated there (ver. 13) that two disciples met Jesus on the day of the resurrection, as they were geing to Emmaus. Towards nightall (ver. 29) he entered the village with them; and as ho reelined with them, he became known to them, amd disappeared. Whereupon "at that very hour" (ver. 33) they rose up and returned to Jerusalem. They found the eleven assembled, and told them what had happened to them. "While they were saying these things, he himself stood in the midst of them" (ver. 36) Tho apostles gave him a piece of fish, and he ate it. "But he said to them" (ver. 44), so the narrative gocs on, and it then relates his speech; and at ver. 50 it says, "He led them out to Bethany," and then disappeared from them. This disappearance was final; and if the words used in the Gospel make us hesitato in determining it to be his ascension, such hesitation is removed by the opening words of the Acts. Aceording to tho Gospel, therefore, all the events now related took place, or seem to have taken place, on the day of the resurrection, or they may possibly have extended into the next morning, bnt certainly not later. The Acts, on the contrary, states that Jesus was seen by the disciples for forty days, and makes hinn deliver the speech addressed to bis disciples and ascend into heaven forty days after the resurcezion. The other instance is perhaps still more singular. In the Acts we have three accounts of the conversion of St Paul-the first by the writer himself, the other two by St Paul in his speeches. The writer states that (ix. 4, 7) when the light shone round Paul, he fell to the ground, "but the men who were journeying with him stood dumb." St Paul himself says (xxvi. 14) that they all fell to the ground. The writer says (ix. 7) that St Paul's companions heard the voice, but saw no one. St Paul himself says (xxii. 9) that his companions saw the light, but did not hear the voice of him who spake to him. And finally, all these accounts differ in their report of what was said on the occasion. Notwithstanding these differences, even these very accounts contain evidence in them that they were written by the same writer, and they do not destroy the force of the rest of the eridence. The ease would be quite different if Baur, Schwegler, and Wittichen were right in supposing that the Gospel of Luke contained documents of opposite tendencies. It would then be necessary to assume different nuthors for the different parts of the Gospel, and still another for the Aets. But this theory falls to the ground if the Tübingen theory of tendencies is rejected.

The Aets itself claims to be written by a companion of St Paul. In chap. xvi. 10, the writer, without any previous warning, passes from the third person to the first. St l'aul had reached the Troad. There he saw a vision inviting hira to go to Macedonia. "But when he saw the vision, straightway we sought to go out into Macedonia." The use of the "we" continues until Paul leaves Philippi. In chap. xx. Paul returns to Philippi, and the "we" is resumed, and is kept up till the end of the work. Irencus (II. iii. 14, 1) quotes these passages as proof that Luke, the author, was a companion of the apostle. The minute character of the narrative, the accurate description of the various journeyings, the unimportance of somo of the details, and the impossibility of contriving all the incidents of the shipwreck without experiencing them, are strong reasons for believing that we have the narrative of an eye-witness. And if we allow this much, we ean searcely help-coming to the conelusion that this cye-witness was the author of the work; for the style of this eye-witness is exactly the style of the writer who composed the previous pcrtions. Some have supnosed that we have bere the per-
sonal narrative of Timethy or of Silas; but this supposition would compel us to believe that the writer of the Aets was so careless as to tack documents together without rememberng to atter their form. Such a procedure on the part of tl. skilful writer of the Acts is unlikely in the highest degree The "wre" is introduced intentionally, nad ean be aecuanted for only in two ways: either by supposing that the writer was an eye-witness, or that he wislied to be thought an eye-witness, and borowed the narrative of an eye-witness to facilitate the deeeption. Zeller has adopted this latter nlternative; and this latter alternative is the only possible one for those who assign a very late date to the Acts.

We may test the writer's claim to be regarded as a companion of St Paul by comparing his statements with those of the other books of the New Testament. As might be expected, the great facts recorded in the Gospels are reproduced accurately in the Aets. There is only one marked difference. St Mat hew says (xxvii. 厄5, 7) that Judas cast the traitor's money into the temple, and the priests bought with it'a field for the burial of strangers. St Peter in Acts (i. 18) says, that Judas himself purchased a field with the reward of his iniquity. St Mattlew says that he went and hayged limself, St Peter that he fell headlong and burst in the middle. St Mattherv says, or rather seems to say, that the field was called the field of blood, because it was purchased with blood-money; St Peter seems to attribute the name to the circumstance that Judas died in it.

The Acts is divided into tro distinet parts. The first deals with the church in Jerusalem, and especially narrates the actions of St Peter. We have no external means of testing this portion of the narrativ- The Aets is the only work from thieh information is got in regard to these events. The second part pursues the history of the apostlo Paul; and here we can compare the statements rade in the Acts with those made in the Epistles. Now here again we have a general harmony. St Paul travels in the regions where hiz Epistles show that he founded churehes. The friends of St Paul mentioned in the Acts are also tho friends acknowledged in the Epistles. And there aro many minute coineidences. At the samo time, we learn from this comparison that St Luke is not anxious to give minute details. Timothy probably visited Athens while St Paul was there. This we learn from 1 Thess. iii. 1, but no mention is made of this visit in the Acts. Again, we gather from the Epistles to tho Corinthians that St Paul paid a visit to Corintly, whech is not recorded in the Acts. Moreover, no mention is made of Titus in the Acts. These, however, are slight matters; and it must bo allowed that there is a general agreement. But attention has been drawn to tro remarkable exception these are the aecount given by S't Paul of his visits to Jerusalem in the Epistle to the Galatians and that given by St Luke; and the character and mission of the apostle Paul, as they appear in his letters and as they appear in the Acts.
In regard to the first point, St Paul himself says in the Epistle to the Galatians, that after his conversion straightway he held no counsel with flesh and blood, nor did he go up to Jerusalem to the apostics who were before him; but he went away to Arabia and returned to Damaseus; that then after three years he went up to Jerusalem to seek for Cephas, and he remained with him fourteen days. He at that time saw only two apostles,-Peter, and James the brother of the Lord. He then went away to Syria and Cilieia, and was unknown by face to the churches of Jndea IIe says that fourteen years after this he went up to Jerusalem with Barnabas, taking Titus with him. On this oceasion he went up by revelation. St Paul introduces these facts for a porpose, and this purpose is that he might prove his independence as an apostle. He bad acied
solely on the revelation given to himself. He had neither required nor obtained sanction from the other apostles. He was an apostle, not sent forth from men nor through men, but through Jesus and God. When we turn to the A.cts, we find that no mention is made of the journey to Arabia. He stays some days at Darnascus, and then begins to preach the gospel. He continues at this work a sonsiderable time; and then, in consequence of the plots of the Jews, he secretly withdraws from Damascus and proceeds to Jerusalem. The brethren there are suspicious in regard to him, and their fears are not quieted until Barnabas takes him to the apostles; and after this introluction he goes in and out amongst them, and holds discussions with the Hellenists. Finally, when the Hellenists attempt to kill him, the brethren send him to Tarsus. In the Epistle to the Galatians St Paul does everything for himself, instigated by his inward feelings. In the Acts he is forced out of Antioch, and sent by the brethren to Tarsus. In the Galatians St Paul stays only a fortnight, and sees only St Peter and St James of the apostles, and was unknown by face to the churches of Judea. In the Acts Barnabas takes bim to the apostles, and he continues evidently for a period much longer than a fortnight, going in and out amongst them. Then in chap. xi. 30 , he grees up a second time to Jerusalem, -a visit which seems inconsistent with the narrative in the Epistle to the Galatians. And finally, when he goes up to Jerusalem, the Acts does not represent him going up by an independent revelation, but as being sent up; and it says nothing of his taking an independent part, but represents him as submitting to the apostles.
This, however, leads us to the treatment of the character of St Paul by the writer of the Acts. Some of the Tübingen critics assert that the writer shows ill-will to St Paul, but they are evidently wrong. On the contrary, the character of the apostle as given in the Acts is full of grand and noble traits. Yet still there are some singular phenomena in the Acts.. St Paul claimed to be an apostle by the will of God. He had as good a right to be an apostle as St Peter or St James. Yet the writer of the Acts never palls him an apostle in the strict sense of the term. He is twice called an apostle, namely, in Acts xir. 4 and 14. On both occasions his fellow-apostle is Barnabas; but Barnabas was not one of the twelve, and not an apostle in the strict sense of the term. And even. in these verses the reading is doubtful. The Codex Bezce omits the word apostle in the 14th verse, and makes the 4th liable to suspicion by inserting an addition to it. St Luke also brings prominently forward as the proper mark of an apostle, that he should have companied with the Lord frum his baptism to his asceusion, and describes the filling ap of the number of the twelve by the election of Matthias. And if St Luke's narrative of St Paul's converşion be minutely examined, it will be perceived that not only does he not mention that St Paul saw Jesus, but the circumstances as related scarcely permitted St Paul to see Jesus. He was at once dazzled by the light, and fell to the ground. In this prostrate coudition, with his eyes shut, he heard the voice; but at first he did not know whose it was. And when he opened his eyes, he found that he was blind. The words of Ananias imply that St Paul really did see Jesus, but St Luke abstains from any such statement. And St Paul is not treated by the Jewish Christians in the Acts as 2n independent apostle. He is evidently under submission to the avostles at Jerusalem.
Furthermore, the point on which St Paul specially insists in the Epistle to the Galatians is, that he was appointed the 2postle to the Gentiles as St Peter was to the circumcision, and that circumcision and the observance of the Jevish law serc of no importance to the Christian. St Paul's words on ihis puint in all his letters are strong and decided. But in
the Acts it is St Peter that opens up the way for the 'Gentiles. In St Peter's mouth occurs the strongest language in regard to the intolerable nature of the law. Not a word is said of the quarrel between St Peter and St Paul. The brethren in Antioch send St Paul and Barnabas up to Jerusalem to ask the opinion of the apostles and elders. St Paul awaits the decision of the apostles, and St Paul and Barnabas carry back the decision to Antioch. And throughout the whole of the Acts St Paul never stands forth as the champion of the Gentiles. He seems continually anxious to reconcile the Jewish Christians to himself, by observing the law of Moses. He circumcises Timothy, and he performs his vows in the temple. And he is particularly careful in his speeches to show how deep his respect for the law of Moses is In this regard the letters of St Panl are very different from his speeches as given in the Acts. In the Epistle to the Galatians he claims perfect freedom for himself and the Gentiles from the observance of the law; and neither in it nor in the Epistle to the Corinthians does be take any notice of the decision to which the apostles are said to have come in their meeting at Jerusalem. And yet the narrative of St Luke implies a different state of affairs from that which it actually states in words; for why should the Jers hate St Paul so muich more than the other apostles if there was nothizg special in his attitude towards them ?

We may add to this, that while St Luke gives a rather minute account of the sufferings of St Peter and the church in Jerusalem, he has not brought prominently forward the perils of St Paul. St Paul enumerates some of his sufferings in the second Epistle to the Corinthians (chap. xi 23-28). St Luke has omitted a great number of these. Thus, for instance, St Paul mentions that he was thrice shipwrecked. St Luke does not notice one of these ship. wrecks, that recorded in the Acts having taken place after the Epistles to the Corinthians were written. Some also think that St Luke details several occurrences which are scarcely in harmony with the character of St Paul. They say that the dismissal of John Mark, as recorded in the Acts, is a harsh act. St Paul's remark, "I wist not that he is the high priest". (xxiii. 5), they regard as donbtful in point of honesty. And the way by which he gained the Pharisees to his side, in opposition to the Sadducees, they describe as an expedient unworthy the character of this fearless apostle (xxiii 6).

St Luke occasionally aliudes, in the Acts, to events whick toak place outside of the church. We can test his accuracy in recording these events by comparing his narrative with the narratives of historians who treat of the same period. These historians are Josephus, Tacitus, and Suetonius. Now, here again we find that the accounts in the Acts generally agree. Indeed, Holtzmann has noticed that all the external events mentioned in the Acts are also to be found in Josephus. We may therefore omit Tacitus and Suetonius, and confine ourselves to Josephus. Three narratives deserve minute examination. The first is the death of Herod Agrippa. Josephus says (Ant. xix. 8, 2) that Herod was at Cæsarea celebrating a festival in honour of the Cæsar. On the second day of the spectacle, the king put on a robe made entirely of silver, and entered the theatre early in the day. The sun's rays fell upon the silver, and a strong impression was produced on the people, so that his flatterers called out that he was a god. He did not check their impiety, but soon, on looking up he saw an owl perched above his hect on a rope. He at once recognised in the bird the harbinger of eril. Immediately he was attacked by violent pains in the borwels, and after five days' illness died. The Acts says that Herod was addressing a deputation of Tyrians and Sidonians in Cæsarea, seated on the tribunal and arrayed in a rogal
robe. The people called out, "Tho voice of a god, and not of a man." "Immediately an angel of the Lord struck him because he gavo ant God the glory, and becoming wormeaten, he died" (xii. 21-23). Buth accounts agree in representing Herod as suddenly struck with diseaso because ho did not check tho impicty of his flatterers, but they agree in almost nothing else; and it is difficult to conccise that tho one writer knew the account of tho other. Which account is most to bo trusted, depends upon the answer given to the question which is the more credible historian.

The second caso relates to the Egyptian mentioned in the question of the tribune to St Paul, in Acts $x x i$ 38, "You are not then the Egyptian who, some time ago, made a disturbance, and led into the wilderness the four thousand of the sicarii?" Josephus mentions this Eyyptian, both in his Antiquities (xx. 8, 6) and in the Jewish War (ii. 13, 5). In the Jewish IVar (ii. 13, 3), Josep,hus describes the siearii, and then passes on, after a short section, to the Egyptian. He states that he collected thirty thousand people, led them out of the wilderness "to the mount called the Mount of Olives, which," he says.(Ant. xx. 8, 6) in words sinilar to those in Acts i. 12, "lies opposite to the city five furlongs distant." On this Felix attacked him, killed sorne, captured others, and 8cattered the band. The Egyptian, however, escaped with somo followers. Henco the question in the Acts. There are some striking resemblances between the words used iy both writers. The numbers difer; but St Luke gives the numbers of the sicarii, Josephus the numbers of the entire multitudo led astray.

The third caso is tho one which has attracted most attention. In the sfeech which Gamaliel delivers, in Acts v. 35-39, it is said, "Some timo before this, Theudas rose up, saying that he was some one, to whom a number of about four bundred men attached themselves, who was cut off, and all who followed him were broken up and came to nought. After him rose up Judas the Galilean, in the days of the registration, and he took away people after him; and he also perished, and all that followed him were scattered." On turning to Joscphus we find that both Theudas and Judas the Galilean aro mentioned. The circumstances related of both are the same as in the Acts, but the dates are different. According to Josephus, Thendas gave himself out as a prophet, in the reign of Claudius, more than ten years after the sjeech of Gamalicl had been delivered, whilo Judas appeared at the period of the registration, aud therefore a considerablo time before Theudas. To cxplain this difficulty, some have supposed that thero may have been another Theudas not mentinned by Josephus, or that Joseplus is wrong in his chronology. Others supnose that St Lnke mado a mistake in regard to Theuclas, and is right in regard to Judas. K im maintains that St Luke has made the mistake, and suggests that possibly it may be based upon the prassage of Joscphus; and Holtzmann has gone more minutely into this argument. Holtzmann draws attention to the nature of the sections of Josephus which contain the references to Thendas and Jndas (Ant. xx. 5, 1, 2). He eays that noarly all the principal statements made in these short sections emerge somewhere in the Acts: the census of Quirinus, the great famine, Alexander as a member of a noble Jewish faraily, and Ananias as high priest. Moreover, St Iarke has preserved the order of Josephns in mentioning Theudas and Judas; but Josephus says "the sons of Judas," whereas St Luke says "Judas." "Is it not likely," Holtzmann argies, "that St Luke had before his mind this passage of Joscphes, but forgot that it was the sons of Judas that reere after Theudas, and not the father?" He adds also, that in the short nassarge in the Acts there are tive peculiar expressions, identical or aearly identical
with the expressions used by Joseplus, and comes to the conclusion that St Luke knew the works of Josepnus. He finds further traces of this knowledge in the circumstance that, in Acts xiii. 20-21, St Luko agrees in his statements with Joscphus where both differ from the Oid Testameat. He also addnces certain Greek words which ho supposes St Luke derived from his rcading of Joscphus. Max Krenkel, in making an addition to this argument, tries to show, from a comparison of passages, that St Luke hac Josephus before his mind in tho narrative of the childhood of Christ; and he supposes that the expedicut attributed to the apostle Paul, of setting tho Pharisees against the Sadducees (Acts xxiii. 6), is based upon a similar uarrative given in Josephus (Bell. Jud. ii. 21, 3, and Vila, 26 fr.). The importance of this investigation is great; for if Holt 2 mann and Krenicl were to prove their point, a likelihood would be established that the Acts of the Λ postles, or at least a portion of it, was written after 93 A.D., the year in which the Antiquities of Josephus was published, according to a passage occurring in the work itself. Meanwhile, the fact that important portions of the narrative must have been written by an oye-witness of tho events recorded, combined with the unity of style and purpose in the book, are cogent arguments on the other side.

The specches in the Acts deservo special notice. Tho question occurs here, Did St Luke follow tho plan adopted by all historians of his age, or is he a eingular exception? The historians of lis age claimed the liberty of workng up, in their own language, the speeches recorded by them. They did not dream of rerbal accuracy, oven when they bad the exact words of the spcakers before them, they preferred to mould the thoughts of the speakers moto thes: own methods of presentation. Besides this, historians do not hesitate to give to the characters of their history specchew which they never uttered. The method of direct speech is useful in producing a vivid ider of what was supposed to pass through the mind of the speaker, and therefore is used continually to make the narrative lively. Now it is generally believed that St Luke has followed tho practice of his contemporeries. Thero are some of his speeches that are evidently tho summarics of thoughts that passed through the minds of individuals or of multitudes. Others unquestionably claim to be reports of specches really delivered. But all these speeches have, to a large extent, the samo style as that of the narrative. They have passed to a large extent through the writer's mind, and are given in his words. They are, moreover, all of them the merest abstracts. The speech of St Panl at Athens, as given by St Luke, would not oecupy more than a minute and a half in delivery. The longest speech in the Acts, that of the martyr Sterhen, would not take more than ten minutes to deliver. It is not likely that either speech lasted so short a time. But this circumstance, while destroying tbeir verbal accuracy, does not destroy their anthenticity; and it must striko all that, in most of the speceloes, there is a singular appropriatencss, thero is an exact fitting-in of the thoughts to the character, and there are occasionally allusions of an obscuro nature, which point very clearly to their authenticity. The one strong objection urged against this inference, is that the speeches of St Peter and St Paul show no doctrinal differences, such as aro said to appear in the Epistles; but the argument has no foree, enless it bo proved that St Paul's ductrine of justification is different from the creed of St Petcr or St James.

Nut the least important of the questions which influence critics in determining the authorship of the Acts is that of miracles. Most of those who think that miracles are impossible, come to the conclusion that the narratives containing them are legendary, and aecordingly they maintain that the first portion of the Acts, relating to the carly
church in Jcrusalem and to s.t Teter, is in the highest degree untrustwaithy. The writer, it is maintained, had no pursonal knowledge of those early days, and received the storics after they had gone through a long process of transmutation. They appeal, for instance, to the account of the Pentecost, where the miracle of speaking with tongues is described. They say that it is plain, on a comparison of the Epistle to the Corinthians with the Acts, that St Paul meaut one thing by the gift of tangues, and the writer of the Acts another. And the inference is at band that, if 'the writer had known St Paul, he would have known what the gift of tongues was; and the rossibility of such a mistake, it is said, implies a considerable distance from the time of the apestles and the primitive church. They point also to the curious parallelism between the miracles of St Peter and those of St Paul. St Peter begins his series of miracles by healing a lame man (iii. 2); so does St Paul (xiv. 8). St Peter exorcises evil spirits (v.16; riii. 7); so does St Paul (xix. 15; xvi. 18). If St Peter deals with the magiciau Simon, St Paul encounters Elymas. If St Peter punishes with death (r. Iff.), St Paul punishes with blindness (xiii. 6 ff.). If St Peter works miracles by his shadow (v. 15), not less powerful are the aprons and napkins of St Paul (xix. 12). And, finally, if St Peter can raise Tabitha from the deid (ix. 36), St Paul is equally successful in the case of Eutychus (xx. 9). It is easy to see, also, that since there is no contemporary history with which to compare the statements in the Acts, and since many of the statements are of a summary nature, and very few dates are given, a critic who believes the zarratives legendary will lave no difficulty in finding many elements in the narratives confirmatory of his belief. But to those Who believe in miracles the rest of the narrative secms plain and unrarnished. The parallelism between the miracles of St Peter and St Paul is accounted for by the fact that they acted in similar circumstances, and that actual events were at hand on which to base the parallelism. At the same time, some who believe in the possibility of miracles think that the Acts presents peculiar diffculties in this matter. They say that the healing by means of shadows and aprons is of a magical nature; that the death of Ananias and Sapphira, and the other destruc, tive miracles, are out of harmony with the rest of the miracles of the New Testament; and that the earthquakes that release St Peter and St Paul seem purposeless. The difficulties on this head, though real, are not however of great importance, nor do they tell very seriously against the received opinion that St Luke is the author of the work.
We bare thus given a general summary of the questions which come up in investigating the authorship of the Acts, and of the arguments used in settling this point. The conclusions based upon this evidence are very different. Some join the traditional opinion of the ch rch to the modern idea of Inspiration, and maintain th it St Luke was the author of the work, that every d screpancy is merely apparent, and that every specch cont ins the real and genune words of the speaker. Others iavintain that St Luke is the writer, and that the book is justly placed in the canon; that the narrative is, on the whole, thoroughly trustworthy, and that neither its canonicity nor credibility is affected by the existence of real discrepancies in the narrative. Others hold that St Luke is the author, but that we have got in the book an ordinary narrative, with portions credible and portions incredible; that for the early portions of the work he had'to trust mainly to his memory, dulled by distance from the scene of action ard by lapse of time, and that he has given what he kuew with the uncritical indifference to minute accuracy in time, arcumstance, and word, which characterises all his contemporaries. Others maintain that St Luke is the author,
but that, being a credulous and unscientific Christian, he recorded indeed in houesty all that he knew, but that he was deluded in his belief of miracles, and is offen inaccurate in his statement of facts. Others think that St Luke was not the author of tie work. He may have been the original author of the diary of the Apostle Paul's travels in which the "we" occurs; but the author of the Acts did not write the diary, but inserted it into his narrative after altering it for a special purpose, and the narrative was written long after St Paul and St Luke were dead. Others think that in the Acts we have the work of Tiniothy or of Silas, or of some one else. A coneiderable number imagine that St Luke had different written documents before him while composing, and a very few think that the work is the work of more than one writer. But as we hare intimated, the weight of testimony is in farour of St Luke's authorship.

Purpose. - Tre have seen that the Acts of the Apostles is the work of one author possessed of no inconsiderable skill. This author eridently omits many things that he knew; ho gives a short account of others of which he could have supplied accurate details, and, as in the casc of St Paul, be has brought forward one side of the character prominently, and threwn the other into the shadc. What motive could bave led him to act thus? What object bad be in inserting what he has inserted, and omitting what he has omitted? Most of the answers given to these questions bave no important bearing on the question of the authorship of the Acts. But the case is different with the answer of the Tübingen school. The Tübingen school maintains that St Paul taught that the law was of no avail to Jew and Gentile, and that, therefore, the observance of it was unnecessary ; that St Peter and the other apostles taught that the observance of the law was necessary, and that they separated from St Paul on this point; and that the early Christians were divided into two great classes-those who held with St Paul, or the Gentile Christians, and those who held with St Peter, or the Jewish Christians, They further maintain that there prevailed a riolent controversy between these tro parties in the church, until a fusion tock place towards the middle of the secoud half of the second century, and the Catholic Church arose. At what stage of this controversy was the Acts written ? is the question they. put. St Peter, we hare seen, is represented in the Acts as opening the church to the Gentiles. St Peter and the rest of the apostles at Jerusalem admit the Geutiles on certain gentle conditions of refraining from things offered to idols, from animals suffocated, from blood, and from fornication: What could be the object of , such statements but to convince the Jewish Christians that they were wrong in pertinaciously adhering to their entire exclusion of the Gentiles, or insisting on their observance of the cntire law? But St Paul is represented as obserring the law, as seat forth by St Peter and the other apostles, as going continually to the Jews first, and as appearing in the temple and coming up with collections for the Jerisalem church. Was not this also intended to reconcile the Jcwish Christians to St Paul $\}$ Then the great doctrines of St Paul all but vanish-free grace, justification by faith alone, redemption through the blood of Christ,-all that is characteristic of St Paul disappears, except his universalism, and that is modified by the decree of the apostles, the circumcision of Timothy, and St Paul's observance of the larr. The objent of all this, they affirm, must be to reconcile the Jewish party by cuncessions. But there is said to be also another object, of minor importance indeed, but still quite evident and falling in with the other. Throughout the Acts St Paul is often acpused of turning the world upside down and causing disturbances. The Jewish Christians may have thought that St Paul was to

A C T-A C T

Wlame in this matter, and that St Paul's opinions were peculiarly calculated to stir up persecution against the Cluristians. The stories in the Acts were devised to con, vince them that they were mistaken in this supposition. On evcry occasion in which St Paul is accused bcfore magistrates, and especially Roman magistrates, he is acquitted. Gallio, the town-clerk of Ephesus, Lysias, Fclix, and Festus, all declare that St Paul has done nothing contrary to the law. And while the Romans thus free him from all blame, it is the Jews who are almays accusing him.

We have here reproduced the argument of Zeller, who has given the most thorough exposition of an opinion held also by Baur, Schwegler, and others. The argument fails to hare effect if the assumption that St Paul and St Peter differed radically is rejected. It also suffers from the circumstance, that there is no historical authentication of the church being in such a state in the first half of the second century, that this attempt at reconciliation could take place within $i \hat{i}$. Moreover, the mriting of a fictitious production seems an extraordinary means for any one to employ in order to effect reconciliation, especially if, as Zeller imagines, the church in Rome was specially contemplated. The church in Rome and the other Christian churches had St Paul's Epistles to the Romans, Corinthians, and Galatians before them They could be in no doubt as to what were his sentiments. They must also have had some history of his career ; and no olject could be effected by attempting to palm upon them a decree of apostles which never existed, or a history of St Peter and St Pand contradicted by what they knew of both.

Orcrbeck, finding this solution of Zeller unsatisfactory, thinks that the object of the Acts is to help the GentileChristian Church of the first half of the second century, now far remored from Paulinism and strongly intluenced by Judaism, to form a clear idea of its own past, especially of its own origin and of its founder St Paul. It is thus, he maintains, an historical norel, somewhat like the Clementines, devised to realise the state of the church at an carlier period.

It would be tedious to cnumerato all the other objects which have becn sct forth as the special aim of the Acts. Some think that it was a work written for the private use of Theophilus, and aimed, therefore, at giving him the special information which he requircd. Others think that it is intended to describe the spread of the gospel from Jerusalem to Rome. Others believe that the writer wished to defend the character of the Apostle Paul. Some of the more recent members of the Tuibingen school think that it was intended to distort the character of St Paul, and that the image of him given in the Acts is an intermediate stage between the real Paul and the caricature supposed by them to be made of him under the name of Simon in tlis Clementines.

Date.-There are no sure data for determining the date. Appeal used to be made to Acts viii. 26, "Unto the way" which goeth down from Jerusalem to Gaza, which is desert." But most probably it is the way which is here said to be desert or lonely. But cven if the word "desert" or "loncly" be applied to Gaza, we get nothing out of it. Accordingly, in the absence of data very various dates have been assigned. Some think that it was written at the time mentioned in the last chapter of Acts, when St l'aul had been two years in Rome. Some think that it naust have been written after the fall of Jerusalem, as they believe that the gospel was writtan after that erent. Irenæens thought tnat it was written after the death of St Peter and St Paul (H. iii. 1). Others think that St Luke rust have written it at a late period of his life, sbout the year 80 A.D. The Tübingen Bchool think that it was written some time in the second century, most of them agree-
ing on the second or third decede of that century, abont 125 A.D. They argue that a late date is prored by the nature of the purpose which occasioned the work, by the representation which it gives of the relation of the Christians to the Roman state, and by the traces of Gnosticism ixx. 29), and of a hierarchical constitution of the church (i. 17, 20; viii. 14, ff. ; 2v. 28; zx. 17, 28) to be found in the Acts.

Place.-There is no satisfactory evidence by which to settle the place of compositiou. Later fathers of the church and the subscriptions of late MSS. mention Achaia, Attica, Alexandria, Maccdonia, and Romc. And these places have all had their supporters in modern times. Some have also tricd to show that it was written in Asion Minor, probably at Ephesus. The most likely supposition is that it was written at Rome; Zeller has argued with great plausibility for this conclusion.

There is a large literature on the subject of this article, but the most important treatises are those of Schwanbeck, Schneckenburger, Lekebusch, Zeller, Trip, Klostermann, and Ertel Leller's work descrves special praise for its thoroughness. Various other mriters lave discussed the subject in works dealing with this among others; as Baur in his Paulus; Schwegler in his Nachapostolisches Zeitalter; Ewald in his Mistory of Israel; Renan in his Apostles; Hausrath in his New Testament History; and, in a more conservative manner, Neander, Baumgarten, Lechler, Thiersch, and Lange Of commentaries, the best on the Tübingen side is that of De Wette, remodelled by Overbeck, and that of the more conservative. Meyer is especially good. In English we have an able treatment of the subject in Dr Davidson's Introduction to the Study of the New T'estument; we have commentaries by Biscoe, Humphry, Hackett, Cook, Wordsworth, Alford, and Gloag; and dissertations by Paley, Birks, Lewin, Conybeare, and Howson.

There are various other treatises claiming to be Acts of Apostles. One or two of these must have existed at an early date, though, no doubt, they heve since received large interpolations. But most of them belong to a late period, and all of them are acknowledged to be apecryphal. They are edited by Tischendorf in his Acta Apostolorum Apocrypha (Lipsiæ, 1851), and heve been translated, with an introduction giving information as to their origin and dates, by Mr Walker, in Vol. 2 vi . of the Ante-Nicene Library.
(J. D.)

ACTA CONSISTORII, the edicts of the consistory or council of state of the Ruman emperors. These edicts were generally expressed in such terms, as these: "The august emperors, Dincletian and Maximian, in council declare, That the children of decurions shall not be exposed to wild beasts in the amphitheatre."-The senate and soldiers often swore, either through flattery or on compulsion, upon the edicts of the emperer. The name of a senator was erased by Nero out of the register, because he refused to swear upon the edicts of Augustus.

ACTA DI JRNA, called also Acta Populi, Acta Publica, and simply $\&$ ita or Diurna, was a sort of Roman gazette, containing an authorised narrative of the transactionsworthy of notice which happened at Rome-as assemblies, edicts of the magistrates, trials, executions, buildings, births, marriages, deaths, accidents, prodigies, \&c. Petronius has given us an imitation specimen of the Acta Diurna, one or two extracts from which may be made to show their style and contents. The book-kecper of Trimalchio pretends to rad from the Acta Urbis:-"On the 30th of July, on the Cuman farm, belonging to Trimalchio, were born 30 boys and 40 girls; there were brought into the barn from the threshing-floor 125,000 bushels of wheat; 500 oxen were broken in. - On the same day the slave Mithridates was crucified for having slandered the tutolar deity of onr
friend Gaius, - On the same day 100,000 sesterces, that could not be invested, were put inte the muney-box. -On the sanc day a fire broke unt in the garlens of P'onipey, which arose in the steward's house," \&re. The Acta difiered from the Annals (which were discontinued in e.c. 133) in this respect, amons others, that only the greater and more impertant matters were given in the latter, while in the former things of less note also were recurded. The origin of the Acta is attributell to Julius Cresar. who first ordcred the keeping and publishing of the acts of the people by public officers. Sume trace them back as far as Servius Tullius, who it was believed ordered that the next of kin, ou occasinn of a birth, should register the event in the temple of Venus, and on occasion of a death, should register it in the temple of Libítina. The Acta were drawn up from day to day, and exposed in a public place to be read or copied by all whe chose to do so. After remaining there for a reasonable time they were taken down and preserved with other public decuments.

ACTA SENATUS, among the Romans, were minuzes of the discussions and decisions of the senate. These were also called Commentarii Seratus, and, by a Greck name, iттоню́цата. Before the censulship of Julius Cesar, minutes of the proceedings of the senate were written and oceasionally published, but unofficially. Ceesar first ordered the minutes to be recorded and published authoritatively. The keeping of them was continued by Augustus, but the publication was forbidden. Some prominent senator was usually chosen to draw up these Acta.
ACTEON, in Fabulous History, son of Aristeus and Autenoë, a famous hunter. He was tern to. pieces by his own dogis. Various accounts are given of this occurrence; but the best known story is that told by Ovid, whe represeuts him as accidentally seeing Diana as she was bathing, when she changed him inte a stag, and he was pursued and killed by his dogs.
AC'TIAN GANES, in Roman Antiquity, solemn games instituted by Augustus, in inemory of his victory over Antony at Actium. See Acriun.

ACTINIA, a genus of coelenterate animals, of which the sea-anemone is the type. See Actinozoa

ACTINISM (from ákтis, a ray), that property of the solar rays whereby they produce chemical effects, as in photography. The actinic force is greatest in the blue and vielet rays of the spectrum.

ACTINOMETER (measizrer of. solar rays), a thermometer with a large bulb, filled with a dark-blue fluid, and enclosed in a box, the. sides of which are blackened, and the whole covered with a thick plate of glass. It was the invention of the late Sir John Herschel, and was first described in the Edinburgh Journal of Science for 1825. It is used for measuring the heating pewer of the sun's rays, the amount of which is ascertained by exposing the bulb for equal intervals of time in sunsline and slade alternately.

ACTINOZOA, a group of animals, of which the most familiar examples are the sea-anemones and "coral insects" of the older writers. The term was first empleyed by de Blainville, to denote a division of the Animal Kingdom. having somewhat different limits from that to which its application is restricted in the present article; in which it is applied to one of the two great divisions of the Celenterata, the other being the Hydrozoa.

The Actinozoa agree with the Hydrosoa in the priminive and fundamental constitution of the body of twe membranes, an ectoderm and an endoderm, - between which a middle layer or mesoderm may subsequently arise, - in the absence of a completely differentiated alimentary canal, and in possessing thread cells, or nematecysts; but they present a somewhat greater complexity of structure.

IJ his is munifest. in the first place, m their visceral tube, or " stomanch," ins it is often called, which is cuntinued from the nuryins of the mouth, for a certain distance, into the interior cavity of the body, but which is always open at its fundus into that cavity. And. secondly, in the pesition of the reproductive elennents, which, in the Mydrozoa, are always develuned in parts of the body wall which are in immediate relitives with the cxternal smface, and generally forn outward projections: while, in the Actinosoa, they are as constantly situated in the lateral walls of the chambers into which the body cavity is divided. In consequence of this arrangement, the ova, or sexually generated embryos, of the Actinozoa are detached into the interior of the body, and usually escape from it by the oral aperture; while thoso of the 1 y $y d r o z o c$ are at once set free on the exterior surface of that part of the body in which they are formed.

The Actinozoa comprise two groups, which are very different in general appearance and habit, though really similar in fundamental structure. These are-

1. The Corcalligena or sca-anemenes, coral animals, and sea-pens; and 2. The Ctenophora.
(1.) The Coralligena. $-A$ common sea-anemone presents a subeylindrical body, terminated at each end by a disk. The one of these diseoidal ends serves to attach the ordinarily sedentary animal; the other exhibits in the centre a mouth, which is usually clongated in one direction, and, at each end, presents folds extending down into the gastric cavity. This circumstance greatly diminishes the otherwise gencrally radial symmetry of the disk, and of the series of flcxible conical tentacles which start from it; and, taken together with some other circumstances, raises a doubt whether even these animals are not rather bilaterally, than radially, symmetrical. Each tentacle is hollow, and its base communicates with one of the chambers into which the cavity of the body is divided, by thin membranous lamelle, the so-called mesenterics, which radiate from the oral disk and the lateral walls of the body to the parietes of the visceral tube. The inferior edges of the mesenteries are free, and arcuated in such a manner as to leave a central common chamber, into the circumference of which all the intermesenteric spaces open, while above, it communicatcs with the visceral tube. The tentacles may be perforated at their extremities, and, in some cases, the body wall itself exhibits apertires leading inte the intermesenteric spaces. The free edges of the mesenteries present thickenings, like the hem of a piece of linen, each of which is much longer than the distance between the gastric and the parietal attachment of the mesentery, and hence is much folded on itself. It is full of thread cells. The mesederm, or middle layer of the body, which lies between the ectoderm and the cudederm, consists of a fibrillated connective tissue, containing fusiform or stellate nucleated eells, and possesses longitudiual and circular muscular fibres. These are prolonged into the mesenteries, and attain a great development in the disk of attachment, which serves as a sort of foot like that of a limpet.
The question whether the Coralligena possess a nervous system and organs of sense, hardly admits of a definite answer at present. It is only in the Actinidee that the existence of such. organs has becn asserted; and the nervous circlet of Actinia, described by Spix, has been seen by no later investigater, and may be safely assumed to be nonexistent. But Professor P. M. Duncan, F.R.S., in a paper "On the Nervous System of Actinia," recently communicated to the Royal Society, has affirmed the existence of a nervous apparatus, consisting of fusiform ganglionic cells, united by nerre fibres, which resemble the sympathetic nerve fibrils of the Vcrtcbrata, and form a plexns, which appears to extend throughout the pedal disk, and very probably into other parts of the body. In some of
the Actinidot (e.g., Actinia mesenhryanthemum), brightly coloured bead-tike bodics are situated on the oral disk outside the tentarles. The structure of these "chromatophores," or "bourses calicinales." has been carcfully investigated by Schneider and Röttekem, and by Professor Duncan. They are diverticula of the body wall, 'the surface of which is composed of close-set "bacilli," beneath which lies a layer of atrongly-refracting apherulcs, followed by another layer of no less strongly refracting cones. Supjacent to these Professer Duncau finds ganglion cells and rerve plexuses. It would scem, thereforc, that these bodies are rudinentary cyes.
At the brecding season the ova or spermatozoa are evolved in the thickness of the mesenteries, and are discharged into the intermesenteric spaces, the ova undergoing their develepment within the body of the parent. The yelk, usually, if not always, enclosed in a vitelline membrane, undergoes complete division, and the outcr wall of the ciliated blastodermic mass which results becomes invaginated, the embryo being thereby converted into a double walled sac-the external aperture of which is the futuro month, while the contained cavity represents the bedy carity. In this stage the larval Actinia represents the Gastrula condition of sponges and IIydrozoa. The edges of. the oral aperture grow inwards, giving rise to a circular fold, which is the rudiment of the visceral tube. 'This is at first connected with the body wall by only two mesenteries, which aro scated at opposite ends of one of the transverse diameters of the body. As the mesenteries increase in number, the tentacles grew out as diverticula of the intermesenteric spaces.
In all the Coralligena, the development of which has been observed, the embryo is converted into a simple actinozoon in a similar manner; but from this point they diverge in two directions. In one great group, the mesenteries, and the tentacles which arise from the intermesenteric charabers, increase in number to six; and then, in the great majority of cases, the intermesenteric spaces undergo subdivision by the development of new mesenteries, according to curious and somewhat complicated numerical laws, until their number is increased to some multiple of five or six. In these Hexacaralla (as they have been termed by Haeckel) the tentacles also nsually remain rounded and zonical. In the other group, tho Octocoralla, the mesenteries and the tentacles increase to cight, but do not surpass that number; and the tentacles become flattened and serrated at the edges, or take on a more or less pennatifid character.

There are no Octocoralla which retain the simple individuality of the young actinozoon throughout life: but all increase by germuation. and give rise to compound erganisms. which may be arborcscent. and tixed bv the root end of the common stem. as in the Alcyonidoe and Gorconidoe: or may possess a ceatral stem which is not fixec. and gives of lateral branches which undergo comparatively little subdivision. as in the Pennatulido.

The body cavitins of the zooids oi these compnund Octocoralla are in free commumication with a eet of canals which ramify through the cennsarc. or cummon fabric of the atem and branches by wheb they aro borne. and which play the part of a vascular system.

Except in the case of Tubinora, the zoöids and the superficial coenosarc give rise to no continuous skeletou: but the deep or inner substauce of the crenesare may be converted into a solid rod-like or branching stem.

In the Hexacoralla. on the other hand, ono large group, that of the Actinida. consists entirely of simple organisms,-organisms that is. in which the primitive actinozoon attains its adult condition without budding or fission; or if it bud or divide, the products of the operation eeparate from one another No true skelcton is formed.
all are to some extent'locometive, and some (Minyas) flna freely by the help of their contractilo pedal 1 egion. The most remarkable form of this group is the genus Cereanthus, which has two circlets, each cempesed of numerous tentacles, ono immediately around the cral apcrture, the other at the margin of the disk. The foot is clongated, subconical, and generally presents a pore at its apex. Of the diametral folds of the oral aperture, one pair is much longer than the other, and is produced as far as the pedal pore. * The larra is curiously liko a young hydrozoon with free tentacles, and at first possesses four mesenterics, whence it may be doubted whether Cercanthus docs not rather pelong to L. Octocoralla.

The Zoanthide differ from the Actinidce in little mere than their multiplication by buds, which remain adherent, cither by a commen connecting mass or coenosarc or by stolons; and in the possession of a rudimentary, spicular skeleton.

On the other hand, the proper stonc-corals (as contradistinguished from the red coral) are essentially Actinice, which becomo converted into compound organisms by gemmaticn or fission, and develope a continueus skeleton.

The skelctal parts ${ }^{1}$ of the Actinozoa, to which ' reference has been made, consist cither of a substance of a horny character; or of an organic basis impregnated with carthy salts (chielly of lime and magnesia), but which can be isolated by the action of dilute acids; or finally, of calcareous salts in an almost crystalline state, forming rods or corpuscles, which, when treated with acids, leave only an inappreciable and structureless film of organic matter. The hard parts of all the Aporosa, Perforata, and Tabzlata of Milne Edwards are in the last-mentioned condition; while, in the Octocoralla (except Tubipora) the Antipathida, and Zoanthida, the skeleton is either homy, or consists, at any rate, to begin with, of definitely formed spicula, which contain an organic basis, and frequently present a laminated structure. In the organ coral (Tubipora), however, the skeleton has the character of that of the ordinary stonccorals, except that it is perforated by numerous minute canals.

The skeleton appears, in all cases, to be deposited within the mesoderm, and in the intercellular substance of that layer of the body. Even the definitely shaped epicula of the Octocoralla are not the result of the metamorphosis of cells. In the simple aporose corals the calcification of the base and side walls of the body gives rise to the cup or theca; from this the calcification radiates inwards, in correspondence with the mesenterics, and gives rise to as many vertical septa, the spaces between which are termed loculi; while, in the centre, either by union of the septa or independently, a pillar, the columclla, grows up. From the sidos of adjacent bepta scattered processes of calcified substance, or synapticuloe, may grow out toward one another, as in the Fungides; or the intcrrupcion oi the cavities of the loculi may be more complete by the formation of shelves stretching from septum to septum, but lying at differeut heights in adjacent loculi. These are intcrseptal dissepincents. Finally, in the Tabulata. horizontal plates, which stretch completely across the cavity of the theca, are formed one above the other and constitute tabular dissepiments.

In the Aporosa the theca and aepta are almost invariably impcrforato; but in the Perforata they present apertures, and in somo madrepores the whole akelcton is roduced to a mere network of dense calcareous substance. When the Mexacoralla multiply by gemmation or fission, and thus give rise to compound massive or aborescent aggregations, eacia newly-formed coral polype developes a skeleton

[^16]of its own, which is either confluent with that of the others, or is united with them by calcification of the connecting substance of the common body. This intermediate skeletal layer is then termed conenchyma.

The Octocoralla (excepting T'ubipora) give rise to no thecoe and their dependencies, the skeleton of each polype, and of the superticial portion of the polyparium, being always composed of loose and independent spicula. But in many, as the Gorgonidar, Pennatulido (and in the Antipathidee among the Hexacoralla), the central part of the common stem of the compound organism becomes hardened, either by conversion into a mere horny axis (which may be more or less impregnated with calcareous salts) without spicula; or the cormification may be accompanied by a massive development of spicula, either continuously or at intervals; or the main feature of the skeleton may, from the first, be the development of spicula, which become soldered together by a subcrystalline intermediate deposit, as in the red coral of commerce (Corallium rubrum).

It has seemed advisable to say thus much concerning the hard parts of the Actinozoa in this place, but the details of the structure and development of the skeleton of the Coralligena will be discussed under Corals and Coral Reefs.

The Tabulata, or Millepores, and the Rugosa, an extinct and almost exclusively Palæozoic group of stone-coral forming animals, are usually referred to the Coralligena. Judging by the figures given by Agassiz ${ }^{1}$ of living Millepores, the polypes which cover its surface are undoubtedly mnch more similar to coryinform Hydrozoa than they are to any Actinozoon. But it is to be observed, firstly, that we have no sufficient knowledge of the intimate structure of the polypes thus figured; and, secondly, that the figures show not the least indication of the external reproductive organs which are so conspicuous in the Hydrozoa, and which surely must have been present in some one or other of the Millepores examined, were they really Hydrozoa. As regards the Rugosa, the presence of septa is a. strong argument against their belonging to any group but the Actinozoa, though it is not to be forgotten that a tendency to the development of septiform prominetce is visible in the rialls of the gastric passages of certain calcareous sponges.

Phenomena analogous to the "alternation of generations," which is so common among the Hydrozoa, are unknown among the great majority of the Actinozoa. But Semper ${ }^{2}$ has recently described a process of sexual multiplication in two species of Fungice, which he ranks under this head. The Fungice bud out from a branched stem, and then become detached and free, as is the habit of the genus. To make the parallel with the production of a Medusa from a Scyphistoma complete, however, the stem should be nourished by an asexual polype of a different charactor from the forms of Fungice which are produced by gemmation. And this does not appear to be the case.

Dimorphism has been observed by Kölliker to occur extensively among the Pennatulido. Each polypary presents at least two different sets of zoöids, some being fully developed, and provided with sexual organs, while the others have neither tentacles nor generative organs, and exhibit some other peculiarities. ${ }^{3}$ These abortive zoöids are either scattered irregularly among the others (e.g., Sarcophyton, Veretillum), or may occupy a definite position (e.g., Virgularia).
(2.) The Ctenophora.-These are all freely swimming,

[^17]actively locomotive, marine anwals, whicn do not multiply by gemmation, nor form compound organisns such as the polyparies of the Coralligeiac. Like the latter they are composed of a cellular ectodern and endoderm, betweeu which a mesoderm, containing stellate connective tissue corpuscles and muscular tibres, is interposed. But, in most parts of the organism, the mesoderm acquires a great thickness and a gelatimous cunsistency; su that the body of one of these animals differs in this respect from that of an Actinia in the same way as the body of a Cyancea differs from that of a IIydra. The Lilateral symmetry, which is obscure in most of the Coralligena, becomes obvious in the Ctenophora, in fhich the parts are disposed symmetrically on each side of a vertical plane passing through the longitudinal axis of the body. The oral aperture is situated at one end of this axis (or its oral pole), while at the opposite extremity (or aboral pole) there is very generally situated a sac contaiuing solid mineral particlesthe lithocyst.

The oral aperture leads into a visceral tube, which undoubtedly performs the functions of a stomach. Nevertheless, as in the Coralligena, it is open at its aboral end, and its cavity is thus placed in direct communication with a chamber, whence canals are given off which penetrate the gelatinous mesoderm. Of these canals, one continues the direction of the axis of the body, and usually ends by two apertures at the aboral pole. The others take a direction in a plane more or less at right angles with the axis; and after branching out, terminate in longitudinal canals, which lie beneath the series of locomotive paddles, or come into relation with the tentacles when such organs are developed. In addition to these, two canals frequently extend along the sides of the stomach towards the oral pole. The paddle-like locomotive plates are disposed in eight longitudinal series (ctenophores) on the outcr surface of the body. They are thick at the base; thin and, as it were, frayed out into separate filaments, at their free edges; and each plate is set transversely to the long axis of the series of which it forms a part. The ovaria and testes are dereloped iu the side walls of the longitudinal canals. It is clear, therefore, that these canals answer to the interinesenteric spaces of an Actinia; that the common cavity into which they and the stomach open answers to the common cavity of the body of the Actinia; that the apertures at the aboral pole answer to the terminal aperture of Cereanthus; and that the wide interspaces between the longitudinal canals represent the mesoderm of the Actinian mesenteries immensely thickened.

In their development the Ctenophora resemble the Coralligena in all essential respects, though they differ from them in some details. Thus the process of yelk division goes on at a different rate in the twn moieties of the egg, so that the vitellus becomes divided into one set of small and another set of large cells, whereof the latter become overlaid by the former, and give rise to a largecelled hypoblast, enclosed within a small-celled cpiblast. But in the manner in which the body cavity is formed, and the visceral tube (rhich becomes the stomach) is dereloucd, the Ctenophora resemble the Actinice. The paddles make their appearance at four points of the circumference of the body, in the form of elevations besct with short cilia; but each of thesc divides into two, and thus the eight definitive series are constitutcd.

There is a general agreement among anatomists respecting the structure of the Ctenophora thus far; but the question whether they possess a nervous systen and sensory organs or not, is, as in the case of the Coralligena, one upon which there exists great diversity of opinion. Grant originally described a nerrous ganglionated ring, whence longitudinal cords proceed in Cydippe (Plcurobrachia);
but his observation has not been verified by subsequent investigations. According to Milno Edwards, followed by others (among whom I must include myself), the nervons system consists of a ganglion, situated at the aboral pole of the body, whence nerves radiate, the most conspicuous of which are eight cords which run down the corresponding series of paddles; and a sensory organ, having the characters of an otolithic sac, is seated upon the ganglion. Agassiz and Kölliker, on the other hand, have denied that the appearances described (though they really exist) aro justly interpreted. And again, though the body, deseribed as an otolithie sae, undonbtedly exists in the position indicated in all, or most, of tho Ctenophora, the question lias been raised whether it is an auditory or a visual organ.

These problems have been recently reinvestigated with great care, and by the aid of the retined methods of modern histology, by Dr Fimer, ${ }^{1}$ who dcscribes a nervous bystem, consisting of extremely delicate varicose ultimate nerve fibrils, which traverse the mesoderm in all directions, and aro conncted here and there with ganglionic corpuscles. These nerves are only discernible with high magnifying powers, as they are for the most part isolated, and are collected into bundles only beneath the longitudinal canals. The mass which lies beneath the lithocyst is composed of cells, but these have none of the special characters of nerve cells. Eimer states that he has sraced the filaments, which he considers to be nerves, into direct continuity with muscular fibres; and, around the mouth, into subepidermal bodies, which he regards as rudimentary forms of tactile corpuscles. The lithocyst is recognised as an auditory organ, and, in addition, eye-spots are described.

With a fundamental similarity of organisation, the form of the body varies extraordinarily in the Ctenophora. One of the genera which is commonest on our coasts-Cydippe (Pleeobrachia)-is spheroidal; others (Beroc̈)are more ovate; others are provided with large lobular processes (Eucharis), while an extreme modification, in which the body is ribbon shaped, is seen in Cestum.
Tho Ctenozhora nre divisible into two very nnequml groups: ${ }^{2}$

1. Eurystomata, in which the large oral aperture occupies the trua. cated extremity of the oval body.
2. Beroida.
II. Sicuostomata, in which the ornl aperture and the gastric sac are emall relatively to the size of the body.
3. Sercato
4. Lobalce
5. Taniata.

1. Beroida.

Tha body is ovate, truncated at the oral pole, the aborsl being mora or less acuminate and melile. The diges'ive cavity occupies a large portion of tha body. The oral margin is simple in Bcroé and Idyria; but in Rangia the isterradial spaces ar notched, and in ench a ahort process projects. The radial canals are connected by a circumoral canal. No tentacles are present. The cteaophores of Pandora do not extead over mora thra linlf the body, as in the embryos of Cydippe. The development. of the Beroildoe is unaccompranied by metamorphosis.
2. Saccalu.

Tha circumoral cannl is absent. The oral sperture is laterally compressad, its long axis being at right angles to the plane of the tentacles, whicl nre preaent in all the genera, and which are either nimple (Cydippc), or furnished with lumellar and filmmentous appendages (Hormiphora). The ctenophores are equal in length, or the lateral ones are fully developod, while the intermed iate are shorter.
3. Lobala.

Tha oral and nborns pole, of the ornl ouly, bear lobate nppendages. Boline has a pir of oras lappets, into which the radial canals are prolonged. The cteqophores correspending to theso labes are the longest, while the middle ones are much shorter, and are prolonged on to an auricle or finger-like lobe. The teatacles are represented by n tuft of ahort processes on cither side of tha mouth. The young Bolind has the form of Cydippe, sind like it bears a pair of long-fringed

[^18]tentacles. The sbarnl region, kenring the interal ctenophona prom more rupidly than the oral, so as ultimately to project in two princijal labes, by which the similar outgrowth of the medina aboral regions with its cteuophores is arreated, the suricles bring the dwarfed representatives of these regions. Thesc auricles in Eucioris are longer, so that the ctenepheres are all of equil lengtin. This teatacles ot this genus are placed at tha oral pole; the oral lobes are equivaleat to the median ctenorhores of Cydippe. Eurficmphoca has the oral lobes small, the bedy elongated, terminnted by two conical projections, on whicle tho median ctenophores are prolonged.
4. Twniata.

The body of Cestum is laterally compressed aod elongnted in a direction which corresponds to one of the transverse dianneters of Cydippe, the ribboa-like band thus formed being sometimes three or even four feet long. The tentacles nre near the oral pole; the canals sre ten in number; the medio-lnteral crnals temminate io trunks which follow the oral margin of the ribbon, and thua correspond to the circular canal of Bcroe.

Many Actinozoa (Pennatulida, Ctenophosa) are. phosphorescent; but the conditions which determine the evolution of light lave not been determined.

All Actinozoa are marine animals, and the distribution of many of the familics (Actinida, I'urbinolides, Pennatulides, Beroïdes) is extremely wide, and bears no aseertainable relation to climate.
(т. н. н.)

ACTION, in Lrtw, is the process by which redress is sought in a court of justice for the violation of a legal right. The word is used by jurists in three different senses. Sometimes it is spoken of as a right-the right, namely, of institnting the legal process; sometimes, and more properly, it means the legal pruccss itself; and sometimes the particular form which it assumes. The most universally recognised division of actions is the division established by the Roman lawyers into actions in rem and in personam. An action in rem asserts a right to a particular thing as against all the world; an action in personam asserts a right only as against a particular person. For the sake of convenience, the law relating to actions ought to form a separate section by itself in a properly constructed code.

In Roman law the action passed through three historical stages-

In the first period, which was bronght to as end by the $I c x$ ACbulia, about 573 A. U. o., the system of icgis actioncs prevailed. These were five in number,-the actio sacramenti, per judicis postula. tionem, per condictionent, per manus injectionem, per pignoris captioncm. The first was the primitive and characteristic action of the Roman law, and the others were little more than modes of applying it to cases not contemplated in the originnl form, or of carrying the result of it into execution when the action had been decided.

Action, in English Law, means the form of civil process hitherto obscrved in the Courts of Common Law. The procedure in the Court of Chancery is totally distinct, but some account of the former may be desirablo in order to explain the new form of action introduced for all the civil courts by the Judicature Act of 1873 :-

Actions at law are divided by llackstone into three classes, according to the relief which they are respectively intended to obtain. Real nctious are those "whereby the plaintiff claims title to have sny lands or tencinents, rents, commons, or other hered, taments." In personat actions the claim is "for debt or personal duty, or damnges in lieu thereof," or for "satisfaction in drmages for some injury done to person or property." Mixcl actions were supposed to partake of the nature of both of these; that is to nay, thers was a demand both for renl property and for personal damages, as in the case of inaction for waste. . The distinotion lias long ceased to be of any value. Blackstone speaks of renlactions as being in his tima pretty genemlly laid aside, nad successive enactments have olliterated the distinctions ultogether. The statute 3 \& 4 Will. 1 V. c. 27, abolished all the real and mixed actions, except three real netions, and cjectment, which was a mixed netion. The Common Lav Pru* cedure Act of 1860 has assimilnted the procedure in the former to an ordinary action, and the Common law Procedure Act of 1852 now regulates the proceedings in ejectment. In these nind other respects the three Conmen Law Procedure Acts of 1852, 1854, and 1860, very greatly simplified the proccedings in an action at law. The first of these rendered it nnnecessary any longer to selent a form of action in prosecuting n innim, nnd abolinhed many of the teclinicalities which had acconrrauied the older forme, Tha divio.
fions now observed may be regarded as indicating, not so much forms of action in the old sense, as the character of the injury sustainch and the relicf sought.

Action (under the Supreme Court of Judicature Act, 1873). By this Act, which establishes one supreme court ii. place of the Superior Courts of Common Law and tne H ligh Court of Chancery, action is the name given to tie proceeding in the High Court of Justice, which takes the place of the old actions at cemmon law, suits instituted by bill or information in the Court of Chancery, causes in rem in the Court of Admiralty, or by citation in the Court of Probatc. Fer these various modes of obtaining redress the Act substitutes one uniform proceeding, which retains most of the essential features of the common law action. The form of action estabished by the Act is in some measure a compromise between the old action at law and Chancery suit. It may be described as putting an end to the unintelligible and even misleading formulx of the one and reducing the prolixity and redundance of the otler.
(E. ‥)

ACTIUM, in Ancient Geography, a promontory in the north of Acarnania, at the mouth of the Sinus Ambracius, opposite the town of Nicopolis, built by Angustus on the north side of the strait. Eastwards frem the promontory the strait widens ont and forms a safe harbour. On the promontory was an ancient temple of Apollo (who is hence called by Virgil Actirss, which was enlarged by Augustus. Actium became famous on account of Augustus's victory over Antony and Cleopatra (b.c. 31), and for the quinquennial ganes he instituted there, called Actic or Ludi Actiaci. Actiaca Lira was a computation of time from the battle of Actium. There was on the promontory a small torn, or rather village, also called Actium.
ACTON, a large village in Middlesex, about eight miles west of St Paul's. It was once much frequented because of its saline springs, but these have long lost their repute. Acton being near the metropolis and easily accessible by the Great Western Railway, and the price of building land being low, numerous villas have been erected in the neighbourhood. The population of the parish increased from 3151 in 1861 to 8306 in 1871.
aCton, Sir John Francis Edwarp, son of Edward Acton, who practised as a physician at Besançen, was born there in 1736, and succeeded to the title and estates in 1791, on the death of his cousin in the third degree, Sir Richard. Acton. He served in the nary of France, and afterwards in that of Tuscany, and commanded a frigate in the joint expedition of Spain and Tuscany against Algiers in 1774. His gallantry in rescuing three or four thousand Spanish soldiers from slavery led to his advancement. Entering cae Neapolitan service, he gained the favour of Queen Mary Careline, became commander-in-chief of the land and sea forces, then minister of finanice, and ultumately prime minister. His policy was devised in concert with the English ambassador Hamilton, and, of course, was hostile to France and to the French party in Italy. He has been i.eld responsible for the arbitrary and despotic measures which, in 1798-99, filled the prisons of Naples with political prisoners, and even brought some of them to the scaffold. In 1803 Acton was for à short time deprived of the reins of government at the demand of France; but he was speedily restored to his former position, which he held till, in Feb. 1806, on the entry of the French into Naples, he had to flee with the royal family into Sicily. -He died at Palcrmo on the 12 th Aug 1811, leaving by his wife (cldest daughter of his brother, General Joseph Edward Acton, whom he had married by papal dispensation) three children, of whom the second, Charles Januarius Edward, was made Cardinal Santa Marra dolla Pace in 1842. It may be well to state that Sur John has very frequeculy
been confounded with his above-mentioned brother, born in 1737, who was also employed in the Neapolitan service.

ACTUARY, in ancient Roinc, was the nane given to the clerks who recorded the Acta Publica of the Senate, and alse to the officers who kept the military accounts and enforced the due fulfilment of contracts for military supplies. In its Engli.h usage the word has undergone a gradual limitation of meaning. At first it seems to have denoted any clerk or registrar; then more particularly the secretary and adviser of any joint-stock company, but especially of an insurance company; and it is now applied specifically to one who makes those calculations as to the probabilities of human life, on which the practice of life assurance and the valuation of reversionary interests, deferred annuities, \&c., are based. The first mention of the word in law is in the Friendly Sacieties Act of 1819, where it is used in the vagne sense, "actuaries, or persons skilled in calculation." The word has been used with precision since the establishment of the "Institute of Actuaries of Great Britain and Ircland" in 18i8. The "Faculty of Actuaries in Scotland" was formed at Edinburgh in 1856, and incorporated by royal charter in 1868. The registrar in the Lower House of Convocation is also called the actuary.
acuña, Christoral d', a Spanish Jesuit, born at Eurgos in 1597. He was admitted into the society in 1612, and, after some years spent in study, was sent as a missionary to Chili and Peru, where he became rector of the Collcge of Cuença. In 1639 he was appointed by the Jesuits to accompany Pedro Texeira in his sccond exploration of the Amazon, in order to take scientific observations, and draw up a report that might be sent to Spain. The journey lasted fer ten months; and, on their arrival at Peru, no ship being ready to convey the explorer to Spaiu, Acuũa employed bimself in the preparation of a narrative of his journey. This was published at Madrid in 1641, under the title Nuevo Descubrimicnto del Gran Rio de las Amazonas, \&e. The King of Spain receired Acun̂a coldiy, and, it is said, even tricd to suppress his book, fcaring that the Portuguese, who had revelted from Spain, would avail thenselves of the information which it contained A translation into French was published by Gomberville in 1682; and a translation from the French into English appeared in 1698. After occupying the positions of precurater of the Jesuits at Rome, and calificador (censor) of the Inquisition at Madrid, Acnü̃a returned to South America, where he dicd, probably soon after the ycar 1675.

ACUPRESSURE, in Surgery (acus, a needle, premo, I press), a method of restraining hæmorrhage, introduced in 1869 by the late Sir J. Y. Simpson. The closure of the vessel near the bleeding point is attained by the direct pressure of a metallic needle, either alone or assisted by a loop of wire. The advantages claimed by the originator of this method over the old silk ligature were, that the needles can be removed within forty-eight hours after introduction, allowing the wound to heal rapidly; and that, being metallic and non-porous, they do not cause irritation and suppuration like the silk ligature. The catgut ligature, which is rapídly absorbed, is gradually superseding both the silk ligature and the acupressare needle. A velume entitled Acupressure, by Sir J. Y. Simpson, was published in 1864.
ACUPUNCTURE, the name of a surgical operation among the Chinese and Japanese, which is performed by pricking the part affected with a silver needlc. They employ this-operation in headaches, lethargies, conrulsions, colics, \&c.; and-it has more lately been introduced into British practice for the cure of some forms of neuralgia.

ADAFUDIA, a large town of Western Africa, in the country of the Felattahs, in $13^{\circ} 6^{\prime}$ N. lat., $1^{\circ} 3^{\prime}$ E. long., about 400 miles S.E of Timbuctor. It is surrounded by a mud wall The neighbouring country is rich and
fertile. - The trade in native merchandise is sald to de ns great as that of Abomey, the capital of Dahoney; and there is also a considerable traffic in elaves. I'opulation, about 24,000.

ADAL, a region in Eastern Africa, with a coast une extending, between $11^{\circ} 30^{\prime}$ and $15^{\circ}, 40^{\prime} \mathrm{N}$. hat., from the Gulf of Tajurrah to the neighbourhood of Massowah. For about 300 miles it burders on the Red Sea, the coast of which is composed of coral rock. It stretches inland to the mountain terraces, to the west of which bie thic Abyssinian table-lands of Shoa and Tigre, with a breadth near Massowah of only a few miles, but widening towards the south to 200 or 300 miles. The northern portion of this region, knern as the Afar country, is traversed by two routes to Abyssinia-the one from Zulla near Massowab, and the other from Amphilla Bay. The former of these was selected for the Eritish Abyssinian expedition of 1868, Annesley Bay being the place of debarkation and base of operations. There is a third ronte to Abyssinia through Adal, that from Tajurrah to Ankobar, the capital of Shoa, said to be preferred for trading purposes, as being less steep than the others. The river Hawash flows through the southern district of Adal in a N.E. direction, but is lost in Lakes Abbebad and Aussa. Near this river $1 s$ Aussa, the chicf torn of the country. Volcanic rocks occur in various parts of this district; and two mountains, 4000 feet high, are mentioned, which have sent down streams of lara on all sides to the distance of 30 miles. The country contains two great salt plains or basins,-that of Asali in its northern portion, and Aussa in the south. The remarkable salt lake of Dabr Assal, near Tajurrah, is 570. feet below the level of the sea. The country as a whole is barren and uncultivated. A bittle barley is reared on the higher terraces, and some distriets afford pasturage fcr domestic animals, large quantities of butter being annually sent to Massowah. In some parts of Adal the elephant is not uncommon. The salt of Asali and Aussa is a valuable article of commerce. There is no fixed government, the country being inhabited by various independent tribes, all speaking the Afar language and professing the Mabometan religion, and most of them of nomadic habits.
ADALBERT, Saist, one of the founders of Christianity in Germany, known as the Apostle of the Prussians, was born of a uoble family in Slavonia, about 955 ; was educated at the monastery of Magdeburg; and, in 983 , was chosen Bishop of Prague. The restraints which he tried to impose on the newly-converted Bohemians' by prohibiting polygamy, clerical incontinency, and similar sins, raised against him so strong a feeling of hatred, that he was forced, in 988 , to retire to Rone, where he resided at the monasteries of Montó Basino and St Alexis. In 993 he returned to his flock, in obedience to the command of the Pope. Finding bittle amendment, however, in their course of living, he soon afterwards went again to Rome, and obtained pernission from the Pope to devote himself to missionary labours, which hē carricd on chiefly in North Germany and Puland. While preaching in Pomerania (997), he was thrust through the heart by a heathen priest.

ADALBERT, Archbishop of Bremen and Hamburg, born of the noble Saxon family of the Counts of Wettin, was one of the most remarkable ecclesiastics of the 11th century. Through the friendship of the emperor Henry III. he was elcrated in 1043, when only about thirty years old, to the see of Bremen and Hamburg, which included the whole of Scandinaria, and he accompanied the monarch in his journey to Rome (1046): ' ${ }^{\circ}$ Here it is said that he was offered and that he refused the papal throne. The refusal certainly cannot have arisen from lack of ambition; for on his return in 1050 , with a com-
mission as legate to the nortuern courts arom Pope Lew IX, he immediately set about carrying out the enperor's wishes ky establishing himself in an independent patriarchate of the north. For this purpuse he sought by every means to augment his already great influence, he adonied his two cathedrals, and eularged and fortifed the town of Bremen so that it might rival Fiume. There was much in his favour, and he might even have succeeded in entirely separating the church of the north frum the see of Rome. had it not been for the death of ILenry IIL., and the opposition of Cardinal Hildebrand. Henry IV. beng a uinor at the time of his father's death, Adalbert was associated with Archbishop Hanno of Cologne as guardian and regent; and during the absenco of the latter ou a mission to liome, he sought, by grantiug every indulgeuce, to gain the favour of the young priuee, and so to be able to exerclise an absolute power in the state (1062-65). The Archlishops of Nayence and Cologne sceured his banishment frum court after the government bad been assumed by Hemry in person (1066); and about the same time his diucese was invaded by the "natural enenies" of Brewell, the Saxon nobles. In 1069. however, he was recalled, anll reinstated in his former position. He died at Goslar in 1072, having done much during his last years to inflaue the Saxous' batred of Henry, which resulted soon afterwards in their result.

ADAM, $\mathrm{E}=\mathrm{p}$, an appellative uoun, meauing the first wan. In Genesis ii. 7 , 25 , iii. 8,20 , iv. 1 , dec., it assumes the nature of a proper name, and hay the article, the mum, the only one of his kind; yet it is appellative, correctly spltakilg: In Genesis i. 26, 27, v. 2, it is simply a!peliative, being applicd to buth progenitors of the human race; wot to the first man alone as in the second, third, aud fourth chapters. The etymology of the word is uucertain, but it is probably conuected with a root signifying rell, so that the idea is one red or ruddy.

The early part of Genesis contains two accounts of man's creation. These narratives need nut be examined at present farther than wan's origin is coucerued. In Genesis i. 26, 27, we read, "And God said, Let us make man in our image; after our lukeness; and let them have dominion over the fish of the sea, aud over the fowl of the air, and over the cattle, and over all the earth, and over every creeping thing that creepeth upon the earth. So God created man in his oun image; in the image of God created he him ; male aud female created he them." At the end of the sixth day of creation man appears, the noblest of eartl's inhabitants. In Genesis ii. 7, 8 , we also read, "And the Lord forned wan of the dust of the ground, and breathed into his nustrils the breath of life; and man beeame a living sonl. And the Lord God planted a garden eastward in Eden: and there be put the man he had formed." The moman's creation is thus narrated in subsequent verses of the same chapter-20,21, 22,23, "And Adam gave natnes to all cattle, and to tho fowl of the air, and to every beast of the ficld: but for Adam there was not found an help mect for him. And the Lord God caused a deep sleep to fall upon Adam, and he slept: and he took nue of his ribs, and closed ap the flesh instead thereof. And the rib, which the Joord God had taken from man, made he a wonan, and brought her unto the man. And Adam said, This is now bone of my bones, and flesh of my flesh: she shall be called Woman, because she was taken out of man." Between these accounts some discrepancy exists. The first represents the man and woman to have been created together, after the various creatures which the earth sustains on its surface ; the second makes Adam to havo been created first, then the various animals, with the woman last of all. The creation of animals separates the origin of the man and the woman. The first narrator states that man was
made in the image and form of God, without explaining his meaning more particularly. Hence interpreters differ in atterpting to define it. The language need not be restrictel either to man's spirit or to his body, but may refer to his united whole, ineluding spiritual qualities and bodily form. The ancient Hebresv did not think of God without a certain form, but transferred the human one to him, divesting it of grossness, and giving it an ethereal luminousuess of surpassing glory. The image of Gud, therefore, in which Adam is said to have been created, includes the whole man, with special reference to the spiritual nature within him. We cannot tell whether the writer thonght of immortality as involved in the Godlikeuess. He may have done so. But the second account tcaches that man was ouly mortal at first, because be is sent out of Paradise lest he should become immortal by eating of the tree of life.

The narrative in the first chapter is arranged according to a delinite plan. Six days are allotted to the creation of the hearens and earth, with all their furniture animate and inanimate. After due preparation had been made by the formation of light, atmosphere, and land separated from water, life is called into existence, first regetable, then animal, terminating in man the lord of this lower world. The narrative in chapters ii.-iv. dọes not present such orderly progress. In it man is the central figure, to whom all is subordinated. He is created first. For him plants and trees are made to spring up. He is placed in a delightful garden. The Lord God perceiving his solitary condition creates the beasts of the field and the fowls. of the air; but when brought to the protoplast, they were insufficient to supply his mental void, so that woman was made, in whom he found a suitable partner. A number of questions connected with the first pair, not necessarily entering into the writer's main purpose in describing man's origin, but complementary and new, are, the means by which the ground yielded vegetable productions, the materials from which the man and the woman werc formed, the cause of their intimate union, the place of their abode, the simplieity of their condition, and the way in which animals first received their names. By these traits preparation is made for the bistory of what befell the protoplasts in their primitive abode.
According to the second narrative, Jehovah planted a garden in Fden, eastward, and put the first man there. A spring or stream rising in Eden, and flowing through the garden, supplied it with water. In issuing from the garden it divided itself into four rivers, each having its own cuurse. The writer gives their names, and the countries washed by three of them. This garden, usually termed Paradise after the Septuagint and Vulgate, Lins been eagerly sought for; but it has baffled curiosity. Though two of the rivers, the Euphrates and Tigris, are well known, the other tro, Pison and Gihon, can only be identified with difficulty. They seem to be rivers of Northern India. Tbe Tigris and Euphrates took their rise in the high land of Northeru Armenia ; the Pison, i.e., Indus, rises in the Himalayas; and the Gihon, i.e., Oxus, is conuected with Ethiopia or Cush. The mriter appears to have considered them all as having their source in the northern higulands of Asia, and flowing south, and therefore he placed Eden somewhere in the north of Asia. The names of two rivers belonging to a forcign tradition, and little known to the Hebrews beeause intercourse with India was then remote, were associated with those of two known ones incorporated in the national tradition. If the interpreter had to do with pure history, it might not be amiss to sca.ch for Eden in some definite locality; but, as the case stands, the examination would probably be fruitless.

The garden luas two remarizable productions-the tree
of life, and the tiee of knuwlalye of grond and evil. The former derives its name from the virtue of 1ts fruit to impart perpctual life or immertality. 'The fruit of the latter communicates the knowledge of good and evil. It awakens moral consciousness. The one lad to do with physical, the other with spiritual life. Such were the miraculous powers of the two trees in the midst of the garden.
The third chapter gives an account of the first pair failing amay from the state in which they were created What that state was may be clearly gathered from the words. It was one of innocent simplicity. Tlue protoplasts had a child. like anconsciousuess of evil ; no knowledge of right and wrong, virtue and rice. They were in the happy condition of infancy. Their moral existence had not begun. Perfec. tion, uprightness, righteousness, could not be predicated of them. But the world presents vice and its cunenmitant misery iu strong colours. Misery and evil abound. The cyes of an Oriental especially must liave been rividly struck with the phonemena of tuilsume wolk, the pains of child-bearing, tha slavery of woman. and the incvitable nccessity of death. The Hebrews, accordingly, inedilated on the cause. The writer sceks to connect with the problem incidental phenomena, as the love of man and wifc, the form of the scrpent different from that of other amimals, the mutual hatred of man and serpents, dec. It is an olid question, the introduction of evil into the world. As all the posterity of the first pair participate in sin and suffering, the cause must be looked for in commection with these. Yet it must not proceed from themsclves. God had made them innocent and happy. The origin of evil must come from without. A serpent becouces the instrument of their temptation. That cunuing and mischievous animal seduces them. The writer thought of uothing but the creature itself. Those who suppuse that the devil employed the serpent as his instrmant, or that the devil alone is spoken of, are confronted by the fact that the idea of Satan was of later introduction amony the Ilcbrews than the age of the writer. The curse prouounced on the tempter sufficiently shows that none but the arent expressly named was thought of.

Are these narratives of the creation, primal abode, and fall of man, literal history? So some have always believed, with Augustine and the Reformers. The difficulties in the way of this interpretation are great. As it cannot be carried out consistently, its advocates resort to various expedieuts. They forsake the literal for the figurative wherever necessity demands. Thus they put a figurative construction on the language of the curse, because they allege that a literal one would be frigid, utterly unwortly of the solemn occasion, highly inconsistent with the dignity of the speaker and the condition of the parties addressed. Sometimes they eren ineline to regard the narrative as a sort of peent, or give it a poetical character. The atmosphere in which the accounts move is different from the literal one. Instead of assuming that God created the world and all it contains in a moment of time, and in barmonious arrangement, the first writer attributes creation to six successive days, represents the Almighty as addressing the newly-formed existences, look. ing upon them with satisfaction, pronvuncing them good, and resting on the seventh day. "Hc naturally chose the six days of the Hebrew week, with which he was familiar, for successive gradations of the creative power. In the second account we find a sleaking serpent, God walking in a human way in the cool of the day through the garden, his jealousy of the aspiring Adam who had attained a higher knowledgc, his cursing the serpent, and cherubim with a flaming sword. To explain all this as literal history, were to attribute oticer perfections to the

Deity than infinite power, spirituality, and wisdom. Hence the Church of Eugland, according to Horaley, docs not demand the literal understanding of the document contained in the second nud third chapters, as a point of faith.

Are the narratives allegerical? So Phino interprets then, fullowed by the Greek fathers of Alcsandria, Clement and Origen, ${ }^{2}$ as well as by Ambrose. In modern times Coleridge read the whole as an allegory. ${ }^{3}$ So did Donaldson in his. Jeshar. There is no indication, bowever, that allegories were intendel. Harl this been the case, the truths meant to be convesed would have been easily discovered. The ennbarrassinent and capriciousuess of the allegorical interpreters prove that they have followed a wrong method. The ontward form is sct aside, and an idea discovered beneath it with which the envelope has nu necessary connection. Both should be retained; the atell saggesting the kernel, and the kernel showing itself to be the neccssary evolution of central ideas.

According to another interpretation, more commonly acsepted among scholars at the present day, both accounts are supposed to be, like the early recoids of other nations, traditional and mythical. This does not imply that the sare fables or fictions; far from it. It is true that the oldest traditions of peoples are mainly subjective, the reoult of the national mind; but they are nevertheless real. Variable, developed in different forms, influenced by the characteristies of tho people and by their intercourse with others, they are all that constitutes the carliest history of nations, tho shapings of oral tradition before written records appeared.. A mythologi-:-1 nge stands at the head of all national histories; and that of the Hebrews seems to be no exception. The two narratives present philosophical mythi in a historical form. They represent the best ideas of the Hebrews at a certain stage of their history in explanation of the creation of man, his primeval abode and state, and the cause of his degeneracs. The first account is plain and simple. It assigns a high dignity to man, and traces all humen beings to a single pair, in harmony with the best evidenee of modern science that points to unity of origin, rather than to different centres of creation. There is a naturalness in the narrative that cannot be mistaken, while the writer adheres to generalitics. (See Gabler's Einteitung to Eichhorn's Urgeschichte, vol. i. p. Il, \&c.; and Gesenius's article "Adam," in Ersch und Gruber's Encyklopocdie, vol. i.)
On the other hand, the narrator in the secend, third, and fourth chapters manifests a more reflective spirit, seeking to explain causes, and to trace connections.' Supplying particulars ranting in the older narrative, and correcting others, he enters into details, and though more anthropomorphic, has a finer perception of circumstanees associated with the protoplasts. Tholuck limself admits his narrative to he a mythus. It is usual to designate the first * writer the Elohist ; the second, the Jehovist ; because the onc commonly uses Eiohim as the name of God; the other Jehovah, or Jehorah Elohim in the second and third chapters.
The Adam in the second and third chapters, according to this vier, is the progenitor and representative of humanity, who brought misery into the world by seli-will. He is ideal man, becoming historical in every individual who, as soon as his moral nature is awakened, feels the power and 3 possibility of rising bigher through reason and perception. Adam's procedure repeats itself in each individual, who has his paradise, eats of the tree of knowledge; -r.d feels withun him the roots of apostasy from God. On

[^19]the other hand. his restoration and happiness are supposcd to be in his own power. His salvation is practicable througlu the victory of reason over instinct, of fuith over sense. ${ }^{4}$

The traditions of ancient nations preseut analogies to the creation of man given in the first chapter of Gencsis. The Etruran cumes nearest to the Hebrew. There creation takes place in six periods of a thousand years each, and men appear in the last, after the carth, sun, moou, and stars, with all living things on the surface of the globe, had been brought into existence by God. ${ }^{5}$ The Persian mythology, in like manner, makes Ormuzd, the god of light, create ly his word Honover the visible world in six periods of a thousand years each, and man is formed last. The name of the first man is Kaiomorts. ${ }^{6}$ The Chaldee myth, given by Berosus, presents little resenblance to the Hebrew narrative. Bel, the highest god, divided the darkness, and cut the woman, who ruled over the monstrous creatures found at first in the -all, inta two halves. out of which heaven and earth were formed. After that he cut off his own bead. The blood trickling down was taken by other gods and mixed with earh, from which men were formed, who are therefore wise, and partakers of the divine intelligence. ${ }^{7}$ The Phenician myth is still more unlike the Hebrew account. ${ }^{8}$ But Ovid's teaching is that man was made in the image of the gods, and was intended to be ruler of the carth. ${ }^{\circ}$ The Egyptian theology bas no point of contact with the Hebrew. ${ }^{10}$ The Indian accounts are very numerous, but often discrepant. Their likeness to the Hebrew narrative is remote; for the play of imagination appears in them to excess and absurdity. Anong those myths in which the formation of men is described without allusion to any primordial distinction of castes, we may quote two. Prajapati, i.e., the universe which was soul aud only one, formed animals from his breaths, a man from his soul. The soul is the first of the breaths. Since he forned a man from his soul, therefore they say. "man is the first of the animals, and the strongest." The soul is all the breaths: for all the breaths depend upon the soul. Since he formed man from his soul, therefore they say, " man is all the animals;" for all these are man's. ${ }^{11}$ Manu's account of the creation is that men of the four castes proceeded separately from different parts of Brahma's body prior to the division of that body into two parts. The doctrine of emanation appears in the Indian cosmogonics, as also that of absorption. Thus Brahma is reabsorbed iuto the supreme spirit, according to Mano. ${ }^{12}$ According to the Bamians in India, God having made the world and the creatures belonging to it, created man, who came forth from the carth at the divine roice, his head appearing first, then his whole body, into whom life was conveyed. God gave him for companion a roman, and the two lived together as man and wife, feeding on the fruits of the ground. Tbey had four sons of different temperaments, for whom God made four women, and the four quarters of the earth were peopled by their progeny. ${ }^{13}$

The paradisiacal state of the first pair, and their loss of it as described in the second and third chapters of Gencsis, have their parallels in the myths of ancient nations. According to ihe Persian traditions, Meschia and Meschiane, the progenitors of mankiud, were created for happincss in

[^20]this world and the next, on condition that they were good, and did not worship Dews. At first they acted according to their original nature, acknowledging that all beings were derived from Ormuzd. But they were seduced by an evil spirit, and clothed themselves in black for thirty days. After that they went out to hunt, and found a white goat, of whose milk they drank. In this they sinned against their body, and were punished. The evil spirit or Dew presented himself to them again, giving them fruits to eat, by which they forfeited a handred enjoyments. At first they covered themselves with the skins of dogs, and ate the flesh of these animals. They hunted and made themselves clothing of the skins of deer. ${ }^{1}$

Abriman is represented as a poisonous serpent, and springs in this form from heaven to earth. ${ }^{2}$ Dews often take the same form. ${ }^{3}$
The tree Hom among them is similar to the tree of life. It imparts immortality, and is called the king of trees. ${ }^{4}$
The holy mountain or paradise of Persian tradition is Albordj, the abode of Ormuzd and the good spirits, which sends forth great rivers. ${ }^{5}$. This means the Hindu Koosh mountains where was Airjana veedjo, the first seat of the Aryan race. Here we have mention of a district Heden; and Zoroaster is said to have been born in Hedenesch, but elsewhere in Airjana veedjo. ${ }^{6}$

According to the religion of Lama or the Calmucks, men lived in the first age of the world 80,000 years. They were holy and happy. But their happiness came to an end. A playt, sweet as honey, sprang out of the earth, of which a greedy man tasted, and made others acquainted with it. A sense of shame was awakened, and therefore they began to make themselves coverings of the leaves of trees. Their age and size decreased. Virtue fled, and all manner of vice prevailed. ${ }^{7}$ The paradisiacal state of Thibetan mythology is one of perfectiou and spirituality. But the desire to eat of a sweet herb, schima, put an end to that condition. Shame sprang up within the fallen; the need of clothing was felt. They were driven to agriculture by necessity. Virtue fled, murder, adultery, and all other vices succeeded. ${ }^{8}$
Among the Indians, the holy mountain of the north, the seat of the gods, and the source of the great rivers, was Meru. ${ }^{9}$ The tree Parijata, brought from heaven to earth by Krishna, with its heavenly flower and fruit, scares away hunger, thirst, disease, old age, \&c. ${ }^{10}$
The Greek myths are remotely parallel. Hesiod describes the primitive state as one free from toil, sickness, and all kinds of evil. Mortals were contented with easily obtained, though poor, sustenance. But cunning Prometheus deceived Zeus, and stole fire from heaven. The latter, by way of punishment, sent a beautiful woman, Pandora, whom Epimethens accepted as a gift. Having with her a vessel into which all sorts of misery had been put, she opened it out of curiosity, and evils flew forth in abundance, filling the earth. Hope alone remained at the bottom. ${ }^{11}$

The story is supplemented and modified in the Theogony. There Prometheus is twice punished, and woman bccomes the source of man's evils, merely as the original mother of the race. Thcre is also a reconciliation between Zeus and Prometheus. ${ }^{12}$
In Eschylus mankind are presented in the ignorance of

[^21]infancy till Prometheus implanted 111 them the power of intellect, and the capability of knowledge. The fire frons heaven is not the cause of the evils that broke in upon them; rather is it the teacher of every art, and the opencr up of infinite resources; but Prometheus himself must endure fearful punishment for his self-will, in paying too much regard to mortals. Still there is an intimation of future reconciliation between the opposing powers, Zeus and Prometheus.

The points of similarity between the Old Testament and this Greek representative of man's fall are tolerably plain. In both there is an original state marked by frecdom finm sorrow, by complete earthly enjoyment and undisturbed peace with God. Both attach the origin of cvil to the act of a free being putting himself in opposition to Godevil being the punishment of that act, arising by means of a woman. As the Old Testament narrative implies that the step taken by man was not a mere degeneracy, so Eschylus's description adinits that it was for humanity the beginning of a richer and higher life, since man's proper destiny could not be.worked out in a condition of childlike incapacity. Pandora reminds us of Eve; Epimetheus of Adam. Prometheus and the serpent both wish to make men like God in knowledge and happiness. ${ }^{13}$ The tragic poet seems to regard Prometheus as the archetype of man, so that his fate is theirs. Like every strong-willed mortal, Prometheus flounders on the rock of presunption. He persists in acting contrary to the commands of Deity, and endures torture till he submits to a higher will, accepting the symbols of repentance and restraint within certain limits. Thus, like Adam, he is the representative of humanity.

The fundamental difference between the Hebrew and Greek narratives is, that the distinction between God and the world, spirit and nature, maintained with all sharpness in the one, is not carricd out in the other. On the contrary, the Greek myth mixes the two spheres, so that the world appears as the original, independent element, of which spirit and deity are mere products. In the Hebrew narrative the spiritual features are presented clearly and simply; in the Greek they are indistinct, because trausferred to the sensuous world and covered with a lusnriant growth of outer nature. ${ }^{14}$

Ovid paints the golden age in the manner of Hesiod, but with more details. It was pervaded by innocent simplicity, and the successive ages became still worse, till moral corruption reached such a height in the last or iron age that Jupiter sent a flood to destroy all mankind. ${ }^{15}$

Plato in his:Symposium ${ }^{16}$ explains the sexual and amatory inclination of the man and the woman by the fact that there were at first androgynous beings, whom Zeus separated into men and women. The two sexes were originally united.

In Corrodi's 'Beiträge (xviii. p. 14), the Indian Ezour Tedam is quoted, in which the first man is called Adimo, from whose body came Brahma, Vishnu, and Schiva. This statement is repeated by Knobel and others. But the Ezour Vedam (a corrupt pronunciation of Yajur Veda) is a spurious Teda from the pen of some Jesuit missionary. ${ }^{17}$ Though it mentions Adimo (which simply means the first) in rol. i. p. 195, \&c., and rol. i. 205, genuine Indian mythology recognises no such name of the first man.

The second narrative, in some of its ideas, seems de-

[^22]riped from Eastern Asia. Seręral features disclose this; such as the covering of fig leaves, the springing of four rivers from a common source, and the names of two of them which point to India The tree of life and the seducing spirit have their place in the Persian and Indian religions. But its essence is adapted to the Hebrew theology, anel contains genuine Hebrew traits; though it stands tolerably isolated in the circle of ideas which the Old Testament presents. Not till the Book of Wisdom do we find express reference to it (chap. ii. 23, 24), though the tree of life is spoken of in the Proverbs. Yet there is diversity amid similarity. As claborated by the Eebrew mind, the narrative is a profound theory, with noble features worthy of the subject. Its verisimilitude is apparent. It shows a thoughtful contemplation of human nature, a fine sense of its capacitics and weakness, of its aspirations and needs. Its lincs are drawn with great discernment. The problem need expect no better solution in this life; for its depths cannot be fathomed by the sound-ing-line of a finite understanding. Here is the one philosophy of the subject that has taken the deepest hold of the human mind, engrafting itself on the religious systems of very different races, and enlisting the sympathies of the most civilised nations. Originating in the East, it has been trausferred to the West, where it lives in pristine vigour. It is the essence of the best idcas and traditions of Eastern Asia, improved and enlarged by the Hebrew mind at a certain period. The more the narrative is examined, the more clearly will it appear the result of enlightened reason. It embodies national traditions of Hebrew reflectiveness. Free from the pantheism and dualism inherent in the mythologies of other peoples, the monotheism which distinguished the Hebrews as the depositaries of a divine truth pervades it. The tradition has two sides. It represents the transition of man to freedom and humanity, as Schiller describes it; his elcvation by the arvakening cxercise of reason; his adrance from nature's cradlingseason to a consciousness of the divine within him; but it represents at the same time the inclination to follow his own will, to aspire to the forbidden contrary to his better conviction, to push reason beyond the limits within which alone it can be legitimately used; in short, to break away from the will of God in self-sufficient independence. While the fact was one of the most fortunate in man's history, it was also one of the saddest. When moral good was made possible, moral evil was introduced. A knowledge of the one brings that of the other. ${ }^{1}$

After Adarn fell, God drove him from paradise, whose gates were guarded by chernbin to prevent access to the tree of liic. The protoplasts had first three sons-Cain, Abel, Seth; then other sors and daughters. Adam died at the ago of 930 . Accoriang to the Elohist, the later race of men descended from Seth, the first born (Genesis v.i; according to the Jehovist from Cain, who was the first born (Gencsis iv.) A Jewish tradition represents him as buried in Hebron with the patriarchs; a Christian one makes Golgotha his resting-place.

A number of absurd fables, the fancies of Jewish writers, have gathered round the simple narratives of the Old Testament, and are incorporated in the Talmud. In these Adam is said to have been made as a man-woman out of dust collected from every fart of the earth; his head rached to hearen, and the splendour of his face surpassed the sun. The very angels feared him, and all creatures hastencel to pay him devotion. The Lord, in order to display his porter before the angels, caused a slecp to fall upon him, took away something frum all his members. and

[^23]when ho awoze commanded the parts that had been re moved to bs dispersed over the globe, that the whole earth might be inhabited by his seed. Thus Adam lost bis size, but not his completeness. His first wife was Lilith, mother of the demons. But she flew away through the air; and then the Lord created Eve from his rib, brought her to Adam in the most beautiful dress, and angels descending from heaven played on heavenly instruments; oun, moon, and stars dancing. He blessed the pair, and gave them a feast apon a table of precious stonct Angols prepared the most costly viands. But Adam's glory was envicd by the angels; and the scraph Sammael succeeded in sedncing him. The pair were driven out of paradise into the place of darkness, and wandered through the earth. ${ }^{3}$

According to the Koran, God created man of driẹd clay like an earthen vessel, auimating the figurc, and enduing it with nn intelligent soul. When lie had placed him in paradise, he formed Eve out of his left side. All the angcls worshipped the now man except Eblis, who refused and became an unbeliever. Satan caused them to forfcit paradise, and turned them out of their state of happiness. On Adam's repentance, God pitied him, and had him taught the divine commandments by the arch angel Gabriel; whereupon he was conducted to Arafat, a mountain near Mecca, and found Eve after a эeparation of 200 years. He was buricd on Mount Abukais, near Mecca.s Many other fables of the later Jews respecting Adam are collected by Eisenmenger, and those of the Mahometans by Herbelot.

In the emanation systems of the Christian Gnostics and Manichæans, as well as in the gnosis of the Mandæans, Adan is represented as one of the first and holiest rons. Both catholic and herctical literature indulgec in fictions respecting Adam. A Life of Adam was translated from the Ethiopic into German by Dilimann, in Ewald's Jahrbuch, v. The Testament of Adam, current in Syriac and Arabic, was published by Rean in the Journal Asiatique, serie v. tom. 2. Both these scem to be derived from the Spelunca Thesaurorum, which exists in MS. in the Syriac tongue. The Scthites, a Gnostic sect, had Apocalypses of Adam; other Gnostics had a Gospel of Eve. A Book of the Repentance of Adam and A Book corecerning the Daughters of Adam, are condernned in the decree of Gelasius. Gcorge Syncellus cites a Greek life of Adam; and a fragment from The Greek Book of Adam, in a Florentine MS., is given in the Literaturblatt des Orients for 1850. Thus the Adam-literature is copious. ${ }^{4}$ The Book of Adam, pullished by Norberg in 1816, is improperly so termed. It is a Mandxan or Sabian work, Sidra Rabba, which is now better known, since Retermann's critical edition of 1867 , and Nöldeke's researches into the language. (s. D.)

ADAM of Bremen, ecclesiastical historian, was born in Upper Saxony, and in 1067, probably on the invitation of Archbishop Adalbert, came to Bremen, where be waw appointed canon and magister scholarum. He died is 1076. His Gestà IIammaburgensis Ecclesice Pontificum, containing a history of the diocese of Hamburg and Bremen from 788 till the death of Adalbert in 1072, is of great importance as the chicf source of information in regard to the state of the nurthern kingrdoms during the period of which it treats. It is supposed to have been compiled partly from written documents and partly from the oral communications of the Danish king, Svend Estrithson. Its statcments are generally trustworthy, though the chronology is sometines confused, and the geographical informa-

[^24]tion often crraneous. The style is elear and intercsting, though somewhat prolix. It was firsit publishud from IISS.. at Copenhagen in 1579. The best celition is that of Lappenbers's in Pertz's AJonumenta Ciermanice. A supple. ment to the Gesta, a geographical work of considerable raiue, entitled De Situ Danice et Reliquarum quee trans Daniam sunt Regionum Aatura, was published at Stockholm in 1615, aud at Leyden in 1629 .
adail, Alexander, Rector of the High School, Edinburgh, was born on the 24th of June 1741, near Forres, in Horayshire. From his eariiest years he showed uncommon diligence and perseverence in classical studies, notwithstanding many difficulties and privations. In 1757 he went to Edinburgh, where the studied at the Uuiversity with such success that in eighteen months he was appointed tread-master of Watson's Hospital, being at the time only aineteen. He was confirmed in the office of Rector of the High School un the Sth of June 1768, on the retirement of Ur Matheson, whuse substitute he had been for some time tefore. From this period he devoted himself entirely to the duties of his ofice, and to the preparation of the aumerous works he priblished in classical literature. His popularity and success as a teacher are strikingly illustrated in the facts that his class increased more than fourfold during his incumbency, and that an unusually large proportion of his pupils attained to eminence, among them being Sir Walter Scutt, Lord Broughana, and Jeffrey. He succeeded in introducing the study of Greek into the curriculum of the school, notwithstanding the opposition of the University aeaded by Principal Robertson. In 1780 the University of Edinburgh couferred upon Mr Adam the honorary degree of Doctor of Laws. He died on the 18th December 1809 , ufter an illuess of five days, during which he occasionally magined himself still at work, his last words being,"But it grows dark; you may go." Dr Adam's first pubtication was his Principles of Latin and English Grammar (1772). This was followed by his Roman Antiquities (1791), his Summary of Geography and History (1794), and his Latin Dietiunury (1805). The MS. of a projected larger Gatin dictionary, which he did not live to complete, lies in che library of the High School.
aDAM, Melchior, German divine and biographer, was morn at Grottkaw in Silesia after 1550, and educated in whe college of Brieg, where he becanue a Protestant. He was enabled to pursue his studies there by the liberality of - person of quality, who had lof several exhibitions for young students. In 1598 he went to Heidelberg, where, ster holding various scholasti, appointments, he became worector of the gymnasium. In 1615 he published the irst volume of his Titce Germanorum Philosophorum, \&c. This volume was followed by three others; that which treated of divines was printed in 1619; his lives of lawyers and of plysicians were published in 1620. All the learned men whose history is contained in these four volumes lived in the 10th or beginning of the 17th contury, and are sither Germans or Flemings; but he published in 1618 the lives of twenty divines of other countries in a separate volume, entitled Decades duce continentes Fitas Theologorum Exterorum Principum. All his divines are Protestants. His industry as a biographer is conimended by Bayle, who acknowledges his obligations to Adam's labours. Lutherans and Catholics accuse him of unfairness, but the charge is at least exaggerated. He died in 1622 .
ADAM, Robert, architect, the second son of William Adam of Maryburgh, in Fife, was born in 1728. He studied at the University of Edinburgh, and probably received his first instruction in architecture from his father, who, whether a professional architect or not, gave proofs of his skill and taste in the designs of Hopetoun House and the Edinhurgh Royal Inkimary. In 1754 young idam
visited the Continent, and spent Ilrce years in It:aly for the purpose of examining the ruins of Roman architecture. The magnificence of the public haths erected at Rome in the time of Diocletion having impressed hin with the idea that there had been a marked revival of architectural art during that emperor's reign, he resolved to visit the ruins of the private palace Diocletian had erected at Spalatro in Dalmatia. In company with Clerisseau, a French architect, he sailed from Venice in July 1754, and in a few weeks, with the help of two expericuced dranghtsinen, had completed plans and views of the fragments, from which he was afterwards able to exccute a design of the entire building. Tho results were $p^{\text {mblishlish }}$ in the Ruins of the Pulace of Diocletian, \&cc. (1764). After his return to England he rose to the lighest eminence in lis profession, and was appointed architect to the king in 1762. Six ycars later he entered Parlianent as representative of the county of Kinross, but he still continued to devote himself to the duties of bis profession, resigning only his court appuintment. In 1773-7S he and his brother Jaines, also an architect of considerable nute, pullished from time to time large folio engravings with 'letterpress description of their designs, the most important being,-Lord Mansfield's honse at Caenwood; Luton Honse, Bedfordshire; the Register House, Edinburgh, \&e. Among their later works may be mentioned the buildings erected in London by the two brothers, and hence called the Adelphi ($\dot{\alpha} \delta \epsilon \lambda \phi o{ }^{\prime}$), which proved an unsuccessfil speculation; Portland Place,London; and the Infirmary of Glasgow. The leading characteristics of all these designs are lightness and elegance; and, though grave faults may be found with his style, it cannut be denied that English architecture, especially that of the streets of London, owes very much to Robert Adam. He continued actively engaged in his profession until his death in 1792 James, his brother and associate in labour, died in 1794.
adaim, Riget Hon. Whlitam, nephew of the preceding, eldest son of John Adam, Esq. of Blair-Adam, Kin-ross-shire, was born on the 2 d Angust 1751, studied at the Universities of Edinburgh and Glasgow, and passed at the Scotcl bar in 1773. Soon after he removed to England, where he entered Parliament in 1774, and in 1782 was culled to the Common-law bar. He withdrew from Parlia. ment in 1795, entered it again in 1806 as representative of the united counties of Clackmannan and liinross, and continued a member, though with some interruptions, till 1811. A popular though not an eloquent speaker, Mr Adam soon took a prominent place in the House, making himself of importance by his sound judgment and firm general adherence to the Whig party. A duel in 1779 between him and Mr Fox, in which the latter was slightly wounded, did not interrupt their close and steady friendship. They both belonged to the small but noble band that opposed the encroachments of the Government on the Constitation during the period of the French Revolution. One of Mr Adam's most valuable parlianentary efforts was the agitation which he successfully raised, in March 1794, against the severe punishment awarded in the Scotch criminal court to certain persons who had been convicted of sedition. At the English bar he was as successful as any one can be who does not derote himself entirely to the profession. Though known to be much engaged in Parliament, and with the management of the pecuniary affairs of the Prince of Wales and the Duke of York, he oltained a very considerable practice. He was successively Attorney and Solicitor General to the Prince of Wales, one of the raanagers of the impeachment of Warren Hastings, and one of the counsel who defended the first Lord Melrille when impeached (as Mr Dundas). During his party's brief tenure of office in 1806 he was Chance!lor of the Duchy of Cornwall, and was afterwards a privy councillos
and lord-lieutenant of Kinross-shire. In 1814 he became a baron of Exchequer in Scotland, and in the following year was appointed chief commissioner of the newlyestablished Jury-Court for the trial of civil causes, over which he prosided with much ability and acceptance till 1830, when it ceased to exist as a separate court, and became merged in the permanent supreme tribunal. Though little versed in the technicalities of law, he was in all practical matters an able manager; ho was a shrewd observer of all that passed around him, and a most agreeable companion. He died at Edinburgh on the 17 th February 1839.

ADAM'S BRIDGE, or Rama's Bridge, a chain of sandbanks, cxtending from the island of Manaar, near the N.W. coast of Ceylun to the island of Ramescram, off the Indian coast, and lying batween the Gulf of Manaar on the S.W. and Palk Strait on the N.E. It is more than 30 miles long, and offers a serious impediment to navigation. Some of the sandbanks are dry; and no part of the shoal has a greater depth than 3 or 4 feet at high water, except three tortuous and intricate channels, a few feet deep, which in calm weather pernit the passage of boats and small vessels.

ADAM'S PLEAK, a lofty monntain in Ceylon, about 45 miles E. from Colombo, in N. lat. $6^{\circ} 55^{\circ}$, E. long. $80^{\circ} 30^{\prime}$. It rises steeply to a height of 7240 feet, and commands a magnificent prospect. Its conical summit terminates in an oblong platform, 74 feet by 24 , on which there is a hollow, resembling the form of a human foot, 5 feet 4 inches by 2 feet 6 inches; and this has been consecrated as the footprint of Buddha The margin of this supposed footprint is ornamented with gems, and a wooden canopy protects it from the weather. It is heid in high veneration by the Cingalese, and numerous pilgrims ascend to the sacred spot, where a priest resides to receive their offerings, and bless them on their departure. By the Mahometuns the impression is regarded as that of the foot of Adam, who here, according to their tradition, fulfilled a penance of one tausand years, while the Hindoos claim it as that of their god Sira.

AD.MMAWA, a country of Central Africa, lies between 7° and 11° N. lat., and 11° and 16° E. long., about midway on the map between the Bight of Biafra and Lake Chad. Its boundaries cannot be strictly defined; but it stretches from S.W. to N.E. a distance of 200 miles, with a width of from 70 to 80 miles. This region is watered by the Benuwe and the Faro. The former, which ultimately unites with the Niger, flows through Adamawa, first in a northerly, then in a westerly direction; and is joinel by the laro, which rises in the south, 22 miles from Yolla, the capital of the country. Near their confluence the Benuwe is 800 yards wide, with a depth of about II feet; the Faro has a breadth of 600 yards, but is generally very ehallow. Both rivers are subject to extraordinary floods, beginning in the end of September, and lasting forty days,' during which the smamps of the adjacent country are covered for a great distance on both sides, and the Benuwe rises at least 30 feet. The must fertile parts of the country are the plains near the Benume, about S00 feet above the level of the sea. Further from that river the land rises to an eleration of 1500 feet, and is diversified by numerons hills and groups of mountains. Mount Alantika, about 25 miles S.S.E. of Yolla, is the loftiest mountain in Adamawa, and rises from the plain, an isolated mass, to the height of 9000 feet. The country, which is exceedingly rich, and is covered with luxurant herbare, has many villages, and a considerable population. The grain known as Holcus sorghum or durra, ground-nuts, yams, and cotton are the principal products; and the palm and banana abound. Elephants are very numerous, and ivory is largely exported. In the eastern part of the country the rhino-
ceros is met with, and the rivers swann with crocudile.s, and with a curious mammal called the ayu, bearing some resemblance to the seal. Yolla, the capital of Adamawe, is situated, in N. lat. $9^{\circ} 25^{\circ}$, E. long. $12^{\circ} 13^{\prime}$, in the fertiie plain betreen the Benuwe and the Faro. The houses are built of clay, and surrounded by court-yards, in which grain is grown; so that the town, though containing only about 12,000 inhabitants, is spread over a large extent oi ground, and is 3 miles long from east to west. T'ukedi (a dark-coloured cotton cloth), beads, salt, and calico are the principal articies exposed in the murkets. Ilere and throughout Adamawa cotton is generally used as a medium of barter. A very large proportion of the population are slaves, many private individuals holding as many as 1000 , while the governor is said to receive anmally about 5000 in tribute. The government of Adamava is in the hands of a Dahometan ruler, who owns a nominal allegiance to the Sultan of Soloto, but is in reality an indeperdent sovereign. Formerly the country was called Foumbina, and was possessed by various African tribes, until it was overrun by the Fulbe, a Mahometan people. It has not been entirely subjected by them, but they have detached settlements at various places; and numerous governors, as well of the Fulbe as of outlying pagan tribes, are in subjection to the ruler of Yolla. (See Barth's T'ruvels in Central Africa, vol. ii.)

ADAMII'ES, or ADAMiANs, a sect of heretics that flourisher in North Africa in the 2 d and 3d centuries. Basing itself probably on a union of certain gnostic and ascetic doctrines, this sect pretended that its members were re-established in Adan's state of original inmocency. They accordingly rejected the form of marriage, which, they said, would never have existed but for sin, and lived in absolute lawlessness, holding that, whatever they did, theit actions could be neither good nor bad. During the Middle Ages the doctrines of this obscure sect, which did not at first exist long, wero revived in Europe by the Brethren and Sisters of the Free Spirit, who in the I4th century were better known throughout Germany as Beghards. This name was originally borne by a religious party that was formed in the Netherlands a century earlier. The two sects came into contact on the Rhine frontier, associated with each other, gradually approximated in doctrine, and were at last identified by the application to both of the one name; though a distinct sect of Beghards, free from the excesses of the brethren, continued to exist in the Netherlands. Pica'd is simply another form which Beghard assumed in the harsh pronunciation of the Bohemians, and the common method of accounting for it by supposing a leader Picard has no sufficient warrant. The principal seat of the Picards in Bohemia was a small island in the river Luschnitz, where they lived in a state of nature, and had wives in common. In 1421 they were alnost exterminated by Ziska, the leader of the Hussites, who committed many of them to the flames. In 1849 it appeared that the sect existed in a district of Austria, though small in number, and not ostentatious of its peculiar practices. (Rüdinger de Eccl. Frat. in Bolemı., \&c.; Lossuet's Variations of Protestant Churches.)

ADAMNAN or Adomnan, Saint, born in Ireland about the year 624, was elected Abbot of Iona in 679, on the death of Failbhe. White on a inission to the court of King Aldfrid of Northumberland ($700-1$), he was led to adopt the Romar rule in regard to the time for the observance of Easter; and on his return to Iona he tried to enforce tho change upon the monks, but without success. It is said that the disappointment caused his death, which occurred in 703 or 704. Adamnan wrote a Life of St Columba, which, though abounding in fabulons matter, is of great interest and value. The best edition is that of Reeves
publisked by tac Irish Arcurological and Celtic Society m 1857. Adamnan's other well-known work, De Situ Terrae Sanctue, was based. according to Bede, on information received from Arculf, a French bishop, who, on his return trom the Holy Land, was wrecked on the west coast of Britain, and was entertained for a time at Iona. This was first published by Gretser at Ingolstadt in 1619. (Kalendars of the Scottish Saints, by Bishop Forbes, 1872.)

ADAMS, John, a distinguished statesman of the United States of North America. He was born on the 19th or (uew style) 30 th of October 173.5, in that part of the township of Braintree, in Massachusetts, which on a subsequent division was called Quincy. His parents were of that class, then abounding in Nev England, who united the profession of agriculture with that of some one of the mechanic arts. His ancestor Henry had emigrated from Devonshire in the year 1632, and had established himself at Braintree with six sons, all of whom married: from one descended the subject of this memoir, and from another that Samuel Adams who, with John Hancock, was by name proscribed by an Act of the British Parliament, for the conspicuous part he acted in the early stages of the opposition to the measures of the mother country. When about fifteen years of age, his father proposed to his son. Tohn either to follow the family pursuits, and to receive in due time, as his portion, a part of the estate which they had cultivated, or to have the expense of a learned education bestowed upon him, with which, instead of any fortune, he was to make his way in future Life. The son chose the latter alternative; and having received some preparatory instruction, was admitted a siudent at Harvard College in the year 1751. After graduating in 1755, he removed to the town of Worcester, where, according to the economical practice of that day in New England, he became a tutor in a grammar school, and at the same time was initiated into the practice of the law in the office of Mr Pratnam, then an attorney and a colonel of militia, and subsequently a general of some celebrity in the revolutionary war. A letter he wrote at the early age of nineteen, shows a degree of foresight which, like many other predictions, may have led to its own accomplishment. It is dated 12th October 1754 , and says-" Soon after the Reformation, a few people came over to this New World for conscience' sake. Perhaps this apparently trivial incident may transfer the great seat of empire to America. It looks uiscly to me; for if we can remove the turbulent Gallic (the French in Canada), our people, according to the exactest computation, will in another century become more numerous than England itself. Should this be the case, since we have, I may say, all the naval stores of the nation in our hands, it will be easy to obtain the mastery of the seas, and then the united force of all Europe will not be able to subdue us. The only way to keep us from setting up for ourselves is to disunite us."

He was admitted to practice in the year 1758, and gradually rose to the degree of eminence which a local court can confer; and obtained distinction by some essays on the subject of the canon and feudal law, which were directed to point to the rising difference which commenced between the mother country and the colonies, soon after the peace of 1763 had delivered the latter from all disquietude respecting the establishments of France in the adjoining province of Canada. His character rose, both as a lawyer and a patriot, so as to induce Governor Barnard, who wished to gain him orer to the royal party, to offer him the office of advocate-general in the Admiralty Court, which was deemed a sure step to the highest honours of the bench. Two years after, he was chosen one of the representatives of his native town to the congress of the province. His first prominent interference in political affairs was at a meeting at Braintree in 1765, to oppose the Stamp Act.

The resolutions he proposeu were not only carried unanimously, but were afterwards adopted verbatim by moru than forty other towns. In 1768 he found it necessary to remove to Boston, owing to the increase of his legal practice.

His professional intconity was soon after exhibited in the defence of Captain Preston and some soldiers, who were tried before a Boston jury on a charge of murder, April 1770. In this case Adams was counsel for the defence; and being considered by the people, then in an inflamed state against the troops, as a determined friend of liberty, his eloquence obtaised a rerlict of acquittal mithout lessening his popularity.

When it was determined, in 1774, to assemble a general congress from the several colonies, Mr Adams was one of those solicited for the purpose by the people of Massachusetts. Before departing for Philadelphia to join the congress, he parted with the friend of his youth, his fellow. student and associate at the bar, Jonathan Sewall, who had attained the rank of attorney-general, and was necessarily opposed to his political riews. Sewall made a powerful effort to change his determination, and to deter him from going to the congress. He urged, that Britain was determined on her system, and was irresistible, and would b, destructive to him and all those who should persevere in opposition to her designs. To this Adams replied. "r know that Great Britain bas determined on her system, and that very fact determines me on mine. Jou know I have been constant and uniform in opposition to her measures; the die is now cast; I have passed the Rubicon; to swim or sink, live or die, survive or perish with my cuuntry, is my unalterable determination." The couversation was then terninated by Adams saying to his friend, "I see we must part; and with a bleeding heart, I say, I fear for ever. But you may depend upon it, this adieu is the sharnest thorn on which I ever set my foot."

When the continental congress was assembled Mr Adams became one of its most active and energetic leaders. He was a member of that comrnittee which framed the Declaration of Independence, and one of the most powerful advocates for its adoption by the general body; and by his eloquence obtained the unanimous suffrages of that assembly. Though he was appointed chief-justice in 1776 , he decliued the office, in order to dedicate his talents to the general purpose of the defence of the country.

In 1777 he, with three other members, was appointed a commissioner to France. He remained in Paris about a year and a half, when, in consequence of disagreements among themselves, in which Adams was not implicated, all but Franklin were recalled. In the end of 1779 he mas charged with two commissions,-oue as a plenipotentiary to treat for peace, the other empowering him to form a commercial treaty with Great Britain. When he arrived in Paris, the French Gurernment viewed with jealousy the purpose of the second commission; and Count de Yergennes adriscd him to keep it secret, with a view to prevail on the congress to revoke it. Mr Adams refused to communicate to the count his instructions on that subject; and an altercation arose, from a claim made by Frauce for a discrimination in favour of French holders of American paper money in the liquidation of it. The count complained lu Congress, transmitted copies of Mr Adams's letters, and instructed the French minister at Pbiladelphia to demand his recall. The demand was rejected, but afterwards four others were joiued with him in the commision. Whilst these negotiations were in progress he went to Holland, and there, in opposition to the influence and talents of the British minister, Sir Joseph Yorke, succeeded both in negotiating a loan, and in procuring the assistance of that country in the defence against Great Britain. He formed a commercial treaty with
that republin, and joined in the ephemeral association called "the armed neutrality."

In 1785 Mr Adams was appointed ambassador to the court of his former sovereign, where his conduct was such as to secure tho approbation of his own country, and the respect of that to which he was commissioned. Whilst in London, be published his work entitled Dejence of the American Constitution, in which he combated ably the opinions of Turgot, Mably, and Price, in favonr of a single legislative assembly; and thus perhaps contributed to the division of power and the checks on its exercise, which hecame established in the United States. At the close of 175% he returned, after ten sears devoted to the public service, to America. He received the thanks of Congress, and was elected soon after, under the presidency of Washington, to the office of Vice-President. In 1790 Mr Adams gave to the public his Discourses on-Darila, in which be exposed the revolutionary doctrines propagated by France and her emissaries in other countries. On the retirement of Washington, the choice of President fell on Mr Adans, who entered on that office in May 1797. At that time the Govermment was entangled by the insolent protensions of the French dernagogues, and by their partisans in many of the states. Great differences of opinion arose between the individuals at the head of affairs: one party, with Mr Ilamilton at their head, Was disposed to resist the pretensions of France by open hostilitics; whilst Mr Adams was disinclined to war, so long as there was a possibility of avoiding it with honour. Owing to this division of his own friends, rather than to a want of public confidence, at the conclusion of the four years for which the President is chosen, Mr Adams was not re-elected. Perhaps this was in some measure owing to the preponderance of the slave states, in which Mr Jelferson, his rival, and a proprictor of slaves, had a fellow-fecling among the chicf of the people.

He retired with dignity, at 65 years of age, to his native place, formed no political factions against those in power, but publicly expressed his approbation of the measures which twere pursued by him who had been his rival, who hac' become his successor in power, but had never ceased to be his firmly-attached friend.

The last public occasion on which Mr Adams appeared, was as a member of the convention for the revision of the constitution of Massachusetts, in which some slight alterations were requisite, in consequence of the province of Maine being separated from it.

He seems to bave enjoyed his mental faculties to the close of his protracted life; and even on the last day of it, two hours only before its final close, or the 4 th July 1826, the fiftieth anniversary of the Act of Independence, he dietated to a friend, as a sentiment to be given at the public dinner of the day, "Independence for ever." By a very singular coincidence Jefierson, his rival and friend, died a few hours earlier on the same day.

Mr Adams was considered a sound scholar, well rersed in the ancient languages, and in many branches of general literature. Ilis style in writing was forcible and perspicuous, and, in the latter years of his life, remarkably clegant. In person he was of middling stature; his manners spoke the courtesy of the old school; and his address, at least when le was in England, was dignified and manly:

ADAMS, Jonn Quincy, eldest son of the preceding, was born at Rraintree on the 11 th July 1707. The greater part of his education was received in Europe, which he visited in company with his father in 1778, and again in 1i80, when he attended for a time the university of Leyden. When only fifteen jears old he went, as secretary, with Francis Dana on his unsuccessful mission to St Petersburg. Returning home after an interval spent in Holland, London, and Paris, he graduated at Harvard in

1788; and, after spending three years in a Iawyer's office, was admitted to the bar in 1791 . Three successive serics of letters, on political subjects, contributed to a Boston newspiper, attracted much attention, and Washington appointed him ambassador to the Hague in 1.794. An appointment to a similar post in Portugal, made just before the expiry of Washington's presidency, was set aside by his father, who sent him instead to Prussia, giving him the promotion by the express advice of Washington. During his residence as ambassador at Berlin, he succeeded in negotiating a commercial treaty with Prussia. On Jefferson becoming President (1801), Adams was recalled, and resumed the practice of law in Boston. In 1802 Suffolk county returned him a member of the Nassachusetts Senate, and in the following year he was elceted to Congress. Indebted for his position to the Federal party, Adams supported their views for four years, but separated from them by voting for Jefferson's proposed cmbargo. This course involved. him in mueh controversy, and cost him his seat in the Senate. During his retirement he added to the employment arising from his profession the duties of the professorship of rhetoric and belles lettres at Harvard University, which he held for three years (1806-9). His lectures-the first ever read in an American aniversity-were published in 1810, and were much thought of at the time, though now almost forgotten. In the winter following the resignation of his professorship, he visited Washington; and, in an interview with Jefferson, brought a charge against some of the Federal leaders of a design to dissolve the union, and form a separate confederation for the north. The charge was afterwards repeated in the newspapers; and, though resting on slender grounds, greatly affected the confidence of the other states in the New England representatives. In 1809 Madison, having obtained after some delay the concurrence of the Senate, entrusted Adams with the embassy to St Petersburg, -an appointuaent which the latter accepted against the wisheg of his father, and continued to hold, though offered a seat on the judicial bench of New England some time after his arrival in Russia. When war broke out between Englaind and the United States, Adams induced the Czar to make an offer of intervention, which, however, the English Government declined to accept. Independent negotiations were thereupon carried on for six months at Ghent (the rejuresentatives of. America being Adams, liussell, and Clay), and resulted in the treaty of peace which was signed 24th December 1814. After serving for two years (1815-17) as minister in London, he again entered the arena of home politics as secretary of state under Monroe. In this office he distinguished himself spetially by his arrangement of the treaty with Spain, which defined the boundaries of the ceded territories of Florida and Lorisiana. An elaborate report on weights and measures gained for him also a name for scientific acquirements. In 18:2 the election of a President fell, according to the constitution of the States, Wo the House of Representatives, since no one of the candidates had secured an absolute majority of the electors chosen by the States, and Adams, who had stood second to Jackson in the electoral rote, was chosen in preference to Jackson, Clay, and Crawford. The administration of Adams was marked by the imposition of a high tariff on foreign gnods, with the view of promoting internal industry, and by the unsuccessful attempt to purchase Cuba from Spain. Notwithstanding the efforts of Clay, and the special claim he himself made on the voters of Virginia on account of his discovery of the so-called New England "plot" twenty years before, Adams failed to secure his re-election in $18: 9$. De:eated by Jackson, who had 178 votes to his 83 , he retired o Quincy, where his father's fortune, increased by his own efforts, afforded
him an ample competency. Two ycars later he was returned to Congress by the.district in which he lived, and which he cuntinued to represent until his death. Having been chosen merely ou account of his deternined resistance to secret soeieties, his position was independent of party politics, and correspondingly strong. He stood for the office of governor, and then for that of senator, of Massachusetts, but was on both occasions defeated by Daris. As chairman of the committee on manufactures, he strove to devise a middle policy in regard to tariffs, but his greatest effiort at this period-perbaps the greatest service of his whule political life-was in connection with the abolition of slavery. In every form which the question took, he was the bold and determined advocate of abolition, gradually gathering an influential party around him, and so preparing for the triumpls, most of which have been won since his death. He himsolf witnessed, in 1845 , the abolition of the " gag-rule," restricting the right of petition to Congress on the subject of slavery, which he had persistently opposed during the nine years it was in force. He died of paralysis on 23 d February 1848, having been scized two days previously while attending the debates of Congress. Adams wrote a number of works, which are now of little importance. Tue style is fluent, but has none of the rigour and elegance of his father's. During his whole lifetime he kept a rery voluminous journal, some portions of which have been published.
adanis, Richard, M.A., divine. Two contemporaries of the same name are frequently confounded with each other. The more eminent was son of the Rev. Richard Adams, rector of Worrall, in Cheshire. The family records seven clergymen of the Church of England in succession. The present worthy was born at Wurrall, but the loss of the registers leaves the date uncertain. It is nsually, but erroncously, stated that he studied at Cambridge University. He was adinitted a student of Brazenose College, Oxford, March 24, 1646, and became a fellow, having proceeded through the usual degrees. It was at Brazerose he formed his life-long friendship with John Howe, who had a profuund veneration for Adams. In 1655 he was appointed to the rectory of St Mildred's, Bread Street, London-John Miltun being a parishioner. From this he was ejected by the Act of Uniformity of 1662. Thereupon he continued his ministry as opportunity offered, and at length was settled as pastor of a congregation in Southrark. This Richard Adams is a typical example of the consistent and meek labourers of the early and strageling period of Nonconformity. His holy axd beautiful life inspired Howe's noblest eloquence in his funeral sermon. He died in a ripe old age, on 7 th Feb. 1698. His principal literary work is his contribution of annotations on Philippians and Colossians to Pool's celebrated Annotations. Along with lical he edited the works of Charnock.
(А. в. G.)

ADAMS, SAsueke, American statesman, born at Eoston, Sept. 27, 1722, was second cousin to John Adams. He stulied at Harvard, but, owing to his father's misfortunes in business in connection with a banking speculation,-the "manufactory scheme,"-he had to leave before completing his course, and to relinquish his intention of becoming ${ }^{2}$ Congregational clergynan. He received his degree, however, and it is worthy of note, as showing "he tendency of his politieal opinions. that his thesis was a defouce of the affirmative reply to the question, "Whether it be law$i u l$ to resist the supreme magistrate, if the commonwealth cannot othervise be preserved?" The failure of the banking scheme above referred to, in consequence of the linitations imposed by English latr, made Adams still more decided in his assertion of the rights of American citizens, and in his opposition to Parliament. He gave up his business, in which he had little succoss, and became tas-
collector for the city of Boston, whence he was called by his politieal oppouents, "Sannel the publican." In all the proceedings which issued at last in the declaration of independence Adams was a conspicnous actor. He took part in the numerous town mectings, drafted the protest which was sent up by Boston agaiust'the tazation scheme of Grenville (May 1764); and, being chosen next year a member of the gencral court of Massachusetts, soon became one of the leaders in debate. Upon his entry into the Honse he was appointed clerk, and had thus much ingileence in arranging the order of busiuess and in draming up papers. Attempts were more than once made by the English governor to win him over by the offer of a place, but Adams proved inflexible. His uncompromising resistance to the British Goverument continned; he was a prominent member of the coutinental Congress at Philadelphia, and was one of chose who sigued the Declaration of Independence in 1676 . He was a member of the coulvention which settled the constitution of Massachusetts, and became president of its Senate. From 1789 to 1794 he was lientenant-governor of the State, and governor from 1794 to 1797 , retiring in the latter year partly on recount of age, but partly also because the Federalists were then in the ascendant, and he himself was inclined to the Jefferson or Republican party. He died on the 3d Oct. 1803. In an oration on American independence, delivered in Philadelphia, 1st Aug. 1776, Adams characterises the English as "a nation of shopkeepers." The oration was translated into French, and published at Paris; and it is therefore not unlikely that Napoleon's use of this phrase was not original.

ADAMS, Tromas-" the prose Shalicpeare of Puritan theologians," as Southeynamed him-lans !eft as few personal memorials belind him as the poet himself. The only facts regarding the commonplaces of his biography are furnished by epistles-dedicatory and epistles to the reader, and titlcpages. From these we learn that he was, in 1612, " a preaeher of the gospel at Willington," in Bedfordshire, where he is found on to 1614 , and whence issued his Heaven and Earth Reconciled, The Devil's Branquet, and other works; that in 1614-15 he was at Wingrave, in Buckinghamshire, probably as vicar, and whence a number of his works went forth in quick succession; that in 1618 he held the preachership at St Gregory's, under St Paul's Cathedral, and was "observant chaplain" to Sir Henrie Montague, the Lord Chief-Justice of England; that during these years his epistles show him to have been on the most friendly terms with some of tho foremost men in state and church; and that he must have died before tbe Restoration of 1660 . His "occasionally" printed sermons, in small quartos, when collected in 1630 , placed him beyond all comparison in the ran of the preachers of England. Jeremy Taylor does not surpass him in brilliance of fancies, nor Thomas Fuller in wit. His numerous works display great learning, classical and patristic, and are unique in their abundance of stories, anecdotes, aphorisms, and puns. He was a Puritan in the church, in distinction from the Nonconformist Puritans, and is evangelically, not drydoctrinally, Calrinistic in his theology. His works have been recently collected by Drs Joseph Angus and Thomas Smith (3 rols. 8vo, 1862):
(A B. G.)
ADAMSON, PATRICK, a Scoftish prelate, Archbishop of St Andrews, was born in the year 154.3, in the town of Perth, where he received the rudiments of his education. He afterwards studicd philosoply, and took his degree of master of arts at the University of St Andrews. In 1564 he set out for Paris as tutor to the cldest son of Sir Wilbiam Maegill. In the month of June of the same year, Mary Queen of Scnts being delivered of a son, afterwards James VI. of Scotlaud and I of England, Mr Adamson
arote a Latin poem, in which he gave the prince the title of king of France and England. This proof of his loyalty involved him in difficulties. The French court was offended, and ordered him to be arrested; and he was contined for six wonths. He was releascd ouly through the intercession of Quecn Mary and some of the principal nobility, whe interested themselves in his behalf. As suon as he recovered his liberty, he retired with his pupil to Bourges. He was in this city duriug the massacre at l'aris; and the same persecuting spirit prevailing among the Catholics at Bourges as at the metropolis, he lived concealed for seven months in a public-bouse, the aged master of which, in reward for his charity to heretics, was thrown from the roof, and had his brains dashed out. Whist Mr Adamson lay thus in his scpulchre, as he called it, he wrote his Latin poctical version of the book of Job, and his tragedy of Herod in the same language. In the year 1573 he .eturned to Scotland, and, having entered into boly orders, became minister of Paisley. In the year 1575 he was appointed one of the commissiuners, by the General Assembly, to settle the jurisdiction and policy of the church; and the following year be was named, with Mr David Lindsay; to report their proceedings to the Earl of Morton, then regent. About this time the earl appointed him one of his chaplains; and, on the death of Archbishop Douglas, promoted hin to the archiepiscopal see of St Andrews. This gave rise to a protracted conflict with the Presbyterian party in the Assembly. Soon after his promotion, he published a catechism in Latin rerse, dedicated to the king, a work highly approved even by his eneruics, who neverthcless still continued to persecute him rith great v_{1} lence. In 1578 he submitted himself to the General Assembly, which procured him peace but for a very little time; for, the year following, fresh accusations were brought against him. A Provincial Synod was held at St Andrews in April 1586; the archbishop was here accused and excommunicated. He appealed to the king and the states, but this availed him little. At the next General Assembly, a paper being produced containing the archbishop's. submission, he was absolved from the excommunication. In 1588 fresh accusations were brought against him. The year following he published the Lamentations of the prophet Jeremiah in Latin verse, which he dedicated to the king, complaining of his hard usagc. Towards the end of the same year he published a translation of the Apocalypse in Latin verse, and a copy of Latiu verses, The king was unmoved by his application, and granted the revenue of his see to the Duke of Lennox, so that the prelate and his family were literally reduced to the want of bread. During the remaining part of his unfortanate life he was snpparted by charitable contributions, and died in 1592. He had previously made a written recantation of his alleged errors in regard to Episcopacy, though the genuineness of this is doubted by Spotiswoode. (Sce Cunningham's Church History of Scotland, vol. i.) The character of this prolate has been rarionsly represented, according to the sentiments of religion and politics which prevailed. But there is little doubt that he encouraged and supportel, under the authority of the king, oppressive and injurious ineasures. The panegyric of the editor of his works, Mr Wilson, is extravagant and absurd. He says that "he was a miracle of nature, and rather seemed to be the immediate production of God Almighty than born of a woman."

ADANA, a city of Asia Minor, the capital of the province of the same name, on the right bank of the Sihun, about 30 miles from the sea, in N. lat. $37^{\circ} 1^{\prime}$, E. long. $35^{\circ} 18^{\prime}$. It is built on the site of the ancient Antiochia ad Sarum. Its position, commanding the passage of the mountains to the north of Syria, rendered it important as - military atation in the contest between the Egyptians and
the Turks in 1832. After the defeat of the Turkish army at Konieh, it was taken possession of by Ibrahim Pacha, and continued to be held by the Egyptians till the treaty of July 1840 restored it to the Porte. In the streets of the town there are numerous beautiful fountains, supplicd with water from the river, which is here spanned by a stately bridge of fifteen arches, said to have been erected by Justinian. In winter the climate is mild and healthy, but in summer the heat is so great that the principal inhabitants betake themselves to various cool retreats in the neighbonring mountains. The adjoining plain of Adana is rich and fertile. The chief productions of the province are cotton, corn, sesame, and wool, which are largely exported. The population of the town is 20,000
adanson, Micher, a celcbrated French naturalist, descended from a Scottish family which had at the Revolu. tion attached itsclf to the fortunes of the house of Stuart, was born the 7 th of April 1727, at Aix, in Provence, where his father was in the service of M. de Vintimille, archbishop of that province. On the translation of this prelate to the archbishopric of Paris, about the year 1730, the elder Adanson repaired thitber with his fire children, who were all provided for by their father's patron. A small canonry fell to the lot of Nichel, the revenue of which defrayed the expenses of his education at the college of Plessis. While there he was distinguished for great quickness of apprehension, strengtli of memory, and incntal ardour; but his genius took no particular bent, until he received a microscope from the colebrated Tuberville Needham, who was struck with admiration of the talents and acquirements he displayed at a public examination. From that time to the last hour of his life he persevercd with a zeal almost unexampled in the observation and study of nature. On leaving college, his youthful ardour was well employed in the cabinets of Reaumur and Bernard de Jussieu, as well as in the Jardin des Plantcs. Such was lis zeal, that he repeated the instructions of the professors to his less apt fellow-students; and before connpleting his nineteenth year he lad actually described (for his own improvement) 4000 species of the thiree kingdoms of nature. In this way he soon exhausted the rich stores of accumulated knowledge in Europe; and having obtained a small appointment in the colony of Senegal, he resigncd his canonry, and embarked on the 20th of December 174 S for Africa. Senegal, from the unhealthiness of its climate, was a terra incognita to maturalists; and this determined his choice of that country as a field for exploration. His ardour remained unabated during the five years of his residence in Africa. He collected and described, in greater or less dctail, an immense number of animals and plants; collected specimens of cvery objcct of commerce; delineated maps of the conntry ; made systematic metcorological and astronomical observations; and prepared grammars and dictionaries of the languages spoken on the banks of the Senegal. On his return to Paris in February 1754 he found limself withont resources, but fortunately secured the patronage of M. de Bombarde, who encouraged him in the publication of the scientific results of his travels. In his IIistoire Naturelle du Sénégal (Paris, 1757) he made use of a small portion of the materials at his disposal; and the work has a special interost from the essay on Shells, printed at the end of it, where Adanson proposed lis universal method, a system of classification distinct from those of Buffon and Linnæus. He founded his classification of all organised beings on the consideration of each individual organ. As each organ gave birth to new relations, so be established a corresponding number of arbitrary arrangements. Those beings possessing the greatest number of similar organs were referred to one great division, and the relationship was considered more remote in pro-
portion to the dissimilarity of organs. The chief defect of this method consists in presupposfng a knowledge of species and their organisation altogether beyond the existing stago of knowledge. It gives, however, distinct ideas of the degree of affnity subsisting between organised beings, independent of all physiological science. Until the appearance of this work, the Testacea had scarcely been made the subiect of serious study. Adanson's methodical distribution, founded on not less than twenty of the partial classifications already alluded to, is decidedly superior to that of any of his predeccssors. For the first time there was presented in this department of natural history a classification of the animals themselves, and not merely of the shells which contain them. Like every frst attempt, however, it had its imperfections, which arose chiefly from ignorance of the anatomical structure of the animals. It was owing to this that he omitted, in his arrangement of the Mollusca, all molluscous animals rithout shells. He abandoned his original plan of publishing his Senegal observations in eight vclumes, and applied himself entirely to his Familles des Plantes, which he published in 1763. Here he developed the principle of arrangement above mentioned, which, in its adherence to natural botanical relations, was based on the system of Tournefort, and had been anticipated to some extent nearly a century before by Ray. The success of this work was hindered by its innorations in the use of terms, which were ridiculed by the defenders of the popular sexual system of Linnæus; but it did much to open the way for the establishment, by means principally of Jussieu's Gensra Plantarum (1789), of the natural method of the classification of plants. In 1774 Adanson submitted to the consideration of the Academy of Sciences an immense work, containing what may be called the universal application of his universal method; 'for it extended to all known being 3 and substances. This work consisted of 27 large volumes of manuscript, employed in displaying the general relations of all these matters, and their distribution; 150 volumes more, occupied with the alphabetical arrangement of 40,000 species; a vocabulary, containing 200,000 words, with their explanations; and a number of detached memoirs, 40,000 figures, and 30,000 specimens of the three kingdoms of nature. The committee to which the inspection of this enormous mass was intrusted strongly recommended Adanson to separate and publish all that was peculiarly his own, leaving out what was merely compilation. He obstinately rejected this advice; and the huge work, at which he continued to labour, was never published. He had been elected a member of the Academy of Sciences in 1750, and he latterly subsisted on a small pension it had conferred on him. Of this he was deprived on the dissolution of the Academy by the Constituent Assembly, and was consequently reduced to such a depth of poverty as to be unable to appear before the French Institute when it invited him to take his place among its members. Government afterwards conferred upon him a pension sufficient to relieve the simple wants of the great naturalist. He died, after months of severe suffering, on the 3d of August 1806, requesting, as the only decoration of his grave, a garland of flowers gathered from the 58 families he had differentiated-" a touching though transitory image," says Cuvier, "of the more durable monument which he has erected to hinself in his works." His zeal for science, his unwearied industry, and his talents as a philosophical observer, are conspicuous in all his writings. The serenity of his temper, and the unaffected goodness of his heart, endeared him to the few who knew him intimately. On his return from Africa in 1754, he laid before the French Irdian Company a scheme for the settlement of a colony in Senegal, where articles of African produce might be cultivated by free negroes. His propositions were יuheeded by his countrymen. and by a mis-
directed patriotism be refused to present them to the Abolitionists of England. A similar feeling led him to refuse to settle in Austria, Russia, or Spain, on the invitation of the sovereigns of those countries. His most important works are his Natural History of Senegal and his Families of Plants. He contributed a number of papers to the Memoirs of the Academy of Sciences, on the Ship-worm, the Baobab tree (the largest tree known, to which, in honour of Adanson, Linnæus gave the name Adansonia digitata), the origin of the varieties of cultivated plants, gum-producing trees, and the Oscillatoria Adansonia, an animal regarded by him as a spontanecusly moving riant. Deeides these essays, he contributed several valuable articles in natural history to the earlier part of the Supplement to the first Encyclopédie; and he is also the reputed author of an essay on the Electricity of the Tournaline (Paris, 1757), whicb bears the name of the Duke of Noya Caraffa.
ADAPTATION, in Biology, is the process by which an organism or species of organisms becomes modified to suit the conditions of its life. Every change in a living organism involves adaptation; for in all cases life consists in a continuous adjustment of internal to exterral relations. The term is usually restricted, howerer, to imply such modifications as arise during the life of an individual, when an external change.directly generates some change of function and structure. Thus, since the adjustments of organisms arise partly in direct response to causes acting on the individual, and partly in response to cruses acting not directly on the individual but on the species as a whole, adaptation is to be regarded as the complement of natural selection. While natural selection acts primarily on the species, adaptation acts only indirectly, through the inheritance of modifications directly generated in the.indi-vidual- All adaptation is limited, since an organ can only vary to a certain limited extent from its congenital structure. Adaptations are sometimes distinguished as indirect (for instance, by Haeckel, Generelle Morphologie, voL ii), which are directly generated in an organism, but only become apparent in its offspring. These form an important class, and seem to suggest that the phenomena of adaptation, thoroughly understood, would go far to explain all the difficult cases of so-called spontaneous rariation.

ADDA, the ancient Addua, a river of Northern Italy, formed by the union of several small streams, near the town of Bormio, in the Rhætian Alps, flows westrard through the Valtellina into the Lake of Como, near its northern extremity. Issuing from the Lecco arm of the lake, it crosses the plain of Lombardy, and finally, after a course of about 150 miles; joins the Po, 8 miles above Cremona The Adda was formerly the boundary betreen the territories of Venice and Milan; and on its banks several im. portant battles hare been fought, notably that of Lodi, where Napoleon defeated the Austrians in 1796.

ADDER, the common riper (Vipera communis). The death adder (Acanthopis tortor) of Australia, and the puff adder (Clotho arietans) of South Africa, are both higkly poisonous.
addington, Henby; Viscount Sidmoute, prime minister of England, eldest son of Dr Anthony Addington, was born at Reading on the 30th May 1757. He was educated at Winchester and at Brazenose College, Oxford. In 1784 he was called to the bar at Lincoln's. Inn, but being elected about the same time member of Parliament for Devizes, he did not enter on legal practice. He was already on terms of intimacy with the younger Pitt, his father hanng been Lord Chatham's medical adriser (a circumstance that secured for young Addington the nickname in Parliament of "the Doctor"); and he attached himself, as was natural, to the party of the great commoner.

His fidelity to pitt receired a speedy and ample aeknowledgment when he was clected, in May. 1789, speaker of the House, in succession to Grenville. For a period of twelve jears he discharged the duties of the chair to the general satisfaction of all parties, if with no very marked \&bility: In 1801, when Pitt resigned on the question of Catholie cmancipation, Addington suceeeded him in the - Tices of prime minister and chancellor of the exchequer. He was head of the party that had come to be known as "the king's friends," and took office, it is said, on the vergent personal solicitation of his majesty. The most nemorable event of his brief administration was the negotiation of the peace of Amiens, which was concluded on terms that were eonsidered very farourable. It proved, howerer, but a short-lived truec, the ambition of the First Consul necessitating a reneral of hostilities in May 1803. From this period Pitt assumed a critical attitudo towards the ministry, and at length he joined Fox and the opposition in demanding more vigorous measures for the defence of the country. The result was that Addington was compelled to resign, and Pitt was restored to power in May 1804. Addington abstained from all factious orposition, and indeed gave a general support to the Guvernment. In January 1805 he joined the cabinct as president of the council, accepting at the same time the dignity of a peerage, which he had previously declined. He resigned office, however, in July of tho same year, in consequence of the share he took in the prosecution of Lord Melville baving estranged him from Pitt. After the death of the latter in 1806, be became lord privy seal, and subsequently lord president in the cabinet of Fox and Grenville, but resigned offico in 1807. He becamo a third time lord president under Mr Perceval in 1812, and in June of the same year received the seals of the Home Office under the administration of Lord Liverpool. He held this position for ten eventful years, during which he received his full share of the hostile criticism to which homo seeretaries are peculiarly exposed. His administration lad the merit of being vigorous, fearless, and consistent; but it frequently oceasioned great irritation, and all but provoled relellion. The policy of repression which he pursued in regard to the reform mecting at Manchester in 1819, was not justifable even according to the limited ideas of liberty prevalent at that time. Lord Sidmouih resigned office in 1822, retaining his seat in the cabinet, however, until 1824. He died on the 15 th Feb. 1844, at the advanced age of 87 . (Life and Correspondence of Lord Sidmouth, by Dean Pellew, 3 vols. 8vo, 1847; Life of Willian Pitt by Lo:d Stanhone, 4 vols. p. 8vo, 1867.)

ADDISON, Josery, was the eldest son of Lancelot Addison, Dean of Lichfield, and was born at his father's rectory of Milston in Wiltshire, on the 1st day of May 1672 After having passed through several schools, the last of which was the Charter-house, he went to Oxford when be was about fifteen years old. He was first entered of Queen's College, but after two years was elected a scholar of Magdalen College, having, it is said, been recommended by his skill in Latin versifeation. IIe took his master's degree in 1693, and held a fellowship from 1699 till 1711.

The eleven years eatending from 1633, or his twenty-first year, to 1704, when he was in his thirty-second, may be set down as the first stage of his life as a man of letters. During this period, embracing no profession, and not as yet entangled in official business, he was a student, an obscrver, and an author; and though the literary works which he then produced are not those on which his permanent celebrity reste, they gained for him in his own day a high reputation. He had at first intended to become a clergy. man; but his talents baving attracted the attention of laading statesmen belonging to the Whig narts, he was
specdily diverted from his carlier views by the countenance which these "men bestowed on him." Yis first patron (to whom he seems to have been introduced by Congreve) was Charles Montague, afterwards Earl of Ilalifax, who was himself a dabbler in literature, and a protector of literary men; and he became known afterwards to the accomplished and execllent Somers. While both of them were quite ablo to estimato justly his literary merits, they had regard mainly to the services which they believed him capable of render ing to the nation or the party; and accordingly they eneouraged him to regulate his pursuits with a view to public and oflicial employment. For a considerable time, however, he was left to his own resonrees; which cannot have been otherwise than seanty.

His first literary efforts were poetical. In IG93 a short poem of his, addressed to Dryden, was inserted in the third volume of that veteran writer's Miscellanies. The next volume of this collection contained his translation, in tulerable heroic complets, of "all Virgil's Fourth Georgic, except the story of Aristrus." Two and a half books of Ovid were afterwards attempted; and to his years of early manhood belongeù also his prose Essay on Virgil's Georgics, a performance which hardly deserved, either for its style or for its eritical excellenee, the compliment paid it by Dryden, in prefixing it to his own translation of the poern. The most ambitious of those petical assay-picees is the Acrount of the Greatest English Poets, dated April 1694, and addressea affectionately to Sachevercll, the poet's fellow-collegian, who afterwards became so notorious in the party quarrels of the tire. This piece, spirited both in language and in versification, is chiefly noticeable as showing that ignorance of old English poetry which was then universal. Addison next, in 1695, published one of those compositions, celebrating contemporary events, and lauding contemporary great men, on which, during the half-century that succeedea' the Revolution, there was wasted so much of good writing and of fair poctical ability. His piece, not very meritorions even in its own class, was addressed "To the King," and commemorates the campaign which was distingushed by William's taking of Namur. Much better than the poem itself are the introductory verses to Somers, then lord keeper. This production, perhaps iutended as a remembrancer to the writer's patrons, did not at once produce any obvious effect: and we are left in consideralle uncertainty as to the manner in which about thes time Addison contrived to support hinself. He corresponded with Tonson the bookseller about projeeted works, one of these being a Translation of Herodotus. It was probably at some later time that he purposed compiling a Dictionary of the English Language. In 1699 a considerable collection of his Latin verses was published at Oxford, in the Musce Anglicuno. These appear to lave interested some foreign scliolars; and several of them show eurious symptoms of his characteristic lumour.

In the same year, his patrons, either having still no office to spare for him, or desiring him to gain peculiarly high qualifications for diplomatic or other important business, provided for him temporarily by a grant, which, thuugh bestowed on a man of great nuerit and promise, would not pass unquestioned in the present century. He obtained, on the recommendation of Lord Somers, a pension of $£ 300$ a year, designe i (as Addeson humself afterwards said in a memorial addressed to the crown) to enable him "fu travel, and qualify himself to serve His Majesty." In the summc: of 1692 he crossed into France, where, clicfly for the purpose of learmmg the language, he remained till the end of 1700; and after this he spent a year in Italy. In Switzerland, on his way home, he was stopped by receiving notice that he was to be appuinted envoy to Prince Eugrne, then encraged in the war an Itoly: Lut his Whic hientia
were already tottering in their places; and, in March 1702, the death of King William at once drove them from power and put an end to tho pension. Indeed Addison asserted that he never received but one ycar's payment of it, and that all the other expenses of his travels were defrayed by himself. He was able, however, to visit a great part of Germany, and did not reach Holland till the spring of 1703. His prospects were now sufficiently gioomy: he entered into treaty, oftener than once, for an engagement as a travelling tutor; and the correspondence in one of these negotiations has been preserved. Tonson had recommended him as the best person to attend in this character the son of the Duke of Somerset, commonly called "The Proud." The duke, a profuse man in matters of pomp, was economical in questions of education. He wished Addison to name the salary he expected; this being deciined, he announced, with great dignity, that he would give a hundred guineas a jear; Addison accepted the munificent offer, saying, however, that he could not find his account in it otherwise than by relying on his Grace's future patronage; and his Grace immediately intimated that he would look ont for some one else. Towards the end of 1703 Addison returned to England.
Works which he composed during his residence on the Continent were the earliest that showed him to have attained maturity of skill and genius. There is good reason for believing that his tragedy of Cato, whatever changes it may afterwards have suffered, was in great part written whilo he lived in France, that is, when he was about twenty-ight years of age. In the winter of $1 \mathbf{1 0 1}$, amidst the stoppages and discomforts of a journey across the Mount Cenis, he composed, wholly or partly, his Letter from Italy, which is by far the best of his poems, if it is not rather the only one among them that at all justifies his claim to the poetical character. It contains some fine touches of description, and is animated by a noble tone of classical enthusiasm. While in Germany he wrote his Dialogues on Medals, which, however, were not published till after his death. These have much liveliness of style, and something of the gay humour which the author was afterwards to exhibit more strongly; but they show little either of antiquarian learning or of critical ingenuity. In tracing out parallels between passages of the Roman poets and figures or scenes which appear in ancient sculptures, Addison opened the easy course of inquiry which was afterwards prosecuted by Spence; and this, with the apparatus of spirited metrical translations from the classics, gave the work a likeness to his account of his travels. This account, entitled Remarks on Several Parts of Italy, de., he sent home for rublication before his own return. It wants altogether the interest of personal narrative: the author hardly ever appears. The task in which he chiefly busies himself is that of exhibiting the illustrations which the writings of the Latin poets, and the antiquities and scenery of Italy, mutually give and receive. Many of the landscapes are sketched with great liveliness, and there are not a few strokcs of arch humour. The statistical infornation is very meagre; nor are there many observations on society; and politics are no further meddled with than to show the moderate liberality of the writer's own opinions.

With the year 1704 begins a second era in Addison's life, which extends to the summer of 1710 , when his age was thirty-ight.' This was the first term of his official career; and, though very barren of literary performance, it not only saised hin from indigence, but settlcd definitively his position as a public man. His correspondence shors that, while on the Continent, he had been admitted to confidential intimacy by diplomatists and men of rank; immediately on his re:urn he was enrolled in the Kitcat Club, and brought thus and otherwise into communication with the gentry of the

Whig pasty. Although all accounts agree in representing hin as a shy man, he was at least saved from all risk of making himself disagreeable in society, by his unassuming manners, his extreme caution, and that sedulous desire to oblige, which his. satirist Pope exaggerated into a positive fault. His knowledge and ability were esteemed so lighly, as to confrm the expectations formerly entertained of his usefulness in public business; and the literary fame he had already acquired soon furnished an occasion for recommending him to public employmeut. Though the Whigs were out of office, the administration which succeeded them was, in all its earlier changes, of a complexion so mixed and uncertain, that the intluence of their leaders was not entirely lost. Not long after Marlborough's great victory at Blenheim, it is said that Godolphin, the lord treasurer, expressed to Lord Halifax a desire to have the great duke's fame extended by a poetical tribute. Halifax seized the opportunity of recommending Addison as the fittest man for the duty; stipulating, we are told, that the service should not be unrewarded, and doabtless satisfying the minister that his protegé possessed other qualifications for office besides dexterity in franing heroic verse. The Campaign, the poem thus written to order, was received with extraordinary applause; and it is probably as good as any that ever was prompted by no more worthy inspiration. It has, indeed, neither the fiery spirit which Dryden threw into occasional pieces of the sort, nor the exquisite polish that Would have been given by Pope, if he had stooped to make such uses of his genius; but many of the details are pleasing; and in the famous passage of the Angel, as well as in several others, there is even something of force and imagination.

The consideration covenanted for by the poet's friends was faithfully paid. A racancy occurred by the death of another celebrated man, John Locke; and in November 1704, Addison was appointed one of the tive commissioners of appeal in Excise. The duties of the place must have been as light for him as they had been for his predecessor; for he continued to hold it with all the appointments he subsequently received from the same ministry. But there is no reason for believing that he was more careless than other public servants in his time; and the charge of incompetency as a man of busincss, which has been brought so positively against him, cannot possibly be true as to this first period of his official career. Indeed, the specific allegations refer exclusively to the last years of his life; and, if he had not really shown practical ability in the period now in question, it is not easy to see how he, a man destitute alike of wealth, of social or fashionable liveliness, and of family interest, could have been promoted, for several years, from office to office, as he was, till the fall of the administration to which he was attached. In 1706 he became one of the undersecretaries of state, serving first under Hedges, who belonged to the Tory section of the Government, and afterwards under Lord Sunderland;' Marlborougli's son-in-law, and a zealous follower of Addison's early patron, Somers. The work of this office, however, like tbat of the commissionership, must often have admitted of performance by.deputy. For in 1707, the Whigs having become stronger, Lord Halifax was sent on a mission to the Elector of Hanover; and, besides taking Vanbrugh the dramatist with him as king-at-arms, he selected Addison as his secretary. In 1708 he entered Parliament, sitting at first for Lostwithiel, but afterwards for Malmesbury, which, being six times elected, he represented from 1710 till his death. Here unquestionably he did fail. What part he may have taken in the details of business we are not informed; but ho was always a silent member, unless it be true that he once attempted to speak and sat ciown in confusion. In 1709 Lord Wharton, the father of the notorious duke, haring becn named lord-licutenant of Ireland, Addison became Lis
secretary, receiving also an appointment as keeper of records. This event happened only about a year and a half before the dismissal of the ministry; and the Irish secretary would seem to have transacted the business of his office chiefly in London. But thero are letters showing him to have mado himself acceptable to aomo of the best and most distinguished persons in Dublin; and he escaped without having any quarrel with Sinift, his acquaintance with whom had begun some time before. In the literary history of Addison those seven years of official service are almost a Wank, till we opproach their close. He defended the bovernment is an anonymous pamphlet on The Present State of the War; he united compliments to the all-powerful Marlborough with indifferent attempts at lyrical poetry in his opera of Rosamond; and, besides furnishing a prologue to Steele's comedy of The Tender IIusband, he perhaps gave some assistance in the composition of the play. Irish administration, however, allowed it would seem more leisure than might have been expected. During the last few months of his tenure of office Addison contributed largely to the Tatler. But his entrance on this new field does nearly coincide with the beginning of a new section in his history.

Even the coalition-ministry of Godolphin was too Whiggish for the taste of Queen Anne; and the Tories, the favourites of the court, gained, both in parliamentary power and in popularity out of doors, by a combination of lucky accidents, dexterous management, and divisions and doubledealing among their adversaries. The real failure of the prosecution of Addison's old friend Sacheverell, completed the ruin of the Whigs; and in August 1710 an entire revolution in the minissry had been completed. The Tory administration which suceeeded kept its place till the queen's death in 1714, and Addison was thus left to devote four of the best years of his life, from his thirty-ninth year to his forty-third, to occupations less lucrative than those in which his time had recently been frittered away, but much more conducive to the extension of his own fame, and to the benefit of English literature. Althongh our information as to his pecuniary affairs is very scanty, we are entitled to believe that he was now independent of literary labour. He apeaks, in an extart paper, of having had (but lost) property in the West Indies; and he is understood to have inherited several thousand pounds from a younger brother, who was governor of Madras. In 1711 he purchased, for $£ 10,000$, the estate of Bilton, near Rugby,-the place which afterwards became the residence of Mr Apperley, better known by his assumed name of "Nimrod."

During those four years he produced a few political writings. Soon after the fall of the ministry, ine contributed five numbers to the Whig Examiner, a paper set up in opposition to the Tory periodical of the same name, which was then conducted by the poet Prior, and afterwards became the vehicle of Swift's most rehement invectives against the party he had once belonged to. These are certainly the most ill-natured of Addison's mritings, but they are neither lively nor vigorous. There is more spirit in his allegorical pamphlet, thie Trial and Conviction of Count Tariff.

But from the autumn of 1710 till the end of 1714 his principal cmployment was the composition of his celebrated Periodical Essays. The honour of inventing the plan of such compositions, as well as that of first carrying the idea into execution, belongs to Richard Stecle, who had been a achool-fellow of Addison at the Charter-honse, continued to le on intimato terms with him afterwards, and attached himself with his characteristic ardour to the same political party. When, in April 1703, Steelo published the first number of the Tatler, Addison was in Dublin, and knew nothing of the design. He is said to have detected his
friend's authorship only by recognising, in one of the early papers, a critical remark which he remembered having himself communicated to Steele. He began to furnish essays in a few weeks, assisted occasionally while he held office, and afterwards wrote oftener than Steele himself. He thua contributed in all, if his literary executor selected his contributions correctly, more than 60 of the 271 essays which the work contains. The Tatler exhibited, in more waya than one, symptoms of being an experiment. The projector, imitating the news-shects in form, thought it prudent to give, in cach number, news in addition to the essay; and there was a want, both of unity and of correct finishing, in tho putting together of the literary materials. Addison'a contributions, in particular, are in many places as lively as anything he ever wrote; and his style, in its nrore familiar moods at least, had been fully formed before he returned frum the Continent. But, as compared with his later picces, these are only what the painter's loose studies and sketehes are to the landseapes which he afterwards constructs out ol them. In his invention of incidents and characters, one thought after another is hastily used and hastily dismissed, as if he were putting his own powers to the test, or trying the effect of various kinds of objects on his readers; his nosi ambitious flights, in the shape of allegories and the like, are stiff and innimate; and his favourite field of literary criti cism is touched so slightly, as to show that he still manted confidence in the taste and knowledge of the public.

The Tatter was dropped at the beginning of 1711, but only to be followed by the Spectator, which was begun on the 1st day of March, and appeared every week-day till the 6 th day of December 1712. It had then completed the 555 numbers usually collected in its first seven volumes. Addison, now in London and unemployed, co-operated with Steele constantly from the very opening of the series; and the two, contributing almost equally, seem together to have written not very much less than five hundred of the papers. Embuldened by the success of their former adventure, they devoted their whole space to the essays. They relied, with a confidence which the extraordinary popularity of the work fully justified, on their power of exciting the interest of a wide audience by pictures and reficctions drawn from a field which embraced the whole compass of ordinary life and ordinary knowledge, no kind of practical themes being positively excluded except such as were political, and all literary topics being beld admissible, for which it seemed possible to command attention from persons of average taste and information. A seeming unity was given to the undertaking, and curiosity and interest awakened on behalf of the conductors. by the happy invention of the Spectator's Club, in which Sicele is believed to have drawn all the characters. The figure of Sir Roger de Coverley, however; the best even in the opening group, is the only one that was afterwards elaborately depicted; and Addison wos the author of all the papers in which his oddities and amiabilities are so admirably delineated. To him, also, the Spectator owed a very large share of its highest excellences. His were many, and these the most natural and elegant, if not the most original, of its humorous sketches of human character and social eccentricities, its good-humoured satires on ridieulous features in manners, and on corrupt symptoms in public taste; these topics, lowever, making up a department in which Stcele was fairly on a level with his more famous coadjutor. But Stecle had neither learning, nor taste, nor critical aeuteness sufficient to qualify him for enriching the series with such literary disquisitions as those which Addison insinuated so often into the lighter matter of his essays, and of which the gare an claborate specimen in his celebrated and agreeable criticism on Paradise Lost. Still further beyond the powers of Steele were those speeuJations on the theory of litcrature and of the processes of
thought analogous to it, which, in the essays "On the Plear sures of the Imagination," Addison prosecuted, not, indeed, with much of philosophical depth, but with a sagacity and comprehensiveness which we shall undervalue much unless we remember how little of philosophy was to be found in any critical views previously propounded in England. To Addison, further, belong those essays mhich (most frequently introduced in regular alternation in the papers of Saturday) rise into the region of moral and religions meditation, and tread the elevated ground with a step so graceful as to allure the reader irresistibly to follow; sometimes, as in the "Walk through Westminster Abbey," enlivening solemn thought by gentle sportiveness; sometimes flowing on with an uninterrupted sedateness of didactic eloquence; and sometimes shrouding sacred truths in the veil of ingenious allegory, as in the majestic "Vision of Mirza." While, in a word, the Spectator, if Addis,n had not taken part in it, would probably have been as lively and humorous as it was, and not less popular in its own day, it would have wanted some of its strongest claims on the respect of posterity, by being at once lower in its moral tone, far less abundant in literary knowledge, and much less vigorous and expanded in thinking. In point of style, again, the two friends resemble each other so closely as to be hardly distinguishable, when both are dealing with familiar objects, and writing in a key not rising above that of conversation. But in the higher tones of thought and composition, Addison showed a mastery of language raising him very decisively, not above Steele only, but above all his contemporaries. Indeed, it may safely be said, that no one, in any age of our literature, has united, so strikingly as he did, the colloquial grace and ease which mark the style of an accomplished gentleman, with the power of soaring into a strain of expression nobly and eloquently dignified.

On the cessation of the Spectator, Steele set on foot the Guardian, which, started in March 1713, came to an end in October, with its $\mathbf{1 7 5 t h}$ number. To this series Addison gave 53 papers, being a very frequent writer during the latter half of its progress. None of his essays here aim so high as the best of those in the Spectator; but he often exhibits both his cheerful and well-balanced humour, and his earnest desire to inculcate sound principles of literary judgment. In the last six months of the year 1714, the Spectator received its eighth and last volume; for which Steele appears not to have written at all, and Addison to have contributed 24 of the 80 papers. Most of these form, in the unbroken seriousness both of their topics and of their manner, a contrast to the majority of his essays in the carlier volumes; but several of them, both in this vein and in one less lofty, are among the best known, if not the finest, of all his essays. Such are the "Mountain of Miseries;" the antediluvian novel of "Shallum and Hilpa;" the "Reflections by Moonlight on the Divine Perfections."

In April 1713 Addison brought on the stage, very reluctantly, as we are assured, and can easily believe, his tragedy of Cato. Its success was dazzling; but this issue was mainly owing to the concern which the politicians took in the exhibition. The Whigs hailed it as a brilliant manifesto in favour of constitutional freedom. The Tories echoed the applause, to show themselves enemies of despotism, and professed to find in Julius Cæsar a parallel to the formidable Marlborough. Even with such extrinsic aid., and the advantage derived from the established fame of the author, Cato could never have been esteemed a good dramatic work, unless in an age in which dramatic power and insight were almost extinct. It is poor even in its poetical elements, and is redeemed only by the finely solemn tone of its moral reflections, and the singular refinement and equable smoothness of its diction.

The literary career of Addison might almost be held as
closed soun after the death of Qucen Anne, which occurred in August 1714, when he had lately completed his 42d year. His own life cxtended only five years longer; and this closing portion of it offers little that is pleasing or instructive. We see him attaining the summit of his ambition, only to totter for a little and sink into an early grave. We are reminded of his more vigorous days by nothing but a few happy inventions interspersed in political pamphlets, and the gay fancy of a trifling poem on Kneller's portrait of George I.

The lord justices who, previously chosen secretly by the Elector of Hanover, assumed the government on the Queen's demise, mere, as a matter of course, the leading Whigs. They appointed Addison to act as their sccretary. He next held, for a very short time, his former office under the Irish lord-lieutenant; and, early in 1715, he was made one of the lords of trade. In the course of the same year occurred the first of the only two quarrels with friends, into which the prudent, good-tempered, and modest Addison is said to have ever been betrajed. His adversary on this occasion was Pope, who, ouly three years before, had received, with an appearance of humble thankfulness, Addison's friendly remarks on his Essay on Criticism; but who, though still very young, was al:ceady very famous, and beginning to show incessantly his literary jealousies, and his personal and party hatreds. Several little misunderstandings had paved the way for a breach, when, at the same time with the first volume of Pope's Iliad, there appeared a translation of the first book of the poem, bearing the name of Thomas Tickell. Tickell, in his preface, disclaimed all rivalry with Pope, and declared that he wished only to bespeak favourable attention for his contemplated version of the Odyssey. But the simultaneous publication was awkward; and 'Tickell, though not so good a versifer as Pope, was a dangerous rival, as being a good Greek scholar. Further, he was Addison's under-secretary and confidential friend; and Addison, cautious though he ras, does appear to have said (quite truly) that Tickell's translation was more faithful than the other. Pope's anger could not be restrained. He wrote those famous lines in which he describes Addison under the name of Atticus; and, as if to make reconciliation impossible, he not only circulated these among his friends, but sent a copy to Addison himself. Afterwards, he went so far as to profess a belief that the rival translation was really Addison's own. It is pleasant to observe that, after the insult had been perpetrated, Addison was at the pains, in his Frecholder. to express hearty approbation of the Iliad of Pope; who, on the contrary, after Addisun's death, deliberately printed the striking but malignant lines in the Epistle to Dr Arbuthnot. In 1715 there was acted, with little success, the comedy of The Drummer, or the Harnted Houss, which, though it appeared under the name of Steele, was certainly not his, and was probably written in whole or chiefly by Addison. It contributes very little to his fame. From September 1715 to June 1716, he defended the Hanoverian succession, and the proccedings of the Government in regard to the rebellion, in a paper called the Freeholder, which he wrote entirely himself, dropping it with the fiftyfifth number. It is much better tempered, not less spirited, and much more able in thinking, than his Examiner. The finical man of taste does indeed show himself to be sometimes weary of discussing constitutional questions; but he aims many enlivening thrusts at weak points of social lifo and manners; and the character of the Fox hunting Squire, Who is introduced as the representative of the Jacobites, is drawn with so much humour and force that we regret not being allored to see more of him.

In August 1716, when he had completed his 44th year, Aduison married the Countess-Dowagcr of Warwick, a
widow of fifteen years standing. She seems to have iurfeited her jointure by the marriage, nad to hive brought her husband nothing but the occupancy of Holland Hotse at Kensington. Wo know hardly anything positively in regard to the affair, or as to the origin or duration of his ncquaintance with the lady or her family. But the current assertion that the courtship was a long one is very probably erroneous. Thero are better grounds for believing the assertion, transmitted from Addison's own time, that the marriage was unhappy. The countess is said to have been prond as well as violent, and to have supposed that, in contracting tho alliance, she conferred honour instead of receiving it. To the uneasiness caused by domestic discomfort, the most friendly crities of Addison's character have attributed those habits of intemperance, which are said to have grown on him in his later years to such an extent as to have broken his health and accelerated his death. His biographer, Miss Aikin, who disbelicves his alleged want of matrimonial quiet, has called in question, with much ingennity, the whole story of his sottishness; and it must at any rate be allowed that all the assertions which teud to fix such charges on him in the earlier parts of his life, rest on no evidence that is worthy of credit, and are in themselves highly improbable. Sobriety was not the virtue of the day; and the constant frequenting of coffec-honses, which figures so often in the Spectator and elsewhere, and which was really practised among literary men as well as others, cannot have had good effects. Addison, however, really appears to have had no genuine relish for this mode of life; and there are curious notices, especially in Stecle's correspondence, of his having lodgings ont of town, to which he retired for study and composition. But, whatever the cause may have been, his health was shattered before he took that which was the last, and certainly the most unwise step, in his ascent to political power.

For a considerable time dissensions had existed in the ministry; and these came to a crisis in April 1717, when those who had been the real chiefs passed into the ranks of the opposition. Townshend was dismissed, and Walpole anticipased dismissal by resignation. There was now formed, under the leadership of General Stanhope and Lord Sunderland, an administration which, as resting on courtinfluence, was nicknamed the "German ministry." Sunderland, Addison's former superior, became one of the two principal secretaries of state; and Addison himself was appointed as the other. His elevation to such a post had been contemplated on the accession of George I., and prevented, we are told, by his own refusal; and it is asserted, on the authority of Pope, that his acceptance now was owing only to the influence of his wife. Even if there is no ground, as there probably is not, for the allegation of Addison's inefficiency in tho details of business, his unfituess for such an office in such circumstances was undeniable and glaring. It was impossible that a Government, whose secretary of state could not open his lips in debate, should long face an opposition headed hy Robert Walpole. The decay of Addison's health, too, was going on rapidly, being, we may readily conjecture, precipitated by anxiety, if no worse causes were at work. Ill health was the reason assigned for retirement, in the letter of resignation which he laid before the king in March 1718, eleven months after his appointment. He receired a pension of $£ 1500$ a year.

Not long afterwards the divisions in the Whig party alienated him from his oldest friend. The Pcerage Bill, introduced in February 1719, was attacked, on behalf of the opposition, in a weekly paper, which was called the Plebeian, and written by Steele. Addison answered it temperately enough in the Old Whig; provocation Irom the Pleboian bronght fortla angry retort from the Whig;

Stcele charged Addison with being so old a Whig as to have forgotten his principles; and Addison snecred at Grub Street, and called his friend "Littlo Dicky." " IIow Addison felt after this painful quarrel we nre not told directly; but the Old Thig was excluded from that posthumous. collection of his works for which his executor 'Tickell had reccived from him authority and directions. In that collection was inserted a treatise on the evidences of the faith, entitled Of the Christian Religion. Its theological value is. very small ; but it is pleasant to regard it as the last effort of one who, amidst all weaknesses, was a man of real gooduess as well as of eminent genius.

The disease under which Addison labourcd appears to havo been asthma. It became moro violent after his retirement from office, and was now accompanied by dropsy. His deathbed was placid and resigned, and comforted by those religious hopes which he bad so often suggested to others, and the ralue of which he is said, in an aneedote of doubtful authority, to have now inculeated in a parting interview with his stepson. He died at Holland House ou the 17th day of June 1719 , six weeks after having completed his 47 th year. His body, after lying in state, was interred in tho l'octs' Corner of Westminster Abbey.

The Biographia Britannica gives an claborate memoir of him; particulars are well collected in the articlo nnder his name in the Biographical Dictionary of the Society for the Diffusion of Useful h'nowledge; and a good many now materials, especially letters, will be found in The Life of Joseph Addison, by Lney Aikin, 1843.
(w. s.)

An edition of Addison's works, in four volumes guarto, was published by Baskerville at Birmincham in 1761. Dihdin characterises this as a "glorious performance." A complete edition in six volumes, with notes, hy Kichard Hurd, appeared in 1811. An Ameriead edition (New York, 1854), in six volumes, with notes, by C. W. Greene, contains several pieces collected for the first time. An edition of the Slectator, with valuable notes by Henry Morley, alyeared in 1871.

ADEL or SomaUli, an extensive tract of country, stretciling eastward from the neighbourhood of Tajurrah to Cape Guardafui, letween 43° and $51^{\circ} \mathrm{E}$. long., with a breadth not accurately ascertained. Zeila and Berbera are the chief port on the coast, and have some trade with the opposite shores of Arabia, exporting spices, ivory, gold dust, cattle, and horses, and receiving Indian commodities in exchange. 'The country, which is marshy and unlealthy, is inhabited by the Somauli, who are governed by an Inan, and are Mahometans.

ADELAAR, Colit Sivartsen, surnamed the Engle, a famous naval commander, was born at Brevig in Norway in 1622. At the age of fifteen he became a cadet in the Dutch flect under Ven Tromp, and after a few years entered the service of the Venetian Republic, which was engaged at the time in a war with Turkey. In $16: 15$ he had risen to the rank of captain; and after sharing in various victories as commander of a squadron, he achieved his most brilliant success at the Dardanelles, on the 13 th May 1654 , when, with his own vessel alone, he broke through a line of 37 Turkish ships, sank 15 of them, and burned others, causing a loss to the enemy of 5000 men. The following day he entered Tenedos, and compelled the complete surrender of the Turks. On returning to Venice ho was crowned with honours, and became admisal-licutenant in 1660 . Numcrons tempting offers were made to lim by other naval powers, and in 1661 he left Venice to return to the Netherlands. Next year he was induced, by the offer of a title and an enormous salary, to accept the command of the Danish fleet from Frederick III. Under Christian V. he took the command of the combined Danish fleets against Sweden, but died suddeniy (5th November

[^25] Wrilinns of Addison.
1675) at Copenhagen, before the expedition set out. When in the Venctian service, Adelaar was known by the name of Curzio Suffrido Ad dlborst.

ADELAIDE, the capital of the British colony of South Australia and of the county of the same name, situated o. the Torrens, seven niiles from Port Adelaide, with which it is connected by railway. The river, which is spanned at this point by several bridges, divides the city into two parts -North Adelaide, the smaller of the two, but containing the chief private houses, occupying a gentle slope on the right bank; and South Adelaide, the commercial centre of the town, lying on a very level plain on the left. The streets of Adelaide are broad, and regularly laid out. Among its public buildings are the Government offices and the governor's house, the post office, the jail, five banks, the railmay station, and a theatre. It is the seat of a Protestant Episcopal and also of a Roman Catholic bishop, and contains places of worship belonging to these bodies, as well as to the Presbyterians, the Methodists, the Unitarians, the Baptists, and otler denominations. Adelaide possesses a botanical garden, and is surrounded by extensive public grounds, known as the "Park Lands," containing over 1900 acres. It is lighted with gas, and is supplied with water from a reservoir some miles up the Torrens. The corporation consists of a mayor and eight councillors, two from each of the four wards; and there are also two auditors, a town clerk, and other officials. The chief manufactures are woollen, starch, soap, beer, flour, leather, earthenware, and iron goods. There is a good retail trade in European produce; and in the vicinity are iron and copper mines. Adelaide was founded in $\mathbf{1 8 3 6}$, and incorporated in 1842. It recerved its name in honour of Queen Adelaide. Population, 27,208. Lat. $34^{\circ} 55^{\prime}$ S., long. $138^{\circ} 38^{\prime} \mathrm{E}$

Port Adelaide is situated in a low marshy position, on a small inlet of the Gulf of St Vincent. Its harbour is safe and commodious; but a bar at the mouth, where the depth of water varies with the tide from 8 to 16 feet, prevents large vesscls from entering. It is a free port, and has good wharfs and warehouse accommodation. In 1867, 364 vessels of 119,654 tons arrived at, and 376 of 125,559 tons departed from, Port Adelaide. The chief imports were drapery, iron goods and machinery, beer, wine, spirits, and paper; and the exports, grain, copper and lead ores, wool, tallow, and other native products. Population, 2482.

ADELSBERG, a market town of Ausina, in the province of Carniola, 26 miles SW. of Laibach, and about the same distance E. of Trieste. About a mile from the town is the entrance to the famous stalactite cavern of Adelsberg, the largest and most magnificent in Europe. The cavern is divided into four grottoes, with two lateral ramifications which reach to the distance of about a mile and a half from the entrance. The river Poik enters the cavern 60 feet below its mouth, and is heard murmuring in its recesses. In the Kaiser-Ferdinand grotto, the third of the chain, a great ball is annually held on Whitmonday, mhen the chamber is brilliantly illuminated. The Franz-JosephElisabeth grotto, the largest of the four, and the farthest from the entrance, is 665 feet in length, 640 feet in breadth, and more than 100 feet high. Besides the imposing proportions of its chambers, the cavern is remarkable for the variegated beauty of its stalactite formations, some rescmbling transparent drapery, others waterfalls, trees, animals, or human beings, the more grotesque being; called by various fanciful appellations. These subterrancan wonders were known in the Middle Ages, but the cavern remained nndiscovered in modern times until 1816, and it is only in still more recent times that its vast extent has becn fully ascertained and explored.

ADELUNG, Friedrici von, a distinguished philoogist, nephew of John Christoph Adelung, was born at

Stettin on the 25th February 1768 . After studying philo sophy and jurisprudence at Leipsic he accompanied a family to Italy, whero he remained for several years. At Rome he obtained access to the Vatican library, a privilege which he utilised by collating and editing some valuab!e old German MISS. that had been taken from Heidelberg. On his return he became private secretary to Count Pablen, Whom he accompanied from Riga to St Petersburg. In 1803 he became instructor to the younger brothers of the Czar, the arch-dukes Nicholas and Michael, and gave such satisfaction to the empress-mother that- she entrusted him with the vare of her private library. In 1824 he became director of the Oriental Institute in connection with the foreign office, and in the year following president of the Academy of Sciences. He died on the 30th January 1843. Adelung's chief literary works were-a Biography of Baron Herberstein (St Petersburg, 1817), a Biography of Baron de MEeyerberg (1827), a treatise on the Relations between the Sanscrit and the Russian Langroges (1815), and an Essay on Sanscrit Literature (1830), a second edition of which appeared in 1837, undor the title Bibliotheca Sanscrita.
adelung, Jobann Ceristopi, a vary eminent German grammarian, philologist, and general scholar, was born at Spantekow, in Pomerania, on the 8th August 1732, and educated at the public schools of Anclam and Closterbergen, and the university of Halle. In the year 1759 he was appointed professor at the gymnasium of Erfurt, but relinquished this situation two years after, and went to reside in a private capacity at Leipsic, where he continued to devote himself for a long period to the cultivation of letters, and particularly to those extensive and laborious. philological researches which proved so useful to the language and literature of his native country. In 1787 he received the appointment of principal librarian to the elector of Saxony at Dresden, with the honorary title of Aulic Counsellor. Here be continued to reside during the remainder of his life, discharging with diligence and integrity the duties of his situation, and prosecuting his laborious studies to the last with indefatigable industry and unabated zeal. Possessing a naturally robust constitution, he was able to devate, it has been said, fourteen hours daily to literary toil, down even to the period of his death. He died at Dresden on the 10th of September 1806. The life of a mere scholar is generally destitute of interest ; and that of Adelung, which was spent entirely in literary seclusion, presents no variety of incident to the pen of the biographer. Of his privato character and habits few memorials have been preserved, but in these few he is represented as the man of an amiable disposition. He was a lover of good cheer, and spared neither pains nor expense in procuring a variety of foreign mines, of which his cellar, which he facetiously denominated his Dibliotheca Selectissima, is said to have contained no less than forty diffecent kinds. His manners were easy and affiable, and the habitual cheerfulness of his disposition rendered his society most acceptable to a numerous circle of friends. The writings of Adelung are very voluminous, and there is not one of them, perbaps, which does not exhibit some proofs of the genius, industry, and erudition of the author. But although his pen was usefully employed upon a variety of subjects in different departments of literature and science, it is to his philological labours that he is principally indebted for his great reputation; and no man ever devoted himself with more zeal and assiduity, or with greater success, to the improvement of his native language. In a country subdivided into so many distinct sovereign. states, possessing no common political centre, and no national institution whose authority could command de ference in matters of taste,-in a country whose indigenous literature was but of recent growth, and where the dialed
of the people was held in contempt at the several courts, it was no easy task for a single writer to undertake to fix the standard of a language which had branched out into a variety of idioms, depending in a great measure npon pronciples altogether arbitiary. Adelung effected as much in this respect as could well be accomplished by the persevering labours of an individual. By means of his excellent grammars, dictionary, and various works on German style, he contributed greatly towards rectifying the orthography, refining the idiom, and fixing the standard of his native tongue. ${ }^{1}$ Of all the different dialects he gave a deeided preference to that of the margraviate of Misnia, in Upper Saxony, and positively rejected everything that was contrary to the phraseology in use among the best saciety of that province, and in the writings of those authors whom it had prodnced. In adopting this narrow principle he is generally thought to have been too fastidious. 'ithe dialect of Misnia was undoubtedly the richest, as it was the earliest cultivated of any in Germany; but Adelnng probably went too far in restraining the language within the limits of this single idiom, to the exclusion of others from which it might have, and really has, aequired additional richness, flexibility, and force. His German dictionary has been generally regarded as superior to the English one of Johnson, and certainly far surpasses it in etymology. Indeed, the patient spirit of inrestigation which Adelung possessed in so remarkable a degree, together with his intimate knowledge of the ancient history and progressive revolutions of the different dialects on which the nodern German is based, peculiarly qualified him for the duties of a lexicographer. No man before Jacob Grimm did so much for the language of Germany. Shartly before his death he issued the very learned work, at which he had been labouring quietly for years, entitled Mithridales; or, a General History of Languages, with the Lord's Prayer, as a specimen, in nearly five hundred languages and dialects. The hint of this work appears to have been taken from a puklication, with a similar title, published by the celebrated Conrad Gesner in 1555 ; but the plan of Adelung is much more extensive. Unfortunately he did not live to finish what he had undertaken. The first volume, which contains the Asiatic languages, was published immediately after his death; the ather three were issued ander the superintendence of Professor Vater (1809-17). Of the very numerous works by Adelung, in addition to translations, the following are of greatest importance :-

Geschichte der Streitigkeilen zuischen Däncmatk und den Herzogen von Holstcin-Goltorp. Frankf,, Leipsic, 1762, 4to.-Pragmatische Staatsgeschichte Erropens ron dem Ableben Ǩaiser Karls des Gin an. Vols. i.-ix. Gotha, 1762-9, 4to.-Minetalogische Bclustigungen. Vols. i.-vi. Copenhagen and Leipsic, 1767-71, 8vo.-Glossarizum Manuale ad Scriptores medice et infime Latinutatis, ex magnis Glossariis Caroli du Fresne Domini Ducange et Carpentarii, in com. pendium redactum. Tomi vi. Halle, 1772-84.-Versuch eincs vollständigen grammatisch-krilischen Wörterbuchs der Hoch Teutschen Mundart. 1774-86, 5 vols. 4to.-Ueber die Geschichte der Teutschen Sprache, ïber Teutsche Mundarten und Teutsche Sprachlehre. Leipsic, 1781, 8vo.-Ucber den Ursprung der Sprache und den Bau der Wörter. Ibid. 1781, 8vo.-Teutsche Sprachlehre, zum Gebrauch der Schulen in der Königl. Preuss. Landen. Berlin, 1781. -Lehrgcbäude der Toulschen Sprache. - Versuch einer Geschichte der Cultur des Alcnschlichen Geschlechts. 1782, 8ro. - Beylräge zur Burgerlichen Geschichte, zur Geschichie der Cultur, zur Naturgeschichte, Nalurlehre, und dem Feldbaue. Leipsic, 1783, 8vo.Fortsctzung und Ergänzungen zu Christ. Goutl. Jöchers allgcmeinem Gelehrien Lexico. Leipsic, 1784, 2 vols. 4to.-Ueber den Teutschen Siyl. Berlin, 1785,3 vols. 8vo.-Vollstandige Anweisung zur Teukechen Orthographie. Leipsic, 1786, 2 vols.-Ausweg aus dem Grantmatisch-kritischen Wörterbuch der Hohen Teutschen Mundart. Leipsic, 1793, 1 rol.; 1795, 2 vols. 8vo.-1fithridates, oder Allgemeine Sprachenkunde. 3 vols. Berlin, 1806-1812.

[^26]ADEN, a town and seaport of Yemen in Arabia, belonging to Britain, situated on a peninsula of the same name, 100 miles cast of the strait of Bab-el-Mandeb. The peninsula of Aden consists chiefly of a mass of barren and desolate voleanie rocks, extending five miles from east to west, and thrce from its northern shore to Ras Sanailah or Cape Aden, its most sontherly point, it is connected with the mainland by a neek of tlat sandy ground only a few feet high; and its greatest elevation is Jebel SLamshan, 1776 fect above the level of the sea. The tomn is built on the eastern coast, in what is probably the crater of an extinct volcano, and is surrounded by precipitous rocks that form an admirable natural defence. There are two harbours, an outer, facing the town, protected by the island of Sirah, bnt now partially choked with mud; and an inner, called Aden Back-bay, or, by the Arabs, Bander Tuwayyi, on the western side of the peninsnla, which, at all periods of the year, admits vessels drawing less than 20 fect. On the whole, Aden is a healthy place, although it suffers considerably from the want of good water, and the heat is often very intense. From its admirable commercial and military position, Aden early became the chief entrepot of the trade between Enrope and Asia. It was known to the Romans as Arabia Felix and Aliance, and was captured by them, probably in the year $24 \mathrm{~B} . \mathrm{C}$. At the commencement of the 16 th eentury it fell into the hands of the Portuguese, who, however, were expelled by the Turks in 1538. In the following century the Turks themselves relinquished their conquests in Yemen, and the Sultan of Senna established a supremacy over Aden, which was maintained until the year 1730 , when the Sheik of Lahej, throwing off his allegiance, fonnded a line of independent sultans. In 1837 a ship under British colours was wrecked near Aden, and the crew and passengers grierously maltreated by the Arabs. An explanation of the outrage being demanded by the Bombay Government, the Sultan undertaok to make compensation for the plunder of the vessel, and also agreed to sell his town and port to the English. Captain Haines of the Indian navy was sent to complete these arrangements, but the Sultan's son, who now exercised the powers of government, refused to iulfil the promises that his father had made. A combined naval and military foree was thereupon despatched, and the place was captured on the 16th January 1839. It beeame an ontlying portion of the Presidency of Bombay. The withdrawal of the trade between Enrope and the East, caused by the diseovery of the passage round the Cape of Good Hope, and the misgovernment of the native rulers, had gradually reduced Aden to a state of comparative insignificanee; but about the time of its capture by the British, the Red Sea route to India was re-opened, and commerce soon began to flow in its former chaunel. Aden was made a free port, and was chosen as one of the coaling stations of the Peninsular and Oriental Steamship Company; and at present its most valuable import is coal for the use of the steamers. It has, however, a considerable trade in the products of Arabia-coffee, gum, feathers, dyes, pearls, and ivory; and in return receives silk and cotton goods, grain, and provisions. In 1871-72 the value of its imports was $£ 1,404,169$; and of its exports, $£ 885,919$. In the same year 535 steamers (643,982 tons), 94 sailing vessels (90,516 tons), and 898 native craft visited the port. The town has been fortifiea and garrisoned by the British; and its magnificent water-tanks, which had been permitted to fall into ruins, have been partially restored. It contains nearly 30,000 inhabitants, as compared with less than 1000 in 1839. Lat. $12^{\circ} 46^{\prime} \mathrm{N}$. ; long. $45^{\circ} 10^{\prime} \mathrm{E}$

ADERNO, a city of Sicily, in the province of Catania, near the foot of Mount Etna, 17 miles N.W. of Catania. It is built on the site of the ancient Adranum, portions of the massive walls of which are still visible, and numerous

Roman sepulchres have been found in the vicinity. The modern city has a clean appearance, but the situation is unhealthy. It is remarkable for the number of its convents and numoeries, and has several churches, the chief of which is supported by beautiful pillars of polished lava. On the river Simeto, near the town, there is a series of beantiful cascades. Population, 12,999 .

ADERSBACH ROCKK, a remarkable group of isolated columnar rocks in a ralley of the Riesengebirge, on the frontier of Bohemia and Prussian Silesia, 9 miles W.N.W. of Braunau. The mountain, for several miles, appears divided into detached masses by perpendicular gaps, varying in depth from 600 to 1200 feet. These masses are from a few feet to several hundred yards in diameter. The part called the labyrinth consists of smaller masses of columnar form, oonfusedly piled on one another, and rising to heights of from 100 to 200 feet. From their fantastic shapes the rocks have received sarious fanciful appellations. Some geologists have supposed that their remarkable structure is the result of subterrancan commotion; but the generallyreceived opinion is, that the whole area had once been a tabular mass of sandstone of unequal hardness, and that the soft parts, which formed perpendicular seams, have been worn away by water and atmospheric changes, learing the harder portions in their natural position. The recesses of this wild region frequently afiorded a place of refuge to the distressed inhabitants of the district during the Thirty Years' War.
ADHESION, a term used to denote the physical force in virtue of which one body or substance remains attached to the surface of another with which it has been brought into contact. It is to ce distinguished from cohesion, which is the motual attraction that the particles of the same kody exert on each other; and it differs from chemical attraction or affinity, sincc the propertios of the substances it affects remain unchanged after it takes place. It is a force that the molecules of the adhering bodies exert on each other, and must not be confounded with a contact which is due to mere mechanical pressure, such as that which a piece of caontchonc tubing exerts by its elasticity on a body that distends it. A very familiar instance of adhesion occurs in the wetting of solid bodies. It often, indeed generally, happens that, when a solid and a liquid tuuch each other, a film of the latter adheres to the former, and neither falls nor can be shaken off. This arises from the adhesion of the liquid to the solid being a stronger force than the cohesion of the particles of the liquid. It is also stronger than the force of gravitation; and the liquid can only be removed by being forcibly rubbed off, or by the process of evaporation. The furce of adlesion may be determined by poising a plate of metal on a balance, and afterwards ascertaining what additional force will be required to detach it from the surface of a liquid. But this can only be done in the few cases in which the liquid does not wet the solid (otherwise the measurement would be that of the colesive force of the liquid), and does not act on it chemically. The phenomena of Capillary Attraction (q.v.) depend on adhesion. Sometimes, when a solid and a liquid are brought into tontact, the adhesive force overcomes the cohesion of the particles of the solid, so that it loses its solid form, and is dissolved or held in solution. Solid bodies, too, as well as liquids, adhere to solids. Smooth surfaces (of lead, for instance, or of dissimilar metals) will adhere; and if two plates of polished glass be laid together, it will scarcely be possible to separate them without breaking them. If the solids are pressed together, the adhesive force is generally greater; but it has been shown to be dependent to a very slight extent only on the pressure of the atmosphere. To a luoser kind of adhesion: whereby one body is prevented
from moving smoothty on the surface of another, we give the name of friction. The force of this increase 3 with Iressure, which may be the effect of gravitation or the result of mechanical appliances. If it be desired that solids should adhere permanently, this is commonly effected by the intervention of other substances-the cements, mortars, and solders-in a liquid or viscid state, nhich, when they "set" or become solid, adhere closely to the bodies united by means of them. The principle of the processes of plating, gilding, \&c., is similar to this. The adhesive force of cements, \&c., is sometimes very great. The common experiment of splitting a thin sheet of paper into two is an illustration of it. The paper is pasted carefully between two pieces of cloth, which are pulled asunder after the paste has dried. The adhesion of the paste to the paper and to the cloth is so strong that the paper is thus separated into two sheets, which can easily be detached from the cloth by wetting it. Again, air and other gases adhere to solids. A dry needle, placed carefully on the surface of still water, will float, resting on a cushion of air; and when thermometer are filled with mercury, the liquid has to be boiled in them to expel the air that adheres to the glass.
ADIAPHORISTS (ảdóá申opos, indiferent), a name applied to Melancthon and his supporters in a controversy which arose ont of the so-called Leipsic Interim (1548), and raged until 1555. In 1547 Charles V. had drawn up the Augsburg Interim, with a view to provide for the temporary government of the Church until a general council could be called. This gave great dissatisfaction both to the more advanced and to the more moderate reformers; and the object of Melancthon's Leipsic Interim was to reconcile all parties, if possible, by declaring that certain rites and observances of the Ruman Catholic Church and the jurisdiction of the Roman Catholic bishops being adiaphora (things indifferent), might be la wfully recognised. On the other hand, the Catholics were required to accept the Protestant formula of the doctrine of justification, leaving out the words sola fide, which, it was said, might belong to the adiaphora. In the controversy that followed, Melanctlon's chief opponent was his former colleague, Matth. Flacius, on wluse removal from Wittenburg to Magdeburg the latter place became the head-quarters of the extreme Lutherans.
ADIGE (German, Etsch), the ancient Athesis, a large river of Italy, formed by several rivulets which rise in the Rhætian Alps, and unite near Glarus. After flowing eastward to the neighbourhood of Botzen, it receives tho Eisach, and becomes navigable. It then turns to the south, and leaving the Tyrol, enters Lombardy 13 miles S. of Roveredo. After traversing Northern Italy in a courss first southerly, but then easterly, it falls into the Adriatic at Porto-Fossone, a fer miles N. of the Po. The most considerable towns on its banks are Trent and Roveredo in the TyroI, and Veroua and Legnago in Italy. It is narigable from the heart of the Tyrol to the sea, and has in Lombardy a breadth of 200 yards and a depth of from 10 to 16 feet, but the strength of the current renders its navigation rery difficult, and lessens its value as a means of transit between Germany and Northern Italy. The Adige has a course of about 220 miles.
ADIPOCERE (from adeps, fat, and cera, wax), a substance into which animal matter is sometimes converted, deriving its name from the resemblance it bears to both fat and wax. When the Cemetery of the Innocents at Paris was removed in 1786-87, grent masses of this substance were found where the coffins containing the dead bodies had been placed very closely together. At the bottom of the coffin, in these cases, there appeared, loosely enveloped in linen. a shapeless mass, of a dingy white colonr,

Hattened as though it had undergone great pressare. The whole body had been converted into this fatty matter, except the bones, which remained, but were extremely brittle. Fourcroy, who had observed the substance before, and had given it the name of adipocere, read a paper on the subject before the Academy of Sciences in 1789. Chemically, adipocere is found to consist principally of margarate of ammonia Δ similar substance, found in peat, is kuown as bog-butter.

ADIPOSE (adeps, fat), a torm in Anatomy, signifying fatty; as adipose tissue, adipose cell, \&c.

ADIRONDACK MOUNTAINS, a group of mountains in the N. of the state of New York, North America, lying between Lakes Champlain and Ontario. They rise from an extensive platean about 2000 feet above the level of the sea, and are chiefly of granite formation. Mount Marcy, the lighest summit, has en altitnde of 5337 feet, and others of the group are from 4000 to 5000 feet high. The two principal streams which take their rise in this region-the Hud.on floming south, and the Richelieu floming northwards from Lake Champlain-afford abundant means of convey: ing from the mountains the valuable timber, chiefly pine, with which they are covered. Extensive deposits of magnetic iron ore, of great value, have been discovered; and a village, called Adirondack, has recently sprung up, where smelting is extensively prosecuted. Eraerson, in his poem Adirondacks, has familiarised the literary world with the scencry of these mountains.

ADIT (from adire, to go to), a passage or door. The doors of porticoes in ancient theatres were called adits. In mines the name is given to a gallery or passage, nearly horizontal, by which water is carricd off. Ores also are sometimes removed by tho adit. Some works of this kind aro of great magnitude. The great Cornish adit at Gwennap, near Falmouth, extends, with its branches, to from 30 to 40 miles in length, and drains a tract of 5500 acres.

ADJUDICATION, in Scottish Law, the name of that action by which a creditor attaches the heritable, i.e., the real, estate of his debtor, or his debtor's heir, in order to appropriate it to himself either in payment or security of his debt. The term is also applied to a proceeding of the same nature by which the holder of an heritable right, labouring under any defect in point of' form, gets that defect supplied by decree of a court.

Adjudication in Bankruptcy, in English Law, is equivalent to the Scotch award of sequestration.

ADJUSTMENT, in Commerce, the settlement of a loss incurred at sea on insured goods. If the policy be what is, called an open one, and the loss of the goods be total, the insurer must pay for them at the value of prime cost, which includes not only the invoice price of the goods, but all duties paid, the premium of insurance, and all expenses incurred on them when put on board. If the poliey be a valued one, and a total loss be incurred, then they are settled for at the valuation fixed at the time of the insurance, unless the insurers can prove that the insured bad not a real interest in the goods, or that they were overvalued. In case of a partial loss, the value of the goods must be proved. (See Arnould On Mfarine Insurance.)

ADJUTAGE, a short tube or nozzle, inserted in an orifice, by means of which liquids flow from a vessel more freely.

ADJUTANT, a military officer whose duty it is to assist the commanding officer of a regiment or battalion. Every battalion of infantry, regiment of cavalry, and brigade of srtillery, has an adjutant, who keeps the regimental books, records, and correspondence; acts as the commanding efficer's representative in matters of regimental detail; euperintends the drill of recruits; keeps the roster (i.e., register of order of service) for all duties; details the guards,
piquets, detachments, de., that are furnished by the regiment; and is responsible for the receipt of the daily divisional or brigade order from the superior staff-officer, and the preparatiou and issue of regimental orders. The Adju-tant-General is the staff-ofiicer specially charged with all matters relating to the discipline and drill of the army.

ADJUTANT, the Ciconia Argala, or Leptoptilos Argala, a species of stork found in tropical India. It is of great size, sometimes six or oven seven feet in height, the body and legs bearing nearly the same proportion as in the common stork. The bill is long and large; while the head, neck, and pouch are bare, or covercd ouly with a few scattcred hairs. At the back of its neck there is a second pouch-like appendage, which the bird inflates during flight. The general colour of the body is an ashen gray above and white below. The adjutant is extremely voracious, and, feeding on offal, reptiles, and other vermin, acts t上e part of a scavenger. It is often to be seen in camps and parade-grounds; hence its name. A similar bird, which, however, has been
 differentiated as Ciconia Mrarabou, occurs in different parts of AfricaMarabon being the native Senegal name. The brilliant white marabou feathers of commerce are the under feathers of the tail and wings of both species, but those of the C. Argala are the most valuable.

ADJYGURH, a stown and fort of India, in the presidency of Bengal, 130 miles S.W. of Allahabad. The fort is situated on a very steep hill, more than 800 feet above the town; and contains the ruins of temples adorned with elaborately-carved sculptures. It was captured by the British in 1809. The tomn is a neatly-built place, but subject to malaria Population, 5000.

ADMINISTRATOR, in Einglish Law, he to whom the ordinary or judge of the ecclesiastical court, now the Court of Probate, acting in the queen's name, commits the administration of the goods of a person deceased, in default of an executor. The origin of administrators is derived from the civil law. Their establishment in England is orving to a statute made in the 31st year of Edward III. Till then no ofice of this kind was known besides that of executor; in default of whom, the ordinary had tho disposal of goods of persons intestate, \&c.

Administrator, in Scottish Lav, a person legally empowered to act for another whom the law presumes incapable of acting for himself, as a father for a pupil child.

ADMIRAL, a great officer or magistrate, who has the government of a nary and the hearing of all maritime causes.

There can be little doubt of the Asiatic origin of the name given to this officer, which does not appear to have been known in the languages of Europe before the time of the Holy Wars. Amir, in Arabic, is a chief or commander of forces; it is the same word as the ameer of the peninsula of India (as ameer al omrah, the chief of lords or princes), and the emir of the Turks or Saracens, who hs d and still have their emir or aneer'l dureea, commander
of the sea, amirl asker dureea, commander of the naval armament. The incorporation of the article with the noun appears, we believe, for the first time in the Annals of Euiychius, patriarch of Alexandria, in the 10th century, who calls the Caliph Omar Amirol munumim, ie., Imperator fideiium. Spelman says, "In regno Saracenorum quatuor pretores statuit, qui admiralli vocabantur." The id is evidently superfluous, and is omitted by the French, avho say Amiral. The Spanish write Almirante; 地e Portuguese the same. Jiilton would seem to have been aware of the origin of the mord when he speaks of "the mast of some great ammiral." It is obvious, then, that the supposed derivations of äd $\lambda \mu \nu$ pos from the Greek, aumer from the French, and aen mereal from the Saxon, are fanciful and unauthorised etymologies.

Anciently there were three or four admirals appointed for the English seas, all of them holding the office durante beneplacito, and each of them having particular limits ander his charge and government, as admiral of the fleet of ships from the mouth of the Thames, northward, southward, or westward. Besides these, there were admirals of the Cinque Ports. We sometimes find that one person had been admiral of all the fleets-Sir John de Beauchamp, 34 Edw. III., being the first who held the post; but the title of Admiralis Anglice does not occur till the reign of Henry IV., when the king's half-brother, Sir Thomas Beaufort (created Earl of Dorset 5th July 1411), a natural son of John of Gaunt, was made admiral of the fleet for life, and admiral of England, Ireland, and Aquitaine for life. It may be observed that there was a title above that of admiral of England, which was locum tenens regis super mare, the king's lieutenant-general of the sea. This title is first mentioned in the reign of Richard II. Before the use of the word admiral was known, the title of custos maris was made nse of.

Of the rank of admiral there are three degrees-admiral, vice-admiral, rear-admiral. Each of these degrees formerly comprised three grades, distinguished by red, white, and blue flags-the red being the highest degree in each rant of admiral, vice-admiral, and rear-admiral.

It may be remarked that for nearly a century there was no admiral of the red squadron. According to a rulgar error, that flag had been taken from us by the Dutch in one of those arduous struggles for naval superiority which that nation was once able to maintain against the naval power of England. But the fact is, the red flag was laid aside on the union of the two crowns of England and Scotland, when the union fag was adopted in its place, and was usually hoisted by the admiral commanding in chief. The red lag was revived on the occasion of the promotion of naval officers in November 1805, in consequence of the memorable victory of Trafalgar. The three degrees of red, white, and blue flag-officers were abolished by order in council on 5 th August 1864 , and the white ensign was thenceforward adopted as the sole flag for the ships of the royal nary proper. Captains are now promoted to be rear-admirals, rear-admirals to be rice-admirais; aud vice-admirals to be admirals simpliciter-the numbers of each rank being regulated by orders in council passed on and subsequently to 22d February 1870. (See Ňary.) For biographical information, see Campbell's Lives of the British Admirals, 8 vols. Svo, 1817; O'Byme's Naval Biographical Dictionary, 8vo, 1849.

Aumiral of the Fleet is a mere honotary distinction, which gives no command, but merely an increase of half-pay, his being £3, 7s. a day, and that of an admiral $£ 2,2 \mathrm{~s}$. The title has been sometimes conferred on the senior admiral on the list of naval officers, and was a short time held by the Duke of Clarence, afterwards William IV. In 1851 *erce aphointed, for the first time, two admirals of the fleet,

Sir Thomas Byam Martin, G.C.B., and Sir Gecrge Cock. burn, G.C.B., the last having been appointed for his long and highly-distinguished services. The number of admirals of the fleet now (1874) authorised to be borne is three. If the admiral of the fleet should happen to serre afloat, he is anthorised to carry the union flag at the main-top-gallant. mast head, which was the case when the Duke of Clarence escorted Louis XVIII. across the Channel to take possession of the throne of France.

The comparative rank of flag-officers and officers in the army has been settled as follows by his Majesty's order in council, in the reign of George IV :-

The admiral and commander-in-chief of the fleet, has the rank of a field-marshal in the army; admirals with flags at the main take rank with generals of horse and foot; viceadmirals with lieutenant-generals; rear-admirals with majorgenerals; commodores of the first and second class with broad pendants with brigadier-generals.

On the active list of admirals there were in 1873 three admirals of the fleet, thirteen admirals, fifteen rice-admirals, and twenty-five rear-admirals.

In addition to these, there were on the reserved list forty admirals and thirty-four rice-admirals; on the retired list forty-three admirals, fifty-five vice-admirals, and sixty-two rear-admirals. As to the numbers to be borne permanently on these lists, and the regulaticns according to which admirals are retired and reserved, under Mr Childers' retirement scheme, see Navy.

Admiral (the Lord High) of England, an ancient officer of high rank in the state, who not only is rested with the government of the navy, but who, long before any regular navy existed in England, presided over a sovereign court, with authority to hear and determine all causes relating to the sea, and to take cognizance of all offences committed thereon

The period about which this officer first makes his appearance in the governments of European nations corruborates the supposition of the offce haring been adopted in =mitation of the Mediterranean powers at the return of the Christian beroes from the Holy Wars, According to Moreri, Florent de Varenue, in the year 12i0, was the first admiral known in France; but by the most approved mriters of that nation the title was ucknown till, in 1284, Enguerand da Coussy was constituted admiral. The first admiral by name that we know of in England was W. de Leybourne, who was appointed to that office by Edward I. in the jear 12s8, under the title of Admiral de la mer du Roy d'Angletcrre. Mariana, in his History of Spain, says that Don Sancho, having resolved to make war on the barbarians (3Ioors), plepared a great fleet; and as the Genoese were at that time very powerful by sea, and experienced and dexterous sailors; he sent to Genoa to invite, with great offers, Benito Zacharias into his service; that he accepted those offers, and brought with him twelve ships; that the king named him his admiral (almirante), and conferred on him the office for a limited time. This bappened in the year 1234. Several Portugucse authors observe that their office of almirante was derived from the Genoese, who had it from the Sicilians, and these from the Saracens; and it appears from Souza's Historia Gencalogica da Caza Real, that in 1322 Micer Manuel Picagon was invited from Genoa into Fortugal, and appointed to the office of almirante, with a salary of 3000 pounds (livras) a year, and certain lands, \&c., on condition that he should furnish on his part twenty men of Genoa, all experienced in sea affiais, and qualified to be alcridis (captains) and urraises (masters) of ships: ali of which terms, almirante, alcaidi, and arrais, are obviously of Arabic derivatión.

Edward I., who began his reign in 1272, went to the Holy Land. and risited Sicily ou his return. He mnst therefore have lad an opportunity of informing himself concerning the military and naral science of the various colntries bordering on the Mediterranean-an opportunity which so able and warlike a prince rould not neglect, but whether the title and office of adminal existed in England before his time, as sone are inclined to think, or whether WI. de Leybourve was first created to that office in 1286, as before mentioned, we beliere thcre is no authentic record to enalle us to decide. Supposing him, however, to be the first, Edward may either have adonted the office and title from the Genocse, or the Sicilians, or the Spaniards, or the French; or even had it directly from the Saracens, against whom he had fought, and with whom he had afterwards much amicable intercourse. It would seem. howre

A D M I R A L

that the offico was in Edward s time to some extent honorary; for that monarch, in 1807, orders the lord mayor of London, at his peril and without delay, to provide a good ship, well equipped, to carry his pavilions and tents; and in the same year another order is addressed to the Ficcoomes fianice to provide for immediate passaga across the seas tot et tales pontes et claias, as the constable of Dover Castle should demand, without one word being mentioned of the admiral. (Rymer, vol. iii. p. 32.) It is to be observed, however, that at this time the royal tlects were made up of royal and private ships, and that the admiral would not be charged with the transport of such things as those mentioned unless the fleet was intended to co-cperate with the land forces.

From the 3 thl Edmard II. we have a regular and uninterrupted succession of admirals. In that year Edward Charles was appointed admirs' of the north, from the mouth of the river Thamea northward, and Gervase Alliord admiral of the west, from the mouth of the Thames westward ; and these two admimals of the north and the west were continurd down to the 3 th Edward $1 I I$., when Sir John de Beauchamp, lird marden of the Cingque Forts, constable of the Tower of London and of the Castle of Dover, was constituted Migh Admiral of Eng, and. Nine years afterwards the office was again divided into north and west, and so continoed until the 10th lichard II., when Richard, son of Alain, Earl of Arundel, was appointed Admiral of England. Two years after this it was agnin divided as before; and in the 15th rear of the same reign, Elward, Larl of Rutland and Cork, afterwards Duke of Albemarle, was constituted High Admiral of the North and Wist; and after hiro the Marquis of Dorset and Farl of Somerset, son of John of Gaunt, Duke of Lancaster. Percy, Earl of Wiacheste: next succeeded to the same title, which once more was dropped in the $2 d$ of IIenry IV., and divided as before. Sir Thomas Beaufort was twice appointed by Hefiry IV. admiral of England; and on the accession of lleary V. he was reappointed by letters patent dated 3d June 1413. In the $14 t h$ Heary VI., John IIolland, Duke of Exeter, was created admiral of England, lreland, and Aouitaine, for life: and in the third year of Edward.VI., John Dudley, Earl of Warwick, was constituted ligh admiral of England, Ireland, Wales, Calais, Boulorne, the marches of the sarr:, Normandy, Gascony, and Aquitaine, also captain-general of the navy and seas of the king, \&c. In the 27 th Eiizabeth, Charles, Lord IIoward, had all the aforesaid titles, with the addition of captain-general of the navy and seas of tha said kingdoms.

On the 20th November 1632 the office of high admiral was for the first time put in commission, all the great officers of state being the commissioners. During the Commonwealth a committee of Parliament managed the affairs of the Admiralty. At the Restoration, in 16u0, the Duke of York was constituted Lord High Admiral of England. The commission was reroked in 1673, and King Charles II. held the Admiralty in his own hands, and manased it by the great officers of his privy council till 108 t, when the Duke of York was re-instated. Charles took this occasion of reserving for his own use all the droits and perquisites claimed by the lord high admiral.

Annezed is a list of lord high admirals and frrst lords of the Admiralty from the time of Charles the Second to the year 1874:-

FIRST LORDS OF THE ADMIRALTY FROM IG60.
James Duke of York,*
King Charles the Second,
Prince Rupert,
Sir Heary Capell, Ft.,
Daaiel Finch, Esq.,
Daniel Lord Finch,
Daniel Earl of Nottingham,
James Duke of York (and as James li.),t
Arthur Herbert, Fsif.,
Thomas Earl of Pembroke and MIontgomery, Charles Lord Cornwallis,
Anthony Yiscount Falkland,
Edward Russell, Esq.
Edrard Earl of Orford,
John Earl of Bridgerater,
Thomes Farl of Pembroke and Jontgomery,
George Prince of Denmark, \mp
Thomas Farl of Pembroke and Montgomery, * Edward E'arl of Orford,
Sir John Leake, kt
Thomas Earl of Strafford,
Fidward Earl of Orford,
James Earl of Berkeley
Lord Viscount 'Sorrington,

Date of Appolntment. June 6, 1660. June 14, 1673.
July $9,1673$.
May 14, 1679.
Feh. 14, 1680.
Jan. 20, 1691.
April 17, 1684.
May 17, 1684. Dlarch 8, 1659. Jan. 20, 1690. Mlarch 10, 1692. April 15, 1693. May 2, 1604. Juna 5, 1697. May 31, 1699. April 4, 1701. May 20, 1702. Nov. 29, 1708. Nov. 8, 1709. Oct. 4, 1710. Sept. 30, 1712. Oct. 14, 1714. March 19, 1717. Aug. $2,1727$.

Sir Charles Wager, Kt.,

Daniel Earl of Winchelsea and Nottinghain, John Duka of Bedford,

Dato of Appointmem
March 19, 1788. John Earl of Sandwich, 1)ec. 27,1744. George Lord Anson, lichard Earl 'Temple, Daaiel Earl of Winchelsea and Nottinglam, George Lord Ansom,
George Dank Earl of IIalifax
George Grenville, Lisf.
Joho Enerl af Sadurich
John Earl of Egmoat,
Sir Charles Saunders, K.B.,
Sir Ediward Hawke, K.B.,
John Earl of Sandwich,
Hon. Augustus liempel,
Augustus Viscount lieppel,
Richard Viscount Howe, Ancustus Viscount Kepluel, Kichard Viscount Howe,
pel,
John Carl of Chatliam,
George John Earl Spencer,
John Earl of St Viricent, K.B.,
Henry Lord Viscount Medville, Clarles Lord B:utram,
Cliarles Grey, Eisq.,
Thomas Grencille, Esq.
lenty Lord Mulgrave,
light Ilon. Challes Yorke,
Right Hon. Rolvert Viscount Nelville
H. R. H. William IIenry Dnke of Clarence. * Right IIon. Iobert V'iseount Melville, K.'l'., Right IIon. Sir James R. G. Graham, lart., Right Hor.' George Baron Auckland, Ihomas l'hilíp Larl de Grey,
Right llon. George Baron Airckland,
Giltirt Earl of Minto, G.C.B.,
Thomas Larl of Haddington,
light Ilon. Edward Earl of Ellenhorough, Right Hon. George Eiml of Anckland (diel 1st January 1849),
Richt llon Sir Francis T Barine Port, Algernan Percy Duke of Northumbentand, K.G., Kight Hon. Sir James R. G. Graham, Jart., Right Hon. Sir Charles Wrood, Bart.,
Right Ilon. Sir John Fakington, Bart.
Edward A. St Mlaur Dule of Somerset, $\mathrm{K} . \mathrm{G}$. . Right 110n. Sir J. S. Pakington, Bart., G.C.B. Right Hon. llenry Themas Lowry Corry, Right Hon. IIugh Culling Eardley Childers, Right Hon. George Joachim Goschen,
ec. 27, 1744.
Feb. 16,1748.
June 22, 175:.
Nov. 17, 1756.
April 6, 1757.
July 2, 1757°
June 17, 1762.
Oct. 18, 1762.

- April 20, 1763.
- Sept. 16, 1763.

Sept. 15, 1766.

- Dec. 11, 1766.

Jan. 12, 1771.

- April 1,1782.

Jilly 18, 1782. Jan. 30, 1783. April 10,1783. 1ec. 31, 1783. July 16, 1788. Jec. 19, 1794. Fch. 19, 1801.
May 15, 1804.

- May 2,1805.
- Feb. 10,1806.

Sept. 29, 1806.
A pril 6, 1807.
Nor. 24, 1809.
March 25, 1812.
May 2, 1827.
Sept. 19, 182S.
Nov. 25, 1830
Juna 11, 1834.
Dec. 23, 1834.
April 25, 1835.
Sept. 19, 1835.
Sept. 8, 1811.
Jaц. I3, 1946.
July 24, 1846.
Jan. 18, 1842.
Feb. 28, 1852. Jao. 5, 1853. March 8, 1855. March 2, 1859. Jnde 28, 1859. July 13, 18f.6. March 8, 1867. Dec. 18, 1868.

- Lord High Admiral of England.
+ Lord High Admiral and Lord General.
* Lord High Admirals of Great Britain.

Prince George of Denmark, when lord high admiral, having surrendered, by a formal instrument, all the rights, profits, perquisites, and advantages whatsoever, appertaining to the office, for the benefit and use of the public, with the exception of the sum of $£ 2500$ a-year, to be disposed of 24 such manner and for such particular uses as her Majesty, under her sign manual, should direct; and the salary of the lord high admiral, which had hitherto been no more than 300 marks, was now fixed, by warrant under privy seal, at £う000 a-year. This sum, by lst Gcorge II., was divided equally among seven commissioners, an arrangement which continued from that time, except that the pay of the commissioner who stood first in the patent was made up from other funds to $£ 3000$ a-ycar, and in the year 1806 was further increased to $£ 5000$ a-sear. Since the surrender above mentioned, all the druits of admiralty, as they are called, with all the fecs, emoluments, and perquisites whatsocver, have been taken from the admiral and applied to public purposes.

These droits and perquisites are by no means inconsidereble. As enumerated in the patent, they consist of flotsam, jetsam, ligan, trcasure, deodands, derelicts, found within the admiral's jurisdiction; all goods picked up at sea; all fines, forfeitures, ransoms, recognisances, and pecuniary punishments; ail sturgeons, whales, porpoises, dollhins, and
ktampuses and all sucn large fishes; all ships and goads of the enemy coming into any creek, road, or port, by stress of weather, mistake, or ignorance of the war; all ships seized at sea, salvage, \&c., together with his shares of prizes; which shares were afterwards called tenths, in imitation probably of the French, who gave theiradmiral, for supporting the dignity of his office, son droit de dixième. All prizes are now wholly given up by the crown to the captors, and such share of the droits as from circumstances may be thought proper The lord high admiral also claimed and enjoyed as his due the cast ships; and the subordinate officers of the navy, as their perquisites, all other decayed and unserviceable stores.
Though by Act of 2 William and Mary, stat. 2, c. 2 (extended by the 1 Geo. IV. c. 90 , and 7 and 8 Geo. IV. c. 65), the lords commissioners of the admiralty are rested with all and singular authorities, jurisdictions, and powers which have been and are vested, settled, and placed in the lord high admiral of England for the time being, to all intents and purposes as if the said commissioners were lord high admiral of England, yet there is this remarkable difference in the two patents by which they are constituted, that the patent of the lord high admiral mentions very little of the military part of his office, but chiefly details his judicial duties as a magistrate; whilst, on the contrary, the patent to the lords commissioners of the admiralty is very particular in directing them to govern the affairs of the navy, and is almost wholly silent as to their judicial porers.

These powers, as set forth in the patent to the Earl of Pembroke in 1701, are, the power to act by deputy; to take cognisance of all causes, civil and maritime, within his jurisdiction; to arrest goods and persons; to preserve public streams, ports, rivers, fresh waters, and creeks whatsoever within his jurisdiction, as well for the preservation of the ships as of the fishes; to reform too strait nets and uniawful engines, and punish offenders; to arrest ships, mariners, pilots, masters, gunners, bombardiers, and any other persons whatsoever able and fit for the service of the ships, as often as occasion shall require, and wheresoever they shall be met with; to appoint vice-admirals, judges, and other officers, durante beneplacito; to remore, suspend, or expel them, and put others in their places, as he shall see occasion; to take cognisance of civil and maritime laws, and of death, murder, and mayhem.

It was by no means necessary that the lord high admiral should be a professional man. Henry VIII. made his natural son, the Duke of Richmond, lord high admiral of England when he was but six years old. When the high admiral, however, went to sea in person, he had usually a commission under the great seal appointing him admiral and captain-general of the fleet, sometimes with powers to confer knighthood, and generally to punish with life and limb. Such a commission was granted by Henry VIII. to Sir Edward Howard, who executed indenture with the king to furnish 3000 men, 18 captains, 1750 soldiers, 1232 mariners and gunners; his own pay to be 10 s . and that of a captain 1s. 6d. a-day. The rest had 5 s. per mensem as wages, and 5 s . for victuals each man, together with certain dead shares.
It appears, from Mr Pepys' Naval Collections, that the lord high admiral did anciently wear, on solemn occasions, a gold whistle, set with precious stones, hanging at the end of a gold chain.

The salary of the first lord commissioner is £4500 a-year, and of each of the naval lords $£ 1500$; in addition to the half-pay of their rank. The civil lord gets $£ 1000$, and the parliamentary secretary $£ 2000$ a-year.

The opening paragraph of the Black Book of the Admiralty has the following noteworthy instruction as regards the deputies and officers to be chosen by the lord high admiral:-
"When one is made admirall, hee must first ordaine and substitate for his lieutenants, deputies, and other officers under him, some of the most loyall, wise, and discreete persons in the maritime law and auncient customes of the seas which hee can any where find, to the end that by the helpe of God and their good and just government, the office may be executed to the honour and good of the realme."

Had this precept been always acted on, there would probably have been less occasion than has presented itself for the many reorganisations which the administration of the lord high admiral's administrative office has undergone. As it has been, the necessity for periodical changes has been urgent and unavoidable. From the time of which Macaulay wrote, that the king (James II.) was the only honest man in his dockyards, down to the present date, the need has been incumbent on successive first lords and high admirals to lay the axe to the root of a tree which, in some shape or other, has not ceased to bring forth evil fruit. The soil favoured corruption, and no efficient means were employed to prevent its growth. A root and branch reformation was urgently needed, though it was not applied except in particular instances. Till the great French war of 1793-1815 led to the formation of a navy board of commissioners to superintend the work and management of the dockyards; of a victualling board, to see to the provisioning of the fleet; and of sick and hurt commissioners, to look after the sick and wounded -the administrative departments of the navy were left to nominees of the lord high admiral or first lord, the said nominees deriving "no small advantage" from the arrangement. Under the departmental boards things certainly improved from what they were in the time of Charles II.; but they fell far short of what was desirable, and, by the vagueness of their administrative principle, opened a door for irresponsible wrongdoing, which in the end made them exceedingly bad instruments of government. These boards continued till 1832, when Sir James Graham, then first lord of the admiralty, introduced sweeping changes. He abolished the several intangible boards which administered under the shelter of the board of admiralty, and appointed in their stead five principal officers of the navy, who were afterwards included in the admiralty patent. These officers were-a surveyor or architect and constructor of the navy; a storekeeper-general, charged with oversight and purchase of the material for dockyards and ships; an accountantgeneral, charged with the duty of seeing that all wages and cash paid were duly brought to account; a comptroller of victualling and transport services, charged with the maintenance of the victualling establishments of the nary, and of sufficient supplies of provisiuns and clothing for the fleet, and with the oversight of the transport arrangements for men and stores; and a physician of the navy, afterwards called medical director-general, charged with the oversigit of all hospitals and of all sanitary arrangements of the nary. Each of these officers administered the department entrusted to him in every particular, not only in respect of stock, but of replenishment and account of stock. A lord of the admiralty was told off to supervise the permaneut head and to represent his department at the board. These alterations were in many respects very beneficial. Altered circumstances required some modification of the original scbeme of duties; and the addition of three principal officers-the director of works, the director of transports (rho, after the Crimean war, relieved the comptroller of victualling of his transport duties), and the registrar of contracts. In 1860 the office of surveyor of the navy was abolished, and that of controller of the nary, with larger porsers over dockyard management, was revived. In 1869, Mr Childers, first lord of the admiralty, made changes which tended
to snbordinate the members of the board of admiralty more cffectually to the first lord, constituting him in effect minister of marine; and to render departmental officers at once more individually responsible and more intimate with the controlling members of the board. ' He increased the power and functions of the controller of tho nasy, giring him a seat at the board, and charging him with the stock-keeping attributes of the storekeeper-general, whose purchasing functions were transferred to a new officer--the superintendent of contracts, the head of the contract and purchase department, and his accounting functions to the accountant-general. The office of store-keeper-general was abolished. The office of comptroller of rictualling was also abolished-the storekeeping functions being transferred to a new officer, the superintendent of victualling-the purchasing function to the head of the purchase department, the accomnts to the accountant-general. The other officers remained; but in the case of each this modification of business ensued, viz., that all stores whatever required by any of them were to be obtained through the agency of one supply or purchase department; that all accounts whatever were to be rendered to the accountant-general. The departmental officers of the admiralty at the present time (1874) arethe controller of the nary, without a seat at the board (who has on his staff a chief naval architect, a chief engineer, a surveyor of dockyards, a superintendent of naval stores, and a director of ordnance)-the directorgeneral of the medical department, the director of works, the director of transports, the hydrographer, the superintendent of contracts, the superintendent of victualling. The department of the two permanent secretaries of the admiralty (one a naval officer, the other a cirilian) undertakes the conduct of all business relating to the personnel of the navy and the ordering of the fleets.

To control the departmental officers, and to advise the responsible first lord, there are the following members of the board of adniralty, viz., the parliamentary or financial secretary, who inas oversight of all business relating to finance, estimates, expenditure, and accounts, and who is the alter ego of the first lord in Parliament; the first naval lord, who, assisted by two other naval "lords," takes oversight of the personnel and of all executive functions of the fleet; and a civilian lord, who assists the financial secretary, and has particular oversight also of noval civil establishments and of the works department.

A list of secretaries of the admiralty from $168 \pm$ to the present time is given below:-

FIRST SECRETARIES TO THE ADMIRALTY.

	From		To 1689
Phineas Bowles, Liaq.,	$\begin{array}{ll}\text { May } & 1684 \\ \text { March } & 1689\end{array}$	Feb.	1689. 1689.
Jaines Sotherne, Esq.,	Dec. 25, 1689	Sept.	24, 1694.
Josiah Barchett, Esq.:	Sept. 25, 1694	Oct.	10,1741.
Thomas Corbet, Esq.,	Oct. 10, 1741		
John Cleveland, Esq.			
Philip Stercns, Esq. (then one of the Board)	June 18,1763	Narch	3, 1795.
Eran Nepean, Kisq.,	March 3, 1795	Jan.	21, 1804.
William Marsden, Esq.,	Jan 21, 1804	June	24, 1807.
lion. W. W. Pole,	June 24, 1807	Oct.	8, 1809.
John Wilson Croker, Esq.	Oct. 9, 1809	Nov.	29, 1830.
Captain the Hon. George Elliott,	Nov. 29, 1830	Dec.	24, 1834.
Right Hon. George R. Dawson,	Dec. 24, 1834°	April	27, 1835.
Chazles Wood, Esq., M.P.,	April 27, 1835	Oct.	$4,1839$
R. More O'Ferrall, Esq.,	Oct. 4, 1839	June	9, 1341.
John Parker, Esq., M. P.,	Juna 9,1841	Sept.	10, 1841.
Ion. Sidacy Hcrbert,	Sept. 10, 1841	Feb.	1845.
Right Ifon. 11. T. L. Corty,	Feb. 1845	July	13, 1846.
Henry G. Ward, Esq., M.P.	July 13, 1846	Mny	1, 1849.
John Parker, Esq., M. P	May 21, 1849	March	3, 1852.
Aug retra Staftord, Esq.,	Mrarch 3, 1852	Jan.	6,1853.
Bernal Uaborne, Eaq., M. M ${ }_{\text {ar }}$.	Jan. 6, 1853	March	8,1858.
Bight Hon. H. T. L. Carry, M.P.,	March 9, 1858	Jube	30, 1859.

Rear-Admiral Lord C G Pamet From To
 IIon. Thomes G. Baring, M. P., April * 30, 1866 July 15, 1866. Lord Henry G. Lennox, M. P., July 16, 1866 Dec. 17, $1863_{.}$ W. E. Baxter, Esq., M.P., Dec. 18, 1868 March 16, 1871. Geo. J. Sluaw Leferte, Lisq., M. P., March 17, 1871

As regards the navies of forcign countrics, their government is in the lands of ministers or departments variously constituted. The Russian Admiralty is a highly-organised bureau, divided into departments after the English manner, and under tho supreme control of a high admiral, usually a Grand Duke of the Imperial House. The German Admiralty was, till 1872, a branch of the War Office, though governed by a vice-admiral under a naval prince of the reigning family. In 1872 it was severed from the War Office, thougli remaining an appanage thercof, and a. general of the army was placed at its head. The French minister of marine, assisted by a permanent staff, controls. the navy of France on a highly centralised system of administration; but tho departments aro well organised, and work well. The Italian fleet is governed on principles analogous to the French, but with a large admixture of the English representative element. The American navy is governed by a secretary of the navy, a cabinet minister, to whom the departmental heads are responsible, and under whose orders they work.
(F. W. R.)

ADMiralty, Hige Court of. This is a court of law, in which the authority of the lord high admiral is exercised in his judicial capacity. Very little has been left on record of the ancient prerogative of the admirals of England. For some time after the first institution of the office they judged all matters relating to merchants and mariners, which happened on the main sea, in a summary way, according to the laws of Oleron (so called because promulgated by Richard I. at that place). These laws, which were little more than a transcript of the Rhodian laws, became the universally-received customs of the western part of the world. "All the seafaring nations," says Sir Leoline Jonkins, "soon after their promulgation, received and entertained theso laws from the English, by way of deference to the sovereignty of our kings in the British acean, and to the judgment of our countrymen in sea affairs."
In the patents granted to the carly admirals between the latter years of the reign of Ileary III. and the clase of that of Edward III. no mention is made of marine perquisites or of civil power, nor does it appear that the admirals enjoyed either; but after the death of the latter, new and extraordinary powers were granted to them, and it would appcar that they usurped others. The pramble ta the 13 Richard I1. atat. 1, c. 5, sets forth that "a great and common clamour and complaint hath been oftentimes made before tbis time, and yet is, for that the admirals and their deputics lold their sessions within divers places of this realm, as well within the franchisa as without, accroaching to them grcater authority than belongeth to their office, in prejudice of our bord the king and the common law of the realm, and in diminialing of divers franchises, and in destruction and impoveriahing of the common people;" and the atatute therefore dirccts that the admirals and their deputies shall not meddle from henceforth of any thing done withid the realm, but only of a thing done upon the sea. Two years afterwards (15 Rich. 1I. c. 3), in consequence, as stated in the prearable of the statute, "of the great and grievous complaint of all the commans," it was ordained that the admiral's court should hare no cognisance of any contracts, pleas, or quarrcla, or of any thing done or arising within the bodies of countiea, whether by land or by water, nor of wreck of the aca; but that the admiral should have cognisanco of the death of a man, and of mayhem done in great ships being and hovering in the main stream of great rivers, yet only bencath the bridges of the same rivers nigh to the aea. He may also arrest ships in the grcet flotes for the great voyages of the king and of the realin, saving alwaya to the king all manner of forfeitures and profits thereof coming, and have jurisaliction over the said flates, but during the aaid vayages only. But if the edmiral or his lieutcuant exceed that jurisdiction, then, by 2 Henry IV. c. 11, the statute and the common law may be holden againat them; and if a man pursues wrongfully in the admiralty court, his adversary may recover double damages at common law.
and the pursuant, if attainted, shall incur the penalty or $£ 10$ to the king.

The place which, according to Spelman, is absolutely subject to the jurisdiction of the admiral is the sea; which, however, comprehends public rivers, fresh waters, creeks, and all places whatsoever, within the ebbing and flowing of the sea, at the highest Fater, the ahores or banks adjoining, from all the first bridges to the seaward; and in these, he observes, the admiralty hath full jurisdiction in all causes, criminsl and civil, except treasons and the right of wreck. Lord Coke ohserves (5 Rep. 107), that between the high-water mark and the low-water mark the admiral hath jurisdiction super aquam, ad pleniludinem maris, and as long as it flowa, though the land be infra corpus comitatus at the reflow, so as of one place there is divisum imperium interchangeably.

But though the statute restraineth the lord high admiral that he shall not hold plea of a thing rising in the body of a county, he is not restrained from making execution upon the land, but is empowered to take either bady or goods apon the land; othermise his jurisdiction would often prove a dead letter. - He also can and does hold his court in the body of a countr. So, likewise, the civil power may apprehend and try persona who may have been guilty of offences cognisable at common law, though committed in the fleet, in any port or harbour of Great Britain, or at sea, provided such persons have not already been tried for anch offences either by court-martial or in the admiralty court ; and in all porta, harbours, creeka, \&c., lying in any county, the high admiral and the sheriff, or coroner, as the case may be, have concurrent juriadiction.

By the 6 and 7 Will. IV. c. 53 the admiralty jurisdiction is extended to Prince of Wales* Island, Singapore, and Malacca; and under the 3 and 4 Vict. c. 65 , the court has jurisdiction in the following cases:-

Whenever a vessel is arrested by process issuing from the said court, or the proceeds of any vessel are brought into the registry, to take cognisance of all claims in respect of anj mortgage of such vessel.

To decide all questions as to the title to, or ownership of, auch vessel, or the proceeds thereof remaining in the registry, arising in any cause of possession, salvage, daraage, warges, or bottomry, instituted in the said court.
To decide all claims and demands. whatsoever in the nature of salvage, or in the nature of towage, or for necessaries supplied to any foreign ressel, and enforce the payment of the same, whether auch vessel may have been in the body of the county or upon the bigh seas at the time when the service was rendered, or damage received, or necessaries furnished, in respect of which claim is made.
Tp decide all matters and questions concerning booty of rrar cis abore, or the distribution thereof, which it shall please her Majesty, hy the advice of the privy council, to refer to the judgment of the ssid court, who shall proceed therein as in cases of prize of war.

And under § 40 of the 9 and 10 Fict. c. 99 , to decide on all claims and demands whatsoever in the nature of salvage for servies performed, whether on sea or land.

The bigh court of Admiralty has jurisdiction upon the high seas all over the world. It has on instance jurisdiction which is civil, and a prize jurisdiction in time of war. The latter jurisdiction does not extend to the admiralty courts of Ireland or Scotland, which never had prize commissions sent to them. It is of the highest importance in war time, when questions of seizure or detention of neutral ships arise, to have but one court of which to inquire concerning all causes, so as to expedite the action of the Foreign Offce in dealing with representations from neutral powers. The causes thich arise in time of peace are causes of collisions, of seamen's wages, bottomry, rearing unlawful colours, salvage, and causes of possession, where one part owner or minor claims to have security from those other owners who are going to send the ship on a foreign royage that the ship shall return again. Causes under the Slave Act treaties are also cognisable here. The evidence is all documentary. In 1803 there were 1125 prize cases before the court; in 1804, 1144; in 1806, 2286; in 1807, 2789; and 80 on, above 1000 causes each jear, dorn to the jear 1811.

The criminal jurisdiction, which-formerly comprehended all crimes whatever committed at sea, from larceny to homicide, which were triable at common law at the assizes if committed on shore, was much modified upon the report of the select comanittee on the high court of admiralty in 1833. Such offences are now triable at common law on currender to the jurisdiction; but the judge of the admi-
ralty court may still sit with othes conmissioners of oyer and terminer. He has no longer any independent criminal jurisdiction.

The instance jurisdiction is permanent; the prize jurisdiction is by virtue of a special commission, pro re natâ. Its issue is one of the first acts done on the outbreak of war. Appeals formerly lay from the civil decisions to the high court of delegates or specially-appointed commissioners; from the prize decisions to the prize commissioners By the Aets 2 and 3 Will IV. c. 92, and 3 and 4 Will. IV. c. 41, all appeals from admiralty court decisions of any kind lie to the sovereign, who is authorised to refer them to the judicial committee of the privy council.
The lord high admiral was assisted in his judicial functions by the following principal officers:-1?. The viceadmiral; 2. The judge; 3. The registrar; 4. The adrocategeneral; 5. The counsel and judge-advocate; 6. The solicitor; 7. The procurator; 8. The marshal.-which officers are continued.

1. The Fice-Admiral. This officer is the admiral's deputy or lieutenant mentioned in the statutes of 13tis and 15 th Richard II., and was the person, most probably, who presided in the court. At present the office of vice-admiral of Evgland is a perfect sinecure, generally conferred on some naval officer of high rank and distinguished character in the service. The salary of $£ 434,1 \mathrm{~s} .9 \mathrm{~d}$. per annum; attached to it in addition to half-pay, was abolished by order in council, 22d February 1870. The salary and office of rear-admiral of England were abolished by the same order in council. The salary was $£ 342$, 9s. per annum. Eack county of England has its vice-admiral, which is little more than an honorary distinction, though the patent gives to the holder all the powers vested in the admiral himself. Similar powers were also granted to the judges of the admiralty county courts; but this was found so inconvenient and prejudicial to those who had suits to commence or defend before them, that the Duke of York, when lord high admiral, in 1663 caused instructions to be dramn up in order to assign to each his province, whereby the whole judicial power remained with the judge, and the upholding of the rights of the admiral, and lerying and receiving the perquisites, \&c., appertained to the rice-admiral.
Each of the four prorinces of Ireland has its rice-admiral. There is one vice-admiral for all Scotland, and one for the Shetland aud Orkney Islands. The governor of most of our colonics had e commission of vice-admiral granted to him by the lord high admiral or lords commissioners of the admiralty, and generally a commission from the king under the great seal, grounded on the 11 and 12 William III. c. 7, and further confirmed by 46 Geo . III. c. 54 , by which he was authorised to try all treasous, piracies, felonies, robberies, murders, conspiracies, and other offences, of what nature or kind soever, committed on the seas, where the parties were taken into custody in places remote from England. The court consisted of seyen persons at the least, of whom the governor, the lieutenant-governor, the viceadmiral, the flag-officer, or commander-in-chief of the squadron, the members of the council, the chief-justice, judge of the rice-admiralty court, captains of men-of-war, and secretary of the colony, were specially named in the cornmission; but any three of these, with four others selected from known merchants, factors, or planters, captains, lieutenants, or warrant officers of men-of-war, or captains, masters, or mates of merchant shils, constituted a legal court of piracy. By the 12 and 13 Vict. c. 96 , all persons charged in any colony with offences committed on the sea may be dealt with in the same manner as if the offehces had been committed on waters within the local jurisdiction of the courts of the colony.

The vice-admiralty courts in the colonies are of two descriptions. The one has power to inquire into the causes of detention of enemies or neutral vessels, to try and condemn the same for the benefit of the captors, as well as to take cognisance of all matters relating to the office of the lord high adıniral. The other has only power to institute inquiries into misdemeanours committed in merchant vessels, and to determino petty snits, de., and to guard the privileges of the admiral. The former are usually known by the name of prize courts, the latter by that of instance sourts. Appcals from vice-admiralty courts abroad lay formerly to the high court of admiralty in England, and irom that, if need were, to the high court of delegates, or in prize cases to the prize commissioners. By an Act of her present Majesty, all such appeals lie direct to the sovereign, who refers them to the judieial committee of the privy council.

The following are the colonies and foreign possessions in which vice-admiralty courts are now (1874) established. Others are constituted as occasion may require, in case of war:-
Aden. (Slave trade juris-
diction orny.)
Antigua, Montserrat, and
Barruda.
Australia, South.
Anstralia, West.
Bahamas.
Barbadoes.
Bermuda.
Bombay.
British Columbia.
British Guiana.
Calcutta.
Canada.
Cape of जood Hope.
Ceylon.
Dominica.
Falkland Islands.
Gambia.
Gibrialtar.
Gold Coast.
Grenada.
Halifa, Nova Scotia.
Honduras.
Hong Kong.
Jamaica.
Labuan.
Lagos.
Madras.

Malta.
Mauritius.
Montserrat.
Natal.
Nevis.
New Brunswick.
Newfoundland.
New South Wales.
New Zealand.
Prince Edward"e Island.
Quebec.
Queensland.
St Christopher.
St Helena.
St Lacia,
St Vincent.
Sierra Leone.
The Straits Settlements.
(Prince of Wales' Island,
Singapore, and Malacca.)
Tasmania.
Tobago.
Tortola and Virgin 1slands.
Trinidad.
Vancouver's Island.
Victoria.
Zanzibar. (Limited slave trade jurisdiction only.)

By the provisions of the Vice-admiralty Courts Act of 1863. The governor of a colony is ex officio vice-adniral, and the chief-justice ex officio judge of the vice-admiralty court.

In none of the patents to the lord high admiral, vieeadmiral, or judge, is any mention made of prizo jurisdiction. Jord Mansfield had oceasion to search into the records of the court of admiralty in Doctors' Commons, to ascertain on what foundation this jurisdiction was exercised by the judge of the admiralty; but he could not discover any prize-act books farther back than 1643; no sentences farther back than 1648. The registrar could go no farther back than 1690 . "The prior records," says his lordship, "are in confusion, illegible, and without index." The prize jurisdiction may therefore be considered as of modern authority, and distinct altogether from the anciont powers given to the admiral. To constitute the authority for trying prize causes, a commission under the great seal issues to the lord high admiral at the commencement of every war, to will and require the court of admiralty, and the lieutenant and judge of the said court, his surrogate or surrogates, to proceed upor. all manner of captures, scizures, and reprisals, of all ships and goods that are or shall bo taken; and to hear and determine according to the course of the admiralty, or the law of nations; and a warrant issues to the judge of the admiralty aceordingly.

The admiralty court being in this respect a court in
which foreigners of all nations may become suitors, an appeal may be had from its decisions to a committce of the lords of the privy council, who hear and determine according to the cstablished laws of nations.

At tho breaking out of a war, the lord high admiral also receives a special commission from the crown, under the great seal, to empower him to grant letters of marque and reprisals against the encmy, he having no such power by his patent. These letters aro either general or special: general, when granted to private men to fit out ships at their own charge to annoy the enemy; special, when in $-e$ case of any of our merchants being robbed of their estates or property by foreigners, the king grants them letters of reprisal against that nation, though we may be in amity with it. Before the latter can be sucd for, the complainant must have gone through the prosecution of his suit in the courts of the state whose subjects have wronged him; where, if justice be denied, or vexatiously delayed, he must first make proof of his loses and charges in the admiralty court here; whereupon, if the Crown is satisfied he has pursued all lawful means to obtain redress, and his own interceding should produce no better effect, special letters of reprisal are granted; not, however, as must be evident, until a very strong case has been made out. This custom, which we may now eonsider as obsolete, seems to be a remnant of the law of ancient Greeec, called androlepsia, by which, if a man was slain, the friends and relations of the deceased might scizo on any three citizens of the place where tho murderer took refuge, and make them slaves, unless he was delivered up. Both Oliver Cromwell and King Charles II. granted letters of reprisal. In 1638 the Due d'Epernon seized on the ship "Amity" of London, for the service of the French king against the Spaniards, promising full satisfaction; but none being made, the owners obtained ?etters of reprisal from the Protector, and afterwards, in 1665, from Charles II. In 1666 Captain Butler Barnes had letters of reprisal against the Danes. The Dutch having burnt six English merchant vessels in the Elbe, within the territories of Hamburg, which city, instead of giving any assistance or protection, hindered the English from defending them. selves, letters of reprisal were granted to the suffercrs against that city. Lastly, one Justiniani, a noble Genoese, being indebted in a large sum to Joseph Como, a merchant in London, which he had several years solicited for without obtaining satisfaction, Captain Scott, commander of his Majesty's ship the "Dragon," stationcd at that time in the Mediterranean, received orders to make reprisals upon the ships of that republie; upon which the debt was paid.
2. The Judge.-The patents to the judge of the admiralty and vice-admiralty courts run pretty nearly in the same manner as those of the lord high admiral, and point out the several mattcrs of which he can take cognisance. The Parliament of 1640 established the office of judge of the admiralty court in three persons, with a salary of $£ 500$ a-year to each. At the Restoration there were two judges of the high court of admiralty, which sometimes proved inconvenient; for when they differed in opinion, no judgment could be had. These judges, before the Revolution, held their appointment only during pleasure. At that period, and under the provisions of the Bill of Rights, Sir Charles Hedges was constituted jndge under the great seal of England, quamdiu se bene gesserit, with a salary of $£ 400$ ayear, and an additional $£ 400$ out of the proceeds of prizes and perquisites of the admiralty; but in the year 1725 the latter sum was diminished from the ordinary estimate by the House of Commons. The salary of Sir James Marriott, from 1778 to 1782 , during the American war, was $£ 800$ a year, and $£ 3700$ added for fees. From 1794 to 1798, the salary was $£ 1780$, and $£ 2500$ for fees. During the six. teen years that Sir William Scott (Lord Stowell) was judge,
stom 1708 to 1814 , the salary was $\mathfrak{L} 2500$, and the fees averaged $£ 2800$ a-year. Under the 3 and 4 Vict. c. 66, $\oint 1$, the salary is fixed at $£ 4000$ per annum. All fees of whatever kind, formerly payable to the judge, are now paid to the consolidated fund.

The court of admiralty is at present (1873), and pending the erection of the new law courts, held in Westminster. In the time of Henry IV. it was held in Southwark, either at a quay on the south side of the Thames, or in the erewhile church of St Margaret-on-Hill, wost likely the former. Stow, in his Survey (A.D. 1598), says-"A part of this parish church of St Margarct is now a court, wherein the assizes aud sessions be kept; and the court of admiralty is also there kept." Peprs also, in his Diary (17th March 1663), describes the court as sitting there. But it is prohable that the sittings in St Margaret's Church were commenced shortly before Stow's time; for in the Rolls of Parliament, 11 Hen. IV. No. 61, the Commons complain that reople are summoned by the officers of the admiral \dot{d} foundres ì le Fey de Trilliam IIorton, Suthwerke. Further, it rould apluear from an appeal made to the king, Henry IV., that the rule then was for the arlmiral's court to be held upon some wharf or quay within the flux and reflux of the tide. In the reign of Henry VIII., Horton's Quay, near Loudon Bridge, is mentioned in the records of the high court of admiralty (3d Nov. 1541) as its usual place of sitting.

The judges of the vice-admiralty courts in certain of the colonies, limited by 41 George III. c. 96 , are allowed a salary not exceeding to each the sum of $£ 2000$ a-year, to be paid out of the consolidated fund of Great Britain; together with profits and emoluments not exceeding to each the further sum of $£ 2000$ per annum. out of the fees to be taken by the said judges, of which a table is directed to be tung up in some conspicuons place in the court; and no judge is to take any fee beyond those specified, directly or indirectly, on pain of forfeiture of his office, and being proceeded against for extortion; and on his retirement from offre after six years' service, or from snme permanent infirmity, the Crown may, by authority of the Act above mentioned, grant unto such judge an annuity for the term of his lifo not excceding $£ 1000$ per annum. This liberal provision puts the judges of the colonial courts of vice-admiralty above all suspicion of their decisions being influenced by unworthy motives-a suspicion they were not entirely free from when their emoluments depended mainly on their fees.

During the war of 1793-1815 a session of oyer and terminer to try admiralty causes was held at the Old Bailey, now the central criminal court, trwice a-year. The commission for this purpose was of the same nature with those which are granted to the judges when they go on circuit; that is to say, to deternine and punish all crimes, offences, and misdemeanours, and abuses; the end of both being the same, their limits different; the one relating to things done upon the land, the other to things done upon the water. The lords commissioners of the admiralty, all the nembers of the prity council, the chancellor and all the judges, the lords of the treasury, the secretary of the admiralty, the treasurer and commissioners of the nary, some of the aldermen of London. and several doctors of the civil law, were the members of this commission; any four of whom made a court.

The proceedings of the court, nots probably obsolete, were continued de die in diem, or, as the style of the court was, from tide to tide.
3. The Registrar of the Admiralty formerly held his place by patent from the Crown. The patent was issued under the great seal of the court of admiralty, and the appointment was afterwards confirmed by patent under the great seal of the United Kingdom. The appointment was for life, and was often granted in reversion. The registrar
h:d no salary, the amount of his emoluments depending on the captures, droits, \&c., condemned by the court. which during the war of 1793-1815 were so enormous that in 1810 an Act was passed for regulating the offices of registrars of admiralty and prize colurts, by which it is enacted "that no office of registrar of the high court of admiralty, or of the high court of appeals for prizes, or high court of delegates in Great Dritain, shall, after the expiration of the interest now rested in possession or reversion therein, be granted for a longer term than during pleasure, nor be executed by deputy; that an account be kept in the said offices respectively of all the fees, dues, perquisites, emoluments, and profits received by and on account of the said registrars, out of which all the expenses of their otices are to be paid; that one-third of the surplus shall belung to the registrar and to his assistant (if an assistant should be necessary), and the remaining tro-thirds to the consolidated fund of Great Dritain, to be paid quarterly into the exchequer; the account of such surplus to be presented to the court at least fourteen days before each quarter-day, and verified on oath." Under the 3 and 4 Vict. c. 66, $\S 2$, a yearly salary of $£ 1400$ is substituted for "all fees, dues, perquisites, emoluments, and profits," and which may be increased in time of war to $£ 2000$. The duties of the registrar are-1. To keep a public registry, to give attendance therein, and to preserve in a regular manaer the registers, acts, records, and documents belonging to the office; 2. To attend all sittings of the court of admiralty; and to attend the judge at chambers; 3. To draw and sign all warrants, monitions, commissions, dc., issuing frou the court; to attend other courts with minutes, \&c., of the admiraity court when required: 4. To have the custody of all moneys paid isto court or paid out of court.
4. The Advocate-Gencral.-This officer is appointed by warrant of the lords commissioners of the admiralty. His duties are-to appear for the lord high admiral in his court of admiralty, court of delegates, and other courts; to move and debate in all causes wherein the rights of the admiral are concerned; for which be had anciently a salary of 20 marks (£13, 6s. 8d.) a-year. In May 1803, Dr William Battine, who was appointed in 1791, had an addition of $£ 200$ to his salary, "for his extraorainary trouble and attendance during the present hostilities." His salary was continued to him and his successor, Dr Arnold, till 1816 ; since that time the nllomance has been reduced to its original amount of $£ 13,6 \mathrm{~s} .8 \mathrm{~d}$. Formerly the admiral's adrocate was always retnined as leading counsel, but after the droits were transferred to the crown, he was gradually supplanted by the king's adrocate, who was generally retained in all cases, the admiralty adrocate acting only as junior counsel; and while the former during the rar made sometimes from $£ 15,000$ to $£ 20,000$ a-year, the latter rarely received from his professional duties more than from £1500 to £2000 a-year.
5. The Counsel and Judge-Advocate for the affairs of the Admiralty and Navy is the law offecer who is chiefly consulted on matters connected with the military duties of the lord high admiral. He adrises also on all legal questions. His salary is $£ 100$ a-year, besides his fees, which in time of war may be reckoned to amount to from $£ 1200$ to $£ 1800$ a-year. Till the present reign the offices of counscl of the admiralty and judge-advocate of the fleet were separate and distinct, the latter being a sinecure appointment, with a salary of $£ 182,10$ s. attached to it. The salary is now abolished. The duties are very light, the reritable work of the office being discharged by deputy judgesadrocate appointed on each occasion of a court-martial, and by resident law agents at Portsmouth and Plymouth, who receive salaries in lieu of all fees and charges.
6. The Solicitor to the Admiralty is also an officer ap
pointed during pleasure by the lords of the admiralty. He is the general legal adviser, in the first instance, of tho lords commissioners; and since 1869 there have been added to his other functions those of registrar of public securities and custodian of all public securities and bonda belonging to the admiralty. His salary is $£ 1600$ a-year In lien of all fees, bills, and disbursementa, with an allowance of $£ 1300$ a-year for assistance of clerks. His office is provided for him.
7. The Procurator. -The adnuiralty's proctor stands precisely in the same situation to the queen's proctor that his ad vocate does to that of the queen, thongh there is not quite so great a difference in their emoluments. They act as the attorncys or solicitors in all causes concerning the queen's and the lord high admiral's affairs in the lagh conrt of admiralty and other courts. All prize causes are couducted by the queen's proctor. It is supposed that in some years of war, in the early part of tho ceatury, tho proctor did not reccive less than $£ 20,000$ a-jear.
8. The Marshal.-This oflicer receives his appointment from the lord high admiral or lords commissioners of the aduiralty. His appointment is under the seal of the high court of admiralty during pleasure, and is confirmed by letters patent from the Crown. His duties are to arrest ships and persons; to exceute all processes or orders issuing from the court; to attend, in person or by deputy, the judge with the silver oar (the ancient emblem of maritime jurisdiction); and formerly also to attend executions. It is also the duty of tho marshal or his deputy to arrest, under warrant from the admiralty, any officer not beneath the rank of post captain who may be ordered for trial by courtmartial; and to see to the delivery of sentenced prisoners to their place of punishment. His emoluments formerly depended on the number of prizes brought into port for condemnation, and the number of ships cmbargoed, and might probal ly be reckoned in time of war, communibus annis, from $£ 1500$ to $£ 2000$ a-year, out of which he had to pay about $£ 400$ a-year to a deputy. He lad no salary. The office can, however, be no longer performed by deputy, except in case of illness, $\S 9$ of the 3 and 4 Viet. c. 66. The marshal is now paid by a salary of $£ 500$, in addition to his travelling expenses.
(Sce Orders in Council sunce February 1870; Campbell's Lives of the British Admirals; O'Byrne's Naval Biographical Dictionary; Rymer's F'adera; Pepys' Naval Collections, and Pepys' Diary; The Black Book of the Admiralty (republished by the Master of the Rolls); Stephen's Commentaries on the Laws of England; Stow's Survey of London; Rolls of Parliament; Report of Committee appointed by the Treasury in 1836 to inquire into the fees and emoluments of public offices; Sir Harris Nicolas'a Mistory of British Navy).
(F. w. R.)

Admiralty, Ireland. - For all executivo functions Ireland is subject to the jurisdiction and orders of the loid high admiral, or lords commissioners for executing the offee, of Great Britain. For judicial purposes, however, an admiralty court sits in the Four Courts, Dublin, haring a judge, a registrar, a marshal, and other officers. In peace time and war timo alike it exercises only an instance jurisdiction. No prize commission has ever issued to it.

Admpalty, Scotland. At the Union, while the national functions of the lord high admiral were merged in the English office, there remained a separate court of admiralty, with subsidiary local eourts, having civil and criminal jurisdictions in maritime questions. The separate courts were abolished in 1831, and their powers merged in the courts of session and justiciary, and the local courts.

ADMIRALTY CHARTS. These useful aids to naviga tion are constructed in the hydrographic department of the British Admiralty, by specially-apoointed survevors and
dranghtsmen, and they are issued to the public by order of the lords commissioners of the admiralty. They are divided into various sections as follows:-1. English and Irish Channela and coasta of the United Kingdom; 2. North Sea and adjacent coasts; 3. Baltic Sea; 4. North and west coasts of Frnnce, Spain, and Portugal; 5. Mediterrancas, Black Sea, and Sea of Azov; 6. Atlantic Ocean and Islands; 7. Arctic Sea and north and cast coasts of America; 8. West Indies; Gulf of Mexico, \&e.; 9.. South America, cast const; 10. West coasts of South and North America; 11. Africa, Madagascar, Mauritius, Red Sea, \&c.; 12. East Indies, Arabian coast, \&c.; 13. Indian Arehipelago, China Sea, Japan, \&c.; 14. Australia, New Zealand, \&c.; 15. Pacific Ocean islands. Thẹy aro abaut 3000 in number, of various sizes and scales, and the prices vary from 6d. to 10s. Accompanying the charts thero are books of sailing directions, tables, and lists of lights. Similar charts as those of the British Admiralty are issued by the United States Coast Survey, as well as by the Russian and French governments. The superintendent of the United States Coast Surrey issues an annual report, showing the progress of the survey, and containing much valuable information.

ADMIRALTY ISLAND, an island belonging to the United States, about 90 miles long from N. to S., and 25 miles broad, lying between King Georgo III. Archipelago and the mainland, in $58^{\circ} \mathrm{N}$. lat., $134^{\circ} \mathrm{W}$. long. Its coasts, which are generally steep and rocky, are indented with several accessible and commodious bays. The jsland has abundance of good water, and is covered with pines, which grow there to a very large size.

ADIIIRALTY ISLANDS, a group of about forty islands lying to the N.E. of New Guinea, between 2° and $.3^{\circ} \mathrm{S}$. lat., and $146^{\circ} 18^{\prime}$ and $147^{\circ} 46^{\prime}$ E. long. The largest is about 50 miles in length; the others are very small, and all rise but little above the sea-level. Their exuberant vegetation, and in particular the groves of cocoa-nut trees. give them a very beautiful appearance. The islando were discorered by the Dutch in 1616, but hava seldom been visited, access being difficult on account of the surrounding recfs. The natives are tall, and of a tawny colour.

ADOLPUUS, Joun, historian and barrister, was born in London on the Fth August 1768. He was educated under the earo of a grand-uncle, and after making a yoyage to the West Indies was enrolled as an attoraey about the year 1790. Called to the bar in 1807, be devoted himself to practice in criminal causes, and in a few , years attuined a leading position among Old Bailey counscl. His masterly defence of Thistlewood and the Cato Street conspirators, for which he had been retalned only a few hours before the trial, did much to extend his reputation. He was rery skilful in the management of his cases, but his hastiness of temper frequently led to unseemly altercations with other counsel. He held a good position in society, and was on terms of intimacy with the leading literary mon of the day. The History of England from the Acces. sion of George III. to 1783, which he published in 1802, was favourably noticed in tho Edinburgh Review for its impartiality and accuracy. A new and enlarged edition of this work, in eight volumes, was in preparation, but only seven volumes were completed when the author died, 16th July 1845. His other literary works were-Biograplical Memoirs of the French Revolution (1799); The British CaBinet (1799); History of France from 1790 to 1802 (1803); Memoirs of John Bannister.

ADOLPIIUS, Jonn Leycester, soin of the abore, also a distinguished barrister (died 1862), was the first to pierce the mask of the author of Waverley, in a series of critical letters addressed to Richard Heber, wbish he pub. lished in 1821.

ADONIS, according to some authors, the son of Theias, king of Assyria, and his daughter Smyrna [Myrrha], was the favourite of Venus. He was fond of hunting; and Venus often warned hirn not to attack the larger wild beasts; but neglecting the advice, he was killed by a wild boar he had rashly wounded. Venus was inconsolable, and turned him into a flower of a blood colour, supposed by some to be an anemone. Adonis had to snend half the year in the lower regions, but during the other half he was permitted to revisit the upper world, and pass the time with Venus. No grief was ever more celebrated than that of Venus for Adonis, most nations round the Mediterranean having perpetuated the memory of it by anniversary ceremonies. "The tale of Adonis (Keightley's Mythology) is evidently an eastern myth. His own name and those of his parents refer to that part of the world. He appears to be the same with the Thammuz mentioned by the prophet Ezekiel (viii. 14), and to be a Phœenician personification of the sun, who during part of the year is absent, or, as the legend expresses it, with the goddess of the under world; during the remainder with Astarte, the regent of hearen." Among the Egyptians, Adonis is supposed to hare been adored under the name of Osiris, the husband of Lsis ; but he was sometimes called by the name of Ammuz or Thammuz, the concealed, to denote probably his deuth or burial It has been thought it is he the Hebrews call the dead (Ps. cvi. 28, and Lev. xix. 28), because his worshippers wept for him, and represented him as one dead; and at other times they call him the image of jcalousy (Ezek. viii. 3, 5), because he was an object of jealousy to other gods. The Syrians, Phœnicians, and Cyprians worshipped Adonis; and Calmet was of opinion that this worship may be identified with that of the Moabitish Baal-peor. Modern critics plausibly connect the divine honours paid to Adonis with the mysterious rites of phallic worship, which, in some shape or other, prevailed so extensively in the ancient world.

ADONIS, in Ancient Geography, a small river rising in Mount Lebanon, and falling into the sea at Byblus. When in flood its waters exhibit a deep red tinge; heace the legend that connects it with the wound of Adonis,
"While smooth Adonis from his native rock, Ran purple to the sea, suppos'd with blood' Of Thammuz yearly wounded."-Milion.
ADONIS, a genus of ranunculaceous plants, known commonly by the names of Pheasant's Eye and Flos Adonis. There are ten or twelve species given by authors, but they may be probably reduced to three or four. Tinere are two indigenous species, Adonis autumnalis and Adonis astivalis. They are commonly cultivated. An early flowering species, Adonis vernalis, is well worthy of cultivation.

ADOPTLAN CONTROVERSY, a controversy relating to the sonship of Christ, raised in Spain by Elipandus, archbishop of Toledo, and Felix, bishop of Urgel, towards the close of the 8th century. By a modification of the doctrine of Nestorius they maintained that Christ was really the Son of God in his divine nature alone, and that in his human nature he was only the Son of God by adoption. It was hoped that this vies would prove more acceptable to the Mahometans than the orthodox doctrine, and Elipandus especially was very diligent its propagating it. Felix was instrumental in introducing it into that part of Spain which belunged to the Franks, and Charlemagne thought it necessary to assemble a synod at Ratisbon (792), before which the bishop was summoned to explain and justify the new doctrine. Instead of this he renounced it, and confirmed his renunciation by a solemn oath to Pope Adrian, to whom the synod sent him. The recantation was probably insincere, for on returning to his diocese he taught adoptianism as before. Another synod
was held at Frankfort in 791, by which the new doctrine was again formally condemned, though neither Felix nor any of his followers appeared. A friendly letter from Alcuin, and a controversial pamphlet, to which Felix réplied, were followed by the sending of several commissions of clergy to Spain to endeavour to put down the heresy. Archbishop Leidrad of Lyons being on one of these commissions, persuaded Felix to appear before a synod at Ais-la-Chapelle in 799. There, after six days' disputing with Alcuin, he again recanted his heresy. The rest of his life was spent under the superrision of the archbishop at Lyons, where he died in 816 . Elipandus, secure in his see at Toledo, never swersed from the adoptian views, which, however, were almost universally abandoned after the two leaders died. The controversy was revived by solitary adrocates of the heretical opinions more than once during the Middle Ages, and the questions on which it turns have, in one form or another, been the subject of frequent discussion.

ADOPTION, the act by which the relations of paternity and filiation are recognised as legally existing between persons not so related by nature. Cases of adoption were very frequent among the fireeks and Romans, and the custom was accordingly very strictly regulated in their laws. In Athens the power of adoption was allowed to all citizens who were of sound mind, and who possessed no male offspring of their own, and it could be exercised either during lifetime or by testament. The person adopted, who required to be himself a citizen, was enrolled in the family and demus of the adoptive father, whose name, however, be did not necessarily assume. In the interest of the next of kin, whose rights were affected by a case of adoption, it was provided that the registration should be attended with certain formalities, and that it should take place at a fixed time-the festival of the Thargelia. The rights and duties of adopted children were almost identical with those of natural offspring, and could not be renounced except in the case of one who had begotten children to take his place in the family of his adoptive father. Adopted into another family, children ceased to have any claim of kindred or inheritance through their natural father, though any rights they might have through their mother were not similarly affected. Among the Romans the existence of the patria potestus gave a peculiar significance to the custom of adoption. The motive to the act was not so generally childlessness, or the gratification of affection, as the desire to acquire those civil and agnate rights which were founded on the patria potestas. It was necessary, however, that the adopter shou'd have no children of his own, and that he should be of such an age as to preclude reasonable expectation of any being born to him. Another limitation 's to age was imposed by the maxim adoptio imitatur naturam, which required the adoptive father to be at least eighteen years older than the adopted children. Acco-ding to the same maxim eunuchs were not permitted to adopt, as being impotent to beget children for themselves. Aduption was of two kinds according to the state of the persun adopted, who might be either still under the patria potestas (alieni juris), or his orin master (sui juris). In the former case the act was one of adoption proper, in the latter case it, was styled adrogation, though the term adoption was also used in a general sense to describe both species. In adoption proper the ratural father publicly sold his child to the adoptive father, and the sale being thrice repeated, tho raaxim of the Twe've Tables took effect;' Si pater filium ter venunduit, filius a patre liber esto. The process was ratjfied and completed by a fictitions action of recovery brought by the adoptive father against the natural parent, which the latter did not defond, and which was therefore known'as the cessio in jure. Adrogation could be accomplished originally only by the authority of the people assembled in the

Comitia, but from the time of Diocletian it was effected by an imperial rescript. Females could not be adrogated, and, as they did not possess the patria potestas, they could not exercise the right of adoption in either kind. The whole Romau law on the subject of adoption will be fonnd in Justinian's Institutes, lib. i. tit. 11. In Hindoo law, as in nearly cvery ancient system, wills are almost onknown, and adoptions take their place. The strict law of adoption in India has been relaxed to the extent that a llinduo widuw may adopt when her deceased husband has not done so. Adoption is not recugnised in the laws of Eugland and Scotland, though there are legal means by which ove may be enabled to assume the name and arms and to inherit the property of a stranger. In France and Germany, which may be said to lave embodied the looman law in their jurisprudence, adoption is regulated according to the principles of Justinian, though with several more or less important modifications, rendered necessary by the usages of these countries respectively. The part played by the legal fiction of adoption in the coustitution of primitive society and the civilisation of the race is so important, that Sir Henry S. Maine, in his valuable work on Ancient Law, expresses the opinion that, had it never existed, the primitive groups of mankind could not have coalesced except ou terms of absolute superiority on the one side, and absolute subjection on the other. With the institution of adoption, however, one people might feign itself as descended from the saue stock as the people to whose' sacra yentilicia it was adunitted; and amicable relations were thus established between stocks which, but for this expedient, must have submitted to the arbitrament of the sword with all its consequences.
Adoptiosi, as a Biblical term, occurs only in the New Testamert. In Old Testament history the practice was unknown, though cases approximating to it have been pointed out. In the New Testament vioferia occurs in several passages, on which is founded one of the leading doctrines of theolory.

ADORATION(from 08, oris, the mouth, or frum ore, to pray), an act of homage or worship which, among the Riomans, was performed by raising the kand to the noutb, kissing it, and then waving it in the direction of the adored object. The devotee had his head covered, and after the act turned himself round from leit to right. Sometimes he kissed the feet or knees of the images of the gods themselves, and Saturn and Hercules were adored with the head bare. lly a natural transition the homage that was at first paid to divine beings alone came to be paid to men in token of extraordinary respect. Those who approached the Greek and Roman emperors adored by bowing or kneeling, laying hold of the imperial robe, and presently withdrawing the hand and pressing it to the lips. In eastern countries adoration was performed in an attituds still more lowly. The Persian method, introduced by Cyrus, was to bend the knee and fall on the face at the prince's feet, striking the earth with the forehead, and kissing the ground. Homage in this form was refused by Conon to Artaxerxes, and by Callisthenes to Alexander the Great. In England the ceremony of kissing the king's or queen's band, and some other acts which are performed kneeling, may be described as forms of adoration. Adoration is applied in the court of Rome to the ceremony of kissing the Pope's foot, a custom which is said to have been introduced by the popes after the example of the Enperor Diodetian. In the Romish Church a distinction is made between Latria, a worship'due to God alone, and Dulia or Hyperdulia, the adoration paid to the Virgin, saiste, martyrs, crucifixes, the host, dec.

ADOOR, the ancient Aturus, a river of France which rises uear Barége, in the departuent of Upper Pyrenees,
and, flowing first northwards, then with a circuit to the west, passes throngh the departinents of Gers and Lindes, and falls into the Bay of Biscay 3 uniles beluw Bayonne. Its length is about 180 miles, and it is navigable for about 70 miles, as far as St Séver. Bagnères-de-Migorre, Tarbes, and Dax are the other important towns on its banks

ADO IVA, the capital of Tigré, in Abyssinia, is situated in $14^{\circ} 12^{\prime} \mathrm{N}$. lat., $39^{\circ} 3^{\prime} \mathrm{E}$. long., on the left bank of the River Hasam, 145 miles N.E. of Gondar. It is buil: on the castern declivity of a hill overlooking a small plain, and has regular streets, ornamented with trees and gardens. The town derives its chief importance from its situation on the ronte between Massowah and Gondar, which has caused it to become the great entrepôt of traffic between the extensive table-land of Tigré and the coast. Gold and ivory are included in its transit trade, and hardware is manufactured, as well as the coarse cotton cloth which circulates in Abyssinia as the medium of exchange in ulace of money. Pupulation about 6000 .

ADRA, the ancient Abdera, a seaport of Spain on the Mediterranean, in the province of Almeria, 60 miles S.E. of Greuada Lead is extensively wrought in the neigh. bourhood, and experted to Marseilles. The other exports include wheat and sugar. Population, 7400 .

ADRASTUS, il Legendary History, was the son of Talans, kiug of Argos, and Lysianassa, danghter of Polybus, king of Sicyon. Being driven from Argos by Amphiaraus, Adrastus repaired to Sicyon, where he became king on the death of Polybus. After a time be was reconciled to Amphiarans, to whom he gave bis sister in marriage, returned to Argos, and occupied the throne. He acquired great honour in the famous war against Thebes, which he undertook for the restoration of his son-in-law Polynices, who had been deprived of his rights by his brother Eteocles, uotwithstanding the agreement between them. Adrastus, followed by Polynices and Lydeus, his two mons-in-law, Amphiaraus, his brother-in-law, Capaneus, Hippomedon, and Parthenopæus, narched agzinst the city of Thebes, and on his way is said to have founded the Nemean games. This is the expedition of the Seven Worthies against Thebes which the poets have made nearly as famous as the siege of Troy. As Amphiaraus had foretold, they all lost their lives in this war' except Adrastus, who was saved by the speed of his horse Arion. Ten years after, at the instigation of Adrastus, the war was renewed by the sons of the chiefs that had fallen. This expedition was called the War of the Epigoni, and ended in the taking and destruction of Thebes. None of the followers of, Adrastus perished in it except his son Egialens. The death of this son affected Adrastus so much that he died of grief at Megara, as he was leading back his victorious army.

ADRIA, a city of Italy, in the province of Rovigo, between the rivers Po and Adige. It is a place of great antiquity, and was at an early period a seaport of such importance and celebrity as to give name to the sea on which it stood. Originally an Etrusean colony, it enjoged for a time remarkable prosperity; but under the Romans it appears never to have been of much importance, and after the fall of the Western Empire it rapidly declined. The dykes which protected the surrounding country from inundation were neglected, the canals became choked, and the mud and other deposits brought down by the waters of the Po and Adige caused a gradual extension of the land into the Adriatic, so that Adria ceased to be a seaport, and is now 16 miles from the sea, on whose shores it formerly stuod. By the draining of the neighbouring lands, the modern town has been much improved. It has some trado in grain, cattle, fish, wine, and earthenware, is the seat of a bishopric, and has a museum of Greek and Roman antiquities. A little to the south, extensive remaina of the
ancient city have been discovered deeply imbedded in the accumulated soil. The population of Adria is 10,000 .

ADRIA (ó 'A סpias-Acts xxvii. 27.) in St Paul's time meant all that part of the Mediterraner.n batween Cricte and Sicily. This fact is of importance, as it relieves us from the necessity of finding the island of Melita, on which Paul was shipwrecked, in the present Adriatic Gulf.

ADRIAN, a town of the United States, capital of Lenawee co., Michigan, situated on a brauch of the Raisin river, and on the Michigan Southern Railway, 73 miles W.S.W. of Detroit. Adrian is the centre of trade for the surrounding district, which is chiefly grain-producing. Its extensive water-potwer is employed in mills of various kinds. It has several fine churches and other public'buildiugs. Population in 1870. 8438.

ADRLAN, Publics Elius, Poman emperor. See Hadrian and Roman History.

ADRIAN (sometimes written Hadrian) was the name of six popes:-

Adrian I., son of Theodore, a Roman noblemań, occupied the pontifical chair from 772 to 795 . Soon after his accession the territory that had been bestormed on the popes by Pepin was invaded by Desiderius, king of the Longobards, and Adrian found it necessary to invoke the aid of Charlemagne, who entered Italy with a large army, and repelled the enemy. Tha pope acknowledged the obligation by conferring upon the emperor the title of Patrician of Rome, and Charlemagne made a fresh grant of the territories orginally bestowed by his father, with the addition of Ancona and Benevento. The friendly relations thus established between pope and emperor continued unbroken, though a serious difference arose between them on the question of the worship of images, to which Charlemagne and the Gallican Church were strongly opposed, while Adrian favoured the views of the Eastern Church, and approved the decree of the Council of Nicæa (787), confirming the practice and excommunicating the iconoclasts. It was in connection with this controversy that Charlemagne wrote the so-called Libri Carolini; to which Adrian replied by letter, anathematising all who refused to worship the images of Christ, or the Virgin, or saints. Notwithstanding this, a synod, held at Frankforts in 794, anew condemned the practice, and the dispute remained unsettled at Adrian's death. An epitaph written by Charlemagne in verse, in which he styles Adrian "father," proves that his friendship with the pontiff was not disturbed by the controversy in which they were so long engaged.

Adriar IL, born at Rome, became pope in 867, at the age of seventy-six. He faithfully adhered to the ambitious policy of his immediate predecessor, Nicholas I., and used every means to extend his authority. His persistent endeavours to induce Charles the Bald to resign the kingdom of Lorraine to the emperor were unsuccessful. Hincmar, archbishop of Rheims, who had crowned Charles, denied the pope's right to interfere in the matter, and maintained that the threatened excommunication of the king's adherents would have no validity. Adrian was for the time more successful in his contest with the patriarch of Constantinople-the sentence of deposition he passed npon Photius being confirmed by a council of the Eastern Church held in 869-70. His arrogant measures were, however, the immediate occasion of the schism between the Greek and Latin churches. Adrian had himself been married, but pat away his wife on ascending the papal throne, and a council called by him at Worms in 868 decreed the celibacy of the clergy. He died in 872 .

Adrian III., born at Rome, succeeded Martin II. in 884, and died in 885 on a journey to Worms.

Adrian IV. whose naine was Nicholas Breakspeare,
was born before 1100 A.D. at Langley, near St Albans, in Hertfordshire, and is the only Englishman who has occupied the papal chair. His request to be allowed to take the habit of the munastery of St Albans having been refused by Abbot Richard, he proceeded to Paris, where he studied with diligence, and soon attained great proficiency, espccially in theology. Being admitted, after a period of prohation, a regular clerk in the monastery of St Rufus, in Provencc, he distinguished himself so much by his learning and strict observance of the monastic discipline that he was chosen abbot when the office fell vacant. His merit became known to Pope Eugenius III., who created him cardinalbishop of Alba in 1146, and scut him two years later as his legate to Demmark and Norway. On this mission he converted many of the inhabitants to Christianity, and erected Upsal into an archiepiscopal see. Soon after his return to Rome, Anastasius, successor of Eugenius, died, and Nicholas Tas unanimonsly chosen pope, against his own inclination, in Aov. 1154. On hearing of the election, Henry II. of England sent the abbot of St Albans and three bishops to Rome with his congratulations, which Adrian acknowledged by granting considerable privileges to the monastery of St Albans, including exemption from all episcopal jurisdiction except that of Rome. The bestowal by Adrian of the sorereignty of Ireland upon the English monarch was a practical assertion of the papal claim to dispose of kingdoms. The act, besides facilitating and hastening the subjection of Ireland to England, was also the means of inducing Henry to yield the long-coutested point of lay investiture to ecclesiastical offices. The beginning of Adrian's pontificate was signalised by the energetic attcrupts of the Roman people to recover their ancient liberty under the consuls, but the pope took strong measures to maintain his authority, conpelling the magistrates to abdicate, laying the city under an interdict, and procuring the execution of Arnold of Brescia (1155). In the same year he excommunicated William, king of Sicily, who had ravaged the territories of the church, but the ban was removed and the title of King of the Two Sicilies conferred on William in the following year, on the promise of a yearly tribute to the Holy Sce. With Adrian commenced the long and bitter conflict betreen the papal power and the house of Hohenstaufen which ended in the humiliation of the latter. . Frederick Barbarossa haring entered Italy at the head of a large army for the purpose of obtaining the crown of Germany from the hands of the pope, Adrian met him at Sutri. The demand that he should hold the pope's stirrup as a mark of respeet was at first refused by Frederick, whereupon the pope on his part withheld from the emperor the osculum pacis, and the cardinals ran away in terror. After two days² negotiation, Frederick was induced to yield the desired homage, on the representation that the same thing had been done by his predecessors. His holiness then conducted the emperor to Rome, where the ceremony of coronation took place in the Church of St Peter's. It was in these transactions that the quarrel originated. A letter addressed by the pope to Frederick and the German bishops in 1157 asserted, on the ground of the ceremonies that had taken place, that the emperor held his dominions as a beneficium. The expression, being interpreted as denoting feudal tenure, stirred up the fiercest indignation of Frederick and the Germans, and though explanations were afterwards given with the view of showing that the word had not been used in an offensire sense, the breach could not be healed. Adrian was about to pronounce the sentence of excommunication upon Frederick when he died at Anagni on the 1st Sept. 1159.

Adriar V., a Genoese, whose name was Ottohoni Fiesch occupied the papal throne for only fire weeks in 1276. When congratulated on his accession he replied in the
well-known words, "I wish gou had found me a bealthy cardinal rather than a dying pope."

Alrian VF., bora of humble jarentage at Utrecht in 1459, atudied at the university of Louvain, of which he became vice-chancellor. Ho was chosen by the Emperor Ifaximilian to lie tutor to his grandson, the Archduke Cilarles, through whuss interest as Clarles V. he was aftersards raised to the papal throne. In 1517 be received the cardinal's hat from Leo X ., and in 1519 be was made bishop of Tortosa. After the death of Ferdinand he was for a time regent of Spain. He was chosen pope Jan. 9, 1522; but the election nas very displeasing to the people of Rome, Is the new pope, in contrast with his predecessor Leo, was koown to be very rigid in discipline and frugal in his mode of living. On his aceession, contrary to the usnal custom, Lo did not change his name, and he showed his dislike to dstentation in many other ways. In regard to the great lact with which he had to deal-the Reformation-Adrian's zunduct showed that he did not fully estimate the gravity of the crisis. Acknowledging the corruptions of the church, be did hia utmost to reîorm certain external abuses; but when his proposed measures failed to win back Luther and the other reformers, he immediately sought to suppress their doctrines by force. He died on the 14 th Scptember 1523. So little did the people care to conceal their joy at the event that they wrote on the door of his physician's bouse the words "the saviour of his country."

ADRIAN, Cardinal, was born at Corneto, in Tuscany, and studied at Rome. He was sent by Innocent VIII. as nuncio to Britain, to endearour to reconcile James III. of Scotland and his subjects. That king having died, Adrian remained in England, where Henry VI. presented him to the bishopric of Hercford, and afterwards to that of Bath and Wella; but he never resided in either of these dioceses. On his return to Rome be becamo secretary to Pope Alexander VI., who employed him in various missions, and subsequently invested him with the purple. It was Adrian In particular that Alexander is said to have meant to poison in order that he might scize on his great wealth, when, as is generally reported, he fell a victim to his own wickedness. Not long after the elcvation of Leo X . to the papal chair pe was implicated in the conspiracy of Cardinal Petrucci against that pontiff. He confessed lis guilt; and pardon being offered only on condition of his payment of a fine of 25,000 ducats, he resolved to fly from Rome. It is supposed that he was mirdered by a domestic who coveted his wealth. Adran was one of the first who sought to restore the Latin tongue from its medieral corruptions to classicil purity. He wrote De Vera Philosophia, a re ligious treatise, printed at Cologne in 1548; De Sermone Latino, a learned work, published at Rome in 1515, and re peatedly since; a treatise, De Venationef; and some Latin verses.

ADRIANI, Grovanni Battista, born of, n patricion family of Florence about 1511, was secretary to the republic of Florence, and for thirty jears professor of rhctoric at the university. He wrote a history of his own times, from 1536 to $\mathbf{1 5 7 4}$, in Italian, which is generally, but according to Brunet erroncously, considered a continuation of Guicciardini. De Thon acknowledges himself greatly indebted to this history, praising it especially for its accuracy. Adriani composed funeral orations un the Emperor Charles V. and other noble personages, and was the anthor of a long letter on ancient painters and sculptors prefixed to the third volume of Vasari. He died at Florence in 1579.

ADRIANOPLE (called by the Turks Edrener), a city ol European Turkey, in the province of Rumelia, 137 *niles W.N.W. of Constantinople; $41^{\circ} 4 \mathrm{I}^{\prime} \mathrm{N}$. lat., $26^{\circ} 35^{\prime}$ E. long. It is pleasantly situated partly on a hill and sartly on the banks of the Tundja, near its confluence
with the Maritza. Next to Constantinople, Adrianople is the most important city of the empire. It is the seat of a bishop of the Greek Church. The streets are nąrow, crooked, and filthy; its ancient citadel, and the walls which furnerly surrounded the town, are now in ruins. Of its public buldings the most distinguished are the Eski-Serai, the ancient palace of the sultans, now in a state of decay; the famous bazaar of Ali Pacha; and the mosque of the Sultan Selin IL, a maguificent specimen of Turkish architecture, which ranks among the finest Mahometan temples. The city has numerons baths, caravanseries, and bazaars; and considerable manufactures of silk, leather, tapestry, woollens, linen, and cotton, and an active general trade. Besides fruits and agricultural produce, its exports include raw silk, cotton, opinm, rose-water, attar of roses, wax, and the famous dye known as Turkey red. The surrounding comntry is extremely fertile, and its wines are the best produced in Turkey. The city is supplied with fresh water by means of a noble aqueduct carried by arches over an extensive valley. There is also a fino stone bridge here over the Tundja During winter and spring the Maritza is navigable up to the town, but Enos, at the mouth of that river, is properly ita seaport. Adranople was called Uskadama previous to the time of the Emperor Hadrian; who improved and embellished the town, snd changed its name to Hadrianopolis. In 1360 it was taken by the Turke, who, from 1366 till 1453, when they got possession of Constantinople, made it the seat of their government. In the campaign of 1829 ddrianople surrendered to the Russians without making any resistance, but "as restored after the treaty of peace signed the same year. Jopulation, 140,000 .

ADRIATIC SEA, the Adriaticum Mare of the ancients, is an arm of the Mediterranean which scparatea Italy from Triest, Croatia, Dalmatia, and Albania. It extenda from 40° to $45^{\circ} 50^{\prime} \mathrm{N}$. lat. in a N.W. direction. Its extreme north-west portion forma the Gulf of Venice, and on the east side are the gulfs of Triest, Fiume, Cattaro, and Drino. Its greatest length is 450 miles, its mean breadtl 90 miles $_{5}$ and its depth varies from 12 to 22 fathoms. The western or Italian coasts are generally low and marshy; but the eastern shores are steep and rocky, and the abounding creeks and inlets, with the numerous islands, afford to mariners many safe natnral harbours. The ebbs and flows of the tide in the Adriatic are inconsiderable, thongh more observable than in the Mediterranean generally; and its saltness is a little greater than that of the ocean. The prevalence of sudden squalls from the N.E. and S.E. rendera its navigation bazardous, especially in winter. Except tho Po and Adige, no considerable rivers flow into the Adriatic. Its chief emporia of trade are Venice, Triest, and Ancona. The port of Brindisi, on the Italian coast, near the southern extremity of the Adriate, is rapidly rising in importance as the point of arrival and departure of the Peninsular and Oriental Company's stcamers conveying the overland maila between England and the East. The namo Adriatic is derived from Adria, between the mouths of the Po and the Adige, and not from Adria in Picenum. (See Highlands and Islands of the Adriatic, by A. A. Paton, 2 vols. 8vo, 1849; Shores of the Adriatic, by Viscountess Strangford,' 1864.)

ADULE or-ADulis, a town on the Red Sea. See Zulla.
ADULLAM, in Scripture Geography, a city in the plain country of the tribe of Judah. The cave Adullam, in which David took refuge after escaping from Gath (1 Sam. xxii. 1'), was probably situated among the mountains to the east of Judah, near the Dead Sca. From its being described as the resort of "every one that was in distress," or "in debt." or " discontented," it has often been humorously alluded to, as by the Baron of Bradwardine in Waverley, chap. 57.

A D ULTERATION

ADULTERATION, the act of debasing a pure or genuine commodity for pecuniary profit, by adding to it an inferior or spurious article, or by taking from it one or more of its constituents. The term is derived from the Latin adultero, which in its various inflections signifies to defile, to debase, to corrupt, to sophisticate, to falsify, to counterfcit, d.c. The objects of adulteration are fourfold, namely, to increase the bulk or weight of the article, to improve its appearance, to give it a false strength, or to rob it of its most valuable constituents. All these adulterations are manifestly of a designedly fraudulent character, and are therefore properly the subjects of judicial inquiry; but there may be accidental corruptions and adulterations of a commodity, arising from natural or unaroidable causes, as when darnel or ergot become mixed with grain in the fields of the sluvenly farmer, or when an article becomes changed and deteriorated from spontaneous decay, or when mineral matters and otherimpurities are accidentally derived from the machinery or vessels in which the thing is prepared or kept. The recognition of such impurities, and the tracing of them to their source, is of prime importance in pursuing a charge of adulteration. Few articles of commerce, however, are exempt from fraudulcut adulteration, and the practice of it has grown with the competition of trade, and the removal of those wholesome restrictions which in former times were so energetically opposed to all kinds of dishonest dealing; for the guilds and companies of all large cities had their corporate regulations for supervising and governing every description of trade and manufacture. The excise, too, including the customs, had until recently control over the quality of all exciseable articles; and although the prime object of this was to protect the revenue of the country, yet it also served to prevent adideration.. In addition to this there were in ancient times ordinances of assize for regulating the price and quality of the common necessarics of life. As far back as the reige of John (1203) there was a proclamation throughout the kingdom for enforcing the legal obligations of assize as regards bread; and in the following reign the statute (51 Hen. III. stat. 6), entitled the Pillory and Tumbrel, was framed for the express purpose of protecting the public from the dishonest dealings of bakers, vintners, brewers, butchers, and others. This statute is deserving of notice as the first in which the adulteration of human food is specially noticed and prohibited; and it seems to have been enforced with more or less of rigour until the time of Anne, when it was repealed (8 Anne, c. 19). According to Liber Albus, it was strictly observed in the days of Edward I., for it states that "if any. default shall be found in the bread of a baker in the city, the first time, let him be drawn upon a hurdle from the Guildhall to his own house through the great street where there be most people assembled, and through the great streets which are most dirty, with the faulty loaf hanging from his ueck; if a second time he shall be found committing the same offence, let him be drawn from the Guildhall through the great street of Cheepe, in the manner aforesaid, to the pillory, and let him be put upon the pillory, and remain there at least one hour in the day; and the third time that such default shall be found, he shall be drawn, and the oven shall be pulled rown, and the baker made to forswear the trade in the city for ever." Vintners, spicers, grocers, butchers, regrators, and others, were subject to the like punishment for dishonesty in their commercial dealings-it being thought that the pillory, by appealing to the sense of shame, was far more detcrrent of such
crimes than fine or imprisonment. But all this has given way to the force of free trade, and now the practice of adulteration has become an art, in which the kuowledge of science and the ingenuity of trade are freely exercised. Fifty years ago it attracted the attention of une of the most expert chemists of the day, Mr Accum, who, in his Treatise on Adulterations of Food, and.Culinary Poisons, declared it to be an "art and mystery." Subsequently to that, in 1851 and the three folluwing years, articles on the adulteration of food appeared in the Lancet, and the effect o. thuse articles was to call for a Parliamentary inquiry, which resulted in the Adulteration of Food Act of 1860. That Act of Parliament gave power to certain local authorities in England, Scotlaud, and Ireland to appoint analysts, having competent medical, chemical, and microscopical knowledge. The penalty for selling an adulterated article, knowing it to be so adulterated, was five pounds, and th? custs of the proceedings. But as the statute was permissive, only a few analysts were appointed, aud it soon became a dead letter. Attempts were subsequently made to improve the law, and to make it compulsory on local authorities to appoint analysts. One of these was the Bill of 1869, and another was that of 1871 -both of which were abandoned by their promoters. In the year 1872, however, an Act was passed, entitled An Act to amend the Laws for the Preventiou of Adulteration of Food, Drink, ana Drugs. The main features of this Act are the following:-Local authorities in England, Scotland, and Ireland are bound to appoint analysts with competent medical, chemical, and microscopical knowledge. T'hey must also appoint officers or inspectors to purchase articles of food, drink, and drugs within their respective districts, and take them to the analyst for examination. Other purchasers of such articles are per mitted, under proper restrictions, to have suspected articles analysed. Ou receiving a certificate from the analyst, stating that anyarticle is adulterated, the inspector must take the necessary legal proceedings for the purpose of bringing the offender to justice. The penalty on conviction of mixing anything whatever with a drug, with the view of adulterating it, or of mixing any injurious or poisonous ingredient with any article of food or driuk, is a sum not exceeding fifty pounds, together with the costs ; and for the second ottence le shall be guilty of a misdemeanour, and be imprisoned for a period not excceding six calendar months with hard labour. The penalty for sclling an adilterated article with a guilty knowledge is a sus not exceeding twenty pounds, together with the costs; and for a second offence, the justice may order the offender's name, place of abode, and offence to be published in a newspaper, or in any manner he thinks fit, at the expense of the offender. Although the meaning of the term adulteration is not strictly defined in the Act, yct it is declared that the admixture of anything whatever with an article of food, drink, or drug, for the purpose of fraudulently increasing its weight or bulk; is an adulteration within the provisions of the Act. The adulteration of intoxicating liquors is provided for by the Licensing Act 1872 (35 and 36 Vict. c. 94) ; and in this Act there is a schodule of substances, called "Dele terious Ingredients," which are considered to be adultera tions: they are Cocculus indicus, chloride of sodium os common salt, copperas, opium, Indian hemp, strycnume, tobacco, darnel seed, extract of logwood, salts of zinc on lead, alum, and any extract or compound of any of these The execution of this Act rests with the police authorities and the Inland Ficvenue. The pealtirs for adulteration
are very severe, leaving it to the magistrate either to inflict a heavy fine or to send the offender to prison. In the year 1869 an Act was passed to prevent the adulteration of seeds, in fraud of Her Majesty's subjects, and to the great detriment of agriculture (32 and 33 Vict. c. 112), wherein it is declared that the killing of seeds, the dying of them, and the selling of such killed or dyed seeds, with intent to defraud, is punishable with a penalty not- exceeding five pounds for the first offence, nor exceeding fifty pounds for a second or subsequent offence, together with the publication of the offender's name, place of abode, and offence in any manner that the justice thinks fit.

Adulteration in other countrics is strictly prohibited ander penal obligations. The Prussian penal code provides that any person selling adulterated or spoiled goods shall be liable to a penalty up to fifty dollars, or imprisonment for six weeks, with confiscation of goods; and it is not necessary to prove that the seller was aware of the adulteration. In Holland, the Dutch laiv is very similar to the code Napoleon, and inflicts a punishment of imprisonment for from six days to two years, with a fine of from 16 to 600 francs. The adulteration of bread with copperas or sulphate of zinc is dealt with by imprisonment of from two to five years, and a fine of from 200 to 500 florins. In Paris, malpractices connected with the adulteration of food are inrestigated by the Conseil de Salubrité and punished. Much valuable information concerning the adulteration of food, drink, and drugs in foreign countries has lately been obtained from the various British legations and consulates abroad, through a circular addressed to them from the Foreign Office. These investigations were commenced by the late Earl of Clarendon, and have been continued by Earl Granville. The results have been published in the Food Journal for 1870 and 1871 ; and they are epitomised at page 193 of the journal of the last mentioned date.

Among the adulterations which are practised for the purpose of fraudulently increasing the weight or bulk of an article are the following:-

1. Adulterations of Milk.-This is commonly effected by the addition of water-technically termed Simpson ; and it is known by the appearance of the milk, the specific gravity of it, the quantity of cream which rises, and the chemical composition of the milk. Good milk has a rich appearance, and a full pleasant taste. Its specific gravity ranges from 1029 (water being 1000) to 1032-the average being 1030. If, therefore, the density of milk is above 1030, other conditions corresponding, the inference is that the sample. is unusually good. Between 1028 and 1030 it is most probably genuine. At from 1026 to 1028 it is of doubtful quality, and below that, unless the amount of cream is enormously large, the sample is not genuine. An instrument, called a galactometer, has been constructed to show the specific gravity of milk at a glance; but it must always be remembered that while the addition of water tends to lower the gravity of milk, 80 also does the presence of much cream, and therefore a samplo of skimmed milk may show a high gravity even when diluted with water. The percentage quantity of cream is ascertained by means of an instrument called a lactometer. It is a glass tube about 10 or 11 inches long and half an inch in diameter, graduated into 100 parts. Having shaken a sample of milk sn as to diffuse the cream throughout its bulk, it is poured into the lactometer to the topmost division; and after standing for 12 hours, to allow the cream to rise, the proportion of it is read off from the divisions on the tube. Good milk shows a range of from 8 to 12 divisions. Conjoined with the preceding test, this affords reliable indication of the quality of the sample. After removing the cream, the gravity should be again taken, and this should not be lower than 1030. The chemical composition of milk varies to some
extent with the breed of the cow, its age, the diet upen which it is fed, the time of calving, and the time of milking ; for afternoon milk is generally richer than morning, and the last drawn than the first. But taking the results of a large number of analyses by different cliemists, it may be said that the average percentage composition of milk is as follows:-Casein or eheese matter, 3.64 ; butter, 3.55 : milk, sugar or lactose, 4.70 ; saline matter, 0.81 ; and water, 87.30 . If, therefore. 1000 grains of milk be treated with a few drops of acutic acid, and then heated in a flask to about 120° Fahr., the casein of the milk will curdle, and enclose within it all the butter. When it is quite cold, it can easily be filtered, and when dry, the curd and butter should weigh from 75 to 85 grains; and the scrum or whey shonld have a density of about 1029. The addition of mineral matter, as common salt pr carbonate of soda, to milk is easily rccognised by an examination of the ash or saline constitutents. 1000 grains of good milk evaporated to dryness will produce from 120 to 130 grains of aolid matter, of which about 8 grains are mineral ; and these are left in the platinum capsule, when the solid matter is incinerated or burnt to an ssh. Of this ash about half is phosphate of lime, and 2.7 are alkaline chlorides, the rest being phosphates of magnesia and iron, with a little carbonate of soda. Any notable incre:se, therefore, in the proportion of ash, or any large diminution of it, will slow adulteration. Colouring matter, as annatto, dec., is known by the peculiar tint of the milk; and starchy matters boiled to an emulsion will give their characteristic reactions with iodine, and will furnish a sediment which the microscope will reveal. Fatty emulsions, in initation of milk, were used during the siege of Paris, on the tecommendation of M. Dubrunfaut, who clains to have made a very perfect substitute by emulsifying fatty matter with an artificial whey or serum. This he did by dissolving from 40 to 50 grammes of saccharine matter (lactose, glucose, or cane sugar), and from 20 to 30 grammes of albmen (dried white of egg), and from 1 to 2 gramines of the crystals of carbonate of soda, in half a litre of water, and then cmulsifying with from 50 to 60 grammes of olive oil or other fatty substance. This is best done at a tempcrature of from 120° to 140° Fabr. ; and the liquid so prepared has the appearance of cream, and requires to se mixed with twice its volume of water to acquire the consistence of milk. Gelatine may be used instead of albumen, the mixture being even more nearly like rich cream than the former. M. Gaudin says that any kind of fat may be used for this purpose, 1rovided it is purified with superheated steam; and M. Fan states that even horse grease may be so employed. M. Dumas, however, is of opinion that none of these substitutes can take the place of milk for any time as dietetical agents. Milk from diseased animals, especially those affected with pleuropneumonia, and the foot-and-mouth disease, is very unwholesome, and ought not to be drunk. The diseased product is recognised by the presence of abnormal inflammatory globules of the nature of pus, and by a large amount of epitheliura cells. Preserved condensed milk is now so commonly used for food, that its properties when good should be known. 100 parts of the specimens at present in the market consist of from 14 to. 18 parts of cascin, from 12 to 14 of butter, from 44 to 52 of sugar, and from $2 \cdot 4$ to $2 \cdot 7$ of saline matter-making in all from 77 to 81 parts of solid matter-the rest, namely, from 23 to 10 parts, being water. It appears, therefore, that the concentration of the milk has been carried to about one-third of its original bulk, and that sugar bas then been added, so that when diluted with twice its volume of water, it makes a aweet-tasting milk of ordinary strength. Good cream should contain rom 25 to 34 parts of butter, about 5 of easein, 2 of sugar 2 of saline matter, and from 62 to 56 parts of water.
2. Coffee nas irom very early times been the subject of sophistication. As far back as 1725 , the Act 2 Geo. I. c. 30 , tcok cognizance of the practice, and rendered it penal. In 1803 it was the object of very decisive measures, ior by 43 Geo. III. c. 129, the officers of excise were empowered to search for, and to seize any burnt, scorched, or roasted peas, beans, or other grains or vegetable substance rrepared in initation of coffee; and any person manufacturing or selling the same was liable to a penalty of $£ 100$; gradually, however, it was found that use of torrefied vegetables in lieu of coffee, was becoming general in spite of these restrictions, and, therefore, in 1822, the Legislature (3 Geo. IV. c. 53) thought it expedient to allow the manufacture and sale of scorched or ruasted corn, peas, beans, or turnips, by persons who were not dealers or sellers of coffee or cocoa, provided the same was sold under license in a whole or unground condition, and in its proper name. The penalty for infraction of the law was $£ 100$ in the case of a dealer in coffee or coroa, and $£ 50$ in that of a licensed dealer. At that time the use of chicory was not generally known in England, although it had long before been introduced into France as a substitute for coffee; and its use was encouraged by the first Napoleon, who thought thus to strike a blow at English commerce. It was also used in Belgium and the Netherlands, so that travellers who visited Paris, Brussels, or Amsterdam, became acquainted with the substitate, and gradually acquired a taste for it. About the year 1820 the first parcels of chicory were imported into this country, and it would seem that the public demand for it gradually increased; for in 1832 terere was a minute of the Treasury nullifying the Acts of George III. and George IV., by allowing grocers and other dealers in coffee and cocoa to ell chicory, provided they did not mix it with coffee. At a later period even this restriction was withdrawn; for by the Treasury minute of 1840 , dealers in coffee were permitted to sell a mixture of chicory and coffee, provided a duty of 6 d . per lb. was paid on all the chicory imported for home consumption. The use of it being thus legalised, it rapidly came into farour, and English farmers found it protitable to cultivate the root, and to send it into commerce duty free. This roused the attention of the Government, for the duties on chicory and coffee began seriously to fall off. Even the quality of the coffee imported underwent a change; for instead of demanding the fine flavoured varieties, orders were given for a coarse and strong description of plantation coffee, which would stand a good deal of chicory, as the grocers phrased it. All this was broughe-to the notice of the Lords of the Treasury, and in 1852 they revoked the order of 1840. But so strong Twas the influence of the trade upon Government, that in the following year the offensive minute was withdrawn, and grocers were again permitted to sell mixtures of coffee and chicory, provided the packet was distinctly labelled " mixture of chicory and cofiee." The Treasury even went so far in 1858 as to direct the Commissioners of Inland Revenue, not to object to licensed dealers in coffee keeping and selling mangelwurzel or beet-root mixed with coffee, provided they observed the same conditions is those laid down in the Treasury minute of 1853 as to chicory and coffee. Up to this time the duty on chicory had been merely nominal ; but it was gradually increased until, in 1863, it was equivalent to that levied on coffee, and thus the revenue was protected, while adulteration was encouraged. The extent to which this was practised may be gathered from the Annual Reports of Mr Phillips, the principal chemist of the Inland Revenue Laboratory. During the jears 1856 to 1862 inclusive, when the dealers in coffee and chicory were visited by the officers of Excise, the average number of samples of coffee annually examined was 3053 , and of these

90 , or nearly 3 per cent. were adulterated-the range being from $5 \cdot 1$ per cent. in 1856 , to 1.8 per cent. in 1862 ; and the quantity of chicory in the mixture areraged 24 per cent. In 1860 it was 29 per cent. Now, in all these cases the coffee was sold as pure coffee, with no label upon the package ; but when the mixtures of chicory and coffee were asked for, 7.3 per cent. were improperly labelled, and the average proportions of chicory ranged from 39.8 per cent. in 1859 , to 22.3 per cent. in 1862-the average for the seven years, before the duties were equalised, being 30% per cent. In some cases, however, it reached to nearly 90 per cent. 40 to 50 per cent. being common proportions; and to neutralise the peculiar sweetness, and the earthy flavours which such quantities of chicory induced, it was, and still is the practice, to add more or less of the bitter material called "finings," which is a preparation of burnt sugar or caramel. Even chicory itself is now the subject of adulteration with roasted corn, beans, lupin seeds, acorns, horse-chesnuts, peas, pulse (called "Hambro' pow. der "), mustard husks, coffee husks (called "flights"), and even spent coffee, besides various roots, as carrots, parsnips, mangel warzel, beet-root, dandelion, \&c. It is even sarc that spent \tan and dried bullocks' livers have been employed for the purpose. The tests for these adulterations are the appearances presented by the tissues of the various vegetables when examined under the microscope, and by the fact that infusion of chicory does not become discoloured when it is treated with iodine, as it contains no starchy matters. Ground coffee, also, is of such a greasy nature, from the presence of volatile oil, that when it is thrown upon water, it floats, and does not readily discolour the water; whereas, all the adulterating agents quickly sink in water, and give it a brown porter-like appearance. It is not difficult indeed to separate, in a rough way, the coffee from its adulterating matters by merely stirring a given weight of the mixture in a tumbler of cold water; after a few minutes, the coffee will be found upon the surface of the water, and the other things at the bottom of it. Chemical analysis also re dily discovers the fraud. It might be thought that there was safety in purchasing the coffee-berries entire, but a very ingenious machine has been patented for the manufacture of spurious berries out of common regetable substances.
3. Tea.-Formerly, when the supply of tea to this country was entirely under the control of the East India Company, the adulteration of it in China was rarely practised, as every shipment of it was carefully examined by experienced officers at Canton, who rejected all teas of spurious or doubtful character. At that time, therefore, the adulteration of tea was carried on after it was imported into this country, and there were many legislative enactments prohibiting .the practice. By the Act 2 Geo. I. c. 3, every tea dealer was subject to a penalty of $£ 100$, if he was convicted of counterfeiting, altering, fabricating, or manufacturing tea, or mixing it with other leaves. Later still, the statutes of 4 Geo. II. c. 14, and 17 Geo. III. c. 29 , and 4 Geo. IV. c. 14 , dealt more precisely with the subject, and imposed other penalties. At that time the adulterations of tea were effected in a mholesale manner; for according to Mr Phillips, of the Inland Revenue Office, there were in London alone, in 1843, as many as eight manufactories in thich the exhausted leaves, obtained from hotels, coffee-houses, and elsewhere, were redried, and faced with rose-pink and blacklead, in imitation of genuine tea More recently, however, the adulteration of tea has been practised by the Chinese, who find no difficulty in disposing of any kind of spurions tea to English merchants at Canton and Shanghai, who ship it to this country, and lodge it in the bonded warehouses with all the formalities of an honourable transaction, knowing that the difficulties of convicting them under the Adulteration of Food Acts and

Ňisances Removal Acts aro almost insurmountable; for, in the first place, the local sanitary authorities have no means of obtaining direct information of the existence of unsound or spurious tea, or other article of food or drink in bonded warehouses; and secondly, if such information reaches them indirectly, they have no legal right of entry for the purpose of examining the tea and taking samples. But supposing both of these difficultics have been surmounted, and the tea has been found on analysis to be sparious, there yet remain the difficultios of obtaining a justice's order for its condemnation, au order from the customs fur its removal, and an order which will satisfy the requiremeats of the wharfinger in whose custody it has been placed. But besides these, there are the dificulties of proving the ownership of tho article, and the guilty knowledge of the broker who sells it. In illustration of this, we may refer to the proceedings of the sanitary authorities of the city of London in their cndearour to suppress the importation and sale of spurious tea. In the month of March 1870, Dr Letheby, the food analyst for the city, reported that a large quantity of spurious tea had arrived in London from China, and was lodged in the bonded warehouses of the city. It was described as "Fine Moning Congou" from Shanghai ; and it consisted of the redried leaves of exhansted tea, much of which had become putrid before drying. It appears to have been called in China" Ma-loo mixture"-Maloo being the name of the street where it was prepared, and along the sides of which heaps of this trash might often be seen drying in the sun, with dogs and pigs walking over it. Proceedings were taken under the Nuisance Removal Amendment Act (26 and $27{ }^{\circ}$ Vict. c. 117), for the purpose of obtaining an order for the condemnation and destruction of the tea; but it was argued for the ciefence-1st, That "tea" was not named in the Act of Parliament; 2d, That it was not included-undor the term "vogetable;" $3 d$, That it was not "food;" and 4th, That being in a bonded warehouse, it was not "exposed for sale." The case, however, was so glaring that, after two days' hearing, an order was given by the justice for its destruction ; but as a case was granted for the opinion of the Court of Queen's Bench, the order was suspended; and as the application to the Court was never_mads, the order is still in abeyance. In another case, where many chests of spurious "scented orange Pekoe siftings" were in bond, the order for its condemnation was refuted on the ground that there was not sufficient evidence of the so-called tea bcing uuwholesome, notwith: standing that it was not above one-sixth its proper strength ; that it had little or none of the active principles of tea; that it had an unpleasant odour and an acrid taste ; that a great portion of it was not toa at all,' and that the rest of it was composed of axhausted tea leares, with just enough good tea to give it a flavour. A like failure of justice occurred in the city in 1866, when measures were taken by the sauitary authoritics to prevent the sale of about 350,000 lbs. of rotten and charred tea which had been saved from a fire at Beal's wharf. The adulterations practised by the Chinese are numerous; exhausted tea is redried and glazed in a very deceptive manner. Millions of pounds of leaves of different plants, other than tea, are gathered and mixed with it. Mineral matter toa in the form of china clay, fine sand, and iron filings, are angenjously incorporated with the leaf before curling, so that as much as from 20 to 40 per cent. of impurity is thus mixed with it. The tests, however, for these adulterations are very simple. In the first place, there is the usual trade test of infusion: a quantity of tea, amounting to the weight of a sixpence, is put into a small covered cup, and infused with about four ounces of boiling water for ten minutes. The infusion is then poured off from tho leaves, and is czamined for colour,
taste, and odour-all of which are characteristic. The leaves, too, are examined for soundness, for colour, for size, and for special botanical properties. Impuritics like iron filings, sand, or dirt, are easily scen among the leaves, or at the bottom of the cup; and when these are placed upon a coarse sieve and washed with water, the impurities pass through, and may be collected for examination. The leares, too, betray by their coarseness and botanical characters. tho nature and quality of the tea; for although the leavos of genuine tea differ much in size and form, yet their venation and general structure are very distinctire. Very young leaves are narrow, convoluted, and downy; those next in size and age have their edges delicately scrrated, and the venation is scarcely perceptible; while those of larger size have the renation well marked, there being a series of loops along each side of the leaf extending from the mid-rib to the edge: the serrations also are stronger and deeper, beginning a short distance from the stom and running up the side of the leaf to the apex. In addition to this. the microscopic characters of the surface of the leaf are very characteristic. Further investigations of a chemical nature are sometimes needed to determine the question of adulteration; and thess depend on the well-known composition of good tea. In different cascs, according to the age of the leaf and its mode of treatment, the proportions of its chief constituents may vary; but in a general way it may be said that the arerage composition of tea is as follows :-Moisture from 6 to 10 per cent.; astringent matter (tannin), from 25 to 35 ; gum, from 6 to 7 ; albuminous matters, from 2 to 3 ; thein, from 2 to 3 ; mineral matters (ash), from 5 to 6 ; and ligneous or woody tissue, from 50 to 60 per cent. Green tea, which is geuerally made out of young leaves, contains the largest quantity of soluble matters; and these, when fully exhausted from the leaves by successive boiling in water, amount to from 25 to 35 per cent. of the weight of the tea. In ordinary cases; when the tea is merely infused in boiling water, it does not yield above 25 yer cont. of extractive. Again, the ash of tea is very characteristic of its qualityold and spurious leaves, as well as tea adulterated with mineral matter, yielding more than 6 per cent. of ash. The chief constituents of the ash of good tea are potash and phosphoric acid, with a little lime, silica, and oxide of iron -there being but a trace of chlorine and sulphuric acid; whereas the ash of old and exhausted leaves contains but little potash and phosphoric acid, in proportion to the lime and silica; and in those cases where tea has been damaged by sea water, the amount of chloride is considerable. Iron filings in tea are easily discovered by means of a magnct, there being in some cases as much as 20 or 30 per cent. of this impurity. Even when incorporated with the leaf beforo rolling and glazing, the fraud is detected by the attraction of the tea to the magnct.
4. Cocoa in its natural state contains so much fatty matter (amounting to rather more than half its weight), that it has long been the practice to reduce it by means of sugar or farinaceous substances. The first of these preparations is called chocolate, and the latter is known by such names as granulated, flake, rock, soluble cocoa, \&c. In some cases the mixture is adulterated with mincral matters, as oxide of iron, to give colour: These adulterations are recognised by the appearance and taste of the preparation, by its microscopic characters, by the colour and reaction of its solution, and by the proportions of fat and mineral matters in it.
5. Bread.-Especial care has been taken at all times to protect the public from the dishorest dealing of bakers. Tho assizo of bread, for example, is a very ancient institution; for it was the subject of a proclamation in 1202, and it wis the chicf matter referred to in the notable statute of
the Pillory and Tumbrel (51 Henry III. stat. 16) already mentioned. In the city of London, according to "Liber Albus," the assize of bread was an important institution. It was always made immediately after the feast of St Michael in each year, and very specific instructions were given for the guidance of the four discreet men who were to perform it ; for their decision regulated the business of the baker in respect of the price and quality of bread, de., for the current year; and woe to him if he disregarded itthere being numerous instances in "Liber Albus" of the pillory and the thew in cases where bread had been found adulterated or of short weight. In the time of Anne, the assize of bread was still further regulated (8 Anne, c. 19), and in the year 1815 it was abolished by the statute 55 Geo. III. c. 99. Especial provision, however, was made to guard against the frauds of adulteration, for several Acts of Parliament, especially 31 Geo . II. c. 29 and 1 and 2 Geo. IV. c. 50, prohibited the use of alum and other spurious articles in bread under severe penalties. At the present time, the chief adulterations of bread are with alum or sulphate of copper for the purpose of giving solidity to the gluten of damaged or inferior flour, or with chalk or carbonate of soda to correct the acidity of such flour, or with boiled rice or potatoes to enable the bread to carry more water, and thus to produce a large number of loaves per sack of flour. In practice 100 lbs . of flour will make from 133 to 137 lbs . of bread, a good average being 136 lbs. ; so that a sack of flour of 280 lbs . should yield 95 four-pound loaves. But the art of the baker is exercised to iucrease the number, and this is accomplished by hardening the gluten in the way already mentioned, or by means of a gummy mess of boiled rice, three or four pounds of which, when boiled for two or three hours in as many gallons of water, will make a sack of flour yíeld at least 100 four-pound loaves. Such bread, however, is always dropsical, and gets soft and sodden at the base on standing, and quickly becomes mouldy. A good loaf should have kindness of structure, being neither chaffy, nor flaky, nor crummy, nor sodden. It should also be sweet and agreeable to the palate and the nose, being neither sour nor mouldy. It should keep well, and be easily restored to freshness by heating it in a closed vessel. And a slice of it , subjected to a temperature of from 260° to 280° Fahr. should hardy be discoloured, and should not lose more than 37 or 38 per cent. of its weight. When steeped in water, it should give a milky.sweet solution, and not a ropy acid liquid. The recognition of alum and sulphate of copper in bread requires practice and skilful manipulation, it being surrounded with difficulties. The most easiiy applied process is that described by Mr Horsley. He makes a tincture of logwood, by digesting a quarter of an ounce of the freshly cut chips in five ounces of methylated spirit for eight hours, and filters. A teaspoonfnl of this tincture is put with a like quantity of a saturated solution of carbonate of ammonia into a wine-glassful of water ; and the mixed solutions, which are of a pink colour, are then ?oured into a white-ware plate or dish. A slice of the suspected bread is allowed to soak in it for five minutes, after which it is placed upon a clear plate to drain, and, if alum be present, it will, in the course of an hour or two, acquire a biue colour; if the tint be greenish, it is a sign of suiphate of copper; whereas pure bread gradually loses its pink colour. but never becomes blne or green. The ash of bread will also furnish evidences of the presence of mineral impurities.
6. Flour and other Farinaceous Matters.-The tests for good flour are its sweetness and freedom from acidity and musty flavour. A given weight of the flour, say 500 grains, made into a stiff dough with watcr, and then carefully kneaded under a small stream of water. will yield
a tough elastic gluten, which, when baked in an oven, expands into a clean-looking ball of a rich brown colour, that weighs, when perfectly dry, not less than 50 grains. Bad flour makes a ropy-looking gluten, which is very difficult of manipulation, and is of a dirty brown colour when baked. The ash of flour should not exceed 2 per cent. Other farinaceous matters are recognised under the microscope by the peculiar form, and size, and marking of the individual granules. In this way, the adulterations of oat-meal with barley-meal, and of arrow-root with inferior starches, may be easily detected.
7. Fatty Natters and Oils are the subjects of frequent adulteration. Butter and lard, for example, are mixed with inferior fats, and with water, salt, and farina. Most of these impurities are seen when the sample of buttor or lard is melted in a glass, and allowed to stand in a warm place for a few hours, when the pure fat will float as a transparent oil, while the water, salt, farina, \&c., will subside to the bottom of the glass. Fresh butter generally contains a notable quantity of water, as from 12 to 13 per cent., and sometimes a little salt, and a trace of curd; but these should never exceed two per cent. in the aggregate. Foreign fats are recognised by the granular look of the butter, by its gritty feel, by its taste, and by its odour when warmed. Other tests for these impurities are the melting-point of the sample, and its solubility in a fixed quantity of ether at a temperature of 65° Fahr. 20 grains of the sample, treated with a fluid drachm of ether, in a closed test tube, will look slighty flocculent, and bealmost entirely dissolved in the case of good butter; but it will be mealy and liniment-like with lard, granular with dripping, and almost solid with mutton fat. The melting point of different fats is as follows :-Horse grease, 140°; calf fat, 136°; mutton fat, 130°; beef fat, 99°; hog's lard, 81°; and butter, 80°.

Oils are adulterated with inferior kinds, and the fraud is detected by means of the specific gravity of the oil, and its chemical reactions when tested upon a white plate with a drop of concentrated sulphuric acid-the colour and its time of development being the indications of the quality of the oil. The specific gravity of the animal oils are ae follows :-Neat's-foot oil, 880 ; tallow oil, 900 ; dolphin oil, 918 ; cod-liver oil, 921 to 926 ; whale oil, 827 ; seal oil, 934 ; porpoise oil, 937 . Among the vegetable oils the following are the most important:-Rape or colza oil, 913 to 910 ; olive oil, 918 ; filbert oil, 916 ; beech-nut, 922 ; walnut, 923 ; cotton-seed, 923 to 928 ; poppy, 924 ; sweet almond, 918 to 922 ; hazel-nut and hemp-seed, 926 ; and linseed, 634 to 936.
8. Isinglass is often adulterated with gelatine, the fraud being ingeniously contrived so as to retain to a large extent the well-known characters of genuine isinglass; but it may be recognised in the following way: immersed in cold water, the shreds of genuine isinglass become white and opaque like cotton threads, and they swell equally in all directions, whereas those of gelatine become transparent and ribbonlike. Isinglass dissolves completely in boiling water, and makes a slightly turbid solution, which has a faint fishy smell, and is without action on litnus paper; whereas gelatine leaves a quantity of insoluble matter, and the solution smells of glue, and has an acid reaction. Strong acetic acid swells up the shreds of isinglass, and renders them soft and gelatinous; but it hardens gelatine. And, lastly, the ash of genuine isinglass is rery small in quantity, and has a reddish colour; whereas that of gelatine is bulky (weighing from 2 to 3 per cent.), and has a perfectly white appearance from the presence of calcareous salts. Genuine isinglass is produced from the swimming-bladder or sound of the sturgeon, but gelatine is a sort of clarified glue obtained from bones, clippings of hides, \&c. Boussingault states that the Bourwilier glue. Which is prepared from tho
bones of horses slaughtered at that establishment, is tiansparent, and uearly colourless, and is on that account much sought after by restaurateurs ior making jellies. It enters largely, too, iuto the composition of French gelatine.
9. Sugar.-During the last ten or twelve years the manufacture of sugar from starch has been an important branch of industry: The product is sent into commerce under the names of glucose, saccharum, and british sugar ; and although it is chiefly used for brewing purposes, it is also emplujed for adulterating brown sugar, and for making confectionary, jams, marmalades, and fruit jellies. In the year 1870, as much as $25,737 \mathrm{cwt}$. of this sugar was manufactured for home consumption, and since then the quantity has been increasing. It is produced from rice or other starch, by submitting it to the action of very dilute sulphuric acid at a boiling temperature-the acid being afterwards nentralised with lime, and the solution evaporated to the setting point. The crystals of grape sugar are very small, and are entirely without that sparkling character which distinguishes cane sugar. They are less soluble in water, but more so in alcohol, than cane sugar, and they have only about one-third the swectening power. Boiled with a solution of caustic potash, they quickly produce a deep brown hquid, and they hare the power of reducing the hydrated oxide of comper, when heated therewith in an alkaline solution. These characters are distinctive of it, and will serve to recognise it in the brown sugars of commerce.
10. Mestard is generally so acrid and porrerful in its flavour that it is commonly diluted with flour, or other farinaceous matter, turmeric being added to improve its appearance. The mixture is recognised by means of the microscope, when the granules of starch and the colouring matters of turmeric are easily seen. Genuine mustard does not contain starch, and therefore does not become blue when it is treated with a solution of iodine.
11. Spices, as pepper, cinnamon, curry powder, ginger, cayenne, \&c., are more or less the subjects of frandulent adulteration, which can readily be detected by the microscope, and by an examination of the mineral constituents. Formerly, pepper was ground by the retail dealer, ard then there was no excuse for the presence of adulterating agents; but in 1856, the wholesale dealer undertook the business of grinding, and from that time adulteration has been on the increase. In some cases, the article does not contain a trace of pepper, but is made up of gypsum, mustard husk, and a little starch. In the Ninih Report of the Commissioners of Inland-Revenue, there is a staiement by Mr Phillips, the chief chemist of the Excise, that he found a sample of so-called pepper containing 25 per cent. gypsum, the rest being mustard husks and a little cercal 3tarch, without a trace of pepper. Another sample consisted of 16 per cent. gypsum, 44 mustard husks, a little cereal stareh, and the rest pepper. Four other samples, closely resembling pepper, so as to deceive an incxperienced eyc, were found to contain about 22 per cent. of gypsum, with sand, starch, and mustard husk. Linseed meal and powdered capslcums are likewise used for adulterating pepper. The chief sophistications of ginger powder are sago-meal, ground rice, and turmeric; while the colouring agents of curry powders and cayenne are ferruginous earths, brick dust, and even vermilion and red-lead. Spices, too, are sometimes exhausted of their active properties before they are ground and sold to the public.
12. Beer, Ale, and Porter.- The assize of ale is contemporaneous with that of bread, being described as the "Assisce Panis ef Cervesice," in old documents. In the statute 51 Henry III. c. 16 (1266), they are spoken of as ancient and well-known institutions, the object of them being to regulate the quality and price of these articles.

The ottiecrs apponted tu determine the goodness on are were called "ale conners," or "alo tasters" (gustatores cervisice), and were elected annually in the court-lect of each manor, and in the city of Loudon at the ward-mote. according to the advice and assent of the alderman and other rerutable men of the ward. Very specific instructions are given in Liber Allus of the business of the brewer, and of the penalties for any defanlt thereof-it being ordained that no ale should be sold without havipg been tasted and approved by the ale conners of the district. Even now these officers are clected in the city of London with the old formalities, but the real duty of examining the quality of alc, beer, and porter has for many years bceu in the hauds of the Excise. As far back as the time of Anne there was a law prohibiting the use of Cocculus indicus or any unwholesone ingredient in the brewing of beer, under severe penalties, the brewer being restricted to the use of malt and hops alone; but gradually, as the taste for porter came into fashion (since 1730), and during the French war, when the price of malt was very high, certain colouring matters prepared from burnt sugar were allowed to be used, and this at last became so necessary to the trade, that it was legalised by the Act 51 Geo. III. c. 51. Five years after, however, it was prohibited by the statute 56 Geo. Ill. c. 58 , which declared that after the 5 th of July 1817, no brewer, or dealer, or retailer of beer, shall reccive, or use, or have in his passeasion or custody, any liquor, extract, or other material or preparation, for the purpose of darkening the colour of worts or beer, other than brown malt. He was also prohibited from using molasses, honcy, liquorice, vitriol, quassia, Cocculus indicus, grains of paradise, guinea pepper, or opium, or any extract or preparation of the same, or any substitute for malt or bops, under a penalty of $£ 200$; and no chemist or vendor of drugs was permitted to sell, send, or deliver any such things to a brewer or retailer of beer under a penalty of $£ 500$. Later still, in 1830, the Act for permitting the gencral sale of beer and cider by retail in England (I Will. IV. c. 64), declares that if any person so licensed shall knowingly sell any beer, ale, or porter, made otherwise than from malt and hops, or shall mix, or cause to be admixed, any drugs or other pernicious ingredients with any beer sold in his house or premises, or shall fraudulently dilute or in any way adulterate any such beer, \&c., shall for the first offence forfeit and pay a sum of from $£ 10$ to $£ 20$, and for the second offence shall be adjudged disqualified from selling becr, ale, or porter for two years, or forfeit a sum of from $£ 20$ to $£ 50$; and the same regulations applied to cider and perry. The exccution of these acts rested with the Excise, and it would seem that three cldsses of adulterations were practised, namely, lst, Those which gare fictitious strength to the beer, as Cocculus indims, tobacco, opium, \&c.; $2 d$, Those which improved the flavous and body of the beer, as grains of paradise, capsicum pods, ground ginger, coriander sceds, caraway seeds, sweet flag, liquorice, molasses, and salt ; and, $3 d$, Those which gave bitterness, as quassia, chiretta, horehound, gentian, \&a. In London the publicans were not in the habit of practising the first kind of adulteration, but confined themselves to the second and third. In the country, bowever, according to Mr: Phillips, it was quite otherwise, especially with brewers who retailed their own beer; for he found that they frequently used tobacco and Cocculus indicus. He even thinks that the cases of brutal and purposeless violence which were so often recorded were referable to the maddening influence of these ingredients. By the Act 24 and 25 Vict. c. 22 (1863), when the duty on hops was relieved, these bitters and substitutes were permitted, and so also was sugar, provided the full duty of 12 s . 8 d . per cwt , was paid upon it Later still, by the Licensing Act 1872 (35
and 36 Vict. c. 94), provision is made to protect the public from the adulteration of beer; for it prohibits the possession, sale, or use of beer adulterated with Cocculus indicus, chloride of sodium (otherwise common salt), copperas, opium, Indian hemp, strychnine, tobaeco, darnelseed, extract of logrood, salts of zinc or lead, alum, and any extract or compound thereof, under a penalty of $£ 20$ for the first offence, and $£ 100$ for the second offence, together with disqualification of both the dealer and the house for a certain period. The police and the officers of Inland Revenue are empowered to search for and obtain samples of such becr, and the aualyst is a person appointed by the Excise. The tests for the adulteration of beer, ale, and porter, are not easily applied except by a skilled chemist; but it may be said that the chief qualities of good beer are its density, sweetness, spirituosity, piquancy, flavour, and frothiness. The density of ale and beer ranges from 1008 to $1 \therefore 20$ (water being 1000)-the average boing 1015 ; and in ilie case of porter it ranges from 1015 to 1020. The amount of alcohol in these beverages ranges from 5 to 9 per cent., the average being about 7. The solid extract is from 4 to 6 per cent., and the ash or mineral matter is from 0.2 to 0.3 per cent. very little of which should be common salt.
13. Malt.-The Excise do not permit malt to be adulterated with ungerminated grain ; but it is very difficult to determine whether the presence of these grains is accidental or ctherwise, as in some wet seasons when barley is badly stacked it will heat or become mouldy, and the grains•will lose their vitality. Even if the grain is dried artificially at a temperature of from 140° to 150° Fahr., the vitality of the seed will be destroyed. In some seasons as much as from 34 to 70 per cent. of the grain will be killed. Roasted unmalted grain, instead of the malted, is prohibited by 19 and 20 Vict. c. 34 , but there is no douht that the substitution is largely practised.
14. Wine and Spirits.-The denunciations in the Scripture against thense of mixed wine havereference, in all probebility, to wines which were fortified or adulierated with stimolatiag and intoxicating berbs. In this country, measures were taken at a very early period to prevent the sale of unsound and unwholesome wine. The Vintners' Company, for example, which was incorporated in the reign of Edward the Third, under the name of the "Wine Tonners," had control over the price and purity of the article, there being chosen every year "persons of the,most sufficient, most true, and most cumning of the craft (that hold no taverns)," who were to see to the condition of all wines sold by retail, and who were to govern the taverners in all their proceedings. Bad or adulterated wine was thrown into the gutters, and the possessors thereof were set in-the pillory. It mould scem that the wine which was most adulterated mas that called Gascoign; for in the tenth year of the reign of Henry the Sixth (1432), there was a petition to the king on the subject, praying him to amend the same. Stowe, in fact, says "that in the 6th of Henry VI, the Lombardes currupting their sweete wines, when the knowledge thereof came to John Ranwell, maior of London, hc, in divers places of the citie, commanded the heades of the buts and other vessels in the open strectes to be broken, to the number of fifty, so that the liquor running forth passed ibrough the citie like a stream of raine water, in the sight of all the people, from whence there issued a most loathsume eavour." In modern times the art of adultcrating wiue has been brought to great perfection; for it consists not merely in the blending of wines of different countries and rintages, but in the use of materials which are entirely foreign to the grape. Port winc, for example, is manufactured from Beni Carlos, Figneras, and red Cape, with a touch of Mountain to soften the mixrure and give it richness-
the body and flavour being produced by gum-dragon, and the colour by "berry-dye," which is a preparation of German bilberries. To this is added the washings of brandy casks ("brandy cowe") and a little salt of tartar to form a crust. Sherry of the brown kind and of low price is mingled with Cape and cheap brandy, and is flavoured with "brandycowe," sugar-candy, and bitter almonds. If the colour be too high it is lowered by means of blood, and sofiness is imparted to it by grm-benzoin. Pale sherries are produced by means of plaster of Paris or gypsum, by a process called "plastering," and the effect of it is to remove the natural acids (tartaric and malic), as well as the colour of the wiace. In this way a pale, dry, bitter, and sub-acid mine is produced, charged with the sulphates of lime and potash. Large quantities of what are called clarets are manufactured. in this country from inferior French wine and rough cider, the colour being imparted to it by turnsol or cockineal. Madeira is produced from Vidonia with a little Mountai, and Cape, to which are added bitter almonds and sugar. Even Vidonia and Cape are adulterated with cider and rum -carbonate of soda being used to correct the acidity. Common Sicilian wine is transformed into Tokity, Malaga, and Lachryma Christi. Champarme is produced from rhnbarb stalks, gooseberries, and sugar, the product being largely consumed at balls, races, masquerades, and public dinners. Of Jate, too, since the investigations of Petiot, Thenard, Gall, Hussman, and others, the manufacture of wine from sugar and the refuse busk or mark of the grape has been Jargely practised, insomuch that a great part of the wine of France and Germany has ceased to be the juice of the grape at all. In point of fact, the processes of blending, softening, fortifying, swectening, plastering, \&c., dc., are carried on to such an extent that it is hardly possible to obtain a sample of genuine wine, even at first hand; and books are written on the subject,"in which the plainest directions are given for the fabrication of every kind of wine, there being druggists called "brewers" druggists," who supply the agents of adulteration. These are as follow.:-Elderberry, logwood, brazil-wood, red saunders-wood, cudbear, red beet-root, de., for colour; litharge, lime or carbonate of lime, carbonate of soda, and carbonate of potash, to corrcct acidty; catechu, Jogwood, sloe-leaves, and oak-bark, for astringency; sulphate of lime, gypsum, or Spanish earth, and alum for removing colonr; cane sugar for giving sweetness and body ; glucose or starch sugar for artificial wine; alcohol for fortifying; and ether, especially acetic ether, for giving bouquet and flavour. The tests for these agents are not readily applied, except by tie professional chemist ; but they are promptly recognised by the stomach and the brain, for good wine, though it may intoxicate, rarely leaves a disagreeable impression. In a general way, it may be said that the specific gravity of genuine wine ranges from 991 to 997 ; and the amount of alcohol in it never excceds 20 per cent. by volume. Tho solid residue in it, when evaporated to perfect dryness, amounts to from 133 to $2 \cdot 15$ per cent. in Rhine wines, and in the light wines of France; to from 2.85' to 3.73 fer cent. in. Teneriffe and Cape; to from 3.49 to 4.54 per ce:it. in sherry and Madeira; and to from 3.75 to 5.24 in $p 0.4$. Sweet rines, as Lachryma Christi, Muscat, Malasa, Tokar, Bergerac. .champagne, and the wines of the Palatinate, contain a much larger percentage of solid matter in them. The ash, or involatile constituents of wine, should ranga betreen 0.19 and 0.5 per cent. It should be strongly alkaline, and should consist of carbonate, sulphate, aud phosphate of potash, chloride of sodium, carbonate of liuse, and a little alumina. As a distinctive mark of genuine uine, the ash is of the greatest value. Again, pure mixe gives but slight precipitates with oxalate of ammonia, with acid nitrate of silver, and acid nitrate of baytion The
colouring matters of whe may be scparated and analysed by the process of Mulder, which is too claborate for description in this place, and so also are the tests for rccognising spurious colours, as the test of Vogel, Jacob, and others (solutiuns of acetatc of lcad), that of Pelouze and Frenny (basic acetate of lead); of Ness von Escnbeck (solutions of alum and of carbonate of potash); of Batilliat (aımonia); of Filhol (aminonia and sulphide of ammonium); and others. At present, the spectroscope has not furnished, as was expected, any very reliablo indications of the nature of the colouring matters of wine. In faet, the whole subject rcquires fuller investigation. The adulteration of spirits consists mustly in the addition of water and in the use of inferior spirit, recipes being given in the Publican's Guide, and other such bouks, for what is called making up spirits for sale. The recognition of these frauds rests with the Excise, under the Act 35 and 36 Vict. c. 94.
15. Tobacco and Snuff.-The adulteration of thess articles is prolibited and otherwise prorided for by the statutes 5 and 6 Vict. c. 93 , and 25 and 26 Vict. c. 7 , and 30 and 31 Vict. c. 90 . manufacturers of tobacco and snuff being prohibited from using or baving in their passession sugar, honey, nolasses, treacle, lcaves, herbs, or jlants, powdered wood, moss, weeds, sea-weeds, or any ground or ungruund roasted grain, chicory, lime, sand. umbre, ochre, or other earths, nor anything capable of being used to increase the weight of tobacco or snuff, under a penalty of $£ 200$-water alone being allowed in the manufacture of tubaceo; and water, salt, and alkaline salts, as well as lime in the manufacture of snuffs, under a penalty of $£ 300$. But it appears from the reports of the Cominissioners of Inland Revenue, that the adulteration of tobacco and snuff is still largely practised. Tobacco is adulterated with molasses, sugar, aloes, liquorice, gum, catechu, oil and lamp-black, alum, tannic acid and iron, logwood, and such leaves as rhubarb, clicory, cabbage, burdock, colts-foot, and excess of salt and water. In the year 1862 it was discovered that certain lrish manufacturers were adulterating their Cavendish and roll-tobacco with liquorice, in imitation of the sweetened Cavendish of North America, and therefore in 1863 the practice was legalised in the case of Cavendish and negro-bead by the Manufactured Tabacco Aet, 1863. Snuffs are adulterated with excess of alkaline salts, lime, sand, ferruginous earths, fustic, torresied oat meal, peat-muss, ground velonia cups, bichromate of potash, and chromate of lead. Mr Phillips states, in the Fourth Report of the Commissioners of Inland Revenue, that up to 1856 the praotice of adulterating snuff was very prevalent, particularly in Ireland-52 per cent. of the samples analyscd being found to be illicit; in 1858 and subsequently, however, the proportion has been much less. These adulterations are recugnised by drying the sample, and nuting the loss of weight, and by the amount and nature of the ash left on incineratioo. Foreign leaves, \&c., are discovered by the aid of the microscope.
16. Among the adulterations which are practised for the purpose of improving the appearance of the article, and giving it a false strength, are the following :-The addition of alum or sulphate of copper to bread; the facing of black tea mith black lead, and of green with a mixture of indigo or Prussian blue with turmeric and china clay; the treatment of pickles and preserved fruits with a sall of copp-er, which has the property of mordanting and brightening the green colouring matter of vegetables. In some cases the quantity of copper has been so large as to give a coppery appearance to a steel knife or fork kept in the pickle ; but ai ail times the metal may be discorered by the pink colour of the ash, and by its becoming blue when treated with a little strong ammonia. Ferruginous earths are anded to cuces anchovies, potted meats, and the preparations of
cocoa. This also is recognised by the amount and cotour of the ash. Nineral pigments, as yellow and orange choronate of lead, green arsenite of copper, dec., are frectuently used in colouring confectionery, and have produced serious results t) those who have eaten it. Lastly, with a riew of giving false strength to the article, sulphuric acill bas been added to vinegar and lime-juice ; black jack or burnt sugar to coffec and chicory ; catechu or terra jin, ${ }^{p}$ mica to cxhausted tca; Cocculus indicus to beer and porter; cayenne and mustard husks to pepper, de.
17. Adulterations are also practised for the purpose of debasing the article, as when the cream is taken from milk by the process of skimining; or when the active principles of spices, \&c., bave been removed by distillation.
18. Accideutal adultcrations may occur from the admixture of darnel or crgot with flour: siliccous and carthy matters with substances that are gronnd in a mill ; mould or acari with flour, sugar, cheese. ; and copper, zinc, or lead may be accidentally derived from the vessels in which any acid substance or liquid has been prepared or kept. In this manner cider and winc have become tainted with lead; sour milk with ziuc; and jellies, jans, and preserves with copper.
19. Adulteration of Cattle Foods.-In a recent trial, where the question of adulteration was raised, a lin,scedcake maker stated in evidence that his ordinary oil-rake consisted of 50 parts ground sesamé cake, 20 parts of bralu. and 30 of linseed and liuseed siftings. To prevent the detection of this fraud by an examination of the cake with the naked eye, it is costomary to powder the materials very fine by meaus of a machine called a " Buffein machine," after which they are thoroughly mixed together and pressed into a caike. It would seem, indect, that pure linseed cakc is not saleable, escept in a fow localities, as in the neighbourhood of Gainsborough, and in the ayricultural centres of Lincolnshire and Norfolk, where the genuine cake is appreciated. Elsewhere the adulterated article comunands a ready sale, on account of its low price; and thus encouragement is given to the use of all sorts of adulterating agents, as earth-nut, cotton, beech, and sesame bran, ricehusks, oat-dust, and other such worthless matter. Very recently this important subject has been treated by Dr Voelcker in a paper "On the Characters of Pure and Mixed Linseed Cakes," which was published in the Journal of the Royal Agricultural Society of Eingland (vol ix. part 1). Some of the impurities of linsecd cake may be due to the accidental presence of the sceds of various wecds and wild plants, which the careless farmer has allowed to grow upon his land. Most of these, however, are easily remuved by one or two siftings, as in the case with clean linsect; but the siftings are not thrown a away; they are used for adulterating other samples of linsced-makiug the second, third, and cven fourth qualities of Riga and St Petersbury seed. Occasionally the siftings are sent out to sea in barges to meet the vessels coming from the north with linseed on board; there the mixture is made; and when the vessels reach the port for which they are destined, the cargo is sold for genuine linseed "as importcd." Bat besides these impurities, the linsced cake of commerce contains a large proportion of other cakes, as rape, earthnut, decorticated and undecorticated cotton seed, beech-nut, hemp-seed, cocoa-nut, cocoa, palm-nut, palm-kernels, niger sced, sesamé or teal seed, poppy, castor oil, bassia, curcas, indigo sced, olive, \&cc., besides bran, acorns, careb-beans, and the busks or shades of earth-nut, oats, barley, rice, and other refuse. Some of these things are actually poisonous to cattle, as in the case of castor-oil cake, curcas bean, purging flax, wild mustard, wild radish, dec.; others are of doubtful quality, as corn cockle, darnel, indigo seed, earth-nut. \&c. ; and many are disagreeable to the taste, on
account of rancidity and other properties, as cocoa-nut cake, palm-nut cake, bassia cake, \&c.; while many are so charged with woody matters as to be indigestible and irritating in their action, as cotton, olive, palm-put, husks of rice, cocoa-nut fibre, saw-dust, \&c. These inpurities are sumetimes easily recognised by the naked eye, or by a lens of low power. At other times the colour of the cake is an indication of its impurity. The taste of it also is frequently characteristic; for while linseed has a sweet mucilaginous taste, rape seed is turnipy, mustard acrid, dodder like garlic, bassia bitter, \&cc. Theu, again, the action of a little warm water will develope the flavour of impurities-rape giving off a strung odurr of turnip, mustard its well-known acrid flavour, wild radish and other impurities their characteristic smells. When examined chemically it is found that adulterated and dirty cakes show a deficiency of oil and albuminous matter, and a large excess of woody fibre and mineral substance. In good cake the moisture ranges from 10 to 14 per cent., the oil from 10 to 15 , the albuminous matter from 25 to 35 , the mucilage, sugar, and digestible fibre to from 20 to 30 per cent., the woody fibre to from 9 to 14 , and the mineral matter or ash to from 6 to 8 per cent. Cake that has been shipped too fresh is apt to heat and become mouldy; in which case it will lose its fine aroma, and be of inferior quality: it may even be injurious to animals feeding on it.
20. The Adulteration of Seeds, in fraud of her Majesty's subjects, and to the great detrineat of agriculture, has been provided for by the Act 32 and 33 Vict. c. 112, wherein it is prohibited to kill, dye, or to sulphur seeds, or any way to give them a false appearance, under a penalty of $£ 5$ for the first offence, and $£ 50$ for the second But for all this extensive frauds are practised : turnip seed is adulterated with rape, wild mustard or charlock, the vitality of which has been destroyed by kiln-drying at a high temperature ; old turnip seed (kiln-dried) is also used for diluting fresh seed; and it is notorious that such seed can be obtained in commerce by the ton. Again, clover seed is often killed and dyed-one of the commonest frauds being to dye trefoil, and to sell it for red clover; the pinkish or yellowish-brown tint and metallic look being given with a weak solution of logwood and alum, or with a strong solution of logwood alone, and then it is shaken up with a little black lead. Another trick is to dye white clover seed with a weak solution of indigo, and thus to make it look like hybrid clover which has a bluish-green colour. When trefoil and white clover seed have become clanged by age and have lost their yellowish colour, they are dyed with infusion of turmeric, and then toned down with the fumes of borning sulphar; in fact, these fumes are used to brighten up all sorts of seeds that have become brown by keeping; but they destroy the vitality of the seed.
21. Adulteration of Drugs.-This at all times bas been considered a serious offence. In the city of London, the president and censors of the College of Physicians have power to search for apothecaries' wares, drugs, and stuffs, and on finding them defective, corrupted, and not meet nor convenient to be ministered in any medicines for the health of man's body, they are to destroy them, and are to correct and punish the offenders by committing them to prison, and amercing them in a penalty not cecceeding $£ 20$. These wholesome powers were granted to the college by the Acts 14 and 15 Hen. VIII. c. 5 , and 32 Hen. VIII. c. 40 , and 2 Mary, c. 9 ; but althongh they are still in force, and might be advantageously exercised, yet they have long since fallen into disuse; and if it had not been for the laudable efforts of the Pharmacentical Society of Great Britain, there would have been no practical remedy for the adulteration of drugs. The Society was founded in 1841, for the purpose of advancing
the status and education of those who were engaged in the preparation and sale of mediciues, and it was incorporated by Royal Charter in 1843. A fev years after, in 1852, the qualifications of pharmaceutical clecmists were regulated by Act of Parliament (15 and 16 Vict. c. 56), and in 1868 it was further provided, by the 31 and 32 Vict. c. 121, that no person should be permitted to engage in the sale or dispensing of medicines, or to nse the title of chemistand druggist, or dispensing chemist, ur pharmaceutist, without being duly qualified, and registered as a pharma. ceutical chemist. The adulteration of medicine was also prohibited by the incorporation of the Adulteration of Food and Drink Act 1860 (23 and 24 Vict. c. 84), it being declared that such adulteration should be deemed an admixture injurious to health. More recently, in 1872, the Act 35 and 36 Vict. c. 74 , renders it penal for any one to adulterate a drug for sale, or to sell such drug. In the first case the penaity is a sum not exceeding $£ 50$, together with the costs of the conviction; and for a second offeuce he shall be guilty of a misdem-anour, and be imprisoned for a period not exceeding six calendar months, with hard labour. In the second case, the scller of an adulterated drug is subject to a penalty not exceeding $£ 20$, togother with costs; and for a second offence he shall have his name, place of abode, and offence published in any manner that the justice thioks fit. The chief adulterations and debasing of drugs are the follow-ing:-In the case of regetable substances, as jalap, opium, rhubarb, cinchona bark, \&c., foreign substances are added to make up for the loss of weight in drying and pordering, there being in many cases a trade allowance of only four per cent. for such loss, whereas in almost all cases it ex ceeds this. Roots, seeds, and barks, for example, lose from 6 to 9 per cent., scammony 7 per cent., alocs 9 , sarsaparilla 10 , squills 12 , and opium from 15 to 25 per cent. At other times foreign substances are added to assist the grinding, or to improve the appearance of the article. Occasionally the active principles are removed, or the medicine has become worthless from keeping or from faulty preparation. In the case of the alkaloids, inert substances, as sugar: starch, gum, de., are mixed with them to increase their weight and bulk. Lastly, the activity of a vesetable drug may greatly depend on its mode aud place of culture. With respect to mineral preparations, there is cren a still larger feld for adulteration, insomuch that the purity of the article is entirely regulated by the wholesale price of it. Again, directly after the Act of 1856 (18 and 19 Vict. c. 38), which permitted the sale of methylated spirit-that is, inferior spirit mixed with wood-naphtha, duty free for manufacturing purposes-advantage was taken of it by many chemists and druggists, and the cheap spirit was used for making tinctures and other medicinal preparations. This, however, came at last to be so serious and dangerous a practice, and was withal so great a frand on the revenne, that means were taken to suppress it by the Act 29 and 30 Vict. c. $6 t$, wherein it is provided that such spirit shall not be used in any medicinal preparation, except in the manufacture of chloroform, ether, and the vegetable alkaloids, or in the preparation of other things whereby the spirit was afterwards entirely dissipated. But Mr Pbillips remarks, in the Ninth Report of the Commissioners of Inland Revenue, that a ferv instances have been discovered of the sale of drinks under the names of "Indianna brandee," "medicated whiskee," " pure Islay mountain," "Indian tincture," dre., the exciting principle of all of which was found to be hyponitrous ether prepared from methylated spirit. In the case of a drink called "Hollands whiskee," it was produced by distilling the methylated spirit with a little nitric acid, and then sweetening with treacle, and flavouring with rhubarb, chloroform,
icenugreek, dec., so as to conceal its real character ; and notwithstanding its disagrecable flavour, it got into public fareur in some districts, especially in Ireland, and was largely sold as a cheap means of producing intoxication.
22. The Aldulteration of Textile Fabrics.-Woollen goods have for years past been largely adulterated with refuse fibres called "shoddy" or "mingo." The practice was denounced by Latimer in one of his sermons at Paul's Cross, preached beforo king Edward in 1635, whercin he spoke of it as the devil's artifice, saying that they were wont to make beds of flock, but now they had turned it into dust, which he aptly called "Devil's dust," and that the cloth werker did se incerporate it to the eloth that it was wonderful to see. The practice is still in vogue, for there is hardly a piece of cheap cloth without it. Sheddy as originally used was merely the flutf or waste from the looms, but now it consists of any kind of woollen rubbish, as old blankets, stockings, \&e., pulled to picces in a maekinc ealled the "Devil." Mingo is cven a shorter description of fibre, and is made in the same way from old rags. No less than forty millions of pounds of these are made annually in Yorkshire, at an estimated valuc of eight millions sterling, and all of it is used for adulterating woollen cloth. There is even another kind of refuse called "extract," which is emplayed for the same purpose. It consists of the weol obtained from the rags of mixed goods; that is, goods which have a cetton or linen warp blended with wool. The cotten is destroyed by chemical ageney, ehiefly by means of dilute sulphuric acid, and the wool is left intact.

The cotton fabrics and gray goods of Lancashire and Yorkshire are largely adulterated with size and china clay, tho object being to give them increased weight and substance. Up to about twenty years ago the sizing of cotton goods was effected with a mixture of fermented flour, paste, and tallew, by which means the tenacity of the warp was increased and the friction of weaving was lessened. To effect this about 20 per cent. of size was used; but in 1854, when tallow became dear in censequence of the Russian war, a substitute was found in china clay. Later still in 1862, when the cotton famine began to be felt, and the long-fibred American cotton grews scarce, it was feund necessary to give tenacity to the twist made from shorter fibre by using more size. In this manner as much as from 50 to 90 per cent. of size has get to be used, the greater part of it being clina elay, with a certain proportion of hygroscopic matter, such as chloride of magnesium, to keep the material damp and supple. The impurity is easily detceted by washing the eloth, and ascertaining the loss of weight before and after the operation. Cheap calicees are also largely impregnated with lime, which has been used in the process of bleaching, and left in them. A eloud of dust flics out of such fabrics when they are tern. Silk also is made heavier and stouter by the incorporation of dye stuffs used expressly for the purpose. This is gencrally the case with dark-coloured silks, black and brown, as lighter shades will hardly admit of it; as much indeed as half the weight of the silk may be thus incerporated with it.
23. Falsification of Coin and Precious Metals.-In AngloSaxen times the debasing or counterfeiting of coin was punished by the loss of the hand. In later times it has been eriminal in the highest degree. By the statute 21 and 25 Vict. e. 99 , the counterfeiting of geld or silver coin is felony, and in Scotland is a high crime and offence. Hardly less severe is the punishment for debasing, diminishing, lightening, or impairing the value of the eurrent coin of the realm; and very effectual means are taken to secure their standard ralue when put inte cireulation. In the first place, an officer is appointed by the Crown to superintend the coinage, and to be answerable for ite goodncss.
(Sce Mint and Corvage.) In the second place, the coin is tested, as to its weight and fineness, by persons skilled in the goldsmith's crafi. (See Assay.) But notwithstanding this, the coins of the realm, as issucd from the mint, have often been debasell to a considerable extent ; for, according to Lord Liverpeol, the total debasement of the silver mency of this country, from the time of the Conquest to the reign of Elizabeth, was net less than 65 per cent. It is noterieus that in Spain, Austria, and Turkey the degradation of the silver coin, cen at the present time, is-carried to a serious extent. By the Comage Act 1870 (33 and 3t Vict. e. 10) the composition and weight of all the coins of this country are strietly provided for; and in the case of gold coin, the limits or "rernedy" of fineness and weight are excecdingly narrors. The composition of the coin is fixed at eleven-twelfths fine geld, and one-twelfth alloy (copper); so that in 1000 parts of our geld cein there are 916.66 parts of fine gold. This is called its millesimal fineness, and the allowance for crror in composition is limited to 0.002 per 1000 parts. The weight of the sovereign is fixed at $123 \cdot 274.47$ grains, and the limit of error in weight is the 0.2 of a grain ; and in propertion with all ether gold ceins. In the case of silver coins, the composition is thirty-seven forticths of fine silver, and three-fortieths of alloy (copper) -the nillesimal fineness being therefore 925 parts of silver; the remechy or allowauce of fineness is just twiee that of gold-namely, 0.004 per 1000 parts. The weight of the silver coin is at the rate of $87 \cdot 27272$ grains per shilling of value; and the remedy or allewance of error io confined to 0.36363 of a grain per shilling. Lastly, the breuze ceinage of the country censists of 95 parts copper, 4 tin, and 1 zine: the weight of a penny being 145.83333 grains; and the allowance for error is 291666 grains per penny. The specific gravity of the several descriptions of coin is 17.53 for gold, 10.35 for silver, and. 8.89 for bronze. So accurate are the composition and wcight of the coins issued from the mint at the present time, that at the last trial ef the "Pyx" in July 1871, the jury reported that every piece scparately cxamined (representing many millions sterling) was found to be accurately coincd in regard to weight and fineness. In the case of the gold coin, the fineness ranged from 916.2 to 917 parts per 1000. These, indeed, were the extremes of only $2 \cdot 66$ per cent. of the coins exarnined, the great bulk of them, namely 72.65 per cent. having a fineness of from 916.5 to 916.7 per 1000. Now, when it is considered that the composition of an alloy of gold and copper can be ascertained to the one-ten thousandth part, and that the delicacy of a balance is to the thousandth part of a grain, it must be evident that the accuracy and perfection of eoining in this country are remarkably precise. As, however, the weight of gold and silver coin must become less by continual wear, the Aets 22 and 25 Vict. c. 99 , and 33 and 34 Vict. c. 10 provide for it. It decs not appear that the practice of debasing coin is carried on to any great extent in this country; for in the second Annual Repert of the DeputyMaster of the Mint (1871), the chemist of the Mint (Mr W. Chandler Robets) says that only two sovereigns were submitted to him, the weight of which had been fraudulently reduced by means of a solvent, aided by electricity. In former times, however, the process of "sweating" was rery frequently employed.
The adulteration of precious motals was prohibited and provided for by the rules and regulations of the rariens guilds and corporations which took cognizance of the goldsmiths' craft. As carly as the 26 th of Henry II. (1180) the Goldsmiths' Company of London was founded, and in 1327, when it was incorperated, it was invested with the privilege and pawer of inspecting, trying, and regulating all gold and silver wares throughout the king-
dom, and of punishing all offenders whu were found guilty of working adulterated gold or silver. 'The chief offenders appear to have been the cutlers, who were charged with covering base metal in such a manner that it could not easily be detected. It was therefore provided that all manner of vessels of gold and silver should be of "good and true alloy;" and power was given to the company to "go from shop to shop to assay if the gold was good," aud finding that it was not of the right touch, it was to bo seized and forfeited for the king. Subsequently, by tha statute of 2 Henry VI. (1424), it was provided that uoue should work gold unless it be as good as the alloy of the "mystery," and that silver wares should be as good or better than the king's coin. It was further provided, that when the goods were finished they should be brought to the Hall to be assayed; and when found of the right touch it should be stamped with the owner's and assayer's marks, as well as with the "Liberdshede crowned." These powers hare been confirmed in numerous Acts of Parliament, the most important of which are the following:-12 Geo. II. c. 26 (1739), which provides that no goldsmith, silver smith, or other trader slall work or make any vessel of gold of less than 22 -carat fineness (that is, 22 parts of fine gold to 2 parts of alloy), nor any silver vessel or plate of less than eleven ounces and two pennyweights of fine silver, and 18 pennjweights of alloy, in a pound troy, under a penalty of $£ 10$. Eut this does not extend to jewelry, earrings, gold springs, lockets, \&c. It also provides for the proper assaying and stamping of the same. In 1784, the Act 24 Geo. III. c. 53 , made provision for imposing a duty on the article assayed and stamped,
aud from that time the king's or queeu's head bas ap peared as a mark. In 1798, the Act 38 Ceo. III. c. 69 , gave permission for a lower standard of guld, nainely 18 -carat gold (that is, 18 parts of fine gold to 6 of alloy); and by the Act 7 and 8 Vict. c. 22 (1844), the penalty for using false, stamps, \&c., was aneliorated. Lastiy, by the Act 17 and 18 Vict. c. 96 , three still lower staudards of gold were pernitted, namely 15 -carat gold, 12 -arat gold, and 9 -arat gold, each of which was to he designated by the number and the decimal. At prese \boldsymbol{p}^{2}, therefore, all gold and silver plate, as well as wedding and mourning rings, must he assayed and stamped before their sale ; and other articles may be assayed and stamped in like manner at the option of the maker or dealer. The stanps or marks impressed on gold are the following, namely,-1st, The initials of the maker's name; $2 d$, The duty mark (a king's or queen's head); $3 d$, The crown and standard number, indicating the quality of the gold; $4 t h$, The assayer's stamp (a leopard's head for Goldsmiths' Hall); and 5 th, The letter denoting the year of assay. In the case of silver, the stamps are-1st, The initial letters of the maker; $2 d$, A lion; . $3 d$, The assayer's stamp (in London, a leopard's head); 4th, The letter indicating the year of assay; and $5 t h$, The duty mark (a king's or queen's head). Silver goods of higher value, that is, with a mixture of 11 ounces and 10 pennyweights of fine silver, instead of 11 ounces and 2 pennyweights, is called new sterling, and is, as formerly, marked with a figure of Britannia, and a lion's head erased. As in olden times, the Goldsmiths' Company have still power to break, cut, or otherwiso destroy all gold and silver plate which is below the legal standard. (घ. 工.)

ADULTERY (from the Latin adulterium) is the sexual intercourse of a married person with another than the offender's husband or wife. Among the Greeks, and in the earlier period of Roman law, it was not adultery unless a married woman was the offender. The foundation of the later Roman law with regard to adultery was the lex Julia de adulteriis coercendis passed by Augustus about b.c. 17. (See Dig. 48, 5; Paull. Rec. Sent. ii. 26; Brisson, Ad Leg. Jul. de Adult.) In Britain it has been reckoned a spiritual offence, that is, cognisable by the spiritual courts only. The common law toolk no farther notice of it than to allow the party aggrieved an action of damages. In England, however, the action for "criminal conversation," as it was called, is nominally abolished by 20 and 21 Vict. c. 85 , § 59 ; but by the 33 d section of the same Act, the husband may claim damages from one who has committed adultery with his wife in a petition for dissolution of the marriage, or for judicial separation, or in a special petition for the purpose in the Divorce Court. In Scotland damages may be recovered against an adulterer in an ordinary action of damages in the civil court, and the latter may be found Lisble for the expenses of an action of divorce if joined with the guilty spouse as a co-defender.

Adultery is, both in England and Scotland, a ground of divorce. In England, a complete divorce or dissolution of the marriage could, until the creation of the Court of Probate and Divorce by 20 and 21 Vict. c. 85 , be obtained only by an Act of Parliament. In Scotland a complete divorce may be effected by proceedings in the Court of Session, as succeeding to the old ecclesiastical jurisdiction of the commissioners. A person divorced for adultery is, by the law of Scotland, prohibited from intermarrying with the paramour. See Divorce.

ADVENT, the period of the approach of the nativity, lasting, in the Greek Church, from St Martin's Day (Nov. 11), and, in other churches, from the Sunday nearest to St

Andrew's Day (Nov. 30) till Christmas. The observance of it dates from the 4th century, and it has beea recognised since the 6th century as the commencement of the ecclesiastical year. With the view of directing the thoughts of Christians to the coming of Christ as Sariour, and to his second coming as Judge, special lessons are prescribed for the four Sundays in Advent. At one time Advent was observed almost as strictly as Lent, but the rule is now relaxed, and in the Church of England fasting is confined to the week in which Ember Day (13th Dec.) occurs. The phrase second advent is commonly used to denote our Lord's "appearing the second time, without sin, unto salration," which is so often spoken of in the New Testament. Various opinions have been held as to the time and manner of this event. In the apostolic churches it was commonly regarded as imminent, though this was not the opinion of the apostle Paul, as may be gathered from 2 Thcss. ii. 34 4. The discussion in later times has centred itself chiely round the question whether the second advent is pre millennial or post-millennial.

ADVERTISEMENT (from the French avertisement, a giving notice, or announcement) denotes in a general sense any information publicly communicated through the press or otherwise. It is the profit derived from adrertisements that supports tho larger nuruber of newspapera Thile some of these drag out a sickly existence, others derive a large revenue from this source. The duty upon advertisements (which existed in Britain ${ }^{1}$ previous to 1853) was not unjustly branded as a tax upon knowledge. It was certainly rery unequal and oppressive, being the same upon the sale of an estate worth. . 100,000 as on a serrant's notice wanting a place, upon an advertisement of a sixpenny

[^27]pamphict and an cxpensive book. Previous to 1833 the duty on each advertisement was 3s. 6d. in Great Britain, and 2s. 6d. in Ireland; in that year it was reduced to 1s. 6 d . in Great Britain, 8nd 1s. in Ireland. In 1832 (the last year of the high duty) the total number of newspaper advertisements in the U. K. was 921,943 : viz., 787,649 in England, 108,914 in Scotland, and 125,380 in Ireland; the amount of duty paid in that year being $£ 172,570$. In 1841 the number of advertisements had increased to $1,778,957$: viz., 1,386,625 for England,' 188,189 for Scotland, and $204,1+3$ for Ireland; and the total duty paid amounted to $£ 128,318$. In 1851 the amonnt of duty rose to $£ 175,094$, 10s. 8 d ; being for England $£ 142,365,3 \mathrm{~s}$. 6d.; Scotland, $£ 19,940,11 \mathrm{~s}$.; Ireland, $£ 12,788,16 \mathrm{~s}$. 2 d . In compliance with the all but unanimous veice of the public, this duty was abolished in 1853; since which time the system of advertising has increased to an unprecedented extent, in consequence of the low rate at which short advertisements are now inserted. To advertiso advantageously requires both experience and judgmeat; without a knowledge of the character and circulation of the public journals, much expenditure may be wasted by advertising in papers that have either a limited or inappropriate circulation. The sale of some commodities (such as quack medicines) depends aimost wholly on advertising, of which it has been said that if the vender has the courage to continue advertising to the extens of $£ 20,000$, he will make his fortune by a Irug thoroughly worthless. Advertising often falls disproportionately on books, as it is nccessary that new' publications should be freely adrertised. On small low-priced books the expense is particularly heary, an adyertisement of a one shilling book costing as mueh as one selling at trenty shillings. From this, and their generally ephemeral charaeter, it may be said that ninety-nine out of a bundred pamphlets are published at a loss.

Interesting information on the subject of adrertisements will be found in an article in the Edinburgh Revieno for 1 st Feb. 1843, "On the Advertising System," and in the Quarterly Reviero for June 1855, "On the Rise and Progress of Advertisements, from the establishment of the Newspaper Press of this Country till the Present Time." In the latter article it is stated that the first advertisement occirs in the Mercurius Politicus for Jan. 1652, the subject of the advertisement being a heroie poem of congratulation on Crommell's rictorics in Ireland. A writer in Notes and Queries for July 6, 1872, has found two examples of adrertisements previous to that date, which occur in the Bercurius Elencticus of Oct, 1648. See also The Nerospaper Press, by James Crant (2 vols., 1871), and the article Newspapers.

ADVOCATE (from the Latin advocatus), a lawyer anthorised to plead the causes of litigants in courts of law. The word is used technically in Scotland in a sense virtualhy equivalent to the English term barrister; and a derivative from the same Latin source is so uscd in most of the nonntries of Europe there the civil law is in force. The advosatus of the Romans meant, as the word implies, a person whose assistance was called in or involsed. The word is not often used among the earlier jurists, and appears not to have had a strict meaning. It is not always associated with legal proceedings, and might appareatly be applied to a supporter or coadjntor in the pursuit of any desired object. When it came to be appliea with a more specifie limitation to legal sorrices, the position of the advocatus was stiil uncertain. It was d ferent from, and evidently inferior to, that of the juris-con sultus, the gave his opinion and advice in questions of law, and s lay be identified with the consulting cunisel of the pres nt day. Nor is the metely professiocal adrocate to be confounded with the shore iditinguishel orator, or patronus, who came forward
in the guise of the disinterested vindicator of justice. This distinction, however, appears to bave arisen in later times, when the profession became mercenary. By the kx Cincia, passed about two centuries before Christ, and subsequeutly renewed, the acceptence of remuncration for professional assistance in lawsuits was prohibited. This law, like all others of the kind, was evaded. The skilful debater was propitiated with a present; and though be could not sue for the value of his services, it was ruled that any honorarium so givea could not be demanded back, even though he died before the anticipated service was performed. The traces of this evasion of a law may be found in the existing practice of rewardiag counsel by fees in anticipation of serrices. In the Justinian collection we find that lecal provision had been made for the remuncration of advocates. (Dij. lib. 50, tit. 12, § 10-13; Brissonius, De Sig. Verb. ; Heineccius ad Pand. lib. iii. tit. 1.) The advocatus fisci, or fisca' advocate, was an officer whose function, like that of a solicitor of taxes at the present day, was connected with the cullection of the revenue. (Sce generally on this subject Forsyth's Mortensius, London, 1849.) The term advocate is of frequent use in the chronicles, capitularies, chartularies, and other records of ecclesiastical matters, during the Middle Ages. (See Du Cange, s.v. Advocati Ecclesiarum, who affords a profuse supply of references to authoritics.) The term was applied in the primitive churck to those whe defeaded the Christians against malignants or persecutors. As the church waxed rich and powerful, its temporal supporters assumed a more important position. The advocate, defender, or patron, was of a temporal rank, corresponding to the power of the ecclcsiastical body who sought his adrocacy. Priaces sought the distinction from Rome; and it was as a relic of tho practice of propitiating temporal sovereigns by desiring their protection that Heary VIII. reccived his title of "Defender of the Faith." The office of adrocate to any of the great religious houses, possessed of vast wcalth, was ono of dig. nity and emolnment, generally held by some feudal lord of power and influence. This kind of protection, hewever, was sometimes oppressive. In the authoritics quoted by Du Cange we find that, so early as the 12 th century, the adrocates were accused of rayine and extortion ; and by a capitulary of the popedom of Innocent III. they are prohibited from taking and usurping rewards and privileges beyond use and wont. The office at length assumed a fixed character in its powers and emoluments ; and it became the practice for the founders of churches and other eeclesiastical endomments to reserve the office of adrocate to themselves and their representatives. The term advocate was subsequently superseded by the word patron; but a relic of it still exists in the term adrowson, and the word advorce, which is the form in which the Latin advocatus found its way into the technicalities of English law. Until Intely, advocate way the proper designation of legal practitioners in the Probate and Admiralty courts, and still is the name given to those who practise in what remairs of ecclesiastical courts In France, corporations or facultics of avocats wers attached to the parliaments and other tribunals. They formed, before the revolution, a part of the extensive and powerful body commonly called the nobility of the robe. It was not necessary that the arncat should be born noble, and his professional rank was little respected by the hereditary aristocracy; but as a middle rank, posscssed of great power3 and privileges, which it jealously guarded, the profession acquired great influence. In the Encyclopédie Méthodique, the avocat is called "the tutclary genius of the repose of families, the friend of man, his guide and protector." Tho aroeats, as a body, were reorganised under the empire by a decree of 15 th December 1810. (Sec Camus, Lettres sur la Prefession d'Advocat; \mathbb{A} Young, The French Bar.) In

France there is a distinction between avocats and aroucs. The latter, whose number is limited, act as procurators or agents, representing the parties before the tribunals, draft and prepare for them all formal acts and writings, and prepare their lawsuits for the oral debates. The office of the avocat, on the other hand, consists in giving adrice as to the law, and conducting the causes of his clients by mritten and oral pleadings. The number of avocats is not limited; every licentiate of law being entitled to apply to the corporation of avocats attached to each court, and after presentation to the court, taking the oath of office, and passing three years in attendance on some older advocate, to have himself recognised as an adrocate. The Faculty of Advocates is the collective term by which the members of the bar are known in Scotland. They professionally attend the supreme courts in Edinburgh; but they are privileged to plead in any cause before the inferior courts, where counsel are not excluded by statute. They may act in cases of appeal before the House of Lords; and in some of the British colonies, where the civil law is in force, it is customary for those who practise as barristers to pass as advocates in Scotland. This body has existed by immemorial custom. Its privileges' are constitutional, and are founded on no statute or charter of incorporation. The body formed itself gradually, from time to time, on the model of the French corporations of avocats, appointing like thern a dean. or doyen, who is their principal officer. No curriculum of study, residence, or professional training was, nutil $185 \overline{6}$, required on entering this profession; but the faculty have always had the porwer, believed to be liable to control by the Court of Session, of rejecting any candidate for admission. The candidate undergoes two private ex-aminations-the one in general scholarship, in lieu of which, however, he may produce evidence of his having graduated as master of arts in a Scottish university, or obtained an equivalent degree in an English or foreigur university; and the other, at the interval of a year, in Roman, private international, and Scots law. He must, before the latter examination, produce evidence of attendance at classes of Scots law and conreyancing in a Scottish university, and at classes of civil law, public or international law, constitutional larr, and medical jurisprudence in a Scottish or other approved university. He has then to undergo the old academic form of the public impugnment of a thesis on some title of the pandects; but this ceremony, called the public examination, has degenerated into a mere form. A large proportion of the candidate's entrance fees (amounting to $£ 339$) is devoted to the magnificent library belonging to the facultr, which literary investigators in Edinlurgh find so eminently nseful.

Lord Advocate, or King's Advocate, is the principal larr-officer of the crown in Scotland. His business is to act as a public prosecutor, and to plead in all causes that concern the crown. He is at the head of the system of public prosecutions by which criminal justice is administered in Scotland, and thus his functions are of a far more estensive character than those of the English law-officers of the crown. He is aided by a solicitor-general and subordinate assistants called advocates-depute. The office of king's adrocate seems to have been established about the beginning of the 16 th century. Originally he had no power to prosecute crimes without the concurrence of a private party; but in the year 1597 he was empowered to prosecute crimes at his own instance. He has the privilege of pleading in court with his hat on.

ADVOCATION, in Scottish Laur, was a mode of appeal from certain inferior courts to the suprcme court. It was sbolished in 1838, a simple "appeal" being substitnted.

ADVOWSON, or ADVowZEN (advocatio), in English Common Larr, the right of presentation to a racant ecclo-
sisstical benefice, is so called because the patron defends or advccates the claims of the person whom he presents Originally all appointments within a diocese lay with the bishop; but when a landowner founded a church on his estate and endowed it, his right to nominate the incumbent was usually recognised. Where the right of presentation remains attached to the manor, it is called an advowson appendant, and passes with the estate by inheritance or sale withont any special conveyance. But where, as is often the case, the right of presentation has been sold by itself, and so separated from the manor, it is called an advowson in gross. "Advowsons are further distinguished into presentative, collative, and donative. In a presentative advowson, the patron presents a clergyman to the bishop, with the petition that he be instituted into the vacant living. The bishop is bound to induct if he find tho clergyman canonically qualified, and a refusal on his part is subject to an appeal to an ecclesiastical court either by patron or by presentee. In a collative adrowson the bishop is himself the patron, either in his own right or in the right of the proper patron, which has lapsed to him through not being exercised within the statutory period of six months after the vacancy occurred. No petition is necessary in this case, and the bishop is said to collate to the benefice. In a donative adrowson, the sorereign, or any subject by special licence from the sovereign, confers a benefice by a simple letter of gift, bithout any reference to the bishop, and without presentation and institution. The incumbent of such a living is to a great extent free from the jurisdiction of the bishop, who can only reach him through the action of an ecclesiastical court. When an ecclesiastical body owned an advowson, it very frequently, by appropriation, exercised the right in its own favour, the corporation becoming the incumbent of the living, the actual dnties of which were discharged by a vicar or perpetual curate. An advowson, being property, may be sold, or mortgaged, or seized by the creditors on a bankrupt estate, under certain restrictions intended to prevent simony. A sale is absolutely prohibited during the mortal sickness of the incumbent, or during the existence of a vacancy. There are upwards of 13,000 benefices in the Church of England, the adrowsons being distributed as shown in the following list, which may be taken as approximately correct :-Under the patronage of the cromn there are 1144 livings; bishops, 2324; deans and chapters, 933 ; the universities, 770 ; parochial clergy, 931 ; and private persons, 7000.

ADYTUM, the most retired and sacred place of ancient temples, into which none bat the officiating priests were allowed to enter. The Most Holy Place of the temple of Solomon was of the nature of the pagan adytum; none but the high priest being admitted into it, and he but once a year.
\mathbb{E}, or $\triangle E$, a diphthong, compounded of \mathbb{A} avd E, of frequent occurreuce in Latin and in Anglo-Saron. In the best editions of the classics the form now preferred is ac. In English words derived from Latin the diphthong is generally converted into the simple e, but it is not infrequently retained, as in Eolian, mediaral, \&c. In some words it represents the Greek $a t$, to which the Latin a corresponds,

ÆACUS, in Mythology, the son of Japiter by Ægina When the isle of Egina was depopulated by a plague, his father, in compassion to his grief, changed all the ants upon it into men and women, who were called 1 ' 3 rmidones, from $\mu \hat{\nu}^{2} \rho \mu \eta \xi$, an ant. The foundation of the fable is said to be, that when the country had been depopulated by pirates, who forced the few that remained to take sheltel in caves, Facus encouraged them to come out, and by commerce and industry to recover what they had lost. His character for justice and piety. was such that, in a time of universal dreught, he was nominated by the Delphic oracle
tc intercede for Grecce and his prayer was answered. The anctents also imagined that Eacus, on account of his impartal justice, was chosen by Pluto one of the three judges of the dead, and that it was his prorince to judge the Europeans.

EDILE (codilis), in Roman Antiquity, a magistrate whose chief business was to superintend buildings of all kinds, but more especially public ones, as temples, aqueducts, bridges, \&c. To the ædiles likewise bclonged the care of the highways, public places, weights and measures, \&c. They also superintended the markets, fixed the prices of provisions, took cognisance of breaches of decency and public order, and took charge of police matters generally. The custody of the plebiscita, or decrees of the people, and seriatus consulta, or decrecs of the senate, was lidecrise committed to them. They had the inspection of theatres and plays, and were obliged to exhibit magnificent games to the people, usually at their own expense, whercby many of them were ruined. They had the power, on cestain occasions, of issuing edicts, and by degrees they procired to themselves a considerable jurisdiction. At first thene were only tree acdiles, viz., the xdiles of the people, cadiles plebeii, or minores. They were first created in the same year as the tribunes, B.c. $49 t$; for the tribunes, finding themselves oppressed with the multiplicity of affairs, demanded of the senate to have.officers to whom they might entrust matters of less importance; and accordingly two ædiles were created; and henceforward the ædiles were elected every year at the same assembly as the tribunes. But these plebeian ædiles having refused, on a signal occasion, to continue the great games for four days instead of three, on account of the expense, the patricians made an offer to do it, provided they were admitted to the honours of the ædileship. Accordingly two new ædiles were created, from the order of the patricians, in the year of Rome 388. They were called adiles curules, or majores, as having a right to sit on a curule chair when they gave andience; whereas the plebeian rediles only sat on benches. The curule ædiles alone had the right to issue edicts. Otherwise they shared all the ordinary functions of the p'ebeian ædiles; they had to procure the cclebration of the grand Roman games, and to exhibit comedies, shorrs of gladiaters, \&c., to the people; and they were also appointed judges in all cases relating to the selling or exchanging of estates. To assist these first iour x diles, Cæsar (b.c. 45) created a new kind, called acdiles cereales, so named from their being deputed chiefly to take care of the supply of corn, which was called donum Cereris. These adiles cereales were also taken out of the oráer of patricians. In the municipal cities and colonies there were ædiles having much the same authority as at Rome. We also read of an cedilis alimentarius, expressed in abbreviature by adil. alim., whose business seems to bave been to provide diet for those who rere maintaired at the public charge, though others assign him a different office. In an ancient inscription we also meet with ædilo of the camp, cedilis castromem.

EGADES, or $\mathbb{A g a t e s , ~ a ~ g r o u p ~ o f ~ i s l a n d s ~ o f f ~ t h e ~ w e s t - ~}$ ern coast of Sicily, between Trapani and Marsala, consisting of Maretimo, Levanzo, and Favignana. These islands are rendered historically famous by the great naval rictory gained there by the Romans over the Carthaginians in B.C. 241, which put an end to the first Punic war

EGEAN SEA, a part of the Mediterranean, now more asually calued the Archipelago or Grecian Archipelago, bounded on the north by Thrace and Maccdonia, on the west by Grecee, and on the east by Asia Minor. The origin of the name is uncertain. Various derivations are given by the ancient grammarians-one from the town of Egr, another from Egea, queen of the amazons, who perished in this sea; and a third from Egeus, the father
of Thescus, who threw himself headlong into it. Seo Arctipelago.

EGGEUS, in Fabulous Mistory, the son of Fandion, mas king of Athens, and the father of Theseus. He was ono of the Athenian heroes, but is notable chiclly for the manner of his death. The Athenians hatring killed Androgeus, the son of Minos, king of Crete, for carrying awsy the prize for wrestling from them, Minos mado war upon them; and being victorious, imposed this severe condition on Aigeus, that he should annually send into Crete seven of the noblest of the Athenian youths and as many maidens, chosen by lot, to be devoured by the Minotaur. On the fourth year of this tribute the choice fell - on Thescus, or, as others say, he himself entrcated to bo sent. The king at his son's departure gave orders that, as the ship sailed with black sails, it should return with the same in case he perished; but if he came back victorious he should change them for white. When Theseus returned from Crete after killing the Minotaur, he forgot to change the sails in token of his victory, according to the agreement; and his father, who sat on a rock watching the return of the vessel, irnagining from the black sails that his son was dead, cast hin self beadlong into the sea, which was supposed in consequence to have obtaincd the name of the Eyear Sea. The Athenians decrecd divine houours to Egeus, and sacrificed to him as a marine deity and an adopted son of Neptune.

EGINA, in Fabalous History, the daughter of Ksopus, king of Bœotia, was beloved by Jupiter, who carricd her from Epidaurus to a desert island called Einone or Enopia, which was afterwards called by her name. See Æeacus.

EGIINA, or Egina, or ENGIA, an island in the Saronic. gulf, 20 miles distant from the Piræus, formerly vying with Athens in naval power, and at the sen-fight of Salamis disputing tho palm of victory with the Athenians. It was the native country and kingdom of Eacus, who called it Egina, from his mother's name (Ovid.) The inhabitants were called Sginetoe and Aginenses. Egina is triangular in shape, and is about 8 miles long from N.W. to S.E., and about 6 broad, with an area of about 41 square miles. Strabo states its circumference at 180 stadia, or abont $22 \frac{1}{2}$ English miles. Its western side consists of stony but. fertile plains, which are well cultivated, and produce luxuriant crops of grain, with some cotten, vines, almonds, and figs. The rest of the island is mountainous, and rather barren. The southern end rises in the conical Mount Oros, and the Panhellenian ridge stretches to the north, from which fertile narrow valleys descend? on either hand. From the absence of marshes, and its insularity, the climate is mild, and the most salubrious of Greeve. The ruinc of the ancient Egise extend along two small ports, still protected by well-built ancient moles, and the shores of an open bay, defended by on ancient breakwater, near the N.W. cape of the island. On the land side the city walls are still distinctly traceable, 10 feet in thickness, strengthened by towers at unequal distances, and pierced by three gates. They abutted on these of the ports, which were thus included within the line of fortifications, as at Athens and elsewhere in ancient Greece. Two elegant Doric columns and substructares are all that remain of the buildings noticed by Pausanias within the precincts of a city that was long the greatest and most opulent maritime power of Grcece; but the ruins of siventeen Christian churches, still visible, prove that after the glories of the proud city had passed away-after what it suffered from the jealousy of its rival Athens, and from an earthqualen about the beginning of our era-a considerable modern town had occupied its site. Some of these may perhar's only date from the time that Egina remained under its Venetian masters, as does a tower erected at the entrance.
of tue largest port．The Venetians resigned possession of the island to the Turks in 1715，under whom it became the prey of Mainote and other pirates，until the emancipa－ tion of Greece made it，in 1828－29，the seat of the Greek gorernment．On a hill near the N．E．corner of the island stands the modern little town of EgYna（as it is pronounced by the inodern Greeks）．It is separated by a ravine from the hill，on which rise in lonely majesty the ruins of a noble temple，supposed to be that of Jupiter Panhellenius， though the point has been disputed．The temple occupies the rocky summit of a hill，in the midst of a forest of pines，at the extremity of the Panhellenian ridge．It was a ruin in the days of Cicero，as mentioned in one of his letters，and seems to have been thrown down by an earth－ quake at an unknown epoch．This temple is conspicuous from a distance，and was visited by Chandler in the last century；but has been chiefly known to us by the success－ ful excavations of our countrymen Cockercll aud Foster， assisted by Baron Haller and M．Linckh of Stuttgard，in 1811．These gentlemen united in clearing away the rub－ bish which the lapse of 2000 years had accumulated on the basement and floor of the cella；and after twenty days＇ esertion they were rewarded by the discovery not only of many interesting details relating to Grecian architecture， but also of many statues，in wonderfuliy energetic atti－ tudes，that had once adorned the fallen pediments of this celebrated temple．These consist of the eleven figures of the eastern and five statues of the western pediment， al nost entire，besides fragments of the rest，and two statuettes，and other ornaments of the acroteria．These eculptures eupply an important link in the history of ancient art，and connect the schools of early Greece with that of Etruscan sculpture．The efforts of Messrs Cockerell and Foster to secure those treasures to their country are well known，as well as their failure through an unlucky mistake of the agent sent out to purchase them for the British Museum．They now form one of the most interest－ ing acquisitions of the magnificent Glyptothek of Munich． The temple stands on a stylobate of 94 feet by 45 feet． The original number of columns in the peristyle was thirty－ two，of which twelve rere ranged on each side，and six in cacl front， 17 feet .2 inches high，including the wide upreading ovolo of the capital，and a diameter of 3 feet 3 inches at the base．Two other columns，of 3 feet 2 inches between ante，are in the pronaos，and two similar in the opisthodomos or posticum．The cella had a door at each end；a double row of smaller columns， 2 feet 4 inches in diameter，were within the cella to support its partial roof； but the greatest portion of the cella was open，as this temple was hypcethral．There still remain twenty－one columns of the peristyle，with their architraves；six of the eastern front， and continuously with them are five columns of the north side ；the four columns of the pronaos and opisthodomos， and the lower part of the shafts of five within the cella． The tympana had been painted of a bright azure，to give relief to the statues；and the drapery of Minerva，the middle figure of each group，had been painted red and blue．The whoie of the ornaments on the cornices and upper mouldings of the pediment had been painted in encaustic，not carved．The subject of the groups of statuary appears to be the contest for the body of Patroclus，one of the Eacidce（or royal progeny of Egina of old），as described by Horner．（Cockerell On the EEgina Marbles；Brand＇s Journal．）This magnificent structure was erected most probably in the 6th century b．c．，but，at all events，un－ doubtedly belongs to the brilliant＇period of Eginetan power，when its navy and its commerce were the pride of Greece，and carried its citizens to the rcmotest shores of the Mediterranean and the Euxine．Silver money is said to have been struck at．Egina loug before it was coined
even at Athens．The victory of Salamis was in a great measure owing to the thirty ships of \mathbb{E} gina，and the voice of grateful Greece assigned to her warriors on that event－ ful day the prize of valour．Yet not long after，the rivalry of Athens began to cloud the prosperity of the kaughty islanders，whose fleet she had before defeated；and Egina at length sunk under the enmity of a relentless commercial rival，that banished her citizens and supplied their place with Attic colonists．After the close of the Peloponnesian war Lysander restored the banished inhabitants，but Ægina never recovered its ancient prosperity．

EGINETA，PAULUS，a celcbrated surgeon of ihe island of Agnna，whence he derived his name．According to Le Clere＇s calculation．he lived in the 4th century；but Abulfaragius the Arabian places him with more probability in the 7th His knowledge in eurgery was very great， and his works are deservedly famous．The title of the most important of them，as giren by Suidas，is＇${ }^{\text {E } \pi \tau \tau o \mu \hat{\jmath} \text { s }}$ ＇Iatpıñs Bıß入ia＂Emтa（Synopsis of Medicine in．Seven Bookis）．The sixth book，which treats of surgery，is par－ ticularly interesting．The whole work in the original Greek was published at Venice in 1528，and another edition appeared at Basle in 1538．Several Latin trans－ lations lave been publisbed，and an excellent Euglish version，with commentary，by Dr F．Adams（1844－48）． Egineta is the first writer who takes notice of the cathartic property of rhubarb，and，accordiug to Dr Milmard，is the first in all antiquity who deserves the title of accoucheur．
EGIS，in Classical Mythology，a name given to the shield or buckler of Jupiter．The goat Amalthæa，which had suckled that god，being dead，he is said to have corered his buckler with the ．skin，or used the skin as a buckler； whence the appellation agis，from äı ξ ，à cyós，goat．Jupiter afterwards restored the animal to life，covered it witl a new skin，and placed it among the stars．A full description of the ægis of Jupiter is given－by Homer，Il．v．738，sqq． Apollo is also represented as bearing the agis，and Minerva still more frequently．After Perseus killed Medusa，Minerva nailed her head in the middle of the ægis，which thence－ forth had the faculty Medusa herself had during her life of converting all who looked on it into stone．Later writers regard the ægis sometimes as a buckler，but oftener as a cuirass or breastplate．The agis of Pallas，described by Virgii（ $E n$ ．lib．viii．v．435），must have been a cuirass， since the poet says expressly that Medusa＇s head was on the breast of the goddess．But the ægis of Jupiter，mentioned 2 little before（ v .354 ），seems from the description to have been a buckler．The ægis appears to have been really the goat＇s skin used，as well as the skins of other animals，as a belt to support the shield．When so used it would usually be fastened on the right shoulder，and would partially envelope the chest as it passed obliquely round in front and behind to be attached to the sbield under the left arm． Hence，by transference，it would be emplojed to denote at times the shield which it supported，and at other times a lorica or cuirass，the purpose of which it in part served． Illustrations of the assumption of the ægis by the Roman emperors may be seen in ancient statues and cameor．
ÆGISTHUS，in Ancient History，was the son of Thy－ estes by his own daughter Pclopea，who to conceal her shame exposed him in the woods．Scme say he was taken up by a shepherd and suckled by a goat；whence he was called Eyisthus．After be grew up he was recognised by his father，and on the death of the latter he became king of Mycenæ．He did not join the expedition against Troy； and after the departure of the expedition be seduced Clytemnestra，the wife of Agamemnon，and lived with hes during the siege of Troy．Afterwards，with her assistance， he slew her husband，and reigued seven years in Mycena He was slain，together with Clytemnestra，by Orestes，

EGOSPOTAMI, in Ancient Geography, a small river in the Thracian Chersonesus, running sonth-east, and falling into the Hellespont to the north of Sestos, - with a town of the same name, and a station or road for ships, at its mouth Here the Athenians under Conon, through the fault of his colleague Philocles, received a signal overthrow from the Lacedemonians under Lysander ((.c. 405), which involved the taking of Athens, and put an end to the Peloponnesian war. The town does not alpear to have esisted till after the date of the battle.

ELFRIC', "the Grammarian," as he bas been called, is one of the most voluminous of our old English writers before the Conquest. He flourished at the latter end of the 10th century and the beginning of the 11th. Of his personal history little can be learned, and his birth and death are alike involved in obscurity. We know that be was a pupil of Ethelwold, the friend of Dunstan, at Abing. don. On Ethelwold's advancement to the see of Winchester, Elfric accompanied him, and filled the office of chief instructor in the diocese. For the use of his scholars he wrote his Latin and English Grammar and Glossary and his Colloquium. The last of these is in Latin, with an old English interlinear translation, in which the Latin is readered word for word. It is interesting for its account of ancient manners, and shows that Ælfric made use of the conversational method in his teaching. The words in his Glossary are not arranged alplabetieally, but grouped together into classes. Elfric afterwards removed to Cerne Abbey, in Dorsetshire, where he composed his Homilies, the work on which his fame as an author chiefly depends. They are 80 in number, and were cdited by Thorpe in 1844-46 for the Jllfric Society. In composing them, Elfric drew largely from the fathers. Their style is very simple and pleasing, and obscure words are carcfully avoided in order to adapt them to the capacity even of the most ignorant. Subscquent writers made great uso of them, and not a few are to be found unabridged in tho transition (semi-Sazon) English of the succeeding centurics. They excited great atfention about the time of the Reformation, and were appealed to-especially the "Paschal Homily"-to prove that the doctrines of the English Church before the Conquest were at variance with those beld by the Church of Rome. Among Nlfric's other works mady be mentioned his Treatise on the Old unci New Testaments, and his Abridgment of the Pentateuch and the Book of Job. Of the rest of his life we have little on which we can rely. He attained to the dignity of abbot, but he seems to bo a different person from Elfric, archbishop of Canterbury (99₹-1006), with whom he is sometimes confounded.

NLLA CAPITOLINA, a name given to the city built by the Emperor Hadrian, A.D. 134, near the spot where the ancient Jerusalem stood, which he found in ruins when he visited the eastern parts of the Roman empire. A Roman colony was settled here, and a temple was dedicated to Jupiter Capitolinus. Hence the name Capitolina, to which Hadrian prefixed that of his own family.
ellanus, Claudius, born at Preneste, in Italy. He taught rhetoric at Rome, under the Emperor Alcxander Severus, according to Perizonius, but more probably under Hadrian. He wasgurnamed Meגíy $\omega \sigma \sigma \sigma$ s, "Honey-tongued," on account of the ease and accuracy with which he spoke and wrote Greek ; and he was also named "the Sophist," from bis being a teacher of rhctoric. He loved retirement, and devoted himself to study. He greatly admired and studied Plato, Aristotle, Isocrates, Plutarch, Homer, Anacreon, Archilochus, \&c. ; and, though a Roman, gives preference 50 the writers of the Greck nation, and employs the Greek 'anguage in his works. His curions and entertaining work antitled laria IIstoria has been frequently republished, as
well as his treatise De Futura Antmalium. A very useful edition of the latter was published by Schneider, at Leipsic, in 1784, in 8ro; another at Jena, in 1832, by Fr. Jacobs: The collceted edition of his works, by Gesuer, 1556, fol., contains another work ascribed to him, named Epistole Rusticce.

FMILIUS, Paulus, the name of a celebrated family of the Kimilia Gens. See Paulus.
cmilius, Paulus, or Paolo Emilio, a celcbrated historian, boru at Verona, who obtained such reputation in Italy that he was invited into France by the cardinal of Bourbon, in the reign of Charles VIII., in order to write the history of the kings of France in Latin, and was presented to a canonry in Notre Dame. He enjoyed the patronage and support of Louis XII. He died at Paris on the 5th of May 1529. His work entitled De Rebus gestis Francorum was translated into Frencl by Renard in 1581, and Las also been translated into Italian and German.

FNEAS, in Fabulous IIstory, a Trojan prince, the son of Venus and Anchises. IIe plays a conspicuous part in the lliad, and is represented, along with llector, as the chief bulwark of the Trojans. Hoiner always speaks of Aneas and his descendants as destined to reign at Troy after the destruction of Priam and his house. Virgil bas chosen him as the hero of his great epic, and the story of the Eneid, though not only at variance with other traditions, but inconsistent with itself, can never lose its place as a biography of the mythical founder of the Latin power. Æneas is described in the EWeid as escaping from the destraction of Troy, bearing his aged father on his shoulders, carrying in one hand his houselold gods, whilo with the other be leads his little son Ascanius or Iülus. His wife Creüsa is separated from them and lost in tho tumult. After a perilous voyage he lands in Africa, and is kindly received by Dido, queen of Carthage; who, on his forsaking ber to seek a new home, destroys herself. Again escaping the dangers of the sea, he arrives in Italy, whero be lands in Latium, and forms an alliance with Latinus, the king of the country, marries his daughter Lavinia, and founds a city which he calls, after ber, Lavinium. Turnus, king of the Rutuli, a rejected suitor of Lavinia, makes war on Latinns, and both are slain in battle. The story of the Eneid ends with the death of Turnus. Aecording to Livy, on the death of Latinus, Eneas assumes the sovereignty of Latium, and the Trojan and Latin powers aro united in one nation. After a ccign of three years, Eneas falls in a battle with the Rutuli, assisted by Mezentius, king of Etruria, and is supposed to be carried up into heaven, hecause his body cannot be found. After his death or disappearance he reccives divinc honours.
fineas sylvius, Pope. See Pius II.
aOLIE insule, the modern Lipari Islands, a group of islands between Italy and Sicily. They are so called from Æolus, the god of the winds, who was supposed to rule over them; but they are also frequently termed Insulce Vulcanice, or Hephastice, from their volcanic cruptions, and Insuloc Liparcorum, from Lipara (modern Lipari), the chief of the group. According to Pliny, the other islands are IITera, now Vulcano; Strongyle, now Stromboti; Didyme, now Salina; Phœoricusa, now Felicudi; Euonymus, probably Panaria; and Ericusa, now Alicudi. Besides these there are several small islets. Homer mentions ouly one Eolian island (Od. x. 1).
EOLIAN HARP, named from Eolus, gow of the wind, a musical instrument consisting of cat-gut strings stretched over a wooden sound-box. When exposed to a current of air, the strings produce a variety of pleasing barmonic sounds in strange succession and combination.

KOLIS, or Eolia, in Ancient Geography, a courtry of Asin Minor. settled by colonics of A.olian Greeks. The
wame in its limited sense was applied to the coast extending from the river Hermans to the promontory of Lectum, on the north side of the entrance to the Gulf of Adramyttium, and lying between Ionia to the S. and Troas to the N . In its wider acceptation it comprehended Troas and the coasts of the Hellespont to the Propontis, where there were likewise several Eolian colonies.
EOLUS, in Heathen Mythology, the god and father of the winds, was variously represented as the son of Hippotes, or of Neptune by a daughter of Hippotes, or of Jupiter. In the Odyssey he is mentioned as the king of the Eolian isle to whom Jupiter had given the superminendence and distribution of the winds. Later poets make min the god and father of the winds, who dwelt in one of the Eulian islands-according to some in Stromboli, according to others in Lipan, while others place his residence at Rhegium in Italy. He is represented as having authority over the winds, which he confined in a rast cavern. Strabo and some other writers consider him to have had a real existence; and derive the fable of his power over the winds from has skill in meteorolocy and the management of ships.

> Hic vasto rex Rolns añtro,
> Luctantes ventos tempestatesque sonoras Imperio premit, ac vinclis et carcere frenat. Illi indignantes magno cum murmure montis
> Circum claustra fremunt; celsâ sedet Æolus arce
> Sceptra tenens, mollitque animos, et temperat iras:
> Ni faciat, maria ac terras celumqne profundum
> Quippe ferant rapidi secum, verrantque per suras.

ALncid, lib. i. 52.
Here Eolus, in cavern vast,
With bolt and barrier fetters fast
Rebellious storm and howling blast.
They with the rock's reverberant roar Chafu blustering round their prison door.
He, throned on high, the sceptre sways,
Controls their moods, their wrath allays.
Break but that sceptre, sea and land, And heaven's etherial deep,
Before them they would whirl like sand, And through the voild air sweep.

Conington's Translation.
Through Hippotes, Eolus is usually represented as descended from Eolus, one of the sons of Hellen, and the mythological ancestor of the Eolian tribes.

EON (aíuv), a space of time. was often used in Greek to denote indcfnite or infinite duration; and hence, by metonymy, for a being that exists for ever. In the latter sense it was chiefly used by the Gnostic sects to denote uhose eternal beings or manifestations which emanated from the one incomprehensible and ineffable God. See Gnostictism.
efinUS, Franz Maria Ulrich Theodor, a distinguished German natural philosopher, was born at Rostock in Saxony in 1724, and died at Dorpat in August 1802. He was descended from John Epinus (b. 1499-d. 1553), the first to adopt the Greek form (ainctvós) of the family name, a leading theolugian and controversialist at the time of the Reformation. After studying medicine Lor a time, Francis Epinus devoted himself to the physical and mathematical sciences, in which he soon gained such distinction that he was sadmitted a member of the Berlin Academy of Sciences. In 1757 he settled in St Petersburg as member of the Imperial Academy of Sciences and professor of physics, labouring there and pursuing his favourite studies with great success till his death. He enjoyed the special favour of the Empress Catharine IL. who appointed him tutor to her son Paul, and endeavoured, without success, to estahlish normal schools throughout the empire under his direction. Epinus is best knowz by his researches, theoretical and experimental, in electicity and mygnetism. Ilis principal work, Teitamen Theorice Elec-
tricitatis et Mragnetimni, poblished at St Petersbarg in 1759, may be regarded as the first systematic and successful attempt to apply mathematical reasoning to these subjects. Adopting Franklin's theory of positive and negative electricities, or electric forces, he investigated the relations of these fully, and especially the conditions of their equilibrium; and many of the conclusions he arrived at do not depend for their value and importance on the theory of Franklin. Epinus himself extended the theory, holding that the particles of the electric fluid repel each other, attract the particles of all bodies, and are attracted by them, with a force inversely proportional to the distance; that the fluid resides in the pores of the surfaces of bodies, moving readily through some, called conductors or non-electrics, and with diffculty through others; and that electric phenomena are produced either by the approach of bodies unequally charged, or by the unequal distribution of the fluid in the same body. He propounded a kindred theory of magnetism, a magnetic fluid being supposed to exist corresponding to the electric fluid, but acting on, and acted on by, the particles of iron only. It is to be added that Epinus was the first to perceive and define, with any measure of clearness, the affinity between electrecty and magnetism. There is a remarkable similarity between portions of the work above named and a paper by Cavendish-the result of independent investigationsgiven in the Philosophical Transactions for 1771. In 1787 the Abbé Haïy published an exposition of E‘pinus's theories. Expinus did not confine himself to one or two departments of natural science. He published a treatise, in 1762, On the Distribution of Heat at the Surface of the Earth; and he was also the author of valuable memoirs on different subjects in astronomy, mechanics, optics, meteorology, and pure mathematics, contained in the journals of the learned societies of St Petersburg and Berlin. His discussion of the effects of perallax in the transit of a planet over the sun's'disc excited great interest, having appeared (in 1764) between the dates of the tro transits of Venus that took place during last century.

EQUI, an ancient and warlike people of Italy, inhabiting the upper ralley of the Anio, who, in confederacy with the Volsci, carried on a long series of hostilities with the early Romans, but were finally subdued in the year 302 в.c.

ERARIANS, a class in ancient Rome, composed of citizens who had suffered the severest kind of degradatic a the censors could inflict, but concerning whose exact position we have no precise information. Though hearily taxed, they did not enjoy the rights of citizenship beyond their liberty and the general protection of the state. They could not vote in assemblies or serve in the army, and were deprived of and excluded from all posts of honour and profit. Romans of the higher classes, as well as tho plebcinas, were liable to become Æerarians. The name may be derived from as, aris, money, since they were mere tas-payers; or, winich is more probable, it may refer iu the Lst of them which the censors gare in to the ararium or public treasury.

ERARIUM, the public treasury at ancient Rome. It contained the moneys and accounts of the state, and also the standards of the legions, the public laws engraven on brass, the decrees of the senate, and other papers and registers of importance. The place where these public treasures were deposited, from the time of the establishment of the republic, was the temple of Saturn, $0=$ the eastcrn alope of the Capiooine hill In addition to the common treasury, supported by the general taxes and charged with the ordiaary expenditure, there mas a reserve treasury, also in the templo of Saturn, the crarium sanctum (or sanctius), maintained chiefly by a tax of 5 per cent. on the value of aلl manumitted slaves, which was not to
be had recuurae to of even entered, except in the extreme necessity of the state. Under the cmperors the senate continued to have at least tho nominal management of the aricirizm, while the emperor had a separate exchequer, called the fiscus. But after a time, as the power of the emperors increased and their jurisdiction extended till tho senate existed but in form and name, this distinction tirtually ceascd. Besides creating the fiscus, Augustus also established a military treasury (ararium militare), containing all moneys raised for and appropriated to the maintenance of the army. The later emperors had a separate ararium privatum, containing the monies allotted for their own use, distinct from the fiscus, which they administered in the interests of the empire.

AERATED WATERS. Waters impregnated with an unusually large proportion of carbonic acid, or other gaseous substances, occur abundantly in springs throughout the world; and, in addition to their gascous constituents, generally hold in solution a large percentage of different salts. The manufacture of aerated waters arose out of the attempt to imitate these by artificial means, but till about the beginning of the present century such efforts did not meet with great success. The earliest method of producing acidulated water was that which still obtains in the preparation of effervescing draughts, such as are made from "Seidlitz" powders. These powders consist of separate portions of sodium bicarbonate and tartaric acid, which, on being dissolved together in water, form sodium tartrate and liberate carbonic acid, which bubbles up through the water. In recent years "granular" effervescent preparations have been introduced, in which the acid and salt are mixed in a dry state, and produce their reaction on being dissolved. The popular preparation termed effervescent citrate of magnesia, and several others under a variety of names, consist essentially of sodium bicarbonate and tartaric acid, to which a little citric acid is sometimes added. A limit, however, is set to the use of waters so aerated on account of the purgative action of the alkaline earths they necessarily contain.

In the manufacture of common aerated waters the carbonic acid is prepared apart from the pure water in which it is to be dissolved. There are essentially only two methods on which the manufacture is conducted, although there is an endless variety in the apparatus used. 'In the first process, which may bo distinguished as tho method of chemical pressure, the carbonic acid gas saturates the mater by its own pressure, passing directly from the chamber in which it is produced and purified into the cylinder or cylinders containing the water to be aerated. The small apparatus frequently used in privato houses and hospitals may be taken as an illustration of this method. The most common form consists of two strong glass globes A and B, protected by netting in case of breakage. Into the globe A are placed the materials for generating carbonic acid, usually in this case tartaric acid and sodium bicarbonate. When charged with these materials, a motal tube C, accurately fitted to the aperture in the globe, is inserted. The globe B is inverted and filled with water, and in this position the globe A is screwed tightly up by the joint D , the metal tube reaching to near the top of globe B. On placing the apparatus npnght, a proportion of water escapes through the metal tube
 into globe A, acts on the charge it contains, and evolves carbonic acid, which passes np the tube and saturates the water in B. As the pressure of the gas
augments, the quantity absorbed increases, und when fully saturated the aerated water may be drawn off by the cock E. In manufacturing on a large scale, a cambination of globes or cylinders is used for producing continuous action, and less expensive sources of carbonic acid than sodium bicarbonate and tartaric acid are employed. The second or mechanical pressure process is that generally followed in the manufacture in this country. In this process the gas is prepared in a lead chamber by the action of sulphuric acid on chalk, and is washed by passing through water into the gas-holder in which it is collected. Dy tho action of a force-pump, water, filtered when necessary, and carbonic acid, are pressed, in due proportions, into a very strong copper cylinder, tinned internally, termed a receiver or saturator, in which, an agitator is kept revolving. A pressure gauge is attachicd to the recciver, and when the index indicates from 120 to 140 诠 pressure per square inch, what is termed aerated water, and very frequently does duty for sodawater, is ready for drawing ofl at the bottling apparatus. Real soda-water is best prepared by adding to the water before aeration a proportion of sodium bicarbonate equal to about 30 or 36 grains per pint of water. Potash-water, Seltzer, lithia, Carrara, bromide of potassium, and a host of other waters, are similarly prepared, the various salts being used in different proportions, according to the taste and experience of manufacturers. Lemonade, and other aerated drinks flavoured with fruit syrups, have the proportion of syrup placed in the bottle to which simple aerated water taken from a receiver, indicating a pressure of 80 to 100 Ib per square inch, is added. From a syrup composed of 14 tb of sugar, $2 \frac{1}{2} \mathrm{oz}$. of tartaric acid, $3 \frac{1}{2} \mathrm{oz}$ of citric acid, and $4 \frac{1}{2}$ drachms of essence of lemon, dissolved in $2 \frac{1}{2}$ gallons of water, 30 dozen bottles of an excellent quality of lemonade can be prepared. On account of the rapidity with which the gas escapes on the removal of pressure, special arrangements are required for the bottling and corking. processes, and the frequent explosion of bottles necessitates guards to protect the bottler. A dexterous bottler will fill and cork 5000 bottles in ten hours. The consumption of aerated waters, especially in hot climates, is very great.

AEROE, or Arroe, an island of Denmark, in the Little Belt, lying $7 \frac{1}{2}$ miles S . of Funen, between Alsen and Langeland. It is of an irregular triangular shape, about 15 miles long and 8 broad at the widest points, with a hilly surface, but a fertile and well-cultivated boil. Population, 10,200; chief town, Aeroeskjobing, on the east coast.

AEROLITE (ańp, air, and λi ioos, a stone), a stony or metallic body; which, falling through the atmosphere, reaches the earth's surface. These meteoric stones generally contain a considerable proportion of iron; indeed, the iron in some of these substances exceeds the siliceous matter, and some have then given them the name of meteoric irons. A remarkable aerolite that fell at Egospotami, in 467 в.c., was, according to Pliny, to be seen in his day, and was then as large as a waggon. In 1492 one fell at Ensisheim, in Alsace, that weighed 270 Ib ; and, not to mention others, one of 12 db weight is reported to have fallen in California in August 1873, which penetrated the earth to the depth of 8 feet, and when dug up was so hot that it could not be handled. Aerolites often reach the earth in groups or showers, as at L'Aigle, in Normandy, in 1803; at New Concord, Ohio, in May 1860; and at Dhurmasala, in the Punjaub, in July the same year. The area on which a shower of aerolites falls is usually elliptical, the largest stones being near oụe end of the ellipse, the major axis of which extends in some cases to a length of eighteen or twenty miles. See Meteor

A ERONAUTICS

IN every stage of society men have sought, by the combination of superior skill and ingenuity, to attain those distinct and obvious adrantages which nature has conferred on the different tribes of aninals, by endowing them with a peculiar structure and a peculiar force of organs. The rudest savaze learns from his very infancy to imitate the swimming of a fish, and plays on the surface of the water ,with agility and perseverance. But an art so confined in its exercise, and requiring such a degree of bodily exertion, could not be considered of much arail. It must have been soon perceived (eren if the discoveries of the arts of natation and navigation were not absolutely simultaneous), that the fatigue of impulsion through the water could be greatly diminished by the support and floating of some light substance. The trunk of a tree would bear its rude proprietor along the stream; or, bollowed out into a canoe and furnished with paddles, it might enable him even to traverse a river. From this simple fabric the step was not great to the construction of a boat or barge, impelled by the force of oars. But it was a great adrance to fix masts and apply sails to the vessel, and thus substitute the power of wind for that of human labour. The adventurous sailor, instead of plying on the nartow seas or creeping timidly along the shore, could now launch with confidence into the wide ocean. Narigation, in its most cultivated form, may he fuirly regarded as one of the sublimest triumphs of human genius, industry, courage, and perseverance.

Having by his skill achieved the conquest of the waters that encompass the halitable globe, it was natural for man to desire likewise the mastery of the air in which we breathe. In a.l ages, therefore, great ingenuity has been expended in efforts at flying, all of which have as yet resulted in failure. But the analogy between sailing on the water and sailing in the air is not so close as many enthusiasts have supposed it to be. There is a general resemblance, inasmuch as in both cases the propulsion must be made by means of a fluid. But in the one case the fluid is inelastic, in the other elastic; and the physicist or mathematician knows how rastly different are the properties of liquids, eren in fundamental points, from those of aeriform or gaseous bodies. Again, in the one case the vessel floats on the surface of the water, in the other 1 must float totally immersed in the aerial fluid. A ship, while sailing, is acted on by two fluids-the water supports it and the air propels it ; but a ship sailing in the air would be only under the action of the one fluid that surrounds it on all sides. These few considerations-and many more might be added-indicate the essential distinctions between the two cases; and a very little thoughit shows that it is not so remarkable as it at first sight appears, that the invention of the art of sailing on the water should be lost in prehistoric antiquity, while that of sailing in the air is not a century old; and that while navigation is one of the most perfect of the arts, the power of directing a body floating in the air still remains unattained. Many have argued, that because navigation is an accomplished fact, therefore the navigation of the air must be possible ; and without denying the truth of the conclusion, it is worth white at the outset of this article to point out the fallacy of the reasoning. It is true that there is no reason to despair of the attainment of aerial navigation, as the history of inven-
tion and science records many victories as great and at one time apparently as far off; still, $i t$ is as well to notice how little assistance the old discovery affords towards the solution of the new: it may, indeed, even be that progress has been retarded by the false analogy, for we may feel pretty certain
that if ever the air is navigated, it will be by ships pre senting little resemblance to those that traverse the ocean.
The subject of aerostation is scarcely ever alluded to by the classical writers, and the fable of Dædalus and Icarus, and the dove of Archytas, form almost all we hare to record in relation to flying previous to the dark ages. Dædalus, an Athenian, killed his nephew Talus tlrough jealousy of his talents, and fled with his son Icarus to Crete, where he built the celebrated labyrinth for Minos, the king. But having offeuded Minos, so that be was imprisoned by him, he made wings of feathers, cemented with max, for himself and his son, so that they might escape by flight. He gave his son directions to fly neither too low nor too high, but to follow him. Icarus, howerer, becoming excited, forgot his father's advice, and rose so high that the heat of the sun melted the wax of his wings, and he fell into the sea near Samos, the island of Icaria and the Icarian sea being named after him. Dædalus accomplished his fight in safety. (Ovid, Mee. lib. viii. Fab, iii.) The explanation of the myth may be, as has been supposed, that Dædalus used sails, which, till then, according to Pausanius and Palæphatus, were unknown, and so was enabled to escape from Minos' galleys, which were only provided with oars; and that Icarus was drowned near the islaud Icaria. But the whole story of Dædalus is so fanciful a romance, that it is scarcely worth while even to speculate upon what the infinitesimal fragment of truth that lay at the bottom of it may have been.
Archytas of Tarentum was a well-known geometer and astronomer, and he is apostrophised by Horace (Ode 28, lib. i.) The account of his flying pigeon or dore we owe to Avius Gellius (Noctes Attice), who says "that it was the model of a dore or a pigeon formed in wood, and so contrived as by a certain mechanical art and power to fly: so nicely was it balanced by weights, and put in motion by hidden and enclosed air." Gellius gives as his authorities "many men of eminence among the Greeks," whom he does not mention by name, and Favorinus the philosopher.
Archytas thus has been regarded as holding to aeronautics much about the same position as Archimedes does to the mechanical sciences; but while the claim of the latter rests on real discoveries and great contributions to knowledge, the former owes his position merely to an unsupported and untrustworthy tradition. When the fire-balloon was invented, it was only natural that many should see in the "hidden and enclosed air" of Archytas" dove a previous discovery of the hot-air balloon. It is quite possible that Archytas may have rarefied the air in his dore by heat, and so made it ascend; but in this case it certainly could not have been made of mood. But if the dove erer was made to appear to fly, it is much the more probable that this effect was produced, as in the scenes at theatres, by means of fine strings or wires invisible to the spectators.
The ancients seem to have been convinced of the impossibility of men being able to fly, and they appear to have meade no attempts in this direction at all. The power of flying was attributed only to the most powerfui of the divinities; and it was regarded as only secondary to Jupiter's preromative of flashing the lightning and harling the thunderbolt.
The history of aerostatics in the Middle Ages, like that of every other subject relation even remotely to science or knowledge of any kind, is little better than a record of the falsehoods or chimeras circulated by impostors or enthu. siasts. Truth was completely obscured by ignorance and fanaticism, and every person of superior talents and acquire
ments was beneved to deal in magic, and to perform his feats of skill chiefly through the secret aid granted him by the prince of darkness; and in a later and comparatively recent period, thoso wretched creatures whom the unfeeling credulity of our ancestors, particularly during the prevalence of religious fanaticism, stigmatised and murdered under the denomination of witches, were supposed to work all their enchantments, to change their shapes at will, and to transport themselves througls the air with the swiftness of thought, by a power derived from their infernal master, to whom was thus assigned the privilege of conferring the gift of aerial navigation upon his servants.
During the darkness of the Middle Ages every one at all distinguished for his knowledgo io physics was generally reputed to have obtained the power of flying in the air. Friar Bacon did not scruple to claim the invention; and the credulity and indulgent admiration of some authors have lent to these pretensions more credit than they really deserved. Any one who takes the trouble to examine the passages of Bacon's obscure and ponderous works will fud that the propositions advanced by him are seldom founded on reality, but ought rather to be considered as the illusions of a lively fancy. Albertus Magnus, who fourishod in the first half of tho 13th century, was reputed to have discovered the art; and to give an idea of the state of the physical sciences at that time, it is worth while to quote the following recipes from his De Mirabitibus Naturce:"Tako one pound of sulphur, two pounds of willow-carbon, six pounds of rock-salt ground very fine in a marble mortar; place, when you please, in a covering made of flying papyrus to produce thunder. The covering, in order to ascend and float away, should be long, graceful, well filled with this fine powder; but to produce thunder, the covering should be short, thick, and balf full." (Quoted in Astra Castra, p. 25.) Regiomontanus, the first real mathematician after the partial revival of learning, is said, like Archytas, to bare formed an artificial dove, which flew before the Emperor Charlcs V. at his public entry into Nuremberg; but the date of Regiomontanus' death shows this to have been impossible.
such narrations, in some of which the experinenter is related to have been succus ful, and in others to have failed; but the evidence is in no case very good, and we may feel certain that all the traditions of attempts with a successful issue are false.

In Borelli's posthunous work, De Motu Animalium, pub- Borell lished at liome in 1650-81, he calculated the enormous shows th strength of the pectoral muscles in birds; and his pronesition impossicerv. (vol. i. pp. 322-326) is cutitled "Est impossibile, ut bility of homines propriis viribus artificiose vulare peessint," in which byan the a be clearly points out the impossibility of man being able by of mings bis muscular strengtl to give motion to wings of suficient extent to keep him suspended in the air. But Borelli did not, of course, as has sometimes been stated, demonstrate the impossibility of man's flying otherwise than merely by means of his own muscular porwer.

A very slight consideration of the matter shows that, Sqiiling although the museles of man may not be of sufficient the air strength to enable him to use wings, this objection does not apply against the possibility of making a flying chariot in whicl the motive power should be produced mechanically as in a watch, or a boat to float in the atmosphere. Both these projects havo therefore always engaged the attention of abler men than has the art of flying, and it was only the ignorance of the nature and foree of the atmosphere, as well as of the properties of all aeriform bodies, that caused so long a time to clapse before the invention of the balloon.

Albert of Saxony, a monk of the order of St Augustine, Albert and a commentatur on the physical works of Aristotle, Saxouy seems first to have comprehended (though in a very vague and crroneous manner) the principles on which a body might be mado to float in the atmosphere. Adopting, of course, Aristotelian views with regard to the nature of the elements, he considered that, as fire is more attenuated, and floats above our atmosphere, therefore a small portion of this ethereal substance, enclosed in a light hollow globe, rould raise it to a certain height and keep it suspended in the air; and that, if more air were introduced, the globe would sink like a ship when water enters by a leak. Long afterwards Francis Mendoza, a Portuguese Jesuit, Francle who dicd in 1626, at the age of forty-six, embraced this Mendou theory, and he leld that the combustible nature of fire was no real obstacle, as its extreme levity and the extension of tho air would prevent it from supporting inflammation. Casper Schott, also a Jesuit, adopted the same specula- Casper tion, only that he replaced the fire by the thin ethereal Schas substance which he believed floated above our atmosphere; but, of course, the difficulty of procuring any of this ether was a sufficient obstacle.

Similar notions have been revived at different times. They were likewise often blended with the alehemical tenets Alrboma so generally received in tho course of the 15 th, 16 th, and noticns part of the 17 th centuries. Thus Schott quotes Lauretus Lansetu Laurus to the effect that if swans' eggs or leather balls be Latrus filled with nitre, sulphur, or quicksilver, and be exposed to the sun, they will ascend. It was also believed that dew was of celestial origin, being shed by the stars, and that it was drawn up again in the course of the day to heaven by the heat of the sun. Thus Laurus states that hens' eggs filled with dew and exposed to the solar heat will rise. He was so grossly ignorant, however, of the principles of motion, that it is not worth while even to allude to his other assertions.

Cyrano de Bergcrac (born I620) wrote a philosophical nomarae romance entitled Histoire Comique des Estats et Empire de or Cyran la Lune, and Les Estats et Empire du Soleil (from which de Ber. Swift is supposed to have derived the idea of writing portions of Gulliver's Travels). To equip himself for performing the journey to the moon, the French traveller fastens round his body a multitude of very thin flasks
filled with the morning's dew; the heat of the sun, by its attractive pewer on the dew, raised him up to the middle region of the atmosphere, whence, some of the flasks being broken, the adventurer sank again to the ground. Other aeronantical ideas oceur in the romance.

Cardan proposed that ascensional power might bo applied as in a rocket; and one Honoratus Fabry has described a huge apparatus, consisting of long tin pipes, worked by air compressed by the action of fire.
The most noted scheme for navigating the air promulgated previously to the successful experiments of the Montgolfiers, is due to a Jesuit, Francis Lana, and was proposed by him in a work entitled Pro. dromo dell'Arte Maestra, Bréscia, 1670. His idea, though useless and unpractical in so far that it could never be carried out, is yet deserving of notice, as the principles involved are sound; and this caṇ be said of no earlier attempt. His project was to procure four eopper balls

Lana's Aeronautical Machine.
of very large dimensions, yet so extremely thin that after the air was exhausted from them. they would be lighter than the air displaced, and so would rise; and to those four balls he proposed to attach a boat, with sails, de., and whieh would carry up a man. He submitted the whole matter to caleulation, and proposed that the globes should be about 25 feet in diameter and $\frac{1}{2} \frac{1}{2} \sigma^{\text {th }}$ of an inch in thickness; this would give from all four balls a total ascensional force of about 1200 Bb , which would be quite enough to raise the boat, sails, passengers, \&c. But the obvious objection to the whole scheme is, that it would be quite impossible to construct a globe of so large a size and of such small thickness which would even support its own weight withunt falling to pieces if placed on the ground, much less bear the external atmospheric pressure when the internal air was removed. Lana himself noticed the latter objection, hut he thought thiat the spherical form of the copper shell would, notwithstanding its extreme thinness, enable it, after the exhaustion was effected, to sustain the enormous pressure, which, acting equally on every point of the surface, would tend to consolidate rather than to break the metal. Of course this assumed the ball to be absolutcly epherieal, a state of affairs as impossible as indifferent equilibrium actually is. He proposed to exhaust the air from the globes by attaching each to a tube 36 feet long, fitted with a stopeock, and so produce a Torricellian vacnum. He was thus apparently ignorant of the invention of the airpump by Otto Guericke about 1650; and though his projeet is noteworthy as the bydrostatics of it is correct, still Lana displays his ignorance of philosophical faets known in his day, quite as much as his originality; and his proprosition has, sinee Montgolfier's discovery, received a greater share of notice than it deserves.

So late as 1755 , and not long before the invention of balloons. a very fanciriul scheme was proposed by Joseph ralien. a Dominican friar. and , rufessor of philosuphy and
theology in the papal university of Avignon. This rision. ary proposed to colleet the diffuse air of the upper regiuns, and to enelose it in a huge vessel extending more than a mile every way, and inteuded to carry fifty-four times as much weight as did Noah's ark. It is unnecessary to notice at greater length this absurd chimera, which is merely mentioned here at all because it is sometimes referred to, though only on account of the magnitude of the fantastie schemo.

It is proper here to remark, that nearly all the early pro- False idear jectors imagined that the atmosphere was of no great with regard height, and that it covered the earth like a slallow ocean, to the athaving a well-defined bonndary; and the aerial vessels which they proposed were intended to float on the surface of this ocean, exactly as ships do on the sea, with their upper portions in the ether or diffuse air, or whatever the fluid might be, that lay above. And these ideas were, of course, not dispelled till after the invention of the baromieter and the discovery of the law of the decrease of atruospherie pressure with elevation.

Some writers have stated that Franeis Bacon first pub- Confusec lished the true principles of aeronautics. This assertion we cannot help noticing, because it has really no fommation except in the propensity, fostered by indolenee, which would gladly refer all the discor, ries ever made to a few great names. They mistake, indeed, the character of Bacon whe seek to represent him as an inventur. His claim to immortality rests chiefly on the profound and comprehersive views which he took of the bearings of the different parts of kuman knowlege; for it would be difficult to point out a single fact or observation with which he enriched the store of physical science. On the contrary, being very deficient in mathenlatical learning, he disregarded or rejected some of the noblest discoveries made in his awn time.
TVe can find only two passages in Bacon's works which can be considered as referring to aeronautics, and they both occur in that collection of loose faets and inconclusive reasonings which he has cutitled Natural History. The first is styled Experiment Solitary, touching Flying in the Air, and runs thus-" Certainly many birds of good wiug (as kites and the like) would bear up a good weight as they fly; and spreading feathers thin and close, and in great breadth, will likewise bear up a great weight, being even laid, without tilting up on the sides. The farther ex. tension of this experiment might be thought upon." The second passage is more diffuse, but less intelligible; it is styled Experiment Solitary, touching the Flying of unequal Bodies in the Air:-"Let there be a body of unequal weight (as of wool and lead or bone and lead); if you throw it from you with the light end forward, it will turn, and the weightier end will recover to be forwards, unless the body be over long. The cause is, for that the more dense body hath a more violent pressurc of the parts from the first impulsion, which is the cause (thouglh heretofure not found out, as hath been often said) of all violent motions; and whens the hinder part moveth swifter (for that it less endureth pressure of parts) than the forward part can make way for it, it must needs be that the body turn over; for ("urned) it can more easily draw forward the lighter part." The fact here alluded to is tho resistance that bodies experience in moving through the air, which, depending on the quantity of surface merely, must exert a proportionally greater effect on rare substances. The passage itself, however, after making every allowance for the period in which it was written, must be deemed confused, obscure, and unphilosophical.
We now come to the diseovery of the balluon, Which Discovers was due to Stephen and Joseph Montgolfier, sons of Peter ut the ALontgolfier, a larse and celebrated papermaker at Annonay, Lalloon.

The bro a town aboul 40 miles from Lyons. The brothers had thers Mor.t- observed the suspension of clouds in the atmosphere, and golfier. it occurred to then that if they could enclose any rapour of the nature of a cloud in a large and very light bag, it might rise and carry the bas with it into the air. They accordingly made experiments, inflating bags with smoke from a fire placed underneath, and found either that the smoke or some vapour emitted from the fire did ascend and carry the bag with it. Being thus assured of the correctness of their vierss, they determined to have a public ascent of a balloon on a largo scale. They accordingly invited the States of Vivarais, then assembled at Annonay, to witness their aerostatic experiment; and on June 5, 1783, in the presence of a considerable concourse of spectators, a linen globe of 105 feet in circumference was inflated over a fire fed with small bundles of chopped straw, and when released rapidly rose to a great height, and descended, at the expiration of ten minutes, at the distance of about $1 \frac{1}{2}$ mile. This was the discovery of the balloon. The brothers Montgolfier imsgined that the bag rose because of the levity of the smoke or other vapour given forth by the burning straw; and it was not till some time later that it was recognised that the ascending power was due merely to tho lightness of heated air compared to an equal volume of air at a lower temperature. Air, like all other fluids, expands by heat, and thereby becomes rarefied, so that any volume of hot air weighs less than the corresponding volume of air at a lower temperature. If, then, the air inside the balloon be so heated that it, together with the balloon, weighs less than the air displaced, the balloon will rise till it arrives at such a height that it and the enclosed air are equal in weight to that of the displaced air, when equilibrium will be obsained. In Montgolfier's first balloon, no source of heat was taken up with it, so that the air inside rapidly cooled, and the balloon soon descended.

Ascent of

The news of the experiment at Annonay rapidly spread over Europe, and at Paris attracted so much attention that M. Faujas de Saint-Fond, a naturalist, set on foot a sub- scription for paying the expense of repeating the experiment. The balloon was constructed by two brothers of the name of Robert, under the superintendence of M. Charles, professor of natural philosophy in Paris, and afterwards a member of the Academy of Sciences. It had at first been suggested to copy the process of Montgolfier, but Charles proposed the application of hydrogen gas, which was adopted. The filling of the balloon, which was made of thin silk varnished with a solution of elastic gum, and was about 13 feet in diameter, was commenced on August 23,1783 , in the Placo des Victoires. The hydrogen gas was obtained by the action of dilute sulphuric acid upon iron filings, and was introduced through leaden pipes; but as the gas was not passed through cold water, great difficulty was experienced in filling the balloon completely; and altogether about 500 lb of sulphuric acid and twice that amount of iron filings were used. Bulletins were issued daily of the progress of the inflation; and the crowd was so great that on the 26th the balloon swas moved to the Champ de Mars, a distance of 2 miles. This was done secretly, in the middle of the night, to avoid the crord; and the appearance of the balloon being thus removed, preceded by lighted torehes and escorted by a detacliment of soldiers, is described as having been very remarkable. On the next day, August 27 , an immense concourse of people covereci the Champ de Mars, and every spot from which a view could be obtained was crowded. About fire o'clock a cannon was discharged as the signal for the ascent, and the balloon when liberated rose to the beight of about 3000 feet with great rapidity. A shower of rain which began to fall dircetly after the hallnon had left tho
earth in no may checked its progress; and the excitement was so great, that thousands of well-dressed spectators. many of them ladies, stood exposed, watching it intently the whole time it was in sight, and were drenched to the skin. The balloon, after remaining in the air for about threequarters of an hour, fell in a field near Gonesse, about 15 miles off, and terrified the peasantry so much that it was torn into shreds by them. Hydrogen gas was at this time known by the name of inflammable air; and balloons inflated with gas havo ever since been called by tho people air-balloons, the kind invented by the Montgolfiers baing designated fire-balloons. French writers have also very frequently styled them after their inventors, Charlières and Montgolfieres.

On the 19th of September 1783 Joseph Montgalfier Ascent repeated the Annonay experiment at Versailles, in the pre- sheer, sence of the king, the queen, the court, and an inmense number of spectators. The inflation was commenced at one o'clock, and completed in eleven minutes, when the balloon rose to the height of about 1500 feet, and descended after eight minutes, at a distance of about two miles, in the wood of Vaucresson. Suspended below the ballnon, in a cage, had been placed a sheep, a cock, and a duck, which were thus the first aerial travellers. They were quite uninjured, except the cock, which had its right wing hurt in consequence of a kiek it had received from the sheep; but this took place before the ascent. The balloon, which was painted with ornaments in oil colours, had a very showy Sec rial ampearance.

The first human being who ascended in a balloon tras Ascent M. François Pilâtre de Rozier, a young naturalist, who, M. Pill two years afterwards, was killed in an attempt to cross de Ruri the English Channel in a balloon. On October 15,1783 , nill the and following days, ho made several ascents (generally d'drian alone, but once with a companion, M. Girond de Villette), in a captive balloon (i.e., one attached by ropes to the ground), and demonstrated that there was no difficulty in taking up fuel and feeding the firc, which was kindled in a brazier suspended under the balloon, when in the air. The way being thus prepared for acrial navigation, on November 21, 1783, M. Pilattre de Rozier and the Marquis d'Arlandes first trusted themselves to a free fire-balloon. The experiment was made from the Jarclin du Chateau de la Mnette, in the Bois de Boulogne. The inachine employed, which was a large fire-balloon, was inflated at about troo v'clock, and leaving the earth at this time, it rose to a height of about 500 feet, and passing over the Invalides and the Ecolo Mibtaire, descended beyond the Boulerards, about 9000 yarils from the place of aseent, having heen between tweuty and twenty-five minutes in the air. The result was completely successful; and it is scarecly necessary to add, the exeitement in Paris was very great.

Only ten days later, viz., on December 1, 1783, MnI. Charles and liobert ascended from Paris in a balloon in. flated with hydrogen gas. The balloon; as in the case of the small one of the same kind previously launched from the Champ de lars, was constructed by the brothers Robert. It was 27 feet in diameter, and the ear was suspended from a hoop surrounding the middle of the balloon, and fastened to a net which covered the upper hemisphere. The balloon ascended very gently from tho Tuileries at a quarter to two o'clock, and after remaininis for some time at an elevation of about 2000 feet, it doscended in abont two hours at Nesle, a, small town about 27 miles from Paris, when M. liobert left the car, and M. Charles made a second ascent by himself. Ho had intended to have roplaced the weight of his companion by a nearly equivalent quantity of ballast; but not having any suitable nuesus of obtaining surh ready at the place of descent, and it being just upon sunsct, he gavo the word
to let go, and the balloon being thus so greatly lightened, ascended very rapidly to a height of about 2 miles. After staying in the air about half-an-hour, he descended 3 miles from the place of ascent, although he believed the distance traversed, owing to different currents, to have been about 9 miles. In this second journey M. Charles experienced a violent pain in his right ear and jaw, no doubt produced by the rapidity of the ascent. He also witnessed the phenomenon of a double sunset on the same day; for when he ascended, the sun had set in the valleys, and as he mounted he saiv it rise again, and set a second time as he descended.

All the features of the modern balloon as now used are more or less due to Charles, who invented the valve at the rop, suspended the car from a hoop, which was itself attached to the balloon by netting, dc. The M. Robert who accompanied him in the ascent was one of the brothers who had constructed it.

On January 19, 1784, the largest balloon on record (if the contemporary accounts are correct) ascended from Lyons. It was more than 100 feet in diameter, about 130 feet in height, and when distended had a capacity, it is said, of over half-a-million cubic feet. It was called the Flesselles (from the name of its proprietor or owner, we believe), and after having been inflated from a straw fire in serenteen minutes, it rose with seven persons in the car, viz., Joseph Montgolfier, Pilatre de Rozier, Count de Laurencin, Count de Dampierre, Prince Charles de Ligne, Count de Laport d'Anglefort, and M. Fontaine, the last gentloman having leaped into the car just as the machine had started. The fire was fed with trusses of straw, and the balloon rose majestically to the height of about 3000 feet, but descended again after the lapse of about a quarter of an hour from the time of starting, in consequence of a rent in the upper part.

It is proper here to state that researches on the use of gas for inflating balloons seem to have been carried on at Philadelphia nearly simultaneously with the experiments of the Montgoliers; and when the news of the latter reached America, Messrs Rittenhouse and Hopkins, members of the Philosophical Academy of Philadelphia, constructed a machine consisting of forty-seven small hydrogen gas-balloons attached to a car or cage. After several preliminary experiments, in which animals were let up to a certain beight by a rope, a carpenter, one James Wilcos, was induced to enter the car for a small sum of money; the ropes were cut, and he remained in the air about ten minutes, and only then effected his descent by making incisions in a number of the balloons, through fear of falling into the river, which he was approaching.

The improvemeuts that have been made in the management and inlation of balloons in the last ninety years have only had reference to details, so that as far as essential principles are concerned the subject is now in pretty much the same state as it was in 1 788. We have therefore arrived at a point in the history of the balloon where it is well to consider how much the Montgolfiers and Charles owed to their predecessors; and it is proper here to state that, although we have assigned the invention to the two brothers, Stephen and Joseph-as no doubt they both conducted the early experiments together-still there is reason to believe that the share of the latter was very small. Stephen, however, although the originator of balloons, does not appear ever to have ascended himself, and Joseph did not repeat the ascent just mentioned in the Flesselles. The Montgolfiers had studied Priestley's Experiments relating to different kinds of Air, whence they first conceived the possibility of navigating the atmosphere; but their experiment was so simple as to requiure scarccly any philosophical knowledge. They had seen smoke ascend,
and thought that if they could imprison it in a bag, the bag might ascend too; and the observation and reasoning were both such as might occur to anybody. This does not detract from their merit; it, on the contrary, adds to it. The fact that millions of persons must have observed the same thing, and bad not derived anything practical therefrom, only enhances the glory of those who in such wellworn tracts did make a discovery; but the simplicity of the invention shows that it is needless to inquire whence the brothers were led to make it, and how far any part of the credit is due to their predecessors. It is scarcely possible to imagine anything more remarkable than that the fact that a light bag held over a fire would ascend into the air was not discovered till 1783 , notwithstanding that men in all ages had seen smoke ascend from fire (though, of course, the fire-balloon does not ascend for exactly the same reason that smoke does). It might be supposed that the connection of the Montgolfiers with a paper manufactory gavo them facilities for constructing their experimental balloons of thin paper; and perhaps such was the case, although we can find no evidence of it. With regard to Charles's substitution of hydrogen gas, there are anticipations that must be noticed. As early as 1766 Cavendish showed that this gas was at least seven times lighter than ordinary air, and it immediately occurred to Dr Black, of Edinburgh, Dr Black': well known as the discoverer of latent heat, that a thin bag experifilled with hydrogen gas would rise to the ceiling of a room. ${ }^{\text {rients }}$ He provided, accordingly, the allantois of a calf, with the view of shuwing at a public lecture such a curious experimont ; but for some reason it seems to have failed, ard Black did not repeat it, thus allowing a great discovery, almost within his reach, to escape him. Several years afterwards a similar idea occurred to Tiberius Cavallo, Carallo who found that bladders, even when carefully scraped, are inflatel too heavy, and that China paper is permeable to the gas. soap but But in 1782 , the year before the invention of the Montgolfiers, he succeeded in elevating soap-bubbles by in- gas in fating them with hydrogen gas. The discovery of 1 is2. fire-balloons might have taken place almost at any time in the world's history, but the substitution of hydrogen gas for heated air could not have been made prerionsly to the latter half of the last century; and although all the honour of an independent discovery belongs to the Monf. golfiers, Charles, by his substitution of "inflammable air" for heated air, merely showed himsolf acquainted with the state of chemical science of his day. Charles never argain ascended after his double expedition on the lst of December 1783.

We now return to the history of acrial navigation, and commence with an account of the first ascents of balloons in this country. Although the news of the Annonay and subsequent experiments in France rapidly spread all over Europe, and formed a topic of generat discussion, still it was not till five months after the Montgolfiers had first publicly sent a balloon into the air that any aerostatic experiment was ruade in England. In November 1783 Count Zambeccari, an Italian, who lappened to be in London, made a balloon of oil-silk, 10 feet in diameter, and weighing 11 fb . It was publicly shown for several days, and on the 25 th it was threc-quarters filled with hydrogen gas, and launched from the Artillery ground at one o'clock. It descended after tro hours and a half near Petworth, in Sussex, 48 miles from London. This was the first, balloon that ascended from English ground. On February 22, 1784, a hydrogen gas balloon, 5 feet in diameter, was let up from Sandwich, in Kent, and descended at Warneton, in French Flanders, 75 miles distance. This was the first balloon that crossed the Channel. The difficulties and-dangers of aerial narrigation having been surmounter by the end of the year

1783, the ascents of balloons were now multiplied in all quarters. It will therefore be suffieient to notice very bricely only the more remarkable of the succeeding ascents.
The Cheralier Paul Andreani, of Milan, constructed a fireballoon 68 feet in diameter, and on February 25, 1784, ascended from Milan with two brothers of the name of Gerll, and remained in the air for about twenty minutes. This is usually regarded as the first ascent in Italy (but see Monek Masou's Aeronautica, p. 24i). Andreani ascended again on Jarch 13, with two other persons.
On the $2 d$ of March M. Jean Pierre Blanchard, who had been for some years before oceupied with projects for Alying, made his first voyage from l'aris in a balloon 27 feet in diameter, and deseended at Billaneourt, near Sérres. Just as the balloon was about to ascend, a young man jumped into the car, and, drawing his sword, declared his determination to ascend with Blanchard. He was ultimately removed by force. The episode is worth noting, as it has sometimes been stated that the young man was Napoleon Bonaparte, but this is untrue; his name was Dupont de Chambon. Blanchard made subsequeatly, it is said, more than thirty aerial voyages, and he is one of the most celebrated of the earlier neronauts. He also crossed the English Channel, as noticed further on.

On July 15, 1784, the Due de Chartres and the two brothers Robert ascended from St Clond; but the neck of the balloon becoming choked up with an interior balloon filled with common air, intended to regulate tho aseending and descending power, they were obliged to make a hole in the halloon, in order to nllow of the escape of the gas, but they descended in azfety.

The first person who rose into the air from British ground appears to have been Mr J. Tytler, ${ }^{2}$ who ascended from the Cornely Gardens, Edinburgh, on August 27, 1784, in a fire-balloon of his own construetion. He descended on the road to Restalrig, about half-a-mile from the place where he rose. A brief account appeared in a Jetter, under date August 27, in the London Chronicle, and we have seen a pieture of the balloon copied in some journal from a "ticket in the British Museum." Mr Tytler's claims were for a long time entirely overlooked, the honour being invariably assigned to Lunardi, till attention was called to them by Mr Munck Mason in 1838. After Lunardi's successful aseents in 1785, Mr Tytler addressed a set of verses to him (quoted in Astra Castra, p. 108), in a note, to which he gives a modest account of his own "misfortunes," describing his two "leaps." This is, rerhaps, the most correet name for them, as his apparatus having been damnged at different times, ho merely heated the air in the balloon, and went up without any furnace, being Feated in an ordinary basket for carrying earthenware. He reached a height of from 350 to 500 feet.

Although by a few dnys Tytler has the precedence, still his attempts and partial suceess were all but totally unknown; whereas Lunardi's experiments excited an enormous nmount of enthnsiasm in London, and it was he that practically introduced acrostation into this country in the face of very great disadvantages. We have already referred to the extraordinary apathy displaycd in England with regard to nerostatic experiments, one consequence of which was that their introduction was due to a foreigner. Vincent Lunardi was secretary to Prince Caramanico, the Neapolitan ambassador, and his published letters to his guardian, the Chevalier Compagni, written while he was carrying out his project, and detailing all the diffeulties; de., he met with as they occurred, are very interesting, and give a rivid account of the whole matter. His balloon was 33

[^28]feet in circumference, and was exposed to the public niew at the Lyceum in the Strand, where it was visited by upwards of 20,000 people. It was his original intention to have ascended from Chelsea Hospital, but the conduct of a crowd at a garden at Chelsea, which destroyed the fire-balloon of a Frenehman named De Mloret, who amnounced an ascent on August 11, but was unable to keep lis word, led to the withdrawal of the leave that had been granted. Ultimately, after some difficulties had been arranged, he was permitted to aseend from the Artillery ground, and on September 15, 1784, the infation with hydrogen gas took placo. It was intended that Mr Biggin, an English gentleman, should accompany Lunardi; but the crowd becoming impatient, the latter judged it prudent to ascend with the balloon only partially full rather than risk a longer delay, and accordingly Mr Biggin was obliged to leave the car. Lunardi thereforo aseended alone, in presence of the lrince of Wales and an enormous crowd of apectators. He took up with him a pigeon, a clog, and a cat, and the balloon was provided with oars. by mears of which he hoped to raise or lower it at pleasure. Shortly after starting, the pigeon escajed, mind one of the oars became broken and fell to the ground. In about an hour and a half he descended at Sonth Minms, in Hertfordshire, and Janded the cat, which had suffered from the cold: he then aseended agrin, and descended, after the lapse of about three-quarters of an hour, at Standon, near Ware, where he had great difficulty in inducing the peasants to come to his assistance; but at length a young woman, taking lold of one of the cords, urged the men to follow her example, which they then did. The excitement caused by this ascent was immense, and Lunardi at once became the star of the hour. 1Ie was presented to the king, and was courted and fattered on all sides. To show the enthusiasin displayed by the people during his ascent, he tells himself, in his sixth letter, how a lakly, mistaking the oar which fell for binself, was so affeeted by his supposed destruction that she died in a few days; but, on the other hand, he says he was told by the judges "that he had certainly saved the life of a young man who might possibly be reformed, and be to the public a compensation for the death of the lady;" for the jury were deliberating on the fate of a crininal, whom they must altimately have condemned, when the balloon appeared, and every one became inattentive, and to save time they gave a verdict of aequittal, and the whole court eame out to riew the balloon. The king also was in conference with his ministers; but on hearing that the balloon was passing, he broke up the discussion, remorking that they might resume their deliberations, but that perhaps they might not see Lunardi again; upon which he,. Mr Pitt, and the other ministers viewed the balloon through telescopes. The balioon was afterwards exhibited in tho Pantheon. In the latter part of the following year (1785) Lunardi made several very successful ascents from Kelso, Edinburgh, and Glasgow (in one of which he traversed a distance of 110 miles): these he has deseribed in a second series of letters. He subsequently returned to Italy, where we believe he still followed the practice of aerostation, and made many ascents. He died on July 31, 1806, at Lisbon, according to the Genlleman's Mfagazine, but a contemporary newspaper gives Genoa as the place, and adds that he died in a state of very great indigenee.

Lunardi's example was soon followed by others, and on 1 October 16, 1784, Blanchard ascended from Little Cheisea ancents with Mr Sheldon, and having deposited the latter at Sun- Eugian bury, rose again alone, and descended at Romney Marshes. On November 12, Mr James Sadler, sen, ascended fromOxford, and there is every reason to believe that he made a previous sscent from the same place on October 12, fonr
đays previous to Blanclard's (see Monck Mason, p. 274, where it is stated that he attempted to ascend in a fircballoon on September 12, but that the balloon was burnt). On November 30, 1784, Blanchard again ascended, accompanied this time by Dr J. Jeffiries, an American physician. On January 4, 1785, Mr Harper ascended from tard Birmingham; and on January 7, Blauchard and Dr Jeffries achieved the feat of crossing the Chanucl from Dover to Calais. At seven niimetes past one the balloon left Dover Castlc, and in their passage they had a most magnificent view of both shores. When about one-third across they found themselves desceuding, and threw out evcry available thing from the boat or car. When about three-quarters across they were descending again, and had to throw out not only the anchor and cords, but also to strip and throw away part of their clothing, after which they found they were rising, and their last resource, viz., to cut away the car, was rendered unnecessary. As they approached the shore the balloon rose, describing a magnificent arch high over the land. They descended in the forcst of Guinnes.
On March 23, 1785, Count Zambeccari, who had, as we cari. lave seen, launched the first balloon from Euglish ground, ascended for the first time with Admiral Vernon from London. Shortly afterwards he returned to his own country, and there applied himself assiduously to the practice of acrial navigation. He twice, in 1803 and 1804, descended into the Adriatic, and both times only escaped after undergoing much danger. Descending in a fireballoon on September 21, 1812, after a voyage from Bologna, the shock of the grapnel catching in a tree caused the balloon to catch fire; and to save themselves from being burnt, Zambeccari and his companion, Signor Bonaga, leaped from the car. The former was killed on the spot, but the latter, though fearfully injured, escaped with his life.
On June 15, 1\%'s5, Filâtre de Cozier made his last fatal voyage from Boulogne. It was his intention to have repeated the exploit of Blanchard and Jeffries in the reverse direction, and have crossed from Boulogne to England. For this purpose he had contrived a double balloon, which he expected would combine the advantages of both kinds-a fire-balloon, 10 feet in diameter, being placed underneath a gas-balloon of 37 feet in diameter, so that by increasing or diminishing the fire in the former it might be possible to ascend or descend without waste of gas. Rozier was accompanied by M. P. A. Romain, and for rather less than halt-an-hour after the aerostat ascondel all seemed to be going on well, when suddenly the whole apparatus was scen in flames, and the unfortunate adrenturers came to the ground from the supposed hight of more ihan 3000 feet. Rozier was killed on the spot, and Romain only survived about ten minutes. A monument was erected on the place where they fell, which was ncar the sea-shore, about four miles from the starting-point. The Marquis de la Naisonfort had accompanied Rozier to Boulogne, intending to ascend with him, but M. Romain there insisted on a prior promise. Either the upper balloon must have been reached by the flames, and the gas taken fire, or the gas must have pourcd down into the lower balloon, and so have caused the cxplosion.

We must not omit to mention that on June 4, 1784, Madame Thible ascended from Lyons in a fire-balloon with M. Fleurand, in the presence of King Gustazus of Sweden, then travelling under the name of Count Haga. Madame Thible is very likely the only woman who ever ascended in a fire-balloon. The first Englishwoman who ever ascended into the air was Mrs Sage, who accompanied Mr Biggin in his voyage from London on June 29, 1785.

Accouls are given of an assent at Constantinople, made in the presence of the Suitan, by a Persian physician.
accompanied by two Bostangis, early in the year 1786 , who, crossing the sea which divides Europe from Asia, descended about 30 leagues from the coast.

We have now given a brief account of all the noteworthy Most of the voyages that took place within the first two or three years subsernuont after the discovery of the balloon by Montgolfier. Ascents were multiplied from this time onwards, and it is impossible to give evcn a list of the many hundreds that hav taken place since: this omission is, however of slicht for pleaimportance, as liencefor th the balloon became little better or no perthan a toy, let up to amuse people at fêtes or other publis occasions. When the first ascents wore made in France, the glow of national vanity was lighted up, and the most brilliant expectations were felt with regard to aerostation, and the glory to the nation that would accrue therefrom. Thnse anticipations have not been realised, and the balloun at this moment has received no great improvement since the time of Charles, except the substitution of ordinary coal-gas for hydrogen, which has rendered the inflation of a balloon at any gas-works a comparatively simpls matter, bearing in mind the elaborate contrivances required for tho generation of hydrogen in sufficient quantities. But in one respect the balloon has been of real service, viz., to science, in rendering the attainment of observations in the higher strata of the atmosphere not only possille but practicable. In regard to such matters the balloon is unique, as the atmosphere is the great laboratory of nature, in which are produced all the phenomena of weather, the results of which we perceive on the earth; and no observations made on mountain-sides can take the place of those made in the balloon, as what is required is the knowledge of the state of the upper atmosphere itseli, free from the disturbing effects of the contiguity of the land. Althongh, therefore, in what follows, we shall notice any particularly remarkable ascents, we shall chiefly confne oursel ves to the few that have been undertaken for the sake of advancing science, and which alone are of permanent value. It will be necessary to make one exception to this rule, bowever, in the casc oi the parachute, the experiments with which require some notice, although they have been put to no useful purpose. The balloon has also been used in warfare as a means of observing the morements of the enemy; and the applications of it to this purpose deserve noticc, althongh we think not so much use bas been made of the balloon in this direction as miglt have been.
The substitution of coal-gas for hydrogen is due to Mr SuostutuCharles Green, the veterau aeronaut, who made several tion of coalhundred ascents, the first of which took place on July 19, gas fo-hy1821, the coronation day of George IV. In this ascent drogen by ordinary coal-gas was first uscd; and every balloon, with very few exceptions, that has ascended since this date has been so inflated. Pall Mall was first lighted by gas in 1807, and at the end of 1814 the general lighting of London by gas commenced; so that coal-gas could not have been available for filling balloons long before it สas actually used.
Leaving out of consideration the ascents undertaken for Subsequent scientific objects (very many of which were remarkable for famous the height attained or the distance traversed, and which will be specially noticed further on), we proceed to mention the most notervorthy ascents that have taken place and that have not ended fatally (these latter will be reforred to separately). Mr Crosbie, a gentleman who was the first to ascend from Ireland (January 19, 1785), on the 19th July 1785 attempted to cross St George's Chanuel to England, but fell into the sea; he was saved by some vessels that came to his rescue. Lunardi also fell into the sea, about a mile and a half from the shore, after an ascent from Edinburgh in December 1785; he was rescued by a fishing-boat. Richard Maguire was the second persob
who ascended from Ireland. Mr Crosbie had inflated his balloon on May 12, 1785, but it was unable to take him up, when Mr Maguire, a student at the university, who was present, offered to ascend. His offer was accepted, and he made the ascent. For this he was knighted by the Lord-Lieutenant (Mionck Mason, p. 266). On July 22, 1785, Major Money ascended from Norwich. The balloon was blown out to sea, and he was obliged to descend into the water. After remain'ng there seven hours he was rescued by a revenue cutter which had been despatched to his assistance. Mr James Sadler attempted to cross St George's Channel on the 1st of October 1812, and had nearly succceded, when, in consequence of a change in the wind, he was forced to descend into the sea off Liverpool. After remaining in the water some time, he was rescued by a fishing-boat. But on July 22, 1817, Mr W Windbam Sadler, his second son, sncceeded in crossing the Channel from Dublin to Holyhead. On May 2.t, 1837, Mr Sneath ascended from near Mansfield in a fire-balloon, and descended safely. At half-past one o'clock on November 7, 1836, Mr Robert IIollond, Mr Munck Mason, and Mr Charles Green ascended from Tauxhall Gardens, and descended at about two leagues from Weilburg, in the duchy of Nassau, at half-past seven the next morning, having thus traversed a distance of about 500 miles in 18 hours; Liége was passed in the course of the night, and Coblentz in the early inorning. A full account of this trip is given by Mr Monck Mason in his Aeroncutica (1838). The balloon in which the journey was performed (a very large one, containing about 85,000 cubic feet of gas), was subsequently called the Nassau Balloon, and under that namo became famous, and ascended frequently.

The Great Ňassau Balloon.
Eluestran Te ought also, perbaps, to notice a curious ascent made accents. hy Mr Green on July 29, 1828, from the Eagle Tavern, City Road, on the back of a favourite pony. Underneath the balloon was a platform (in place of a car) containing places for the pony's feet, and some straps went loosely u oder his body, to prevent his lying down or moring about.

Everything passed off satisfactorily, the balloon descending safely at Beckenham; the pony showed no alarm, but quietly ate some beans with which its rider supplied it in the air. Equestrian ascents have since been repeated. In 1852, Madame l'oitevin, who had made several such journeys in laris, ascended from Cremorne Gardens, London, on horseback (as "Europa on a bull"); but after the first journey its repetition was stopped in England by application to the police courts, as the exhibition outraged public feeling. Lieutenant Gale was killed at Lordeaux on Sept. 8, 1850, in descending after an equestrian ascent, through mismanagement in landing of the horse. M. Poitevin, descending in 1858, after an eqnestrian ascent from Paris, was nearly drowned in the sea near Malaga. Among remarkable balloon ascents must also be noticed that of Mr Wise, from St Lonis, on June 23, 1859, in which a distance of 1120 miles was traversed.

In 1853, Nadar, a well-known photographer at Pari3, Nalar', constructed an enormous balloon, which he called "Le ballioon Géant." It was the largest gas-balloon ever constructed, containing over 200,000 cubic feet of gas. Underneath it was placed a smaller balloon, called a compensator, the object of which was to prevent loss of gas during the voyage. The car had two stories, and was, in fact, a model of a cottage in wicker-work, 8 feet in beight by 13 feet in length, containing a small printing-office, a photographic department, a refreshment-room, a lavatory, de. The first ascent took place at five o'clock on Sunday, October 4, 1863, from the Champ de Mars. There were thirteen persons in the car, including one lady, the Princess de la Tour d'Auvergne, and the two aeronauts Louis and Jules Godard. In spite of tho elaborate preparations that had been mado and the stores of provisions that were taken up, the balloon descended at nine o'clock, at Meaux, the early descent being rendered necessary, it was said, by an accident to the valve.line. A second ascent was mado a fortnight later. viz., on October 18; there were nine passengers, including Madame Nadar. The balloon descended at the expiration of seventeen hours, near Nienburg in Hanover, a distance of about 400 miles. A strong wind was blowing, and the balloon was dragged over the ground a distance of 7 or 8 miles. All the passengers were bruised, and some more serionsly hurt. The balloon and ear were then brought to England, and exhibited for some time at the Crystal Palace at the end of 1863 and beginning of 1864. The two ascents of Nadar's balloon excited an extraordinary amount of enthusiasm and interest, vastly out of proportion to what they were entitled to. The balloon was larger than any of the same kind that had previously ascended ; but this was scarcely more than just appreciable to the eye, as the doubling the contents of a balloon makes comparatively slight addition to its diameter. M. Nadar's idea was to obtain sufficient money, by the exhibition of his balloon, to carry out a plan of aerial locomotion he lad conceived possible by means of the principle of the screw; in fact, he spoke of "Le Céant" as "the last balloon." He also started L'Aeronaute, a newspaper devoted to aerostation, and published a small book, which was translated into Eriglish under the title The Right to Fly. Nadar's ascents bad not the remotest connection with science, although he claimed that they bad; nor was his knowledge, as shown in his writings, sufficient to have enabled him to advance it in any way.
Directly after Nadar's two balloon ascents, M. Eugene Ersene Godard constructed what was perhaps the largest aerial Gudard machine that has ever been made. It was a Montgolfier or balloon. fire-balloon, of nearly half-a-million cubic feet capacity (more than double the capacity of Nadar's). The balloon Flesselles, 1783, is said to have slightly exceeded this size. The air was heated by an 18 feet stove, weigh-
ing, with the ckimney, 980 ft . This furnace mas fed by straw; and the "car" consisted of a gallery surrounding it. Two ascents of this balloon were made from Cremorne Gardens, on July 20 and July 28, 1864. After the first journey the balloon descended at Greenwich, and after the second at Walthamstow, where it was injured by being blown against a tree. Notwithstauding the enormous size of the balloon, M. Godard asserted that it could be inflated in half an hour, and the inflation at Cremorne did not occupy more than an hour. The ascent of the balloon was a very striking sight, the flames roaring up the chimncy of the furnace into the enormous globe above. The trusses of straw were suspended by ropes from the gallery below the car, and were drawn up and placed in the furnace as required. This was the first fire-balloon scen by the inhabitants of London, and it was the sccond ascent of this kind that had been made in this country, Mr Sneath's ascent at Mansfield having been the first, as Mr Tytler's experiment at Edinburgh in 1784 was a leap, not an ascent, as no source of heat was taken up. In spite of the rapidity with which the inflation was effected, few who baw the ascent could fail to receive an impression most favourable to the gas-balloon in the matter of safety, as a rough descent, with a heated furnace as it were in the car, could not be other than most dangerous.

In the summer of 1873 the proprietors of the Newr York Daily Graphic, an illustrated paper, determined to construct a very large balloon, and enable Mr Wise, the wellknown American aeronant, to realise his favourite scheme of crossing the Atlantic Ocean to Europa. It was believed by many that a current from west to east cxisted constantly at heights above 10,000 feet, but this seems very uncertain. Mr Green having statcd that he had met with such a current, Mr Glaisher made a point of investigating the directions of the wind at different heights in his ascents, but found that they were as capricious as near the ground. The same result was found by others, and a comparison of the courses of the balloons sent up from Paris during the siege will shov that no constant current exists. The American project came to nothing owing to the quality of the material of which the balloon was made. The size was said to be such as to contain 400,000 cubic feet, so that it would lift a weight of $14,000 \mathrm{Hb}$. On September 12, 1873, during its inflation, Mr Wise declared the material of which it was made was so bad that he could not ascend in it, though the other two persons who were to accompany him agreed to go. When, however, 325,000 feet of gas had been put into the balloon, a rent was observed, and the whole rapidly collapsed. Although this accident was greatly regretted at the time, it seems pretty certain, from what subsequently took place, that the aerionauts would nut have succeeded in their orject, and a serious mishan was probably avoided. On October 6, 1873, Mr Donaldson and two others ascended from New York in the balloon after it had been repaired, and effected a perilous descent in Comecticut. During the autumn of 1873 a great amount of discussion took place both in England and America about the existence of the westerly current and the subject of aerostation. In September 1873 Mr Barnum, the well known Amcrican showman, visited England with the viev of eliciting whether, in the opinion of those best qualified, there was sufficient probability of a successful result to induce lim to undertake the construction of a suitable balloon.

By aeronauts (omitting the pioncers Lunardi, Zambeccari, and others who have been already spoken of) we mean persous who have followed ballooring as a husincss or trade. Of these, perbaps the best known and most successful have been Blanchard, Garnerin, the Sadlers, Mr Charles Green. Mr Wise, Mr Cozwell, and the brothers

Godara. Blanchard made, it is said, thirty-six asecnts, his first having taken place on March 2, 1784. His wife also made many ascents; she was killed on July 7, 1819. Garnerin is said to have ascended more than fifty mes; he introduced night ascents with fircworks, \&c., the first of which took place on August 4, 1807. We shall have occasion to refer to him again when we treat of parachutes. Mr James Sadler made about sixty ascents, the first of which took place on October 12, 12S4. His two sons, John and Windham, both followed in their father's stcps; the latter was killed in 1817. In the minds of most Englishmen the practice of ballooning will, for a long tine, be associated with the name of Mr Charles Green, the most celcbrated of English aeronauts, who, having made his first ascent on July 19, 1821, only died in the year 1870, at a very advanced age. IIc is crodited with 526 ascents by Mr Turuor; and from advertisements, \&c., we see that in 1838 he had made 249. Mr Green may be said to have reduced ballooning to routine, and he made more ascents than any other person has ever accomplistied. He accompanied Mr Welsh in his scientific ascents, and to him is also due the invention of the guide'rope, which he used in many of bis voyages with success. It merely consisted of a rojue not less than 1000 fcet in length, which was attached to the ring of the balloon (from which the car is suspended), and hung down so that the end of it was allowed to trall along the surface of the ground, the object being to prevent the continual waste of gas and ballast that takes place in an ordinary balloon Journey, as such an expenditure is otherwise always going on, owing to the recessity of keeping the balloon from getting etther too high or too low. If a balloon provided with a guide rope sinks so low that a good deal of the rope rests on the earth, it is relieved of so much weight and rises again; if, on the contrary, it rises so high that but a little is supported by the earth, a greater weight is borne by the balloon, and equilibrium is thus produced. Mr Green frcquently used the guide rope, and found that its action was satisfactory, and that it did not, as might be supposed, become entangled in trees, \&c. It was used in the Nassau journey, but more recent aeronauts have dispensed with it. Still, in crossing the sea or making a very lung journey, where the preservation of the gas was of great importance, it could not fail to be valuable. Mr Green had, in lis time, nore experience in the management than has fallen to the lot of any one else, and be brought to bear on the subject a great amount of skill and practical knowledge. There is also a plain matter-of-fact style about his accounts of his ascents that contrasts very favourably with the writings of some other aeronauts. Mr Coxwell, who bas made several hundred ascents, first ascended in 1844 , under the name of Welis. He it was who, as acronaut, accompanicd Mr Claisher in most of his scicntific ascents, 1862-65. The Godard family have made very many ascents in France, and are well known in all conntries in connection with acronautics. It was to two of the Godards that the management of the nilitary lalloons in the Itaiizn campaign was entrusted; it was M. Jules Godard who succeeded in opening the valre in the dangerous descent of Nadar's balloon in Havover in 1863, and it was Eugene Godard who constructcd perhaps the largest Montgolfier cver made, an acconnt of the ascensions of which has been given above. M. Dupuis Dclcourt was also a well-known aeronaut; he has writteri on the subject of aerostation, and his balloons nere employed by MMS. Bixio and Barral in their scientific ascents. In Ancrica Mr Wise is par excellence the aeronaut; he has made several hundred ascents, and many of them are distinguished for much skill and daring. He also appears to have pursucd his profession with more cnergy and capacity than has anv other aerenaut in recent times, and his Mistury
of atrostation shows him to prosess much higher scientific attainments than balioonists usually have. In fact, Mr Wise stands alone in this respect, a3 nearly all professional zeronauts are ciestitute of scientific knowledge.

The number of fatal accidents that have cecurred in tho history of balloons is not very great, and nearly all havo resulted either from the uso of the fire-balloon, or from want of knowledge, or carelessness on the part of the aeronauts themselvs. Wo have already referred to the aceidents that closed the careers of Pilatre do Rozier and Zambeccari. On November 25, 1802, Signor Olivari, at Orlenns, and ou July 17, 1812, Herr liittorfi, at Mannheim, perished in consequence of the accidenta! combustion of their JFontgolfiéres. On April 7, 1806, MI. Mosment ascended from Lille upon a phatforn, from which he accideutally fell aud was lith ai. On July 7, 1819, Madamo Elanchard ascendech itoml laris at night with fireworks attached to the ear, a sparl from one of which ignited the gas in the balloon, and she was precipitated to the ground and killed. Lieut. Harris ascended from London on May 25,1824 , but, through mismanagement of the valve-line, he allored all the gas to escape suddenly from the balloon, which descended with terriblo velocity. He was killed by the fall, but his companion, Miss Stocks, escaped almost uninjured. In an ascent from Blackburn ou September 29, 1824, by Mr Windham Sadler, the balloon, in rising, struck against a chimney, and the aeronaut fell over tho side of the ear and was liilled. On July 24, 1837, Mr Cocking descended from a balloon in a parachute, which struck the ground with such violence that he was killed on the spot. In descending with a horse on September 8, 1850, Lieut. Gale was killed; and in 1863 Mr Chambers was killed at Nottingham, his death arising from suffocation by the gas that poured out at the neck of the balloon, which was not separated from the car by a sufficient interval.

The nantbet of persons who bavo escended to balloons

The number of accidents that have occurred bears but a very small proportion to the number of successful ascents that have been made. Mr Monck Mason, in his Aeronurtica, gives a list of tho names, with the dates and places of their ascent, of all persons who, as far as he could find, had ascended previously to 1838 . His list contains 481 names, which are distributed among the inhabitants of the different countries as follows:-England, 313; France, 104; Italy, 18; Germany and the Gierman States, 17; Turkey, 5; Prussia, 3; Russia, 2; Poland, 2; Hungary, 2, Denmark, 1; Switzerland, 1; and tho United States, 3. Among these are the names of 49 women, of whom 28 aro English, 17 French, 3 German, and 1 Italian. Some of the persons had ascended a great number of times; thus Dr Charles Green's ascents alone amounted to more than 249; and those of the members of the same family to 535. Mr Mason calculated that the whole number of ascents executed by Euglishmen was 752. Of the 471 adventurers only nine wero killed, and of these six owed their fato to the dangers attendant on the use of the fire-balloon, and one to bravado. The great number of our own eountrymen that appear in the above list is no donbt partially due to the faet that it was compiled by an Englishman, to whom English newspapers and other records were more accessible; still there is no reason to doubt that a much greater number of Englishmen have ascended than iuhabitants of any other country, as balloons as an amusement at fêtes, sec., have been more common here. The number of Englishmen who hare ascended might now be estimated at from 1500 to 2000 .
Wo oan call to mind but threo fatal casualties that have alken place sinco Mr Mason compiled his list, viz, Mr Coeking's parachuto accident, Mr Gale's death in 1850, and Mr C'bambers' death in 1863.

The escents that lave been audit. uno by Sacharof, Bint. and Gay-Lussae in 1804, by Bixio and Bamal in 1850, by Mr Welsh in 1852, by Mr Glaisher in 1862-66, and M!. Flammarion and De lonvielle ju 1867-68. We shall give a brief ecconn of these ascents, because, as has becr. remarked, with a fow exceptions, they form the only usefu! purpose to which the balluon has been applied. The general description of the phenomena, sec., met with in a high ascent, and the general results found, are referred to in the account of Mr Glaisher's experiments, as not only are his accounts more detailed, but the number of ascents made by him is much in excess of that of all the others put together.

The Academy of Sciences at St Petersturg, entertaining the opinion that the experiments made on mountain-sides by De Lun, De Saussure, Humboldt, and others must give results afferent from those made in free air at tho same beights, resolved in 1803 that a balloun ascent should be mado for the purpose of making scjutific researches. Aceorddingly, on January 30, 1804, Msacharof, a member of tho academy, ascended, with M. hobertson as aeronaut, in a balloon belonging to the vatter, which was inflated with hydrogen gas. The ascest was made at a quarter past seven, and the descent effected at a quarter to cleven. No greas height was reached, as the barometer never sank below 23 in ., correaponding to less than $1 \frac{1}{2}$ mile. The experiments were not very systematically made, and the cliief results were tho filling and bringing down several flasks of air collected at different elevations, and the supposed abservation that tho magnetic dip was altered. A te!e. soope was fixed in the bottom of the car pointing vertically dormwards, so that the travellers might be able to ascertain exactly the spot over which they were Hoating at any moment. M. Sacharof found that, on shouting downwards through his speaking-trumpet, the ceho from the earth was quite distinct, and at his height was audible after an interval of about ten sceonds. M. Sacharof's account is given in the Philosophical Magazine (Tilloch's), vol. xxi pp. 193-200 (1805).

At the commencement of 1804 Laplace proposed to the members of the French Academy of Sciences that balloons should be employed for tho purpose of solving certain physical problems, adding that, as the government had placed funds at their disposul for the prosecution of useful experiments, he thought they might bo well applied to this kind of research. The proposition was supported by Chaptal the chemist, who was then minister of the interior, and accordingly the necessary arrangements were speedily effected, the charge of the experiments being given to MM. Gay-Lussac and Biot.

The principal object of this ascent was to determine if Ascent the magnetic force experienced any appreciable diminution Gay-Lu at beights above the earth's surface, De Saussure having found that such was the case upon the Col du Geant. On August 24, 1804, MM. Gay-Lussac and Biot (the former 1804. eminent as a chemist and the latter as a natural philosopher) ascended from the Couservatoire des Arts at ten o'clock in the morning. Their magnetic experiments were incommoded by tho rotation of the balloon, but they found that, up to the beight of 13,000 feet, the tine of vibration of a magnet was appreciably the same as on the earth's surface. They found also that the air became drier as they ascended. The height reached was about 13,000 feet, and the temperature declined from 63° Fahr. to 51°. The descent was effected about half-past cne, at Neriville, 18 leagues from Paris.

In a sccond experiment, which was mado on September Ascont 16, 1804, 3I. Gay-Lussac ascended alone. The balloon M. Gay left the Conservatuire des Arts at 9.40 A.m., and descended at 3.45 p. Mr. between Rouen and Dieppe. The ehief result obtained was that the magnetic force, like gravitation, did
nus experienco any sensible variation at hsionts from the earth's surface which we can attain to. Gay-Lnssac also brought down air collected. at the height of nearly $\dot{\sum} 3,000$ feet, and on analysis ir appeared that its eonstitution was the same as that of air collected at the earth's suriace. At the time of leaving, the earth the thermometer stood at 82° Fahr., and at the highest point reached $(23,000$ feet) it was $14^{\circ} \cdot 9$ Fahr. Gay-Lussac remarked that at his highest point there were still clouds above him.

From 1804 to 1850 there is no record of any scientific ascents in balloons haring been undertaken. Iu the latter year MIM. Bixio and Barral made two ascents for this purpose. They ascended from the Paris Observatory on June 29,1850 , at 10.27 A.3r., the balloon being inflated with hydrogen gas. The day was a rough one, and the ascent took place suddenly, without any previous attempt having been miade to test the ascensional force of the balloon. When liberated, it rose with great rapidity, and becoming fully inflated it pressed upon the network, bulging out at the top and bottom. As the ropes by which the car was suspended were too short, the balloon soon covered the travellers like an immense hood. In endeavouring to secure the valve-rope, a rent was marde in the balloon, and the gas escaped so close to the faces of the voyagers as almost to suffocate them. Finding that they were descending then too rapiclly, they threw overboard everything available, including their coats, and only excepting the instruments. The ground was reached at 10 h .45 m ., near Lagny. Of course no observations were made.

MIMI. Bixio and Barral determined to ascend again with. out delay, and accordingly, on July 27, 1850, they repeated the experiment. The ascent was remarkable on account of the extreme cold met with. At ahout 20,000 feet the temperature was 15° Fahr., the balloon being enveloped in cloud; but on emerging from the cloud, at 23,000 feet, the temperature sank to -38° Fahr., no less than 53° Fahr. below that experienced by Gay-Lussac at the same elevation. The existence of these rery cold clouds served to explain certain meteorological phenomena that were observed on the earth both the day before and the day alter the ascent. Some pigeons were taken up in this, as in most other high ascents, and liberated; they showed a reluctance to leave the ear, and then fell heavily downwards.

In July 1852 the committee of the Kew Observatory resolved to institute a series of balloon ascents, with the view of investigating such meteorological and physical phenomena as require the presence of an observer at a great height in the atmosplere. Mr Welsh, of the Kew Observatory, was the observer, and Mr Green's great Nassau balloon was employed, Mr Green himself being the aeronaut. Fonr ascents were made in 1852, viz, on Δ ugust 17, August 26, Octover 31, and November 10, when the respective heights of $19,510,19,100,12,610$, and 22,930 feet were attained. A siphon barometer, dry and ret bulb thermometers, aspirated and free, and a Regnault's hygrometer were taken up. Some air collected at a considerable beight was found on analysis not to differ appreciably in its composition from air collected near the ground. The original observatious are printed in extenso in the Philosophical Transactions for 1853, pp. 311-346. The lowest temperatures met with in the four ascents were respectively $8^{\circ} \cdot 7$ Fabr. (19,380 feet); $12^{\circ} .4$ Fahr. (18,570); $16^{\circ} .4$ Fahr. (12.640); $\mathbf{1 0} 0^{\circ} 5$ Fahr. (22.370); the decline of temperature being very regular.

At the meeting of the British Association for the Advancement of Science held at Aberdeen in 1859, a committee was appointed for the purpose of making observations in the higher strata of the atmosphere by means of the balloou. For the first tro years nothing was effected, owing to the want both of an observer and of a suitable
bailoon. In 1861 , at Munchester, the commitlee was reap pointed, and it then consisted of Colonel Sykes (chairmaur, MrAiry, Sir David Brewster, Mr Fairbairn. Admiral Fitzroy, Mr Gassiot, Mr James Glaisher, Sir J. Hersehel, Dr Lee, Dr Lloyd, Dr W. A. Nilier, Dr Robinson, and Dr Tyndall. Some unsiccessful experinents were made with a bolloon of Mr Green's, and also with one hured from the proprietors of Cremorne Gardens, which turned out to be in a hopelessly leaky condition; the trained observers also, on whom the committec had relied, failed to perform their doties. In this state of affairs, Mr Coxwell, an aeronaut who lion made a good many ascents, was communicated with, and be agreed to construct a new balloon, of 90,000 cubic feet capacity, on the condition that the committee would undertake to use it, and pay $£ 25$ for each high ascent made especially for the committee, the latter defraying alsc the const of gas, \&ec., so that the expense of each high ascent amounted to nearly $£ 50$. An observer being still wanted, Mr Glaisher, a member of the committee, offered himself to take the obserrations, and accordingly the first ascent was made on July 17, 1862, from the gas-works at Wolverhamp. ton, this town being chosen on account of its central position in the country. Altogether, Mr Glaisher made twenty-eight ascents, the last having taken place on May 26, 1866.
these only seven mere specially high ascents, although six others were undertaken for the objects of the committee alone. On the other occasions Mr Glaisher availed himself of public ascents from the Crystal Palace and other places o气 entertainment, merely taking his place like the other passengers. In the last sus ascents another aeronaut, Ifr Orton, and a smaller balloon, were employed. The dates, places of ascent, and greatest heights (in feet) attained in the twenty-eight ascents were-1862: July 17, Wolverhampton, 26,177; July 30, Crystal Palace, 6937; August 18, Wolverhampton, 23,377: August 20, Crystal Palace, 5900 ; August 21, Hendon, 14,355; September 1, Crystal Palace, 4190; September 5, Wolverhampton, 37,000; September 8, Crystal Palace, 5428. 1863: March 31, Crystal Palace, 22,884; April 18, Crystal Palace, 24,163; June 26, Wolverton, 23,200; July 11, Crystal Palace, 6623; July 21, Crystal Palace, 3298; August 31, New-castle-upon-Tyne, 8033; September 29, Wolverhampton, 16,590; October 9, Crystal Palace, 7310. 1864: January 12, Woolwich, 11,897; April 6, Woolwich, 11,075; June 13, Crystal Palace, 3543 ; June 20, Derlyy, 42S0; June 27, Crystal Palace, 4898; August 29, Crystal Palace, 14,581; December 1, Woolwich, 5431; December 30, Woolwich, 3735. 1865: February 27, Woolwich, 4S65; October 2, Woolwich, 1949; December 2, Woolwich, 4628. 1866: May 26, Windsor, 6325. Of these, all the ascents from Wolverhampton (Lour in number) and from Woolwich (seren in number) were undertaken wholly for the committee, and Mr Glaisher was merely accompanied by the aeronaut, whose business it was to manage the balloon. The expense of the special hign asceuts (about $£ 50$ for each, as stated above) rendered it desirable, when possible, to take adrantage of the desire felt by many to accompany Mr Glaisher in his journey, and admit one or tro other travellers; and of this kind were one or two of the asceuts from the Crystal Palace, thongh tlio majority, in which the elevation attained frequeutly fell short of a mile, were the ordinary public ascents advertised beforehand. It is not possible here to give any complete aczoust of the results obtaimed, and it would be supertluous, as the obserrations, both as mado and after reduction, are printed in the British Association Reports, 1862-66. It mill be enough, after explaiuing the objects of the experiments, de., to describe briefly one or lwo of the most remarkable ascents, and then state the Lind of conclusions that follow from them as a whole.

The primary object was to determine the temperature of the air, and its hygrometrical state at different elevations to as great a height as could be reached; and the secondary ibjects were- (1) to determine the temperature of the dewpoint by Daniell's and Thignault's bygrometers, as wall as by the dry and wet bulb thermometers, and to compare the results; (2) to compare the readings of an aneroid barometer with those of a mereurial barometer up to the height of 5 miles; (3) to determine the electrical state of the air, (4) the oxygenic condition of the atmosphere, and (5) the time of vibration of a magnet ; (6) to collect air at different clevations; ($\overline{7}$) to note the height and kind of clouds, their density and thickness; (8) to determine the rate and direction of diferent currents in the atmosphere; and (9) to make observations on sound.
The instruments used were mercurial and aneroid barometers, dry and wet bulb thermometers, Daniell's dewpoint bygrometer, Regnault's condensing hygrometer, maxinum aud minimum thermometers, a magnet for borizontal ribration, hernctieally sealed glass tubes exhausted of air, and an electrometer. In one or two of the ascents a camera was taken up.
One end of the car was occupied by the aeronaut; near the other, in front of Mr Glaisher, was placed a board or able, the extremities of which rested on the sides of the car; upon this board was placed suitable framework to carry the several thermometers, hygrometers, magnet, aneroid barometer, \&c.; a perforation through it admitted the lower branch of the mercurial barometer to descend below, leaving the upper branch at a convenient height for observing. A wateh was placed directly opposite to Mr Glaisher, the central space being occupied by his notebook. The aspirator (for Regnault's hygrometer) was fixed underneath the centre of the board, so as to be conveniently workable by cither feet or hands. Holes were cut in the board to admit the passage of the flexible tubes required for Regnault's hygrometer and the dry and wet bulb thermometers.

M_{r}

Glaisher's ascent or July 17, 1862.

The first ascent was made, as has been stated, from Wolverhampton on July 17, 1862, and the journey was merarkable on account of a warbi current that was met with at a great elevation. The weather, previous to the ascent, had been bad for a long time, and it had been delayed in consequence. The wind was still blowing from the west, and considerable difficulty was experienced in the preliminary arrangements, so that no instrument was fixed before starting. The balloon left at 9.43 A.ms, and a height of 3800 feet was reached before an observation could be taken. At 4000 feet clouds were entered, and left at 8000 feet. The temperature of the air at starting was 59° Fahr., at 4000 feet it was 45°, and it descended to 26° at 10,000 feet, from which beight to that of 13,000 feet there was no diminution. While passing through this space Mr Glaisher put on additional clothing, feeling certain that x temperature below zero would be attained before the height of 5 miles was reached; but at the clevation of 15,500 feet the temperature was 31°, and at each successive reading, up to 19,500 , it increased, and was there 42°. The temperature then decereased rapidly, and was 16° at 26,000 feet. On descending it increased regularly to $37^{\circ} .8$ at 10,000 feet. A very rough descent, in which nearly $-\mathcal{\&} 50$ worth of instruments were broken, was effected near Oakham, in Rutlandshire, Mr Coxwell having judged it prudent to descend on account of the proximity, as he supposed, of the Wash. In coming down, a cloud was entered at an elevation of 12,400 feet, and proved to be more than 8000 feet in thickness. The rise of temperature met with in this ascent was most remarkable.

The weather on the day (Aug. 18, 1862) of the third ascent was favourable, and there was but little wind. All the
instrumeuts were fixed before learing the earth. A height Ascen of more than 4 miles was attained, and the balloon remained from in the air about two hours. When at its laghest point terban A there were no clouds between the balloon and the earth, 18,1 and the streets of Jirmingham were distinctly visible. The descent was effected at Solihull, 7 miles from Birmingham. On the earth the tenuperature of the air was $67^{\circ} \cdot 8$, and that of the dew-point $54^{\circ} 6$; and they steadily decreased to $39^{\circ} 5$ and $22^{\circ} \cdot 2$ respectively at 11,500 feet. The balloon was then made to descend to the height of about 3000 fect, when both increased to $56^{\circ} 0$ and $47^{\circ} 5$ respectively. On throwing out ballast the balloon rose again, and the temperature declined pretty steadily to $24^{\circ} \cdot 0$, and that of the dew-point to $-10^{\circ} \cdot 0$, at the height of 23,000 feet. During this ascent Mr Glaisher's hands became quite bluc, and he cxperienced a qualmish sensation in the brain and stomach, rescmbling the approach of sea-sickness; but no further ineonvenience, besidcs such as resulted from the cold and the difficulty of breathing, was experienced. This feeling of sickness never occurred again to Mr Glaisher in any subsequent ascent.
The ascent from the Crystal Palace on August 20, 1862, was merely an ordinary one for the public amusement, in which Mr Glaisher took a place in the car. In these low ascents from places of entertainment, in which other persons also were passengers, the large board stretching right accoss the car could not be used. A smaller frame was therefore made, which could bo screwed on to the edge of the car, to carry the watch, siphon barometer, aueroid barometer, dry and wet bulb thermometers, gridiron thermometer, ${ }^{1}$ and Daniell's and Regnault's hygrometers, which comprised all the instruments usually taken up in these low ascents. In the first low ascent, July 30, this framework was fixed inside the car; but as it seemed possible that the warmoth procecding from the voyagers might influence the readings of the instruments, it was always afterwards fixed outside, and projected beyoud the car, so that all the instruments were freely exposed to the surrounding air. The ascent on August 20 was a low one ${ }_{1}$ and presented no remarkable feature except that the balloon was nearly becalmed over London. The earth was left at 6.26 P.m., and the air was so quiet that at the height of three-quarters of a mile the balloon was still over the Crystal Palace. At 7h. 47m. it was over London, and moving so slowly that it was thought desirable to ascend above the clouds in hopes of meeting with a more rapid current of air. At 8 h . 5 m . the voyagers were above the clouds, and it became quite light again, darkness having come on whilst hovering over London, at which time the gradual illumination by the lights in the streets formed a most wonderful sight, and one never to be forgotten. The roar, or rather loud hum, proceeding from the great city was also most remarkable. After having been above the clouds some time, the lowing of cattle and other agricultural sounds were heard. Accordingly, the valve-line was pulled, and the balloon descended below the cloads, when the light of London was seen in the distance as a misty glare. The darkness increased as the balloon descended very slowly, and it at length touched the ground so gently in the middle of a field at Miill Hill, near Hendon, that those in the car were scarcely aware of the contact. There were twelve voyagers altogether, and when with some trouble sufficient countrymen were collected to take their places and enable

[^29]them to leave the car, it was resolved to anchor the balloon for the night and to make an ascent in the early morning. Accordingly, at 4.30 A.m., on August 21, the earth was left, there being altogether five persons in the car. It was a dull, warm, cloudy morning, with the sky overcast. In about an hour the height of 3 miles was attained, and the temperature had fallen to 23°, having been 58° on the earth before leaving. The aspect of the clouds under formation before and during the rising of the sun was marvellous in the extreme, and baffed description. There were seen shining masses of cloud in mountain chains, rising perpendicularly from the plain, with summits of dazzling whiteness, forming vast ravines, down which the balloon appeared to glide, or pass through their sides, into other valleys, until, as the balloon rose far above, all appeared a mighty sea of white cloud. The descent was effected about a quarter past seren, and the transition from the magnificent scene above the clouds to the ugly prospect of the dreary earth as seen early on a dull morning, with a uniform leaden sky, was most depressing. The place of descent was near Biggleswade.

The most noteworthy fact in connection with the ascent, September 1, 1862, was, that from the balioon the clouds were observed to be forming below, and seen to be following the whole course of the Thames from the Nore to Richmond. The clonds were above the river following all its windings, and extending neither to the right nor to the left. It was about the time of high water at London Bridge, and the phenomenon was no doubt connected with the warm water from the sea.

As in the ascent, September 5, 1862, the greatest height ever reached was attained, it is desirable to give the account of it in some detail, and in Mr Glaisher's own words. It is only necessary to premise that.it was intended on this occasion to ascend as high as possible. The following is an extract from Mr Glaisher's account (British Association Report, 1862, pp. 383-385):-

This ascent had been delayed owing to the unfarourable state of the weather. The balloon left at 1 h .3 m. P.M. The temperature of the air was 59°, and the dew-point 50°. At the beight of 1 mile it was 41°, dew-point 38°; and ahortly afterwards wo entered a cloud of about 1100 feet in thickness, in which the temperature of the air fell to $36 \frac{1}{2}^{\circ}$, the dew-point being the same, thus indicating that the air was here saturated with moisture. On emerging from the cloud at 1 h .17 m . we came upon a flood of strong sunlight, with a beautiful blue sks, without a cloud above us, and a magnificent sea of cloud below, its surface being varied with endless hills, hillocks, mountain chains, and many snow-white masses rising from it. I here tried to take a view with the camera; but wo were rising with too great rapidity, and going round and round too quickly, to enable me to do so. The flood of light, howrever, was so great that all 1 should have needed would have been a momentary exposure, as Dr Hill Norris had kindly furnished me with extremely sensitive dry plates for the purpose. We reached 2 miles in height at lh. 21 m . The temperature had fallen to the freezing-point , and the dew-point to 26°. We were 3 miles high at 1 h . 28 m ., with a ternperature of 18°, and dew-point 13°. At 1 h . 39 m . we had reached 4 miles, and the temperature π as 8°, and dew-point- 15°; in ten minutes more we had reached the fifth mile, and the temperature had passed helow zero, and then read -2°, and at this point no dew was observed on Kegnault's hygrometer when cooled down to -30°; but a dew-point obtained from the readings of dry and wet gave - 36°. Up to this time I had taken observations with comfort. I bad experienced no dificulty in breathing, whilst Mr Coxwell, in consequence of the necessary exertions he had to make, had breathed with difficulty for some time. At 1 h . 51 m . the barometer reading was 11.05 inches, but this requires a subtractive correction of 0.25 inch, as found by comparison with Lord Wrottesley's atandard barometer just before starting. I afterwards read the dry thermo. meter as -5°; this must have been about 1 h .52 m . or later ; I could not see the column of mercury in the wet bulb thermometer; nor afterwards the hands of the watch, nor the fine divisions on any instrument. I asked Mr Coxwell to help me to read the instruments, as I experienced a difficulty in seeing. In consequence, however, of the rotatory motion of the balloon, which had continued without ceasing since the earth had been left, the valve-line had become twisted, and he had to leavc the cer and mount into the
ring above to adjust it. At this time I looked at the barometer, and found it to be 10 inches, still decreasing fast; its true reading therefore was $9 \frac{3}{3}$ inches, implying a height of 29,000 feet. Shortly afterwards I laid my arm upon the table, possessed of its full vigour, and on being desirous of using it, I fownd it powerless-it must have lost its power momentarily. I tricd to move the other arm, and found it powerless also. 1 then tried to shake mpself, and succeeded in shaking my body. I seemed to have no iimbs. I then looked at the barometer, and whilst doing so my head fell on my left shoulder. I struggled and shook my body again, but could not move my arms. I got my head upright, but for an instant only, when it fell on my right shoulner, and then I fell backwards, my back resting against the aide of the car, and my head on its edge; in this position my eyes were directed towards Mr Coxwell in the ring. When I shook uny body I seemed to have full power over the muscles of the back, and considerable power over those of the neck, but none over either my arms or my legs; in fact, I seemed to have none. As in the case of the arms, all muscular porrer was lost in an instant from my back and neck. 1 dimly saw Mr Coxwell in the ring, and endeavoured to speak, but could not; when in an instant intense black darkness came: the optic nerve finally lost power suddenly. I was still conscious, with as active a brain as at the present moment whilat writing this. I thought I had been seized with asphyxia, and that I should experience no more, as death would come unless we speedily descended: other thoughts were actively entering my mind, when I suddenly hecame unconscious as on going to sleep. I camnot tell anything of the sense of hearing ; the perfect stillnesa and silence of the regions 6 miles from the earth (and at this time we were between 6 and 7 miles high) is such that no sound reaches the ear.
My last observation was made at 1h. 54 m . at 29,000 feet. I suppose two or three minutes fully were occupied between my eyes becoming insensible to seeing fine divisions and $1 \mathrm{~h}, 54 \mathrm{~m}$., and then that two or three minutes more passed till I was insensible; therefore I think this took place at about 1 h .56 m . or 1 h .57 m . Whilst powerleas I heard the rrords 'temperature' sid 'observation,' and I knew Mr Coxwell was in the car speaking to me, and endeavouring to arouse me; therefore consciousness and hearing had returned. I then beard him speak more emphatically, but I could not see, apeak, or move. I heard him again say, 'Do try-now do.' Then l saw the instruments dimly, then Mr Coxwell, and very shortly saw clearly. I rose in my seat and looked round, as though wak ing from sleep, though not refreshed by sleep, and aaid to Mr Coxwell, 'I have been insensible.' He said, 'You luave ; and I too, very nearly.' I then drew up my legs, which had been extended before me, and took a pencil in my hand to begin observations. Mr Coxwell told me that he had lost the use of his hanis, which were black, and I poured brandy over them.

I resumed my observations at 2 h .7 m ., recording the barometer reading at 11.53 inches and temperature -2°. I snppose that three or four minutes were occupied from the time of my bearing the rords 'temperature' and 'observation' till I began to observe. If so, then returning consciousness came at 2 h . 4 m ., and this gives seven minutes for total insensibility. I found the water in the vessel supplying the wet bulb thermorneter, which I had by frequent disturbances kept from freezing, was one solid mass of ice; and it did not all melt until after we had been on the ground some time.
" Ir Coxvell told mo that whilst in the ring he felt it piercingly cold; that hoar-frost was all round the neek of the balloon; on attempting to leave the ring he found his hands frozen, and he had to place his arms on the ring and drop down ; that be thought for a moment I had lain back to rest myself; that he spoke to mo without eliciting a reply; that he then noticed my legs projected and my arms hung down by my side; that my countenance was eerene and placid, without the earnestness and anziety be had noticed before going into the ring, and then it struck him I was insensible. He wished to approach me, out could not, and he felt insensibility coming over himself; that he became anrious to open the valve, but in consequence of his haring lost the use of his hands be could not, and ultimately did so by seizing the cord with hia teeth, and dipping his head two or three times, until the balloon took a decided turn downwads.
"No inconvenicnce followed this insensibility", and when we dropped it was in a country where no conveyance of any kind could be obtained, so that I had to wall between 7 and 8 miles.
"The descent was at first very rapid; we passed downraards e miles in nine minutes; the balloon's carcer was then checked, anc it finally descended in the centro of a large grase field at Cold Weston, $7 \frac{1}{2}$ miles from Ludlow.
"In this ascent six pigeons wero talcen up. One was thrown ont at the height of 3 miles, when it exterded its wings and dropped as a piece of paper; a second, at 4 miles, few vigoronsly round and round, apparently taking a dip each time; a third was thrown out between 4 and 5 miles, and it fell downerards as a stone ; a fourth was thrown out at 4 miles on descanding; it flew in a circle, and shortly alighted on the top of the ballon. The two ramsining
pigeons were brought down to the ground. One ras found to be deed, and tho other, a carrier, was still living, but mould not leavo the hand when I attempted to throw it off, till, after a quarter of an honr, it began to peek a picce of ribbon which encircled its neck, and was then jerked off the finger, and flew with aome vigour towards Wolverhampton. Ona of tbe pigeons returned to Wolverbampton on Subday, the i th, and thia is the only ono that has bean heard of."
Mr Glaisher found from his observation-book that the Last observation was made at 29,000 fect, and that at this time the balloon was ascending at the rate of 1000 fect per minate; and that when he resumed his observations, it was descending at the rate of 2000 feet per minute, the interval being thirteen minutes. This gives 36,000 or 37,000 feet for the greatest height attained. Two other series of considcrations led to the latter height, and there can be no doubt that the altitude of 37,000 feet, or 7 miles, was attained on this occasion.

Ascent
from the Crystal
Palace on April 18, 1863.

Ascect

from 1 Pol
rertod,
June :6, 1863.

In the ascent, April 18, 1863, 24,000 fect of elevation was reached. It was we.markable for the rapidity of the descent. At 2 h .44 m ., the balloon being then at a beight of 10,000 feet, Mr Coswell suddenly caught sight of Beachy Head, and Mr Glaisher, looking over the cdge of the car, saw the sea, apparently immediately underneath. There was no time to be lost, and Mr Coxwell hung on to the valreline, telling Mr Glaisher to leave his instruments and do the same. The carth was reached at 2 h .48 m ., the two miles of descent having been effected in four minutes. The balloon struck the ground near Newhaven with a terrible crash, bnt, from the irce use of tho ralve-line, it was so crippled that it did not move afterwards. Ail the instruments, of the value of more than $£ 25$, including some that were unreplaceable, were broken, and Mr Gllaisher was hurt. In the desceut, after the first high ascent on July 17, 1862, the earth was struck with so much violence that most of the instruments were broken, and Mr Glaisher (who was closed in by bis observing-board) was a good deal hurt then. In subsequent ascents, therefore, boxes were used filled with small mattresses, in which the instruments could be hurriedly placed, and the board was so arranged that it could be turned orer and hungoutside the car. These improvements had the effect of diminishing the danger to himsclf and the chance of breakage of the instruments, but in the Newhaven descent there was not sufficient time to put them in practice.
The circumstances met with in the ascent, June 26 , 1863, were so remarkable that a short account cannot be omitted. The morning was at first very bright and fine, but betreen 11 and 120° 'clock a change took place; the sky became covered with clouds, and the wind rose and blew strongly, so that great difficulty was experienced in completing the inflation. At 1 h .3 m , the balloon left; in four minntes, at 4000 feet high, cloud was entered. Mr Glaisher expected soon to break through it, and enter into bright sunshine as usual, but nothing of the sort took place, as, on emergence, clouds were scen buth above and below. At 9000 fect the sighing and moaning of the wind were heard, and Mr Glaisher satisfied himself that this was due, not to the cordage of the balloon, but to opposing currents. At this time the sun was seen faintly, but instead of its brillinnce increasing, although the balloon was then two miles high, a fog'was entered, and the sight of the sun lost. The balloon ncxt passed through a dry fog, which was left at 12,000 feet, and after the sun bad been seen faintly for a little time, a wetting fog was entered.
"At 15,000 fcet," Mr Glaisher proceeds, "we were still in fog, but it was not so wetting. At 16,000 feet we entered a dry fog; at 17.000 feet saw faint gleams of the sun, and beard a train. We wera now about 3 miles high; at this time we were not in clond, but clouds were below us ; others were on onr level at a distance, and yet more above us. We looked with astonishment at each other, and said as we were rising steadily we surely must spon
pass throngh them. At 17,500 feet wo were again enveloped in fog, which becamo.wetting at 18,500 fect ; wa left this cloud below at 19,600 fect. At 120,000 feet the sun was just visible. We were now approaching 4 miles high ; dense clouds wera still above us; for a space of 2000 to 3000 fect we met with no fog, but $3=$ passing above 4 miles our attention was first attracted to a dark mass of cloud, and then to another on our level; both theso clouds had fringed edges-they wero both nimbi. Without the slightcst doubt both these clouds wera regular rain-clouds. Whilst looking at them we again lost sight of everything, being enveloped in fog whilst passing upwards throngh 1000 feet At 22,000 feet wo again emerged, and were above clouds on passing above 23,000 feet. At six minutes to 2 oclock wo heard a railway train ; the temperature here was 18°. 1 wished still to ascend to find the limits of this vapour, but Mr Coxwell said, "We are too ahort of sand; I cannot go higber; wa must not 8 ven stop hero.' I was therefora most relnctantly compelled to abaudon the wish, and looked searehingly around. At this higbest point, in close proximity to 1 ns , were rain-clouds; below wa denso fog. I was again reminded that ve must not stop. With a hasty glance everywhere, above, below, around, I aaw the sky nearly covered with dark clouds of a stratus character, with cirri still higher, and small spaces of blue sky botween them. Tho blua was not the blua of 4 or 5 miles high as I had elways befors seen it, but a faint bluc, as acen from the earth when the air is charged with moisture."

In the downward journey an even more remarkable series of circumstances was met with; for a fall of rain was passed through, and then below it a snow-storm. the flakes being entircly composed of spicule of ice and innumerable snowcrystals. On reaching the ground near Ely the lower atmosphere was found to be thick, misty, and murky. At Wolverton the afternoon was cold, raw, and disagrecable for a summer's day. The fact of rain-clouds extcnding layer above layer to a height of 4 miles, was one never hitherto regarded as possible; and the occurrence of rain and snow, and the latter underneath the former, and all happening on a day in the very middle of summer, formed a series of most curious and unexpected phenomena

Mr Glaisher having, in one of his descents, which took place near sunset, obscrved that the temperature was the same through a very considerable height, it occurred to him that after dark it was quite possible that, for some cleFation abore the carth's surface, the temperature might even increase with inereaso of height; and to determine this he arranged for some ascents to be made after sunset, so that the temperature during the night might be observed. For this purpose he procured a couple of Davy lamps, which answered their object satisfactorily. Accordingly, on October 2, 1865, an ascent was made. from Woolwich Arsenal, the time of starting being about threequarters of an hour after the sun had set. 'The temperaturo on the earth was 56°, and it steadily increased to $59^{\circ} \cdot 6$ at the height of 1900 feet. This was established conclusively by rcpeated ups and downs, the temperature falling as the balloon desconded. The view of London lighted up, as seen from the balloon in this ascent, the night being clear, was most wonderful. A second night ascent was made from the same place on December 2; 1865, and the balloon left the carth $2 \frac{3}{4}$ hours after sunset. On this occasion the temperature did not rise, but the dccrease, though steady, was small. In an ascent from Windsor on May 29, 1866, the balloon was kept up till half-past eight o'clock, aud the temperature was found to decrease as the earth was approached during the last 900 feet. In this last ascent no paid aeronaut was employed, as Mr Westcar, of the Royal Horse Guards, undertook the management of the balloon. In the preceding five ascents Mr Orton, of Blackwall, was employed as aeronant.

It bas been found necessary in the present notice to allude merely to the more striking points noticed in Mr Glaisher's twenty-eight ascents. The number of observations made by him was of course great, and it is only necessary here to repeat that they are to be found in the Reports of the British Association for the Advancement of Science.

1862-66. It appeared as one of tha results of the experiments that the rate of the decline of temperature with elevation near the earth was rery different when the sky was clear from what was the case when it was cloudy; and the equality of temperature at sunset and increase with height after sunset were very remarkable faets which were not anticipated, and which have an important learing on the theory of refraction, as astronomical observations are usually made at night. Even at the -height of 5 miles, cirrus clouds were seen high in the air, apparently as far above as they seem when viewed from the earth, and the air must there be so exceedingly dry that it is hard to believe that their presence can be due to moisture at all. The results of the observations differed very mueh, and no doubt the atmospheric conditions depended not only on the time of day, but also on the season of the year, and were such that a vast number of aseents would be requisite to determine the true laws with anything approaching to certainty and completeness. It is also clear that England is a most unfit country for the pursuit of such investigations, as, from whatever place the balloon started, it was never safe to be more than an hour above the clouds for fear of reaching the sea It appeared from the observations that an aneroid barometer could be trusted to read as accurately as a mercurial barometer to the heights reached. The time of ribration of a horizontal magnet was taken in very many of the ascents, and the results of ten different sets of observations proved undoubtedly that the time of vibration was lunger than on the earth. In almost all the ascents the balloon was under the influence of currents of air in different directions. The thickness of these currents was found to vary greatly. The direction of the wind on the earth was sometimes that of the whole mass of air up to 20,000 feet, whilst at other times the direction changed within 500 feet of the earth. Sometimes directly opposite currents were mot with at different heights in the same ascent, and three or four streams of air were encountered moving in different directions. Ignoring the different currents of air which caused the balloon to change its direction, and at times to move in entirely opposite directions, and simply taking into account the places of ascent and descent, the distances so measured were always very much greater than the horizontal movement of the air as measured by anemometers. For example, on January 12, 1862, the balloon left Woolwich at 2 h .8 m . P.M., and descended at Lakenheath, 70 miles distant from the place of ascent, at 4 h 19m. P.m. At the Greenwich Observatory, by Robinson's anemometer, during this time the motion of the air was 6 miles only. With regard to physiological observations, Mr Glaisher found that the number of pulsations increased with elevation, as also the number of inspirations. The number of his pulsations was generally 76 per minate before startirg, abcut 90 at 10,000 feet, 100 at 20,000 feet, and 110 at higher elevations. But a good deal depended on the temperament of the individual. This was also the case in respect to colour; at 10,000 feet the faces of some would be a glowing purple, whilst others would be scarcely affected; at 4 miles high Mr Glaisher found the pulsations of his heart distinctly audible, and his breathing was very much affected, so that panting was produced by the very slightest exertion; at 29,000 feet he became insensible. In refcrence to the propagation of sound, it was at all times found that sounds from the earth were more or less audible according to the amount of moisture in the air. When in clouds at 4 miles high, a railway train was heard; but when clouds were far below, no sound cyer reached the ear at this elevation. The disclarge of a gun wass heard at 10,000 feet. The barking of a dog was heard at the height of 2 miles, while the shouting of a multitude of peovile was not audihle at heights exceeding 4000 feet

The majority of Mr_{r} Glaisher's experinents were made in the summer, partly because public asconts took place at this time of the year, and partly because the weather was more settled. But some spccial ascents were made in the winter; these were found to be very troublesome and costly, owing to the time that was wasted beforo a suitable day occurred, and to the boisterous weather, which damaged the balloon. Altogether the number of ascents bore but a small ratio to the number of days spent over them. Sometines it was necessary to wait at Wolverhainpton a whole week after the day fixed for the ascent, owing to the unfavourable state of the weather and the necessity of keeping the light gas required for the balloon in a scparate gasumeter (as the lightest gas is the worst in illuminating power), added to the cost and difficulty. When balloons ascend as public

 French campaigu against Italy in 1859 the French had recourse to the use of balloons, but this time there was not any acrostatic corps, and their management was entrusted to the brothers Godard. Several reconnaissances were made, and onc of especial interest the day before the battle At Sol of Solferino. No information of much importance seems, however, to have been gained thereby. The Fleurns re- se of bal.
ins for
itary
inposes.

[^30][^31] -
\qquad
 4
ne$-$
s.

exhibitions from places of entertainment it is very rarely
that a height of a mile is reached, although, in the absence

\square

\square
connaissance was made in a balloon inflated with hydrogen gas, while at Solferino a fire-bailoon was employed. Each system bas its advantages and disadvantages; the gasballoon requires sevcral hours for inflation, but then it can remain in the eir any length of time; the fire-balloon can be inflated rapidly, but it will not, stay in the air more than five or ten minutes unless a furnace is taken up, the uso of which is impracticable in even a moderate wind; besides, the fire-balloon must be of very large dimensious, and only one person could, as a rule, ascend at a time, and he would have to be occupied with the fire : the use of fire-balloons also is always attended with some danger. M. Eugene Godard, who was engaged in the management of the balloons in the Italian campaign, wrote to the Times, in August 1864, expressing his opinion of the superierity of fire-balloons for war purposes, as they are so easily inflated and are not destroyed or compelled to descend even if pierced by several balls; and this was also, we belicye, the opinion of the Austrians who made experiments with war balloons.

In the late American war balloons wero a good deal used by the Federals. There was a regular balloon staff attached to M‘Clellan's army, with a captain; an assistant-captain, and ibout 50 non-commissioned officers and privates. The apparatus consisted of two generators, drawn by four borses cach; two balloons, drawn by four horses each, and an acid-cart, drawn by two horses. The two balloons used contained about 13,000 and 26,000 feet of gas, and the inflation usually occupied about three hours. (See Captain Beaumont's Account, vol. xii. of the Royal Engineers' Papers.) We are not aware of the value set by the officers in command on the information obtained by this means; but as we believe balloons were employed till the conclusion of the war, it is clear that some importance was attached to their use. In 1862 or 1863 one or two experiments to test the use of balloons in making reconnaissances wero made at Aldershot, but nothing came of them.
When the Montgolfers first diseovered the balloon, its great use in military operations was at once prophesied; but these anticipations bave not been realised. On the other hand, however, there can be no doubt that the balloon has never had a fair trial, being viewed coldly by officers enamoured of routine, and when used, being often 'eft unsurplied with suitable appointments. It is probable bat a future still remains for the balloon in this direction.
The paramount value of the balloon during the recent siege of Paris must be fresh in the minds of all. It was by it alone that communication was kept up between tho besieged city and the external world, as the balloons carried away from Paris the pigeons which afterwards brought back to it the news of the provinces. The total number of balloons that ascended from Paris during the siege, conveying persons and despatches, was sixty-four-the first haring started on September 23, 1870, and the last on January 28, 1871. Gambetta effected his oscape from Paris, on October 7, in the balloon Armand-Barlés, an event which doubtless led to the prolongation of the war. Of the sixty-four balloons only tro were never heard of; they were blown out to sea. One of the most remarkable voyages was that of the Tille d'Orléans, which, leaving Paris at eleven o'clock on November 21, desconded fifteen hours afterwards near Christiania, having crossed the North Sea. Several of the balloons on their descent were taken by the Prussians, and a good many were fired at while in the air; but we do not hear of any beirg injured from this cause. The average size of the balloons was from 2000 to 2050 metres, or from r0,000 to 72,000 cubic feet. The abore facts we have extracted from Les Ballons du Siege de Paris, a sheet published by Bulla \& Sons, Paris; compiled by the brothers Tissandier, well-known French aeronauts, and giving the
name, size, and times of ascent and descent of every ballon that left Paris, with the names of the aeronaut and generally also those of the passengers, the weight of despatches, the number of pigeons, de. Ouly those balloons, however, are noticed in which some person ascended. Λ similar list of sixty-two balloons is given by Mr Glaisher in the introducLion to the second edition of Travels in the Air (1871). It was, however, published too soon after the conclusion of the siege to be quite so completo as the sheet of the MM. Tissandier.

It is perhaps worth stating that the balloons were manufactured and despatched (generally from the platforns of the Orleans or the Northern Railway) under the direction of the Post-Office. The aeronants employed were mostly sailors, who did their work very well. No use whatever was made in the war of balloons for purposes of recomnaissance. The exceedingly important part played by the balloon in the siege of Paris would alone, if it had been of no other utility, render it one of the most.valuable inventions of tho last century.
The principlo of the parachute is so simple that the idea Faramust have occurred to persons in all ages. Father Loubere, chutes in his History of Siam, published two centuries ago, tells of a person who frequently diverted the court by the prodigious leaps he used to take, baving two parachutes or umbrellas fastened to his girdle. In 1783 a certain M. le Normand practically demonstrated the efficiency of a parachute by descending from a high house at Lyons; but he merely regarded it as a useful means whereby to escape from fire. Io Blanchard is due the idea of using it as an Blanchs adjunct to the balloon. As early as 1785 he had constructed a parachute, to which was attached a basket. In this he placed a dog, which descended safely to the ground when the parachute was released from, a balloon at a considerable eleration. It is stated that he descended himself from a balloon in a parachute in 1793; but, owing to some defectin its construction, be feli toorapidly, and brokehis leg.
André Jaquês Garnerin was the first person who success- Garnent fully descended from a balloon in a parachute, and he repeated this experiment so often that he may bo said to have first demonstrated the practicability of using the machine; and, in fact, that be invented it in a practical and suitable form. In 1793 Garnerin had been taken prisoner at Marchiennes, and he was confined for between two and three years in the fortress of Bude, in Hungary: While in captivity he elaborated in lis mind the means of descending from a balloon by means of a parachute; and on October 22, 1797, he made his first. public experiment. He ascenderl from the park of Moncean at l'aris, and when at the beight of about $1 \frac{1}{2}$ mile he released the parachute, which was attached to the balloon in place of a car; the balloon, relieved suddenly of so great a weight, rose very rapidly till it burst, while the parachuto descended very fast, making violent oseillations all the way. Garnerin, however, reached the earth in safety upon the plain of Monceau. In 1802 Garnerin came to England and made a good many ascents in all parts of the country, many of which excited much enthusiasm, as can be seen from the contemporary accounts; and on September 21, 1802, he repeated his parachute experiment in Epgland.

The parachute was dome-shaped, and bore a resemblance ' to a large umbrella. The case or dome was made of white canvas, and was 23 feet in diameter. At the top was a truck or round piece of wood 10 inches in diameter, with a hole in its centre, fastened to the canvas by 32 short pieces of tape. The parachute, was suspended from a hoop attached to the netting of the balloon, and below the para. chute was placed a cylindrical basket, 4 feet high and 24 feet in diameter, which contained the aeronaut The ascent tools place at ahout six o'clock from North Audley Street Inndon:
and, at a height of about (it is belicred) 8000 feet, Garnerin separated the parachute from the balloon. For a few seconds his fate seemed certain, as the parachute retained the collapsed state in which it had originally ascended, and fell very rapidly. It suddenly, however, expanded, and the rapidity of its descent was at once checked, but the oscillations were so violent that the car, which was suspended 20 feet below, was sometimes on a level with the rest of the apparatus. Some accounts state that these oscillations increased, others that they decreased as the parachute descended, and the latter seems most probable. It came to the ground in a field at the back of St Pancras Church, the descent having occupied rather more than ten minutes. Garnerin was hurt a little by the violence with which the basket containing him struck the earth; but a few cuts and a slight nausea represented all the ill effects of his fall. He nade, certainly, one other descent in a similar way (as that just described is stated to save been his third), and we believe several others on the Continent, but this was the only one he effected in England.

Jordaki Kuparento, a Polish aeronaut, is the only person who ever made any real use of a parachute. He ascended from Warsaw on July 24, 1808, in a fire-balloon, which, at a considerable eleration, took fire; but being provided with a parachute, he was enabled to effect his descent in safety.

The next experiment made with a parachute was that which resulted in the unfortunate death of Mr Robert Cocking. So early as 1814 this gentleman had lectured on the subject before the City Philosophical Society, and also before the Society of Arts. He always retained an interest in ballooning, and made two ascents-one with Mr Sadler, and the other on September 27, 1836, with Mr Green. The success of the balloon trip of Messrs Hollond, Mason, and Green, seems to have incited Mr Cocking to demonstrate practically the truth of his views. He accordingly constructed a suitable parachute on his principles, and having succeeded in obtaining the consent of Messrs Hughes and Gye, the proprietors of ${ }^{-V a u x h a l l}$ Gardens, to permit the ascent to be made there, he prevailed on Mr Green to ascend in his great Nassau balloon with the parachute attached. The great defect of Garnerin's umbrella-shaped parachute was its violent oscillation during descerit, and Mr Cocking considered that if the parachute were made of a conical form (vertex downards), the whole of this oscillation would be avoided; and if it were made of sufficient size, there would be resistance enough to check too rapid a descent. He therefore constructed a parachute on this principle, the radius of which at its widest part was about 17 feet. It was stated in the public announcements previous to the experiment that the whole weighed 223 lb ; but from the evidence at the inquest it appeared that the wcight must have
 been over 400 抽. Mr Cocking's weight was 177 \#, which was so much additional. On July 24, 1837, the trial took place; and the Nassau balloon, with Mr Green and Mr Spencer, a solicitor, in the car, and having suspended below it the parachute, in the car of which was Mr Cocking, rose from the ground at twenty-five minutes to eight in the evening. A good deal of difficulty was experienced in
rising to a suitable beight, partly in consequence of the resistance to the air offered by the expanded parachute, and partly owing to its weight. Mr Cocking wished the height to be 8000 fect; but when the balloon reached the height of 5000 feet, it being then nearly over Greenwich, Mr Green called out to Mr Cocking that he should be unable to ascend to the requisite height if the parachute was to descend in daylight. Mr Cocking accordingly let slip the catch which was to liberate him from the balloon. The parachute for a :eis seconds descended very rapidly but still evenly, untui suddenly the upper riin seemed to give way, and the whole apparatus collapsed (taking a form resembling an umbrella turned inside out, and nearily closed), and the machir descended with great rapidity, oscillating very much. Wisen about two or three hundred feet from the ground, the basket became disengaged from the remnant of the parachute, and Mr Cocking was found in a field at Lee, literally dashed to pieces.
Mr Green and Mr Spencer, who wepe in the car of the balloon, had also a narrow escape. At the moment the parachute was disengaged they crouched down in the car, and Mr Green clung to the valveline, to permit the escape of the gas. The balloon shot- upwards, plunging and rolling, and the gas pouring from both the upper and lower valres, but chiefly from the latter, as the great resistance of the air checked its egress from the former. Mr Green and Mr Spencer applied their mouths to tubes communicating with an air-bag with which they had had the foresight to provide themselves, otherwise they would certainly have been suffocated by the gas. Notwithstanding this precaution, however, the gas almost totally deprived them of sight for four or five minutes. When they came to themselves they found they were at a height of about four miles, and descending rapidly. They effected, however, a safe descent near Maidstone.

Many objections were made, after the result, to the form of Mr Cocking's parachute; bat there is little dcubt that had it been constructed of sufficient strength, and perhaps of somewhat larger size, it would have answered its purpose. As it'was, the upper rim was made of tir, which soon gave way. Mr Wise, the American aeronaut, made some experiments on parachutes of both forms (Garnerin's and Cocking's), and found that the latter always were much more steady, descending generally in a spiral curve.

In 1839 Mr Hampton made three descents in a para- Mr Hamy chute, on Garnerin's pattern, from his balloon, the "Albion." He followed Garnerin's example in attaching the parachute to the netting of the balloon, so that when the connection between the two was severed the latter was left to its own devices. Mr Hampton took measures, however, that

it should descend soon after the parachute, and it ?:mom generally found no great distance off, and returned to him. Ill his parachute descents were safely performed, although in one he was a good deal shaken.

We may remark, that a descending balloon half-full of gas cither does rise, or can with a little management be made to rise, to the top of the netting and take the form of a parachute, thus materially lessening the rapidity of descent. Mr Wise, in fact, having noticed this, once purpusely cxploded his balloon when at a considerable altitude, and
the resistance offered to the air by the cuvelope of tho balloon was sulficient to enablo him to reach the ground without injury. And a similar thing took place in one of Mr Glaisher's high scieutific ascents (April 18, 1863), when, at a lecioht of about 2 miles, the sea appeared directly undune th; the gas was let out of the balloon as quiclly as possible, and the velocity of descent was so great, that the 2 miles of rertical beight were passed through in four minutes. On the balloon reaching the ground at Newhaven, close to the shore, it was found to be nearly cmpty. The lalloon had, in fact, for the last mile or more, merely acted as a parachute; the shoch was a severe one, and all the instruments were broken, but nothing serious resultel to the occupants of the car.

Numerens attenipts have been inade both to direct balloons and coutrive independent flyius machines. After the invention of the balloon liy the lrothers Montgolfier, it was at once thought that 110 very great difficulty would be found in devising a suitable stecring apparatus; in fact, it was supposed that to rise into the air and remain there was the chief difficulty, and that, this being accomplisherl, the power of directing the aerostat would be a secondary achievement that must fullow before long. Accordingly, in most of the early balloons the royagers took up oars, sails, or paddles, which they diligently worked while in the air; sometimes they thought an effect was produced, and sometimes not. If we consider the number of different currents in tho atmosphere, it is no wonder that some should have announced with confidence that their course was changed from that of the wind by means of the sails or oars that they used, in fact, it is not very often tinat the whole atmosplere up to a considerable height is moving en masse in the same direction, so that generally the course taken by the balloon, as determined merely by joining the places of ascent and descent, is not identical with the direction of the wind, erem when it is the same at both places. Although there is no reasou why balloons should not be so guided by means of mechanical appiances attached to them as to move in a direction making a small angle with that of the wind, still it must have been evident to any one who has olserved a balloon during inflation on a whidy day, that any notion in which it would be exposed to the action of a strong current of air must result in its destruction. It las therefore gradually become recognised that the balloon is scarcely a step, at all towards a system of acrial navigation; and many have thought that the principles. involred in the construction of a flying machine must be very different from the simple statical equilibrium that subsists when a balloon is thating in the air. "To narigate the air the machine must be heavier than the air," has frequently been regarded as an axi nu; and there can be nodoubt that an apparatus constructed of such light material as is necessary for a balloon must cither be destroyed or become ungovernable in a high wind. Recently, however; M. Dupuy de Lôme, an eminent Trench engineer, has constructed and made experiments with a balloon which lee considers satisfies some of the conditions. The balloon is epindle-shaned, the longer axis being horizuntal, and it c intains about 120,000 cubic fect. The car is suspended below the middle of the balloon, and there are provided a rudder and a screw. The rudder consists of a triangular sail placed heneath the balloon and near the rear, and is kept in position by a horizontal jard, about 20 feet long, turnitig round a pisot in its forward extrematy; the height of the sail is 16 feet, and its surface 160 square feet. Two ropes for working the rudder extend forward to the seat of the "stecrer, who has before hirn a compass fixed to the car, the central part of which will contain surteen men. The screv is carried by the car, and is driven by four or eight men working at a capstan. A trial was made with the
machine on February 2, 1872, on a windy tay, and M. de Lume considered that ho had been enabled by lis screv and rudder to alter his ccurse about 12°. (Sce lieport of the Aeronautical Socicty, 1S72).

Whatever difficulties may present themselves in regulating the horizontal movement of the balloon, there can be no doubt that the vertical motion could bo obtained by means of a screw or other mechanical means; and the prower of being able to ascend or descend mithout loss of Lallast would bo a considerable gain. In the opinion of many, however, the balloon is not worth improvement; and as ballooning is now generally practised merely as a spectacle by which the aeronat or showman gains his living, it is not likely that any advancement will be made.

Of flying machines, in which both buvyancy and motion were proposed to be obtained by purely mechanical means, the number has been very great. Most of the projects have been chimerical, and were due to persons possessed of an insufficient knowledge of the principles of natural philosophy, both theoretically and practically. They serve, however, to show how great a nuruber of individuals must have paid attention to the matter, and even at the present time several pateats are taken out annually on the subject. We do not propose here to give an account of any of theso projects, for but few hare crer passed beyond projects, but will merely refer to JIr Henson's aerial carriage, which iu Herr 1843 attracted some attention. The apparatus was an auria claborate one, and its principal feature was the great expauso of the sustaining planes. The machine was to advance with its front edge a. little raised, the efiect of which would be to present its under surface to the air over which it was passing; the resistance of this air, acting on it like the strong wind on the sails of a windmill, would, it was thought, prevent the descent of the machinc. Mr Henson invented a steam-engine of great lightness, but he proposed that the machine should be started down an inclined plane, so that the steam-engine would only have to make up for the velocity lost by the resistance of the air. The schemo never came to anything.

In the still air of a room it is, of course, not difficult to attach an apparatus to a balloon so as to direct its motion, and even models of flying machines have been made which, when tried in a room, seemed moderately successful. Some instruments which would very nearly support themselves in the air were shown at the Aeronautical Society's exhibition at the Crystal Palace. A good deal would be accomplished if an accurate knomledge of the exact motion of a bird's wing could be obtained; in fact, until this is known, or until sufficient experinents on the resistance experienced by differest-shaped laminæ with different metions are made, there seems little chance of the construetion of a satisfactory dying machine, unless means can be found to make a steam-engine of much less weight than is at present necessary.

In 1865° the Acronautical Society of Great Britain was Aeros founded, the officers being-President, the Duke of Argyle; cal Si Treasurer, Mr J. Glaisher; and Sccretary, Mr Brearey. It has published an annual report crery jear since [1873], containing selections from tho papers read to the society, and abstracts of the discussions that took Ihace thereon at the meetings. The numerous papers submitted to this society bear witness to the great number of minds that are engaged on the solution of the problem of aerial navigation. Of course, not a few of the methods proposed are the fanciful projects of ignorant men, but some show the careful thought and elaborate experiment of trained engineers and other qualified persons. In 1868 the saciety held an exhibition of flying machines, dre, at the Crystal Palace, which was visited by many persons. A fire-balloon of a M. de la Marne, which should have ascended during this exbibition
caught fire and was burnt. In 1871 a series of experiments was made at Penn's factory (Greenwich) on the resistance of different shaped planes placed at different angles, in a current of air produced by a'rotary fan. Investigations of this Eind not only form the first step towards obtaining data for a true knowiedge of the exact nature of flying, but are also independently of high scientific interest. The chief object of the society is to bring together those persons who are interested in the subject of aeronautics (except balloonists by trade, who are ineligible), and to encourage those who, possessing suitable acquirements, are devoting their time to the investigation of the question.

Aerostatic societies hare also been founded in other countries; but although they have been inaugurated with considerable éclat, more than one hare already terminated a short-lived career. The Vienna society scems, however, to have been unusually active during the recent exhibition of 1873.

The principle in vartue of which a balloon ascends is exactly the same as that which causes a piece of wood or other material to float partially immersed in water, and may be stated as follows, riz., that if any body float in equilibrium in a fluid, the weight of the body is equal to the weight of the fluid displaced. By the "fluid displaced " is meant the fluid which would occupy the space actually occupied in the fluid by the body if the hody were removed. When the fluid is inelastic and incompressible, i.e., a liquid, as vater, its density is the same throughont, and bodies placed in it either rise to the surface and float there partially immersed, or sink to the bottom. Thus, suppose a body oniy one-third as heary as water (in other words, whose specific gravity is one-third) was floating on the surface of water, then, as the weight of the body must be equal to that of the water it displaces, it is clear that onethird of the body must be immersed. In the case, however, of an elastic or gaseous fluid, such as air, the density gradually decreases as we recede from the surface of the earth, for each layer has to support the weight of all above it, and as air is elastic or compressible, the layers near the earth are more pressed upon, and therefore denser than those above. Thus, if a body lighter than the air it displaces be set free in the atmosphere, it rises to such a height that the air there is so attenuated that the weight of it displaced is equal to that of the body, when equilibrium takes place, and the body ascends no higher. In all cases, therefore, a body floating in the air is totally immersed, and it can never get beyond tho atmosphere, and float, as it were, upon its surface.

To find, therefore, how high any body. (lighter than the air it displaces), such as a balloon, of given capacity and weight, will rise, it is only necessary to calculate at what height the volume of a quantity of air equal to the given capacity will be equal in weight to the given weight. Learing temperatnre out of the question, the law of the decrease of density in the atmosphere is such that the density at a height x is equal to $e^{-\frac{g}{2} x} \times$ the density at the earth's surface, g being the measure of gravity, and \mathcal{F} also a constant; the value of $\frac{k}{g}$ is called the height of the homogeneous afmosphere, viz., it is equal to what would be the beight of the atmosphere if it were homogeneous throughout, and of the same density as at the earth's surface. . Its value may be taken at about 26,000 feet. Thus, let V be the volume of a balloon and its appurtenances, car, ropes, dc. (viz., the number of cubic feet, or whatever the unit of solidity may be, that it displaces), and let W be its weight (including that of the gas), then it will rise to a height x such that

$$
\begin{aligned}
\mathrm{W} & =\mathrm{V} g \times \text { density of air, } \\
& =\mathrm{V} g \sigma_{0} e^{-\frac{g}{k}}
\end{aligned}
$$

g being the value of the force of gravity, and σ_{0} being the density of the air at the surface of the earth. This equa. tion is not quite accurate, fur sercral reasons-(1) because the decrease of temperature that results from increase of elevation has not been taken into account; (2) because g has been taken to measure the force of gravity on the earth's surface, whereas it should represent th: force at a height x; this is easily corrected by replacing g by g, where $g^{\prime}=g \frac{a^{2}}{(a+x)^{2}}, a$ being the radius of the earth, but as a is about 4000 miles, and x is never likely in any ordinary question to exceed 10 miles, we can replace g^{\prime} by g without introducing sensible error, for the correction due to this cause would be much less than other uncertainties that must arise; and (3) because W and Γ could not both remain constant. If the balloon be not fully inflated on leaving, so that the gas contained in it cau expand, then V, the volume of air displaced, will increase; while, if the balloon be full at starting, the envelope must cither be strong enough to resist the increased pressure of the gas inside, due to the removal of some of the pressure outside (owing to the diminished density of the air), or some of the gas must be allowed to escape. The former alternative of the second case could not be complied with, as the balloon would burst; some of the gas must therefore escape, and so W is diminished. The weight of gas of which the balloon is thus eased cannot properly be omitted from the calculation, if x be considerable; but a good approximation is obtained without it, as the weight of the gas that escapes will generally bear a small proportion to the weight of balloon, car, grapnel, passcngers, \&c. The true equation (except as regards temperature) is therefore, for a balloon full ait starting-

$$
\mathbb{W}-\frac{g a^{2} v_{0} p_{6}\left(1-e^{-\frac{9}{k}}\right)}{(a+x)^{2}}-\frac{g a^{2} V_{0} \sigma_{0}-e^{-\frac{\sigma^{2}}{k}}}{(a+x)^{2}},
$$

v_{0} denoting the volume actually occupied by the gns, g^{\prime} denoting $g \frac{a^{2}}{(\Omega+x)^{2}}$, viz., gravity at height x, and ρ_{0} being the density of the gas on the ground. It will generally be sufficient, especially when temperature is omitted, to take the formula in the approximate form written previously. As the rolume of air displaced by the car, ropes, passengers, \&c., is usually trifling compared to that displaced by the balloon itself, no great error can arise from taking $v_{0}=\mathrm{V}_{0}$. As an example, let us find how high a balloon of 100,000 cubic feet capacity would rise if inflated with pure hydrogen gas, carrying with it a weight of 3000 mb (this including the weight of the balloon itself and appurtenances). A cubic foot of air, at temperature 32° Fahr., and under a pressure of 29.922 in ., weighs 080728 lb , and a cubic foot of hydrogen weighs .005592 Hb , so that (supposing the barometer reading on the carth to be 29.922 in., and the temperature of the air to be 32°) at the surface of the earth the balloon, de., weighs 3559 db , and the weight of the air displaced is 8073 db . The balloon will therefore approximately rise to such a height x that 100,000 cubic feet of air shall there weigh 3559 Ib ; and x is given in feet by the equation

$$
e^{-\frac{6}{26, \omega 0}}=\frac{3559}{8073}
$$

or $\quad x=26,000(\log 8073-\log 3559)$,
the logarithms being hyperbolic; if common or Briggian logarithms be used, the result must be multiplied by $2 \cdot 30258 \ldots$ (the reciprocal of the modulus). In the abore
case we find $x=$ about 21,000 feet, and as at this height rather moro than half the gas will have escaped (it having been supposed that the balloon was full at starting). This only reduccs the value 3559 by about 300 , and the result of taking it into account is only to increase the height just found by about 200 fect. If 2000 its out of the 3000 were thrown away during the ascent, the balloon would reach a beight of about 10 miles; the wight of the gas that escapes is here important, as, if it be not taken into account, the height giren by the formula is only about 8 miles.

In actual aerostation, as at present practised, ordinary coal gas is used, which is many times hearier than hydrogen, being, in fact, usually not less than half the specific gravity of air. Even when balloons are inflated with hydrogen, generated by the action of sulphuric acid on zinc filings, the gas is very far from pure, and its density is often double that of pure hydrogen, and even greater.

The hydrostatic laws relating to the equilibrium of floating bodics werc known long previous to the invention of the balloon in 1783, but it was only in the latter half of the 18 th century that the nature of gascs was sufficiently andarstood to enable these principles to have been acted on. As we have seen, both Black and Cavallo did make use of them on arsmall scale, and if they had thought it possible to make a varnish impervious to the passage of hydrogen gas they could have easily anticipated the Montgolfiers. As it was, no sooner was the fire-balloon invented, than Charles at once suggested ind practically carried out the idea of the hydrogen or inflammable air balloon.
Hathema.
The mathematical thcory of the rate of ascent of a sical theory oalloon possesses remarkable historic interest, from the of the anotion of a balloon; the last problem that en. gaged the attention \& Euler.
fact that it was the last problem that engaged the attention of the greatest mathematician of the last century, Euler. The news of the experiment of the Montgolfiers at Annonay on June 5, 1783, reached the aged mathematician (he was in his 77 th year) at St Petersburg; and with an energy that was characteristic of him he at once proceeded to investigate the motion of a globe highter than the air it displaced. Eor many years he had been all but totally blind, and was in the habit of performing his calculations with chalk upon a black board. It was after his death, on September 7 , 1783, that this board was found corered with the analyical investigation of the motion of an aerostat. This investigation is printed under the title, Calculs sur les Ballons Aérostatiques faits par feu M. Léonard Euler, tels qu'on les a trouvés sur son ardoise, apres sa mort arrivée le 7 Septembre 1783, in the Memoirs of the French Academy for 1781 (pp. 264-268). The explanation of the earlier date is that the volume of memoirs for 1781 was not published till 1784. The peculiarity of Euler's memoir is that it deals with the motion of a closed globe filled with a gas lighter than air, whereas the experiments of the Montgolfiers were made with balloons inflated with heated air. The explanation of this must be that either an imperfect account reached Euler, and that he supplied the details himself as seemed to him most probable, or that he, like the Montgolfiers themselves, attributed the rising of the balloon to the generation of a special gas given off by the chopped straw with which the fire was fed. The treatment of the question by Euler presents no particular point of importance-indeed, it could not; but the fact of its having given rise to the closing Work of so long and distinguished a life, and having occupied the last thoughts of so great a mind, confers on the problem of the balloon's inotion a peculiar interest.

We now proceed to the investigation of the vertical motion of a balloon inflated with gas, the horizontal motiun, of course, being always equal to that of tho curreut in
whicn it $1 s$ placed. In supposing, therefore, the balloon to be ascending vertically into a perfectly calm atmosphere, there is no loss of generality. There are tro cases of the problem, viz., when tho balloon is only partially filled with gas at starting, and when it is quite filled. The motion in the former case we shall investigate first, as the balloon will ascend till it becomes completely full, and then the subsequent motion will belong to the second case. We may remark that it is usual in investigations relating to the motions of a balloon to regard it in the rway that Euler did, riz., as a closed inextensible bag, capable of bearing any amount of pressure. In point of fact, the neck or lower orifice of the balloon is invariably open while it is in the air, so that the pressure inside and outside is practically always the same, and when the balloon continues ascending after it has become quite full, the gas pours out of the neck or is allowed to escape by opening the upper valve. It is to be noticed that we have not thought it necessary to transform the formulæ obtained in such wise that they may be rcadily adapted to numerical calculations as they stand, as our object is rather to exhibit the nature of the motion, and clcarly express the conditions that are fulfilled in the case of a balloon, than deduce a semes of formula for practical use. We shall, however, indicate the simplifications allowable in practical applications. The effect of temperature, though important, is neglected, as the connection between it and height is still unknown. It was chiclly to determino this relation that Mr Glaisher's ascents were undertaken, and at the conclusion of the first eight he dcduced an empirical law which seemed to accord pretty well with ths observations; the succeeding twenty ascents, however, failed to confirm this law. In fact, it is evident, even without obscrration, that the rate of the decline of temperature when the sky is clear must differ from what it is when cloudy, and that, being influenced to a 'great amount by radiation of heat from the earth's surface, it will vary from hour to hour. Under these circumstances, as our object is not to dcduce a series of practical rules for calculating heights, dc., we have supposed the temperature to remain constant throughout the atroosphere. The assumption of any law of decrease would considerably complicate the equations. Perhaps the simplest law, mathematically considered, would be to assume the curre of, descent of temperature to be $y=e^{-\infty}$. The curve Mr Glaisher dedaced from his eight ascents was a portion of a hyperbola, the constants being determined empirically.

Let $M=$ the mass of the balloon, car, netting, gas, pas sengers, \&c., on starting.
$\mathrm{V}_{0}=$ the capacity of the envelope of the balloon when full.
$v_{0}=$ the volume of gas at the pressure of the air introduced into the balloon before starting.
$v=$ the rolume (supposed less than V_{0}) occupied by the gas at the height x_{0}
$s_{0}=$ density of the gas in the balloon on the earth.
$\rho=, \quad, \quad, \quad$ at the height x_{0} ${ }_{0}=$ density of the air oa the earth.
$\sigma=" \quad$ at the height x.
$u=$ the "initial apward velocity of the balloon (which is introduced for the eake of complete generality, but is always zero).
$u_{0}=$ the velocity (vertically upwands, as all horizontal motion is ignored) at height x_{0}
Then the equation of motion at any time previous to the balloon becoming ccmpletelv filled is

$$
\mathbf{M} u \frac{d u}{d x}=\sigma \operatorname{tg}-\pi g^{\prime}-\lambda u^{2} e^{-\frac{k}{*} u}
$$

the last term being due to the resistance of the air, which is assumed to vary directly as the square of the velocity and as the deasity of the air. In very slow motions the
resistance appears from experiments to vary pretty nearly as the velocity; and when the motion is very swift, as in the case of a rifle-bullet, as the cube of the velocity; but when the motion is neither very rapid nor very slow, the law of the square of the velocity probably represents the truth very fairly. By g^{\prime} is denoted the value of gravity at the height x, so that

$$
g^{\prime}=g \frac{a^{2}}{(a+x)^{2}}
$$

a being, as above, the radins of the earth. In the exponential term, we shall replace g^{\prime}. by g, as no sensible error can result therefrom. The value of σv is constant, as by Boyle's and Marriotte's law it always $=\sigma_{0} v_{0^{*}}$. Writing, therefore, for brevity-

$$
\begin{gathered}
\sigma_{0} v_{0}-M=c, \\
\frac{2 \lambda}{\bar{M}}=\alpha, \frac{2 c g}{\overline{M I}}=\beta, \frac{g}{k}=n, \frac{\alpha}{n}=m,
\end{gathered}
$$

the equation of motion takes the form

$$
\frac{d u^{2}}{d x}+\alpha \sigma^{-n} u^{2}=\beta \frac{a^{2}}{(a+x)^{3}} ;
$$

whence, following the usual rule for the integration of linear differential equations of the first order, and writing X for e^{-x}, for convenieuce of printing,

$$
\begin{aligned}
& u^{2} e^{-m x}=\beta a^{2} \int e^{-\infty x} \frac{d x}{(a+x)^{2}} \\
& =\beta a^{2}\left\{-\frac{e^{-m x}}{a+x}+a \int \frac{e^{-m x-n x} d x}{a+x}\right\} \\
& =\beta a^{2}\left\{-\frac{e^{-m x}}{a+x}+a \int \frac{d x}{a+x}\left(\varepsilon-m-m e^{-2 \pi x}+\frac{m^{2}}{1.2^{2}} \sigma^{3 m}-\ldots\right)\right. \\
& =\bar{E} a^{2}\left[-\frac{e^{-m x}}{a+x}+a\left\{e^{n a E i}(-n a-\dot{x} x)\right.\right. \\
& =m \varepsilon^{2 \pi a} \mathrm{Ei}(-2 n a-2 n x) \\
& \left.\left.+\frac{m^{2}}{1.2} \epsilon^{3 n a} \mathrm{Ei}(-3 n a-3 n \dot{x})-\ldots\right\}\right]+\mathrm{C} .
\end{aligned}
$$

Herein put $x=0$, so that $u=u_{0}$, and we have

$$
\left.\begin{array}{rl}
u_{0}^{2} \varepsilon^{-n}= & \beta a^{2}
\end{array}\right]-\frac{e^{-m}}{a}+a\left\{e^{n a} \mathrm{Ei}(-n a)-m c^{2 n a} \mathrm{Ei}(-2 n a)\right)
$$

whence, by subtraction,

$$
\begin{gathered}
u^{2} e^{-m x}-u_{0}{ }^{2} c^{m}=\beta a^{2}\left[\frac{e^{-m}}{a}-\frac{e^{-m x}}{a+x}+a\left\{e^{n a} \mathrm{Ei}(-n a-n x)\right.\right. \\
\left.\left.-n e^{2 n a} \mathrm{Ei}(-2 n a-2 n x)+\ldots-e^{m s} \mathrm{Ei}(-n a)+m e^{2 n s} \mathrm{Ei}(-2 n a)-\ldots\right\}\right]
\end{gathered}
$$

therefore

$$
\begin{aligned}
& u^{2}=u_{0}{ }^{2} \varepsilon^{-m(1-x)}+\beta a^{2}\left[\frac{\sigma^{-m(1-x)}}{a}-\frac{1}{a+x}\right. \\
& +a c^{m}\left\{\left\{e^{n s} \mathrm{Ei}(-n a-n x)-e^{n a} \mathrm{Ei}(-n a)-m c^{2 n a} \mathrm{Ei}(-2 n a-2 n x)\right.\right. \\
& +m e^{2 n s} \mathrm{Ei}(-2 n a)+\frac{m^{2}}{1.2} \varepsilon^{3 n a} \mathrm{Ei}(-3 n a-3 n x) \\
& \left.\left.-\frac{m^{3}}{1.2} e^{s a a} E i(-3 n c)+\ldots\right\}\right]
\end{aligned}
$$

in which Ei x is used to denote the exponential integral of x, viz: $\int_{-\infty}^{e} \frac{e^{*}}{x} d x$, eccording to a recognised notation. The values of the integral Ei x, which may be regarded as a known function, have been tabulated (see Philosophical Transactions for 1870, pp. 367-388).

We thus have, except for temperature, the complete solution of the problem of the moiion of the balloon so far as velocity and height are concerned; it would not be possible to connect the time and the bcight except by the
periormance of another integration, for the practicability of which it would be necessary to submit to some loss of generality, viz., we should have to regard x as small as compared to a, and take λ as small, and so on. The equation last written gives the motion until the beight (say h) is attained at which the balloon becomes quite full, after which the gas begins to escape, and we have the second case of the problem.
Before proceeding, howewer, to the discussion of this second case, it is worth while to examine the solution more carefully, learing out of consideration quantities that make no very great difference in the practical result, for the sake of simplicity. Supposing, then, grarity to be constant at all heights, and λ to be zero, the equation of motion takes the simple form

$$
\frac{d \cdot u^{2}}{d x}=\beta
$$

Whence $\quad u^{2}-u_{0}{ }^{2}=\beta$; ;
and we see, what is pretty evident from general reasoning, that if a balloon, partially filled, rises at all, it will at least rise to such a height that it will become completely full.
The letters meaning the same as before, the equation of Motion. motion of a balloon completely filled at starting is a balloor

$$
\begin{aligned}
&\left\{M-V_{0}\left(\rho_{0}-p\right)\right\} u \frac{d u}{d x}=g \frac{a^{2}}{(a+x)^{2}}\left\{\nabla_{0} \sigma-M+V_{0}\left(\rho_{0}-\rho\right)\right\} \\
&-\lambda u^{2} q^{-n}
\end{aligned},
$$

or substituting for ρ sind σ their values

$$
\begin{gathered}
\left\{\mathrm{M}-\nabla_{0 P_{0}}\left(1-e^{-n s}\right)\right\} u \frac{d u}{d x}=g \frac{a^{2}}{(a+x)^{2}}\left\{\nabla_{0} \sigma_{0} e^{-\omega}-M\right. \\
\left.+V_{0 p_{0}}\left(1-e^{-N}\right)\right\}-\lambda u^{2} e^{-n s} .
\end{gathered}
$$

The integral of this differential equation could be obtained in series as before, only that the resulting equations Fould be more complicated. As we do not propose to discuss the formulæ obtained, it will be sufficient for our parpose to deduce an approximate solution by neglecting $\mathrm{V}_{0 p_{0}}\left(1-e^{-\infty}\right)$ compared to M, viz., neglecting the mass of the gas that has escaped during the ascent compared to the mass of the whole balloon and appurtenances. It must be borne in mind, however, that when coal gas is used, and the ascent is to a great height, the mass of gas that escape is by no means insensible. The equation thus becomes

$$
\begin{aligned}
& \frac{1}{2} \mathrm{M} \frac{d u^{2}}{d x}+\lambda e^{-N u^{2}}=\frac{g a^{2}}{(a+x)^{2}}\left\{\nabla_{0} J_{0} e^{-\infty}-M\right\} \\
& \frac{d u^{2}}{d x}+\alpha e^{-\infty r} u^{2}=\frac{v a^{2}}{(a+x)^{2}}\left\{\nabla_{0} \sigma_{0} e^{-\infty-M\}}\right.
\end{aligned}
$$

or
γ being $\frac{2 g}{\mathrm{ji}}$. This is an equation which can be integrate 1 in exactly the same way as that-previously considered, viz, by multiplying by a factor $e^{-m x}$, and integrating at once; thus,

$$
\begin{aligned}
& u^{2} e^{-m x}=V_{0} \sigma_{0} \gamma a^{2} \int \frac{e^{-a r-m x} d x}{(a+x)^{2}}-M \gamma a^{2} \int \frac{e^{-m x} d x}{(a+x)^{2}}+C \\
& =\mathrm{V}_{0} \sigma_{0} \gamma^{2}\left\{-\frac{c^{-n-m x}}{a+x}+\int \frac{d x}{a+x}\left(-n e-n s-m x+\alpha c^{-\operatorname{sen}-n x}\right)\right\} \\
& -\operatorname{Mog}^{-2}\left\{-\frac{e^{-m x}}{a+x}+a \int \frac{e^{-m x-a r d x}}{a+x}\right\}+C \\
& =\nabla_{0} \sigma_{0} \gamma a^{2}\left[-\frac{e^{-n s-m x}}{a+x}\right. \\
& -n\left\{e^{a n} \mathrm{Ei}(-n a-n x)-m e^{\hat{*} a} \mathrm{Ei}(-2 n a-2 n x)+\ldots\right\} \\
& \left.+a\left\{e^{2 a \infty} \mathrm{Ei}(-2 n a=2 n x)-m c^{3 n} \operatorname{Ei}(-3 n a-3 n x)+\ldots\right\}\right]
\end{aligned}
$$

A ERONAUT\&CS

$$
\begin{aligned}
& -\mathbb{N}_{\gamma} a^{2}\left[-\frac{e^{-n x}}{a+x}+\infty\left\{\epsilon^{n \times \operatorname{Ei}}(-n a-n 9\right.\right. \\
& \left.\left.-n c^{3 凶+} \operatorname{Ei}(-2 n a-2 n x)+\ldots\right\}\right]+\mathrm{C}
\end{aligned}
$$

and C is determined as before by putting $x=0$, when we Lare $u=u_{0}$ 。

In this case ' u_{0} is not zero, excent when the balloon starts fron the carth quite full. Tho general case is, when the balloon is only partially filled on leaving; the previous cquations then hold until a height h, at which it becomes quite full, when the motion changes, and is as just investigated. Then u_{0} becomes the velocity at the height h, and everything is measured from this height as if from the surface of the earth, a being then the radius of the earth $+h$, ρ_{0}, σ_{0} the densities at height h, and ρ, σ at height $x+h$, dsc. Wo harc therefore, except as regards time, completcly determined the motion of a balloon inflated with gas in an atmosphere of constant temperature. The introduction of temperature would modify the motion considerably, but in the present state of science it cannot be taken into account.

The general principle of the equilibrium of a fire-balloon is, of course, identical with that of a gas-balloon; but tho motion is different, as the degree of bnoyancy at each moment varies with the temperature of the air within the balloon, and thercfore with the heat of the furnace by which tho air is warmed. Dry air expands $\frac{1}{2} \frac{7}{6}$ d part ut ats volume for every increase of temperature of I° ceatigrade, or $x^{\frac{1}{8}} \mathrm{r}^{\text {th }}$ of its volume for cucry increase of temperature of 1° Fahr. If, therefore, the air in an cavclope or bag be heated 60° Fahr. more than tho surrounding air, the air within the bag will expand ${ }^{6} \rho_{1}$ th of its volume, and this air must thereforo escape. Tho air within the bag weighs less, thereforc, than the air it displaces by the $\delta^{\prime \prime} 8^{8}$ th part of the latter; and if the weight of this be greater than the weight of the bag and appurtenances, the latter will ascend. It is, thercfore, always easy to calculate approximately the ascensional power of a fire-ballown if the temperatare of the surrounding air bo knoven, and also the mean temperature of tho air within the balloon. Thus, let the balloon contain V. cubic feet of hot air at the temperaturo t^{\prime} (l'ahr.), and let the temperature of the surrounding air be t (Fahr.) Also, suppose the weight of the balloon, car, \&c., is W Db , and let the barometer reading be h inches, then the ascensional power is equal to the weight of the air displaced - wcight of the heated air - IV Ib, viz.,

$$
\frac{h}{29.922}\left\{\frac{\mathrm{~V} \times 080728}{1+\frac{t-32}{491}}-\frac{\mathrm{V} \times \cdot 080728}{\mathrm{I}+\frac{t^{\prime}-32}{491}}\right\} \mathrm{ib}-\mathrm{W} \mathrm{fb}
$$

-080728 lb being the weight of a cubic foot of air at temperature 32°, under the pressure of one atmosphere, viz., Then the reading of the barometcr is 20.922 in. Of course, the motion depends upon the tempcrature of the air in the balloon as due to the furnace, if the latter is taken up with the balloon; but if the air in the balloon is mercly warmed, and the balloon then set free by itself, the problem is an easy one, as tho rate of cooling can be determined approximately; but it is destitutc of interest. We have said that dry air increases its volume by $3^{\frac{1}{3}} \mathrm{r}^{\text {th }}$ part for every incrense of 1° (Fabr.), but the air is gencrally more or less saturated with moisture. This second atmosphere, formed of the vapour of vater, is superposed over that of the air, as it were, and, in a very careful consideration of the question, should be taken into account. Eren, however, Then the air is completely saturated with moisture but little differcace is produced; so that for all practical purposes the presence of the vapour of water in the air may be ignored. Of course the amount of rapour depends on
the dow-point, and tables of the pressure of the rapour of water at different temperatures are given in most modern works on heat; but, as has been stated, the matter, in an acronautical point of view, is of very little importance. At first it was supposed that the cause of the ascent of the balloon of the Montgolfiers was traccable to the generation of gas and smoke from the damp straw which was sct light to; but the adrance of science showed that the firc-balloon owed its levity merely to the rarefaction of the air produced by tho heal geuerated.

A formula giving the height, in terms of tho readings of the barometer and thermometer, on the surface of the earth, and at the place the height of which is required, is easily obtained from the principles of hydrostatics. The formula given by Laplace, reduced to English nnits, is-

$$
\begin{gathered}
\mathrm{Z}=\log \left(\frac{h}{h^{\prime}}\right) \times \cos 50\left(1+\frac{t+t^{\prime}-64}{900}\right)(1+\cdot 002837 \cos 2 \mathrm{~L}) \\
\left(1+\frac{z+52051}{20886900}\right) .
\end{gathered}
$$

Z being the beight required in feet, h, h^{\prime} the heimhts of the barometer in inches at the lower and upper stations, t, t^{\prime} the temperatures (Fahr.) of the air at the lower and upper stations, L the latitude, z the approximate altitude, and $20,886,000$ the carth's mean radius in fect. This was the formula used by Mr Glaisher for the reduction of his obscrvations. It is open to the obrious defect that the temperature is assumed uniform, and equal to the mean of the temperatures at the upper and lower stations; but till the law of decline of temperature is better determined, perhaps this is as good an approximation to the truth as we can have without introducing needless complieation in the formula.

A sphere is not a devclopable surface-i.e., it cannot be Shope of divided in any manner so as to admit of its being spread gore of a' out flat upon a plane, so that no spherical balloon could be balloon. made of stiyf plane matcrial. Horsever, the silk or cotton of which balloons arc manufactured is sufficiently flexible to prevent any deviation frons the sphcre bcing noticcable. Balloons are madc in gores, a gore being what, in spherical trigonometry, is called a lune, viz., the surface cnclosed between two mcridians. The approximate shape of these gores is very easy to calculate. Thus, let A BEC bc a gore, then tho sides $A B E, A^{\prime} E$, are not arcs of circles, bit curres of sines, riz., PQ bsars to DB the ratio that $\sin \mathrm{A}$ P does to sin AD, or, which comes to the same thing, supposing $A D=90^{\circ}$, and $A P$ $=x^{\circ}$, then $\mathrm{PQ}=\mathrm{B} D \sin x^{\circ}$. It is thus easy, by means of a tablo of natural sires, to form a pattern gore, whaterer the required number of gores may be. Thus, supposing there are to be n gores, then B C must be $\frac{1}{n}^{1}$ th of the circumferenceviz., ${ }_{n}^{2}$ the of AE ; and BD and A D being giren, any number of points can be found on the curve ABE in the manner indicated above. A slight knowledge of spherical

Balloon Gore. trigonometry shows the reason for the above rule. Balloons, as usually constructed, are spherical, except for the neck, which is mado to slope down, so that the whole
shape resenbles rather that of a pear. The pattern gore should originally be made as if for a spherical balloon, and afterwards the slight modification necessary for the formation of the neck should be applied.

The gores are sewn together, and a small portion of the upper end of cach is cui away, so as to leare an aperture at the top of the balloon of from 1 to 3 feet in diameter. This pace is occupied by the valre, which is generally made of strong wood, and consists of two semicircular shutters hinged to a diameter of the circular frame, and kept closed by a spring. The valve is opened by pulling a string, technically called the valve-line, which passes down through the balloon and out at the lower orifice in which the neck terninates. The tiet-work which, like the gores, is attached to the circumferences of the valve, passes over the surface of the balloon, and supports the ring or hoop from which the car is suspended by half a dozen strong ropes, of perhaps 4 or 5 feet in length. The network is thus stretched between the valve and the ring. It is very important that all the ropes by which the car hangs from the ring should be so adjusted. that each may bear pretty nearly the same weight, as otherwise the whole netting and balloon will be strained, and perhaps to a serious extent. The car is usually merely a large basket made of wicker-work. The neck of the balloon should be 7 or 8 feet above the car, so that the aeronaut can easily reach it by mounting into the ring. The best material for the envelope is silk; but on account of the expense cotton or alpaca is generally used: in all cases it must. be varnished, in order to render it more impervious to the gas. The grapnel or anchor is a large five-pronged hook attached to the ring by a rope 100 or 120 feet long. The first care of the aeronaut on leaving the earth is to lower the grapnel gently to the full extent that the rope will permit. Thus, when the balloon is in the air, the grapnel hangs down below it, and when the descent is being effected, is the first thing to touch the ground. If the descent is well managed, and the balloon is moving downwards slowly, the weight of which it is relieved when the grapuel is supported by the earth checks any further descent, and the wind carries the balloon along horizontally, the grapnel trailing over the ground until it catches in some obstruction and is held fast. The balloon is then in much about the same position as a kite held by a string, and if the wind be strong, plunges about wildly, striking the ground and rebouncing, until the aeronaut, by continued use of the valve-line, has allorved sufficient gas to escape to deprive it of all buoyancy and prevent its rising again.

The chief danger attending ballooning lies in the descent; for if a strong wind be blowing, the grapnel will sometimes trail for miles over the ground at the rate of ten or twenty miles an hour, catching now and then in hedges, ditches, roots of trees, \&cc: ; and, after giving the balloon a terrible jerk, breaking loose again, till at length some obstruction, such as the wooded bank of a stream, affords a firm hold. If the ballonn has lost all its buoyaut power by tho eucape of the gas, the car also drags over the ground. But even a very rough descent is usually not productive of any very serious cousequences; as, although the occupants of the car gencrally receive many bruises, and are perhaps cut by the ropes, it rarely happens that anything worse occurs. On a day when the wind is light (supposing that there is no want of ballast) nothing can be easier than the descent, and the aeronaut can decide several miles off on the field in which he will abight It is very important to have a good supply of ballast, so as to be able to check the rapidity of the descent, as in passing downwards through a wet cloud the weight of the balloon is cnormously increased by the water deposited on it; and it there is na ballast to throw out to compensate this accession of mass,
the ve.ocity is sometımes very great. It is also conveuient, if the district upon which the balloon is desconding appear unsuitable for landing, to be able to rise again. The ballast consists of fine baked sand, which becomes so scattered as to Le inappreciable before it has fallen far belum the balloon. It is taken up in bags containing about $\frac{1}{2}$ cwt. each. The balloon at starting is liberated by a spring catch which the aeronaut relcases, and the ballast should be so adjusted that there is nearly equilibrium before leaving, else the rapidity of ascent is too great, and kas to be checked by parting with gas. It is almost impossible to liberate the balloon in sueh a way as to avoid giving it a rotary motion about a vertical axis, which continues during the whole time it is in the air. This rotation makes it difficult for those in the car to discover in what direction they are moving; and it is only by looking down along the rope to which the grapnel is suspended that the motion of the balloon over the country below can be traced. We may mention that the upward and downward motion at any instant is at once known by merely dropping over the side of the car a small piece of paper: if the paper ascends or remains on the same level or stationary, the balloon is desceading; whle, if it descends, the balloon is ascending. This test is so delicate that it sometimes showed the motion at a particular instant with more.precision than did Mr Glaisher's very delicate instraments
Contrivances are often proposed by which the valve might be opened in less crude ways thai by merely pulling a string attached to it; by which the jerks prodused by the catching of the grapnel might be diminished, stc. These improvements are not adopted, because simplicity is requisite before everything. Any mechanical contrivance might be broken and rendered uscless by the first blow of the car on the earth; whereas the primitive arrangements in use are such that scarcely any rough treatment can impair their efficiency.
The most important workn that havo appeared on the subject of aerostation are-

Dcodalus, or Mochanial Motions, by Bishop Wilkins, Lonaon, 1043; A Treatise on the Na'ure and Propertics of Air and other Permanentily Elastic Filuide, by Tiberius Cavallo, London, 1781 ; Account of the First Aerial Voyage in England, in a Serics of Lotecrs yo his Guardian, by Vincent Lunardi, London, 1784; History and Praetice of Acrostation, by Tiberius Cavallo, London, 1785; Annals of some Remarkable Acrial and Alpine Voyagc", including those of the cuthor, by T. Forster, Londun, 1832; Aeroncutica, by Monck Mason, London, 1898 ; A Systom of Aeronurutics, comprehending its Eartiest Investigations, by Johi Wise, Philadelphia, 1850 ; Astra Castra, Experimonts and Adventures in the Atmospherc, by Hatton Turnor, London, 1865 ; Voyages Aériens, par J. Glaisher, C. Flammarion, W. de Fonrielle, et G. Tis andier, Paris, 1870; the same translated into English and published, edited by James Glaisher, under the title, l'ravels in the Air, London, 1871.

All the above books we have seen ourselves, and used in the preparation of the present article. Astra Castra is a worls of 530 pp . large quarta; it consists chiefly of extracts from other works and writings, and it is uscful as affording data for a history rather than as a history itscle On pp. 463-465 is a list of books and papers on aerouautics, which secms fairly completo up to the date 1864 In the list are also included memoirs and papers which we have not noted in the last 1nragrayil, as the most important of them are refcrred to ulder ther special subjects in the course of this article. We should adviso any oae desirous of studying the history of aeronautics to consult Mr Turnor's list in Astra Castra, which is the most perfect we have met with. He has marked with an asterisk those works that may be consulted by the public in the library of the Patent Offee, which contains, bcsides books, a raluable collection of prints and broadsheets on the subject of eerostation.
(J. G.)
ertszen，Pieter，called＂Long Peter＂on account of his height，an historical painter of great merit as regards both drawing and colouring，was born at Amsterdam in 1520 ，and died in 1573 ．When a youth he distinguished himself by painting homely scenes，in which he reproduced articles of furniture，cooking utensils，\＆c．，with marvellous fidelity，but he afterwards cultivated historical painting． Several of his best works－altar－pieces in various churches －were destroyed in the religious wars of the Netherlands． An excellent specimen of his style on a small scale，a picture of the crucifixion，saay he seen in the Antwerp Muscum．Aertszen was a member of the Academy of St Luke，in whose books he is entered as Langhe Peter， schilder．Three of his sons attained to some note as painters．

NS is commonly translated brass，but the æs of the Romans，like the χ adkós of the Greeks，was used to signify not only pure copper，but also a bronze，or alloy of copper and tin．Brass，in the modern acceptation of an alloy of copper aud zinc，was unknown to the ancients．The cutting instruments of the ancient Greeks，Romans，and Egyptians were origiually of bronze．Tho Romans borrowed their arms，as well as their money，from the Etruscans． Analysis of the bronzes of these nations shows that they contained about 12 per cent．of tin，which gave them hard－ ness and the capability of receiving a good edge．As the most ancient coined money of the Romans was of eopper or bronze，cos came to be used for money in gencral，even after the introduction of silver and gold coinage；and ces alienum was used to signify borrowed money，debt．Es equestre， Lis hordearium，Lis militare，were terms for the pay of Roman soldiers（previous to the introduction of the regular stipendium），which was furnished，it would appear，not from the public treasury，but by certain private persons as decreed by the state．The first，which amounted to 10,000 asses，was the purchase－money of the horse of an eques． The second，amounting to 2000 asses，was the pay of an eques，and was furnished by unmarried women，widows， and orphans，if possessed of a certain amount of property． The as militare，reckoned by Niebuhr at 1000 asses a year，was the pay of a foot soldicr．

ESCHINES，an Athenian philosopher，said to have been the son of a sausage－maker．He was continually with Socrates；which occasioned that philosopher to say that the sausage－maker＇s son was the only person who knew how to pay a due regard to him．It is alleged that poverty obliged him to go to Sicily to the court of Dionysius；and that he met with great contempt from Plato，but was ex－ tremely well received by Aristippus，to whom he showed some of his dialogues，receiving from him a bandsome sum of money．He did not renture to profess philosophy at Athens，Plato and Aristippus being in such bigh esteem； but he ppened a school，in which he taught philosophy to maintain himself He afterwards wrote orations for the forum．Phrynicus，in Photius，ranks him amongst the best orators，and mentions his orations as the standard of the pure Attic style．Hermogenes has also spoken very highly of him．He wrote，besides，several dialogues：－1． Concerning virtue，whether it can be taught；2．Eryxias， or Erasistratus：concerning riehes，whether they are good； 3．Axiochus：concerning death，whether it is to be feared，－ but those extant on the several subjects are not genuine remains．M．le Clere has given a Latin translation of thera，with notes and several dissertations，entitled Silvae． Philologica．

ESCHLNES，a celcbrated Grecian orator，was born in Attica 389 years before the Christian era．According to his own account，he was of distinguished birth；according to that of Demosthenes，he was the son of a courtesan，and a humble performer in a company of comedians．But watever was the true history of his hirth and early life，
his services as a soldier，and his talents，which were con－ siderable，procured him great applause；and，as a public speaker，he becamo a formidable rival to Demosthenes himself．The two orators，inspired probably with mutual jealousy and animosity，became at last the strenuous leaders of opposing parties．Eschinos had almost from the first advoeated peace with Plilip of Macedon，and baving been sent on screcal embassies to negotiate with the king， had been treated with much respect．IIe was，in conse－ quence，accused by Demosthenes of having received money as a brite when he was employed on one of these embassies．He indirectly retaliated by bringing an accu－ sation against Ctesiphon，the friend of Demosthenes，for having moved a decree，contrary to the laws，to confer on Demosthenes a golden crown as a mark of public appro－ bation．A numerous assembly of judges and citizens met to hear and decido the question．Each orator cmployed all his powers of eloquence；but Demosthenes，with superior talents，and with more justice on his side，was victorious； whereupon Eschines went into exile．According to Plutarch， the resentment of Demosthenes was now softened into generous kindness：for when Esclines was going into banishment，he requested him to accept of a sum of money； which made him exclaim，＂How do I regret leaving a country where I have found an enemy so generous，that I must despair of ever meeting with a friend who shall be like him！＂But this story seems more than doubtful． Eschines，after staying some years in Asia Minor，opened a school of eloquence at Rhodes．He is said to have com－ menced his lectures by reading to his audience the two orations which had been the cause of his banishment．His own oration received great praise，but that．of Demosthenes was heard with boundless applause．In so trying a moment，when ranity must be supposed to have been decply wounded，he is reported to have said，with a noble gene－ rosity of sentiment，＂What would you have thought if you had heard him thunder out the words himself 1＂Wischines afterwards removed to Samos，where he died in the 75 th year of his age．Three only of his orations are extant． His eloquence is of a very high order，and as an orator he is second only to Demostheres．

ESCHYLUS，the father of the Greek：tragie drama，was born in the year 525 B．c．，in the Attic demos of Eleusis The period of his youtth and manhood coincides，therefore， with that great uprising of the national spirit of the Greeks， caused by the successive attempts of Darius，king of Persia， and his son Xerxes，to enslave their European neighboars on the north and west shores of the Ægean；and it was no doubt as much for the advantage of his poctical faculty as for the development of his manhood，that he took an active part in those famous military achievements by which the march of the insolent Asiatic hosts was repelled．The father of Attic tragedy helped，in the year 490 ，to drive the captains of Darius into the marshes of Marathon，and， ten years later，encompassed with ruin the multitudinous armament of Xerxes within the narrow strait of Salamis． The glories of this naval achievement，the bard who had helped to win it with his sword afterwards lived to cele－ brate with the lyre，and left to the world the play of the Persians，as a great national record of combined poetry and patriotism almost unique in history．Of his subse－ queut seseer at Athens only a few scanty notices remain， and those chiefly connected with the representation of his plays．We know that he composed serenty plays，and that he gained the prize for dramatic cxcellence thirteen times： further，that the Athenians esteemed his works so highly as to allow some of them to be represented after his death， －a privilege，in their dramatic practice，altogether anoma lous．We know，also，that in the course of his life he paid ore or two wisits to Sicily，to which country he was attracted．
no doubt, by the same literary influence in the person of its ruler Hiero, that drew thither Bacchylides, Simonides, and other notable men of that rich epoch. There can, at the same time, be little doubt that one cause of his visits to that island may have been a want of sympathy as to political matters between him and the Athenian public; for while the Athenians, from the time of Cleisthenes (A.c. 510), had been advancing by rapid and decided steps to the full expansion of the democratic principle, it is evident, from some passages in his plays, especially from the whole tone and tendency of the Eumerides, that the political leanings of the poet of the Prometheus were towards aristocracy, and that, in the days of Pericles, he foresaw, with a sorrowful fear, the ripeness of those democratic evils which within so short a period led Xenophon to seek a new fatherland in Sparta, and opened to the Macedonian a plain path to the sovereignty of Greece. But whatever may have have been his motives for retiring from the scene of so many literary triumphs (and the gossipers of ancient times have of course transmitted to us their pleasant inventions on this point), it is certain that, in the year s.c. 456 , two years after the representation of his great trilogy, the Orestiad, he died at Gela, in Sicily, in the sixty-ninth year of his age; and the people of Gela, rejoicing in his bones, as Ravenne does in those of the banished Dante, inscribed the following memerial on his tomb:-
"Here 有schylus lies, from his Athenian hame Remote, 'neath Gela's wheat-producing loam ; How brave in battle was Euphorion's son, The long-haired Mede can tell who fell at Marathon."
And thus he lives among posterity, celebrated more as a patriot than as a poet; as if to witness to all times that the great world of books, with all its power, is but a small thing unless it be the reflection of a greater world of action. Of the seventy plays which an old biegrapher reperts him to have composed, only seven remain, with a few fragments of little sigrificance save to the keen eye of the professed philologist. These fragments, however, are sufficient to justify the high esteem in which he was held by the Athenian public, and by that greatest of all the great wits of a witty age and a witty people, Aristophanes. In the grand trilogy which exhibits, in three consecutive tragedies, the story of the murder of Agamemnon, and its moral sequences, we hare a perfect specimen of what the Greek tragedy was to the Greeks, as at once a complex artistic machinery for the exbibition of national legend, and a grave pulpit for the preaching of important moral truths; nor could a more worthy founder than Æschylus of such a "sacred opera." be imagined. His imagination dwells habitually in the loftiest region of the stern old religious mythology of primeval Greeoe; his moral tone is pure, his character earnest and manly, and his strictly dramatic power (notwithstanding the very imperfect form of the drama in his day), as exhibited more especially in the Agamemnon, in the Eumenides, and in some parts of the Prometheus, is such as none of his famous successors, least of all Euripides, could surpass. Of his other plays, the Seven against Thebes is a drama, as Aristophanes expressed it, "full of war," and breathes in every line the spirit of the age and of the people that sared Europe from the grasp of oriental despotism; the Persians, though weak in some parts, contains some fine choral poetry, and a description of the battle of Salamis, that will belong to the poetry of the world so long as the world lasts; while the Suppliants presents much in a tasteful translation that makes us lament the loss of the missing piece of the trilogy to which it belonged, no less than the blundering of the thoughtless copyists of the middle ages, by whose pen it has been so egregiously defaced. For in ancient times the flowing rhetorical Euripides was found a more useful model for the schools
of eloquence than the lofty, stern, and sometimes harsh; and occasionally it may be obscure, Eschylus: therefore the text of the latter has been comparatively neglected, and much work was left for the tasteful philologist before many parts of his noblest choruses could be rendered legible. Of the editions of Æschylus, the most notable in the earlier times of modern scholarship is that of Stanley; in more recent times, that of Schiitz, who undertook the work of-restoration with much learning and great boldness. The impulse given by this scholar was moderated by Wellauer, who, in his edition, along with some happy emendations, principally endeavoured to rindicate the authority of the manuscript readings from the large license of conjectural critics; and now from the remains of the great Hermann has been published a text that should present the just medium between the amidity of Wellauer and the rashness of mere conjectural erticism, though it is much to be feared that the learned German has been not seldom led astray by the itch of emendation, which is the old besetting sin of critical scholarship. Of English poetical translations there are the old one by Potter, and recent ones by Blackie, Plumptre, and Swanwick. There is also a translation in literal prose by Buckley. (J. s. B.)
ESCULAPIUS, in the Heathen AYythology, the god of medicine, was the son of Apolle and the nymph Coronis. He was educated by the centaur Chiron, who taught him the art of healing; and his skill enabled him to cure the most desperate diseases. But Jupiter, enraged at his restoring to life Hippolytus, who had been torn in pieces by his own horses, killed him with a thunderbolt. According to Cicero, there were three deities of this name: the first, the son of Apollo, worshipped in Arcadia, who invented the probe and bandages for wounds; the second, the brother of Mercury, who was killed, by lightning; and the third, the son of Arsippus and Arsinoe, who was the first to teach tooth-drawing and purging. At Epidaurus, Æsculapius's statue was of gold and ivory, with a long beard, the head surrounded with rays, a knotty stick in one hand, and the other entwined with a serpent: the figure was seated on a throne of the same materials as the statue, and had a dog lying at its feet. The Romans crowned him with laurel, to represent his descent from Apollo; and the Phliasians represented him as beardless. The cock, the raven, and the goat were sacred to this deity. His chief temples were at Pergamos, Smyrna, Tricca, a city in Thessaly, and the isle of Coos; in all which places rotive tablets were hung up, showing the names of those cured and the diseases of which they were healed by his assistance. But his most famous shrine was at Epidaurus, where, every five years, games were celebrated in his honour, nine days after the Isthmian games at Corinth.
ESIR (plural of As, or Ass, god), the gods of the Northmen of Scandinavia and Iceland. There were twelve chief gods or Esir besides Odin (the All-fadir, Allfather), viz., Thor, Baldur, Niörd, Frey, Tŷ or Tŷr, Bragi, Heimdal, Höd, Vidar, Ull, Forsetti, Loki or Lopt. The chief goddesses of Asgard (q.v.), the Odinic Olympus, were-Frigg, Freyia, Nanna, Sif, Saga, Hel, Gefion, Eir, Hlin, Lofn, Vör, Snotra. The names of the $\nVdash s i r$, considered in the primary old northern significance of the words, convey in most instances an allusion to their characteristics; but it is impossible to decide whether they merely personify certain. physical powers in nature, and abstract ideas of definite mental conditions, or whether they were originally borne by indiriduals connected with the pre-historic ages of the people. It is probable that the ideas underlying the myths connected with the Esir have a mised origin, and may be referred to a blending of physical, material, and historical elements. Our know. ledge of northern mythology has been derived principally.
from the frammentary remains of ancient Scandinarian bougs, first collected in Iceland in the 11 the century, and embodied in the 13 th centary with numerous other prose and poetic myths in a compilation now known to us as the Eddas. From these lighly interesting but frequently obseure sourees we are able to reproluce to a certain extent the inage and conception of each of the Esir, as they presented themselves to the imagination of thcir carly northern worshippers.
In Thor, who seems to have been a god of that earlier Phenician foriu of mature-worslip which was superseded in Scandinavia and Northern Germany by the faith of Odin, we hare the impersonation of the disturbing and destruetive agencies in the uniserse. He is the son of hearen and earth-of Odin, the All-father, and of Trimg or Fiorgrin, the vivifying-and is the strongest of the Esir. From his hammer flashed the lightning, and his chariot wheels sent thunder rolling through the clouds as he went on bis way, cleaving mountains, loosening the pent-up streams and fircs, and slaying all giants and misshapen monsters. Ever busily engagerl in these labours, he seldom tarricd in Asgard mith the other ©sir, but dwelt in his mansion, Bilskirnir, in the densest gloom of the clouds. With his mallet he consecrated the newlywedded, and hence the sign of the mallet or hammer was made by the Northmen when they took an oath and bound themsclves by vors, whether of marriage or any other obligation. Tho early Cliristian missionaries of Norway, finding the faith in Thor too strong to be suddenly uprooted, tried to transfer many of his characteristics to their zealous royal convert, St Olaf, who was said to have resembled the old northern god in his comeliness of person, his bright red beard, hot, angry temper, and personal etrength; while some of the monks of a later period endeavoured to persuade the Northmen that in Thor their forefathers had worshipped the Christ, the strong and mighty Savionr of the oppressed, and that his mallet was the rude image of the eross. Slaves and all thralls killed in battle were believed to bo under the protection of Thor, who, as god of the Finns before the spread of the As religion, was hononred as their special grardian against the tyranny of their nerw masters.

In Baldur the Northmen honoured all that was beautiful, eloquent, wise, and good, and be was the spirit of activity, joy, and light; but his name significs the strong m mind, and the earliest conception of Baldur is that of mental rather, than physical or material perfection. His wife, Nanna, reflected these attributes in a less degree. On his life depended the activity and happiness of all the Lsir, exceptiug only Loki, the carthly fire or incarnation of evil, and hence this As, from envy of the beanty and innocence of Baldur, brought about his death, and hindered his release from the power of Hel, the goddess of death.
Aecording to the myth, tho EAsir, distressed at Batdur's rresenti. ment of his own opproaching cud, joined his mother, Frimg, in exacting an oath frorn nnimals, plants, and minorals, not to injure him. The mistlctoe alone among rlants had beca forgotten, and what this was discoverell by Iooki lie pulled a wand of it, and tist nin'; to the assembly of the Esir, where all were engaged in Ahes ort of shooting at Baldur, ss he was supposed to be invwleerLie, he gave it to Hol, the blind god of brute strength, and dis cted him huw to aim it. The mistietoo piecced Paldur throuch, and he foll deal to the ground in the presence of the Lesir, who, forewsing the evil that would befall them, since light and purity tal ci $t k$ in from them, pave way to sorrow and frar. Whed all the ir efliorts to release Baldur from Hel had been thwarted by the machinati-s of Loki, they resolved to avenge themselves. Having cartured their foc, they confined him within a mountaincave, sud lung above bis head a renomous snake, to drop its poison on bis face: but his wife, Sigyn, stoed by him, and caught the drops in a cup, and it was only while she emptied the goblet that the venom touched him, when he shrauk aside, and caused the earth to bo shaken as witb arn carthyuake. There Loki will remain till Buguarocks the twiligh: of the world, when tho Easir, the earth and
all dwellers therein, will be destroved of the powers of evil, the rescuers and companions of Loki. Only Odin, the All-father, will survive, and gather around him on Ide. s plain, whero Asgard had once atoou, tho Sisir, regenerate and iurtited by Surt's black fire and then a new and better world will arise, in which Thaidur will again come with his nnconscious slayer, Hod, and all evil will cease, and light and darkness will disell together in unity.
Under one form of the myth of Paldur's death be is the bright god of day or smmmer, and Hüd, the blind and the strong, is dark night or fielcely-raging winter, his preordaincd foc and destroyer. After that final purification by suffering or fire, aud the regeneration to which the Northmen looked as the means of the ultimate adjustment of the disturbed balance between evil and good, and from which they did not exempt their gods, the influenee of good was to precail. Baldur would reappear, and Loki, the consnming pormer of evil, be no more heard of.

Loki, in the begincing of time, under the name of Lodthur, flame, and as the foster-brother of the All-father, had united with him in imparting blessings to the universe, and had given hlood and a fair colour to Ask and Embla, from which tho first men were ereated. Afterwards ho left the council of the Æsir, and like a fallen angel wandered awny into regions of space, desolating and consuming all things that came in contact with his fierce flame. Descending into the bowels of the earth, where his presence is made manifest by volcanic fires, he consorted with evil giantesses, by whom he became the father of Hel, pallid death; of Angurboda, the announcer of sorrow; and of the wolf Fenrir, and the serpent of Midgard, which are ever threatening the destruction of the world and the 1 ace of the Esir.
Loki can assume all forms. As sensnality he courses through the veins of men, and as heat and firo he pervades natmre, causing death and destruction. After the introduction of Christianity, the attributes and mystic deeds of Loki were transferred to Satan by the pecple of Scandinavia, amongst whose descendauts his name stil] retains its ovil reputation. In lceland an ignis futuus is known as Loki's burning; and in Juttand, when there is a dazzling light or a waving motion in the air which impedes the sight of distant objects, the peasants say, "Loki is sowing his oals."
λ^{\top} iörd, supposed to be the Nerthus known to the Romans, and his children Frey or Fricco and Freyia, appear to have been honoured in the north before the time of Odin, and to have been worshipped by peoples powerful evough to have been admitted into friendly allianee with his followers. Niörd is said to have lived in Vanaheim, and to have ruled over the Vauir, or light elves, long before ho became one of the Essir. He is god of the ocean, the ruler of winds and stiller of waves, and to ${ }^{\text {' }}$ im the seafarer and fisherman raise altars and make prayers. His attributes and powers secm to point to the existence of a superior knowledge of navigation among those ancient races of Scandinaria who have been idealised in the imagination of the Northmen as good, bright, and agilo elves and water-sprites-the Liós Alfur-or Vanir of their mythology. Niörd's sen Frey is the god of rain, plenty, and fruitfulness; and his worship, according to the carly northern chronicler, Adam of Bremen, was accompanied with phallic rites. Mis sister and wife, Freyia, who holds a high place among the IEsir, is the goddess of love; but ber influence, unlike ber linsband's, is not always beueficent, and varies with the form which sho assumes in operating on the minds of men. Her chariot is drawn by cats, as emblematic of fondness and passion, and a hog attends upon her and upon Irrey, whoso nane, liko her own, imullies fructification or enjoyment.

The Swedes paid esperial honour to Frey, while the Norwegians worshipped "fhor (whowas in all respects his opposito) as their chief As. Thu latter must also have received divine hodours amongst tho Cermans, ns his name is included in the form of objurgation used by the carly Saxon missionaries; bnt thie fact and tho Geruan name of the fifth day of tha werk-Donners-log, the Thunderv's day -ans
the only evidrners still oxtant of the early worship of Thor in Germany.

By their alliance with Niörd and his children the Wsir securcd fertility to the carth and mankind, and the intervention of mild gentle agencies in nature to counteract the destructive influence of Thor's power.
In $T y$ or $T y j r$ we have the Mars of the Northmen. It is he who gives victory, and although he is as wise as he is brave, it is he who stirs men to strife, and not to peace. His name, which signifies honour, is found in the names of the days of the week in O. Nor., Dan., A.-S., and in our own "Tuesday;" and shows that, like Thor and Frey or Freyia, whose memory is perpetuated in our Thursday and Eriday, the worship of this bravest of the Æsir was widely spread among peoples of Northern origin.
In Bragi the Northmen honoured the originator of their Skaldic poetry, the god of eloquence and wise utterances. At guilds and at grave-feasts the 13ragi-cup was drunk; and at the funeral of kings or jarls the hcir was not permitted to take his father's seat till the "Bragarfull" was brought in, when, rising to receive it, he drank the contents of the cup, and was led to the iifgh seat of honour. At guild feasts the Bragi-cup was signed with Thor's mallet, and was drunk after the company had drained Odin's cup for victory, and Niörd's and Frey's cup for a bountiful year.
The peculiarity of Bragi's cup was that, on drinking it, a vom -held to be inviolable-was made to perform some deed worthy of a skald's song. Bragi's wife, Idun, as the guardian of the casket which contained apples that gave to tibase who ate them perpetual jou ih, pras snecially cherished by the other E.sir. In her aoduction by the giant Thiassi, and her removal to the pether werld through Loki's craft, her mute grief, and her release in the spring, we have an avalogy with the myth of Proserpine; and like her she presides over fresh verdure.

Heimdal, whose attribute is the rainbow, is the god of watchfulness, the doorkeeper of the Esir; while Vidar, the strongest of the gods after Thor, is the impersonation of silence and caution; Ull decides the issue of single combats, and Forsetti settles all quarrels.

In the goddesses Lofn and Vör lovers find protectors; the former unites the faithful, the latter punishes the faithless. Gefion, to whom the Danes owe the formation of the island Seeland, watches over maidens, and knows the decrees of fate. IIlin guards those whom Frigg, the queen and mother of heaven, is desirous of freeing from peril; Frigg herself, as Odin's wife and the mother of the Esir, knows the destinies of men, but is silent in regard to them. As goddess of the earth, she is known as Frygga, the fertile summer earth, and Rinda the frost-hardened surface, and is attended by Fulla, the full, Eir, the young goddess of healing, and many other goddesses.
Saga, whose name is derived from Seaja, to narrate, is the goddess of history and narration. Olin and she pleclge each other daily in golden cups filled from the copious ever-flowing streams of her abode, Sochquabiek (from Sökk, abyss, in allusion to the abundant streams of narrative). Snotra is the goddess of sagacity and clegance, from whoin men and women seek good sense and refincment of manners. The Norns and the Valkyriur, if not actually goddesses, are closely connected with the 涫sir. The thrce principal Norns or Nornir are Urd, past time; Terdandi, present time; and Skulld, future time. They and the Talkyriur, who are known under many names, twist and spin the threads of destiny, and make known what has been decreed from the beginning of time.

From this brief outline it may be seen that in their Asir the Northmen recognised the creators, sustaiuers, and regulators of the world as it now is, from whom emanated the thought and life that pervade and animate all nature, and the efforts to subject it to the spiritual will. With Odin and the Fsir the intellectual life of the northern people began; and although they ascribed to tham
human forms and acts. these were seldom without somothing higher and nobler than what pertains to mortals; and while they recognised the existence of a state of chaos and darkness before this world began with the creation of the Asir, they anticipated the adrent of another state, iu which gods, like men, would receive their award at the hands of a supreme All-father.
(E. c. o.)

ESOP, the fabulist, is supposed to have been born about the year 620 B.C., bat the place of his birth is uncertain ${ }_{t}$ that honour bcing claimed alike lyy Samos, Sardis, Mesembria in Thrace, and Cotixum in Plarygia. He was brought, while young, to Athens as a slave, and having served several masters, was eventually enfranchised by Iadmon the Samian. He thereupon visited Crœesus, king of Lydia, at whose court he is represented by Plutarch as reproving Solon for his discourteous manner towards the king. During the usurpation of Pisistratus he is said to have visited Athens, and composed the fable of Jupiter and the Frogs for the instruction of the citizens (Phædrus, i. 2). As the ambassador of Croesus at Delphi he was charged with the payment of the large sum of four mine to each of the citizens; but in consequence of some dispute, he declined to distribute the money. The Delphians, incensed at his conduct, accused him of sacrilege, and threw him headlong from a precipice, about 564 B.C. A pestilence which ensued being attributed to this crime, the people declared their willingness to make compensation for his death; which, in default of a nearer connection, was claimed and received by Iadmon, the grandson of his old master (Plut. de sera Num. Find., p. 556, Herodot. ii. 134). None of Esop's works are extant. The popular stories regarding him are derived from a life prefixed to a book of fables purporting to be his, collected by Maximus Planudes, a monk of the 14th century, in which he is represented as a monster of ugliness and deformity, a notion ntterly without foundation, and doubtless intended to heighten his wit by the contrast. That this life, however, was in existence a century before Planudes's time, appears by a manuscript of it found at Florcnce, and published in 1809. In Plutareh's Convirium, where Esol' is a guest, though there are many jests on his original servile condition, there are none on his appearance; and it would seem that the ancionts were not usually restrained by delicacy in this point, since the personal defects of Socrates, and his rescmblance to old Silenus, aftord ample matter for merriment and raillery in the Symposum of Plato. . We are told, bcsides, that the Athenians erected in honour of Exsop a noble statue by the farmous sculptor Lysippus, a circumstance which alone would be sufficient to confute the absurd fiction of his deformity; but more to the point is the statement of Pliny (xxxvi. 12), that he was the Contubernalis of Rhodopis, his fellow-slave, whose extraordinary beauty passed into a proverb:

The obscurity in which the history of Esop is involved has induced some to deny his existence altogether; and Giamlattista Vico, in his Scienza AYuora, chooses rather to consider him as an abstraction, an excess of scepticism which is quite unreasonalle. Whether Risop left any written fables lins bcen more justly disputed, and Bentley inclines to the negitive. Thus Aristophanes (Vespce, จ. 1259) represents Philouleon as learning his fables in conversation, and not from a book; and Sucrates essayed to rersify such as he remembered (Plat. Phoce. p. 61). Others, again, are of opinion that a collection had been made of them before the time of Sncrates (Mus. Crit. i. 408). It is, however, certain that fables bearing Жsop's name were popular at Athens during the most brilliant period of its literary history; though the discrepancies of authors in quoting the same fables scem in favour of Bentley's hypothesis. (Comnare Aristot. De Part. Anim
iii. 2; and Lucian, Iligr. 32). The orlginal rabies were m prose, and were turned into verse by several writers; the tirst, after the examplo of Soerates, being Demetrins Phalereus. Next appeared an edition in elegiac verse, often cited by Suidas, but the author's mane is unknown; then Babrius, an excellent Greek poet, turned them into choliambics (i.c. limping iambics); but of ten books, a few fables only are preserved entire. Of the Latin writers of Wsopean fables, lhredrus is the most celebrated.

> " Nsopus auetor quam materiam renerit, Hanc cgo polivi versibus senaiis.

Pned.
The fables now extant in prose under 玉sop's uame are entirely spurious, as is proved by Bentley in his Dissertation on the Fables of A'sop, and have been assigned an oriental origin. The identification of Esop with the Arabian philosopher and fabulist Lokman (who is made by some traditions the contemporary of tho psalmist David) has frequently been attempted; and the Persian accounts of Lokman, which among other things describo him as an ngly black slave, appear to have been blended by the author of the Lije, published by Planudes, with the classical stories respecting Esop. The similarity of the fables ascribed to each renders it probable that they were derived from the same Indo-Persian source, or from the Chinese, who appear to have possessed such fables in very remote antiquity. A complete collection of the Esopean fables, 231 in number, was published at lireslau by J. G. Schneider in 1810.

ESOP, 2 Greek historian, whose life of Alcxander the Great is preserved in a Latint translation by Julius Valerins. It is a work of no credit, abounding in errors.

ESOP, Clodius, a celebrated actor, who flourished about the 670 th year of Rome. He and Roscius were contemporaries, and the lest performers who ever appeared upon the Roman stage; the former excelling in tragedy, the latter in comedy. Cicero was on intimate terms with both actors, and put himself under their direction to perfect his action. Esop performed many friendly services to Cicero, especially during the period of his banishment. He appears to have spared no pains to improve himself in his art, and to hare always sturlied his part with the greatest care. On the stage his declanation was emphatic and his netion vehement, and he became entirely absorbed in his part. Ilutarel mentions it as reported of him, that while ho was representing Atreus deliberating how he should revenge himself on Thyestes, he forgot himself so far in the heat of action that with his truncheon be struck and killed one of the servints crossing the stage. His age and the time of his death are uncertain; but he made his last appearance on the stage in B.C. 55 , at the dedication of Pompey's theatre, on which oceasion his voice failed him. Esop lived in a somewlat expensivo manner; but he nevertheless contrived to leave an ample fortune to his spendthrift son. This is the son of Esop mentioned by Horace (Sat. iii. 3, 239) as taking a pearl from the eardrop of Cæcilia Metella, and dissolving it in vinegar, that ho might have the satisfaction of swallowing eight thousand pounds' worth it a draught.

ASTHETICS is the term now employed to designate the theory of the Fine Arts-the seience of the Beautiful, with its allied conceptions and emotions. The province of the science is not, however, very definitely fixed, and there is still some aubiguity about the meaning of the term. arising from its ctymulosy and various use. The word asthetic, in its original Greek form (aioOntckós), means anything that has to do with perception by the senses, and this wider connotation was retained by Kant. Who, under the title Transecondental. Esthetic, treats of the a priori principles of all sensmous knowledtie. The limitation of the ferm to
the comparatively narrow class of sensations and pereep tions occupied with the Benutiful and its allied propertics is due to the Germans, and primarily to Daumgarten, who started from the supposition that, just as truth is the end and perfection of pure knowledge or the understanding, and good that of the will, se beauty niust be the suprence aim of all sensuous knowledge. l"et, spito of these sources of vagueness in the subject and its name, some considerable part of the theory can be looked upon as pretty clearly defined, and it may be possible, by means of careful reflection on this ascertainable quantity; to indicate, roughly at least, the extent and boundaries of a complete system of wsthetic doctrine.

A rery brief survey of what has been written under the name asthetics is suflicient to show that it includes, as its first and foremost problem, the determination of the nature and laws of Beavity, including along with the Beautiful, in its narrower signification, its kindred subjects, tho Sublime and the Ludicrous. To discover what it is in things which makes thems beautiful or ugly, sublime or ludicrous, is one constant factor in the æsthetic problem. Intimately comnected with this objective question is the subjective and psychological inquiry into the nature of the feelings and ideas that have beauty for their object. Further, it will be found that all nttempts to construct a complete resthetic theory aim at deternining the highest ends of the Fine Arts (which obviously concern themselves largely, if not exclusively, with the Beautiful), and at marking out the distinctions and tracing the dependeneics of natural and artistic beauty. All this part of the field of resthetic inquiry seems fairly agreed on, and it is only when we arproach other sides of the Fine Arts that the precise scope of the science appears obscure. But while there is this measure of agreement as to the proper subject matter of resthetics, we find two diametrically opposed methods of approaching it, which distinctly colour all parts of the doctrine arrived at, and impose different limitations to the boundaries of the subject. The first is the ractaphysical or a priori method; the second the scientific or empirical method. The one reasons deductively from ultra-scientific conceptions respecting the ultimate nature of the universe and human intelligence, and seeks to explain the phenomena of beauty and art by help of these. The other proceeds inductively from the consideration of these phenomena, as facts capable of being compared, classified, and brought under certain uniformities. At the same time, it must not be supposed that either method is customarily pursued in complete independence of the other. The most subtle exponent of transcendentalism in art appeals to generalisations drawn from the facts of art; nor have the professedly scientific critics often abstained from introducing coneeptions and bypotheses of a metaphysical character.

(A.) Metaphysical Problems.

Metaphysical speculation in æsthetics centres albout the objective nature of beauty, and arises somewhat in the following manner :-The appreciation of the Deautiful is a mode of perception. In estimating a beautiful lindseape or a beautiful statue, the mind perceives the beauty as a property of the object. It is, moreover, a single property; the name beautiful always denoting the same essential thing, whatever this may he. Now we und that it is not a simplo property of matter known through one particular class of sensations, as colour; and the question arises, what it really is in itself, whether inherent in and inseparable from matter, or something superior to it, and if so, how revealed through it. The directions of this inquiry have been almost as numerous as the systems of metaphysical thought. On the supposition of a real substance matter, independent
of all intelligence, human or divine, writers have attempted to discover the essential principle which beautifies it. It has been universally considered by metaphysicians that matter in itself is devoid of beauty, if not positively ugly, and the only question arises as to the extraneous principle which imparts beauty to it . This has been conceived either as a simple force distinct from matter, yet setting it in motion, vivifying it, and reducing it to forms, as by Lérêque; or as a divine being, whose volition directly invests material objects mith all their beautiful aspects, as by Reid; or, lastly, as self-existent forms or ideas superinduced upon matter, which are in truth the beauty of objects, as by Plato and his modern followers.

In the prevailing German systems of æsthetics, which are based on an ontological idealism, the independent existence of matter has been denied. These writers couceive an absolute Thought or Idea as the ultimate reality, of which matter and consciousness are but the two sides. Matter is conceived as the negative or limiting principle in the action or self-movement of the Absolute. The problem of objective beauty bccomes on this hypothesis the determination of the particular mode in which the Beautiful is a manifestation of the supreme thought; for the Good and the True are equally revelations of the Unconditioned, and it is necessary to mark off beauty from these. Various defnitions of the Beautiful, based on this mode of conception, may be found in the systems of Hegel, Weisse, and the Hegelians. The second great problem in the metaphysics of æsthetics is to co-ordinate the species of the ærthetic genus, namely, the Beautiful (in its narrow sense), the Ugly, the Sublime, and the Ridiculous. This has been undertaken by the Hegelians, and their attempts to construct what they call the dialectics of æsthetics are among the most curious products of metaphysical thought. It being assumed that there is some one ontological process running through every manifestation of the æsthetic Idea, these writers have sought to determine how each of the subaltern notions is related to this process. The last problem in the scheme of metaphysical æsthetics relates to the nature and functions of Art, looked at on one side as a reproduction in altered form of the beauty of Nature, and, on the other, as the conscious product of æsthetic intuition in the human mind. First of all, the arts are appreciated and classified according to the several modes in which they jody forth the Idea to our minds. Secondly, since the Absolute may be spoken of as revealing itself to human intelligence, so human intelligence may be lowked on as groping through long ages after the Absolute, and thus the historical evolution of art finds its place in a complete metaphysic of æsthetics. In concluding this preliminary sketch of the metaphysical systems, it should be added that they can be adequately estimated and criticised only in connection with the whole systems of thought of which they arc organic parts. Within the scope of a purely scientific criticism it is only possible to point out any inconsistencies in the application of these ideas to beauty and art, and to show how much or how little they effect, as hypothetical instruments, in helping us more clearly to understand the phenomena.

(B.) Sctentific Problems.

In the scientific discussion of æsthetic subjects, the antithesis of subject and object in haman cognition is accepted as a phenomenal distinction, without any inquiry into its ontological meaning. Inquirers no longer discuss the essence of beauty, looked on as a transcendental conception above all experience, but seek to determine in what the Beantiful, as a series of phenomena, clearly and visibly consists. Esthetic speculation becomes, accordingly, more purely psychological. First of all, the unity of beanty is questioned. It is asked whether all objects which appear
beautiful are so because of some one ultinate property, of combination of propertics, running through all examples of beauty, or whether they are so called simply because they produce some common plcasurable feeling in the mind. This is a question of induction from facts and consequent definition, lying at the very threshold of æsthetic science. It has been most vigorously disputed by British writers on the subject, and many of them have decided in farour of the plurality and diversity of elements in beauty. Again, it has been asked in which category of our experience, objective or subjective, beauty originates. By some it has been rcferred to an objective source, whether to sensation, as a direct result of physiological action, as by Burke, or to something distinctly perceived by means of sensation, as a certain relation of unity, symmetry, \&c., among the parts of an object, its colours, forms, and so on, as probably by Aristotle, Diderot, Hogarth, and most mriters. By others the source of beauty has been sought in the inner life of the mind itself, in certain ideas and emotions which have become reflected on external objects by association. This is the doctrine of Alison. A third class recognise both of these sources, attributing the effects of benuty partly ta the pleasurable effects of external stimulation, partly to the activities of perception, and partly to multitudinous associations of ideas and feelings from past experience. This class includes Dugald Stewart, Professor Bain, and Mr Herbert Spencer. A third question in the general scientific theory of beanty which is closely related to the last and largely determined by it, is the precise nature of the mental faculty or activity concerned in the perception and appreciation of the Beautiful. This, too, has been widely discussed by English writers,-answers to the other two questions frequently appearing as the necessary implications of the solution of this one. By those who affirm that beauty is a simple property or conjunction of properties in external objects, the subjective perception of this property has been regarded either as a unique faculty (the internal sense), or as the rational principle acting in a certain way. By the school of Alison, who find the source of beauty in a certain flom of ideas suggested by an object, the perception of the same, as a property of the object, would be explained as the result of inseparable association, producing a kind of momentary delusion. And this same effect of association, in producing an apparent intuition of one simple property, would be made use of by those later writers who resolve the nature of beauty into both objective and subjective elements. It is noticeable, too, that while some writers have treated the appreciation of beauty as purcly intellectual, others have confined themselves to the emotional element of pleasure. With respect to the Ludicrous and the Sublime, as distinguished from the Beaatiful, there seems to have been a tacit agreement that both of these are unique and single properties, whether originally in the object of sense, or, reflected on it from the mind; and various theories have been suggested in explanation of the characteristic effects of these proverties on human sensibility and thought.

What strikes one most, perhaps, in these discussions is the vagueness due to the great diversity of conception as to the real extent of the Beautiful-the number of objects it may be supposed to denote. While one class of writer appears to limjt the term to the highest and most refinec examples of beauty in nature and art, others have looked on it as properly including the lower and more vulgarly recognised instances. There is certainly a great want of definiteness as to the legitimate scope of æsthetic theory. It will be seen, too, how closely this point bears on the question of the relativity of wsthetic impressions, whether there is any form of beauty which pleases universally and necessarily, as Kant affirms. The true method of resolriog
this difficulty would appear to be to look on wsthetic impressions more as a growth, rising, with the advance of intellectual culture, from the crude eujnyments of sensation to the more refined and sultele delights of the cultirated mind. The prohlem of the universal and necessary mould then resolve itself into an inquiry into a general tendeney. It would bo asked what kinds of ohjects, and what clements of sensation, idea, and emotion, tend to become conspicuous in asthetic pleasures, in proportion as the mind adrances in general emotional and intellectual culture. Another defect in mearly all the theories of the Beautiful that have been proposed, refers to the precise relation of the intellectual element in the resthetic impression. In opposing the narrow view, that the appreciation of beauty is a purely intellectual act, a cold intuition of reason, writers have fallen sometimes into another narrowness, in resolving the whole of the effect into emotional clements, or certain species of pleasure. Unless beauty is, as IIutcheson afirmed, a simple property of objects like colour, the perception of it as objective, which all must allow to be a mental fact, can only be explained by means of certain intellectual activitics, by force of which the pieasurable effects come to be referred to such a secmingly simple property. The solution of this point would doubtless be found in a more complete discussion of the perceptive or discriminative and assimilative activities of the intellect which are invariably called into play by complex objects, and whieh correspond to the attributes of proportion, unity in variety, dic., on which so much stress has been laid by the intuitivists. Not only so, but any theory of æsthetic operations must be incomplete which does not give prominence to those more subtle and exalted intellectual activitics that are in rolved in the imaginative side of æsthetic appreciation, as in detecting the curious half-hidden implications which make up the essence of a refined humour, in constructing those vague yet impressive ideas which enter into our intuition of sublimity and infinity, and even in appreciating such seemingly simple qualities as purity of colour and tone, or the perfectly graduated blending of two adjacent colours. Such activities of the mind constitute, among other things, the symbolic aspect of the Beautiful, and give, as Mr Mill suggests, a basis of truth to such seemingly fanciful notions respecting the meaning of beantiful qualities as one finds in the works of Mr Ruskin.

But comparatively little has been done in a purely scientific manner to determine the nature and functions of Art so as to fix the relations of the diferent arts to simple or natural beauty. Aristotle supplied a few valuable doctrines, which liave been rendered still more precise by Lessing and others. Yet there seems even now no consensus of opinion as to the precise aims of art, how far it has simply to reproduce and constructively vary the beauties of nature, or how far to seek modes of pleasurable effect wider than those supplicd by natural objects. A theory of art at all comparable in scientife precision to existing theories of merals has yet to be constructed. The few attempts to establish a basis for art of a non-metaphysical kind are characterised by great one-sidedness. Thus, for example, the theory that the function of art is to imitate nature, has been broached again aud again with scarcely any reference to music, mercly, as it seems, out of an impatience for some one defining property. Without attempting to sketch a complete doctrine of art, a suggestion may be offered as to the right direction of inquiry. First of all, then, the widest possible generalisations on the rarious emotional susceptibilities to which art can appeal must be collected, from a study both of mental phenomena as a whole, and of all varieties of pleasurable feeling actually ministered by the several forms of art. This would fix the end of the fine arts in the widest sense, marking it off from the ends
of utility and momlity. Sccondly, the highest aims of art or the ideal of art, would have to be determined by a consideration of the laws of compatibility and incompatibility arnong these various orders of gratification, the requirements of quantity, variety, and harmony, in any lofty æasthetic impression, and the relative value of the sensational, intellectual, and emotional clementa in æsthetic effect. This part of the subject would include the discussion of the ralue and universal necessity of the real and the ideal in art, truth to nature and imaginative transformation. these conclusions would require verification by means of the widest and most accurate study of the development of the arts, in which could le traced the gradual tentative progress of the artistic mind towards the highest achievements of art, as well as the permanent superiority of all those forms of art which most elearly embody this tendency. This part of the theory of art would clearly connect itself with the problem of the gencral law or tendency in æsthetic development already referred to. The proper detemnination of these two idees, the whole range of possible æsthetic delight, and the direction of the bighest, purest, and most permanent delight of cultivated minds, would at oneo dispose of many narrow conceptions of art, by recognising the need of the widest possible diversity and grades of artistic value, if only as experiments requisite to the discovery of its highest function. At the same time the meaning and limits of the universal and necessary in art would be defined, and the unsuggestive and dreary conflicts between an unbending absolutism and a lawless individualism shown to be irrelevant. The validity of canons of art, and their limitations, would in this manner be fixed, and the impatient exaltation of certain schools and directions of taste reduced to a modest assertion of a purely relative truth. The aims of art as a whole being thus determined, the next thing would be to define and classify the individual arts of painting, music, poetry, de., according to their respective powers of embodying these aims. This would require a careful consideration of the material or medium of expression employed by each art, and the limitations imposed by it as to the mode of representation. The determination of this part of æsthetic theory, which Lessine commenced, would require not only technical but considerable psychological knowledge. Similarly, any conclusion arrived at on this subject wrould need to be verified by a referenco to the history of the arts, as exemplifying both the successes of a right conception of the scope and possibilities of the particular art, and the failures resulting from a mistaken conception. Many other points, such as the nature of genius, tho function and bounds of criticism, the relation of æsthetic culture to intellectual, moral, and social progress, would be included in a complete schemo of art. doctrine.

(C.) History of Systems.

In the following brief account of the most important contributions to æsthetic doctrine, only such mritings will be recognised as aim at somo general conception of Art and the Beautiful. Much that passes in current literature for æsthetic speculation, namely, a certain thoughtful way of criticising special works of art, is simply the application of recognised principles to new cases. Sometimes, however, in the bands of a philosophic critic the mere appreciation of a single poem or the works of a particular artist may become a luminous discussion of some general principle, and this method of constructing æsthetic theory from the criticism of a single work or series of works was rendered very productive by Lessing.
I. Greek Speculations. - Ancient Greeco supplies us with the first speculations on the Beautiful and the aims of the fine arts. Nor is it surprising that among a peopla:
eo productive of noble artistic creations, and at the same time so speculative, numerous attempts to theorise on these subjects should have been made. We have in classic writings many allusions to works of an æsthetic character now lost, such as a series on poetry, harmeny, and even painting, by Democritus. It is to be gathered, too, from Plato's Dialogues that the Sophists made the principles of beaty a special department in their teaching. The first Greek thinker, however, whose views on these subjects are at all known is Socrates. Accepting Xenophon's account of his viers in the Memorabilia and the Symposion, we find that he regarded the Beautiful as coincidert with the Good, and both of them as resolvable into the Useful. Every beautiful object is so called because it serres some rational end, whether the security or gratification of man. It looks as though Socrates rather disperaged the immediate gratification which a beautiful object affords to perception and contemplation, and emphasised rather its power of furthering the more necessary ends of life. Thus he said that pictures and other purposeless works of art, when used to adorn a house, hindered rather than furthered enjoyment, because of the space ther took from useful objects. This mode of estimating the value of beauty is, however, no necessary consequence of the theory that the whole nature of beauty is to minister pleasure. It arises from undue attention to mere material comfort as a condition of happiness. The really valuable point which Socrates distinctly brought to light is the relativity of beauty. Unlike his illustrious disciple, he recognised no self-beauty (airò tò кalóv) existing absolutely and ont of all relation to a percipient mind.

Of the precise views of Plato on this subject, even if they were really formed, it is very difficult to gain a just conception from the Dialogues. In some of these, called by Mr Grote the Dialogues of Research, as the Hippias Major, he ventures on no dugmatic theory of Beauty, and sereral defnitions of the Beautiful proposed are rejected as inadequate by the Platonic Socrates. At the same time we may conclude that Plato's mind leaned decidedly to a theory of an absolute Beauty, this, indeed, being but one side of his remarkable scheme of Ideas or self-existing Forms. In the Symposion Le describer how love (Eros) produces aspiration towards the pure idea of beauty. It is only this absolute beauty, he tells us, which descrves the ame of beauty; and this is beautiful in every manner; and the ground of beauts in all things. It is nothing discoverable as an attribute in another thing, thether living being, earth, or heaven; for these are only beautiful things, not the Beautiful itself. It is the eternal and perfect existence contrasted with the oscillations between existence and nonexistence in the phenomenal world, In the Phoedrus, again, he treats the soul's intuition of the self-beautiful as a reminiscence of its prae-natal existence, undefiled by union with the body. With respect to the precise forms in which the idea of beauty reveals itself, Plato is very undecided. Of course his theory of an absolute Beauty is iacompatible with the notion of its ministering simply a variety of sensuous pleasure, to which he appears to lean in the Sorgias and even the Hippias Major. Further, his peculiar system of ideas naturally led him to confuse the seif-beautiful with other general conccptions of the true and the good, and so aruse the Platonic formula kaloxáyaiia, expressive of the intimate union of the two principles. So far as his writings embody tie notion of any dis. tinguishing element in beautiful objects, it is proportion, harmony, or unity among the parts of an object. The superior beauty of proportion is taught in the Philebus, and in the Phoedon it is applied to virtue. As a closely-related riew, we see him emphasising unity in its simplest aspect of crenncss and purity, the need of variety being over-
looked. Thus in the Philebus be states his preference fer regular and mathematical forms, as the straight line and the circle. So be selected ainocg colours pure white, among tones the pure and equal, and among impressiond of touch the smocth. At the same time the Dialogres evince many other tentative disinctious in the Beautifu; as, for example, the recognition in the Politics of twu opposed classes of beautiful things, those characterised by force and velocity, and those by a certain slowness and softness; which points to a contrast between the stimulative and the restful in sensation, since enlarged upon by English psychologists. Elsewhere he descants on the beauty of the mind, and seems to think, in the Republic, that the highest beauty of proportion is seen in the union of a beautiful mind with a beautiful body. In spite of his lofty theory of the origin and nature of beauty, Plato seems to have imperfectly appreciated the worth of art as an independent end in human life ord culture. He found the end of art in imitation (μ ín $\eta \sigma$ (ร), bat estimated the creative activity of art as a clever knack, little higher in intellectual value than the tricks of a jaggler. He tended to regard the effects of art as devoid of all serions ralue, and as promoting indolence and the supremacy of the sensual elements of human nature. (See the Suphistes, Gorgias, and Republic.) Accordingly, in his scheme for an ideal republic, he prorided for the most inexorable censorship on poets, de., so as to make art as far as possible a mere instrument of moral and political training. As to particular arts, Plato appears to have allowed a certain ethical value to music, in combination with dance and song, if of a certain character, as expressing either the rectly and manly, or the quiet and orderly. With respect to poetry, his viems, as expressed in the Republic and clsewhere, were very uncertain. Thus at times he condemns tragedy and comedy in toto; at other times he admits the claims of a lofty dramatic poetry. He seems not to hare fully considered the aims and influences of painting and sculptuare, which he constantly disparages.

A loftier conception of the aims of poetry mas afforded Aristotle by the strictures of Aristophanes in the Frogs and elsewhera. But the one Greek who, as far as we know, iully appreciated and clearly set forth the ends of the fine arts, considered, independently of ethical and political aims, as tina rebicles to the mind of the ideas and delights of beauty, was Aristotle. Unlike Plato, he proceeded less metaphysically and more scientifically to investigate the phenomena of beauty by a careful aualysis of the primeiples of art. In his treatises on poetry and rhetoric, he gires as, along with a theory of these arts, certain primciples of beauty in general; and scattered among his other writimgs we find many valuable sugsestions on the same subject. First of all, Aristotle ignores all conceptions of an absolute Beauty, and at the same time seeks to distinguish the Beautiful from the Good. Thus, although in the more nopular exposition, the Riketoric, he somewhat incorrectly makes praisersorthiness a distinguishing mark of the Beautiful, regarded as a species of the Agreeable or Decirable, he seeks in the Metaphysics to distinguish the Good and the Beautiful thus: the Good is alwars in action ($\left.\epsilon \cdot-\rho \alpha \xi_{\epsilon}\right)$; the Beautiful, however, may exist in moci nless things as well (iv dourvirocs). Elsewhere he distinetly teaches that the Good and the Beautiful are different ((̌tepor), although the Good, nader certain conditions, can be called beautiful. He thus looked on the two spheres as co-ordinate species, having a certain area in common. It should be noticed that the habit of the Greek mind, in estimating the value of moral nobleness and eleration of character by their power of gratifying and impressing a spectator, gave rise to a certain ambiguity in the meaning of fò nadóv, which accounts for the prominence the Greek thinkers gare to the connection between the

Beautiful and the Good or morally Worthy．Aristotle further distinguished the Beautiful from the Fit，and in a passage of the Pulitics set Beauty above the Useful and Necessary．Another characteristic of the Beautiful fixed by this thinker in the Rheloric is the absence of all lust or lesire in the pleasure it bestows．This is an important point，as suggesting the disinterested and umono olising side of æsthetic pleasure．The miversal elements of beauty，again，Aristotle finds in the Metaphysies to be order （rágıs），symmetry，and definiteness or determinateness（rò $\dot{\omega} \rho\left(\sigma \mu \dot{c}^{\prime} \circ \gamma\right)$ ．In the Poetics be adds another essential，namely， a certain magnitude，it being desirable，for a symoptic and single riew of the parts，that the object，whether a natural body or a work of art，should not be too large，while clear－ ness of perception requires that it should not be too smali． At the same time le seems to think that，provided the whole be visible as such，the greater magnitude of an object is itself an element of beauty．This is probably to be understood by help of a passage in the Politics，which lays down the need of a number of beautiful parts or aspects in a bighly beautiful object，as the human body． With respect to art，Aristotle＇s views are an immense advance on those of Plato．He distinctly recognised，in the Politics and elsewhere，that its ain is simply to give imme－ diate pleasure，and so it does not need to seek the useful like the mechanical arts．The essence of art，considered as an activity，Aristotle found in imitation，which，unlike Plato，he considers not as an unworthy trick，but as in－ cluding knowledge and discovery．The celebrated passage in the Poelics where he declares poetry to be more philo－ sophic and serious a matter（ $\sigma \pi$ ovoacórcpor）than philo－ sophy，best shows the contrast between Plato and Aristotle in their estimates of the dignity of artistic labour．In the Poetics he tells us that the objects to be imitated by the poct are of three kinds－（1．）Those things or events which hare been or still are；（2．）The things which are said to be and seem probable；（3．）The things which neecssarily are （cival $\delta \in \hat{\imath}$ ）．The last points，as Schasler supposes，to the ideal character of imitation as opposed to mere copying of individual objects or events，and accounts for the lofty ralice assigned to it by Aristotlc．More particularly the objects of imitation in poetry and music，if not in all art， are dispositions（ $\check{\eta} \theta \eta$ ），passions，and actions．Aristotle gives us some intereswig speculations on the pature of the artist＇s mind，aud distinguishes two raricties of the poetic imagination－the easy and versatile conceptive power of a man of natural genius（ivфuńs），and the more emotional and lively temperament of an inspired man （ μ avcoós）．He gives us no completo classification of the fine arts，and it is doubtful how far his principles are－to be taken as applicable to other than the poetic art．He ecems，however，to distinguish poetry，music，and dancing－ all of which aro supposed to imitate some element of human nature，some feeling or action－by the means they employ． namely，rhythm，harmony，melody，and rocal sound．Paint－ ing and sculpture are spoken of as imitative arts，but their special ains are not defined．Architecture seems ignored by Aristotle as non－imitative．His peculiar theory of poetry．can only be just glanced at here．Its aim，be says， is to imitate dispositions and actions．Metrical form is bardly looked on as an essential．Poctic imitation，as in－ cluding the selection of the universal in human nature and bisfory，is ably treated；and from this part of Aristotle＇s theory all modern ideas of poetic tnith are more or less deriv． ablc．He distinguishes，somewhat superficially，the epic poem，the drama，and à third variety not named，but appa－ iently lyric poetry，by the manner in which the poet speaks in each variety，whether in his own person，or in that of anotber，or in bothalternately．The epic and the dranatic peer require unity of action，a certain magnitude，with
beginning，middle，and end，and also those changes of for＊ tune and recognitions that make up the thrilling character of plot．The end of tragedy Aristotle defines as the effecting by weans of pity and fuar，of a purification of these passions； and this is perhaps the point of greatest interest for asthetics in the whole of his theory of poctry．Whetber he is referring to any moral influence of tragedy on the emo－ tions，briuging both fear and pity in the spectator＂s mind to their proper ethical mean，as Lessing and others couceive； whether he simply means the elinmation of all painful ingredients in these feelings，either by the recognition of the imaginary nature of the eril represented，or ly the simul－ taneous satisfaction of other and deeper feelings as moral approval or wide human sympathy；or，fiually，whether by ＂purification＂we are to understand the grateful relief by artificial means of a recurring emotion needing periodic rent， as Ueberweg argues，－this subtle point may be left to the student to decide．It would be interesting to know how far Aristotif attributed something analogous to this кáOaposs to the other arts．In the Politics be certainly speaks of a purifying eflect in certain kinds of music in quieting the wilder forms of exvitement．Finally，it might perhaps be coujectured from his definition of the Ludicrous，as something faulty and disgraceful，yet frec from pain，and not destructive，that he would find in the laughter of comedy something analogous to this purification，namely， the gradual resolution of the more painful feelings of con－ tempt or disgust into the genial moods of pure bilarity．

Omitting to notice the few valuable remarks on æs－ thetic subjects of the later Greeks and their．Roman contemporaries，one may briefly refer to the views of the Alexandrian mystic aud Neo－Platonist Ploiinus，not only because of their intrinsic interest，but on account of their resemblance to certain modern systems．His theory is to be found in an essay on the Beautiful in the series of dis－ courses called Enneades．His philosophy differs from the Platonic in the recognition of an objective vous，the direct emanation from the absolute Good，in which the ideas or notions（ λ ó $\gamma o l$ ），which are the prototypes of real things，are immanent．This Reason，as self－moring，becomes the for－ mative influence reducing matter，which in itself is dead， to form．Matter thus formed becomes a notion（ λ óros）， and this form is beauty．Objects are ugly so far as they are unacted upon by Reason，and so remain formless．The creative vovs is absolute Beauty，and is called the more than beautiful（rò ímípка入入ov）．There are three degrees or stages of the Beautiful in manifestation，namely，the beauty of subjective voûs，or buman reason，which is the highest；that of the human soul，which is less perfect through the connection of the soul with a material body； and that of real objects，which is the lowest manifestation of all．As to the characteristic form of beauty，he sup－ posed，in opposition to Aristotle，that a single thing not divisible into parts might be beautiful through its unity and simplicity．He attached special worth to the beauty of colours in which material darkness is overpowered by light and warmth．In reference to artistic beauty，he said that when the artist bas doyot as models for his creations， these may become more beautiful than natural objects． This is a very curious divergence of opinion from the Platonic．

After Plotinus there is little speculation on æsthetic subjects till we come to modern writers．St Augustine wrote a treatise on the Beautiful，now lost，in which be appears to kave reproduced Platonic ideas under a Christian guise．He taught that unity is the form of all beauty （＂omnis porro pulchritudinis forma unitas est＂）．Infinito goodness，truth，and beauty are the attributes of the Deity， and communicated by him to things．But passing from these fragmentary utterances，we may consider more fully
the modern theones, beginning with the German systems, as being the most metaphysical, and having most affinity with ancient speculation. In German literature the two divisions of metaphysical deduction and critical construction of æsthetic principles are rery sharply contrasted, and nearly every writer on the subject is easily referred to one or other of the classes. On the one hand, we hare the laborious systematic philosophets, as Kant and Hegel; and on the other, men who entered upon æsthetic speculation either as connoisseurs of some special department, as Winckelmann and Lessing, or even as productive artistsfor example, Schiller and Goethe.
II. German Writers.--The first of the Germans who attempted to fit a theory of the Beautiful and of Art into a complete system of philosophy was Baumgarten. Adupting the Wolffian principles of knowledge, as modified by Leibnitz, he thought he was completing that system by setting over against logical knowledge, whose chject is truth, æsthetic knowledge, which has to do with beauty. The former is conceptive knowledge (begreifendes Erkennen), the act of the understanding, and its result as the science of clear conceptions is embodied in logic. Wsthetic has to do, not with clear, but confused conceptions (verworrene Vorstellungen), namely, sensuous knowledge. The beautiful is defined by Baumgarten as the perfection of sensuous knowledge, and the ugly is that which struggles against this perfection; and, consistently with this view, he first employed the term æsthetic (asthetica) to denote a theory of the Beautiful. He held that perfection, as harmony of object with its conception or notion (Begrif), presents itself under three as-pects:-(1.) As truth for pure knowledge ; (2.) As beauty for obscure perception; (3.) As goodness for the capacities of desire or will. It will be seen at once by the thoughtful student that this mode of dealing. with impressions of beauty, \&c., simply as intellectual elements (confused coniceptions), must fail to account for their emotional aspectsfeeling, which is the very soul of the æsthetic impression, being radically distinct from conception and knowledge. Still Baumgarten did service in separating so sharply the provinces of logic, ethics, and æsthetics, and in connecting the latter with the impressions of the senses. The details of his æsthetics are mostly unimportant. From Leibnitz's theory of a pre-established harmony, and its consequence that the world is the best possible, Baumgarten concluded that nature is the highest embodiment of beauty, and that art must seek as its highest function the strictest possible imitation of nature. Baumgarten had several disciples in this conception of æsthetics, as Sulzer and Moses Mendelssohn.
The next original philosophical scheme of æsthetics is that of Kaut. His system of knowledge falls into three branches-the critique of pure reason, which has to determine what are the a priori elements in the knowledge of objects; the critique of practical reason, which inquires into the a priori determinations of the will; and the critique of jndgment, which he regards as a connecting link between the other two, and which has to do with any a priori principles of emotion (pleasure and pain), as the middle term betreen cognition and volition. This judgment Kant divides into the æsthetic, when pleasure or pain is felt immcdiately on presentation of an object; and the teleological, which implies a pre-existing notion, to which the object is expected to conform. He attempts, in a somewhat strained manner, to define the Beautiful by help of his four categories. In quality beauty is that which pleases without interest or pleasure in the existence of the object. This distinguishes it from the simply Agreeable and the Good, the former stimulating desire, and the latter giving motive to the will. In quantity it is a uniyersal pleasure. Under the aspect of relation, the Beautiful
is the form of adaptation (Z ueckmässigket) without any end being conceived. Finally, in modality it is a necessary satisfaction, pleasing not by a universal rule, this being unassignable, but by a senous communis, or agreement of taste. Kant is not very consistent in carrying out these distinctions. Thus, for exanuple, he recognises in fitness a particular species of beauty, namely, "adhering" as distinguished from "free" or intrinsic beauty, without recognising that this implies the presence of a notion. So, in discussing the objective validity of our æsthetic impressions, he decides that the highest meaning of beauty is to symbolise moral good and, in even a more fanciful manner than that of Mr Ruskin, he attaches moral ideas, as modesty, frankness, courage, \&c., to the seven primary colours of the Newtonian system. Yet he does not admit that the perception of this symbolic function involves any notion. Once more, he attributes beauty to a single colour or tone by reason of its purity. But such a definition of the form of the Beautiful clearly involves some notion in the percipient mind. Kant further applies his four categories, with still less of fruitíul suggestion, to the Sublime. The satisfaction of the Sublime is a kind of negative pleasure created through the feeling of a momentary restraint (Hemmung) of vital force, and of a subsequent outpouring of the same in greater intensity. The feeling of the inadequacy of the imagination is succeeded by a consciousness of the superiority of reason to imagination. The sentiment is thus a kind of wonder or awe. Sublimity is either mathematical, that of magnitude, or dynamical, that of nature's might. He allows no sublinity to passions, as rage or revenge. Kant has, too, a theory of the Ridiculcus, the effect of which he lays, oddly enough in respect to thว rest of his doctrine, in a grateful action of the body, the nauscles of the diaphragm, dc., giving a sense of health. This action takes place on the sudden relaxation of the anderstanding when lept in a state of tension by expectation. The cause of laughter, or the Ridiculous, may hence be defined as "the sudden transformation of a tense expectation into nothing." He placed the beauty of nature above that of art, which can be of value only mediately, not as an end in itself. He classifies the arts according as they express the resthetic idea-whaterer this may mean after his exclusion of all definite conception from the perception of beauty. Just as expression in speech consists of articulation, gesticulation, and modulation, answering to thought, intuition (Anschutury), and feeling, so we have three kinds of art-(1.) Those proceeding orally (redende), oratory and poetry; (2.) Those of visible image (bildende), plastic art and painting; and (3.) "the art of the play of feelings," namely, music aud "colour art," which last is not defined. Kant's system is very defective, and some of its inconsistencies were pointed out by Herder in his Kalligone, who lacked, however, philosophic accuracy. Herder denied Kant's distinctions between the Beautiful, the Good, and the Agreeable, saying that the first must be desired as well as satisfying, and the second be loved as well as prized. Yet herein Kant is decidcdly superior to his critic. Herder held, in opposition to Kant, that all beauty iucludes significance (Bedeutsamkeit), and cannot affect us apart from a notion of perfection. But here, too, Kant is to be preferred, since his theory does not assume all beautiful objects to contain some one element or form capable of being detected. Kant's real additions to æsthetic theory consist in the better separation of the Beautiful from the Good and Agreeable, in the prominence given to the emotional side of æsthetic impressions, and in the partial recognition of the relativity of æsthetic judgment, more especially in the case of the Sublime.

After Kant the next philosopher to discuss the metaphysics of the Beautiful and art is Schelling. He sought
to engraft art upon his curious system of transceudental idealism in a manner which can only be faintly indicated here. In Schelling's metaphysical system the relation of subject and olijeçt is conceived as identity. Each exists, ret not independently of tho other, but identified in a higher, the absolute. They may be conceived as two poles representing different directions, but yet inseparably joined. All knowledge rests on this agreement. Either nature, the object, may be conceived as the prius, and the subject constructed ont of it; or the subject may be taken as the prius, and the object constructed from it. These are the two poles of knowledge, and constitute the philosophy of nature sud the transcendental philosophy. The latter, like Kant's philosophy of mind, is based on a threefuld conception of the poriers of human nature. It consists of - (1.) Theoretic philosophy, dealing with perception; (2.) Practical nhilosoply, discussing the will and freedorn; and (3.) The philosophy of art. The aim of the last is thus expressed: The ego must succeed in actually perceiving the concord of subject and object, which is half disguised in perecption and volition. This concord is seen within the limits of the ego in artistic perception only. Just as the product of nature is an unconscious product like a conscious one, in its designfulness, so the product of art is a conscious product like an unconscious one. Only in the work of art does intelligence reach a perfect perception of its reel self. This is accompanied by a feeling of infinite satisfaction, all mystery being solved. Through the creative activity of tho artist the absolute rereals itself in the perfect identity of subject and object. Art is therefore higher than philosophy. Schelling thus sets the beauty of art far above that of nature. As to the form of the beantiful he is very vague, lcaning now to a conception of harmony in the totality of the morld (Weltall), and now to a Ylatonic conception of primitive forms (Urbilder) of perfection. He has a very intricate classification of the arts, based on his antithesis of object and subject, reality and ideality. A curious feature of Schelling's theory is his application of his one fundamental idea to tragedy. The essence of tragedy is, he thinks, an actual conflict of liberty in the subject with objective necessity, in which both being conquered and conquering, appear at once in the perfect indifference. Antique tragedy he holds, accordingly, to be the most perfect composition of all arts.
Passing over Sulger, whose resthetic doctrine is little more than a rerival of Platonism, tee come to Hegel. His system of philosophy falls into three parts, all based on the self-movement of the idea or absolute:-(1.) The logic discussing the pure universal notions which are the logical evolution of the absulute, as pure thought; (2.) Philosophy of naturc-the disruption of thought, the idea, into the particular and external; (3.) Philosophy of the spirit-the return of thought or the absolute from this self-alienation to itself in sclf-cognisant thought. Just as the absolute, so has spirit a series of three grade- to traversc-(a.) Suhjective spirit or intelligence, relating itself to the rational object as something given; (b.) Objectire spint or will, which converts the subjectivised theoretical matter (truth) into oljectivity; (c.) Absolute spirit, which is the return of the spirit from objectivity to the ideality of cognition, to the perception of the absolute idea. This again bas thrce stages-(1.) Art, in which th? absolute is inmediately , resent to sensuous perception; (2.) Religion, which embodies certainty of the iclea as sbove all immediate reality; and (3.) Philosophy, the unity of these. According to this conception, the beautiful is defined as the shining of the idea through a sensuous medium (as colour or tone). It is said to have its life in shining or appearance (Schein), and so differs from the true, which is not real sensu us exustence, but the universal idea
contained in it for thought. He defines the rorm of the Beautiful as unity of the manifold. The notion (Begrif) gives neecssity in mutua! dependence of parts (unity), while the reality demands the appearance or semblance (Schein) of liberty in the parts. He discusses very fully the beauty of mature as immediate unity of notion and reality, and lays great emphasis on the beauty of organic life. But it is in art that, like Schelling, be finds the bighest revelation of the Beautiful. Art makes up the deficiencies of natural beauty by bringing the idea into clearer lisht, by showing the external in its life and spirit ual animation. The rarious forms of art depend on the various combinations of matter and forin. In Oriental or symubolical art matter is predominant, and the thought is struggling through with pain so as to reveal the ideal. In the classical form the ideal has attained an adequate existence, form and matter being absolutely commensurate. Lastly, in the romantic form, the matter is reduced to a mere show, and the ideal is supreme. Hegel classifies the individual arts according to this same principle of the relative supremacy of form and matter-(1.) The begiuning of art is arehitecture, in which as a symbolic art the sensuous matcrial is in excess. (2.) Sculpture is less subjected to matter, and, as representing the living body, is a step towards a bigher ideality. (3.) Painting, which is the romantic art кат' 'Euxpr', cxpresses the full life of the soul. By the elimination of the third dimension of space, and the employment of a coloured plane, painting rids itself of the coarse material substrate of sculpture, and produces ouly a scmblance of materiality. (4.) In music, which employs pure tone, all the elements of space aro suppressed, and hence its content is the inner emotional nature (Gemüth). Music is the most subjective of the arts. (5.) Poetry has the privilege of universal expression. It contains all the other arts in itself, namely, the plastic art in the epos, music in the ode, and the unity of both in the drama.

Several systems of æsthetics, more or less Hegelian in character, can only be referted to in passing. Weisse defined esthetics as the science of the idea of beauty, and explained the Beautiful as the entrance of the universal or of the essence into the limited and finite, that is, the cancelling or annulling of truth (die aufgeholene Irahrheit). Dy thus recorgnising an internal contradiction in all beauty, be sought to derelope, by a curious dialectical process, the ideas of the Ugly, tho Sublime, and the Ludicrous. He treats each of these threc in imnediate contrast to beauty. Ugliness is the immediate existence of beauty. It appears as the negative moment in the Sublinie, and in the Ludicrous this negativity is again cancelled and resolved into affirmation so as to constitute a return to the Beantiful. A like attemp, to determine the relations of the Ugly, Comic, doc., as moments of the self-revealing idea was made by several Hegelians. Thus Ruge, in his Ablandlung über das fiomiscke, teaches that sublimity is the xsthetic idea striving to find itself, together with the satisfaction of this striving. If, howevier, the idea lose itself, sinking away in a kind of swoon, we have the Ugly. Finally, when the idea recovers from the swoon, its new birth is attended with a feeling of amusement (Erheiterung), and then we have the effect of the Ludicrous. Rosenkranz, in his Disthetik des Häss. lichen, conceives the Ugly as the regation of the Beautiful. or as the middle between the Beautiful and the Ludicrous, and seeks to trace out its various manifestations in formlessness in nature, incorreetness in artistic representation, and deformity or the disorganisation of the Deautiful in caricature. Schasler, again, seems to bold that the Ugly is co-ordinate with the Beautiful, being the motor principle that drives the. Beautiful from the unconditioned rest of the Platonic idea, from the srhere of empty abstractness to actuality: This fundamental contradiction reveals itself

33 the contrast of matter and spirit, rigid motioulessness and motion, and appears in art as the antithesis of the sublime and graceful (das Anmuthize), the latter containing the Naif, the Pretty, and the Ridiculous. Finally, Theodor Vischer seeks to settle these subtle relationships in this manner: He supposes the Sublime to be the sundering of the æsthetic idea and its sensuous image (Gebild) from the state of unity constituting the Beautiful, the idea reaching as the infinite over against the finite of the image. The image now resists the sudden rupture, and in asserting itself as a totality in defiance of the idea becomes the Ugly. The Comic, again, is the result of some partial and apparently inroluntary recognition of the rights of the idea by the rebellious image. Schasler says, in criticising the views of Vischer, that it is difficult not to be satirical in describing the dialectic artifices to which the idea is here compelled, little suspecting how easily auy similar attempt to adjust relations betmeen these ideas, looked at objectively as movements of the supreme idea, may appear equally naif and funny to a mind not already oppressed with the resisting burden of its own abstractions.

Theodor Vischer, the last of the Hegelians named here, has produced the largest and most laborious system of metaphysical resthetics, and a brief account of its scope must be giren to complete our history of the German systems. He defines æsthetics as the science of the Beautiful. His system falls into three parts: (1.) Metaphysic of the Beautiful; (2.) The Beautiful as one-sided existence -beauty of nature and the human imagination; (3.) The subjective-objectire actuality of the Beautiful-Art. The metaphysic again falls into tro parts-the theory of simple beauty, and that of the Beautiful in the resistance of its moments (the Sublime and Ridiculous). He defines the Beautiful as "the idea in the form of limited appearance." His discussions of the various beauties of nature, the organic and inorganic world, are rery full and suggestive, and his elaboration of the principles of art (excepting those of music, which he left another to elucidate), is marked by a wide and accurate knowledge. He divideg the arts into-(l.) The objective, or eje arts (architecture, sculpture, and painting); (2.) Subjectire, or ear arts (music); (3.) Subjectire-objective arts, or those of sensuous conception (pnetry). He subdivides the first into those of measuring sight (architecture), touching sight (sculpture), and sight proper (painting). Vischer's style is very laboured. His propositions fall into the form of mathematical theorems, and are made exceedingly incomprehensible by the excessirc subtleties of his metaphysical nomenclature.

There are several other systems of resthetics which deserve mention here, but space does not allow of a full account of them. Of these the most important are the theories of Herbart, Schopenhauer, aud ron Kirchmann: Herbart's views are based on his curious psychological conceptions. He ignores any function in the Beautiful as expressive of the idea, and seeks simply to determine the simplest forms or the elementary judgments of beanty. Schopenhauer's discussions, connecting beauty with his peculiar conception of the universe as volition, are a curious contribution to the subject. As a specimen of his speculations, oue may give his definition of tragedy as the representation of the horrible side of "life, the scornful dominion of accident, and the ineritable fall of the just and innocent, this contaiuing a significant glimpse into the nature of the world and existence. Yon Kirchmann has writtcu a two-rolume work on æsthetics, which is interesting as a reaction against the Hegelian method. It professes to be an attempt to base the science on a realistic foundation, and to apply the principles of observation and induction lngg acted upun in natural science.

The (rerman asthetic speculatious not elaborated into
complete systems are too numerous to be folly representear here. Only a few of the most valuable coutributions to the theory will be alluded to. Winckelmann's services to the derelopment of plastic art do not directly concern us. Of his theory of plastic beauty, based exclusively on the principles of Greek scalpture, little requires to be said. He first pointed to the real sources of superiority in antique creations, by emphasising the distinction between natural and ideal beauty, the æsthetic value of contour as an ideal element, the beauty of expression as the manifestation of an elevated soul, and consisting of a noble simplicity and a quiet grandeur. But by too exclusire an attention to Greek art, aud indeed to sculpture, his theory, as an attempt to generalise on art, lacks completeness, making little room for the many-sidedness of art, and narrowing it down to one, though an exalted, ideal.

Lessing's services to the scientific theory of art are far greater than those of Winckelmann. He is the first modern Who has sought to deduce the special function of an art from a consideration of the means at its disposal. In his Laokoon he defines the boundaries of poetry and painting in a manner which has scarcely been improved on since. In slight divergence from Winckelmann, who had said that the representation of crying was excluded from sculpture by the ancients as unworthy of a great soul, Lessing sought to preve that it was prohibited by reason of its incom. patibility with the conditions of plastic beauty. He reasoned from the example of the celebrated group, the Laokoon. Visible beauty was, he said, the first law of ancient sculpture and painting. These arts, as employing the co-existent and permanent in space, are much more limited than poetry, which employs the transitory and successive impressions of sound. Hence, expression is to poetry what corporeal beanty is to the arts of risible form and colour. The former has to do with actions, the latter with bodies,-that is, objects whose parts co-exist. Poetry can only suggest material objects and risible scenery by means of actious; as for example, when Homer pictures Juno's chariot. by a description of its formation piece by piece. Painting and sculpture, again, can only suggest actions by means of bodies. From this it follows that the range of expression in poetry is far greator then in risible art. Just as corporeal beauty loses much of its charm, so the risible Ugly loses much of its repulsireness by the suacessire and transient character of the poetic medium. Hence poetry may introduce it, while painting is forbidden to represent it. Eren the Disgusting muy be skilfully employed in poetry to strengthen the impression of the Horrible or Ridiculous; while painting can only attempt this at its peril, as in Pordenone's Interment of Christ, in which a figure is represented as holding its nose. Tisible imitation being immediate and permanent, the painful element cannot be softened and disguised by other and pleasing ingredients (the Laughable, \&c..), as in poetry. As Schasler says, Lessing's theory hardly. makes room for the effects of individuality of character as one aim of pictorial as mell as of poetic art. Yet as a broad distinction between the two heterogeneous arts, limiting, on the one hand, pictorial description in poetry, and the representation of the painful, low, and rerolting in the arts of rision, it is unassailable, and constitutes a real discorery in æsthetics. Lessing's principles of the drama, as scattered through the critiques of the Hamburg Dramaturgy, are for the most part a further elucidation of Aristotelian principles, of great value to the progress of art, but adding comparatirely little to the theory Its conspicnous points are the determination of poetic truth as shadowed forth by Aristotle, and the difference betreen tragedy and comedy in respect to liberty of iurention both of fable and of character ; secondly, the reassertion tlat both fear and pity, and nut simply one of
these, are the effects of every tragedy, and that it is filse dramatie art to attempt to represent either the sufferings of a perfect snartyr, or the actions of some monstrous horror of wicterness, as Comeille and the French school had urged; last!y, the iuterpretation of Aristotle's purifieation of the passicuss as refcrring to this rery fear and pity, nod pointing to a certain desirable mean between excessive sensibility and cexcessive callousness. Schasler says that if Lessing had had an Aristotle to lean on in the Jatotioon as in the Dramaturgy, it would bave been more valuable. Others might be disposed to say that if he had been as free from the traditions of anthority in the Drumuturgy as he was in the Lrokoon, the former might bave contained as much in the way of real discovery as the latter.

The partial contributions to xsthetics after Juessing need not long detain us. Gocthe wrote several tracts on esthetic topics, ns well as many aphorisms. Ho attempts to mediate between the clains of ideal heautr. as taught bv Winckelmann, and the aims of individualisation. Scuiller discusses. in a number of disconnected easays and letters, some of the priucipal questions in the jhilosophy of art. He looks at art as a side of culture and the forces of human nature, and finds in an asthetically cultivated soul the reconciliation of the sensual and rational. His letters on æsthetic cducation (Ueber die asthetische Erzie. huny des Menschen) are very valuable. and bring out the comnection between esthetic activity and the universal impulse to play (Spieltrieb). This impulse is formed from the union of two otber impulses-the material (Stofftrieb) and the formal (Formtrieb) - the former of which seeks to make real the inner thought, the latter to form or fashion this reality. Schiller's thoughts on this topic are cast in a highly metaphysical mould, and ho makes no attenpt to trace the gradual development of the first crude play of children into the æsthetic pleasures of a cultivated maturity. He fixes as the two conditions of æstlatic growth, moral frecdom of the individual and sociability. The philosophic basis of Schiller's speculation is the system of Kant. Another example of this kind of reflective discussion of art by literary men is afforded us in the Torschule der Asthetik of Jean Paul Richter. This is a rather ambitious discussion of the Sublime and the Ludicrous, and contains much valuable matter on the nature of humour in romantic poetry. Jcan Paul is by no means cxact or systematic. and his language is highly poetic. His definitions strikc one as basty and inadequate: for example, that the Sublime is the applied Infinite. or that the Ludicrous is the infinitely Small. Other writers of this class, as Wilhelm ron Humboldt. the iwo Schlegels. Gervinus, though they have helped to form juster views of the several kinds of poetry, \&c., have coutributed little to the general theory of art. F. Schlegel's determination of the principle of romantic poetry as the Tnteresting, in oppusition te the objectivity of antique poetry, may be cited as a good example of this group of speculations.

No account of Geruan astheties can be complete without some refcrence to the attempts recently inade by onc or tro naturalists to determine experimentally the physical conditions and the net sensational element of artistic impression. Of these. the most imposing is the development by IIelminoltz. of a large part of the laws of musical composition. Larmony, lone, modulation, de., from a simple physical ligpothesis as to the complex eharacter of what appear to $u s$ as elementary tones. Another interesting experimental inquiry bas been institnted by Fechner into the alleged superiority of "the golden section" as a visible proportion. \%eising, the author of this theory, asserts that the most pleasing division of a linc. say in a cross, is the golden section. where the sinaller division is to the larger as the latter to the sum. Fechner describes in his
contribution Zur experimentulens EsthetiK a sertes of experiments on a large mminher of different persons, in which he supposes lio eliminated all effects of individual association. and decides in favour of the hypotlicsis. He, however, assumes that this visible form must please primarily, and does not recoguise that any constant association growing up in all minds alike would give precisely the same results. Finally, allusion may be made to some ingenious but very forced attempts of Unger and others to discover harmonic and melodious relations among the elementary colours.
III. French voriters on Asthelics.-In passing from German to French writers on resthetical topics we find, as might be expected. much less of metajhysical assumption and a elearer perception of the scientific character of the problem. At tho same times the authors are but few, and their works inostly of a frogmentary character. Passing by the Jesnit André, who sought to rchabilitate Augustin's theory of the Beautiful, we first light on the name of Batteux. In his Corrs Eatte de Belles Tettres (1765) be seeks to determine the aims of art by elucidating the meaning and value of the imitation of nature. He classifies the arts ancording to the forms of space and time, those of either division being capable of combining among themselves, but not with those of the other. Thus architecture, sculpture, and painting may co-operate in one visible effect; also music, poctry, and the dancc. Diderot, again, in the Encyclopedie, sought to Dider define beauty by making it to consist in the percention of relations. In his Essais sur la Peinture he follows Batteux in extolling naturalness, or fidelity to naturc. Another very inadequate theory of beauty was propounded by Père Buffier. Ho said it is the type of a spocies which gives Butlie the measure of beauty. A beautiful face, though rare, is neverthelcss the model after which the largest number is formed. Not unlike this theory is a doctrine propounded by H. Taine. In his work, De l'Ideal dans l'Art, he pro- Taine ceeds in the manner of a botanist to determine a scale of characters in the physical and moral man, according to the embodiment of which a work of art becomes ideal. The degree of universality or importance, and the degree of beneficence or adaptation to the ends of life in a character, give it its measure of æsthetic value, and render the work of art, which sceks to represent it in its purity, an ideal work.
The only claborated systems of æsthetics in French The s, literaturo are thoso constructed by the spiritualistes, that tems is, the philosophic follorers of Reid and D. Stewart on istes. the one hand, and the German idealists on the other, who constituted a reaction against the crude sensationalism of the 18 th century. They aim at elucidating what they call the higher and spiritual clement in resthetic impressions, and wholly ignore any capability in material substance or external scnsation of affording the peculiar delights of beauty. The lectures of Cousin, entitled Du Vrai, du Beau, ct du Dien, the Cours d'Esthétique of Jouffroy, and the systematic trcatise of Lévêque, La Science du Beau, are the principal works of this school. The last, as the most claborate, will afford the student the best insight into this mode of speculation. The system of Lever̂que falls into four parts-(1.) The psycliological observation and classification of the cffects of the Beautiful on human intelligence and sensibility; (2.) The metaphysic of beauty, which deternines whether it has a real objective cxistence, and if so, what is the internal principle or substance of this oljective entity; and further seeks to adjust the relations of the Beautiful, the Sublime, the Ugly, and the Ridiculous in relation to this principle; (3.) The application of these psychological and metaphysical principles to the beauty of nature, animate and inanimate, and to that of the Deity; (4.) Their application to the arts. The intmence of the

Gicrmans in this mode of systematising is apparent. All the characters of beauty in external objects, as a flower, of which the principal are size, unity and variety of parts, iñtensity of colour, grace or flexibility, and correspondence to enviroument, may be summed up as the ideal grandeur and order of the species. These are perceived by reason to be the manifestations of an invisible vital force. Similarly the beauties of inorganic nature are translatable as the grand and orderly displays of an immaterial physical force. Thus all beauty is in its objective essence either spirit or unconscious force acting with fulness and in order. It is curions that Lérêque in this way modifies the strictly spiritual theory of beauty by the admission of an unconscious physical force, equally with spirit or mind, as an objective substratum of the Beautiful. He seeks, however, to assimilate this as nearly as possible to conscious energy, as immaterial and indivisible. The aim of art is to reproduce this beauty of nature in a beautiful manner, and the individnal arts may be classified according to the degre of beautiful force or spirit expressed, and the degree of power with whicis this is interpreted. Accordingly, they are arranged by Lévèque in the same order as by Hegel.
IV. Italian and Dutch Writere.-There are a ferw writers on æsthetic subjects to be found in Italian and Dutch literature, but they hare little of original speculation. The Italian, as Pagano and Muratori, follow French and English writers. One Dutch writer, Franz Hèmsterhuis (18th century), is worth naming. His philosophic views are an attempt at reconciliation between the sensational and the intuitive systems of knowledge. The only faculty of true knowledge is an internal sense, nevertheless all true knowledge comes through the senses. The soul, desiring immediate and complete knowledge, and being limited by its union with the senses, which are incapable of perfectly simultaneous action, strives to gain the greatest number of the elements of cognition or ideas in the shortest possible time. In propertion as this effort is successful, the knowledge is attended with enjoyment. The highest measure of this delight is given by beauty, whercfore it may be defined as that which affords the largest number of ideas in the shortest time.
V. English Writers.-In the æsthetic speculations of English writers, we find still less of metaphysical constraction and systematisation than in those of French thinkers. Indeed, it may be said that there is nothing answering to the German conception of æsthetic in our literature. The inquiries of English and Scotch thinkers bave been directed for the most part to very definite and strictly scientific problems, such as the psychological processes in the perception of the Beautiful. The more moderate metaphysical impulses of our countrymen have never reached beyond the-bare assertion of an objective and independent beauty. Heace we find that the German historians regard these special and limited discussions as so many empirical reflections, wholly devoid of the rational element in true philosophy. Schasler speaks of these essays as "empiristic æsthetics," tending in one direction to raw materialism, in the other, by want of method, never lifting itself above the plane of "an æstheticising dilettanteism." English writers are easily divisible into two groups-(1.) Those who lean to the conception of a primitive objective beauty, not resolvable into any simpler ingredients of sensation or simple emotion, which is perceived intuitively either by reason or by some special faculty, an internal sense; (2.) Those who, tracing the genesis of beauty to the union of simple impressions, have beerf chiefly concerned with a psychological discussion of the origin and growth of our æsthetic perceptions and emotions.

Lord Shaftesbury is the first of the intuitive writers on
beauty. Iiis viers are highly inctaphysical and Platonic The irs in character. The Beautiful and the Good are combined in tivists. one idcal conception, much as with Plato. Matter in itself Shartes is ugly. The order of the world, wherein all beauty really bury. resides, is a spiritual principle, all motion and life being the product of spirit. The principle of beanty is perceived not with the outer senses, but with an internal-that is, the moral-sense (which perceives the Good as well). This perception affords the only true delight, namely, spiritual enjoyment. Shaftesbury distinguishes three grades of the Beautiful, namely, (1.) Inanimate objects, including works of art; (2.) Living forms, which reveal the spiritual formative force; and (3.) The source from which these forms spring, God.

In his Inquiry into the Original of our Ideas of Beauty and lirtue, Hutcheson follows many of Shaftesbury,s ideas. Yet he distinctly disclaims any independent self-existing beauty in objects apart from percipient minds. "All beauty," he says, "is relative to the sense of some mind perceiving it." The cause of beauty is not any simple sensation from an object, as colour, tone, but a certain order among the parts, or "uniformity amidst variety." The faculty by which this-principle is known is an internal sense which is defined as "a passive power of receiving ideas of beauty from all objects in which there is uniformity in variety." Thus Hutcheson seems to bave supposed that bealty, though always residing in uniformity in variety as its form, was still something distinct from this, and so in need of a peculiar sense distinct from reason for the appreciation of it. But his meaning on this point is not clear. This faculty is called a sense, hecause it resembles the external senses in the immediateness of the pleasure it experiences. The perception of beauty, and the delight attending it, are quite as independent of considerations of principles, causes, or usefulness in the object, as the pleasurable sensation of a sweet taste. Further, the effect of a beautiful object is like the impression of our senses in its necessity; a beautiful thing being always, whether we will or na, beautiful In the second place, this sense is called internal, because the appreciation of beanty is clearly distinct from the ordinary sensibility of the eye and ear, whether emotional or intellectual and discriminative, many persons who pessess the latter intact being tetally destitute of the former. Another reason is, that in some affairs which have little to do with the external senses, beauty is perceived, as in theorems, universal truths, and general causes. Hutcheson discusses two kinds of beauty-absolute or original, and relative or comparative. The former is independent of all comparison of the beautiful object with another object of which it may be an imitation. The latter is perceived in an object considered as an imitation or resemblance of something else. He distinctly states that "an exact imitation may still be beautiful theugh the original were entirely devoid of it;" but, curiously enough, will not allow that this proves his previous definition of beauty as "uniformity amidst rariety" to be too narrow. He seems to conceive that the original sense of beauty may be "raried and overbalanced" with the secondary and subordinate kind. Hutcheson spends a good deal of time in proving the universality of this sense of beauty, by showing that all men, in proportion to the enlargement of their intellectual capacity, are more delighted with uniformity than the contrary. 'He argues against the supposition that cnstem and education are sonrces of our perception of beauty, though he admits that they may enlarge the capso city of our minds to retain and compare, and so may add to the delight of beauty.
The next writer of consequence on the intuitive side is Reid. In the eighth of his Essays on the Intellectual Pooers he discusses the faculty of taste. He held, on the
ground of common sense, that beauty must exist in objects independently of our minds. As to the nature of the Beautiful, he taught that all beauty resides primarily in the faculties of tho mind, intellectual and moral. The beauty which is spread over the face of visible nature is an emanation from this spiritual beauty, and is beautiful because it symbolises and expresses it. Thus the beanty of a plant resides in its perfection for its end, as an expression of the wisclom of its Creator. Reid's theory of beauty is thus purely spiritual.

The celebrated Lectures un Metapkysics of Sir W. Mamilton do not, unfortunately, contain more than a slight preliminary sketch of the writer's theory of the emotional activities. He defines !leasure, following very closely the theory of Aristotle, as "a reflex of the spontancous and unimpeded exertion of a power of whose enerey we are conscions" (rol. ii. p. 440). And, in perfect agreement with this conecption, he divides the rarious feelings according to the faculties or powers, bodily or mental, of which they are the concomitants. In the seleme thus faintly shadowed forth, the sentiments of Taste are regarded as subserving both the subsidiary and the elaborative faculties in cognition, in other words, the Imagination and the Understanding. The activity of the former corresponds to the element of raricty in the benutiful object, while that of the latter is concerned with its unity: A beantiful thing is accordingly defined " as one whose form occupies the Imagination and Uuclerstanding in a free and full, and, consequently, in an agreealle activity" (p .512). In this way, the writer conceires, he comprehends all pre-existing definitions of beanty. He explicitly excludes all other varicties of pleasure, such as the sensuous, from the proper gratification of beauty. The resthetic sentiment is thus regarded as unique and not resolvable into simpler feelings. Similarly, be denies any proper attribute of beanty to fitness. The essence of the sentiment of sublimity he finds, much in the sume way as Kant, in a mingled pleasure and pain; "of pleasure in the consciousness of the strong energy, of pain in the consciousness that this energy is rain." He recognises three forms of Sublimity: those of Extension or space, of Protension or time, and of Intension or porver. Finally, ho thinks that the Picturesque ditfers from the Beariful in appealing simply to the imagination.- A pieturesque object is one whose parts are so palpably unconnected that the understanding is not stimulated to the perception of unity.

A rery like interpretation of beauty, as spiritual and tspical of divine attributes, has been giren by Mr Ruskin in the sceond volume of his Modern Painters. This part of his work, bearing the title "Of Ideas of Beanty," has a very systematic appearance, but is in fact a singularly desultory series of resthetic idess put into a very charming language, and coloured by strong emotion. Mr Ruskin distinguishes betreen the theoretic faculty coneerned in the moral perception and appreciation of illeas of beauty and the imeninative or artistic faculty, which is employed in regarding in a certain way and combining the ideas received from costernal nature. The former, he thinks, is wrongly momed the osthetic faculty, as though it were a mere operation of sense. The olject of the faculty is beauty, which I_{1} Ruskin divides into typical and rital beanty. The former is the external quality of bodies that typifies somedivine attribute. The latter consists in "the appearance of felicitous fulfilment of function in living things." The furms of typical beauty are-(1.) Infinity, the type of the dirine incomprehensibility; (2.) Unity, the type of the divine comprebensireness ; (3.) Repose, the type of the divine permanence; (4.) Symmetry, the type of the divine justice; (5.). Purity, the type of the divine energy; and (6.) Moderation, the type of gorernment by law. Vital beauty, again is regarded as relative when the degree of
exaltation of the function is estimated, or generic it only the degree of conformity of an indiridual to the appointed functious of the species is taken into account. Mr Ruskin's wide knowledge and fine resthetic perception make his works replete with raluable suggestions, though he appears wanting in scientific accuracy, and lacks, as Mr Mill has pointed out, all appreciation of the explanatory power of association' with respect to the ideal elements of typical beauty.

Of the more analytic writers on the effects of the Deautiful, Addison deserves a passing mention, less, however, for the scientific precision of his definitions, than for the charm of his style. IIs Essays on tho Imagination, contributed to the S'pectator, are admirable specimens of popular æsthetic reflection. Addison means by the pleasures of imagination those which arise originally from sight, and he divides them intn two classes-(1.) Primary pleasures, which entirely procced from objects before our eyes; and (2.) Secondary pleasures, flowing from ideas of visible objects The original sources of pleasure in risible objects are greatness, novelty; and benuty. This, it may be said, is a raluable distinction, as pointing to the plurality of sources in the asthetic impression, but the threefold division is only a rery rough tentative, and destitute of all logical value, novelty of impression being always a condition of beauty. The secondary pleasures, he rightly remarks, are rendered far more extended than the original by the addition of the proper enjoyment of resemulance, which is at the basis of all mimicry and wit. Addison recomnises, too, the effecta of association in the suggestion of whole seenes, and their accompaniments by some single circumstance. He has some eurious hints as to the physiological seat of these mental processes, and seeks, somewhat naively, to connect. these pleasures with teleological considerations.

In the Elements of Criticism of Lord Kaines, another Inrd attempt is made to affiliate æsthetic phenomena to simpler Kairo pleasures of experience. Beauty and ugliness are simply the pleasent and the unpleasant in the higher senses of sight and hearing. By "higher" he means more intellectual, and ho conceives theso two serises to be placed midway between the lower senses and the understanding. He appears to admit no more general feature in leantiful objects than this pleasurable quality. Like Futcheson, he divides beauty into intrinsic and relative, but understands by the latter ideas of fitness and ntility, which mers excluded from the Beantiful by Hutcheson. He illustrates the English tendency to comneet mental processes mith physiological conditions, by referring the main clements of the feeling of sublimity to the effect of height in objects in compelling the spectator to stand on tiptoe, by which the chest is expanded and muscular movements produced which gire rise to the peculiar emotion.

Passing by the name of Sir Joshua Reynolds, whose Ti.gas theory of beanty closely resembles that of Père Buffier, wo eome to the speculations of another artist and painter, Hogarth. Me discusses in his Aralysis of Beauty all the elements of visible beauty, both form an ? colour, often manifesting great speculative skill, and always showing a wide and accurate knowledge of art. He finds altogether six elements in beanty, namely-(1.) Fitness of the parts to some design, as of the limbs for support and movement; (2.) Variety in as many ways as possible, thus in form, length, and direction of line, shapa, and magnitude of f.gure, \&c. ; (3.) Uniformity, regularity, or symmetry, which is only beautiful when it helps to preserve the character of fitness; (4.) Simplicity or distinctness, which gives pleasure not in itself, bat throngh its enabling the eye to enjoy variety with ease; (5.) Intricacy, which provides empioyment for our active energies, ever eager for pursnit, and leads the eye "a wanton kind of cass": (v.) Quantito
or nagnitude, which draws our attention, and produces admiration and awe. The beauty of propurtion he very acutely resolves iuto the needs of fitness. Hogarth applies these priuciples to the determination of degrees of beauty in lines, and figures, and compusitions of forms. Among lines he singles out for special honour the serpentine (formed by drawing a line once round from the base to the apex of a long slender cone) as the line of grace or beauty par excellence. lts superiority he places in its many varieties of direction or curvature, though he adds that nore suddenly curving lines -displease by their grossness, while straighte: lines appear lean and poor. In this last remark Hogarth tacitly alluws another principle in graceful line, namely, gentleness, as opposed to suddenness, of change in direction, though he dues not give it distinct recognition in his theory, as Burke did. Hogarth's opinions are of great value as a set off against the extreme riews of Alison and the assuciation school, since le distinctly attributes a gleat part of the effects of beauty in form, as in colour, to the satisfaction of primitive susceptibilities of the miud, thongh he liad not the requisite psychological knowledge to reduce them to their simplest expression. In his remarks on intricacy he shows clearly enough that he understoad the pleasures of morement to be involved in all visual perception of form.

Burke's speculations on the Beautiful, in his Philosophical Inquiry into the Origin of our Ideas of the Sublime and Beuutiful, are curiuus as introducing physiological considerations into the explanation of the feelings of beauty. They illustrate, moreover, the tendency of Enghish writers to treat the problem as a psychological one. He finds the elements of beanty to be-(1.) Sinallness of size; (2.) Smootimess of surface; (3.) Gradual variation of direction of outline, by which he meaus gentle curves; (4.) Delicacy, or the appearance fragility; (5.) Brightness, purity, and softness of coluur. The Sublime he resolves, not very carefully, into astonishment, which he thinks always contaius an element of terror. Thus "infinity has a tendency to fill the mind with a delightful horror." Burke seeks what he calls "efficient causes" for these phenomena in certain affections of the nerves of sight, which he compares with the operations of taste, smell, and touch. Terror produces "an unnatural tension and certain riolent emotions of the nerses," hence any objects of sight which produce this tension awaken the feeling of the Sulblime, which is a kind of terror: Beautiful objects affect the nerres of sight just as smooth surfaces the nerres of touch, sweet tastes and odours the corresponding nerve fibres, namely, by relaxing them, and so producing a soothing effect on the mind. The arbitrariness and narrowness of this theory, looked at as a complete explanation of beauty, cannot trell escape the rcader's attention.

Alison, in his well-known Essays on the Nature and Principles of Tuste, proceeds on an exactly opposite method to that of Hogarth and Burke. He considers and seeks to analyse the mental process which goes on when we experience the emotion of beauty or sublimity. He finds that this consists in a peculiar operation of the imagination, namely, the flor of a train of icleas throngli the mind, which ideas are not arbitrarily determined, but always correspond to some simple affection or enotion (as cheerfulncss, sadness, awe), awakened by the object. He thus inakes association the sole source of the Beautiful, and denies any such attribute to the simple impressions of the senses. His exposition, which is rery extensive, contains many ingenious and raluable contributions to the ideal or association side of æsthetic effects, bath of natnre and of art; but his total exclusion of delight (by which name he distinguishes æsthetic pleasure) from the immediate effects of colsur, visible form, and tone, makes his theory appear very
incomplete. This is especially applicable to music, where the delight of mere sensation is perhaps most conspicnous. He fails, too, to see that in the emotional harmony of the ideas, which, according to his view. make up an impression of beauty, there is a distinct source of pleasure over and abore that supplied by the simple feeling and by the ideas themselres.
Jeffrey's Essay on Beauty is little more than a modification of Alison's views. He defines the sense of beauty as consisting in the suggestion of agreeable and interesting sensations previously experienced by means of our carions pleasurable sensibilities. He thus retains the necessity of ideal suggestion, but at the same time discards the supposed requirement of a train of ideas. Jefirey distiuctly saw that this theory excludes the hypothesis of an independent beauty inherent in objects. He fails as completely as Alison to disprore the existence of a sensuous or organic beautiful, and, like hin, is arowedly concerned to show the presence of some one, and only onc, determining principle in all forms of the Bcautiful.
D. Sterrart's chief merit in the æsthetic discussions, con- Durald tained in his Philosophical Essays, consists in pointing out Stewart this unwarranted assumption of some single quality (other than that of producing a certain refined pleasure) running through all beautiful objects, and constituting the essence of beauty. He shows very ingeniously how the successive transitions and generalisations in the meaning of the term beauty may have arisen. He thinks it must originally hare connoted the pleasure of colour, which he recognises as primitive. His criticisins on the one-sided schemes of other writer's, as Burke and Alison, are rery able, though he himself hardly attempts any complete theory of beauty. His conception of the Sublime, suggested by the etymology of the word, renders prominent the element of height iw objects, which he conceives as an upward direction of motion, and which operates on the mind as an exh:bition of power, namely, triumph orer gravity.

Of the association psychologists James Mill did bittle Professon more towards the analysis of the sentiments of beauty than Baiu. re-state Alisun's doctrine. On the other hand, Professor Bain, in his treatise The Emotions and the Will, carries this examination considerably further. He asserts with Stersart that no one gencralisation mill comprehend all varieties of beautiful objects. He thinks, howeser, that the æsthetic emotions, those involved in the fine arts, may be roughly circuniscribed and marked off from other modes of enjoyment by means of three characteristics-(1.) Their not serving to keep up existence, but being gtatifications sought for themselves only; (2.) Their purity from all repulsive ingredients; (3.) Their eminently sympathetic or sharable nature in contrast to the exclusise pleasures of the individual in eating, \&c. The pleasures of art are divided, according to Mr Bain's general plan of the mind, into (1.) The elements of sensation-sights and sounds; (2.) The extension of these by intellectual reviral-ideal suggestions of muscular impression, touch, odour, and other pleasurable sensations; (3.) The reriral, in ideal form also, of pleasurable cmotions, as tenderness and power, and in a softened measure of cmotions painful in reality, as fear; (t.) The immediate gratification, that is in actual form, of certain wide emotional susceptıbilities reaching berond art, namely, the elating effect-of all change of impression nader the forms of artistic contrast and varicty; and, secondly, the peculiar delight springing from harmony among impressions and feelings, under its several æsthetic aspects, musical harmony and melody, proportion, \&c. The details in Mr Bain's exposition are rich and raried in relation to the psychology of the eabject. He finds the effect of sublimity in the manifestation of superior power in its bighest degrees, which manifestation excites a sympathetic
elation in the beholder. The Ludicrous, again, is defined by Mr Bain, improving on Aristotle and Habbes, as the degradation of something passessing dignity in circumstances that excite no other strong emution. The pleasure sccompanying the impression may be referred either to the elation of a sense of power or superiority ideally or sympathetically excited, or to a sense of freedom from restraint, both of which have in common the clement of a joyous rebound from pressure. Thus it will be seen that Professur Bain recognises no uew mental principle in æesthetic effects, bat regards them as peculiar combinations and transformations, according to known psychological laws, of other and sinpler feelings.

An interesting turn las been given to the psychology of æesthetics by Mr Herbert Spencer. In some of his essays, as the one entitled "Tho Origin and Function of Music," and more fully in the concluding chapter of his Psychology (second cdition), on the Esthetic Sentiments, he offers a new theory of the genesis of the pleasures of Leauty and art, based on his doctrine of evolution. He takes up Schiller's idea of the connection between æsthetic activity and play, only he deals with this latter not as an ideal tendency, but as a phenomenal reality, seeking to make it the actual starting-point in the order of colution of resthetic action. Ylay or sport is defined as the superfluous and useless exercise of faculties that have been quiescent for a time, and have in this way become so ready to discharge as to relieve themselves by simulated aetions. Esthetic activities yield to the higher powers of perception and emotion the substituted exereise which play yields to the lower innulses, agreeing with play in not directly subserving any processes conducive to life, but being gratifirations sought for themselves only. This point of affinity between the two classes of pleasures is a valuable addition to wsthetic theory, and helps one to understand how the artistic impulse first arose. At the same time it is doubtful how far all present asthetic pleasures, as the passive enjoyments of colour and tone, can be inter, reted ss substituted activities in Mr Spencer's sense. They seem rather to be original and instinetive modes of gratification not dependent on any previous esercises of life-function, except so far as the structure and functions of the senses as a whole may be viewed as the product of multitudinous life-processes in animal cvolution. Mr Spencer, moreover, forms a hierarchy of æsthetic pleasures, the standard of height being either the number of powers duly exercised, or what comes to the same thing, the degree of complexity of the emotional faculty thns exercised. The first, and lowest class of pleasures, are those of simple sensation, as tone and coluar, which are partly organic and partly the results of associstion. The second class are the pleasures of perception, as employed upon the combination of colours, \&c. The highest order of pleasures are those of the æsthetic sentiments proper, consisting of the multitudinous emotions ideally excited by æsthetic objects, natural and artistic. Among these vaguely and partially revived emotions Mr Spencer reekons not only those of the individual, but also many of the constant feelings of the race. Thus he would attribute the vagueness and apparent depth of musical emotion to associations with vocal tones, built up during the course of vast ages. This graduated scheme is evidently dictated by the assumption that the higher the stage of evolution, the higher the pleasure. Yet Mr Spencer admits that this measure of resthetic value will not suffice alone, and he adds, that the most perfect form of æesthetic gratification is realised trhen sensation, perception, and emotion, are present in fullest and most pleasurable action. Mr Spen: cer's supposition, that much of the pleasure of asthetic emotion is referrible to transmitted experjence, offers a
very ingenious, cven if not very definite, mode of explaining many of the mysterivus effects of tone. and even of colour.

Among works on the history of xsthetic doctrines, the student may be referred to the following:-

In Gcrman litcrature, which contains the most complete histories, Max Schasler's Kritische Gcschichte der AEsthetik, forming the first two volumes of an asthetic system, is the fullest. Still he lardly docs justice to English writers, there being no mention of Alison and recent thinkers. Ilis stand-point is only definable as a ncw modification of Jlegclianism. Zimmermann's Geschichee dor sisthetik is also to be recommended. Loizu's rieschichteder. Fishietik in Doulschland is a highly critical résumé of German systems, characterised by a good deal of caution, and a desire to mediate between opposing riews, and if not very definite in its result, very appreciative and suggestive of the many-sidedness of the subject. In French, Ledreque's work, La Science du Bcau, contains a very falr account of the most conspicuous systems, ancicnt and modern. In our own literature, Dumerous references to other systems are to be found in the cssays of Alison; and Jeffrey attempts a brief historical survey of the doctrines of beauty in his article on the subject. Dugald Stcwart's cssays mostly fall into critical examination of the chief theories of beauty. Finally, Professor Bain, in his Compendium of Mental and Moral Scicnec, supplics a brief but careful account of most of the known theories of the Beautiful.
(J. s.)

AETION:, a painter, whose famous picture of the marriage of Roxana and Alexander was exhibited at the Olympic ganes, and gained Aëtion so much reputation that the prosident of the games gave him his daughter in marriage. The picture is minutely aescribed by Lucian. Aëtion appears from that author to have fourished in the times of lladrian and the Antonines.

AETIUS, a Roman general of the closing period of the western empire, born at Dorostolus in Mœesia, late in the 4th century: While detained for some time as a hostage in the camp of Rhuas, king of the Huns, he aequired an influence with the barbarians that was afterwards of much advantage to himself, though the same cannot be said of it as regards the empire. He led into Italy an army of 60,000 Huns, which he employed first to support the unurping Emperor John, and, on the death of the latter, to enforce his claim to the supreme command of the army in Gaul upon Placidia, the empress-mother and regent for Valentinian III. Afterwards, when he incurred the disfavour of Placidia for the death of his rival Boniface, he again employed an army of Huns to compel her to reinstate him in his former position. In Gaul he won his military reputation, upholding for nearly twenty years, by combined policy and daring, the falling fortunes of the western empirc. His greatest victory was that of Chalons-sur-Marne (20th Sept. 451), in which he utterly routed Attila and the Huns-the number slain on both sides being, according to one computation, 300,000 , though this is obriously an exaggeration. This was the last triumph of the empire. Three years later (454) Aëtius presented himself at court to clain the emperor's daughter in marriage for his son Gaudentius; but Valentinian, suspecting him of designs upon the crown, slew him with his own hand:

AETIUS, surnamed "the Atheist," founder of an extremo sect of the Arians, was a native of Cœle-Syria After working for some time as a coppersmith, he became a travelling doctor, and displayed great skill in disputations on medical subjects; but his controversial power soon found a wider field for its exercise in the great theological question of the time. He stndied successively under the Arians, Paulinus, bishop of Antioch, Athanasius, bish op of Anazarbus, and the presbyter Antonius of Tarsus. In 350 he was ordained a deacon by Leontius of Antioch, but was shortly afterwards forced by the orthodox party to leave that town. At the first synod of Sirmium, he won a dialectic rictory over the homoiousian bishops Basilius and Eustathius, whu sought in consequence to stir up against him the enmity of Cæsar Gallus. In 356 he went to.

Alexandris with Eunomiusin order to advecate Arianism， but he was banished by Constantius．Julian the arostate recalled him from exile，bestowed upon him an estate in Lesbos，and retained him for a time at his court in Con－ stantinople．Being consecrated a bishop，he used his office in the interests of Arianisin by creating other bishops of that party．At the accession of Valens（ 364 ）he retired to his estate at Lesbos，but soon returned to Constantinople， where he died in 367 ．The Anomœan sect of the Arians， of whom he was the leader，are sometimes called after him dëtians．His work De Fide has been preserved in connec－ tion with a refutation written by Epiphanius．

AETIUS，a Greek physician，born at Amida in Meso－ potamia，who lived at the end of the 5 th or the beginning of the 6th century．Of his personal history little is known， except that he studied at Alexandria，and was physician to the court at Constantinople with the title comes obsequii． He wrote a work entitled B九 β 入ía＇Iатрєка̀＇Еккаíঠєка，which is mainly a compilation from the works of previous authors． Eight books of this rere issued frem the Aldine press at Veuice in 1534；various other parts have been frequently published；and a Latin translation of the whole，by Cor－ uarius，appeared at Basle in 1542 ．

ETNA．See ETNA．
ETOLIA，a country of ancient Greece，bounded on the N．by Epirus and Thessaly，on the E．by the provinces of Doris and Lecris，on the S．by the Gulf of Corinth，and separated on the W．from Acarnania by the river Achelous． The part which lay westward of the river Erenus，and south of a line joining Thermum and Stratus in Acar－ nania，was called old Etolia，the rest of the country new or acquired 业tolia．The country is in general mountainous and woody，but along the coast from the Achelous to the Evenus，and northward to Mount Aracynthus，is a plain of great fertility；while another extensive and fertile plain stretches north from this mountain along the east bank of the Achelous as far as the nerthern limit of eld Etolia． The Atolians were a restless and turbulent people， strangers to friendship or principles of honour，and they were consequently regarded by the other states of Greece as outlaws and public robbers．On the other hand，they were bold and enterprising in war，undaunted in the greatest dangers，and jealous defenders of their liberties． They distinguished themselves abore all the other nations of Greece in opposing the ambitious designs of the Mace－ donian princes，who，after haring reduced mest of the other states，were forced to grant them a peace upon rery honourable terms．The constitution of the 狌tolian league was copied from that of the Achæans，and with a riew to ferm，as it were，a counter alliance．The Cleomenic war，and that of the allies，called the Social War，were kindled by the etolians with the express purpose of humbling the Achæans．In the latter they held out，with the assistance only of the Eleans and Lacedcmonians，for the space of three years，against the united forces of Achaia and Maceden，but were obliged at last to purchase a peace by yielding up to Philip all Acarnania．In order to regain this province they entered into an alliance with Rome against Philip，and proved of great service to the Romans in their war with him；but being dissatisfied with the terms of peace granted by Flaminius，they made war upon the Romans themselves．：They were specdily orer－ come，and only obtained peace on very humiliating terms． After the conquest of Macedon by Emilius Panllus the Atolians were reduced to a much worse condition；fer not only those among them who had openly declared for Perseus，but those who were only suspected to have secretly favoured him，were sent to Rome to clear themselves before the sonate．There they were detained，and never afterwards permitted to return to their native countrs．

Five hundred and fifty of the chief men were barbarously assassinated by the partisans of Rome solely on the sus－ picion of favouring the desigas of Perseus．The Etolians appeared before Æmilius Paullus in mourning habits，and made loud complaints of such inhuman treatment，but could obtain no redress；on the contrary，ten commis－ sioners，who had been sent by the senate to settle the affairs of Greece，enacted a decrec，declaring that those who were killed had suffered justly，since it appeared to them that they had faroured the Macclonian party．From this time those only were raised to the chief honours and employments in the Ætolian republic who were known to prefer the interest of Rome to that of their country，and thus all the magistrates of Atelia became the creatures and mere tools of the Roman scnate．In this state of servile subjection they continued till the destruction of Corinth and the dissolution of the Achæan league，when Etelia，with the other free states of Greece，was reduced to a Roman province，commonly called the province of Achaia．In this state，with little alteration，Ettelia con－ tinued under the emperors till the reign of Coustantine the Great，who，in his new partition of the provinces of the empire，divided the western parts of Gracce from the rest， calling them New Epirus，and subjecting the whole country to the prcejectus pratorio for Mlyricum．Under the succes－ sors of Constantine Greece was parcelled out into several principalities，especially after the taking of Constantinople by the western princes．About the beginning of the 13 th century Theodorus Angelus，a noble Grecian of the im－ perial family，seized on Etolia and Epirus．The former he left to Michael his son，who maintained it against Michacl Palæologus，the first emperor of the Greeks，after the expulsion of the Latins．Charles，the last prince of this family，dying in 1430 without lawful issue，bequeathed Etelia to his brother＇s son，named also Charles；and Acarnania to his natural sons Memnon，Turnus，and Her－ cules．But great disputes arising about this division， Amurath II，after the reduction of Thessalonica，laid hold of so favourable an oppoitunity，and expelled all the con－ tending heirs in 1432．The Mahometans were after－ rards dispossessed of this country by the famous prince of Epirus，George Castriot，commonly called Scanderbeg，who with a small army opposed the whole power of the Ottoman empire，and was rictorious in twenty－two pitched battles． That hero at his death left great part of 正tolia to the Venetians；but they not being able to make head against such a mighty power，the whole country was soon reduced by Dahommed II．It is now included in the kingdom of Greece．

AFANASIEF，Aleksandr Nikolaevich，a Russian scholar，distinguished for his researches in Slaronic litera－ ture and archæology，was born about 1825．He contri－ buted many valuable articles to the serial literature of bis country，but his reputation rests chielly on two works of more permanent interest．The first was an extensire collection，in eight parts，of Russian Popular Stories； the other a treatise，in three volumes，on the Poetical Fiens of the Old Slavonians about Nature，completed just before the author＇s death，which occurred in the autumn of 1571.

AFER，Domitics，orator，born at Nismes，flourished under Tiberius and the three succeeding emperors．Quin－ tilian makes frequent mention of him，and commends his pleadings．But he disgraced his talents by acting as publio accuser in behalf of the emperors against some of the most distinguished personages in Rome．Quintilian，in his youth，assiduously cultirated the friendship of Domitius． He tells us that his pleadings were superior in point of eloquence to any he had ever heard，and that there mere public collections of his witty sayincs（dicta），some of which he quotes．He also mentions two books of his，On

Fitness's. Dumitus erectect a statuo in honour of Caligula, on which there was an inscription to the effect that this prince was a second time consul at the age of 27. This he intended as an encomium; but Caligula regarding it as a sareasm upon his youth and his infringement of the laws, raised a process against him, and pleaded himself in person. Domitius, instead of making a defence, repeated part of tho emperor's speech with the highest marks of admiration; after which he fell upon his knees, begged pardon, and declared that he drcaded Caligula's eloquence more than his imperial power. This piece of flattery succeeded so well, that the emperor not only pardoned him. but raised him to the consulshin. Afer died in the reign of Nero. A.D. 60.

AFFIDAVIT means a solemin assurance of a matter of fact known to the person who states it, and attested as his statement by some person in authority. Evidence is chiefly taken by means of aflilavits in the practice of the Court of Chancery in England. By 3 and 4 Will. IV. c. 42, s. 42, provision is made for appointing commissioners in Scotland and Ireland to take aflidavits. The term is generally applied to a statement cestified by a justico of peace or other magistrate. Affidavits are sometimes necessary as certificates that certain formalities have been duly and legally performed. They are extensively used in the practico of bankruptcy, and in the administration of the revenue. At one time they were invariably taken on oath, but this practice has been muclı narrowed. Quakers, Moravians, and Separatists have long been privileged in all cases to make a solemn declaration or affirmation; and now, if any jersons called as witnesses, or required or desiring to inake an affidavit or deposition, shall refuse or bo unwilling from alleged conscientions motives to be sworn, the court or justice may, on being satisfied of the sincerity of such objection, allow such person to make a solemn affirmation or declaration-by 17 and 18 Vict. c. 125, s. 20, extended to all counties in England, Ireland, and Scotland by subsequent statutes. An Aet of 1835 (5 and 6 Will. IV. c. 62) substituted declarations for oaths in cortain cases; and this statute is extensively observed. The same Act prohibited justices of peace from administering oaths in any matter in which they had not jurisdiction as judges, except when an oath was specially authorised by statute, as in the bankrupt law, and excepting criminal inquiries. Parliamentary proceedings, and instances where oaths are required to give validity to documents abroad. But justices are permitted to take affidavits in any matter by declaration, and a person making a false affidavit in this way is liable to punishment. Цifidavits may be made abroad before any liritish ambassador, envoy, minister, chargéd'affainee, secretary of embassy or legation, consul, or consular agent (18 and 19 Vict. c. 42, s. 1)

AFFINITY, in Law, as distinguished from consanguinity, is applied to the relation which each party to a marriage, the husband and the wife, bears to the hindred of the other. The marriage having made them one person, the blood relations of eacle are held as related by affinity in the same degree to the ono spouse as by consanguinity to the other. But the relation is only with the married parties theinselves, and does not bring those in affinity with them in affuity with each other; so a wife's sister has no affinity to her husband's brother. The subject is ehiefly important from the matrimonial prohibitions by which the canon law has restricted relations by affinity. Taking the table of degrees within which marriage is prohibited on account of consanguinity, the rule has been thus extended to affinity, so that wherever relationship to a man himself would be a bar to marriage, relationship to his deceased wife will be the mine bar, and vice versa on the husband's decease. This rule las been founded chiefly on interpretations of the
eighteenth chapter of Leviticus. Formerly by law in England, marriages within tho degrees of affinity were not absolutely null, but they were.liable to be annulled by ecclesiastical process during the lives of buth parties; in other words, the incapacity was only a canonical, not a civil, disability. By an Act passed in 1835 (5 and 6 Will. IV. c. 54), all marriages of this kind not disputed before the passing of the Act are declared absolutely valid, while all subsequent to it are declared null. This renders null in England, and not merely voidable, a marriage with a deceased wife's sister or niece. The Act does not extend to Scotland; but it was made quite clear by a leading decision in 1861 (Fenton v. Livingston) that, as "the degrees forbidden in consanguinity are also forbidden in aflinity," the marriago of a aister-in-law with a brother-inlaw is absolutely null in that country. Nor can a man contract a marriage with his wife's sister so as to bo valid in Great Britain, by celebrating his marriage with her in a country whore such marriages are lawful (Brook v. Brock, 9 II. J. Cases, 193).

AFFINITY, Chemical, the property or relation in virtue of which dissimilar substances are capable of entering into chemical combination with each other. Substances that aro so related combing always in fixed and definite proportions; the resulting compound differs from its components in its physical properties, with the exception that its weight is exactly the sum of their weights; and the combination is al ways accompanied with the evolution of heat. In these respects it differs from a mere mechanical mixture; in the latter there is contact without combination, and its properties are a mean or average of those of tho substances that compose it. That effect may be given to chemical affinity, the substances must be placed in contact; but mere contact is often insufficient, and combination only takes place on the application of heat, light, elcctric agency, \&c., or through the interposition of some foreign substance, Generally speaking, the affinity is less betreen substances that closely resemble each other than between those whose properties are altogether dissimilar. The term elective affinity, now generally disused, has been employed to indicate the greater affinity which a substance, when brought into contact with other substances, often has for one in preference to another. Advantage is frequently taken of this greater affinity to decompose compound substances. For a full treatment of chemical affinity and combination, sce Ciemistry.

AFFirmation. See Affidayit.

AFFRE, Dennis Auguste, Archbishop of Parıs, was born at St Rome, in the department of Tarn, on the 27 th Sept. 1793. When fourteen years of age, having expressed his desire to enter the church, he became a student at the seminary of St Sulpice, of which his maternal uncle, Denis Boyer, was director. His studies being completed before he had reached the age necessary for ordination, he was occupied for some time as professor of plilosoply in the seminary at Nantes. He was ordained e priest in 1818, and held his first charge in connection with the church of St Sulpice. After filling a number of ecelesiastical offices, he was elevated to the Archbishopric of Paris in 1840. His tenure of this office, though it was marked by great zeal and faithfulness, will be chiefly remembered by its tragic close. During tho insurrection of 1848 the archbishop was led to believo that by his personal interference peace might be restored between the soldiery and the insurgents. He accordingly applied to General Cavaignac, who warned him of the risk lio incurred. "My life," the archbishop answered, "is of little importance." Soon afterwards, the firing having ceased at his request, ho appeared on the barricade at the entrance to the Faubourg St Antoine, accompanicd by M. Albert, of the national guard.
bearing a green branch as a sign of peace, and by Sellier, an attached servant. His reception was not very favourable, and he had spoken only a few words, when the insurgents, hearing some shots, and fancying they were betrayed, opened fire upon the national .guard, and the archbishop fell. He was rcmoved to his palace. where he died on the

27 th June 1848. Next day the National Assombly issued a decree expressing their great sorrow on acconat of his death; and the public funeral on the 7th July was one of the most striking spectacles of its kind. The arcllishisp wrote several trcatises of considcrable valuc, including one on Egyptian hieroglyphics.

AF GHÂNISTAN

THIS is tho name applied, originally in Persian, to that mountainous region between N.W. India and Eastern Persia, of which the Afghâns are the most numerous and the predominant inhabitants. Afghans, under that and other names, have played no small part in Asiatic history. But the present extensive application of the name Afghanistân is scarcely older than the shortlived empire founded by Ahmed Khan in the middle of last century. The Afghans themselves are not in the habit of using the term.

In treating of this country we include a part of the Hazâra mountain region, but not that part of the Oxus basin which is now under Afghan rule, for which see Afghan Turkestan.

Afghanistan generally may be regarded as a great quadrilateral plateau,-using that term in the technical sense of a region whose lowest tracts even are considerably elevated above the sea-level,-extending from about 62° to $70^{\circ} \mathrm{E}$. long., and from 30° to $35^{\circ} \mathrm{N}$. lat. This territory corresponds fairly to the aggregate of the ancient provinces of Aria (Herât), Drangiana (Seistân), the region of the Paropamisadas. (Kâbul), and Arachosia (Kandahâr), with Gandaritis (Peshâwar and Yuzufzai). Though the last territory belongs ethnically to Afghanistan, an important part of it now forms the British district of Peshâwar, whilst the remainder acknowledges no master.

The boundaries of Afghanistan can be stated here only roughly; and, from the area thus broadly defined, many portions will have to be deducted as occupied by independent or semi-independent tribes. But, so understood, they may be thus stated:-

On the north : beginning from east, the great range of Hindu Kush, a western offshoot of the Himallya, parting the Oxus basin from the Afghan basins of the Kabul river and Helmand. From long. 68° this boundary continues westward in the prolongation of Hindu Kush called Koh-iBabâ. This breaks into several almost parallel branches, enclosing the valleys of the river of Herat anc the Murghâb or river of Merv. The half-independent Hazara tribes stretch across these branches and down into the Oxus basin, so that it is difficult here to assign a boundary. We assume it to continue along the range called Safed Koh or "White Mountain," which parts the Herat river valley from the Murghab. ${ }^{1}$

On the east: the eastern base of the spurs of the Sulimâni and other mountains which limit the plains on the west bank of-Indus, and the lower valleys opening into these, which plains (the "Derajât") and lower valleys belong to British India."North of Peshâwar district the boundary will be, for a space, the Indus, and then the limit, lying in unknown country, between the Afghan and Dard tribes.
On the south : the eastern part of the boundary, occupied by practically independent tribes, Afghan and Bilûch, is hard to define, having no marked natural indication. But from the Shâl territory (long: 67°), belonging to the Bilach state of Kelat, westward, the southern limits of

[^32]the valleys of the Lora river, and then of the Helmand, as far as the Lake of Seistan in lat. 30°, will complete the southern boundary. Thus the whole brcadth of Bilâchistîn, the ancient Gedrosia, a dry region occupying 5° of latitude, intervenes betreen Afghanistan and the sea.

The western boundary runs from the intersection of the Lake of Seistan with lat. 30°, bending eastward, so as to exclude a part of the plain of Seistan on the eastern bank of the lake, and then crosses the lake to near the meridian of 61°. Thence it runs nearly due north, near this meridian, to a point on the Hari-Rud, or river of Herat, abou?, 70 miles below that city, where it encounters the spurs of the Safed Koh, which has been given as the northern boundary.

But if we take the limits of the entire Afghan dominions, as they at present exist, the western boundary will continue north along the Hari-Rûd to lat. 36°, and the northern boundary will run from this point along the borders of the Turkman desert, so as to include Andkhoi, to Khoja Sâlcb ferry on the Oxus. The Oxus, to its source in Great Panifr, forms the rest of the northern boundary. These enlarged limits would embrace the remainder of the Hazara mountain tracts, and the whole of what is now called Argian Turkestan, as well as Badakhshan with its dependencies, now tributary to the Afghan Amir.

The extreme dimensions of Afghanistan, as at first defined, will be about 600 miles from east to west, and 450 miles from north to south; and, if we take the whe? 0 Afghan dominion, the extent from north to scuth will be increased to 600 miles. Within both the areas so defined, however, we have included some territory over which the Afghan government has no control whatever, and much over which its authority is respected only when backed by a special exertion of force. Under the former head come the valleys of the Iusufzai clan north cf Peshâwar, the Momands, Afridis, Tazîris, \&cc, adjoining that district on the west and south-west, the high-lying valleys of Chitrâl or Kâshkâr, and of the independent Pagans or Kâfirs, among the loftier spurs of Hindu Kush. Under the latter head come the eastern districts of Khost and (partially) of Kurram, the Kâkar country in the extreme south-east, much of the country of the tribes called Eimâk.and Hazara in the north-west. and probably Badakhshân with its dependencies.

If we suppose the sca to rise 4000 feet above its existing level, no part of the quadrilateral plateau that we have defined would be covered, except portions of the lower valley of the Kabul river, small tracts towards the Indus, and a triangle, of which the apex should be at the Lako of Scistan in the extreme south-west, and the base should just include Herat and Kandahar, passing beyond those cities to intersect the western. and southern boundaries respectively. Isolated points aud ridges within this triangle would emerge.

Further, let us suppose the sea to rise 7000 feet above its existing level. We should still have a tract emerging so large that a straight line of 200 miles could be drawn, from the Kûshan Pass of Hindu Kush, passing about 35 miles west of Kabul, to Rangak on the road between Ghazni and Kandahar, which nowhere should touch the submergcd portion. And we believe it is certain that a line under

Live conditions, but 250 miles in length, could be drawn at right angles to the former, passing about 25 miles south of Ghazni. The greater part of this latter line, howerer, would lie in the Hazara country, in which we bave no observations.

In the triangusar tract that would be submerged accordm g to our first supposition, the lowest level is the Lake of Scistan, 1280 feet above the sea. Herat is 2650 : Kandahar, 3490 .

The Afghans themselves make a broad distinetion between Kabul, meaning thereby the whole basin of the Kabul river, and the rest of their country, excluding the former from tho iarge and vague term Kuorasav, under which they consider the rest to be comprehended. There is reason for such a distinction in history as well as nature. For the Kabul basin was in old times much more intimately connected with India, and to the beginning of the 11th century was regarded as Indian territory.

Natural Divisions.-Of these, this nabul basin (1) forms the first. As others we may discriminate-(2.) The lofty central part of the table-land on which stand Ghazni and Kala't-i-Ghilzai, embracing the upper valleys of ancient Arachosia; (3.) The upper Helmand basin ; (4.) The lower Helmand basin, embracing Girishk, Kandahar, and the Afghan portion of Seistan; (5.) The basin of the Herat river; and (6.) The eastern part of the table-land, draining by streams, chiefy oceasional torrents, towards the Indus.

Kabul Basin.-Its northern limit is the range of Hindu Kush, a name which properly applies to the lofty, snowclad crest due north of Kabul, and perhaps especially to one pass and peak. But it has been conveniently extended to the wholo line of alpine watershed, stretching westward from the southern end of Pamir, and represents the Caucasus of Alexander's historians. Its peaks throughout probably rise to the region of perpetual snow, and even on most of the passes beds of snow oceur at all seasons, and, on some, glaeiers. We find no precise height stated for any of its peaks, but the highest probably attain to at least 20,000 or 21,000 feet. The height of the Kushan Pass is estimated by Lord at 15,000 feet.
The Kabul river (the ancient Kophes) is the most important river of Afghanistan. It may be considered as fully formed about 30 miles east of Kabul, by the junction thereabouts (the confluence does not seem to have been fixed by any traveller) of the following strenms:-(a.) The Kabu? stream, rising in tho Unai pass towards the Helmand, which, after passing through the city, has been joined by the Logar fiver flowing north from the skirts of the Ghilzai plateau; (b.) A river bringing down from the valleys Ghorband, Parwan, and Panjshir, a large part of the drainage of Ifindu Kush, and watering the fruitful plain of Dàman-iKoh (the "Hill-skirt"), intersected by innumerable brooks, and studded with rineyards, gardens, and fortalices. This river was formerly called Bâa an, a name apparently obsolete, but desirable to maintain ; (c.) The river of Tagao, coming domz from the spurs of. Hindu Kush on the Kafir borders.
Some 30 miles further east, the Alishang enters on the left bank, from Laghminn, abore which this river and its confluents drain western Kafristan. Twenty miles further, and not far beyond Jalalabad, the Kabul river receives from the same side a confluent entitled, as regards length, to count as main stream. In some older maps this bears the namo of liana, from a place near the confluence, and in more recent ones hîher, from a distriet on its lower course. Higher it is called the river of Fashkar, and the Beilam. It seems to be tho Choaspes, and perhaps tho Malamantus of the ancients. It rises in a small lake near the borders of Pamir, and flows in a sonth-west direction through tho length of Kashkar or Chitral, an independent valley-state, whose soil lies at a beight of 6000 to 11,000
feet. 'The whole length of the river to its confluence with the Kabul river cannot be less than 250 miles, i.e., about 80 miles longer than that regarded as the main stream, measured to its most remote source.
The basin of tho Kabul river is enclosed at the head by the Paghman range, an offshoot of Hindu Kush, which divides the Kabul valleys from the Helnand. Up the head-waters of tho stream that passes Kabul, leads the chief road to Turkestan, crossing for a brief space into the Helmand basin by the easy pass of Unai (11,320 feet), and then over the Koh-i-Baba, or western extension of Hindu Kush, by the Hajjigak passes (12,190 and 12,480 feet), to Bâmiân.
The most conspicuous southern limit of tho Kabul basin is the Safed Koh, Spin-gar of tho Afghans ("Whito Mountain," not to be confounded with the western Safed Koh already nained), an alpine chain, reaching, in its lighest summit, Sita Ram, to a height of 15,622 feet, and tha eastern ramifications of which extend to the Indus at and below Attok. Among the spurs of this rango aro thoso formidable passes between Kabul and Jalalabad, in which the disasters of 1841-42 culminated, as well as the famous Khybar passes between Jalalabad and Peshâwar. This southern watershed formed by the Safed Koh is so much nearer the Kabul river than that on the north, that the tributaries from this side, though numerous, are individually insignifieaut.
After flowing 60 miles (in direct measurement) eastward from the Kuner confluence, the Kabul river issues from the mountains which have hemmed it in, and enters the plain of Peshâwar, receiving, soon after, the combined rivers of Swât (Soastus) and Panjkora (Guraeus), two of the great valleys of the Yusufzai. This combined river is called by the Afghans Landai Sin or Little river, in distinction from the $A b b a \operatorname{Sin}$ or Indus, and the name seems often to adhere to the lower course of the Kabul river. Both rivers on entering the plain ramify, in delta fashion, into many matural clannels, increased in number by artifieial cuts for irrigation. Finally the river enters the Indus immediately above the gorge at Attok.
The lowest ford on the Kabul river is a bad onc, near Jalalabad, only passable in the dry season. Below the Kuner confluence the river is deep and copious, crossed by ferries only, except at Naoshera, below Peshâwar, where there is usually a bridge of beats. The rapid curren ${ }^{2}$ is unfavourable to navigation, but from Jalalabad downwards the river can float boats of 50 tons, and is often descended by rafts on blown skins. The whole course of the river, measured by a five-milo opening of the compasses, is as follows :-From source of Kabul stream in Unai pass to Attok, 250 miles; from source either of Logar or of Panjshir to the same, 290 miles; from source of Kashkar river to the same, 370 miles.
A marked natural division of the Kabul basin oecurs near Gandâmak, abore Jalalabad, where a sudden descent takes effect from a minimum eleration of 5000 feet to one of only 2000. The Emperor Baber says of this:-" The moment you descend, you see quite another world. The timber is different; its grains are of another sort; its animals are of a different species; and the manners and customs of its inhabitants are of a different kind." Burnes, on his first journey, left the wheat harvest in progress at Jalalabad, and found the crop at Gandamak, only 25 miles distant, but 3 inches above ground. Were, in truth, nature lias planted the gates of India. The valleys of the upper basin, though still in the height of summor affected by a sun of fieree power, reeall the climate and products of the finest part of temperate Europe; the region below is a clain of narrow, low, and hot plains, with climate and vegetation of an Indian charactor.

Accounts of Kabul strike us by apparent contradiction. Sone give scarcely any impression but that of extreme ruggedness and desolation, awful defiles, and bare black crags; others dwell on the abounding orchards, green sward, charming dells, and purling streams. But both aspects are characteristic. The higher spurs, both of Hindu Kush and Safed Koh, are often clad with grand forests of pine, oak, and other alpine trees, and resemble the wooded ranges of Himalya. But the lower hills generally are utterly woodless, and salmost entirely naked. In the bottoms, often watered by clear and copions streams, we have those beauties of verdure and fertility on which some writers dwell, and which derive new charms from contrast with the excessive sterility of the hills that frame them.

We cannot speak at equal length of the other natural divisions of Afghanistan, but some chief points will be noticed with the rivers. In general the remainder of the country, regarded by the Afghans as included in Khorasan, exhibits neither the savage sublimity of the defiles of the Kabul region, the alpine forests of its higher ranges, nor its nests of rich vegetation in the valleys, save in the north-east part adjoining Safed Kioh, where these characters still adhere, and in some exceptional localities, such as the valley of Herat, which is matchless in richness of cultivation. Generally the characteristics of this country are elevated plateaux of sandy or gravelly surface, broken by ranges of rocky hills, and often expanding in wide spaces of arid waste, which terminate to the sonth-west in a Eugular desert of shifting sand. Even in cultivated parts there is q singular absence of trees, and when the crops are not sisible this imparts an aspect of great desolation and emptiness to the landscape. Natural wood, however, is found in some parts of West Afghanistan, as in the almost tropical delta of the Helmand, in the Ghûr territory, and on the Herat river below. Herat. Generally, indeed, in such cases the trees appear to bo mimosas, tamarisks, and the like, with little body of foliage.

Rivers:-Nest to the Kabul river in importance, and probably much exceeding it in volume as it certainly does in length, is the Helmand (Etymander), the only considerable river in its latitude from the Tigris to the Indus. The Helmand has its highest sources in the Kob-i-Baba and Paghman hills, between Kabul and Bamian. Its succeeding course is through the least known tract of Afghanistan, chiefly occupied by Hazaras; indeed, for a length of nearly 300 miles no European has seen the river. This unvisited space terminates at Girishk, where the river is crossed by the principal route from Herat to Kandahar. Till abont 40 miles above Girishk the character of the Helmand is said to be that of a mountain river, flowing between scarped rocks, and obstructed by enormous boulders. At that point it enters on a flat country, and extends over a gravelly bed. Here, also, it begins to be used in irrigation. Forty-five miles below Girishk the Helmand receives its greatest tributary, the Arghand-âb, coming past Kandahar from the high Ghilzai country. It here becomes a very considerable river, said to have a width of 300 or 400 jards, and a depth of 9 to 12 feet. But this cannot be at all seasons, as there are fords at long intervals as far down as Palalik, 100 miles from the mouth. The desert draws near the left bank in the lower course, and for the last 150 miles the moving sands approach within $1 \frac{1}{4}$ mile. The vegetation on the banks is here of luxuriant tropical eharacter. The whole of the lower valley seems to have been once the seat of a prosperous population, and there is still a good deal of cultivation for 100 miles below Girishk. Even this, however, is much fallen off, and lower down still more so, owing to disorders and excessive insecurity.

The course of the river is more or less soath-west from its source till in Seistan it approaches meridian. 62°, when
it turns nearly north, and so flows on for 70 or 80 miles, till it falls into the lake of Scistan ly various mouths. The whole length of the river, measured as before, is about 615 miles. Ferrier considers that it has water enough for navigation at all seasons, from Girishk domiwards. At present boats are rarely seen, and those in use are most clumsy; rafts are employed for crossing.

4rghand-db. - Of this tributary of the Helmend little is known except in its lower course. It siscs in the Hazara country, N. W. of Ghazni. It is said to be shallow, and to run nearly dry in height of summer; but when its depth exceeds 3 feet its great rapidity makes it a serious obstacle to travellers. In its lower course it is much used for inrigation, and the valley is cnltivated and populous; yet the mater is said to be somewhat brackish. Its course way be -eckoned about 235 miles.
It is doubtful whether the ancient Arachotus is to be identified with the Arghand-ab or with its chief confluent the Tarmak, which joins it on the left abont 30 miles $\mathrm{S} . \mathrm{W}$. of Kinudahar. The two rivers run nearly parallel, inclosing the backbone of the (;hilcai plateau. The 'larnak is much the shorter (length about 197 miles) and less copions. The ruins at Ulân Robât, supprosed to represent the city Arachosia, are in its basin; and the lake known ns Ab-iIstada, the most probable representative of Lukie Arackotues, is near the head of the Tarnak, though not communicating with it. The Tarnak is dammed for irrigation at intervals, and in the hot season almost exhausted. Thete is a grood deal of cultivation along the river, but few villages. The high road from liahul to Kandalaar passes this way (another reason for sulpposing the 'Tarnak to bo Arachotus), and the people live off the road to eschew the oucrons duties of hospitality.
The Lora is the most southerly ruer of Afchauistan, and may bs regarded as belonging to the Helinand basin, though it is not known that its waters ever reach that river. It iises ncar tbe Kand und Joba peaks in a branch of the Sulimani, and tlows gearly east, passing through the large valley of Pishio, but lying too deep, for irrigation. The river has a course of ucarly 200 milcs, and considerable breadth, but is never for a wicek together unfordable. In the Shorâwak district (long. $65^{\circ}-66^{\circ}$) a good deal of initortion is drawn from it. The river is said to terminate in a lake, or the verge of the sandy desert.
Rivers belonging to the basin of Seistan and the Lower Helmand are the Khash-Rud, the Farrah-Rud, and the llarut.
The Khash-rud rises in ol near the southeru slopies of Siall-Koh (Black MIountain), which forms the southern wall of the valley of Herat, and flows south, in Hood reaching the Lake of Scistan, but generally exhausted in irrigation. It is mamed from lhhâsh, a village in the Seistan plain. In the dry scason it is everywhere fordable, but in floods caravans may be detained by it several days.
The Farrah river flows from the same quarter, and has the same character in floods. It is a larger stream, and at Farral is said to have a width of 150 yards, with 2 feet of water, and a clear, swift stream. In flood, Khanikoff was struck with the rusemblance of this river, rolling its yellow waves violently between steep banks of clay, to the Cyrus at 'lillis.
The Harat rises in the mountains S. E. of Herat, and las a course of about 245 miles to the Lake of Seistan. Canals from it supply abundant irrigation to the plains of Sakzvâr and Anâtdarah. The river forms a true delta with fiftcen brauches, giving rise to marsh and much vegetation, especially tamarisk, willow, and poplar. The Harut receives in the plain a considerablo aflucnt, the Khushkek river.
lt is possible that coufusion of the name of this river mith the Hari-Rud, or river of Herat, led to the long rrevalent mistake that the latter river flowed south into the Scistan Lake-a mistake as old as Ptolemy, if his Aria Lacus be (as it scems) that of Scistan.
The Hari-rud is formed by two chief contluents in the lofty Hazara country, not far from the sources of the river of l3alkh. 1ts early course is, for more than 100 miles and as far as the village of Jâor, westward, at a height of many thousand feet abore the sca It then descends rapidly (it is said with cataracts), but continues in the same direction, receiving numerous streams, to Obeh, where much water begins to be drawn ofr. Sixty-five miles further it flows past Heval, 3 miles to the south of the city. Hercahouts the Kandahar road crosses the river by a masonry bridge of 26 arches. Ncar this fifteea deep canals aro drawn off. A few miles below Herat the river begins to turn N.W.; and after passing for many miles through a woody tract, abounding in game, in which are the preserves of the Herat princes, at the ancicnt and now ncarly deserted town of Kassan, 70 miles from Herat, it turns due north. Though the drainage brought down by this river nunst bo large, so much is drawn off that, below Herat, reaches of it are at times quite dry. Belom Kassan it receives fiesli supplies, and eventurlly the Mesbed stream. It flows on towards Sarakhs, and dwindles awsy; but scécurate information regarding it is still wanting. The channel is slown, in a map lately published, as passing Sarakhs for some 250
miles, and eading in a svamp aujoining the Daman-1-Koh, ou the border of tho Turkman desert.
Of the rivers that run towards the Indus, south of tho Fabul stver, the chief are tho Kurram and the Gomal.

The Kiurram drains the southern flanks of Safed Koh. The middle valley of liurram, forming the district so called, is highly irrigated, well peopled, and crowded with small fortified villages, orchards, and groves, to which a fine back cround is afforded by the derk pive forests and alpino snows of Safed Koh. The beauty and climate of the valley attracted some of tho Mlogul emperors of Delhi, and the remains exist of a garden of Shah Jahan's. The river passes lie British frontier, and enters tho plain country a few miles above lann, spreading into a wido bed of sand and boulders, till it joins the Indus near Isa-Khel, after a course of more than 200 miles. By she Kurmm valley is ono of tho best routes from ludia into Afgha. uistan. It was trapelled by Major Lunisden's party in 1857-58.

The Gomal, rising in the Sulimani mountains, though in length equal to tho Kurram, and draining, with its tributaries, a much larger area, is little more than a winter torrent, diminishing to a mere rivulet, till Decemher, when it begins to swell. At its exit into the plain of the Derajat a local chief threw a dam aeross its chaonel ; and it is now only in very wet seasons that its waters reach the Indus, near Dera Ismael Vihan. Not lome before leaving the hills it receives from the S. W. a tributary, the Zhob, of nearly equal length aod eize, coming from the ricinity of the Kand and Joha peaks, in long. $\mathrm{C} 8^{\circ}$.

Lakes.-As we know nothing of the lake in which the Lora is said to end, and the greater part of tho lake of Seistar (see that article) is excluded from Afghanistan, there remains only the $A b-i-$-Istada, on the Ghilzai plateau. This is about 65 miles S.S.W. of Ghazni, and stands at a height of about 7000 feet, in a site of most barren and dreary aspect, with no tree or blade of grass, and hardly a habitation in sight. It is abont 44 miles in circuit, and very shallow; not more than 12 feet deep in the middle. The chief feeder is the Ghazni river. The Afylans speak of a stream draining the lake, but this seems to be unfounded, and the saltness and bitterness of the lake is against it. Fish entering the salt water from tho Ghazni river sicken and die.

Provinces and Towns.-Tho chief political divisions of Afghanistan in recent times are stated to bo Kabul, Jalalabad, Ghazni, Kandahar, Herat, and Afginan Turvestan (q.v.), to which are sometimes added the command of the Ghilzais and of the Hazaras. This list seems to omit the unruly districts of the eastern table-land, such as Kurram, Khost, \&cc. But we must not look for the precision of European administration in such a case.

In addition to Kabul, Gitazyi, Kandalar, Herat, described under those articles, there are not many places in Afghanistan to be called towns. We notice the follow. ing:-

Jalalabad lies, at a height of 1946 feet, in a plain on the south of the Kabul river. It is by road 100 miles from Kabul, and 91 from Peshawar. Between it and Peshawar intervene the Khybar and other adjoining passes; between it and Kabul the passes of Jagdalak, Khurd-Kabul, \&c. Tho placo has been visited by no known European since Sir G. Pollock's expedition in 1842. As it then existed, the town, though its walls had an extent of 2100 yards, contained only 300 houses, and a permanent population of 2000. The walls formed an irregular quadrilateral in a ruinous state, surrounded on all sides by buildings, gardeus, the remains of the ancient walls, \&c., affording corer to an assailant. The town walls were destroyed by Pollock, but have probably been restored.

The highly-cultivated plain 1s, according to Wood, 25 miles in length by 3 or 4 miles in breadth; the central part covered with villages, castles, and gardens. It is abundantly watered
The province under Jalalabad is about 80 miles in length by 35 in width, and includes the large district of Laghman, north of the Kabul river, as well as that on the south, which is called Nangnihâr. . The former name, properly Lamghàn, the seat of tho ancient Lampaga, is absurdly
derived by the Mahoumenedans from the patriarch Lannech, whose tomb they profess to show; the latter name is iuterpreted (in mixed Pushtu and Arabic) to mean " nine rivers," an etymology supported by the numerons streans. The word is, bowever, really a distortion of tho aneient Indian name Nagarahaira, borno by a city in this plain long beforo Islam, and believed to have been the Nagara or Dionysopolis of Ptolemy. Many topes and other Buddhist traces exist in the valley, but there are no unruined buildings of any moment. Baber laid out fine gardens here; and his grandson (Jalaluddin) Akbar built Jalalabad. Hindus form a considerable part of the town population, and hare a large temple. The most notable point in tho history of Jalalabad is tho stout and famous defence made there, from November 1841 till April 1842, by Sir Rubert Sale.

Istalif is 2 town in the Kol Daman, 20 miles N.N.W. of Kabul, which was stormed and destroyed, 29th September 1842, by a force under General M'Caskill, to punish the toms-people for the massacre of the garrison at Charikar, and for harbouring the murderers of Burnes. The place is singularly picturesque and beautiful. The rude houses rise in terraco over terrace on the mountain-side, forming a pyramid, crowned by a shrine embosomed in a fine clump of planes. The dell below, traversed by a clear rapid stream, both sides of which are clothed with vineyards and orchards, opens out to the great plain of the Daman-i-Koh, rich with trees and cultivation, and dotted with turreted castles; beyond these are rocky ridges, and over all the cternal snows of Hindu Kush. Nearly every bouseholder has his garden with a tower, to which the families repair in tho fruit season, closing their houses in the town. The town is estimated, with seven villages depending on it, to contain about 18,000 souls.

Chârikêr (population 5000) lies about 20 miles north of Istalif, at the north end of Kob Daman, and watered by a caral from the Ghorband branch of the Baran river. Hereabouts must have been the Triodon, or meeting of the three roads from Bactria, spoken of by Strabo and Pliny. It is still the seat of the customs levied on trade with Turkestan, and also of the governor of the Kohistan or hill country of Kabul, and is a place of considerable trado with the regions to the north. During the British oecupation a political agent (Major Eldred Potinger, famous in the defence of Herat) was posted here with a Garkha corps under Captain Codrington and Lieutenart Haughton. In the revolt of 1841, after severe fighting, they attempted to make their way to Kabul, and a great part was cut off. Pottinger, Haughton (with the loss of an arm), and one sepoy only, reached the city then; though many were afterwards recovered.
Fola'hi-Gilizzai has no town, but is a fortress of somo importance on the right bank of the Tarnak, on the road between Glazni and Kandahar, 89 miles from the latter, and at a height of 5773 feet. The repulse of the Afghans in 1842 by a sepoy garrison under Captain Craigic, was one of the ruost brilliant feats of that war.
Girishk is also a fort rather than a torn, the latter being insignificant. It is important for its position on the high road between Kandahar and Herat, commanding the ordinary passage and summer ford of the Helmand. It was held by the British from 1839 till August 1842, but during the latter nine months, amid great difficulties, by a native garrison only, under a gallant Indian soldier, Balwant Singh.
Farrah belongs to the Seistan basin, and stands on the river that bears its name, and on one of the main rontes from Herat to Kandahar, 164 miles from the former, 236 miles from the latter. The place is enclosed by a huge earthen rampart, crowned with towers, and surrounded by a wide and deep ditch, which can be flooded, and with a covered way. It has the form of a parallelogram, running north
and south, and only two gatcs. As a military position it is of great importance, but it is excessively unhealthy. Though the place would easily contain 4500 houses, there were but 60 habitable when Ferrier was there in 1845, nor was there much change for the better when Colonel Pelly passed in 1858. Farrah is a place of great antiquity; certainly, it would seem, the Phra of Isidore of Charax (1st century), and possibly Prophthasia, though this is more probably to be sought in the great ruins of Peshâwaran, farther south, near Lâsh. According to Ferrier, who alludes to " ancient chronicles and traditions," the city on the present site within the great rampart was sacked by the armies of Chinghiz, and the survivors transported to another position, one hour further north, where there are now many ruins and bricks of immense size (a yard square), with cuneiform letters, showing that site again to be vastly older than Chinghiz. The population came back to the southern site after the destruction of the mediæval city by Shah Abbas, and the city prospered again till its bloody siege by Nadir Shah. Since then, under constant attacks, it has declined, and in 1837 the remaining population, amounting to 6000, was carried off to Kandahar. Such are the ricissitudes of a city on this unhappy frontier.

Sabzvar, the name of which is a corruption of old Persian, Isphizar, " horse-pastures," is another important strategic point, 93 miles from Herat and 71 miles north of Farrah, in similar decay to the latter. The present fort, which in 1845 contained a small bazar and 100 houses, must once have been the citadel of a large city, now represented by extensive suburbs, partly in ruins. Water is conducted from the Harut by numerous canals, which also protect the approaches.

Zaini is a town in the famons but little known country of Ghur, to the east of Herat, the cradle of a monarchy (the Ghurid dynasty) which supplanted the Ghaznerides, and ruled orer an extensive dominion, including all Afghanistan, for several generations. Zarni, according to Ferrier, was the old capital of Ghur. Ruins abound; the town itself is small, and enclosed by a wall in decay. It lies in a pleasant valley, through which fine streams wind, said to abound with trout. The hills around are corered with trees, lusuriantly festooned with vines. The population in 1845 was about 1200, among whom Ferrier noticed (a remarkable circumstance) some Gheberfamilies. Thebulk of the peopleare Sutris and Taimûnis, apparently beth very old Persian tribes.

Clurate.-The variety of climate is immense, as might be expected. At Kabul, and crer all the northern part of the country to the descent at Gandamak, winter is rigorous, but especially so on the high Arachosian plateau. In Kabul the snow lies for two or three months; the people seldom leave their houses, and sleep close to stoves. At Ghazni the snow has been known to lie long beyond the vernal equinox; the thermometer sinks to 10° and 15° below zero (Fahr.) ; and tradition relates the entire destruction of the population of Ghazni by snow-storms more than once.

At Jalalabad the winter and the climate generally assume an Indian character, and the hot weather sometimes brings the fatal simutm. The summer heat is great everywhere in Afghanistan, but most of all in the districts bordering on the Indus, especially Sewi, on the lower Helwand, and in Seistan. All over Kandahar province the summer heat is intense, and the simum is not unknown. The hot season throughout the "Khorasan" part of the country is rendered more trying by frequent dust-storms and fiery winds; whilst the bare rocky ridges that traverse the country, absorbing heat by day and radiating it by night, render the summer nights most oppressive. At, Girishk, Ferrier records the thermometer in August to have reached 118° to 120° (Fahr.) in the shade. At Kabul the summer sun has much of its Indian power, though the heat is tempered
occasionally by breezes from Hindu Kush, and the mighta are usually cool. Baber says that, eren in summer, ond could not'sleep at Kabul without is sheepskin, but this seems exaggerated. At Kandahar snow seldum falls un the plains or lower bills; when it dues, it nults it unce.

At Herat, though 800 feet lower than Randahar, the summer climate alpears to be more temperate; and. in fact, the climate altogether is one of the most agrecable in Asia In July, Ferrier says he found the heat never to pasy 98°, and rarely 91° to 93° (Fahr.) These are not low figures, but must be compared with his register at Girishk, just given. From May to September the wind blows from the N.W. with great violence, and this extends across the country to Kandahar. The winter is tolerably mild; stow melts as it falls, and even on the mountains does not lie long. Three years out of four at Herat it does not freeze hard enough for the people to store ice; yet it was not very far from Herat, and could not have been at a greatly higher level (at Kafir Kala', near Kassan) that, in 1750 , Ahmed Shah's army, retreating from Persia, is said to have lost 18,000 men from cold in a single night.
The summer rains that accompany the S.TV. monsoon in India, beating along the southern slopes of the Himalya, travel up the Kabul jallef, at least to Laghman, though they are more clearly felt in Bajaur and Panjkora, under the high spurs of the Hindu Kush, acd in the easteru branches of Safed Koh. Rain also falls at this season at the head of Kurram valley. South of this the Sulimaui mountains may be taken as the mestern limit of the monsoon's action. It is quite unfelt in the rest of Afghauistan, in which, as in all the west of Asia, the winter rains are the most considerable. The spring rain, though less copious, is more important to agriculture than the winter rain, unless where the latter falls in the form of snow. Speaking generally, the Afghanistan climate is a dry one. The sun shines with splendour for three-fourths of the year, and the nights are even more beautiful than the days. Marked characteristics are the great differences of summer and winter temperature and of day and night temperature, as well as the extent to which change of climate can be attained by slight change of place. As Baber again says of Kabul, at one day's journey from it you may find a place where snow never falls, and at two hours' journey, a place where snow almost nerer melts!
The Afghans vaunt the salubrity and charm of some local climates, as of the Tobah hills above the Kakar country, and of some of the high ralleys of the Safed Koh.
The people have by no means that immunity from disease which the kright dry character of the climate and the fine physical aspect of a large pronortion of them might lead us to expect. Intermittent and remittent ferers are very prevalent: bowel complaints are common, and often fatal in the autumn. The universal custom of sleeping on the house-top in summer promotes rheumatic and neuralgic affections; and in the Koh Daman of Kabul, which the natives regard as having the finest of climates, the mortality from fever and bowel complaint, betreen Julj and October, is great; the immoderate use of fruit predisposing to such a ilments. Stone is frequeat; cye disease is very common, as are hæmorrhoidal affections and syphilitic diseases in repulsive forms. A peculiar skin disease of syphilitic origin prevails at Kandahar, and native physicians there are said by Bellew to admit that hardly one person in twenty is free from the taint in some form.

Naturat Productions- Minerals. - Afghanistan is believed to be rich in minerals, sut ferr are wrought. Some small quantity of gold is taken from the streams in Laghman and the adjoining districts. Famous silver mines were formerly wrought near the bead of the Panjshir valley, in Hindu Kush. Iron of excellent quality is pro-
duced in the (independent) territory (f Bajaur, north-west of Peshawar, from magnetic iron sand, and is exportcd. Kabul is chiefly supplied from the Permuli (or Farmali) district, between the Upper Kinrain and Gomal, where it is said to be abundaut. Iron ore is most abundant near the passes leading to Eamian, and in other parts of Hindu Kush. Copper ore from various parts of Afghanistan has been scen, but it is nowh re worked.

Lead is found, e.g., in Upper Bangash (Kurran district), and in the Shinmari country (also among the branches of Safed koh), and in the Kakar couutry. There are reported to be rich lead mines near Merat scarcely worked. Lead, with antimony, is found near the Arghand-ab, 32 miles north-west of Kala't-i-Ghilzai; in the Wardak hills, 24 miles north of Ghazni ; in the Ghorband ralley, north of Kabul ; and in the Afridi country, near our fronticr. Most of the lead used, however, comics from the Hazara country, where the ore is described as being gathered on the surface. An ancient mine of great extent and elabomate character cxists at Feringal, in the Ghorband ralley: Antimony is obtained in considerable quantitics at ShahMaksud, abcut 30 miles north of Kandahar.

Silicate of zinc in modular fragments comes from the Zhob district of the Kakar country. It is chiefly used by cutlers for polishing.

Sulphur is said to be found at Herat, duy from the soil In small fragınents, but the chief supply comes from the Hazara country, and from Pirkisri, on the confines of Seistan, where there would seem to be a crater, or fumarole. Sal-ammoniac is brought from the same place. Gypsum is formd in large quantities in the platn of Kandahar, being dug out in fragile coralline masses from near the surface.

Coal (perhops lignite) is said to be found in Zurmat (between the Upper Kurram and the Gomal) and near Ghazni.

Nitre abounds in the soil over all the south-west of Afghanistan, and often affects the water of the kârez, or subterránean canals.

Vegetable Kingdon. ${ }^{1}$ - The characteristic distribution of regetation on the mountains of Afghanistan is worthy of attention. The great mass of it is confined to the main ranges and their immediate offshoots, whilst on the more distant and terminal prolongations it is almost entirely absent ; in fact, these are naked rock and stone.

Take, for example, the Safed Koh. On the alpine range itself and its immediata branches, si a height of 6000 to 10,000 feet, we have abundant growth of large forest trees, amonct which conifers are the most noble and promiaent, such as Ccdrus Dcodara, Abics excelsa, Pinus longifolia, P. Pinaster, P. Pinca (the adible pinc), and the larch. We have also the yew, the hazel, juniper, walnut, wild peach, and slmond. Growing under the shado of these are several rarieties of rose, boneysuckle, currant, gooseberry, hawthorn, rhododendron, and a luxuriant berbage, among which the rmunculus family is important for frequency and number of geners. The lemon and wild rine are also here met-with, but are more common on the northern mountains. The walnut sad osk (evergreen, holly-leared, and kermes) deseend to tho secondary heights, where they become mixed with alder, ash, khinjak, Arbor-vitor, juniper, with species of Astragalus, \&ic. Here slso are Indigofera and dwarf laburnum.

Lower asain, snd dorn to 3000 feet, we have wild olire, species of rock-rose, wild privet, acacios and mimosas, barberry, and Zizyphus; and in the eastern ramifications of the chain, Chamocrops humilis (which is applied to s variety of nseful purposes), Bugnomia or trumpet flower, sissu, Salvadora versica verbeda, acanthus, varieties of Gemera.
The lowest terminal ridges, especially towaras the west, are, as has been said; naked in aspect. Their scanty vegetation is almost wholly herbal; shrubs ase only occasional ; trees almost nonecisicnt. Labiate, composite, and umbelliferous plants are most common. Ferns and mosses are slmost confined to the higher ranges.

1 Chicfly froni Bellew.

In the low brushwood acattered over porions of the dreary plans of the "Kiborasan" table-laads, wo find leguminous thorny plants of the papilionaceous sub-order, such as camel-thorn (Ifdysarum Alhagi), Astragalus in sereml varieties, spiny rest-harrow (Ononis spinosa), the Gbrous roots of which ofted serve as a tooth-brush; plants of the sub-order Mimosece, as the seasitive mimosa; a plant of the Rue family, called by the natives lipad; the common worns. wood ; also certain orchids, and several species of Sulsola. The rue sind wormwood are in geacral uso as domestic medicines-the former for rheumatism and neuralgia; the latter in fever, debility, and dyspepsia, as well as for a vernifuge. The lipad, ormg to its heary nauseous odour, is beliered to keep off evil spirits. In some places, occupylag the sides sad hollows of ravines, are found the rose bay (Aicrium Olcander), called in Persian hilar-zarah, or ass. bsoce, the wild laburnum, and various Indigoferce.
In cultirated districts the chici trees seen are muiberry, millow, poplar, ash, and occasionally the plane; but these are due to mau's planting.

Uncultivaled Products of Value. - One of the most important of these is tho gum-resin of Narthex assafretide, which grows abundantly in the high and diy plains of Western Afghanistan, espe. cially between lisndahar and Herat. The depot for it is Kandahar, whence it finds ita way to India, where it is much used as a condi. ment. It is not so used in Afghanistan, but the Seistan people eat the green stalks of the plant preserved in brine. The collection of the gum-resin is almost eatirely in the hands of the Kakar clan of Aighans.

In the highlands of Kahul edible rhubarb is an important local luxury. The plants grow wild in the mountains. The bleached rhubarb, which has 7 very delicate llavour, is altered by covering the young leares, as they sprout from the soil, with loose stones or an empty jar. The leaf-stalks aro gathered by the neighbouring hill people, and carried down for sale. Bleached and unbleached rhubarbsa both largely consumed, both raw and cooked.

The walaut and ediblo pine-gut are both wild growths, which are exported.

The sanjit (Elaagnus orientalis), common on the banks of watercourses, furnishes an edible fruit. An orchis found in the mountains yields the dried tuber which alfords the outritious mucilage called salep; $\&$ good deal of this goes to India.
Pistacia k.hinjak affords a mastic. The fruit, nired with its resin, is used for food by the Achakzais in Southern Afghsnistan. The true pistachio is found only on the gorthern frontier ; the nuts are imported from Badakhslian and Kunduz.

Musbrooms and other fungi cre largely used as food, especislly by the Hindus of the towns, to whom they supply a cubstitnto for meat.
Manna, of st least two kinds, is sold in the bazaars. One, called turanjbin, sppears to exude, in small round tears, from tlie camelthorn, and also from the dwser tamarisk; the other, sir-kasht, in large grains snd irrecular masses, or cakes, with bits of twig imbedded, is obtainad from s tree which the natives call sian chob (black wood), thought by Bellew to be a Fraxinus or Ornus.

Agriculture.-In most parts of the country there are two harvests, as generally in India. One of these, called by the Afghans baharak, or the spring crop, is sown in the end of autumn, and reaped in summer. It consists of wheat, barley, and a variety of lentils. The other, called paizah or tirmái, the autumnal, 'is sown in the end of spring, and reaped in autumn. It consists of rice, varieties of millet and sorghum, of maize, Phaseolus Mungo, tobacco, bect, turnips, \&c. The loftier regions have but one harvest.

Wheat is the staple food over the greater part of the country. Rico is largely distributed, but is most abundant in Swat (independent), and best in Peshawar (British). It is also the chief crop in Kurram. In much of the eastern mountainous country bajra (Holcus spicatus) is the chief grain. Most English and Indian garden-stuffs are çultivated; turnips in some places very largely, as cattle food.

The growth of melons, water-melons, and other cucurbitaceous plants is reckoned rery important, especially near towns; and this crop counts for a distinct harvest.

Sugar-cane is grown only in the rich plains; and tnough cotton is grown in the marmer tracts, most of the cotton cloth is imported.

Madder is an important lem of the spring crop in Ghazni and Kandahar districts, and generally over the west, and supplics the Indian demand. It is said to be very profitable, though it takes three jears to mature.

Saffron is grown and exported. The castor-oil plant iz everywhere common, and furnishes most of the oil of the country. Tobacco is grown very generally; that of Kandahar has much repute, and is exported to India and Bukhara. Two crops of leares are taken.

Lucerne and a trefoil called shaftal form important fodder crops in the western parts of the country, and, when irrigated, are said to aflord ten or eleven cuttings in the season. The komal (Prangos pabularia) is abundant in the hill country of Ghazni, and is said to extend through the Hazara country to Herat. It is stored for winter usc, and forms an excellent fodder. Others are derived from the Holcus sorghum, and from two kinds of panick It is common to cut down the green wheat and barley before the car forms, for fodder, and the repetition of this, with barley at least, is said not to injure the grain crop. Bellew gives the following statement of the manner in which the soil is sometimes worked in the Kandahar district:Barley is somn in November; in March and April it is twice cut for fodder; in June the grain is reaped, the ground is ploughed and manured, and sown with tobacco, which jields two cnttings. The ground is then prepared for carrots aud turnips, which are gathered in November os December.

Of great moment are the fruit crops. All European fruits are produced profusely, in many varieties, and of excellent quality. Fresh or preserved, they form a principal food of a large class of the people, and the dry fruit is largely exported. In the valleys of Kabul, mulberries are dried, and packed in skins for winter use. This mulborry cake is often reduced to fiour, and used as such, forming in some valleys the main food of the people.

Grapes are grown very extensively, and the varieties are very numerous. The vines are sometimes trained on trellises, but most frequently over ridges of earth 8 or 10 feet high. The priucipal part of the garden lands in villages round Kandahar is vineyard, and the produce must be enormous.

Open canals are usual in the Kabul ralley, and in castern Afghanistan generally; but over all the western parts of the country much use is made of the karez, which is a subterranean aqueduct uniting the waters of several springs, and conducting their combined volume to the surface at a lower level. Elphinstone lid heard of such conduits 36 miles in length.

Animal Kingdoy.-As regards vertebrato zoology, Afghanistan lies on the frontier of three regions, viz., the Eurasian, the Ethiopian (to which region Biluchestan seems to belong), and the Indo-Malayan. Hence it naturally partakes somewhat of the forms of each, but is in the main Eurasian.

Mammals.-Monkeys are stated by Mr Bellew to exist in Yusuf. zai, and yerhaps extend to some other districts north of the Kabul river; but no species has been named.
Felidee. F. catus, F. chaus (both Furasian); F. caracal (Eur., Ind., Ethiop.), about Kandahar; a small leopard, stated to be found alnost all over the country, perhaps rather tho cheeta (F. jubatus, Ind. and Eth.) ; F. pardus, the common leopard (Eth. and Ind.) The tiger is said to cxist in the north-castern hill country, which is quasi-Indian.

Canide.-The jackal (C. aureus, Euras., Ind., Eth.) abounds on the Helmand and Argand-ab, and probably elsewhere. Wolves (C. Bengalensis) are formidahle in the wilder tracts, and assemble in troops on the snow, destroying caftle, and sometimes attacking single horsemen. The hyæna (H. striata, Africa to India) is common. These do not hunt in packs, but will sometimes singly attack a bullock: they and the wolres make haroc among sheep. A farourite feat of the boldest of the young men of southern Afghanistan is to enter the hyæna's den, single-handed, muffe and tie him. There are wild dogs, according to Elphinstone and Conolly. The small Indian fox (Vulpes Bengalensis) is found; also r. flavescens, common to India and Persia, the skin of which is much used as a fur.
Mustctide, -Species of MIungoose (IIcrpcstcs), spccies of otter,

Mrustela crminea, and two ferrets, one of them with-tortoise-shell marks, tamed by the Afghans to keep down vermin; a marten (3%. farigula, Indian).

Bears are two: a black one, probably l'rsus torqualus; and one of a dirty yellow, U. Isabcllinus, botn Himalyan species.
Ruminants.-Capra agagrus and C. megaceros; a wild sheep (Oris cycloceros or Vignci) ; Gazella subgulturosa-these are often netted in batches when they descend to drink at a stream; G. dorcas, perhaps; Ccrvus Wallichii, the Indian barasingha, and Irobably some other Indian deer, in the north-eastcra mountairs.
The wild hog (Sus scrofa) is found on the Lower Helmand. The wild ass, Gorkher of Persia (Equus onager), is frequent on the sandy tracts in the south-west. Neither elephant nor rhinoccros now exists within many hundred miles of Afghanistan; but there is ample evidence that the latter was hunted in the Peshawar plain down to the middle of the 16 th century.

Talpidce.-A mole, probably T. Euronca; Sorcx Indicus; Erinaceus collaris (Indian), and Er. auritus (Eurasian).
Bats, believed to be Phyllorkinus cincraccus (Panjab species), Scotophilus Bellii (W. India), Vcsp. auritus and V. baräastellus, both found from England to India.
Rodentia.-A squirrel (Sciurus Syriacus?); JIus Indicus and 1%. Gcrbellinus; a serboa (Dipus telum?) : Alactaga Dactrianc; Gerlit. lus Indicus, and G. crythrinus (Persian and Indian); Lagornys Nepatensis, a central Asian species. A hare, probably L. reficaudutus.

BIRDs.-The largest list of Afghan birds that we know of is given by Captain Hutton in the J. As. Soc. Bergal, vol. xvi. p. 775, seqq.; but it is confessedly far from complete. Of 124 slecies in that list, 95 are pronounced to be Eurasian, 17 Indian, 10 both Eurasian and Indian, 1 (Trutur risorizs) Eur., Ind., and Eth.; and 1 only, Carpodacus (Bucanetcs) crassirostris, Peculiar to the country. Afghanistan appears to be, during the breeding seasou, the retreat of a rariety of Indian and some African (desert) forms, whilst is winter the arifauna becomes overrhelmingly Eurasian.
Reptiles.-The following particulars are from Gray:-LizardsPseudopus gracilis (Eur.), Argyropluis Horsficldii, Salce Horsfieldii, Calotes Maria, C. versicolor, C. mizor, C. Emma, Phmynoccphalus Tickclii-all Indian forms. A tortoise (T. Horsfieldiz) alpears to he peculiar to Kabul. There are apparently no salamanders or tailed Amphioia. The frogs are partly Eurasian, partly Indian. And the same,may be said of the fish; but they are as ret most imperfectly known.

Doniestic Anmats.-The camel is of a more robust and compact breed than the tall beast used in India, and is more carefully tended. The two-humbed Bactrian camel is sometimes seen, but is not a native.

Horses form a staple export to India. The best of these, however, are brought from Maimana and other paces on the Khorasan aud Turkman frontier. The indigeuous horse is the yâbû, a stout, heary-shouldered animal, of about 14 hands high, used chietly for burden, but also for riding. It gets over incredible distances at an ambling shuffle; but is unfit for fast work, and cannot stand excessive heat. The breed of horses was improving mucl under the Amir Dost Mahommed, who took much interest in it. Generally, colts are sold and worked too young.
The corrs of Kandahar and Seistan give very large quantities of milk. They secm to be of the humped rariety, but with the hump evanescent. Dairy produce is important in Afghan diet, especially the pressed and dried curd called krût (an article and name verhaps introduced bv the Mongols).

There are two varieties of shcep, botin having the fat tail. One bears a white fieece, the other a russet or black onc. Much of the white wool is exported to Persia, and now largely to Europe by Bombay. Flocks of sheep are tho main wealth of the nomad population, and mutton is the chief animal food of the nation. In autumn large numbers are slaughtered, their carcases cut up, rubbed with salt, and dried in the sun. The same is done with beef and camel's fiesh.
The goats, generally black or parti-coloured, seem to bo a degenerate varicty of the shaw 1 -goat.

The climate is found to be favourable to dog-breeding. Pointers are'bred in the Kohistan of Kabul and abore Jalalabad-large, hcary, slow-hunting, but fine-posed and staunch; very like the old double-nosed Spanish pointer. There are greghounds also, but inferior in speed
to second-rate English dogs. The khandi is another sporting dog, most useful, but of complex breed. He is aften used for turning up quail and partridge to tho hawk.
Industial Products.-These are not important. Silk is produced in Kabul, Jalalabad, Kandahar, and Herat, and chiclly consumed in donestic manufactures, though the best qualities are carried to the Ianjab and Bombay.

Excellent carpets-soft, brilliant, and durable in colourare made at Herat. They are usually sold in India as Persian. Excellent felts and a variety of woven goods are made from the wool of the sheep, goat, and Bactrian eamel. A manufaeture, of whieh there is now a considerable export to the I'anjab for the winter elothing of our irregular troops, besides a large domestic use, is that of the postin, or sheepskin pelisse. The long wool remains on, and the skin is tanneá yellow, with admirable softness and suppleness. Pomegranate rind is a chief material in the preparation.
Tosaries are extensively made at Kandanar from a soft crystallised silicate of magnesia (chrysolite). The best are of a semi-transparent straw colour, like amber. They are largely exported, especially to Mecca.
Trade. - Practically, there are no narigable rivers in Afghanistan, nor does there exist any wheeled earriage. Hence goods are carried on beasts of burden, chiefly camels, along roads which often lie through close and craggy defiles, and narrow stony ralleys among bare mountains, or over waste plains. Though from time immenorial the larger part of the products of India destined for western Asia and Furope has been exported by sea, yet at one time valuable cararans of these products, with the same destination, used to traverse these rugged Afghan roads.
The great trade routes are the following:-

1. From Persia by Mesb'hed to Herat.
2. Frem Bokhara by Me:v to Herat.
3. From the same quarter by Karshi, Balkh, and Khulm. 10 Kabul.
4. From the Panjab by Peshawar and the Tatara or Abkhanab Passes to Kabul.
5. From the Panjab of tbe Ghawalari Pass towards Ghami.
6. Frora Sind by the Bolan Pass to Kandahar.

There is also a route from eastern Turkistan by Chitral to Jalalabad, or to Peshawar by Dir: but it is doubtful how far there is any present traffic by it.

Towards Sind the chief exports from or through Afghanistan are wool, horses, sillk, fruit, madder, aud assafeetida. The staple of local production exported from Kandahar is dried fruit. The horse trade in this direction is chielly carried on by the Syads of Pishin, Kakars, Bakhtiyaris, and Biluchis. The Syads also do, or did, dabble largely in slave-dealing. The Hazaras furnished the largest part of the victims.

Burnes's early anticipation of a large traffic in wrol from the regions west of the Indus has been amply verified, for the trade has for many years been of growing importance; and in 1871-72 2,000,000 ib were shipped from Karàchi The importation to Sind is chiefly in the hands of Shikarpar merehants. Indeed, nearly all the trade from southern Afghanistan is managed by Hindus. That between Mesh'hed, Herai, and Kandahar is carried on by Persians, who bring down silk, arms, turquoises, horses, carpets, de., and take back wool, skins, and woollen fabrics.

The chief imports by Peshawar from India into Afghanistan are cotton, woollen, and silk goods; from England, coarse country cloths, sugar and indigo, Benares brocades, gold thread and lace, scarves, leather, groceries, and drugs. The exports are raw silk and silk fabrics of Bokhara, gold and silver wire (Russian), horses, almonds and raisins, and fruits generally, furs (ineluding dressed fox skins and aheep skins), and bullion,

The trade with India was thus estimated in 1862:-

	Exports to India.	Imports fiora ladia	Totals
Dy Pesharar............	£130,513	£) 20,643	2277,156
Jy Ghawalari Pass.....	130,000	164,000	294,000
Lj Bolan Pass..........	31,870	18,892	50,762
	£318,353	£303,535	£021,918

Lut this omils some passes, and the Bolan exports do not include the large item of wool which enters Sind further south.

A relic of the old times of Asiatic trade has come down to our day in the babits of the class of Lohinn Afghan traders, commonly called Povindaks, who spend therr lives in carrying on traffic between India, Hhorasan, and Bokhara, by means of their strings of camels and ponies, banded in large armed caravans, in order to restrict those recurring exactions that would render trade impossible. Bullying, fighting, evading, or bribing, they battle their way twice a year between Bokhara and the Indus. Their summer pastures are in the highlands of Ghazni and Kala't-iGhilzai. In the autumn they descend the Sulmmani passes. At the Indus, in these days, they have to deposit all weapons ; but once across that, they are in security. They leare their families and their camels in the Panjab plains, and take their goods by rall to all the Gangetic cities, or by boat and steamer to Kiarachi and Bombay: Eren in Asam or in distant Rangoon the Povindah is to be seen, pre-eminent by stature and by lofty air, not less than by rough locks and filthy clothes. Iu March they rejoin their families, and nove up again to the Ghilzai highlands, sending on earavans anew to Kabul, Bokhara, Kandahar, and Heat, the whole returning in time to accompany the tribe down tho passes in the autumu. The Porindah trad.o by all the passes is now estimated to reach $£ 1,500,000$ in value annually.

Inilabitaits of Afghanistan.- These may first be divided into Afghan and non-Afghan, of whom the Afghan people are predominant in numbers, power, and character.

The Afghans themselves do not recoguise as entitled to that name all to whom we give it. According to Bellew they exclude certain large tribes, who seem, nevertheless, to be essentially of the samo stock, speaking the same language, observing the same customs, and possessing the same moral and physical characteristics. These are recognised as Pathâns, but not as Afghans, and are all located in the ricinity of the Sulimani mountains and their offshoots towards the cast. We do not attempt to name thern, beeause the information on the subject seems contradictory. There are tribes of somewhat similar character elsewhere, such as the Wardaks, to the south of Kabul; and there are again some tribes, in contact with these and with A fghan tribes, who speak the Afghan language, and have many Afghan customs, but are different in aspect, and seem not to be regarded as Pathan at all. Such aro the Tôris and Jajis of Kurram.

Of the Afghans proper there are about a dozen great elans, with numerous subdivisions. Of the great clans the following are the most important:-

The Durranis, originally called Abdalis, received the former name from a famous clansman, Ahmed Shah. Their country may be regarded as the whole of the sonth and south-rest 'of the Afghan plateau.

The Ghilais are the strongest of the Afghan clans, and perhaps the bravest. They were supreme in Afghanistan in the beginning of last century, and for a time possessed the throue of Ispahan. They occupy the high plateau north of Kandahar, and extend, roughly speaking, eastward to the Sulimani mountains, and north to the Kabul river (though in places passing these limits), and they extend down the Kabul river to Jalalabad. On the British
invasion the Ghilzais showed a rooted hostility to the foreigner, and great fidelity to Dost Mahommed, though of a rival clan. It is remarkable that the old Arab geographers of the 10th and 11th centuries place in the Ghilzai'country a people called Whilijis, whom they call a tribe of Turks, to which belonged a famous family of Dehli kings. The probability of the identity of Khilijis and Ghilzais is obvious, and the question touches others regarding the origin of the Afglans, but it does not seem to have been gone into.

The Fusufzais occupy an extensive tract of hills and valleys north of Peshawar, inchuding part of the Peshawar plain. Except those within our Peshawar district, they are independent; they are noted even among Afglans for their turbulence.

The Kakars, still retaining in great measure their independence, occupy a wide extent of elesated country in the south-east of Afghanistan, among the spurs of the Toba and Sulimani mountains, bordering on the Biluch tribes. But the region is still very imperfectly known.

Of the non-Afghan population associated with the Afglans, the Tajiks come first in importance and numbers. They are intermingled with the Afghans over the country, though their chief localitics are in the west. They are regarded as descendants of the original occupants of that part of the country, of the old Iramian race; they call themselves Parsiwan, and spenk a dialect of Persinn. They are a fine athletic people, gonerally fair in complexion, and assimilate in aspect, in dress, and much in manners to the Afghans. But they are never nomadic. They are mostly agriculturists, whilst those in towns follow mechanical trades and the like, a thing which the Afghan never does. They are generally devoid of the turbulence of the Afghana, whom they are content to regard as masters or superiors, and lead a frugal, industrious life, without aspiring to a share in the government of the country. Many, however, become soldiers in the Amir's army, and many enlist in our local Panjab regiments. They are zealous Sunnis. The Tajiks of the Daman-i-Koh of Kabul are said to be exceptional in turbulent and rindictive character.

The Kizillüshes may be regarded as modern Persians, but more strictly they are Persianised Turks, like the present royal race and predominant class in Persia. They speak pure Persian. Their immigration dates only from the time of Nadir Shah (173i). They are chiefly to be found in towns as merchants, physicians, scribes, petty traders, de., and are justly looked on as the more educated and superior class of the population. At Kabul they constitute the bulk of the Amir's caralry and artillery. Many serve in our Iudian regiments of irregular cavalry, and bear a character for smaitness and intelligence, as well as good riding. They are Shiahs, and heretics in Afghan eyes.

It is to the industry of the Parsiwans and Kizilbashes that the country is indebted for whaterer wealth it possesses, but few of them ever attain a position which is not in some degree subservient to the Afghan.

The Iluzürcas bare their stronghold and proper home in the wild mountainous country on the north-west of Afghanistan proper, including those western extensions of Hindu Kush, to which modern geographers have often applied the ancient name of Paropamisus. In these thcir hahitations range generally from a height of 5000 feet to 10,000 feet above the sea.

The Hazaras generally have features of Mongol type, often to a degree that we might call exaggerated, and there can be no doubt that they are mainly descended from fragments of Mongol tribes who came from the east with the armies of Chingliz Kihan and his family, though other races may be rerresented among the tribes callod H:uraras The Inzareg gencrally are said by Major Leccb
to be called AFoghuts by the Gliizais; and one tribe, stiH bearing the specific name of Mongol, and speaking a Mongol dialect, is found near the head waters of the Murghab, and also further south on the skirts of the Ghur mountains. But it is remarkable that the Hazaras generally speak a purely Persian dialect. The Mongols of the bost of Chinghiz were divided into tomans (ten thousands) and hazaras (thousands), and it is probably in this use of tho word that the origin of its present application is to be sought. The oldest occurrence of this application that M. de Khanikoff has met with is in a rescript of Ghazan Khan of Persia, regarding the security of roads in Khorasan, dated A.H. 694 (A.D. 1294-95).

Though the Hazaras pay tribute to the Afghan chiefs, they never do so unless layment is cnforcell by arns. The country which they occupy is very extensive, embracing the upper valleys of the Arghand-ab and the Ileluand, both sides of the nain range of Hindu Kush, nearly as far east as the longitude of Andäâa, the hill conuntry of Bamian, and that at the head waters of the Lalkh river, the Murghab, and the Hari-Rud; altogether an area of something like 30,000 square milcs. The Hazaras are accused of very loose donestic morals, like the ancient Masiugete, and the clarge scems to be credited, at least of certain tribes. They make good powder, are good shots, and, in spite of the future of their country, aye good riders, riding at speed down very stecp declivitics. They are said to have a yodel like the Swiss. 'They are often sold as slaves, and as such are prized. During the winter many spread over 1 fghanistan, and even into the Panjab, in search of work. Excepting near Glazni, where they hold some lands and villages; the position of the Hazaras found in the proper Afghan comutry is a monial onc. They are Shiahs in religion, with the exception of one tine tribe called the Zeidnat Hazaras, occupying the old territory of Badghis, north of Herat.

Einák is a term for a sept or section of a tribe. It has canne to be applied, much as hazetra, to certain nomadic or semi-nomadic tribes west of the Hazaras of whom we have been speaking, and inmediatcly north of Herat. These tribes, it is said, were origimally termed "the four Eimaks." It is difficult in the present state of information regarding them, sonetimes contradictory, to discern what is the broad distinction between the Eimaks and the Hazaras, unless it be that the Eimaks arc prellominantly of Iranian or quasi-Iranian blood, the Hazaras T'uranian. The Fimaks are also Sunnis. Part of them are subject to Tersia.

Hindkis.-This is the name given to people of Hindu descent scattered over Afghanistan. They are said to be of the Kishetri or military caste. They are occupped in trade; they are found in most of the large villaces, and in the towns forn an important part of the population, doing all the Lanking business of the country, and holding its chief trade in their hands. They pay a high poll-tax, and are denied many privileges, but thrive notwithstanding. The Jats of Afghanistan doubtless belong to tha same vast race as the Jats and Jâts who form so large a part of the population of the territories now governed from Lahore and Karachi, and whose origin is so obscure. They are a fine athletic, dark, handsome race, considerable in numbers, but poor, and usually gaining a livelibood as farm-serrants, barbers, sweepers, misicians, \&c.

Biluckis.-Many of these squat among the abandoned tracts on the lower Helmand; a fierce and savage people, professing Islam, but not observing its precepts, and holding the grossest superstitions; vendelta their most stringent lari; insensible to privation, and singularly tolerant of heat; camel-like in capacity to do without drink; superior to the Afthans in daring and address, which are displayed in rolter ruids cerricd into the very heart of P'rsia

There remain n variety of tribes in tho hill country aorth of the Kabul river, speaking various languages, seemingly of Prakritic character, and known as Kohistanis, Laghmanis, Pashais, \&c.; apparently converted remnants of the aboriginal tribes of the Kabul basin, and more or less kindred to the still unconverted tribes of Kafiristan, to the Chitral people, and perhaps to the Dard tribes who lie to the north of the Afghan country on the Indus.
An able officer of the staff in India (Col. Macgregor) has lately made a diligent attempt to estimate the population of Alghanistan, which he bring to $4,901,000$ souls. This includes the estimated nopulation of Afghan Turkestan, the people of Chitral, the Kafirs, and the independent Yusufzais. We shall deduet the three first:-

4,901,000
Afghan Tukestan................... 612,000
Chitralis and Kafirs.................. 150,000
792,000
$4,109,000$
which may be thus ronghly divided-

Eimaks and Hazaras.	400,000
Tajiks	500,000
Kizilbashes.	150,000
Hindkis and Jats	500,000
Kohistanis, \&c.	200,000
$\left.\begin{array}{c}\text { Afghans and Patbans, including } 400,000 \mathrm{in}- \\ \text { dependent Yusufzais, \&c..................... }\end{array}\right\}$	2,359,000
Total...	4,109,000

The Afghans, in government and general manners, have a likeness to other Mahommedan natiuns; but they have also many peculiaritics.

Besides their division into clans and tribes, the whole Afghan people may be divided into dwellers in tents and dwellers in houses; and this division is apparently not coincident with tribal divisions, for of several of the great clans, at least a part is nomad and a part settled. Such, eg., is the case with the Durrani and with the Ghilzai.

Nomad Afghans exist in the Kabul basin, but their proper field is that part of their territory which the Afghans include in Khorasan, with its wide plains. These people subsist on the produce of their flocks, and rarely cultivate. They may, perhaps, pay something to the Kabul government through their chief, and they contribute soldiers to the regular army, besides forming the bulk of the militia; but they have little relation to the government, and seldom enter towns, unless to sell their produce. They are under some indefinite control by their chiefs, to whom serious disputes are referred. Petty matters are settled by the "greybeards" of the community, guided by the Afghan traditional code. Many of the nomad tribes are professed and incorrigible thieves. Among certain tribes the ceremony of naming a male child is accompanied by the symbolical act of passing him through a hole made in the wall of a house, whilst a volley of musketry is fired overhead. ${ }^{1}$

The settled Afghans form the village enmmunities, and in part the population of the few lowns. Their chief occupation is with the soil. They form the core of the nation and the main part of the army. Nearly all own the land on which they live, and which they cultivate with their own hands or by hired labour. Roundly speaking, agriculture and soldiering are their sole occupations. No Afghan will pursue a handicraft or keep a shop, though, as we hare seen, certain pastoral tribes engace largely in travelling trado and transport of goods.

As a race, the Afghans are very handsome and athletic, often with fair complexion and flowing beard, generally black or brown, sometimes, though rarely, red; the features

[^33]highly aquiline. The hair is shaved off from the forehear to the top of the head, the remainder at the sides being allowed to fall in large curls over the shonlders. Their step is full of resolution; their bearing proud and apt to be rough.

The women liave hardsome features of Jewish cast (the last trait often true also of the men); fair complexions, sometimes rosy, though usually a pale sallow; hair braided and plaited behind in two long tresses terminating in silken tassels. They are rigidly secluded, but intrigue is frequent. In some parts of the country the engaged lover is admitted to visits of courtship, analogous to old Welsh customs.

The Afghans, inured to bloodshed from childhood, are familiar with death, and are audacious in attack, but easily discouraged by failure; excessively turbulent and unsub. missive to law or discipline; apparently frank and affable in manner, especially when they hope to gain some object, but capable of the grossest brutality when that hupe ceases. They are unscrupulous in perjury, treacherous, vain, and insatiable, passionate in vindictiveness, which they will satisfy at the cost of their own lives and in the most cruel manner. Nowhere is crime committed on such trifling grounds, or with such general impunity, though when it is punished the punishment is atrocious. Among themselves the Afghans are quarrelsome, intriguing, and distrustful; estrangements and affrays are of constant occurrence; the traveller conceals and misrepresents the time and direction of his journey. The Afghan is by breed and nature a bird of prey. If from habit and tradition he respects a stranger within his threshold, he yet considers it legitimate to warn a neighbour of the prey that is afoot, or even to overtake and plunder his guest after he has quitted lis roof. The repression of crime and the demand of taxation he regards alike as tyranny. The Afchans are eternally boasting of thoir lineage, their independence, and their prowess. They look on the Afghans as the first of mations, and each man looks on himself as the equal of any Afghan, if not as the superior of all others. Yet when they hear of some atrocious deed they will exelaim- "An Afghan job that!" They are capable of enduring great privation, but when abuindance comes their powers of cating astonish an European. Still, sobriety and hardiness characterise the bulk of tho poople, though the higher classes are tos often stained with deep and degrading debauchery.

The first impression made by the Afghans is favourable. The European, especially if he come from India, is clarmed by their apparently frank, open-hearted, hospitable, and manly manners; but the charm is not of long duration, and lie finds that under this frank demeanour there is craft as inveterate, if not as accomplished, as in any Hindu.

Such is the character of the Afghans as drawn by Ferrier and other recent writers, and undoubtedly founded on their experience, though perlaps the dark colour is laid on too universally. The impression is very different from that left by the accounts of EIphinstone and Burnes. Yet most of the individual features can be traced in Elphinstone, though drawn certainly under less temptation to look on the darker side, owing to the favourable circumstances of his intercourse with the Afghans, and touched with a more delicate and friendly hand, perhaps lightened by wider sympathies. Sir H. Edwardes, who had intimate dealings with the Afghans for many years, takes special exception to Elphinstone's high estimate of their character, and appeals to the experience of every officer who had served in the country. "Nothing," he sums up, " is finer than their physique, or worse than their morale."

Many things in Afghan character point to a nation in decadence-the frank manners and joyous temper, the hospitable traditions, the martial and independent spirit, the love of fiald sports, the nobility of aspect, suggest θ
time when these were more than superficial and deceptive indications of character, and were not marred by greed and treacherous cruelty

Political Institutions.-The political institutions of the Afghans present the rude and disjointed materials of a free constitution. . The nation is theoretically divided into four great stocks, supposed to spring from four brothers. But these four divisions are practically obsolete, and only rome up in genealogies. Each tribe has split into several branches, and in the more numerous and scattered tribes these branches have separated, and each has its own chief. They retain, however, the common name, and an idea of community in blood and interests.

The type of the Afghan institutions is perhaps best seen in some of the independent tribes near the British frontier. These cling most closely to the democratic traditions. Their rude state of society is held togethor by a code as rude, which is acknowledged, however, and understood by every one, and enforced by the community, every member of which considers its infringement as an act coinmitted against his own privileges. The Maliks or chiefs are the representatives of the tribe, division, or family to which they each belong, but they possess no independent power of action, and before they can speak in council, they must have collected the wishes of the bodies which they represent.

The men of the section (kandi) of a village, having come to a decision, send their representative to a council of the whole village, and these again to that of the sept (khail), and the appointed chiefs of the septs finally assemble as the council of the ûlûs or tribe. These meetings, in all their stages, are apt to be stormy. If persuasion and argument fail to produce unanimity, no further steps can be taken, unless one party be much the weaker, when sometimes the stronger side will forcibly extort assent. When once a council has decided, implicit compliance is incumbent on the tribe under heavy peualties, and the maliks have the power of enforcing these.

Justice is administered in the towns, more or less defectively, according to Mahommedan law, by a kâzi and mufitis. But the unwritten code by which Afghan communitios in their typical state are guided, and the maxims of which penetrate the whole nation, is the Pulktunnali, or usage of the Pathans, a rude system of customary law, founded on principles such as one might suppose to have prevailed before the institution of civil government. ${ }^{1}$

A prominent law in this code is that called Nanawatai, or "entering in." By this law the Pathan is bound to grant any boon claimed by the person who passes his threshold and invokes its sanctions, cven at the sacrifice of his own life and property. So also the Pathan is bound to fecd and shelter any traveller claiming hospitality. Retaliation must be exacted by the Pathan for every injury or insult, and for the life of a kinsman. If immediate opportunity fail, a man will dodge his foe for vears, with the cruel purpose ever uppermost, using every treacherous artifice to entrap him. To omit such obligations, above all the vendetta, exposes the Pathan to scorn. The injuries of one generation may be avenged in the next, or even by remoter posterity. The relatives of a murdered man may, however, before the tribal council, accept a blood-price.

Crimes punished by the Pathan code are such as murder without cause, refusal to go to battle, contravention of the decision of a tribal councis, adultery.

The Afghans are Mahommedans of the Sunni or orthodox body, with the exception of a few tribes, perhaps not truly Pathan, who are Shiahs. They are much under the influence of their Nullahs, especially for eril; and have a stronger feeling against the Shiah heretic than against the
unbeliever; their a :ersion to the Persians being aggravated theresy. But to those of another faith they are more tolerant thau most. Naholimedans, unless when creed becomes a war-cry. They are very superstitious in regard to charms, omens, astrology; and so forth; and greatly ad. dicted to the warship of local saints, whose shrines (ziy:trat) are found on every hill-top. The shrine, a domed ton b, or mayhap a heap of stones within a wall, sometimos marks the saint's grave, but is often a cenotoph. The saint may have been unknown in life for his virtues, but becomes after death an object of veneration, for reasons often bard to discern. In the immediate environs of Ghazni there arc no less than 197 of these shrincs.

A very marked feature in Afglan character is the passionate love of field sports, especially hawking. Leerstalking in the open plains, the driving of game to wellknown points by a host of bcaters, and wild-fowl shooting with dccoys, are others of their sports. They are capital horsemen, and unerring marksmen with the native rifle (jezail).

A mong themselves the people are convivial and humorous. Festive gatherings are frequent, where they come togcther, not to buy or scll, or even to quarrel, but to make a noise and be happy. Tilting, slooting, racing', and wild music vary the amusements.

They have a wild dance called the âtan, in which the men work themselves into great excitemeut. Among some Kakar tribes it is said the atan is sometimes danced by both sexes together.

Government.-Afghanistan is now, and has been before, under one prince, but it is hardly a monarchy as we are used to understand the term. It is rather the government of a dictator for life over a military aristocracy, and within this a congeries of small democracies. Elphinstone compares it with Scotland in the middle ages; some things suggest a comparison with Poland, in spite of difference of plysical geography; but in neither was there the democratic constitution of the Afghan ulus. The sirdars govern in their respective districts, each after his own fashion; jealous, ambitious, turbulent, the sorereign can restrain them only by their divisions. There is no unity nor permanence; everything depends on the pleasure of a number of chiefs bound by no law, always at variance, and always roady to revolt when they have the slightest interest in doing so-almost always ready to plunge into strife with a wild delight in it for its own sake. In war, as in peace, chiefs and soldiers are ready to pass from one service to another without scruple. It is a matter of speculation, and no disgrace.
The spirit of Afghan character and institutions was tersely expressed by an old man to Elphinstone, who had urged the advantages of quiet and security under a strong king: "We are content with discord, we are content with alarms, we are content with blood; but we will never be content with a master."

Revenoes.-The revenues of Dost Jahommed Khan were estimated in 1857 at $4,000,000$ rupees, or about £400,000. This included Afghan Turkestan, but not Herat, which he did not hold. The Herat revenue was estimated some years before (probably too low) at £S0 000. In the later years of Dost Mahommed the net revenue is stated to have amounted to $£ 710,000$, of which the army cost $£ 430,000$. 1 Information on this subject is very imperfect, and not always consisteut. There seems to be a tax on the produce of the soil, both in kind and in money, and a special tax on garden ground. A house-tar of about 5 rupees is paid by all who are not Pathans. The latter pay a much lighter tax under another name; and
the Hiudus pay the separate poll-tax (jazeya). Taxes are raid on horses, de., kept, and on the sale of animals in the public market.

The aggregate of taxation is not great, but the smallest exaction seens a tyrannical violence to an Afghan. Nor does payment gurantec the cultivator from further squeezing. In many jarts of the country collections are only made spasmodically by military force. The people are let aue for years, till ueed and opportunity arise, when a furce is marched in, and arrears extorted.

Customs dues at Kabul and Kandahar aro only $2 \frac{1}{2}$ per cent. nominally, but this is increased a good deal by exactions. There is a considerable tax on horses exported for sale, and a toll on beasts of burden exporting merchandise, from 6 rupees on a loaded camel to 1 rupee on a donkey.
Military Force.-According to the old system the Afghan forces were entirely composed of the ulus, or tribesmen of the chiefs, who were supposed to hold their lauds on a condition of service, but who, as frequently as not, went over to the enemy in the day of need. As a counterpoise, the late Amir Dost Mahonmed began to form a regular army. In 1858 this contained 16 infantry reguents of (nominally) 800 men, 3 of cavalry of 300 met, and alout 80 field-pieces, besides a few heary guns. The pay was bad, and extremely irregular, and punishments were stever. The men were fine, but recruited in the worst inarner, viz, the arbitrary and forcible seizure of able-bodied men. There were also Jeaailchi (riflemen), irregulars, some in the Amir's pay, others levies of the local chiefs; and a cousideratle number of irregular cavalry. We Lave failed to obtain receat data on this subject.
Lanotace aid Literature.-Persian is the vernacular of a large part of the non-Afglan population, and is familiar to all educated Afghans. But the proper language of the Afghans is Pushtu, or Pukht \hat{u} (these are dialectic variations). Currency has been given to the notion that this language has a Semitic character, but this appears to be quite erroneous, ald is cntirely rejected by competent authorities, the majority of whom class Pushtu positively as an Aryan or Indo-Persian language. The Pushtu vocabulary preserves a number of ancient forms and connections with words that remain isolated in other Aryan languages. Intcresting illustrations of this and other points connected with Pushtu will be found in a paper by Isidor Löwenthal in the J. of the A s. Soc. of Bengal. vol Exix.
Pushtu does not scem to be spoken in Herat, or (roughly speaking) west of the Helmand.
There is a respectable amount of Afghan literature. The oldest work in Pushtu as yet mentioned is a history of the conquest of Swat by Shaikh Hali, a chief of the lusufzais, and leader in the conquest (A.D. 1413-24). In 1494 . Kaju Khan became chief of the same clan; during his rule Buner and Panjkora were complotely conquered, and he wrote a history of the events. But these works have not been met with. In the reign of Akbar, Bayazid Ansâri, called Pîr--Roshan, "The Saint of Light," the founder of an heretical sect, wrote in Pushtu; as did his chief antagonist a famous Afghan saint called Akhund Darweza.
The literature is richest in poetry. Abdarrahman (17th zentury) is the best known poct. Another very popular poet is Khushal Khan, the warlike chief of the Klaattaks in the time of Aurangzib. Many other members of his family were poets also.- Ahmed Shah, the founder of the monarchy, likewise wrote poetry. Ballads are numerous.

Hsstory.-The Afghau chroniclers call their people Bani-Israil (Arab. for Children of Israel), and claim descent from King Saul (whom they call by the Mahommedan cor-
ruption Tülút) through a son whom they ascribe to him, called Jeremiah, who again bad a son called Afghanna The numerous stock of Afghana were removed by Nebuchadnezzar, and found their way to the mountains of Ghur and Feroza (east and north of Herat)! Only nino years after Mahommed's announcement of his mission they heard of the new prophet, and sent to Medina a deputation headed by a wise and holy man called Kais, to make inquiry. The deputation became zealous converts, and on their return converted their countrymen. From Kais and his threo sons the whole of the genuine Afghans claim descent.

This story is repeated in great and varying detail in sundry books by Afghans, the oldest of which appears to be of the 16th century; nor do we know that any trace of the legend is found of older date. In the version given by Major Raverty (Introd. to Afghan Grammar), Afghanalt is settled by King Solomon bimself in the Sulimani mountains; there is nothing about Nebuchaduezzar or Ghur. The histurian Firishta says he had read that the Afglans were descended fron Copts of the race of Pharaoh. And one of the Afghan histories, quoted by Mr Bellew, relates "is current tradition" that previous to the time of Kais, Bilo the father of the Biluchis, Uzbak (evidently the father of the Uzbegs), and Afyhana were considered as brethren. As Mahommed Uzbeg Khan, the eponymus of the medley of Tartar tribes called Uzberss, reigned in the 14th century A.D., this gives some possible light on tho value of these so-called traditions.

We have aualogous stories in the literature of almost all nations that derive their religion or their civilisation from a forcign source. To say nothing of the farce of the hook of Mormon, there is in our own age and in our own country a considerable number of persons who seriously hold and propagate the doctrine that the English people are descended from the tribes of Israel, and the literature of this whimsical theory would fill a much larger shelf than the Afghan histories. But the Hebrew ancestry of the Afghans is more worthy at least of consideration, for a respectable number of intelligent officers, well acquainted with the Afghans, have been strong in their belief of it; and though the customs alleged in proof will not bear the stress laid on them, undoubtedly a prevailing type of the Afghan physiognomy has a character strongly Jewish. This characteristio is certainly a remarkablo one; but it is shared, to a considerable extent, by the Kashmiris (a circumstance which led Bernier to speculate on the Kashmiris representing the lost tribes of Israel), and, we.believe, by the Tajik people of Badakhshan.

In the time of Darius Hystaspes (b.c. 500) we find the region now called Afghanistan embraced in the Achemcrian satrapies, and various parts of it occupied by Sarangians (in Scistan), Arian (in Herat), Saltagydians (supposed in highlands of upper Helmand and the plateau of Ghazni), Dadice (suggested to be Tajiks), Aparytce (mountaincers, perhapa of Safed Koh, where lay the Parycta of Ptolemy), Gandarii (in Lower Kabul basin), and Paktyes, on or near the Indus. In the last name it has been plausibly suggested that we havo the Pukhtun, as the eastern Afghana pronounce their name. Indeed, Pusht, Pasht, or Pukht, would seem to be the oldest name of the country of the Afghena in their traditions.

Alexander's march led him to Artacoana (Herat ?), the capital of Aria, and thence to the country of the Zarange (Seistan), to that of the Euergcta, ujon the Etymander (Helmand river), to Arachosia, thence to the Indians dwelling among snowa in a barren country, prohably the highlands between Ghazni and Kabul. Thence he marched to the foot of Caucasus, and spent the winter among the Paropamisada, founding a city, Aledandria, supposed to be IIupian, near Charikar. On hia return from Bactria he prosccuted his march to India by the north side of the Kabul river.

The Ariana of Strabo corresponds generally with the existing dominions of Kalul, but ovcrpasses their limits on the west and south.

Ahout 310 b.c. Selencus is said ' Strabo to have given to the Indian Sandrocottus (Chandragupta), a consequence of a marringe-
contract, some part of the country west of the Indus, occupied by an Indian population, and no doubt embracing a part of the Kabul basin. Some 60 jears later occurred the establishment of an inde. pendent Greek dynasty in Bactria. Of the details of their history and eatent of their dominion in different reigns we know almost nothing, and conjecture is often dependent on such vague data as are afforded by the collation of the localities in which the coins of independent princes have been found. But their power extended certainly over the Kabul basin, and probably, at times, over the whole of $\Lambda \mathbf{f}$ chanistan. The ancient architecture of Kashmir, the tope of Manikyala in the Panjab, and many sculptures found in the Peshawar valley, show unmistakable Greek influence. Demetrius (circa b.0. 190) is supposed to have reigned in Arachosia after being expelled from Bactria, much as, at a later date, Baber reigned in Kabul after his expulsion from Samarkand. Eucratides (181 B. c.) is alleged by Justin to have warred in India. With his coins, found abundantly. in the Kabul basin, commences the ase of an Arianian inscription, in addition to the Greek, supposed to imply the transfer of rule to the south of the mountains, over a people whom the Greek dynasty sought to conciliate. Under Heliocles (147 B.c. ?), the Parthians, who had already encroacked on Ariana, pressed their conquests into India. Menander (126 B.c.) invaded Inilia at least to the Jumna, and perhaps also to the Indus delta. The coinarge of a succeeding king, Hermæus, indicates a barbaric inruption. There is a general correspondence between classical and Clinese accounts of the time when Bactria was overrun by Scythian iuvaders. The chief nation among these, called by the Chinese Yucchi, about 126 b.c. established themselres in Sogdiana and on the Oxus in five hordes. Near the Christian era the chief of one of these, which was called Kushan, subdued the rest, and extended his conquests over the rountries south of Hindu Kush, including Sind as well as Afglanistan, thus establishing a great dominion, of which we hear from Greek writers as Indo-Scythia.

Buddhism had already acquired influence over the people of the Kabul basin, and some of the barbaric invaders adopted that system. Its traces are extensive, especially in the plains of Jalalabad and Peshawar, but also in the vicinity of Kabul.

Various barbaric dynasties succeeded each other, among which a notable monarch was Kanishka or Kanerkes, who reigned and conquered apparently about the time of Our Lord, and whose power extended over the upper Oxus basin, Kabul, Peshawar, Kashmir, and probably far into India. His name and legends still filled the land, or at least the Buddhist portion of it, 600 years later, when the Chinese pilgrim Hren Thsang travelled in India; they had even reached the great Mahommedan philosopher, traveller, and geographer, Abu Ribân Al-Birûni, in the 11th century; and they are still celebrateả in the Mongol versions of Buddhist ecclesiastical story.
In the time of Hwen Thsang ($630-45$ A.D.) there were both Indian and Turk princes in the Kabul valley, and in the succeeding centuries hoth these racea seem to have predominated in succession. The first Mahommedan attempts at the conquest of Kabul were unouccessful, though Seistan and Arachosia were permanently held from an early date. It was not till the end of the 10th century that a Hindu prince ceased to reign in Kabul, and it fell into the hands of the Turk Sabaktegin, who had established his capital at Ghazni. There, too, reigned his famous son Mahnád, and a series of descendanta, till the middle of the 12 th century, rendering the city one of the most splendid in Asia. We then have a porverful dynaty, commonly believed to have been of Afghan race; and if so, the first. Eut the historians give them a legendary descent from Zohâk, which is no Afghan genealogy. The founder of the dynasty was Alâuddin, chief of Ghur, whose rengeance for the crucl death of his brother at the hands of Bahram the Ghaznevide was wreaked in devastating the great city. His nephew Shahâbuddîn Mahommed repeatedly invaded India, conquering as far as Benarea. His empire in India indeed-ruled by his freedmen who after his death became independent-may be regarded as the origin of that great Mahommedan monarchy which endured nominally till 1857. For a brief period the Afghan countries were subject to the king of Kharizm, and it was here chiefly that occurred the gallant attempts of Jalaluddin of Khorizm to withstand the progress of Chinghiz Khan.

A passage in Firishta seems to imply that the Afghans in the Sulimani mountains were already known by that name in the first centary of the Hegira, but it is uncertain how far this may be built on. The name Afghans is very distinctly mentioned in 'Utbi's History of Sultan Mahmud, written about A.D. 1030, conpled with that of the Khiljis. It also appears frequently in connection with the history of India in the 13th and 14th centuries. The successive dynasties of Dehli are generally called Pathan, bnt were Ieally so only in part. Of the K7iljis (1285-1321) we have already spoken. The Tughlaks (1321-1421) were originally Tartars of the Karauna tribe. The Lodis (1450-1526) were pure Pathens. For a century and more after the Mongol invasion the whale of the Afghan countries were under Mongol rule; but in the middle of the 14 th century a native dyuasty sprang ap in western Afghanistan, that of the Kurls, which extended its rule over Ghur, Herat, and Kandahar. The
history of the Afghap countries ander the Mongols is obscure; but that regime must have left its mark upon the country if we judge from the occurrence of frequent Mongol names of places, and even of Mongol expressions adopted into familiar language.

All these countries were included in Timur's conquests, and'Kabul at least had remained in the possession of one of his descendants till 1501, only three years before it fell into the hands of another and more illustrious one, Sultan Baber. It was not till 1522 that Baber succeeded in permanently wresting Kandahar from the Arghuns, a family of Mongol descent, who had long held it. From the time of his conquest of Hindustan (victory at Panipat, April 21, 1526), Kabul and Kandahar may be retarded as part of the empire of Debli under the (so-called) Moghul dynasty which Baber founded. Kabul so continued till the invasion of Nadir (1738). Kandabar often changed hands between the Moghuls and the rising Safavis (or Sofis) of Persia, Under the latter it had remained from 1642 till 1708, when in the reign of Husain, the last of them, the Ghilzais, provoked by the oppressive Persian governor Shahnawâz Khan (a Georgian prince of the "Bagratid house) revolted under Mir Wais, and expelled the Persians. Nir Wais was acknowledged sovereign of Kandahar, and eventually defeated the Persian armies sent against him, but did not long survive (d. 1715).

Mahmud, the son of Mir Wais, a man of great courage and energy, carried out a project of his father's, the couquest of Persia itself. After a long siege, Shah Husain came forth from Ispahan with all his court, and surrendered the sword and diadem of the Sofis into the hands of the Ghilzai (Oct. 1722). Two years later Mahmud died mad, and a few years saw the end of Ghilzai rule in Persia.

Nadir Shah ($1737-38$) both recovered K゙andahar and took Kabul. But he gained the goodwill of the Afghans, and enrolled many in his army. I Among these was a noble young soldier, Ahmed Khan, of the Saddozai family of tho Abdali clan, who after the assassination of Nadir (1747) was chosen by the Afghan chiefs at Kandahar to be their leader, and assumed kingly authority over the eastern part of Nadir's empire, with the style of Dur-i-Durran, "Pearl of the Age," bestowing that of Durrani upon his clan, the Abdalis. With Ahmed Shah, Afghanistan, as such, first took a place among the kingdoms of the earth. During the twenty-six years of his reign he carried his warliko expeditions far and wide. Westrard they extended nearly to the shores of the Caspian; eastward he repeatedly entered India as a conqueror. At his great battie of Panipat (Jan. 6, 1761), with vastly inferior numbers, he gave the Mahrattas, then at the zenith of power, a tremendous defeat, almost annihilating their vast army; but the success had for him no important result. Haring long suf. fered from a terrible disease, he died in 1773, bequeathing io his son Timûr a dominion which embraced not only Afghanistan to its utmost limits, but the Panjab, Kashmir, and Turkestan to the Oxus, with Sind, Biluchistan, and Khorasan as tributary governments.

Timur transferred his residence from Kandahar to Kabul, and continued during a reign of twenty years to stave off the anarchy which followec. close on his death He left twenty-three sons, of whom the fifth, Zamân Mirza, by help of Payindah Khan, head of the Barakzai family of the Abdalis, succeeded in grasping the royal power, For many years barbarous wars raged between the brothers, during which Zamân Shah, Shujâ-ul-Mulk, and Mahmûd, successively held the throne. The last owed success to Fatteh Khan, son of Payindah, a man of masterly ability in war and politics, the eldest of twenty-one brothers, a family of notable intelligence and force of character, and many of these he placed over the provinces. The malig. nity of Kamran, the worthlcss son of Mahmud, succeeded
in making the king jealous of his minister; and with matehless treachery, ingratitude, and cruelty, the latter was first blinded, and afterwards murdered with prolonged torture, the brutal Kamran striking the first tlow.
The Barakzai brothers united to avenge Fatteh Khan. The Saddozais were driven from Kabul, Ghazni, and liandahar, and with diffeulty reached Herat (1818). Herat remained thus till Kamran's death (1842), and after that was held by his able and wicked minister Yar Mahommed. The rest of the country was divided among the Barakzais-Dost Mahommed, the ablest, getting Kabul. Pesharwar and the right bank of the Indus fell to the Sikhs after their victory at Naoshera in 1823. The last Afghan hold of the Panjab had been lost long before-liashmir in 1819; Sind had cast off all allegiance since 1808; the Turkestan prorinces had been practiealy independent since the death of Timur Shah
In 1809, in consequence of the intrigues of Napoleon in Persia, the Hon. Nountstewart Elphinstone, had been ent as envoy to Shah Shuja, then in power, and had been well received by him at Peshawar. This was the first time the Afghans made any acquaintance with Englishmen. Lieut. Alex. Burnes visited liabul on his way to Bokhara in 1832. In 1837 the Persian siege of Herat and the proceedings of Russia created uneasiness, and Burnes was sent by the Governor-General as resident to the Amir's court at Kabul. But the terms which the Dost sought were not conceded by the government, and the rash resolution was taken of re-establishing Shah Shuja, long a refugee in British territory. Ranjit Singh, king of the Panjab, bound himself to co-operate, but eventually declined to let the expedition cross his territories. The "Army of the Indus," amounting to 21,000 men, therefore assembled in Upper Sind (Mareh 1838), and advaneed through the Belan Pass under the command of Sir John Keane. There was hardship, but scarcely any opposition. Kohandil Khan of Kandalar fled to Persia That city was occupied in April 1839, and Shah Shuja was crowned In his grandfather's mosque. Ghazni was reached 21 st July; a gate of the city was blown open by the engineers (the mateh was fired by Lieut. afterwards Sir Henry Durand); and the place was taken by storm. Dost Mahommed, finding his troops deserting, passed the Hindn Kush, and Shah Shuja entered the eapital (7th August). The war was thought at an end, and Sir Joln Keane (made a peer) returned to India with a considerable part of tha force, learing behind 8000 men, besides the Shah's foree, with Sir W. Maenaghten as envog, and Sir A. Burnes as his colleague.
During the tro following years Shale Shuja and his allies remained in possession of Kabul and Kandahar. The British outposts extended to Saighân, in the Oxus basin, and to Mullah Khan, in the plain of Seistan. Dost Hahommed surrendered (Nov. 3, 1840), and was sent to India, where he was honourably treated. From the beginaing, insurrection against the new government had been rife. The political authorities were orer-confident, and aeglected warrings. On the 2 d November 1841 the revolt broke out violently at Kabul, with the massacre of Burnes and other officers. The position of the British iamp, its communications with the citadel, and the location of the stores were the worst possihle; and the general 'Fiphinstone) was shattered in constitution. Disaster after jisaster occurred, not without misconduct. At a confer:nce (23d December) with the Dost's son, Akbar Khan, who had taken the lead of the Afghans, Sir W. Maenaghten was murdered by that chief's own hand. On 6th January 1842, after a convention to eracuate the country had been figned, the British garrison, still numbering 4500 soldiers (of whom 690 were Luropeans), with some 12,000 followers,
marched out of the camp. The winter was severe, the troops demoralised, the march a mass of confusion and massaere ; for there mas hardly a 1 retence of keeping the terins. On the 13th the last survivors mustered at Gandamak only twenty muskets. Of those who left Kabul, Dr Brydone only reached Jalalabad, wounded and halí dead. Ninety-five prisoners were afterwards recovered. The garrison of Ghazni had already been forced to surrender (10th December). Eut General Nott held Kaildahar with a stern hand, and General Sale, who hacl reached Jalalabad from Kiabul at the beginning of the outbrenk, maintained that important point gallantly.
To avenge these disasters and recover the prisoncrs preparations were made in India on a fitting sealo; but it was the 16 th April 1842 before General Polluek could relieve Jalalabad, after forcing the Khybar Pass. After a long halt there, he adranced (20th August), and gaiuing rapid suecesses, occupied Kabul (15th September), wheru Nott, after retaking and dismantling Ghazni, joined bim two days later. The prisoners were happily recovered from Bamian. The citadel and central bazaar of Kabul were destroyed, and the army finally evacuated Afghanistau December 1842.
Shah Shuja had been assassinated soon after the depar ture of the ill-fated garrison. Dost Mahommed, released, was able to resume his position at Kabul, which he retaincd till his death in 1863. Akbar Khan was made vazir. but died in 1848.
The most notable facts in later history must be briefly stated. In 1848, when the Sikh revolt broke out, Dost - Mahommed, stimulated by popular outery and by the Sikla offer to restoro Peshatrar, crossed the frontier and took Attok. A cavalry foree of Afghans was sent to join Sher Singh against the British, and was present at tho battle of Gujerat (21st Feb. 1849). The pursuit of the Afghans by Sir Walter Raleigh Gilbert, right up to the passes, was so hos that the Dost owed his escape to a fleet horso.
In 1850 the Afghans re-eonquered Balkh.
In January 1855, friendly intercourse, which had been renewed between the Dost and the British government, led to the conclusion of a treaty at Peshawar.
In November 1855, after the death of his half-brother, Kohandil Khan of Kandahar, the Dost made himself master of that province. In 1856 came the new Persian advance to Herat, ending in its capture, and the English expedition to the Persian Culf. In January 1857 the Dost had an interview at Peshawar with Sir J. Lawrence, at which the former was promised arms and a subsidy for protection against Persia. In consequence of this treaty a British mission under Major Lumsden proceeded to Kandahar. The Indian mutiny followed, and the Afghan excitement strongly tried the Dost's fidelity, but be maintained it. Lumsden's party held their ground, and returned in May 1858.

In 1863, Dost Mahommed, after a ten months' siege, captnred Herat; lut he died there thirteen days later (9th June), and was succeeded by his son Sher Ali Khan.
Sinee then the latter has passed through many vicissitudes in rivalry with his brothers and nephews, and at one time (1867) his fortunes were so low that he held only Balkh and Herat. By the autumn of 1868, however, he was again established on the throne of Kabul, and his competitors were beaten and dispersed. In April 1869 Sher Ali Khan was honourably and splendidly reeeived at Amballa by the Earl of Mayo, who had shortly before replaced Sir J. Lawrence. Friendly relations were confirmed, though the Amir's expectations were not fulfilled. He received the balance of a donation of $£ 120,000$ which had been promised and partly paid by Sir John Lawrence. A considerable present of artillery and armas was made to
him; since then some small additional aid in money and arms has been sent, but no periodical subsidy.

Sher Ali Khan now reigns over all Afghanistan and Afghan Turkestan, whilst Badakhshan is tributary to him. In the latter part of 1872 a correspondence which had gone on between the Governments of Russia and England resulted in a declaretion by the former that Afghanistan was beyond the field of Russian influence; whilst the Oxus, from its source in Lake Sirikol to the western limit of Balkh, was recognised as the frontier of Afghan dominion.

Antiotities. - We can afford space for only the briefest indication on this subject. The basin of the Kabul river especially abounds in remains of the period when Buddhism Hourished, beginning with the Inscribed Rock of Shahbâzgarhi, or Kapur-di-giri, in the Peshawar plain, which bears one of the repliche of the famous edicts of Asoka (not later than B.c. 250). In the Koh-Daman, north of Kabul, are the sites of several ancient cities, the greatest of which, called Beghram, has furnished coins in scores of thousands, and has been supposed to represent Alexander's Nicaca. Nearer Kabul, and especially on the hills some miles south of the city, are numerous topes. In the valley of Jalalabad are many remains of the same character. In the Peshawar plain and on the adjoining heights are numerous ancient cities and walled villages, in many cases presenting ruins of much interest, besides the remains of topes, monasteries, cave temples, \&c.; and frequently sculptures have been found on those sites, exhibiting evident traces of the influence of Greek art. The Mlahâban moun-
tain, near the Indus, which has been plausibly identified with the Aornos of the Grecks, and the hills more immediately compassing the Peshawar valley, abound in the ruins of very ancient fortresses. At Talash, on the Panjkora river, are extensive ruins of massive fortifications; and in Swat there are said to be remains of sereral ancient cities.

In the valley of the Tarnak are the ruins of a great city (Ulan Rabat), supposed to be ancient Arachosia. About Girishk, on the Helraand, are extensive mounds and other traces of buildings; and the remains of several great cities exist in the plain of Seistan, as at Pulki, Peshawaran, and Lakh, relics of ancient Dranyiana, as yet unexamined. An ancient stone vessel, preserved in a mosque at Kandahar, is almost certainly the same that was treasured at Peshawar in the 5th century as the begging-pot of Sakya-Muni. Of the city of Ghazni, the rast capital of Mahmud and his race, no substantial relics.survive, except the tumb of Mahmud and two remarkable brick minarets.

To the vast and fruitful harvest of coins that has beeu gathered in Afghanistan and the adjoining regions, we can here but make an allusion.
(Elphinstone's Caubool; various papers in J. As. Soc. Bengal; Ferrier's Journeys, and Mist. of the Afghans; Bellew's Journal, Report on the Yusufiais, and Notes on Flora of Afgh.; James's Report on Peshavar District; Raverty's Afghan Grammar; Panjab Trade Report; Baber's Memoirs; Kaye's History; papers by Major Lumsden, and by Licut.-Col. C. M. Macgregor, ©c. The paragraph on the Animal Kinguom has been revised by Prof Henry Giglioli of Florence.)
(H. צ.)

AFGHAN TURKESTAN is a convenient name applied of late years to those provinces in the basin of the Oxus which are subject to the Amir of Kabul. Badarhshan and its dependencies, now tributary to the Amir, are sometimes included under the name, but will not be so included here. The whole of the Afghan dominions consist of Afghanistan as defined under that heading, Afgean Turkestan, and Badakhshan with its dependencies.

The territories included here will be, beginning from the east, the khanates or principalities of Kunduz, Khulm, Balkh with Akcha; and the western khanates of Sir-i-pul, Shibrghân, Andkhûi, and Maimana, sometimes classed together as the Chihâr Vilayat, or "Four Domains;" and besides these, such part of the Hazara tribes as lie north of the Hindu Kush and its prolongation, defined in the article Afghanistan. The tract thus includes the whole southern moiety of the Orus basin, from the frontier of Badakhshan on the east to the upper Murghâb river on the west. The Oxus itself forms the northern boundary, from the confluence of the Kokcha or river of Badakhshan, in $69 \frac{1}{2}^{\circ} \mathrm{E}$. long., to Khoja Salih ferry, in $65^{\circ} \mathrm{E}$. long. nearly. Here the boundary quits the river and skirts the Turkman desert to the point where the Murghâb issues upon it. Along the whole southern boundary we have a tract of lofty mountain country. Thus, in the east, above Kunduz, we have the Hindu Kush rising far into the region of perpetual snow, and with passes ranging from 12,000 to 13,000 feet and upwards. Above Khulm and Balkh is the prolongation of Hindu Kusli, called Koh-i-baba, in which the clevation of the cols or passes seems to be nearly as high, though the general height of the crest is lower. The mountains then fork in three branches westward, viz., Koh-i-Siâh, "The Black Mountain," to the south of the Herat river; Koh-i-Safed, "The White Mountain," between the Herat river and the Murghab, and a third ridge north of the latter river. The second branch (Safcd-Koh) has been sssumed in the article Afrebanistad as the boundary of
that region. We know almost nothing of these mountains, except from the journey of Ferrier, who crossed all three watersheds in four days of July 1845. He describes the middle range as very lofty, with a good deal of snow on the pass; the southern range not 80 high, the northern one not nearly so high.

Rivers.-We shall first $d e$ scribe the rivers of this region in succession.
For the Oxus itself, see tbat article.
Beginning from the eastward, its first tributary within our limits in the river of Kunduz, known also as the river of Aksarai, the Surkhâb, and what not. As the principal source of this river wo may regand the stream of Bamian, fed close under the Koh-i-Baba by a variety of torrents which join from the pass of Aksobat and other garges of the Hazara country, adjoining that famous site (8496 fect above sea level). The names of some of these seem to preserve a traditiou of the ancient population ; auch are the "Cutlers" Vale," "the Smiths' Vale," the "Valley of Eye-paint." At the eastern end of the valley the Bamian stream receives another of nearly equal bulk, descending from the pass of Hajiigak, the most important erossing of the mountains between Kabul and the Oxus, and from which the road descends upon Bamian, and thence by Saigháu, Khurram, and Haibak, to Khulm, in the Ozus relley. On the voleanic rock which parts the streams stand extensive ruins, the name of which, Zohâk, connects them with the most ancient legends of Persian history.
From this the river turns nearly north, passing the country of the Sheikh 'Alis, one of the most famous Hazara clans, and closely skirting the great range of Ilindu kiush. About 40 miles N.N.E. of Zohak it receives from the left two confluents, of size probably almost equal to its own-the rivers of Snighan and of Eatmard, both rising to the westward of Bamian, and crossing tho highway from Bamian to Khulm. Hercabouts the river seems tio take the name of Surkhab. The first consijerable confluent on the right is the Andarâb river, draining the valley of that name, and joining at Doshi, about 85 miles in a direct line N.E. of Zohak. About Ghori, still a place of some note, the valley widens out greatly, and becomes in places swampy, with expanses of tall grass, a character which it thenceforth retains. The river is, or has been, bridged at Thomari, a few miles bejond Ghori, a work ascribed to Aurangzib. It then recsives from the right the Baghlân river, coming from Nârin and the hills of Fhost. The only remaining confluent is the important one which joins immediately below the tornn of Kunuuz, sometimes called the Khlânâbâd river, sometimes by the arunes of its chiei' jontributarics, the Farokhar sind Bangio

The farokbar, or iiver of Ta likin, is the nuost easterly, coming out of Badaklishen, the boundary of which runs along the watershed on its left bank. The Bangi fows through Khost from the highlands of Padakhshan, east of Andarab. A third tributary, the Shortb, salt, as its name implies, drains the high rango called Esk-mushk, above Narilu.

The Surkhob or Kunduz river enters the Oxus at a point approximately (no traveller fas visited the confluence) 32 miles N.W. of Kunduz, its whole length, exclusive of minor windings, being about 220 miles.

From Ghori downwards, the hills which bound the valley on either sido appear to bo of no great elevation, and to bo tolerably clothed with grass, and oceasionally with fir trees; the aspect of the country gradually approximating to that of Badakhshan, in ontrast to the more sterile offshoots of Koh-i-Baba to the westward.

Kunduz itself lies very low, scarcely 500 feet above sea level, and the roads approaching the tomn have to pass over piles amid the awsmpy vegetation. The odjacent plain is in the main richly cultivated and thickly peopled, but it is interspersed with extensivo tracts of jungly grass, oud is extremely and proverbially unhealthy. The plains, which extend, though not uabroken, from kunduz to the Oxus, are free from the bare and repulsive character of those further west, and are deseribed as covered in part with rieh cultiva. tion, thick with groves aud bamlets, and in part with splendid pasturo.

Proceeding mestrard, the next tributary to the Oxus basin is the Khulm river. The traveller from Bamian northward first touches the Khulm river, on descending from the Kara-Kotal, at a spot called Doâb Shâhprasand, probably 5000 feet sbove the sea, where its two maiu sources join, and the main road to Turkestan keens on or near the river till its exit on the Oxus nlain. The eharacter of the mass of mountains which extends from the Kob-i-Baba to Khulm is utter rocky oridity, but broken sometimes in the sudden treneh-like valleys by an exuberant vigour of vegetation. Along a chain of these treneh-liko gorges, walied by stupendous cliffs seeming sometimes almost to elose orerhead, the traveller descends towards Khuim. At Haibak the valley opens out, but closes in again before Khulm is reached, Ilere he emerges from a narrow gorge upon the plain of the Oxus, some 20 miles from the great river, and leares the mountains suddenly, as one leaves the rate of a fortress, still rising behiad in a bold rampart to the height of 2500 feet. The river is believed to be spent in irrigation before reaching the Oxus.
As far north at least as Khurram, half-way from Bamian to Khulm, the offshoots of Koh-i-Baba, west of the Khulm defile, must reach a height of 11,000 or 12,000 feet; for here Ferrier found bitter cold sid snow on the top on the 7 th of July (latitude nearly 36°).
The next river westward is the Balkh river, sometimes called Dehás. It rises not far from some of the tributaries of the Surkbab, nor from the sources of the Herat river, at a remarkable spot which, under the name of the Band-i-Barbar, or Barbar dam, is the subject of various legends, though we have no distinct account of it. The valley of Yekalsng, on the upper waters of this river, st a height of 7000 feet above the sea, was visited by A. Conolly, and is described by him as fertile, woll-watered, and populous, about 15 miles in length by $\&$ to $\&$ mile in width. Ferrier is the only traveller who has crossed the mature atream, and he merely mentions that he forded it, and that it was rather rapid. We thus know almost nething of the river. In length it cannot come far short of the Surkhab. Bejond the loftr mountains recently spoken of, some of the hills towards the Balkh-ab bave a thin clothing of wood, and the valleys opening on the river are wide and not unfertile The msin valiey expands into level tracts of pasture, covered by long grass, and intersected by srtificial water-courses; but (as with the Khulm river) tho gorge frova which the stream issues on the Oxus plain is дarrow, snd walled in by rery bigh bills on either side. The ruins and gardens of ancient Balkh stand about 6 miles from the hills, but no part of the river appears to reach the site in its natural bed, nor does any part of its wsters reach the Oxus in a running stream.

The plains that slope from the gardens of Balkh to the Oxus ore naturally white hard stenpes, destitute of spontancous verdure save aparse brush of tamarisk and other meagre growths; but the soil remponds richly to irrigation whenever this is bestowed.
The next etream that we meet with, and the last that can be considered even as sa indirect tributary of the Oxus, is that which fertilises the small khanates of Shibrchan and Andkhui, on the vergo of the Tarkman desert; whilst the two confluents that contribute to form it have previously satered the territories of Siripul and Maimana. The Tiver, or whatever survives of its water after irri. gating Andkhui, is lost in the desert. The taste of the water is ahominable, and, thongh the inhabitants are accustomed to it, strangers aufer from its use.

The last river that we have to notice is the Murghab, which rises hetween the twe giorthern braaehes of the Koh-i-Babs or Paropamisus. Ferrier is the only traveller who has been on the upper Feters of the Maxghah He takes no notice of the river itself, but dascriles a retnarkablu plain or basin, about 120 milea in cireuit,
entirely surrounded by manntains, well-watered, and rich in vegetation. The people are Mongol Hazaras, sud, according to Ferrier, idolaters. Their country is a part of the old territory of Garjistân. At Shah Mashad, about half-way between this ond the plains, the river was crossed by Major Eldred Pottinger, bat we have no access to his report. Further down, as the river approaches tho foot of Murghab l3alâ, on the road from Maimana to llerat, it runs with great violence, and the valley narrows to a defile. At l'aujdeh, 35 to 40 miles below Murghab, it begins to flow through a valley of clay soil, bounded by sandy heights, and gradually opeaing iuto the plain of Merv. Hereahouts, too, it quits the Afghan territory, but the boundary does not seem as yet to beve been precisely fixed. About 100 miles from Panjdeb the river reaches Merp, where formerly there was a grea* dam, securing the fertility of that oasis, the aucleus of ascieat Margiana. This was destrojed by the Amir Massum (otherwise Shsh Murad) of Bokhara, about 1785, when he carried off the whole population into slavery: Beyond Merv the river is lost in the deserto

Provinces avd Places of Note. We do not know the precise divisions maintained under the Afghans, but they coincide generally with the old principalities or khanates, the hereditary rulers of which, in several eases, eontinue in authority under the Afghan governor of Turkc. stan. Bamian, Saighan, and the higher valleys belong, it is understood, to a special command over the Hazara tribes.
I. Irunduz.-Beginning again from the east, the first province is Kunduz, having on the cast Badakhshan, on the west Khulm, on the north the Oxus, and on the south Hindu Kush. The districts of Ifunduz are approximately as follows:-(1.) hunduz, with the chief town of the pro: vince, a mretclied place, as described by Wood, of some 500 or 600 mud huts, intermingled with straw sheds; Uzbek tents, gardens, and corn-fields, and overlooked by a mud fort on an extensive mound. (2.) Hazrat Imam, on the irrigated and fertile Oxus plain. The town, known in the Middlo Ages as Arhang, is described as about the samo size as IKunduz, with a better fort, protected by a wet ditcl. (3.) Baghlân, and (4.) Ghori, in the swampy valley of the Surkhab. (5.) Doshi, further up the samo valley, at the confluence of the Andarab stream. (6.) Killagai and Khinjân, near the lower part of the Andarab-stream. (7.) Andarab, at the foot of the Tul and Kbâmak yasses over Hindu Kush, often supposed to be the Adrapsa of Alexander's historians. This secluded town was a favourite minting place of the Samanid sovereigns of Persia and Turkestan, in the 10 th century, probably owing to the vicinity of silver mines at Parjân. (8.) Khost lies between Andarab and Irunduz. The name often occurs in the history of Baber and bis successors. (9.) Narin and Ish. Kimish lie to the east of Baghlan, at the sources of the Paghlan stream and of the Shorab branch of the Kunduz river. The second name appears to be tho same as $E s k k$ mushk, which Wood applies to a high mountain in this quarter. (10.) Farhang and Châl lic on the borders of Badakhshan, and are utterly unknown. (11.) Tâlikán also lies on the borders of Badakhshan, but is pretty well known, being on the main road between Kiunduz and Faizabad, the eapita\} of Badakhshan. It is now a poor place, but is ancient, and was once famous. A fortress lere stood a long siege from Chinghiz Khan, and the place is mentioned by Marco Polo as Taican. During the rule of Murad Beg of Kunduz this was the seat of a government that ineluded Badakhshan. (12.) Khanabad, on the river of that name, pleasantly elevated above the swampy level of Kunduz, is, or was, the usual summer residence of the chiefs of that territory.
II. Khulm was the rext of the khanates, lying between Kunduz and Balkh. The districts, as far as we know them, are the following:-(1.) Tûshłunghân. The old town of Khulm stood in the Oxus plain, surrounded by watered orchards of famous productiveness; but it lay so exposed to the raids of the Kunduz Uzbeks that the chief, Killich Ali. in the beginning of this century, transferred
his residence to Tashkurghan, 4 miles further south, and just at the month of the defile-a cheerless group of villages, consisting of mud houses with domed roofs, connected by gardens and enclosed by a mud wall; it is supposed to contain at least 15,000 souls, and is a place of considerable trade. (2.) Haibak. The town presents rather an imposing aspect, clustering round a castle of some strength on an isolated eminence; the domed houses, however, are compared to large brown bee-hives. The Khulm river valley here opens out, and is very fertile; the banks are shaded by luxuriant fruit trees. The site is a very ancient one, and, under the name of Samangân, was famous in Persian legend. One traveller describes there a remarkable relic of antiquity called the Takht or Throne of Rustam. This, from the account, would seem to hare been a Buddhist dagoba. ${ }^{1}$ (3.) Khurram Sarbâgh, so called from two villages in the upper defiles of the Khulm river.
III. Balkk. Balkh proper is the populous and wellwatered territory upon the eighteen canals which draw off the waters of the Balkh-ab, and on which there are said to be 360 villages.

No trace has been recovered of the ancient splendours of Bactra, nor do the best judges appear to accept Ferrier's belief that he saw cuneiform inscriptions upon bricks dug up there. A late Indian report by an intelligent Mahommedan speaks of a stone throne in the citadel, to which traditional antiquity is ascribed, but of this we know no more. The remains that exist are scattered over some 20 miles of circuit, but they consist mainly of mosques and tombs of sun-dried brick, and shaw nothing even of early Mahornmedan date. The inner city, surrounded by a ruined wall of 4 or 5 miles in compass, is now entirely deserted; a scanty population still occupies a part of the outer city. In 1858 Mahommed Afzal Khan, ruling the districts of Turkestan on behalf of his father, Dost Mahommed, transferred the seat of the Afghan government and the bulk of the population to Takhtapul, a position which he fortified, some 8 miles east of the old city; and this remains the capital of the Afghan territories on the Oxus.

The only other place of note in the district is Mazar-iSharif, or the "Noble Shrine," on the road to Khulm, Where a whimsical fiction has located the body of 'Ali, the son-in-law of Mahommed. It is the object of pilgrimages, and the scene of a great annual fair. Vámbery speaks of the roses, matchlcss for colour and fragrance, that grow of the pretended tomb.

Of the districts lying on the Balkh river within the hills we know nothing.

Akcha, some 40 to 45 miles westward from Balkh, was an Uzbek khanate before the last Afghan conquest. It is small, but well-watered and populous. The town is fortified, and has a citadel. Accounts differ as to the population; one writer calls them Uzbeks, another Sarak Turkmans.
IV. The provinces known as the Four Domains are :(1.) Shitrghan, some 20 miles west of Ahcha. This was another small Uzbek khanate. The town, which contains about 12,000 Uzbeks and Parsiwans, has a citadel, but is not otherwise fortified. It is surrounded by good gardens, and excellent cultivation, but its water supply is dependent upon Siripul, and, in the frequent case of hostility between the tro, is liable to be cut off. Ferrier speaks highly of the climate and the repute of the inhabitants for valour. Shibrghan (Sapurgan) and its fine melons are mentioned by Marco Polo. (2.) Andkhui, about 20 miles north-west of Shibrghan, forms an oasis in the desert, watered by the

[^34]united streams from Siripul and from Maimana It was once a flourishing city, and the oasis was reckoned to contain 50,000 inhabitants, but the place has scarcely recorered from the destruction it endured at the hands of Yar Mahommed of Herat in 1840. It was at Andkhui that Moorcroft died in 1825 ; but his grave is at Balkh. Tre beck, the last survivor of his party, died and was buried at Mazar. (3.) Jraimana, 105 miles from Balkh, and some 50 south-west of Andkhui, contains some ten or twelve villages or townships, besides the capital, and a population estimated at 100,000 souls. It is a district of considerable productireness, industry, and trade, and the Uzbek inhabitants have a high reputation as soldiers. The chief was formerly a notorious slave-dealer. (4.) Siripul. This khanate iying within the limits of the undulating country south-west of Balkh and east of Naimana, is of about the same calibre as the latter, but somewhat lower in estimated population. Two-thirds of the people are Uzbeks, the rest Hazaras. From the last a tribute of slaves is, or used to be, exacted; and Hazara widows, it is said, were claimed as goverument property, and sold by auction. The town of Siripul is an irregular mass of houses .clustered on the slope of a hill crowned by a fort. Dany tents gather round it also, and Ferrier estimates the population of town and tents as high as 18,000 . The valley below is abundantly watered, and the breadth of orchards and tillage is considerable.

Population. - In the estimate of population cited under Afgeavistan, that of Afghan Turkestan is reckoned at 642,000. This includes 55,000 for Badakhshan (no doubt too low an estimate); and the remainder, for the provinces included under our present article, excluding Hazaras, will be 587,000. Anything but a round number is entirely inappropriate to such an estimate; but we shall probably not be far wrong if we reckon the population at 600,000 .

The Tajiks, or people of I anian blood, are probably the representatives of the oldest surriving race of this region. They are found in some districts of Balkh and valleys of Kunduz. Khost, for instance; is said to be chiefly occupied by therl. Uzbeks seem to be the most numerous race; and there are some other Turk tribes not classed as Uzbeks. ${ }^{2}$ There seem to be a good many families claiming Arab descent; Afghans, especially about Balkh and Khulm; and in the towns some Hindus and Jerrs.

Products and Industry.- We have no means of giving any systematic account of the products of these provinces, either in natural history or industry. Rock-salt is worked at Chal, near the Badakhshan frontier, as well as beyond that frontier. Pistachic nuts are grown largely in the hill country of Kunduz, as well as the adjoining districts of Badakhshan, and the whole supply of India, Central Asia, and Russia is said to be derived from this region. Fruit is abundant and excellent, especially in Khulm and Balkh. Andkhui, before its deciy, was famous for the black sheepskins and lambskins which wo call astrakhan; and also for a breed of camels in great demand. Kunduz produces a breed of horses, highly valued in the Kabul market under the name of Kataghen. Maimana also is famous for horses, which are often exported to India; and is a mart for carpets and textures of wool and camels' hair, the work of Luskman and Jamshidi women. Slavedealing and man-stealing have long been the curse of this region, but late changes have tended to restrict these, and the Russian conquest of Khira mill probably have a most beneficial effect in this respect at least.

History.-Aacient Balkh, or Bactra, was probably one of the oldest capitals in Central Asia. There Persian tradition places the tesching of Zoroaster. Bactriana was a

[^35]prorince of the Achrmenian empire, and probably was occupied in great measnre by a race of Iranian blood. About r.c. 250 , Theodotus, governor of Bactria under the Seleucidir, declared his independence, and commenced the history, so dark to us, of tho Greco-Bactrian dynastics, whose dominions at one time or another-though probably never simultanconsly-touchal the Jaxartes and the Gulf of Cutch. Parthian rivalry first, and then a series of nomad morements from inner Asia, overwhelmed the isolated dominion of the Greeks (circa b.c. 126). Powers rose on the Oxus, known to the Chinese as Yuechi, Kweishwang, Yetha, Tukhiras, and what not; dimly to western Asia and Europe as Kushâns, Haiâthala, Siphthalite or White IIuns, and Tochari. Buddhism, with its monasteries, colossi, and gilded pagodas, spread over the valley of the Oxus. We do not know what further traces of that time may yet be revealed; but we see some in the gigantic sculptures of Bamian. The old Arab historians of the Nahommedan conquest celebrate a beathen temple at Balkh, which they call Neobihâr, which Sir H. Rawlinson has pointed out to have been cerfainly a Euddhist monastery (Nava-Vilira). The name Naobilar still attaches to a village on one of the Balkh canals, thus prescring, through so many centures, the memory of the ancient Indian religion. The memoirs of the Chinese pilgrim Hwen Thsang, in the first part of the 7th century, give many particulars of the prevalence of his religion in the numerous principalities into which the empire of the 'Tukharas had broken up; and'it is remarkable how many of these states and their names aro identical with those which still exist. This is not confined to what were great cities like Balkh and Bamian ; it applies to Khulm, Khost, Baghlan, Andarab, and many miore.

As Maiathalah, or Tokhäristän, the country long continued to be known to Mahou nedans; its political destiny generally followed that of Khorasan. It bore the brunt of all the fury of Chinghiz, and the region seems never to lave effectually recovered from the devastations and mas-
sacres which he began, and which were reneated in degree in succeeding generations. For about a century these Oxus provinces were attached to the empire of the Dehli Moguls, and then fell into Uzbek hands. In the last century they formed a part of the dominion of Ahuned Khan Durrani (sec Aforanistas), and so remained under his son Timur. But during the fratricidal wars of Timur's sons they fell back under the independent rule of various Uzbek chiefs. Among these, the Kataghans of Kunduz were long predominant ; and their chief, Nlurad Beg (1815 to about 1842), for some time ruled kulab beyond the Oxus, and all south of it from near Balkh to Pamir.

In 1850 the Afghans recorered ljalkh onci Khulin; by 1855 they had also gained Akcha and the four western khanates; Kinduz in 1859. They were proceeding to extend their conquests to Badaklishan, when the Amir of that country agreed to pay homage and tribute.

We have noticed, in the conclusion of the article AfgmasIstan, the correspondunce which recently took place (187273) with liussia regarding the recognition of the Oxus as the boundary of Afghan 'Turkestan.

Antiquities.-These are linorm but very imperfectly: The best known, and provably the most remarkable, are the famous colossi at Bamian, with the adjuining innumer. able caves. In the same locality are the ruins of the medireral city destroyed by Cbinghiz, the great fort called Sayadabad, and the ruins of Zohak. At Haibak are numerous caves like those of Bamian. Balkh seems to have little or nothing to show, though probably excaration would be rewarded. The little known or unknown vallejs of Badakhshan probably contain remains of interest, but our only notices of them are so highly spiced with imagination as to be worthless. General Fericer saw remarkable rock sculptures in a defile in the Hazara country, south of Siripul, and curious rock excavations a little further south.
(Wood's Journey, 2d cd., 1873, with Introductory Essay; Ferrier's Caravan Journeys; Burnes's Travels; Indian oflicial documents; Vámbéry's Travels; \&e., de.) (II. y.)

AFIUM-KARA-HISSAR, a city of Asiatic Turkey, in tife pashalic of Anatolia, nearly 200 miles E. of Snıytna, and 50 miles S.S.E. of Kutaiah. It stands partly on level ground, partly on a declivity, and aboye it rises a precipitous trachytio rock 400 feet in beight, on the summit of which are the ruins of ancient castle. From its situation on the route of the caravans between Smyrna and western Asia on the one band, and Armenia, Georgia, \&c.; on the other, the city is a place of extensive trade, and its bazaars are well stocked with the merchandise both of Europe and the East. Opium in large quantifies is produced in its vicinity, and forms the staple article of its commerce; and there are, besides, manufactures of black felts, carpets, arms, and saddlery. Afium contains several mosques (one of them a very handsome building), and it is tho seat of an Armenian bishop. The population is estimated at about 60,000 .'

AFRAGOLA, a town of Italy, in the prorince of Napoli, 6 miles N.N.E. of Naples. It has extensire manufac. tures of straw bonnets. Population of communc (1865), 16,493.

AFRANIUS, Lecius, a Latin poet who lived about a century before Christ. Ife wrote comedies in imitation of Menander, and tras commended by Oivero and Quintilian for his acnte genius and fluent style: .The fragments of his works which are extant bave been collected by Bothe in his Poelce Scenici Latini, and by Neukirch in his De Fatinla Togata Romanorum.

AFRANIUS, Lucius, whose early history is unknown, was a devoted friend and adberent of Pompey, whom he served with distinction as one of his licutenants in the Sertorian and Mithridatic wars. In the year 60 B.c., and chiefly by Pompey's support, he was raised to the consulship, but in performing the cluties of that ofice he showed, like many other soldiers both before and since, an utter ineapacity to manage civil affairs. In the following year, while goremor of Cisalpine Gaul, he had the good fortune to obtain the honour of a triumph, and on the allotment of Spain to Pompey, $55 \mathrm{~B} . \mathrm{c}$., Afranius and Petrcius were sent to take charge of the government of that country. On the ruptnre between Cicsar and Pompey, they were compelled, after a short carnpaign in which they were at first successful, to surrender to Cosar at Ilerda, 49 B.C. and were dismissed on promising not to serve again in the. war. Airanius, regardless of his promise, joined Pompey at Dyrrhachium, and at the battle of Pharsalia, 48 b.c., ho had charge of Pompey's camp. On the complete defeat of Pompey, Afranius, despairing of pardon from Cæsar, repaired to Africa, and was jresent at the battle of Thapsus, 46 B. C., which ruined the hopes of the Pompeians in that part of the world. Escaping from the field with a strong body of cavalry, he was afterwards taken prisoner, along with Faustus Sulla, by the troops of Sittius, and handed over to Cæesar, whose veterans, disappointed at their not being led to immediate execution, rose in tumult and pat them to death.

A F R I C A

TTHIS vast continent, thougn associated from tne dawn of civilisation with traditions and mysteries of the most stimulating kind, has remained until recently one of the least known, and, both commercially and politically, one of the least important of the great divisions of the globe. The knowledge of Africa possessed by the ancients was very limited, owing principally to its physical construction. The great desert, which in a broad belt stretches quite across the continent, forbade every attempt to pass it until the introduction of the camel by the Arabs. The want of any known great river, except the Nile, that might conduct into the interior, contributed to confine the Greek and Roman colonists to the habitable belt along the northern coast. The Phoenicians are known to have formed establishments on the northern coast of Africa at a very early period of history, probably not less than 3000 years ago; and the conquest of Egypt by Cambyses dates as far back as the year B.C. 525 . We may consider, therefore, the coasts of Egypt, of the Red Sea, and of the Mediterranean, to have been settled and well known to the ancient Asiatics, who were constantly passing the narrow isthmus which divided their country from Africa and led them immediately from parched deserts into a fertile valley, watered by a magnificent river. But whether they were much or little acquainted with the western coast, which bounds the Atlantic, and the eastern coast, washed by the Indian Ocean, is a question that has exercised the research and ingenuity of the ablest scholars and geographers, and has not yet been satisfactorily answered. ${ }^{\text {? }}$

This question being one of curiosity rather than utility, we shall only state the case, and the results of the several inquiries, without entering into the merits of the arguments advanced by the different parties. We are tuld by Herodotus, that Necho, king of Egypt, sent out an expedition under the command of certain Phœnician seamen, for the purpose of circumnavigating Africa; and that, on their return, they asserted that they had accomplished this undertaking. Few of the ancient writers give credit to the story; but, among the moderns, the Abbe Paris and Montesquieu have contended that this voyage was actually performed. Isaac Vossius and D'Anville have strong doubts; and Dr Vincent and M. Gosselin maintain that such an expedition, at such a period, exceeds all the means and resources of navigation, then in its infancy. Last of all comes Major Rennel, who, in his elucidation of the geography of Hero. dotus, has done more than all the rest in clearing away the doubts of history; and he argues the possibility of such a royage, from the construction of their ships, with flat bottoms and low masts, enabling them to keep close to the land, and to discover and enter into all the creeks and harbours which any part of the coast might present. At all events, one thing is evident: if such an expedition ever circumnavigated the African continent, the fruits of it have nearly, if not entirely, perished.

About half a century after this supposed expedition, the account of another voyage, down the western coast, is contained in the Periplus of Hanno, which has also called forth many learned and elaborate discussions among modern geographers, some of whom would carry Hanno to the Bight of Benin, others only to Sherbro Sound or the river Nun in lat. $28^{\circ} \mathrm{N}$.

The extent to which ancient discovery proceeded along the eastern coast of Africa, has divided the opinion of the learned nearly as much as its progress on the western coast. Delisle, Huet, and Bochart, made the discovery of the coast to extend as far south as Mozambique and Madagascar.

D'Aurille could trace such discovery no farther than to Cape Delgado; and M. Gosselin contends that the ancients never proceeded down the coast beyond Brava. But Dr Vincent, who has entered more profoundly into the subject than any of his predecessors, and brought a great fund of learning to bear on the question, in his Periplus of thee Erythrean Sea, has with great plausibility extended these boundaries to Mozambique and to the island of Madagascar.

Sketch Map of Africa.
Egypt, under the Ptolemies, the great patrons of science and promoters of discovery, possessing the adrantage of the only great river which falls from the African continent into the Mediterranean, made no progress beyond its ancient boundaries; and though the Romans, who subsequently possessed Egypt, penetrated beyond the limits of their own dependencies, they extended their discoveries no further tha\%. Fezzan in one direction, and, at a later period, beyond Nubia as far as Abyssinia, and the regions of the Upper Nile. We know nothing of the progress made by the Carthaginians in the discovery of Interior Africa; but The Cas. although it has been asserted that their merchants had thaginiana reached the banks of the interior river, which we call the Kawara or Niger, they have left notbing on record that will warrant such a supposition. The story told by Herodotus, of some Nasamonians crossing the desert, and arriving at a large river, can only be applicable to some western arm of the Nile. The people from whom we derive the first information concerning the interior of Northern Africa are the Arabs, who, by means of the camel, were able to penetrate across the great desert to the very centre of the continent, and along the tro coasts as far as the Senegal and the Gambia ou the west, and to Sofala on the east. On this latter coast they not only explored to an extent far beyond any supposed limits of ancient discovery, but planted colonies at Sofala, Mombas, Melinda, and at various other places.

The 15 th century produced a new era in maritime discovery. The voyages of the Portuguese were the first to give anything like an accurate outline of the two coasts,
and to complete the circumarigation of Africa. The discovery of America and the West ludia islands gave rise to that horrid traffic in African negroes, which has since been suppressed; but this traffic has been the means of acquiring a more extended aud accurate knowledge of that part of the coast which lies between the rivers Senegal and the Cameroons, as well as of the manners and character of the people who inhabit this extended line of crast. With the Euglish and French settlements in Africa began a systematic suriey of the coast, and portions of the interior.

The uncertainty and confusion that prevailed in the geography of the interior of Africa induced a few learned aud scientific individuals to form themselves into an assaciation for promoting the expiloration of Inner Africa. This society was formed ia London in 1788, and under its auspices inportant additions were made to the geography of Africa by Houghton, Mungo Park, Hornemann, and Burckhardt. Repeated failures, however, at length discouraged the association from engaging other missionaries, and it subsequently merged in the Royal Geographical Society in 1831.
During the last sixty years more has been done to make as acquainted with the geography of Africa than during the whole of the 1700 previous years, since Ptolemy, taken together. With Mungo Park, strictly speaking, commences the era of unceasing endearours to explore the interior.
Mrungo Park proceeded in 1795 from the river Gambia on the west coast, to the Joliba (commonly called Niger), traced this river as far as the town of Silla, explored the intervening countries, determined the southern confines of the Sahara, and returned in 1797 . In 1805 this adventurous traveller embarked on a second journey in the same regions, for the purpose of descending down the river Joliba to its mouth. This journey added little to the discoveries. already made, and cost the traveller his life., He is ascertained to have passed Timbuktu, and to have reached Boussa, where he war killed by the natives. In 1798 Dr Lacerda, a scientife Portuguese traveller, who had already acquired fame through his journeys in Brazil, made the first great journey in South-Eastern Africa, inland from Mozambique, and reached the capital of the Africau king, known as the Cazembe, in whose country be died.
Hornenzann, in 1796-98, penetrated from Cairo to Murzak, and transmitted from that place valuable information respecting the countries to the south, especially Bornu. He then proceeded in that direction, but it is supposed that he soon afterwards perished, as no accounts of his further progress have ever reached Europe. The first actual crossing of the continent that has been recorded was accomplished between the years 1802 and 1806, by two Pombeiros or mercantile traders in the employment of the Portuguese, who passed from Angola eastward through the territories of the Muata Hianvo and the Cazembe, to the possessions on the Zambeze. In 1816 an expedition was sent out by the English Government, under the command of Captain Tuckey, to the river Congo, which was at that time believed to be the lower course of the Joliba. This was a disastrous undertaking, and the geographical additions were but slight, the river having been ascended a distance of only 280 miles
In 1819 Lyon and Ritchio ponetrated from Tripoii to 3furzuk, and a littie distance beyond that place.

In 1822 Denham, Clapperton, and Oudney set forth from Tripoli in the same direction, crossed the Great Desert, and reached, on the 4th February 1823, the great lake Tsad or Chad. The surrounding countries were explored as far as Sakatu in the west, and Mandara in the south. Tlu is journey was altogether one of the most successful and important into the interior. Oidney died in Bornu, but Clapperton undertook a second journey from the coast of Guinea, crossed the Kawara, and arrived at Sakatu, at which place he
also died. His servant, liichard Lander, returned to Eingland, after having explured a part of the adjoining regions.

Major Laing succeeded in reaching Timbuktu from Tripoli, but was murdered on his return in the desert.
In 1827 and 1828 Caillio set out from the Kio Nunez on the western const, reached Timbuktu, and returned from that place through the Great Desert to Maroceo. A second Portnguese journey was undertaken in 1830 from Mozambique to the Cazenbe's dominions, and Major Monteiro, the leader of the expedition, more fortunate than hiss predecessor Dr_{r} Lacerda, was enabled to complete a map of the country traversed, and to bring back a completa account of this portion of the interior.
The tennination of the Joliba, Kawara, or Niger, remained in obscurity till 1830, when it was ascertained by Lander and his brother, who succeeded in tracing the river from Yaouri down to its mouth. They embarked on a second expedition, which sailed in 1832, for the purpose of ascending the Kiawara as far as Timbuktu. But ouly Rabba was reached, and the gencral results of the expedition wero most disastrous.
The great Niger expedition, similar to the foregoing, Niger ex consisted of three steam-vessels, and was despatched by the pedition Government in 1841, under Captain Trotter. It proved a failure, and resulted in a melancholy loss of life.
In the region between the Kawara and the coast, Mr Duncan, one of the survivors of the Niger expedition, made some additions to our geographical knowledge by his journey to Adafoodia, in 1845-46. This enterprising traveller met with an untimely death in a second attempt in the same region for the purpose of reaching Timbuktu.
The preceding journeys were confined chiefly to the northern and western portions of the continent. A much greater number of travellers explored the regions drained by the Nile, the salubrity of which, particularly of Abyssinia, is so infinitely greater than that of Western Africa, that among the many explorers of the former, a very small proportion have died as compared with the immense loss of life in Western Africa. Among the most distiuguished of the earlier East African travellers are Bruce (1768-73), Browne (1793), who reached Darfur, Burckhardt (1814), Cailliaud (1819), and more recently Ruippel (1824-25), Russegger (1837), D'Abbadic (183844), Beke ($1840-44$), D'Arnaud and Werne on the White Nile (1840-42), and Brun Rollet (1845).
Though the Dutch settlement in South Africa was Southfounded as early as 1650, not much information of the African interior of that portion of the continent was gained till the travellert end of the 18th century, when a series of journeys was commenced by Sparrmann, and followed up by Vaillant, Darrow, Trotter, Somerville, Lichtenstein, Burchell (1812), Campbell, Thomson, Smith, Alexander (1836-37), and Harris.
A station of the Church Missionary Society was estab- Monhbar lished near Mombas, in about $4^{\circ} \mathrm{S}$. lat. on the east coast mission of Africa, in 1845, and the zealous missionaries in charge of it began to make exploring journeys into the interior. Thus, early in 1849, the Rev. Mr Rebmann discovered the great snow-clad mountain of Kilima-njaro, rising on the edge of the inland plateau; and his companion, Dr Krapf, taking a more northerly route, came in sight of a second huge mountain named Kenia, also snow-clad, though directly beneath the squator. Frequent reports reached these missionaries of vast lakes in the interior beyond the mountaine they had discovered, and their information awakened a great interest in this region at home.
About this time an embassy, for the purpose of conchuding commercial treaties with the chiefs of Northern Africa, as far as Lake Chad, by whicin the legitimate trade of these countries should be extended and the system of slavery abolished, was originated by Mr James Richardson, who
left England for this purpose in 1840, accompanied by Drs Barth and Orerweg. The expedition had already almost reached the scene of its labours when Richardson died; Overweg also fell a victim to his exertions, but Dr Barth continued his explorations till 1856. During this time he traversed in many directions almost the whole of the northern Soudan, completing a series of journeys which must always remain most conspicuous in North African travel, and upon which we are still dependent for the greater part of our knowledge of the central negro states.

In the summer of 1849 , Dr Livingstone, who, as an agent of the London Missionary Society, had laboured and travelled in the countries immediately north of the Cape Colony since 1840, began those remarkable journeys in the interior of Southern Africa, which have continued until the present time, and have given to him the first place among African discoverers. The finding of Lake Ngami, the central point of the continental drainage of South Africa, was the great discorery of the first year.
Two journeys from the west coast now claim attention. In 1846 a Portuguese trader named Graça succeeded in again reaching the country of the South African potentate, named the Muata Yanro, from Angola; he was followed by a Hungarian named Ladislaus Magyar, who explored the central country in various directions from 1847 to 1851. Retween 1851 and 1853 Livingstone made two journeys northward from his station in the land of the Bechuanas, and was the first European to embark upon the upper course of the Zambeze. From the Makololo country, in the central part of the river basin, he now led a party of natives mestwards up-stream to the mater-parting of the continent at the little Lake Dilolo, and thence to the western slope, reaching the Portuguese coast at Loanda in 1854.
During 1851 Galton explored a part of the south-western country inhabited by the Damaras and Opampo, from Walfisch Bay to a point in lat. $17^{\circ} 58^{\prime}$ S., and long. 21° E., determining accurately a number of positions in this region. On the south-east, also, Gassiot made an interesting journey from Port Natal north-westward through the mountains to the river Limpopo.
Two most remarkable journeys across the whole continent zilsa Purta now follow in order ; the one, made by Silva Porto, a Portuguese trader, who learing Benguela in 1853, took an eastward route, parallel to but considerably northward of the Zambeze, orer perfectly unknown country. He then rounded the southern end of the Lake Nyassa (afterwards explored by Livingstone), and made his way across the east coast-land to the mouth of the Rovuma river, having spent a year and tro months in his tedious march. The other was executed by Livingstone, who in returning (IS55-56) yy a somewhat more northerly route than that travelled over n going westward to Loanda, descended the Zambeze to its nouth at Quilimane, discovering the wonderful Victoria Falls of the river on his way.
In 1856 an important addition was made to the more :xact geography of Africa, in a survey of the greater part of the course of the Orange river, by Mr Moffat, a son of the reteran South African missionary.

The following year was one of great activity in African exploration. Damara Land, in the south-west, mas iraversed by Messrs Hahn and Rath as far as the southern limit of the Portugues territory at the Cunene river ; Dr Bastian was exploring the interior of Congo and Angola, and Du Chailh had begun his first journey in the forest country of the Fan tribes on the equatorial west coast. Under the auspices of the Royal Geographical Society, Captains Burton and Speke, already distinguished by their perilous journey to Harar, a trading centre in the Somali and Galla country of the east African promontory, set ont from \%anzihar, to ascertain the trutl about the great inland
lakes which had been reported by the Mombas missionaries Their most successful journey (1857-59) resulted in thi discovery of Lake Tanganyika, in a deep basin, betweer 3° and $8^{\circ} \mathrm{S}$. lat., and of the southern portion of a perhaps greater lake northward, supposed by Speke, its discoverer: to be the head reservoir of the Nile.
In a new journey in the Zambeze region in 1859, D1 Livingstone, accompanied by Dr Kirk, traced the Shirs river, a northern tributary of the Zambeze, to its outflom from the Nyassa, the,most southerly of the great Africar chain of fresh lakes.
About this time also several travellers (Petherick (1858), Lejean, Miani, the Poncets, Antinori, Debono, Peney) were adding much to the existing knowlodge of the Upper White Nile from the Egyptian side; and in the north the Algerian Sahara was being explored by the French scientific traveller Duveyrier.
In 1860 Captain Speke, anxious to extend knomledge of the great inland reservoirs which had been discovered in his former jouruey, and to connect them witiz the known countries to northward, accompanied by Captain Grant, again left Zanzibar. Reaching a point on the north-western shores of the great lake which he had previously made known, and which he now named the Victoria ${ }^{2}$ Yyanza, the traveller thence traced the outflowing river to the White Nile at Gondokoro, thus completing a great link in the chain of African discoveries, which binds the country known from the east coast to that explored from the side of Egypto

Meanwhile Dr Livingstone had endeavoured to find a way to his newly-discovered Lake Nyassa from the mouth Liring of the Rovuma, a large river which flows to the Indian stone (th Ocean near Cape Delgado, and which mas also reported to Nyaiss). take its rise in this lake, but the river proved to be unnavigable beyond a point not far from the sea. He returned then (in 1861) to the Shire river; and, carrying a boat past its rapids, launched out to explore the whole length of Lake Nyassa.

A series of important journeys by Gerhard Roblfs had Rohlis now (1861) begun in Marocco and in the Maroccan Sahara; (Marocco and on the equatorial east coast region, Baron ron der ton Decken had extended Rebmann's information in the region Decken. of the snowy mountain, Kilima-njaro.

In the sonth the artist Baines had crossed the Kalahari Baines. Desert from Damara Land to the falls of the Zambeze. In 1862 Petherick made an important journey of exploran tion in the Nile region mest of Gondokoro.

The year 1864 was marked by the discovery of a second great reservoir lake of the Nile, near the latitude of the Victoria Nyanza, by Baker, pushing sonthward from Gon- Baker dokoro. This lake the discoverer named the Albert Nyanza, (Albert During this year also, Rohlfs extended his travels from Lake). Marocco to the oasis of Tuat, thence making his way to Ghadames and Tripoli; in Western Africa, the officers of the French marine stationed at the Gaboon axplored the delta region of the great Ogorai river; and Du Chaillu, Du Cliailu. in a second journey (1864-65), entered the gorilla country of Ashango, south of this river; whilst, on the east coast, Baron von der Decken attempted the narigation of the Juba, but was destined to fall a martyr to the jealousies of the Galla and Somali tribes, whose territories the rives divides.

After a short stay at Tripoli, the traveller Roblfs again turned southward, and in a journey which lasted from 1865 to 1867 , crossed the whole northern continent-first reaching Lake Chad by almost the same route as that for: merly taken by Barth, and thence striking south-westwarc by a new path to the Bight of Benin.

In 1866 some progress was made in discovery in thr west, by the navigation of the Ogowai river by Walker, fo: 200 miles from its mouth. Hahn and Rath also extender
their exploration of Damara I.aud. On the eastern side Messrs Wakefeld and New, the successors of Krapf and Rehmann in the Mombas Mission, made numerous short journeys in the Galla country, and the former collected very valuable native iuformation respecting the countries lying between this conet-land and the great lakes of the Nile basin. In this year also Dr Liringstone had again outered the Reruma river, beginning that greatest of all is journeys from which he has not yet (1873) returned, and the outline of which we shall notice further on.
Still farther south, in 1866-67, the discovery of gold in the mountaics between the Zambeze and Limpopo rivers, by the fioneer Mauch, gave great impetus to exploration in this part of the contiuent. The years 1867-68 brought the memorable Abyssinian campaign, and the accurate records kept of the line of march on the high land from Massowah to Magdala formed a most valuable contribution to Afriean geography.
Most important in the following years (1869-i1) were the researches of the botanist, Dr Selmeinfurth, in the region of the complicated network of tributaries reeeived by the White Nil west of Gondokoro, during which he passed the water-parting of the Nile basin in this direction, and came into a new area of drainage, possibly belonging to the system of Lake Chad ; and the outsetting of a great Egyptian military expedition (1869) by Sir Samuel Baker, for the purpose of exploration of the Upper Nile and of the extermiuation of slave traffic on the river, and to plant Egyptian military posts in the regions visited.
The letters received from time to time in this country 1868), which form part of a new system, connected by the Chambeze (also named the Luapula and Lualaba) river in a basin south and west of that of the Tanganyika. In 1869 Livingstone had made his way to Ujiji, Burton's haltingaluce, on the eastern shore of the Tanganyika. Hence, erussing the lake, he penetrated the dense tropical foresta southern portion of the continent, and during 1870-71 tmeed the vast river (Lualaba) flowing out of the Lake Dioero, in its north and westerly course, to a second, and then a third great expansion-Lake Kamalondo the one, and the other a still unvisited body of water lying in about $3^{\circ} \mathrm{S}$. lat., and 25° or $26^{\circ} \mathrm{E}$. long; also learning, by native report, tbat the Lualaba (which is in all probability the upper course of the mighty Congo river) received a great tributary from south-westward. This south-western arm also expands into a rast lake which Livingstone has named, in anticipation, Lake Lincoln.

Though the untruth of a report of Livingstone's death, near the Nyassa, had been proved by an expedition sent out on his track by the Geographical Society of London in 1867 , yet, at the time of his Janyuema journey, the pro-
bable fate of the great traveller, from whom no news had come out of Africa for more than two years, became a matter of tho greatest anxiety among all classes in Europe aud America. This led to a special mission for Dr Livingstone's aid, generously fitted out at the cost of the proprietor of an American newspaper. Stanley, the leader of this expedition, made a bold march from Zanzibar to Ujiji, on Labe Tanganyika, and was iortunate in meeting the great traveiler there, returning from Manyuema, broken down by the severity of tho task which he had accomplishied, and in need of everything. A boat voyage zound the northern - end of Tanganyika, undertaken in the latter part of 1871 by Livingstone and Stanley together, proved that this great lake has no apparent outlet in a northerly direction, and leaves the question of its drainage in considerable doubt.

Recruited in health, and supplied with stores and followers, Livingstone is believed to have started afresh from Unyanyembe, a point midway in the route from Zanzioar to Ujiji, where he parted with Stanley, in autumn of 1872, to carry out a projected journey, in which he will clear up all doubts respecting the ultimate direction of the great Lualaba river.

Of the expeditions which have been progressing in Africa contemporaneously with these Iater journeys of Dr Living. stone, that of Sir Samuel Baker is perhaps the most important, though its story has until now been one of almost continuous hardship and cisaster. Up to the middle of the year 1870, at which time the expedition, consisting of upwards of 150 C men, with numerous vessels, had safely reached a point on the Nile in $9^{\circ} 26^{\prime} \mathrm{N}$. lat., all appears to have gone well; but beyond this the passages of tho river had become choked with overgrowth of vegetation, and each yard of advance had to be cut throtgh this living barrier ; disease broke out among the troops, and the expedrtion was reduced to the greatest straits In the exd, however, it appears to have been completely successful, and before Sir Samuel Baker's return to Egypt in 1873, the whole country, as far south as the eqnator, had been taken possession of in the name of Egypt, and several garrisons had been planted to maintain the hcld.

Knowledge of the rieh country between the Transvaal Republic and the Zambeze bas extended with wonderful rnpidity, through the exertions of the pioncers Mauch, Mohr, Baines, Elton, and St Vincent Erskine, so that this region has now almost passed out of the eategory of lands in which geographical discoveries can be made. A point of great interest in the progress of the exploration of this country was the discovery by Mauch, 3 a 1871, of the ruins of an ancient city or fortress, named Zimbaoe, certainly not of African construction, about 200 miles due west from Sofala, in lat. $20^{\circ} 15^{\prime}$ S., long. $30^{\circ} 45^{\prime}$ E., through which it has been sought to identify this region with tho Ophir of Scripture. The finding, in 1869, of rich diamond Gelds in the upper valley of the Orango river, and in that of its tributary the Vaal, caused a rush of emigration to these districts, and tended still further to develop this portion of Afriea.

North African exploration is also vigorously progressing. In the west, during 1869, Winwood Reade made a journey from Sierra Leone to the head of the Niger, and from 1867 onwards M. Munzinger, consul at Massowa, has greatly extended our knowledge of Northern Abyssinia. A notablo journey of exploration in the Sahara remains to be mentioned. In 1869 Dr Nachtigal was appointed to carry presenis from the King of Prussia to the Sultan of Dornu, on Lake Chad, in acknowledgment of that potentate's aid to former travellers. Pesides accomplishing this mission, this explorer hasadded very considerably to our knowledge of the Eastern Sahara by investigating the central mountainous country of Tibesti, hitherto only known by report; and in
more recent journeys, still being continued, he has proved the existence of an outflowing river from Lake Chad, which bas hitherto been believed to be a terminal lake, the freshness of its waters having on this account appeared an anomaly in physical geography,

With the double purpose of affording support to Dr Livingstone, and of adding to the geography of Equatorial Africa, two expeditions were fitted out by the Royal Geographical Society in 1872 . One of these, led by Lieut. Cameron, was planned to follow the footsteps of Livingstone in his present journey from the eastern side, entering the country by the ordinary trade route from Zanzibar towaids the Tanganyika. This expedition started from Zanzibar early in 1873 , under the auspices of Sir Bartle Frere's mission, and has now made considerable progress towards the interior., The other, named the "Livingstone Congo Expedition," under Lieuts. Grandy, is to pass from the west coast to the interior, by following the river Congo, which is almost without doubt the lower course of the great Lualaba river, about to be further explored by Dr Livingstone coming to it from the eastern side. The latest accounts from this expedition are also in the highest degree favourable, and an advance of uprards of 150 miles has already been made from Loanda. A new expedition, under the leadership of the indefatigable traveller Rohlfs, is now in preparation, and is destined to explore the unknown portions of the Libyan desert.

Thus the exploration of the great continent is slowly advancing year by jear, but with earnest and unceasing progress. As yet the only portions of Africa of which we possess any approach to an accurate topographical knowledge are, the Cape Colony and Natal under British rule in the south, the French colony of Algeria, the Portuguese possession of Angola, and Egypt and Tunis, dependent on the Turkish Empire, in the north.
Throughout the rest of the continent, a network of routes accomplished by travellers gives in most parts the great outline of its features; where these lines interlace more closely, as in the South African Republics, and in Abyssinia, the general aspect of the land is now so well knowa as to preclude the possibility of any jmportant geographical discorery there; elsemhere, however, the gaps between the tracks are wider. In the rast inhospitable region of the Sahara there are great areas still unknown to cirvilised man, and the equatorial region of dense forests in Central Africa is still one of the greatest terrce incognitce of the globe.
The origin and meaning of the name of this great continent has been a fertile subject for conjecture among philologists and antiquaries. By the Greeks it was called Libya, $\Lambda \iota \beta \dot{\eta} \eta$, and by the Romans Africa. Varro believed he had found the etymology of the former in Libs, the Greek name of the south wind; and Servius, the scholiast on Virgil, proposed to derive the other from the Latin word aprica (sunny), or the Greek word a-phriké (without cold). It is more probable that the name Libya was derived by the Greeks from the name of the people whom they found in possession of the country to the westward of Egypt, and who are believed to have been those that are called in the Hebrew Scriptures Lehabim or Lubim. With respect to the mord Africa, Suidas tells us that it was the proper name of that great city which the Romans called Carthago, and the Greeks, Karchedon. It is certain, at least, that it was applied originally to the country in the immediate neighbourhood of Carthage, that part of the continent first known to the Romaus, and that it was subsequently estended with their increasing knowledge, till it came at last to include the whole continent. Of the meaning of the name, the language of Carthage itself supplies a simple and natural-explanation; the word Afrygah, signifying a separate establishment, or in other words a colony, as

Carthage was of Tyre. So that the Pbœenicians of old, at home, may have spoken of their Afrygah, just as wo speak of our colonies. Be that as it may, the Arabs of the present day still give the name of Afrygah or Afrikiyah to the territory of Tunis. It may also be remarked, that the name seems not to have been used by the Romans till after the time of the first Punic war, when they became first acquainted with what they afterwards called Africa Propria.
Africa lies betreen the latitudes of $38^{\circ} \mathrm{N}$. and $35^{\circ} \mathrm{S}$., and is of all the continents the most truly tropical. It is, strictly speaking, an enormous peninsula attached to Asia by the isthmus of Suez. The most northern point is the Cape, situated a little to the west of Cabo Blanco, and opposite Sicily, which lies in lat. $37^{\circ} 20^{\circ} 40^{\prime \prime} \mathrm{N}$., long. 9° $41^{\prime} \mathrm{E}$. Its southernmost point is Cabo d'Agulhas, in 34° $49^{\prime} 15^{\prime \prime}$ S. ; the distance between these two points being 4330 geographical, or about 5000 English miles. The westernmost point is Cabo Verde, in long. $17^{\circ} 33^{\prime} \mathrm{W}$., its easternmost Cape Jerdaffun, in long. $01^{\circ} 21^{\prime}$ E., lat. $10^{\circ} 25^{\circ}$ N., the distance between the two points being about the same as its length. The western coasts are washed by the Atlantic, the northern by the Meriterranean, and the eastern by the Indian Ocean.
The form has been likened to a triangle, or to an oval, Form but such a comparison is scarcely warranted, it being of an irregular shape, the northern half rounding off, the southern one contracting and terminating in a point.

The superficial extent of Africa has never been accurately Supericias determined, but may be taken at $9,858,000$ geographical ertent square miles, exclusive of the islands. It is larger than either Europe or Australia, but smaller than Asia and the New World.

The coast line of Africa is very regular and unbroken, Coast line presenting few bays and peninsulas. The chief indentation and indenis formed by the Gulf of Guinea, with its two secondary tations. divisions, the Bight of Benin and the Bight of Biafra On the northern coast, the Gulf of Sidra and the Gulf of Kabes must be mentioned, and on the eastern coast the Gulf of Arabia.

The physical configuration may be considered under two Physical heads, the great lower-lands and plains of Northern Africa, configura. and the great table-lands, with their mountain ranges and tion, groups, of Central and Southern Africa. The great northern lomer-land comprises the Sahara, the Lake Chad region, and the valley of the Lower Nile. The Sahara is by no means a plain throughout, but for the greater part it rises into table-lands, interspersed with mountain groups of 6000 feet elevation, and probably more, and the term lower-lands can only be applied to it in a general way, to distinguish it from the more elevated region to the south.

The Sahara has often been pictured as a monotonous and immense expanse of sand; but nothing could be more erroneous, as the greatest rariety exists in the physical configuration of its surface, as well as in its geological features. Our knowledge is as yet too scanty to enable us to trace its features in every part. On the north, this great desert is fringed with extensive table-lands, which in some places rise abruptly from the Mediterranean, as the great plateau of Barbary, extending through Marocco, Algeria, and Tunis, and the table-land of Barca, elerated 1500 feet, and gradually descending tomards the Delta of the Nilo, This elerated ground is succeeded to the south by a depressed region, which extends from the Great Syrtis or Gulf of Sidra, in a gencral direction as far as Middle Esypt, and comprises the oases of Augila and Siwah So greatly depressed is this region, that the level of the vasis of Siwah is 100 feet, and in one place (Bahrein) even 167 feet below the lcvel of the sea. The western portions of this country, betwecn the oases of Augila and Siwah, esplored in

1869 by the traveller Rohlfs, were found to be everywhere from 100 to 150 feet beneath the level of the Mediterranean; and M. do Lesseps, in conducting a survey from tho Egyptian side, found the castern part to be much beneath the level of the Nile. Here then must be one of the greatest areas of depression in the land of the globe, comparable with that which surrounds the Caspian Sea This depressed region is again followed by a table-land of considerable extent and midth, extending from the Gulf of Kabes in a southerly direction, along the Tripoline shores, and probably traversing, in the same direction, the Libyan Desert, and reaching as far as the Nile, near the first cataract. Its north-western part, as far as Sokna, consists of the Hamadah, a stony, dreary, and extensive table-land, of from l'500 to 2000 feet high, "which seems to be like s. broad belt intercepting the progress of commerce, civilisation, and conquest, from the shores of tho Mediterranean to Central Africa." Near Sokna this plateau breaks up and forms what aro called the Jebel-es-Soda, or Black Mountains, a most picturesque group of cliffs; and again, on the route from Murzuk to Egypt, it also breaks into huge cliffs, and bears the name of El-Harouj. The whole of the central portion of the Northern Sahara, as far south as the plateau of Air or Asben, is occupied by similar bare table-lands, with lomer areas of sand dunes betreen. Numerous wadys, the ouly inhabited parts of the country, intersect the slopes of these plateaux. The country of Ahaggar, betreen 23° and $29^{\circ} \mathrm{N}$. lat., and $5^{\circ} \mathrm{E}$. long., appears to form the centrel elevation from which the greater of these dry water-courses radiate ; from it a scries of long wadys-one of them, the wady Rharis or Igharghar, being about 600 miles in length-run northward towards a depressed country which lies inland from the Gulf of Cabes, and contains several salt lagoons, covered with a few feet of water in winter, but dried up in summer, and lying considerably below the Mediterranean level. Other wadys radiate, west and south-west from Ahaggar to the unknown region of the Sahara, which lies between this and the northern bend of the Niger. The most truly desert region of the Sahara is an irregular belt of shifting sand dunes, the "Erg" or "Areg," which stretches from the lagoons above referred to near the Mediterrancan coast sonth-westward to near the river Senegal and the Atlantic, in an unbroken chain for upwards of 2000 miles, and having an average width of perhaps 200 miles. In this sand belt the wadys of the inward slope of the platean of Barbary terminate, excepting the Wady Saura, which crosses the Erg to the important oasis of Tunt, near the centre of its sonthern border, and the Wady Draa, which turns to the Atlantic coast. From Wady Draa a great plain extends along the western shore as far as the river Senegal, and probably continues as such to the east torards Timbuktu, and theace to Lake Chad. Thus it appears that the western half of the Sahara is surrounded by a broad belt of plains and depressions, the central parts being formed by extensive table-lands, with occasional mountain knots, such as that which forms the fertile kingdom of Air and Asben, the culminating points of which aro from 4000 to 5000 feet high.

The eastern portion of the Sahara appears to have nearly the sume general elevation as the western half, and near its centre several fertile mountain regions, comparable mith that of Asben, are known. Such is the mountainous country of Borgu, north-east of the kingdoms which surround Lake Chad, and Tibesti, north of it, in the centre of the Tibbu district, recently explored by Dr Nachtigal, who found rich regetation and abundant animal life in the valleys of this mountain group.

To the south and east of the region just described Africa may be considered as one connected mass of elevater
land, comprising the most extensive table-lands, as well as high mountain groups and clains.

The great mass of the African plateau land is to southward of the 10 th parallel of N. latitude, but it is prolonged on the castern sido almost to the north coast of, the continent by the wedge-shaped table-land of Abyssinia, the highest surface in Africa, and by the mountains which extend from it between the lower course of tho Nile and the Red Sea. The terminal point of the high land in this direction may be said to be Jebel Attaka, which rises immediately west of Suez to a height of 2640 feet. From this point to the southern extremity of the continent the eastern, and generally higher edge, of the great plateau runs in an almost unbroken line. Passing southrards along its margin, the most prominent heights before the table-land of Abyssinia is reached are Mounts Elba, 6900, and Soturba, 6000 feet in elevation, near the middlo of the African coast of the Red Sea. There may, however, be greater heights in the little known region of Nubia, which lies between these mountains and the Nile.

The eastern slope of the Abyssinian plateau begins immediately south of the port of Massowah, and is a uniform line of steep descent, unbroken by any river, falling abruptly from an average beight of 7000 feet to tho depressed plain which here skirts the coast of the Red Sea. This edge, which extends southward for at least 800 miles, forms the water-parting of the rivers which have furrowed deeply into the opposite slopes of the plateau, and appears to be higher than the general. surface of the country; yet soveral lofty gromps of meuntains rising from the level of the high land attain a much greater elevation, and Mount Abba Jared, tho highest known point, is estimated at 15,000 feet abovo tho sea. Between the most. southern part of Abyssinia which is known and the equator, where the edge of the plateau has again been partly explored, a long space of unknown country intervenes; but there is every reason to believe that the slope is continuous. Mount Kenia, 18,000 feet, and Kilimanjaro, 18,715 feet, the bighest points in all Africa, mark the eastern edge under the equator; further south on the inland route from Zanzibar to the Tanganjika, the edge is known as the Rubeho Mountains, with a height of 5700 fect at the pass by which they are crossed on the caravan route. Still further, the edge is again known where it forms a rampart, called the Njesa, ralling in the Nyassa Lake. From this point Mount Zomba, 7000 feet high, near Lake Shirrra, Mount Milanje, 8000 feet, and Mount Clarendon, 6000 feet, carry it south to where the Zambeze river makes the first break in its uniform line. The narrows and rapids of Lupata, below the town of Tete, mark the point at which the river breaks through the plateau land to the coast slope beneath it. Passing the river, tho castern edge is amin followed in the Mashona and Matoppo Mountains (1200 feet) of Mosilikatse's kingdom, from which heights the chief tributaries of the Limpopo river flow. At the headwaters of that river the platean edge forms the Hooge Veldt of the Transvaal Republic which joins with the Kathlamba or Drakenberg. The portion of the edge which bears this name is specially prominent: it runs southward in a huge wall of rocky crags which support the table-land behind for 500 miles, almost parallel with the coast, and at a distance of 150 miles from it, haring Zulu Land, Natal, and Caffraria on the slopes of the spurs which it throws down to the coast. In the Transsaal Republic, where the Drakenberg joins the Hooge Veldt, the edge attains a height of 8725 feet in the summit named after the explorer Manch, but it is highest where it forms the interior limit of Natal, and where Cathloin Peak rises to 10,357 feet above the sea.

As in Λ byssinia, so here, this part of the eastern platean
edge is the great mater-parting of the continent, and the streams which form the Orange river flow down its inward slope. Thare is no break in the continuance of the edge where it passes round frum the Drakenberg to form the inmost and highest of the alternate ridges and terraces of the Cape Colony. It is now named in successive parts Southern from east to west the Storm Berge, the Zuur Berg, Schnee edge of the Be:ge, Nieure-veld, and Rogge-veld, the last-named porriatean. tion of the eflge turning northrrard with the bend of the western coast. Iis greatest height within the Cape Colony is in Compass Berg, the summit of the Schnee Berge, 8500 feet above the sea.
The outer terraces of the Cape Colony, in which two chief ridges may be traced, lie closea together, and much nearer the coast; between these and the inmost or chief edge is the dry elerated region known as the Great Karroo. Their elevation is also very considerable, though they are broken through by lines of drainage sloping from the clief edge; the part of the middle ridge, which is named the Little Zwarte Berge, attains 7628 feet, and several points in both are uprrards of 6000 feet above the sea. Table Mountain, a well-knomn and flat-topped mass of granite overhanging Cape Town, 3550 feet high, is the nucleus of the peninsula which extends south to form the Cape of Good Hope, but is altogether separated from the mountain ridges of the colony.

reter.

The western edge of the great Africau plateau is generally elge of the lower than the eastern, siuce the whole slope of the coutinent fatean is more or less from the great heights on its eastern side, towards the west, but it is also clearly traceable, and of great beight throughout. Founding the western side of the Cape Colony, the three ridges abore noticed run together, and decrease somewhat in elevation as the mouth of the Orange river is approached. Their eleration at the point of union in Little Namaqua Land is stilt very considerable; and here Mount Welcome attains 5130 feet, and Yogelklip, to north of it, 4343 feet above the sea. Beyoud the Orange river in Namaqua and Damara Lands, the restern edge centinues in one or more terraces parallel to the coast. Mount Omatako, in the latter country, rises to $\$ 800$ feet. Northward, through Benguela and Angola, a more broken series of ridges and terraces mark the descent from the interior plateau, and the great Congo river breaks througl to the coast-land at the place where it forms the cataracts of the narrow gorge of Yellala. Sierra Complida is the name given by the Portuguese to that part of the westera edge which runs between the Congo and the rapids of the lower Ogowai river on the equator. On the plateau edge at the southeru side of this river, Du Claillu has made known a nountain of 12,000 feet in elevation; and the furthest point which has been reached on the Ogowai was in the ricinity of high mountains. Passing the Ogowai, and following the coast of the Bight of Biafra, the elge is now knuwn as the Sierra do Crystal. The Camaroon unountains, at the lead of the gulf, form a high peninssula of volcanic mountains, rising to 13,700 feet; but are isolated from the piateau lands, and belong rather to the remarkable line of solcanic heights which shorts itself in the islands of Fernando Po, Prince's Island, St Tkomas, and Annobon, stretching array into the ocean in the direction of St Helena. From the Sierra do Crystal the plateau edge inclines towards the lower course of the river Niger to a point above its delta, and below the conflucuce of the Benue. and then turns abruptly to the east.

The heights which skirt the northern coast-land of the Gulf of Guinea, and which stretch as far as the head-waters of the Senegal and Gambia. and iu the inner slope of which the N-iger also Las its sources, nay be considered as an extension from the great plateau. But they are of snaller general elevation; and that best known part of the ridge, which has the name of the liong Mountains, is apparenily not higher thau irom 2000 to 3000 feet

The nurthern edge of the great Africau platean is almost unknown; but there are evidences that it runs eastrard between the 4th and 8th parallcls of N. latitude, to a point at which it is well known, and where the Nile falls over its slope, forming the succession of rapids above Gondokora The character of the upper Benne river is that of a mountainborn river; and Mounts Alantika, 10,000 feet high, and Mindif, 6000 feet, which rise to southward of Lake Chad, seem to be tine outliers of the plateau edge in which the Denue has its sources. Beyond the Nile the margin of the plateau curves northward, to form the inner slope of the Abyssinian table-land.

The general elevation of the surface of the great African platean, the limits of which have now been traced, may be taken at from 3003 to 4000 feet above the sea; but its surface presents very great undulations, from the depressiuns which are occupied by some of the great lakes, to the high mountains which rise above its average level. The most prominent of these interior masses yet known are the Blue Mountains, discovered by Baker, rising from the western shore of the Albert Lake to a height of perhaps 10,000 feet, and which are believed to extend scuthward to unite with the Balegga Mountains, made known by Livingstone in his journey of 1871, north-west of Lake Tanganyika; these again are beliered to join with the mountains which rise midway between the Vietoria, the Albert Nyanza, and the Tanganyika, dividing the drainage to these vast lakes, and rising here in Monnt M'fumbiro to upwards of 10,000 feet. Another great central line of heights which also had an important part in directing the water-shed of the interior of South Africa, runs from the north of the Nyassa Lake, where it is named the Lobiss plaieau, through the Muclinga Mountains, which separate the drainage of the Lualaba and its lakes from that of the Zambeze basin, westward to the heights in the far interior of Angola, known as the Mossamba Jountains, aud froin which rivers flow in all directions.
The plateau of Barbary, in the north of the coutineat, Platean of beyond the lower land of the Sahara, is a distinct and Barhary. separate high land, stretching from. Cape Bon, on the Mediterranean coast opposite Sicily, in a south-westerly direction to the Atlantic coast, thronglı Tunis, Algeria, and Marocco. The eastern portion of it in Algcria and Tunis rises in a broad plateau from 2000 to 3000 feet in general height, with outer heights, enclosing au elerated steppe, at a distance of about 100 miles apart. On the west, where it enters Marocco, these outer ridges draw tugether and form the high ranges of the Atlas Mountains, rising to a much greater eleration, and attaining 11,400 feet in the summit named Mourt Miltsin.
The African continent, as far as it has yet been explored, seems to be the portion of the globe least disturbed by rolcanic action. The known active voleanoes in the continent are those of the Camaroon Mountains, cn the coast of the Gulf of Cuinea in the west, and the Artali rolcano in the depressed region of the salt desert which lies between the Abyssinian plateau and the Red Sea. This latter rolcano is probably a part of the system with which the rolcanic island of Jebel Tur, in the Red Sea, near the same latitude, is connected. One other active rolcano only is known by report,--the Njemsi volcano, in the country between Monnt Kenia and the Victoria Lake. Shocks of earthquake appear to be almost uuknown in any part of the continent. It has been pointed out by the late Sir Roderick Murchison that the older rocks which are known to circle round the continent, unquestionably included an interior marshy or lacustrine cuuntry, and that the present centre zone of maters, whether lakes, rivers, or marshes, extending from Lake Chad to Lake Ngami, aie hut the great modern residual phenomena of thost:
of a mesozoic age. The surface of the South African continent has not been diversified in recent times by the outpouring of lava streams, or broken un by the efforts of subterranean heat to escape. Nor has it been subjected to those great oscillations by which the surfaces of many other countries have been so placed under the waters of the ocean as to haro been strewed over with erratic blocks and marine exuvix. The interior of Sonth Africa may therefore be viewed as a country of very ancient conservative terrestrial character. Knowledge of the special geology of Africa is yet confined to the few parts of the continent in which Europeans have permanently settled. In this respect the sonthern region of the Cape Colony and Natal have adranced furthest, nnd their geological features have been mapped out with some accuracy. Elsewhere in the continent, excepting in Algeria and Angola, light has only been thrown along the line followed by the few explorers who have given attention to this suibject.

Ainong the minerals of Africa, salt is videly distributed, tnough in somo districts wholly wanting. Thus in the Abyssinian high land the salt, which is brought up in small blocks from the depressed salt plain on the Red Sea coast beneath, is so valued as to be used as a money currency; and in the native kingdoms of South Central Africa, the salt districts aro royal possessions strictly guarded. Metals seem nowhere very abundant. Gold is perhaps the most geuerally distributed. The gold-fields of tha Transvaal Republic and of the country which extends thence to the Zambeze, are numerous; but no yield has as yet been discovered of sufficient quantity to overcomo the difficulties of working, and of transport to the distant sea-ports, to which no navigable rivers lead from this region. Copper is known to exist in large quantities in the mountains of native kingdoms of the centre of South Africa; and one of the objects of Dr Livingstone's present journey is to visit the fumed copper country of Katanga south-west of the Tanganyika Lake. The diamond-fields in the districts of the Vaal and Orange rivers north of tho Cape Colony are now steadily worked, and give good returns.

Afriea is the only one of the continents of the globe which lies equally to north and south of the equator, and the portions of it which extend beyond the tropics do not advance.far into the temperate zones. From this it results that Africa, besides being the warmest of all the continents, has also the most equal distribution of the sun's heat during the seasons over the parts which lie north and south of the central line. Winds and rain, depending on the distribution of heat, are also correspondingly developed in these two great divisions of the continent, and the broad landscape zones, passing from humid forest to arid sandy desert, also agree exactly with one another north and south of Equatorial Africa.
of the giant trees falls across the road, it forms a wall breast ligh to be climbed over, and the mass of tangled ropes brought down makes cutting a path round it a work of time which travellers never undertake.". Here there is a.double rainy season, and the rainfall is excessive. To north and south of this central belt, where the rainfall diminishes, and a dry and wet season divides the year, the forests gradually open into a park-like country, and then merge into pastoral grass-lands. In North Africa thip pastoral belt is oceupied by the native states of the Soudan, from Abyssinia, westreard, in the parallel of Lako Chad, to the Gambia on the Atlantic coast; and corre. sponding to this in the south, are the grass-lands stretching across the continent from the Zambeze to southern Angola and Benguela. The pastoral belts again gradually pass into the dry, almost rainless desert zones of the Sahara in Deserts the north, and the Kalahari desert in the south, which present many features of similarity.

The extremities of the continent, to which moisture is carried from the weighbouring oceans, again pass into a sccond belt of pastoral or agricultural land, in the northward slopes of the plateans of Barbary, Marocco, Algeria, and Tunis, corresponding with the seaward terraces of cultivated land in the Cape Colony in the south.

Taking a broad view of the hydrography of Africa, there are two great areas of continental drainage, one in the north, the other in the south, from which no water escapes directly to the ocean. These correspond almost exactly with the two desert helts of the Sahara and the Kadahari above described. The whole of the remaining portions of the continent, its forests and pastoral districts, in which the greater rainfall gives greater power to the rivers, are drained by streams which find their way to the ocean on one side or other, generally forcing a passage through some uatural or waterworn gorge in the higher circle of mountains which run round the outer edges of the great plateat.

By far the larger portion of the oceanic drainage of the continent is to the A tlantic and its branch the Mediterranean, to which the Nile, Niger, Ogowai, Congo, and Orange rivers flow. The great rivers which drain on the opposite side, to the Indian Ocean, are the Juba, Zambeze, and Limpopo; whilst the northern continental basin, by far more extensive than the southern, has only one great river, the Shari, which supplies Lake Chad.

It must be noticed that the capabilities of the African rivers, as highways of approach to the interior of the continent, are exceedingly small in comparison with those of the other great continents of the globe, most of them being either barred at their mouths, or by rapids at no.great distance from the coast. It is owing to this physical cause mainly that the African continent has reuained for so many centuries a sealed book to the civilised world. On the other hand, it must be observed, that when these outer barriers have been passed, the great interior of the land, in its most productive regions, possesses a network of vast rivers and lakes, unsurpassed in extent by those of any country of the world, by means of which the resources of Central Africa may in future be thoroughly developed.

The Nile is the oldest of historieal rivers, and afforded the only means of subsistence to the earliest civilised people on carth, and yet the origin of this river remained an enigma almost to the present day. Though it drains a larger area than any other river of Africa, upwards of $1,000,000$ square miles, and in this respect is one of the largest rivers of the globe, the Nile, passing for a great portion of its lower course through the desert belt of North Africa, and receiving no tributaries there, loses much of its volume by evaporation, and is far surpassed in the quantity of water conveyed to the ocean by the Congo, in the moist equatorial zone. The great labours of Dr

Livingstone, in the lake region of Central Africa, have so narrowed the space within which the sources of the Nile can exist, that, though no traveller has yet reached the ultimate feeders of the great river, their position can now be predicated almost with certainty. The limit of the Nile basin on the south is formed by the high mountains which rise to westward of the Albert Lake, and which divide between this great reservoir and the Tanganyika, extending eastward to the plateau of Unyamnezi, on the northern side of which the Victoria Nyanza lies. The ultimate sources must then be the feeders of these great equatorial lakes, the Victoria and Albert. The river issuing from the former lake, at the Ripon Falls, 3300 feet above the sea, to join the northern end of the Albert Nyanza, may be considered as the first appearance of the Nile as a river. At the Ripon Falls the overflow is from 400 to 500 feet in breadth, and the descent of 12 feet is broken in three places by rocks. Further down, where the river turns westward to join the Albert Lake, it forms the Karuma and Murchison Falls, the latter being 120 feet in height. From the Albert Lake, the Nile, called the Kir in this part, begins its almost due northward course to the Mediterranean, and has no further lake expansion. Between the Albert and Gondokoro, in $5^{\circ} \mathrm{N}$. lat., which lies at 2000 fcet above the sea, the Nile descends at least 500 feet in a series of rapids and cataracts. Beyond Gondokoro, up to which point it is navigable, it enters the northern lower land of Africa, which is here a region of swamps and forests, and several tribntaries join it from the west. The largest of these, named the Bahr-el-Ghazal, unites with the main stream below the 10th paraliel ; and, not much further on, a main tributary, the Sobat river, joins the Nile from the unknown region which lies to the sontheast. Hence, onward, the Nile is known as the Bahr-elAbiad or White River. The two remaining great tributary rivers descend from the high land of Abyssinia on the east. The first of these, the Bahr-el-Azrek or Blne River, its waters being pure in comparison with those of the Nile, has its source near Lake Dembea or Tzana, through which it flows, in the western side of the Abyssinian platean, 6000 feet above the sea; forming a semicircular rarve in the plateau, the Blue Nile runs north-westward to the confluence at Khartum, 1345 feeet above the sea. Between this point and the union of the next tributary, the Nile forms the cataract which is known as the sixth from its mouth. In about $18^{\circ} \mathrm{N}$. it is joined by the Atbara or Black River, the head stream of which is the Takkazze, flowing in a deep cut valley of the high land. This tributary is named from the dark mud which it carries from the high land, brought down to it by streams which swell into rushing torrents in the rainy season. It is to these rivers thạt the fertility of Lower Egypt is mainly dne, for each year a vast quantity of Abyssinian mud is borne down to be spread over the delta. Hence the Nile pursues its way in a single line through the dry belt of desert to the Mediterranean without a single tributary, descending by five cataracts, at considerable distances apart. The delta of the Nile, in which the river divides into two main brancles, from which a multitude of canals are drawn off, is a vide low plain, occupying an area of about 9000 square miles. The most remarkable circumstance connected with the delta is the anuual rise and overflow of the river, which takes place with the greatest regularity in time and equality in amount, beginning at the end of Jome, and subsiding completely before the eud of November, leaving over the whole delta a layer of rich fertilising slime.
The Sheliff in Algeria, and the Muluya in Eastern Marocco, are the chief streans flowing to the Mediterranean from the high land of Barbary.

Passing round to the Atlantic system, the Sebu, the

Ummer Rebia, and the Tensift, from the Atlas radge, are permancnt rivers flowing across the fertile plain of Western Marocco, which they serve to irrigate. Next is the Wady Draa, a water-conrse which has its rise on the innef slope of the high land in Marocco, and which bends round through the Maroccan Sahara to the Atlantic, near the 28th paralleL Its channel, of not less than 500 miles in length, forms a long oasis in the partly desert coungitry through which it flows, and water remains in its bed nearly throughout the year.

A stretch of .1100 miles. of waterless coast, where the desert belt tonches on the Atlantic, intervenes between the Draa and the Senegal river, at the beginning of the pastoral belt in lat. $15^{\circ} \mathrm{N}$.
The Senegal rises in the northern portion of the belt of mountains which skirt the Guinea coast, and has a northwesterly course to the sea. During the rainy season it is navigable for 500 miles, from its mouth to the cataract of Feloo, for vessels drawing 12 feet of water, but at other times it is not passable for more than a third part of this distance. The Gambia has its sources near those of the Senegal, and flows westward in a tortuous bed over the plain country, giving a navigable channel of 400 miles, up to the Falls of Barra Kunda. The Rio Grande. fi mm the same heights, is also a considerable river.
The Niger is the third African river in point of ares of drainage and volume; it is formed by the union of two great tributarics, the Quorra and Benue,-the fermer from the west, the latter from the country in the east of the river basin. The Quorra, called the Joliba in its apper course, bas its springs in the inncr slope of the mountains which give rise to the Senegal and Gambia, not far from the Atlantic coast. At first its course is north-eastward to as far as the city of Timbuctu, on the border of the desiert zone ; then it turns dne east, and afterwards south-east to its confluence with the Benue, at a point 200 miles north from the coast of the Gulf of Guinea. The chief tributary of the Quorra is the Sokoto river, coming from the elevated country which forms the water-parting between the Niger basin and that of Lake Chad on the east, and its conflueuce is near the middle of the portion of the channel of the Quorra which bends to south-east.
At a distance of about 100 miles from its sources, the traveller Park, the first European who reached the Joliba, found it flowing in a wide fetcile valley, and navigated by canoes which iept up a constant traffic. Above Timbuc tu' the commerce of the river is busily carried on in bargea of 60 to 80 tons burden; further on, where the rives touches upon the desert belt in the most northerly portion of its coursc, its fertile banks form the most marked contrast to the arid desert lands beyond. From the confluence of the Sokoto to the union with the Benue, the river course is only mavigable after the rainy season, since at other times rocks and shoals interrupt the passage. The sources of the Benue are unknown as yet, bnt it is believed to have its rise in the northern edge of the great plateau ol Southern Africa, almost due south of Lake Chad; its known course is westward, and at the furthest point to which it was easily navigated by the traveller Barkie, nearly 400 miles from its confluence with the Kawara or Quorra, it was stibl half a mile in widtly and about 10 feet in average depth, flow. ing through rich plains. From the confluence of the Quorra and Benue the Niger has a due south course to its delta, and the united river lias an avcrage width of about a mile. At a distance of 100 miles from the sea, minor branches which enclose the delta separate from the main stream on each side. The delta is much more extensive than that of the Nile, and measures about 14.000 square miles of low alluvial plain, covered with forest and jungle, and com. pletely intersected by brauches from the main river, the outmost of which reach the see not less than 200 mikes
apart. Unliko the Nile, the Niger possesses one main shanuel through the centre of the delta, called at its mouth tho Nun river.

Old Calabar river, the Camaroon river, and the Gaboon, are the best known of a number of wide inlets or estuaries of the sea, which occur on the west coast immediately north of tho equator; but these are merely the receptacles of a number of minor streams, not the mouths of great rivers, as at one time supposed.

The Ogowai (pron. Ogowee) river, the delta of which forms (inpe Lopez, immedaitely S . of the equator, is a great struan which is believed to drain a large area of the forest zone between the Niger and the Congo; as yet, its lower cuast is only knuwn to a distance of 200 miles from the sea. Abuve the delta the main stream of the river, named the Okanda, breaks through the edge of the plateau, and is joined by the Onango, a tributary from the coast range of the Sierra Complida. Below this confluence the river is a mile and a half in average width, its depth varying from 15 to 50 feet. The delta is formed by the two main branches into which the Ogowai divides at about 30 miles from the coast, and is a swampy flat, covered with mangroves.

Tho Congo or Zaire must be considered the second river of Africa in point of area of drainage, and it is the first in respect of the rolume of water which it discharges to the ocean. There remains but little doubt that the head streams of this vast river are those which supply the great lacustrine system discovered by Dr Livingstone in his recent journeys south and west of Lake Tanganyika. Through these lakes the river, which rises in the upland north of Lake Nyassu, named in different parts of its conrse the Chambeze, Laapula, or Lualaba, Hlows in great bends to west and northward, to where it passes into the unknown comntry still to be explored in the heart of the contiment. The Lualaba has a great tributary named the Lufira, from the south; and it is almost certain tlat the Kassabi river, which springs in, the Mossamba Mountains, in the interior borders of Angula, is also one of the feeders of this grent river. The Guango river, rising in the same mountains, nearer Angula, must also join the Cungo lower domu in its valley. At the furthest point on the Lualaba reached by Livingstune, in about lat. $6^{\circ} \mathrm{S}$. and lung. $25^{\circ} \mathrm{E}$., the great river had a breadth of from 2000 to 6000 yards, and could not be furded at any season of the year. Every circumstance connected with this river-its direction, the time of its annual rising, and the volume of its water which could be discharged by the Congo mouth alone-puint to its identity with this river. The explorer Tuckey, who, in 1816, followed up the Conso from its mouth on the west coast further than any onc, found it, above the cataracts which it forms in breaking throush the coast range, to Lave a width of from 2 to 4 English miles, and with a current of from 2 to 3 miles an hour; and bis statement that at the lowest stage of its waters it discharges $2,000,000$ of cubie feet of water per second, has been confirmed by more recent surveys. Forty miles out from its mouth its waters are only partially mingled with that of the sea, end some nine miles from the coast they are still perfectly fresh. The Congo is the only one of the large African ritcrs which has any approach to an estuary, contrasting in this respeet with those which have delta mouths.

The Coanza, the most importani river of Angola, in respect of its affording a navigable channel for 140 miles frum its mouth, rists in a loroad valley formed by the \therefore Iussamba Mountains in the interior of Benguela, and curves north-westward to the oceau. Its upper cuurse is rapid, and its navigation only begins after the last of its cataracts las been passed; the mouth is clused by a bar. The Cuncne river has its rise in the opposite watershed of the mntistains, its springs being close to those of the

Coanza, and its course is south-westward, forming the southern limit of the territory of Mossamedes. It is the most sontherly river of the central fertile zones of Africa on this side of the contineut, and appears to be snitable for navigation throughout the greater part of its length-rising from 15 to 20 feet at times of flood, but having ench a depth, at its lowest stage, as to be only passable by canoes.

From the Cunene, in ${ }^{\circ}$ at. $17^{\circ} \mathrm{S}$., to the Orange river in $29^{\circ} \mathrm{S}$., tho dry belt of tho South African desert zone intervenes, and there are no permanent rivers on tho land sloping to the sea. The coast lands from tho edge of the plateau are, however, furrowed by numerous water-courses, which are filled only after the occasional rainfalls.

The Orange river also belongs for the greater part of its lower course to the water-courses of the arid belt, but it reccives such a constant supply from its head streans, which descend from the high lands near the east coast of the continent, as to be able to maintain a perennial flow in its chanuel, which, however, is so shallow as to be of no value for navigation. Its main head streams are tho Vaal and Nu Gariep or Orange, which rise on the opposite slopes of one of the summits of the Drakenberg range, called the Mont aux Sources. After encircling the Orange River Free State, these rivers unite uear the centre of this part of the continent to form the Orange, which continues westward to the Atlantic, but without receiving any permanent tributary. The chief water channels which periodically carry supplies to it from the south are Brak and the Great Hartebeeste; from the Kalahari region in the north' come the Molupo and Nosob chaunels. Midway betreen the union of the head streams and the ocean the river forms a great fall of 150 feet in height.

The rivers which flow down from the terraces of the Draing Cape Colony are numerous, but have little permanent deptli to the of water, shrinking almost to dryness excepting after raius, Indian when they become impetuous torrents; some have cut deep channels, much beneath the level of the country, and the banks of these cañons are choked with dense regetation. Passing round to Natal and Zulu Land, the coast country is well watered by frequent streams which descend from the base of the cliff-wall of the Drakenberg; these have generally the character of mountain torrents, with rapid flow between high banks and changing volume, and are almost without exception closed at their mouths by sand bars, which in most instances shut in considerable laguons. One of these the lake of Santa Lucia, is more than 40 miles in length.

The first large river of the Indian Ocean system is the Limpops Limpono or Crocodile river, so named from the great numLer of these animals found in its bed. Its basin lies centrally in the southern tropic, also in the desert belt, and on this account it barely maintains a shallow flow of water throughout the year. Its sources are in that part of the plateau edge in the Transvaal Republic which is known as the Hooge Veldt and Magalies Berg; from this it forms a wide semicircular sweep to north-east and south, reaching the ocean not far north of Delagua Bay, in $25^{\circ} \mathrm{S}$. Its chief tributary, the Olifant or Lepalule, has its rise in a part of the Hooge Veldt which is nearer the coast. Many of its minor tributaries in its lower course are periodical streams known as sand rivers, only filled after heavy rains.

The Zambeze is the great river of the pastoral belt of Sonth Africa, and the fourth in point of size in the continent, draining nearly 600,000 square miles. As far as its basin has yet heen explured, the Zamueze has three head streams from the great water-parting ridge which extends from the Mossamba Mountains of iuner Angola to the high lands murth of Nyassa Lake, about the 12th parallel of S . latitude. There are the Lungelungo river from the Mossamba Mountains, the Lecba river from Lake Dikulo. on the vater-parting which separates be-
tween the Zambeze and the Kassabi river, and the Leeambye or Jambaji, probably the main-source stream, coming from the unknown lands south-west of the Cazembe's tertitory. From the union of these streams the general cnurse of the Zambeze is in two wide curves eastward, through the platean and orcr its edge to the Indian Occan, in about $19^{\circ} \mathrm{S}$. lat. From the north its main tributaries are the Kafue and Loangwa or Aruangoa rijers, and the Shire river, flowing out of Lake Nyassa. Above this point, on its middle course, where it forms the great Victoria Falls, the Zambeze receives the Chobe frorn the north-west; and from southward numerous minor tributaries join its lower channel. The Zambeze forms a delta with many mouths, the outmost of which are nearly 100 miles apart, and their entrances are generally barred by sand bants; but if these be passed, the main river is continuously navigable for 320 miles to the town of Teté, and its tributary the Shire may also be followed up for nearly 150 miles, to where its cataracts stop navigation. At the Victoria Falls the great river contracts from its general wiath of nearly a mile, to 60 or 80 feet, and plunges over a height of 100 feet, into a remarkable zig-zag gorge rent in the lard basalt rocks.

The Roruma, which has its chief tributaries from the plateau edge on the eastern side of Lake Nyassa, is the next great river of the drainage to the Indian Ocean. It has been navigated by Livingstone for 150 miles from the coast, and formed part of his route in entering the continent on the journey from which he has not yet returned, bué its basin has not get been explored.

Still farther north the mouths of a great river named the Rufiji are known, on the coast opposite the island of Monfia, south of Zanzibar; but no part of its course has set been traced by any European.

The Kingani and the Wami are two streams from the platean edge, in the country of Usagara, and reach the sea in the channel formed by Zanzibar island. The Pangani river, further north, rises in the snowy mountain Kilimaajaro. The Sabaki and Dana, which ermbouch on the opposite side of Formosa Bay, in $3^{\circ} \mathrm{S}$., flow over the same cuast plains, having their head springs in the spurs of Mount Kenia. The latter river might be narigated during the rainy season for 100 miles from the coast.

The Juba river is the most considerable on the eastern side north of the equator. It is beliered to have its rise (in the high lands immediately south of Abyssinia, and its general direction is southeastwerd to the Indian Ocean; but nothing is known of its higher course except by report. The ill-fated expedition under Baron von der Decken explored this river for about 180 miles upwards from its mouth, but as yet no traffic is carried on by its means. The Webbe or Haines river flows down from the high lands in a direction nearly parallel to the Juba, a little farther north, bnt its outlet on the coast is completely barred by sand dunes of from 400 to 500 feet in height, behind which it forros a lagoon of rarying extent. The desert zone is now again reached, and the water supply fails. No permaneni rivers reach the Red Sea from the Abyssiniau highlands or from the heights of Nubia which continue these northward; the largest water-course is that of the Barca, which is periodically filled by its tributaries in the northern part of the Abyssinian plateau.

Turning now to the great areas of continertal drainage, it is observed that in North Africa there is a vast space of upwards of four millions of square miles, exteuding from the Nile valley westward to the Atlantic coast, and from the plateau of Barbary in the north to the ext emities of the basin of Lake Chad in the south, from whicu no single river finds its way to the sea. The whole of this space, howeser, appears to be furrowed by water channels in the
most varied directions. From the inner slopes of the plateau of Barbary numerous wadys take a direction towards the great sand-belt of the Erg, in which they terminate; a great series of channels appears to radiate from the higher portion of the Sahara, which liea immediately north of the tropic of Cancer and in about 5° E. of Greenwich; another cluster radiatea from the Mountains of Tibesti, in the eastern Sahara.

Lake Chad, on the margin of the pastoral belt, is supplied by a large river named the Shari, coming from the moist forest country which lies nearer the eq'ator; and the lake, which till recently was beliesed to have no outlet, overflows to north-eastward, fertilising a great wady, in which the waters become lost by evaporation as they are led towards the more arid country of the Sahara.

The southern area of continental drainage is of much smaller cxtent, and occupies the space of the desert zone which lies botween the middle of the Zambeze basin and Damara Land. It centres in Lake Ngami, to which the Tioge river flows from the pastoral belt on the northwest. Several water-courses from the bigh Damara Land also take a direction toward this lake. The river Zuga carries off the overflow of Lake Ngami towards a series of salt lagoons wilich lie eastward near the edgo of the plateau; but it becomes narrower and less in volume as it approaches these, and in some seasons scarcely reaches their bed.

Smaller spaces of contincnial drainage exist at various points near the eastern side of the continent. One of these occupies the depressed area between the base of the Abyssinian highland and the Red Sea, and is properly a continuation of the Sahara desert belt beyond the intervening plateau. In this space the Hawash river, descending from the plateau, terminates before reaching the sea. Another interior basin lies in the plateau between the edge on which mountains Kenia and Kilima-njaro rise and the country east of the Victoria Lake, and includes several salt lakes. It is probable that the great Tanganyika Lake is the centre of a third basin of no outflow on this side of the great plateau; and Lake Shirwa, south-east of the Nyassa, constitutes a fourth.

The great lakes, which form such a prominent feature in Lakes African hydrography, are found chiefly in the southern and eastern regions of the continent, but they are distributed orer all the systems of drainage. The Victoria and Aibert Lakes of the Nile basin are great seas of fresh water; and if their extent should ultimately prove to be nearly that which is at present believed, they rival the great American lakes for the place of the greatest expanse of fresh Nile Latien wafer on the globe. The former, the Victoria Lake, is at an elevation of about 3300 feet above the sea; and its outline, as at present sketched on our maps, occupies an area of not less than 30,000 square miles. The Albert Lake, 2500 feet abore the sea, is believed to have an extent not far short of this. Lake Baringo, north-east - of the Victoria, is reported to be a great frcsh lake, discharging towards the Nile by a river which is possibly the Sobat tributary. Lake Tzana or Dembea, 60 miles in length, at a level of 6000 fcet above the sea, on the Abyssinian plateau, is the only remaining great lake of the Nile basin.

The great expansions of the Chambeze-Lualaba river, presumably belonging to the river Congo, are the only other considerable lakes of the Atlantic drainage. The highest of them, Lake Bangweolo or Bemba, is described as leing 150 miles in length from east to west, and at an eleration of 4000 feet; Lake Moero, the next, extends through 60 miles ; Lakes Kamalondo or Ulenge, and the yet unvisited lakes of the same drainage, aro described as of rast extent, and lie at an elevation of about 2000 feel abore the sea

Belonging to the drainage system of the Indian Ocean are, Lake Niyassa, 1500 feet above the sea, and stretching meridionally over an area of nearly 9000 square miles in the basin of the Zambezo ; and Lake Sambura, a reported lako of great extent, lying in the plateau edge north of Mount kenia, and probably belonging to the basin of the Juba river. The great Lake Tanganyika, upwards of 10,000 square miles in area, and united by a broad channel with Lake Liemba in the south, occupies a deep longitudinal basin, girt with mountains; it is 2800 feet abore the sea level. As yet no outlet has been discorered for this vast lake, and the question whether it has or has not an overflowing river, is still undecided; but its waters are not perfectly fresh, the drainage to it is small, and the probahility is that the Tanganyika is a continental lake. Lake Shirwa, enclosed by mountains on the plateau edge southeast of Lake Nyassa, nad 2000 feet above the sea, has brackish water, and no ontlet.

Lake Chad, the greatest lake of the continental system of Nurth Africa, is a shallow lagoon of rery variable extent, with numerous islands: it lies at about 1100 feet above the sea; its waters are fresh and clear, and its overflow is carried off to north-eastward by the wady named 1.alr-el-Ghazal.

Lake Ngami, the corresponding lake in the southern continental system, at an elevation of about 2900 feet, is also a shallow reedy lagoon, varying in extent according to the season. The Zuga river carries off its surplus water to eastward. Salt lakes are of frequent occurrence in the areas of continental drainage; perlaps the most remarkable of these is the Assal lake, which lies in a depression east of Abyssinia comparable with that of the Dead Sea, 600 feet beneath the level of the Red Sea; the Sebka-el-Faroon or Schott Kebir, south of Tunis, is a great salt lagoon, 100 miles in length, dried up in summer, when its bed is found to be thickly encrusted with salt, and in winter covered with water to a depth of two or three feet. It lies several fect beneath the level of the Mediterranean.
Africa lies almost entirely in the torrid zone, and is the lottest comtinent of all. Tha greatest heat, however, is not found under the equator, since the whole of the central belt of the continent is protected by a dense covering of forest vegetation, supported by tho heary rainfall, and has in endsequenee a more equable climate, but in the dry, bare expused desert belts, which lie on the margins of the tropies, the Salara in the north and the Kalahari in the south, where the elimate is extreme. The highest temperature is fond throughout the Sahara, particularly in its eavern portions towards the Red Sea In Upper Egypt and Nubia eggs may be baked in the hot sands; and the saying of the Arabs is, "in Nubia the soil is like fire and the wind like a flame." The regions along the ŇLutiterranean and Atlantic coasts are rendered more temperate by the influence of the sea. To the south of the Great Desert the temperature decereases, chiefly on account of the increasing inoisture and protection of the land surface from cxtrene heating by its tree growth, but also becanse of the grenter elevation of the land as the great southern phatenu is approached. Both on account of its elenation aud its narrower form, which gives greater access to the equalising influcuce of the surrounding ocean, the southern half of the African continent has a less high temperature than the northern, though the same gradations ni clin:ate nutward from the centie belt are clearly marked in enciu divisiou. Tegular snowfall does not occur even in the most snuthern or northern regions; and this phenomenon is only kuowa in the most elerated points of the cuntiment, m in the Atlas Mountains in the north, the sumbits of which retain patches of snow eren in sunmer, in the Abyssinian peaks: iu the lighest points of the
mountains of the Capo Colony, ana most remarkably in the lofty summits of Mounts Kenis and Kilima-njaro, which rise on the plateau directly beneath the equator. The intensity of radiation and its influence upon the tempersture are very great in Northern Africa; while in the day time the soil of the Sahara rapidly absorbs the solar rays, during the night it cools so rapidly that the formation of ice has often been known to occur.
The observed average temperatures of the extreme months of the year at varions points of Africa, from N. to S., are given in the following table:--

		July.		Jan.	Ju
$\begin{aligned} & \text { Las Palmas, Can- } \\ & \text { ary Islands, } \end{aligned}$	$61 \cdot 9$	$73 \cdot 6$	Kobbé, Darfur, . Ankober, Abrssinia,	67.1 52.0	$\begin{aligned} & 87 \cdot 8 \\ & 58 \cdot 1 \end{aligned}$
Santa Cruz, Tene-	63.7		Elmina, Gold Coast,	79.7	76.7
rifle, ${ }^{\text {a }}$,	63.	78	Christiansborg,	81.0	5
Funchal, Madeira,	63.5	72.5	Niger Mouth (5°,	$86 \cdot 0$	$80-2$
$\left.\begin{array}{c}\text { Casa Blanca, Ma- } \\ \text { roceo, }\end{array}\right\}$	$57 \cdot 4$	77.9	Gondokoro ($\left.5^{\circ} \mathrm{N}.\right)$),	89.3	78.5
La Calle, Algeria,	54.6	78.4	¿̌anzibar, . ${ }^{\text {a }}$	$83 \cdot 3$	$7 \% \cdot 1$
$\left.\left\lvert\, \begin{array}{c} \text { Algiers, } \\ \left(37^{\circ} \mathrm{N} .\right) \end{array} \quad "\right.\right\}$	55.8	76.3	$\left.\begin{array}{c} \text { Ascension I. }\left(7^{\circ}\right. \\ \left.30^{\prime} \text { S. }\right) . \end{array}\right\}$	77	75.0
Oran, "	$56 \cdot 2$	76.9	St Helena,	$73 \cdot 6$	65:
Constantine, "	44.8 54.2	81.0 98.9	Tete, on the Zam- beze ($16^{\circ} \mathrm{S}$.)	$82 \cdot 9$	72.4
Tunis,	57.2	$77 \cdot 2$	Port Louis, Mau-		
Alexandria, Egspt,	$57 \cdot 4$	78	ritius, ${ }^{\text {a }}$. $\}$		
$\begin{cases}\text { Cairo, } & \\ \left(30^{\circ} \mathrm{N} .\right)\end{cases}$	55.8	86.0	St Denis, Bourbon, Durban, Natal, .	$\begin{aligned} & 79.7 \\ & 74.2 \end{aligned}$	$\begin{aligned} & 71 \cdot 8 \\ & 62 \cdot 4 \end{aligned}$
Kenneb, " ${ }^{\text {K }}$	62.4	94.3		$71 \cdot 4$	$55 \cdot 2$
$\left\{\begin{array}{l} \text { Freetown, Sierra } \\ \text { Leone, } \end{array}\right\}$	82.0	77.5	$\left(30^{\circ} \mathrm{S}.\right)$, Cape Town $\left(34^{\circ}{ }^{\circ} \mathrm{S}^{\circ}\right)$),	743	57.6
$\begin{array}{\|c} \text { Kuka, } \\ \left(13^{\circ}\right. \\ \text { N. }), \end{array}, \quad, \quad,$	75.6	$83 \cdot 8$	Stellenboseh, . . Swellendam,	$\begin{array}{r} 77.0 \\ 72.7 \end{array}$	$57 \cdot 0$ 59.9

Africa is not much under the influence of the regular winds, escept the monsoons of tho Indian Ocean, the great movement of the atmospliere depending chiefly on the oscillation of the continent beneath the sun during the seasons, as will be afterwards explained. The wind currents over the whole continent have a prerailing direction from the east. There are the trade winds, modificd by interruptions of changing heat and eleration of the land surface. In the northern part of the Indian Ocean the year is divided between the south-west monsoon, blowing from March till September, away from Africa, towards the then heated continent of Asia; and the north-east monsoon, or rather the normal trade wind, blowing towards the African coasts, from October till February. It will be seen in the next paragraph, that the monsoons, although they extend only to about a third portion of the East African shores, have an extremely important bearing upon the physical economy of the whole African continent. From hurricanes Africa is nearly exempt, except in its south-eastern extremity, to which at times the Mauritius hurricanes extend At rare intervals these have visited the east coast as far as Zanzibar. Northern Africa is much exposed to the hot winds and storms from the Sahara, which are called in Egypt Khamsin, in the Mediterranean Scirocco, Shume or Asshume in Maroceo, and Harmattan on the west coasts of the Sahara and in the conntries bordering on the Gulf of Guinea. These always blow directly aeross the coast from the interior, and seem to more round the compass during the year, beginning in Egypt in April, in Algeria in July, in Marocco in August, in Seuegambia in November: Similar dry electrical winds are experienced in the Kalahari desert in the south. Whirlwinds, frequently carrying sand up into the atmosphere, are of frequent occurrence in these deserts, and are also knomm in the dry region of Unyamu zi, between Zanzibar and the Tanganyika, and in the Limpopo basin farther south. Extreme heat and dryness are the characteristics of these winds, which, raising the sand, filling the air with dust, and prodigiouslv favourd
ing the powers of evaporation, aro often fatal to the regetoble and animal creation in the regions risited by them.

In Africa the dependence of the winds and rains upon the movement of the land beneath the sun is more clearly marked than in auy other intertropical region of the globe. The high temperature caused by the rertical heat of the sun over a particular area induces an indraught of air to that place, an ascending current is produced which carries np with it the warm and moist air; condensed in the bigher regions of the atmosphere, the moisture falls as rain, and the condensation makes way for a further indraught. It is thus that in Africa the winds and rains follow as a rule the pendulating morement of the continent beneath the sun, and the rainy season of any space begins almost immediately after the sun has reached its zenith. Between the tropics and the equator the sun comes twice to the zenith of each belt during the year, at the tropical lines the sun is only once in the zenith; thus it follows that a double rainy season is observed in all places lying in the central belt of the tropics, and a single rainy season in those which are nearer the skirts of the zone. These wet and dry seasons correspond to the cooler and hotter periods of the year, and take the place of the summer and winter of the temperate regions. Various circumstances tend to interfere with and modify the working of this general rule of the rotation of seasons. In Southern Africa that rainy season which follows the apparent movement of the sun northward, is greater than that which ensues after his passage south, sisce in the former case the winds are drawn inwards from the ocean and carry greater quantities of moisture, whereas in the latter the winds are drawn from the land north of the equator, and their moisture is already in great part spent. In the northern and eastern regions of Africa the winds and rains are governed as much by the heating and cooling of the Asiatic continent as by that of Africa itself, brit in the central and western portions of the continent the rule is well exemplified. Thus in Damara Land, bordering on the southern tropic, there is one short rainy season from February till April, beginning only with the northing sun; at Loanda in Angola the greater rains last from February till May, the lesser rainy season, when the sun has passed this place going south, occurs in November only. At Annobon island, surrounded by wide sea, April and May are the rainy months of the northing sun, October and November of the southing. The Guinea coost, facing the sea to southward, has its greater rainy season from March to June, when the northing sun draws the ocean winds on to the coast; and its lesser rains occur in October and November, when the sun has passed sonthward from the lańd. Nearing the northern tropical line, the coast-land from Sierra Leone to the Senegal river has a simple wet and dry season during the year.

On the eastern coast-land the rains are more dependant on the direction of the monsoon winds; about the mouths of the Zambeze and ou the Mozambique coast the rains begin in November, after the northeast monsoon wind has set in over the northern part of the Indian Ocean, bringing with it the vapours drawn from the sea to condense on the coast slopes. The rains continue here till March, when the south-west monsoon begins to blow away from the land towards the then heated surface of Asia At Zanzibar there is a double rainy season, a stronger in the months of March, April, and May, with the northing sun, beginning immediately after the south-west monsoon has set in, and a weaker in September and October with the southing sun. Under the equator on the east coast the rains begin in April with the south-west monsoon, continuing till June, and during this period the sky is ubscured by heavy clouds. The secuud rainy season here is only marked hy a few showers
in September and October. Whils the north-east mon-" soon is blowing the sky remains of a cloudless blue In the interior of the continent, between these tropical coasts, the rainy seasous appear rather to precede thar. Iollow tho advancing sun. In the region of the central Zambeze the greater rains last through February, March, and Apri], the lesser occurring in October and November. The worat droughts are experienced in December and january. Nearer the centre of the continent the tro rainy seasous become so lengthened as almost to merge intc one periud of rains, extending over about eight months of the jear. In the newly-explored country south-west of the Tanganyika, Dr Livingstone found that the rains began in October, and that the last showers fell in May; but theie is probably a drier period between these limits. At the Tanganyika Lake the rainy season begins in September, lasting till May, aud the same rainy reason has been observed in the interior country of the west coast immediately north of the equator. Between these points, in Manuyema country, Dr Livingstone found that the rains continued till July, or almost through the year. Northward in the interior the rainy seasons are again clearly divided into a greater and lesser, and in the regions west of the Upper Nile between 5° and $10^{\circ} \mathrm{N}$. lat., the stronger rains occur from August till October, the weaker come with the northing sun in April and May. The plateau of Abyssinia, rising high ahove the general level of the north of Africa, and intercepting and condensing the moist winds, has also a double rainy season, -a greater from June to September, when tho sun is passing southward; a lesser in February and April, with the northing sun. The rainy seasons in Central Africa are ushered in and accompanied by violent thunderstorms and by occasional falls of hail. The quantity of the rainfall, which is excessive in the regions near the equator, diminishes rapidly to north and south of this belt as tho dry regions on the borders of the tropics are approàched.

The Sahara, and also the Kalahari of Southern Africa, are almost rainless regions, but wherever a sufficient elevation occurs to intercept a cooler stratum of the atmosphere, rain is not wanting, even in the midst of the Great Desert. A striking instance of this is related by Mr Richardson. That traveller relates that when on the borders of the mountain knot of "Air, in about latitude $19^{\circ} \mathrm{N}$., on the 30th Sepo 1850, there was a cry in the encampment, 'Tho wady is coming.' Going ont to look, I saw a broad white sheet of foam advancing from the south between the trees of the valley. In ten minutes after a river of water came pouring along, and spread all around us, converting the place of our encampment into an isle of the valley. The current in its deepest part was very powerful, capable of carrying away sheep and cattle, and of uprooting trees This is one of the most interesting phenomena I have witnessed during my present tour in Africa. The scene, indeed, was per: fectly African. Rain had been observed falling in the south; black clouds and darkness covered that zone of the heavens, and an hour afterwards came pouring down this river of water into the dry parched-ap valley."

The causes of want of rainfall in the vast region of the Sabara appear to be mainly these-that the minds advanc- ing towards it come from a cooler and moister to a warmer and drier region, indeed to the hottest and driest of all, and so are constantly losing in moisture and gaining in temperature as they approach; the high plateau of Abyssinia forms an effectire screen from the minds of the Indian Ocean, wringing out their muisture before the Sahara is reached, and on the Atlantic side the northeast -trade mind constantly blows away from the land; a barrier of mountains also deprives the Sahara of min from the south-west. Another cause of dryness is the low level of great areas of the Sahare. We Lave seen that wherever
there is a considerable elevation, even in its midst thero is a periodical rainfall. The Kalahari region is almost rainiess, on account of the great heat to which it is subjected; but specially becauso the winds coming towards it from the eastward, the prevailing winds, expend their moisture on tho high slopes of the plateau which face the Indian Ocean. Heary dews, consequent on the rapid changes of day and night temperature in these bare regions, partly compensate tho deficiency of rain.

The partions of the contineat whicn lie beyond the tropics north and south, the outer slopes of the plateau of Earbary and of the Cape Colony, have no marked rainy season, and the times of the occurrence of rain are altered, the symmers of both being drier, the showers more frequent in winter. In Natal, and on the slopes of the plateau in its neighbourhood, rain may be expected in any month; but the greatest falls occur from October to March. The absolute quantity of rain which falls in Africa has as yet been measured at so few points, that no defiuite coaclusions can be arrived at respecting it.

Although Africa belongs almost entirely to the torrid and warm zones, its vegetable productions are essentially different in differeut parts. Thus, in the extreme north, groves of oranges aad olives, plaias covered with wheat and barley, thick woods of evergreen oaks, cork-trees, and sea-pines, intermixed with cypresses, myrtles, arbutus, and fragrant trce-heaths, forn tho prineipal features of the landscape. On this northern coast the date-palm is first fonnd ; but its fruit does not arrive at perfection, and it is chiefly valued as an ornamental object in gardens. Various kinds of grain are cultivated. Beyond this region of the coast and the Atlas chain, with the borders of the Sabara, commences a new scene. It is in this region, extending to the borders of Soudan, that the Naie-tree forms the characteristic feature. Being peculiarly adapted to excessive dryness and high temperature, it flouristes where few other plants can maintain an existence. Were it not for the fruit of the invaluable date-tree, the inhabitants of the desert would almost entirely depend on the products of other regions for their subsistence. With the southern boundary of the Sahara, the date-tree disappears, the baobab or monkey bread-tree takes its place, and, under the influence of the tropical rains, a new, rich, and highly-developed flora presents itself. These trees, together with huge cotton-trees, oil-palms, sago-pahns, and others of tho same majestic tribe, determine the aspect of the landscape. The laburnum expands its brauches of golden flower, and replaces the senna of the dorthern regions, and the swamps are often covered
whth immense quaailties of the pajeyrus plinit. Instead of waving fields of corn, the cassava, yam, jiseon-pea, and the ground-nut, form the farinaccous plants. The papaw, the tamarind, tho Scnegal custard apple, and others, replace the vine and the fig. In Southern Africa, again, the tropical forms disappear, and in the inland desert-like plains, the fieshy, lealless, contorted, singular tribes of kapsias, of mesembryanthemums, cuphorbias, crassulas, aloes, and other succulent plants, make their appearance. Endless species of heaths are therefound in great beauty, and the hills androcks are scattered over with a remarkable tribe of plants called Cycadacece. Plants of the protea tribe also add to the extraordinary variety in the vegetable plysiognomy of that region.

Of the characteristic African plants, the date-tree is che of the most important, as it is likewise among the nearly one thousand different species of palms. It furnishes, as it were, the bread of the desert, beyond which it occurs only in Western Asia, wherever a similar dry and hot climate prevails. This tree requires a sandy soil, and springs must not be absent. The dates furnish food not only for man, but for the camel and the horse For the latter purpose the stones are nsed in many parts, and are said to be more nourishing than the fruit itself. The Arabs make a great rariety of dishes of which dates form the chief part. Of the sap of the tree palm-wine is prepared, and the young leaves are caten like cabbage.

In Southern Africa are the extensive miniature moods of Heath heaths, as characteristie as the groves of date-palms in the north. No less than five hundred species have already been discovered. These plants, of which some reach the height of 12 to 15 feet (Erica urceolaris), are covered throughout the greater part of the year with innumerable flowers' of beautiful colours, the red being prevalent.

The papyrus is an aquatic plant, having a stem from 3 Papyrox to 6 feet high. It inhabits both stagnant waters and running streams, and is common in the countries of the Nile, particularly Egypt and Abyssinia. Its soft, smooth flowerstem afforded tho most ancient material from which paper was prepared, and for this reason it is one of the noticeable African plants. It has, however, also been used for other purposes; its flowering stems and leaves are twisted into ropes; and the roots, which are sweet, are used as food ${ }^{2}$

Tho following table, compiled from the "synonymic lists of species of mammals" given by Mr Andrew Murray, ${ }^{\text {a }}$ affords a general view of the distribution of terrestrial mammals in the different parts of Africa, - the figures denoting the number of species found in each of the divisions, those in the last column being the number peeuliar to Africa:-

Onders,	Distributed over Africa.	N. Africa Maroceo, EEyPL and too Sahara.	Abyasinia and tbe Opper Nille District.	Senegamdia to Lake Chad District.	East Africa, Somall Land, 7anzibar, Ilozamblque and Zambezla.	Jadazabcar.	S. Aftica, Natal te Damara Land and C. Colony.	W. Africa, Bengucla so Gninea	Total Speciea in Atrica	Speeles peculiar to Alica.
Quadrumana, .		2	10	8	10	32	8	41	97	04
Carnivora, . . .	5	13	23	10	18	9	30	20	91	76
Ungmlata	3	9	19	14	20	1	32	12	84	74
Mralangulath . . .	1	-.	1	1	5	...	4	5	8	8
Edentata	2	2	2	...	2	2	7	7
Insectivora, . . .	1	22	16	8	26	11	29	10	104	92
Rodentis, \cdot -	1	86	18	10	20	...	48	16	132	121
Marsapialia and Monotre• ${ }^{\text {P }}$	\ldots \cdot	...
Total,	11	86	89	53	101	53	151	106	623	472

Tho order Quadrumana is well represented, more particularly within the tropics, whence they decrease northwards and southwards. The most important members of this family are the anthropoid monkeys, the chimpanzee and gorilla, in Tropical and Western Africa Baboons and mandrils, with few exceptions, are peculiar to Africa Only a few species
of the genus Aracacus, which is East Indian, are fonnd in Africa. The only short-tailed spécies (Mrartcus Innurs)

[^36]is North African, and is also found wild on the opposite coast at the Rock of Gibradtar. In Madagascar the place of the true monkeys is supplied by the peculiar tribe of the true Lemurs or makis. - Many species have close affinities with those of Asia; thas the orang-outang of Borneo is represented in Africa by the chimpanzee. The gibbons are entirely wanting.

Of the larger Carnivora the bear is almost entirely wanting, and occurs.only sparely in the Atlas Mountains in Barbary. The true martens are unknown, but otters occur. Of the Canis family the jackal is charaeteristic, and roams over the whole of Africa; it differs from the Asiatic species in its paler skin, which approaches the colour of the revailing deserts. *The wolf and fox do not extend beyond the nortbern margin of Africa. Hyænas are true African tenants; the striped hyæna extending from Asia over North 'Africa, the spotted hyæna over the remainder of the continent; in the southmost part of the continent the brown hyæna is also found, and with it the aardwolf, or earth wolf of the Cape colonists, allied to this genus. Africa is the chief home of the lion, which there remains undisturbed as king over the lower animal creation, though it has been driven inwards from the more settled portions of the coastland; while in the extreme south-western parts of Asia, to which it is now confined, its power is divided with that of the tiger. The leopard, serval, caracal, chaus, and civet cat (the locality of the true civet being North Africa), are the other principal representatives of the cat tribe. The herpestes or ichneumons have the same distribution as the civets; the species which destroys the eggs of tle crocodile is found in Egypt and the North of Africa.

Of wild horses the asinine group is characteristic of Asia, and the hippotigrine of Africa. The quagga, exclusively African, inhabits the most southeru parts of the continent, and is scarcely found north of the Orange river, but occurs in great herds, associated with the white-tailed gnu; the zebra (Equus Burchellii), or zebra of the plains, is widely distributed over Africa, from the limit of the quagga to Abyssinia and the west coast; the zebra of the mountains (Equus zebra), more completely striped than the rest, is only known in South Africa. The true onager or aboriginal wild ass is indigenous to North-East Africa and the island of Socotra. A species inbabiting the high land of Abyssinia is distinct from these. The horse, domesticated in other parts of Africa, excepting the region of forests, is not found in the eastern intertropical region; and, for some cause not yet clearly ascertained, it appears to be inpossible to acclimatise it there. The single bumped camel or dromedary is used over the whole of North 'Africa, as far south and west as the river Niger and Lake Chad. The Indian buffalo has spread by introduction to North Africa; the Cape buffalo, a species peculiar to Africa, reaches as far north as a line from Guinea to Abyssinia; the Bos Brachycerus is a species peculiar to West Africa, from Senegal to the Gaboon. Of sheep, the Ovis Tragelaplius is peculiar to North Africa; the Ibex goat exteuds into Abyssinia The family of the antelopes is essentially African, five-sixths of the species composing it being natives of that country, and chiefly of the portion lying south of the Sahara, occurring in dense herds. Lastly, the giraffe, one of the most celebrated and characteristic of African quadrupeds, ranges from the limits of the Cape Colony as far as the Sabara and Nubia.

Of Edentata the seven species known to occur in Africa are also peculiar to it. The aardwark (Orycteropus capensis) is essentially burrowing in its babits; and the burrows formed by these animals are the source of frequent danger to the waggons and horses of the Capo columists.

A genus of inoles is met with in South Africa, but is
not found in the tropical regions. The Cape or gilded mole, chryso-chlore, is so called from its iridescent glossy fur; two or three species of bedgchog occur in the continent, and Madagascar has a peculiar family resembling these in appearance, but without the power of rolling up into a ball for defence. Bats are numerous in Africa, but few are peculiar to it.

Of Rodents the burrowing kinds prevail. The Africau species of porcupine are known in the northern and western' coast-lands and in South-Eastern Africa. The hyrax extends over Eastern Africa aud a portion of the west coast. Hares are only known in the conntries north of the Sahara and in the Cape colony. Among squirrels, those with bristles or spines in their fur are peculiar to the southern regions of the continent.

The ornithology of Africa presents a close aualogy in many of its species to those of Europe and South Asia' Thus. on its northern coasts, there is scarcely a single species to be found which does not also occur in the other countries bordering on the Mediterranean. The ornitho-logy-of the region of the Nile and the northern coasts is identified with that of Arabia, Persia, and Spain. The deserts are iubabited by species adapted to its solitudes; while Southern Africa presents different species.

The ostrich, the hugest of birds, which has been described as the feathered camel, or the giraffe anong birds, is found in almost every part of Africa. But its chief home is the desert and the open plains; mountainous districts it avoids, unless ptessed by hunger. The beautiful white feathers, so highly prized by the ladies of Europe, are found in the wings of the male birl. The chase is not without its difficulties, and it requires the greatest care to get within musket-shot of the bird, owing to its coustant vigilance and the great distance to which it can see. The fleetest horse, too, will not overtake it unless stratagem be adopted to tire it out. - If followed up too eagerly, the chase of the ostrich is not destitute of danger: for the huntsman has sometimes had his thigh-bone broken by a single stroke from the leg of a wounded bird.

The large messenger or secretary-bird, which preys upon serpents and other reptiles, is one of the most remarkable African birds. It is common near the Cape, and is not seldom domesticated. Of gallinaceous fowls. adapted to the poultry-yard, Africa possesses but a single genus, the guineahens, which, however, are found in no other part of the world. These birds, of which there are three or four distinct species, go in large flocks of 400 or 500 , and are most frequently found among underwood in the ricinity of ponds and rivers. There are besides, many species of partridges and quails in different parts of Africa. Water fowl of various species are also abindant on the lakes, and rivers. as are likewise various species of owls, falcons, and rultures, the latter of which are bighly uscful in consuming the offal and carrion, which might otherwise taint the air and produce disease.

Among the smaller birds of Africa are many specics remarkable for the gaudiness and brilliancy of their plumage, or the singularity of their manners and ccouomy. Of the former kind may be mentioned the sumbirds, the lamprotornis, the bee-caters, tho rollers, the plantain-caters, the parrots, the halcyons, and numerous smaller birds that swarm in the forests. Of the latter kind it will be sufficient to mention the honey-cncloo (Cuculus indicator). .

Though Africa is not exempt from the scourge of veuomous or dangerous reptiles, still it has comparatively fewer than other tropical countrics, owing to the dryness of the climate. \% The reptiles laal\}ured by the desert regions consist chiefly of lrarmice lizards aud serpents of a small size, thourh oftcu venumous. - The frog and tortoise tribes are represched in but fen species and mumbers.

The most important among the reptiles is the crocodile, which inhabits nearly all the large rivers and lakes within the tropics, and is still abundant in the Nile below the first cataract.
The chameleon 18 common in Africa. Among the venomous species of snakes are the purple naja, the cerastes or borned viper, the ringed maja, and the darting viper.

Edible fish are found almost everywhere in great variety and quantity. The fresh waters of Egypt produce the gigantic bishir, the coffres. and numerous species of the pimelodes. Many varieties of fish exist in the great interior lakes; five large species found in the Tanganyika are described by Burtou. The greater number of the fish of the Red Sea resemble the saxatiles of the warm seas of Asia. On the west coasts are found the fish belonging to equatorial latitudes, while the shores of the Mediterrancan produce those of France and Spain. The seas of the southern extremity possess the species conmon to the latitudes of the antarctic. south of the three great capcs. The fish of the east coast are the same as those of the Tudian Sea.

Of the insect tribes Africa also contains many thousand different kinds. The locust has been, from time immemorial, the proverbial scourge of the whole continent; scorpions, searcely less to be dreaded than noxions serpents, are everywhere abundant; and the zebub, or fly, one of the instruments employed by the Almighty to punish the Egyptians of old, is still the plague of the low and cultivated districts. In the interior of Africa a venomous fly occurs in ce-tain regions of the south and cast, which is fatal to nearly all domestic animals. It is called tsetse (Glossina morsitans), and its size is almost that of the common blue fly which settles on meat; but the wings are larger. On the absence of this insect greatly depended the success of recent explorers in that quarter, as, where it appeared, thsir cattle infallibly fell victims to its bite. There are large tribes which cannot keep either cattle or shecp, because the tsetse abounds in their country. Its bite is not, however, dangerous to man; wild animals likewise are undisturbed by it. The termites or white ants are likewise a scourge to the country where they occur in great numbers. This destructive creature devours everything in the slape of wood, leather, cloth, \&c., that falls in its way; and they march together in such swarms, that the derastation they commit is almost incredible.

Of the class of zoophytes, the brilliant polypi of erery rariety, and madrepores, abound on the coasts of Africa The shores of the Mediterranean produce the finest coral, and those of the Red Sea bristle with extensive reefs of the same mollusca

From the shores of the Mediterrancan to about the latitude of $20^{\circ} \mathrm{N}$., the population of Africa consists largely of tribes not originally native to the soil, but of Arabs and 'Turks, planted by conquest, with a considerable number of Jerrs, the children of dispersion; and the more recently introduced French. The Berbers of the Atlas 1 agion, the Tnaricks and Tibbus of the Sahara, and the Copts of Egypt, may be riewed as the descendants of the primitive stock, while those to whom the general name of Moors is applied, are perhaps of mixed descent, native and foreign. From the latitude stated to the Cape Colony, tribes commonly classed togcther under the title of the Ethiopic or Negro family are found, though many depart very widely from the pecullar phessiognoiny of the Negro, which is miost apparent in the natives of the Guinaa coast. In the Cape Colony, and on its borders, the Hottentots form a distinct variety in the population of Africa, most closely resembling the Mongolian races of Asia.

The Copts, or as they are correctly pronounced. either Ckoubt or Ckibt, are considered to be the descendants of
the ancient Eyyptians. They du not unw complose more than one sixtecuth part of the population of Egypt, their number not exceeding 145,000 , about 10,000 of whom reside at Cairo. Conversions to the Mohammedan faith, and intermarriages with the Moslems, have oceasioned this decrease in their numbers; to which may be added the persecutions which they endured from their Arabie invaders and subsequent rulers. They were forced to adopt distinctions of dress, and they still wear a turban of a black or blue. or a grayish or light brown colour, in contradistinction to the red or white turban. In some parts of Upper Egypt there are villages exelusively inhabited by the Copts. Their complexion is somewhat darker than that of the Arabs, their ferelieads flat, and their bair of a soft and woolly character; their noses short, but not flat; months wide, and lips thick; the eyes large, aud bent upwards in an angle like those of the Mongols; their cheek-bones bigh, and their beards thin. They are not an unmixed race, their ancestors in the carlier ages of Cliristianity baving intermarried with Greeks, Nubians, and Abyssinians. With the exception of a small proportion, the Copts are Christians of the sect called Jacobites, Eutychians, Monophysites, and Monothelites, whose creed was condemned by the Council of Chaleedon, A.D. 451. They are extremely bigoted, and bear a bitter hatred to all ofler Christians; they are of a sullen temper, extremely avaricieus, great dissemblers, ignorant, and faithless. They frequently indulge in excessive drinking; but in their meals, their mode of eating, and the manner in which they pass their hours of leisure, which is chiefly in smoking their pipes and drinking coffee, they resemble the other inhabitants of the country. Most of the Copts in Cairo are employed as secretaries and accountants, or tradesmen; they are chicfly engaged in the government offices; and as merchants, goldsmiths, silversmiths, jewellers, architects, builders, and carpenters, they are generally considered more skilful than the Moslems. The Coptic language is now understuod by few persons, and the Arabic being employed in its stead, it may be considered as a dead language.

The countries above Cgypt are inhabited by two trioes of people resembling each other in physical characters, but of distinct language and origin. One is, perbaps, the aboriginal or native, the other a foreign tribe. Dr Prichard terms them Eastern Nubians, or Nubians of the Red Sea, and Nubians of the Nile, or Berberines. All these tribes are people of a red-brown complexion, their colour in some instances approaching to black, but still different from the ebony lue of the Eastern ncgroes. Their hair is often frizzled and thick, and is described as even woolly; yet it is not precisely similar to the hair of the negroes of Guinea The Eastern Nubians are tribes of roving people who inhabit the country between the Nile and the Red Sea; the not thern division of this race are the Ababdeh, who reach northward in the eastern desert as far as Kosseir, and, towards the parallel of Deir, border on the Bishari The Bishari reach thence towards the confines of Abyssinia The latter are extremely savage and inhospitable; they are said to drink the warn blood of living animals; they are for the nost part nomadic, and live on flesh and milk They are described as a handsome pcople, with beautiful features, fine expressive cyes, of slender and elegant forms; their complexion is said to be a dark brown, or a dark chocolate colour. The Barábra or Berberines are a people well known in Egypt, whither they resort as labourers from the higher country of the Nile. They inhabit the valley of that name frum the sonthern limit of Egypt to Sennaar. They are a people distinct from the Arabs and all the surrounding nations. They live on the banks of the Nile; and wherever there is any soil, they plant datotrees, set up wheels 1 or irrigation, and snw durra and some
legriminous plants. At Cairo, whither many of this race resort, they are esteemed for their bonesty. They profess Islam. The Barábra are divided into three sections by their dialects, which are those of the Nuba, the Kenous, and the Dongolawi. According to Dr Prichard, it is probable that the Berberines may be an offset from the original stock which first peopled Egypt and Nubia.

The country of the Nubians is limited on the west by that of the Tibbus, who are spread over the eastern portions of the Sahara, as far as Fezzan and Lake Chad. Dr Jatham considers it probable that their language belongs to the Nubian class. They inhabit the locality of the ancient Libyans or Libyes. Their colour is not uniform. In some it is quite black, but many hare copper-coloured faces. They are slim and well made, have high cheekbones, the nose sometimes Hat like that of the negro, and sometimes aquiline. Their mouth is in general large, but their teeth fine. Their lips are frequently formed like those of Europeans; their eyes are expressive, and their hair, though curled, not woolly. The females are especially distinguished by a light and elegant form, and in their walk and erect manner of carrying themselves are very striking. Their feet and ankles are delicately formed, and not loaded with a mass of brass or iron, as is the practice in other countries of Northern Africa, but have merely a light anklet of polished silver or copper, sufficient to show their jetty skin to more advantage; and they also wear neat red slippers. The Tibbus are chiefly a pastoral people. They keep horses, cattle, sheep, and goats, but camels constitute their principal riches. The villages of the Tibbus are very regularly built in a square, with a space left on the north and south faces of the quadrangle for the nse of the cattle. The huts are entirely of mats, which exclude the sun, yet admit both the light and the air. The interior of these babitations is singularly neat: clean wooden bowls for the preservation of milk, each with a cover of basket-work, are hung against their walls. They are greatly exposed to predatory incursions into their country by the enemies who surround them. The Tibbus of Tibesti are described by Dr Nachtigal as of medium stature, well made, of elegant though muscular frame; in colour they rary between a clear bronze and black: the greater number are dark bronze-coloured, yet without the slightest trace of what is generally recognised as the negro physiognomy. They carry on a considerable trafic in slaves between Sudan, Fezzan, and Tripoli.
"All that is not Arabic in the kingdom of Marocco," says Dr Latham, "all that is not Arabic in the French provinces of Algeria, and all that is not Arabic in Tunis, Tripoli, and Fezzan, is Berber. The language, also, of the ancient Cyrenaica, indeed the whole country bordering the Mediterranean, between Tripoli and Egypt, is Berber. The extinct language of the Canary Isles was Berber; and, finally, the language of the Sahara is Berber. The Berber languages, in their present geographical localities, are essentially inland languages. As a general rule, the Arabic is the language for the whole of the sea-coast from the Delta of the Nile to the Straits of Gibraltar, and from the Straits of Gibraltar to the mouth of the Senegal." The Berber nation is one of great antiquity, and from the times of the earliest history has been spread over the same exient of country as at present; the ancient Numidian and Mauritanian names of Sallust, and other writers, have a meaning in the modern Berber. It has affinities with the Semitic languages. In the northern parts of Atlas these people are called Berbers; in the southern tracts they are the Shuluth or Shellas. In the hilly country belonging to Tunis, the Kabyles; in Mount Auress, the Showiah; and in the Desert, the Tuarick,-all belong to the same group. The mountains of Atlas are said to be inhabited by more
than twenty different tribes, carrying on perpetual warfare against each other. They are very poor, and make plundering excursions in quest of the means of supporting life. They are described as an athletic, strong-featured peopie, accustomed to hardships and fatigue. Their only covering is a woollen garment without sleeves, fastened round the waist by a belt.

The Shuluh, who are the mountaneers of the Northern Atlas, live in villages of houses made of stone and mud, with slate roofs, occasionally in tents, and even in caves. They are chiefly huntsmen, but cultivate the ground and rear bees. They are described as lively, intelligent, wellformed, athletic men, not tall, without marked features, and with light complexions. The Kabyles, or Kabaily, of the Algerian and Tunisian territories, are the most industrious inbabitants of the Barbary States, and, besides tillage, work the mines contained in their mountains, and obtain lead, iron, and copper. They live in huts made of the branches of trees and covered with clay, which resemble the magulia of the old Numidians, spread in little gronps over the sides of the mountains, and preserve the grain, the legumes, and other fruits, which are the produce of their husbandry, in mattoures, or conical excavations in the ground. They are of middle stature; their complexion is brown, and sometimes nearly black.

The Tuarick are a people spread in various tribes through the greater portion of the Sahara. The expedition under Richardson, Barth, and Overweg, who traversed and explored a great portion of the Tuarick territories, has greatly added to our knowledge of these people. The following are the names and localities of the principal tribes:-

1. Tanelkum, located in Fezzan.
2. Azghers, $\left\{\begin{array}{l}\text { Ouraghen, family of Shafou, } \\ \text { Emanghasatan, }, \\ \text { Amana, of Hateetah; }\end{array}\right\} \begin{aligned} & \text { located } \\ & \text { at Ghat }\end{aligned}$
3. Aheethanaran, the tribe of Janet.
4. Hagar (Ahagar), pure Hagars and Maghatah. They accupy the tract between Ghat, Tuat, and Timbuktu.
5. Sagamaram, located on the route from Aisou to Tuato
6. Kailouees, including the Kailuuees proper, the Kaltadak, and the Kalfadai.
7. Kilgris, including the Kilgris proper, the Iteesan, and the Ashraf. These and the tribes under the preceding head inhabit the kingdom of Ahir.
8. Oulimad, tribes surrounding Timbuktu in great numbers. This, probably identical with the Sorghou, is the largest and most powerful tribe, while the Tanelkums are the smallest and weakest.
The various tribes are very different in their characters, but they are all fine men, tall, straight, and handsome They exact a tribute from all the caravans traversing their country, which chiefly furnishes them with the means of subsistence. They are most abstemious, their food consisting principally of coarse brown bread, dates, olives, and water. Eren on the heated desert, where the thermometer generally is from 90° to 120°, they are clothed from head to foot, and corer the face up to the eyes with a black or coloured handkerchief.
The Moors who inhabit large portions of the empire of Marocco, and are spread all along the Mediterranean coast, are a mixed race, grafted upon. the ancient Mauritanian stock; whence their name. After the conquest of Africs by the Arabs they became mixed with Arabs; snd having conquered Spain in their turn, they intermarried with the natives of that country, whence, after a possession of seven centuries, they were driven back to Mauritania. They are a handsome race, having much more rescmblance to Europeans and western Asiatics than to Arabs or Berbers, althongh their language is Arabic, that is, the Mogrebin dialect. which differs considerably frum the Arabic in

Arabia,-and even in Egypt. They are an intellectual people, and not altogether unlcttered; but they are crucl, revengeful, and. blood-thirsty, cxhibiting but very fow traces of that nobility of mind and delicacy of feeling and taste which graced their ancestors in Spain. The history of the throne of Marocco, of the dynastic revolutions at Algicrs, Tunis, and Tripoli, is written with blood; and ameng the pirates who infested the Mediterrancan they were the worst. Their religion is the Mohammedan. They are temperate in their diet and simple in their dress, except the richer classes in tho principal towns, where the ladies literally cover themselves with silk, gold, and jewels, while the men indulge to excess their love of fine horses and splendid arms. They gencrally lead a settled life as merchants, mechanics, or agriculturists, but there are also many wandering tribes. They exhibit considerable skill and tasto in dycing, and in the manufacture of swords, saddlery, leathernware, gold and silver ormaments. At the Great Exhibition in London in 1851, the Moorish department contained several articles which were greatly admired. The Moors along the coast of Marocco still carry on piracy by means of armed boats.

At two different periods, scparated from each other by perhaps a thousand years, Afriea was invaded by Arabic tribes, which took a lasting possession of the districts they conquered, and whose descendants form no inconsiderable portion of the population of North and Central Africa, while their language has superseded all others as that of civilisation and religion. Of the first invasion more has been" said under the liead "Abyssimians." The second was that effected by the first successors of Mahomet, who conquered Egypt, and subsequently the whole north of Africa as far ns the shores of the Allantic, in the courso of the first century of the Hegira, or the seventh of the Christian era. As regards language, Egypt is now an entirely Arabic country, although in many other respects the Fellahs are totally different from tho peasants in Arabia. But thero are also several tribes of true Arabie descent scattered about from the high lands of Abyssinia down over Nubia and Egypt, and westward over the central provinces of Kordofan, Darfur, Waday, and Bornu. Others wander in the Libyan deserts and the Great Sahara, as well as in the states of Tripoli, Tunis, and Algiers, leading a similar life with the Kabyles, but constituting a totally distinct racc. Others, again, clwell in the empire of Marocco, among whom these along the shores of the Atlantic are notorious for their predatory habits and ferocious character. In many places Arabic adventurers have succeeded in subduing native tribes of every nationality, over which they rule as sovereign lords; and on the const of Zanzibar resides an Arabic royal dynasty. Many of the smaller islands to the north of Dladagascar are inhabited by Arabs, and traces of them have been discoverert in Madagasear itself. The African Arals are not all alike in features and colour of akin, the differences being attributable to some of them having intermarried with watives, whiln others preserved the purity of their blood.

The early settlements of the Jews in Egypt are facts universally known. Under the Ptolemies, large numbers rif them settled at Alexandria and in Cyrenaiea, and after the destruction of Jerusalem they rapidly spread over the whole of the Roman possessions in Africa; many also took refuge in Abyssinia. King Philip II. laving driven them out of Spaiu, many thonsands of families took refuge on the opposite coast of Africa. They are now numerous in all the larger towns in the north, where they carry on the oecupation of merchants, brokers, \&c., the trade with Europe being mostly in their hands. They live in a state of great degradation, except in Algiers, where the French ristored hern to freedom and independence. They have
acquired much realth, and althongl compelled to hide their riches from the eupidity of their rulers, they lose no opportunity of showing them whenever they can do so without risk of being plundered, fear and vanity being elaracteristic features of their character. The Jewesses in Maroceo and Algiers are of remarkable beauty.

Ever since the conquest of Eerypt by Sultan Selim, and Turks the establishment of Turkish pashalics in Tripoli, Tunis, and Algicrs, Turks have settled in the north of Afrien; and as they were the rulers of the country, whoso numbers were always on the increase on account of the incessant arrivals of Turkish soldiersiand officials, the Turkish became, and still is, the language of the different govermments. Properly speaking, however, they are not scttled, but only encamped in Africa, and hardly deservea place among the African nations.

Not all the inlabitants of the country called Abyssinia are Abyssinians; nor are the real Abyssinians all of the same origin, being a mised race, to the formation of which several distinct nations have contriblited. The primitive stock is of Ethiopian origin, but, as their language clearly shows, was at an early period mixed with a tribe of the Himyarites from the opposito coast of Arabia, who, in their turn," were ethnologically much noore closely connected with the Hebrews than with the Joctanides, or the Arabs piroperly speaking. In the ago of the Egyptian Ptolemies, and after the destruction of Jerusalem, Jews settled in Abyssinia in such numbers, that not ouly their rcligion spread among the inbabitants, but the Hebrew language became mixed with the Abyssinian as it then was. Hence the surprising analogy between the principal Abyssinian languages, viz., the Gheez in Tigre, and the Anharic in Amhara, with the Hebrew. The uninterrupted intercourse with Arabia, and the immigration of screral Arabie tribes, also contributed towards the apparently Semitic aspect of the present Abyssinian language. A large portion of Abyssinia having been occupied by Galle and other tribes, we shall licere only dwell on the original Abyssinians. They inlabit a large tract, extending from the upper course of the Blue River, north as far as the Red Sea, and some isolated districts in the south and south-east. To the west of them are the Agnu Abyssinians, a different tribe, whose idiom, however, is the common language of the lower classes in Tigré and Amhara also. Abyssinit was once a large and powerful kingdom, but the Galla having conquered the whole south of it, it gradually declined until the king or emperor became a mere sladow, in whose name scveral vassal princes exercise an unlimited power each in his own territory. Owing to their jealousy and mutual fears, war seldon ceases among the inhabitants. The Christian religion was introduced into Abyssima in the first centuries after Christ ; but whatever its condition might lave been in former times, it now presents a degraded mixture of Christian dogmas and rites, Jerrish observances, and heathenish superstition. Yet of Judaism, which was once so powerful, but feeble traces are extant, while the Mohammedan religion is visibly on the increase. European missionaries have been, and still are very active among then, but their efforts have been crowned only with partial success. The Abyssinians, tho Gallas being excluded from that denomination, are a fino strong race, of a copper hue, more or less dark, and altogether dif. ferent from the Negroes, with whom, however, they have frequently been confounded, becauso they were called a black people. Their noses are ncarly straight, their eyes heautifully clear, yet languishing, and their hair is black and crisp, but not woolly. They are on the whole a barbarous people, addicted to the grossest. sensual pleasures; and their priests, among whom marriage is customary, are littlo better than the common herd of the people. They live in huts, a large assemblago of which forms a so-called
town; and although they possess some solid constructions of stone, such as churches and bridges, it appears that these were built by the Portuguese, the ruins at Axum and other places belonging to a much earlier period, when the country undoubtedly enjoyed a higher civilisation than at present. Owing to the influence exercised upon them during the last thirty years by European missionaries and travellers, their condnct towards strangers is less rude than it used to be at the time of Bruce. It is a remarkable fact that, notwithstanding the low state of their religion, the Christians in Abyssinia are not allowed to keep slaves, although they may purchase them for the purpose of selling them again.
This extensive race comprehends by far the greater number of African nations, extending over the whole of Middle and South Africa, except its southernmost projection towards the Cape of Good Hope. A line drawn from the mouth of the Senegal in the west to Cape Jerdaffun in the cast, forms its northern limits almost with geometrieal accuracy, few Ethiopic tribes being found to the north of it. All the members of this race, however, are not Negroes. The latter are only one of its numerous offshoots; but between the receding forehead, the projecting cheek-bones, the thick lips of the Negro of Guinea, and the more straight configuration of the head of a Galla in Abyssinia, there are till many striking analogies; and modern philology havng traced still greater analogies, denoting a common origin, among the only apparently diseonnected languages of so many thousands of tribes, whose colour presents all the hues between the deepest black and the yellow brown, it is no longer donbtful that the Negro, the Galla, the Somali, and the Kaffre, all belong to the same ethnological stock.

The principal Negro nations, as. we know them, are the Mandingoes, who are numerous, powerful, and not uncivilised, in Senegambia, and farther inland, around the head waters of the Quorra, where they bave established a great number of kingdoms and smaller sovereignties. The inland trade is chiefly in their hands. They are black, with a mixture of yellow, and their hair is completely.wonlly. The Wolofs or. Yolofs, whose language is totally different from those of their neighbours, are the handsomest and blackest of all Negroes, although they live at a greater distance from the equator than most of the other black tribes, their principal dwelling-places being between the Senegal and the Gambia, along the coast of the Atlantic. They are a mild and social people. The Foulahs or Fellatre's oceupy the central parts of Soudan, situated in the crescent formed by the course of the Quorra, and also large tracts to the southeast, as far as the equator west to the Senegal, and east till beyond Lake Chad. Their colour, as a rule, is black, intermixed, however, with a striking copper hue, some of them being hardly more dark than gipsies. They are one of the most remarkable nations in Afriea, very industrious, live in commodious and clean habitations, and are mostly Mohammedans. A distinetion was formerly made between the Fculahs of Senegambia and the Fellatahs of Central Africa, but it has since been ascertained that they belong to the same stock, and speak the same langaage. The hair of the Foulahs is much less woolly than that of other Negroes. Of the principal nations in Guinea, among whom the true Negro type is particularly distinct, especially around the Bight of Benin, are the Feloops, near the Casamança, very black, yet handsome; and the Ashanti, of the Amina race, who surpass all their ncighbours in civilisation, and the cast of whose features differs so much from the Negro type that they are said to be more like Indians than Afrieans; although this is perhaps only true of the higher orders. They are still in possession of a powerful kingdom. The country behind the Slave Coast is occupied by tribes akin to the Dahomeh on the coast. In South Guinea we meet three principal races, namely, the Congo, the Abunda, and the Benguela Ne-
groes, who are divided into a variety of smaller tribes, with। whom we are much less acquainted than with the northern Negroes, although the Portuguese have occupied this coast for upwards of three centuries. The Wamasai and Wakwavi, possibly of Abyssinian stock, are a remarkable race of wild nomad hunters, who occupy the high plateau which rises between the coast-land and the Vietoria Nyanza, extending from the equator southward to the route which leads from Zanzibar to the Tanganyika Lake. They are the terrol of the more settled inhabitants of the surrounding countries, and oceasionally make raids down even to the coast-land behind Mombas. The next great branch of the Ethiopic race comprelends the Galla, who oceupy an immeuse tract in Eastern Africa, from Abyssinia as far as the fourth degrer of S. latitude, on the coast inward from Mombas. Ous knowledge of them is chiefly confined to those Gallas who conquered Abyssinia. With regard to their physical conformation, they stand between the Negro of Guinea and the Arab and Berber. Their countenanees are rounder than those of the Arabs, their noses are almost straight, and their hair, though strongly frizzled, is not so woolly as that of the Negro, nor are their lips quite so thick. Their eyes are small (in which they again differ from the Abyssinians), deeply set, but very lively. They are a strong, large, almost bulky people, whose colour varies between black and brownish, some of their women being remarkably fair, considering the race they belong to. An interesting tribe of them has Sowal. lately been brought to the knowledge of Enropeans, the Somali, originally Arabs, who have advanced from the southern shores of the Gulf of Aden since the 15 th century, and now ocenpy the greater portion of the East Afriean promontory wedging into the Galla region, and almost dividing that country into two distinct portions. For the most part they pursue a wandering and pastoral life.

In the central regions of the continent the negroid Negroid tribes, which are classed under the general name of tribes. Wanyamwezi, occupying the plateau scuth of the Victoria and east of the Tanganyika Lakes, have been made known by Burton and subsequent travellers; round the west and north of the Vietoria are several distinet kingdoms, the chief being those of Karague and Uganda, traversed by Speke and Grant; in the region west of the Upper Nile the countries of the Jur, Dor, and Bongo tribes have been explored by Dr Sehweinfurth, and he has passed beyond the watershed of the Nile into a new basin, where he found the Niamniam and Monbuttu tribes. Dr Livingstone, in his latest journey, has entered the country of the Manyuema tribes, west of Tanganyika, in the heart of the continent; these he describes as a fine, tall handsome race, superior alike to the slaves seen at Zanzibar and the typical negro of the west coast; exceedingly numerous, and living in a primitive condition, utterly ignorant of the outer world. The Balunda race of Negroea occupy a great area of South Central Africa, and hare twe ancient and powerful kingdoms of Muropua and Lunda, the former ruled over by the hereditary "MIuata" or chief Hianvo, who has his capital near the Cassabi tributary of the Congo, and the latter by the Hianvo's vassal, the Cazembe, whose palace is near the Luapula river, south-west of Lake Tanganyika. Kibakoe or Quiboque and Lobal, south-west of the kingdom of Hianro, are the chief states on the borders of Angola and Benguela; towards the Nyassa lake, southeast from the Cazembe's dominions, the Maravi tribe is per haps the most powerful, and beyond the Nyassa that of the Wahiao is the chief. The Nakololo tribe, oceupying the central portion of the Zambeze basin, is of southern origin, and forms an intermediate stage between the Negmo and Kaffre.

The Kaffres, who, together with the tribes most akin tod them, oceupy the greater portion of South Africa, especially the eastern portions, have some aualogy with Euroneans 1 m
their fearures; 'but they aro woolly haired, and while some are almost black, others are comparatively fair, although some of their tribes might have been mixed with the Lastern Negroes. They have been very wrongly classed with the Negroes. They are a strong, muscular, active poople, addicted to plunder and warfare. The Eastern Kaffres, among whom the Amakosah and Amazulah are best known to us, on account of their frequent invasions of the Cape Colony, are much more savage than the western and northern, or the Bechuana and Sichuana tribes. All Kaffres are pastomal, kecping larye herds of cattle ; but the last-named tribes inhabit large towns, well-built houses, eultivato the ground earefully, and cxhibit every appearance of being capable of entire civilisation. The word Kaffre, or Kafir, as it ought to be written, is Arabic, and was first applied by the Europeans to the inhabitants of the coast of Mozambique, because they were so called by the Mohanmedans, in whose eyes they were fofirs, that is infidels.

We conclude this sketch with the Hottentot race, which is entirely different from all the other races of Africa Where they originally came from, and how they happened to be hemmed in and confined entirely to this remote corner of the earth, is a problem not likely to be ever satisfactorily solved. The only people to whom the Hottentot has been thought to bear a resemblance; aro the Chinese or Malays, or their original stock the Mongols. Like these people they have the broad forehcad, the high cheek-bones, the oblique eye, the thin beard, and the dull yellow tint of complexion, resembling tho colour of a dried tobacco leaf; but there is a differenco with regard to the hair, which grows in small tufts, harsh, and ratler wiry, covering the scalp somewhat like the hard pellets of a shoe-brush. The women, too, have a pcculiarity in their physieal conformation, which, though occasionally to be met with in other nations, is not universal. as among the Hottentots. Their constitutional "bustles" sometimes grow to three times the size of those artificial stuffings with which our fashionable ladies have disfigured thernselves. Even the females of the diminutive Bosjesmen Hottentots, whe frequently perish of hunger in the barren mountains, and are reduced to skeletons, have the same protuberances as the Iottentots of the plains. It is not known even whence the name of Hottentot proceeds, as it is none of their own. It has been conjectured that loot and tot frequently oeciurring in their singular language, in whiel the monosyllables are enunciated with a palatic clacking with the tongue, like that of a hen, may have given rise to the name, and that the early Dutch settlers named them hot-en-tot. They eall themselves quiquec, pronounced with a clack. They are a lively, ehecrful, gond-humoured people, and by no meaus wanting in intellect; but they have met with nothing but harsh treatment since their first connection with Europeans. Neither Bartholomew Diaz, who first discoverer?, nor Vasco de Gama, who first doubled, the Cape of Goud Hope, nor any of the subsequent Portuguese navigators, down to 1509 , had mucl communication with the natives of this southern angle of Afriea; but in the year abovo mentioned, Francisco d'Almeyda, viceroy of India, having landed on his return at Saldanha (now Table) Lay, was killed, with about twenty of his people, in a scuffe with the natives. To avenge his death, a Portugrese captain, about three ycars afterwards, is said to have landed a piece of ordnance loaded with grape shot, as a pretended present to the Hottentots. Two ropes were attached to this fatal engine; the Hottentots poured down in swarms. Men, women, and children flocked round the deadly maehinc. is the Trojans did round the wooden horse, "funemque manu contingcre gaudert." The brutal Portuguese fired off the piecc, and viewed with savage delight the mangled carcasses of the deluded people. The Dutch effected their ruin by gratifying their propensity for
brandy and tobaceo, at the expense of their herds of cattlo, on whieh they subsisted. Under the British sway they hare received protection, and shown themselves not unworthy of it. They now possess proporty, and enjoy it in security. One of the most beautiful villages, and the neatestand best-eultivated gardens, belong to a large community of Hottentots, under the instruction and guidance of a few Moravian missionaries.

These forlorn people are of Hottentot origin. Of them also several tribes have been discovered much farther north, and intelligence has lately reached Europe, that between the Portuguese possessions, in the very centre of South Africa, there is a nation of dwarfish appearance who possess large herds, and who seem to belong to the original Bushmen stock.

The island of Madagascar is inhabited by a race of Malay origin, exhibiting traces of Negro and Arabic mixture.

The arca and population of Africa and its divisions are thus estimated:-1

Dreisiows,	Area In Enclish square miles.	Population.	
North Africa,	4,003,600	20,420,000	5
Maroceo, . . .	259,600	2,750,000	10
Algeria,	258,300	2,921,146	11
Tunis, - . -	45,700	2,000,000	43
Tripoli, with Barca and ${ }_{\text {Fezzan, }}$	344,400	750,000	2
Egyptian territory, .	659,100	8,000,000	12
Sahara, - . . -	2,436,500	4,000,000	16
The Monammedan States) of Centhal Suldan, .	631,000	38,800,000	61
Western Soudan, from the Seneral to the Lower			
Niger, including Upluer	818,000	38,500,000	47
Guinea, and. . .			
Frencli Senegamlia, . .	96,530	209,162	- 2
liverin,	9,580	718, 00	72
Dahomel,	3,880	180,000	47
British yossessions, . -	17,100	577,313	34
Portuguese possessions, .	35,880	8,500	0.2
East Africa, .	1,595,000	29,700,000	18
Abyesinit, - . . -	158,100	3,000,000	19
Soutir Africa, - . -	1,966,000	16,000,000	8
Portuguese \} liast coast,	352,000	300,000	0.8
territury, \} West coast,	312,500	9,000,000	29
Cayce Colony, - .	221,310	682,600	3
Natal, - - .	17,800	269,362	15
Orance IR Fire State,	42,500	37,000	0.8
Transvaal liepublic,	114,360	120,000	1
Equatomal Regions, *	1,522,200	43,000,000	29
lslanins in the Athantic $\}$	2,720	99.145	37
Ocean ${ }_{\text {C. Verd islands, }}$. : !	1,050	67,347	42
St Thomas and Principe,	454	19,295	42
Fernando Po \& Aunobon,	488	6,590	11
Asceusion,	38	400	10
St Helens,	47	6,860	145
'1'ristan da Cunla, . .	45	53	1
Islandsin the Indian Ocean,	233,870	6,000,000	25
Socotra, : . . .	1,700	3,000	2
A ud-cl-kuri, . . .	64	100	2
Zanzibar, - - . -	616	380,000	616
Maularascar, -	228, 575	5,C00,000	\&?
Comoro lslands (with Mayotta),	1,062	64,600	07
The Arco lslands, \&c., .	150		
Róunion, -	970	209,737	216
Mauritius and its de- pendencies, . .	708	822,924	450
$\left.\begin{array}{c} \text { Desert of Kalaifari and } \\ \text { the Gheat Inland } \\ \text { Lares, } \end{array}\right\}$	783, 65,0	\cdots	\ldots
Africa,	11,556,600	192,520,000	16

${ }^{1}$ Compiled from the Tables in Behm and Wagner's Lievulterung der Erde. Gotha, 1872.

In the central forest regions of Africa, wherever communications with the coast-land have been opened up, hunting the elephant for its tusks to barter with the traders appears to be the characteristic occupation, if any, beyond that of mere attention to the daily wants of life, is engaged in; and here the population may be considered as a settled one, living in villages in the more open spaces of the woods. A rudely agricultural state seems to mark the outer belt of negro land on each side of the equatorial zone, where the population is also more or less stationary. The arid regions of the Sahara and the Kalahari beyond have, on the other hand, a thinly scattered nomadic population, though here also the fertile wadys form lines of more permanent habitation, and contain permanent towns and villages. Excepting in the immediate neighbourhood of the Mediterranean in Abyssinia, on a narrow margin of the coasts of the Atlantic and the Indian Ocean, and in those parts which have been colonised by Europeans, or which came dircctly under their influence, society has remained in a barbarian state, and there remain great areas the inhabitants of which have as yet no knowledge of the outer world.

Agriculture is conducted with little art. The natural fcrtility of the soil in the well-watered districts supersedes the need of skill, while the production of the simplest manufactures is alone requisite, where the range of personal wants embraces few objects, and those of the humblest class

Wars, cruel and incessant, waged not for the sake of tcrritory, but for the capture of slaves, form one of the most marked and deplorable features in the social condition of the African races. This practice, though not of foreign introduction, has been largely promoted by the cupidity of the Europeans and Transatlantic nations; and, unhappily, the cfforts of private philanthropy, and the poitical arrangements of various governments, have not yet availed to terminate the hideous traffic in mankind, or abate the suffering entailed upon its victims.

In Religion, Christianity is professed in Abyssinia, and in Egypt by the Copts, but its doctrines and precepts are little understood and obeyed. Mohammedanism prevails in all Northern Africa, excepting Abyssinia, as far as a line passing through the Scudan, from the Gambia on the west to the confluence of the Quorra and Benue, and thence eastward, generally following the l0th parallel of N. lat. to the Nile below the junction of the Ghazal; thence southeast, leaving the coast-land in the Mohammedan region, to Cape Delgado. In Marocco, Algeria, and Egypt, there is an admixture of Jews. Heathen Negroes and Caffre tribes extend southward over the continent from the line described abore to the colonies in the southern extremity of the continent; and over this vast area the native mind is surrendered to superstitions of infinite number and character. In the Cape Colony Protestantism again prevails, but with a strong intermixture of heathenism. The labours of Christian missionaries have, however, done much, especially in South Africa, towards turning the bcnighted Africans from idols to the living God.

In describing the political divisions of Africa, we shall proceed from north to south.

The country included under the general name of Barbary extends from the borders of Egypt on the east to the Atlantic on the west, and is bounded by the Mediterranean on the north, and by the Sabara on the south. It comprises the states of Marocco, Algeria, Tunis, and Tripoli

Marocco, the most westerly state of Barbary, is thus named by the Europeans, but by the Arabs themselves Mogr'eb-el-Aksa, or "the extreme west." The eastern boundary was determined in the treaty with the French of 18th March 1845, by a line which, in the south, commences east of the oasis Figueg, intersecting the desert of Angad, and reaching the Mediterranean at a point about

30 miles west of the French part Newours. In the sonth Marocco embraces the oasis of Tuat and the Wady Draa The power of the government of Marocco, which is despotic and cruel, as well as the population of the country, appear to have diminished greatly. Two-thirds of the country are independent of the Sultan's autherity, and are held by mountain chiefs who defy his power. The trade of the coast is maintained by European merghants. See Marocco.

Algeria extends from Marocco in the west, to Tunis in the east, and closely answers in its limits to the ancient kingdom of Numidia. The southern boundaries are not very definite, falling, as they do, within the boundless plains of the desert. See Algiers.

Tunis is the smallest of the Barbary states. The configuration of the surface is similar to that of Algeria, in three divisions, the "Tell," or fertile coast slopes, the steppes on the high lands, and the low-lying Sahara beyond. The highest peaks range between 4000 and 5000 feet. The southern plains comprise the land of dates (Belad-el-Jerid), and several extensive salt lakes. Tunis possesses but few rivers and streams, and springs are plentiful only in the monntainous regions.

The climate is, upon the whele, salubrious, and is not of the same excessive character as that of Algeria; regular sea-breezes exercise an ancliorating influence both in summer and winter; frost is almost unknown, and snow never falls. During summer occasional winds from the south render the atmosphere exceedingly dry and hot.

The natural productions of the country are somewhat similar to those of the other Barbary states, but dates of the finest quality are more largely produced. The horses and dromedaries are of excellent breed, and the former are eagerly sought for the French army in Algeria. Bces are reared in great quantity, and coral fisheries are carried on. Of minerals lead, salt, and saltuetre are the most noticeable.

The population consists chiefly of Mohammedan Moors and Arabs', the number of Jews is estimated at 45,000 , and of Poman C'atholics 25,000 . The former have attained a higher degree of industry and civilisation than their brethren elsewhere; those of the latter who inhabit the central mountainous ; ons are nearly independent.

The government i, vested in a hereditary bey, and has been. conducted in peace and security for a number of years. From the year 1575 onwards, Tunis has been under the rule of Turkey; but by a firman of October 1871 the Sultan renounced the ancient tribute. The ber, who is styled "Possessor of the kingdom of Tunis," is confirmed in his position at Constantinople, and may neither enter into a war, nor conclude a treaty of peace, nor cede any part of his territory without the sanction of the Sultan. The Tunisian coinage bears the name of the Sultan, and the troops (3900 infantry and artillery, and 100 cavalry, form the regular army) are at the disposal of the Sublime Porte in time of war. In the interior of the country the bey has abselute power. The slave trade was abolished in 1842.

The commerce of Tuvis is ccnsiderable, but agriculture is in a backward state. The exports consist chiefy of wool, olive-oil, wax, honey, hides, dates, grain, coral, \&c.

The principal town is Tusiz, situated on a shallow lake on the north coast. It is the 'most important commercial place on the southern shores of the Mediterranean afte: Alexandria, and has a population of about 125,000 . The site of the ancient Carthage is 13 miles from Tunis in the direction of Cape Bon.

Tripoli, a regency of the Turkish empire, extends from Tunis along the shores of the Mcditerranean to the table. land of Barca, which forms a separate province. Politically, it includes the pashalic of Fezzan, a countro which, in a physical point of view, belongs to the Sahara.

Tripoli is the least faviured by nature of the parbary
states, possessing a great extent of aterile surface. Mr Richardson graphically describes the physiogoomy of the country between the towns of Tripoli and Marzuk in eight zones:-1. The plain along the sea-shore, with the dateFalm plantations and the sandhills; 2. The Gharian monntains, with their olive and fig plantations, more favonred with raias than the other regions; 3. The limestone hills and broad valleys between the town of Kalnbah and Ghareaah, gradmally assuming the aridity of the Sahara as yo proceed southward; 4. The Hamadah, an immeuse desert plateau, separating Tripoli from lezzan; 5. The saady ralleys and limestone rocks between El-Hessi and Es-Shaty, where herbage and trees are found; 6 . The sand between Shiaty and Ll-Wady, piled in messes or heaps, and extending in undulating plains; 7. Tho sandy valleys of El-Wads, covered with forests of date-palms; 8. The plateau of Murzuk, cousisting of shallow falleys, ridges of low sandstone hills, and naked plains. These zones extend parallel with the Mediterranean shores through the greater portion of the ountry. A summit of the Jebel-es-Soda, or Black Mfountains, midway between Tripoli and Murzulc, almost $2 S 00$ feet high, is supposed to be the culminating point of the regency. Rivers exist only periodically, and springs are exceedingly scarce.

Tho climate is somewhat more subject to extremes than that of Tanis, especially in the interior, where burning hent is iollowed by excessire cold. As far south as Sokna snow occasionally falls. The climate of Murzuk is very unhealthy, and frequently fatal to Europeans.

The natural products are rery much like those of Tunis. Oxen and horses are small, but of good quality; the mules are of excellent breed. Locusts and scorpions are among the most noxious animals. Salt and sulphur are the chief minerals.

The population is very thin. Arabs are the prominent raee, besides which are Turks, Berbers, Jews, Tibbus, and Negroes. The country is goverued by a pasha, subject to the Ottoman empire. The military force by which the Turks hold possession of this vast but thinly-peopled territory amounts to 4500 men.

The commerce is not inconsiderable, and the inhabitants of Tripoli trade with almost every part of the Sahara, as well as the Soudan. At Murzuk there is a large annual market, which lasts from October to January. The exports of Tripoli are wheat, wax, ivory, ostrich feathers, madder, esparto grass, cattle, salt, and dates.

Tripoli is the capital of the regency, and the largest town; it lies on the Mediterranean, surrounded by a fertile plain; the number of inhabitants is about 30,000 . Murzuk, the capital of Fezzan, has a mixed population of abnut 11,000 souls. The town of Ghadamis has about 7000 inhabitants.

In 1869 the maritime platean of Barca and the depressed region inland from it, which contains the oases of Aujila aad Jalo, was formed into a separate government, dependent directly upon Constantinople. This ceuntry is the seat of the ancieat Greek Pentapolis of Bernice, Arsince, Barca, Apollonia, and Cyrene. Bengazi, the only place of importance, occupies the site of the first of these on the Mediterranean, and has from 6000 to 7000 inhabitants.

Egypt occupies the north-eastern corner of Africa, and is remarkable for its ancient and saered associations, and its wonderful monuments of human art.

Egypt is a vast desert, the fertile portions susceptible of cultivation being confined to the Delta of the Nile and its narrow ralley, a region celebrated in the most ancient historic documents for its singular fertility, and still pouring an annual surplus of grain into the markets of Europe. By the sanoual inundation of the Nile this region is laid under water, and upon its retirement the graia crops are sown in the layer
of mad left behind it. Barren ranges of hills and clevated tracts occuny the land on both sides of the Nile, which is the only river of the country. The amount of its rise is a matter of extreno solicitude to tho people, for should it pass its customary bounds a ferv feet, cattle are drormed, bueses are swept away, and immense injury ensues; a falling short of the ordinary height, on the other hand, causes dearth and famine, according to its extent. The water of tho Nile is renowned for is agrecable taste and wholesome quality. In connection with tho Nile is tho Birket-elḰcrun, a salt lake.

The climate is very hot and dry. Rain falls but seldom along the coasts, but tho dews are very copious. The hot and oppressive winds, called khamsin and simooms, are a frequent scourge to the country; but the climate is, upon the whole, more salubrious than that of many other tropical councries.

The natural products are not of great variety. Tho wild plants are but few and scanty, while those cultivated include all the more important kinds adapted to tropical countries; rice, wheat, sugar, cotton, indigo, are cultirated for export; dates, figs, pomegranates, lemons, and olives, are likewise grown. The doum-palm, which appears in Upper Eigypt, is characteristic, as also the papyrus. The fauna is characterised by an inmense number of waterfowl, flamingoes. pelicans, \&c. The hippopotamus and crocodile, the two primeval inhabitants of the Nile, aeem to be banished from the Delta, the latter being still seen in Upper Egypt. The cattlo are of excellent breed. Large beasts of prey are wanting; but the ichaeumon of the ancients still cxists Dees, silkworms, and corals are noticeable. Minerals are scarce, natron, salt, and sulphur being the principal.

The native Egyptians of Arab descent compose the great balk of the people, the peasant and labouring class, and are termed Fellahs. Next in number, though comparatively fer (145,000), are the Copts, descended from the old inhahitants of the country, the ancient Egyptians, but far from being an unmixed race. Tho Arabio Bedouis tribes, Negroes, European Christians (Greeks, Italians, French, Austrian, English), the Jew's, and the dominant Turks, compose the remainder of the population.

Eisypt is formally a Turkish pashalic, but the hereditary pasha, by whom the government is conducted, and whose authority is absolute, is practically an independent princo. The governmeat of Nubia and Kordofan is also conducted by the Pasha of Egypt, and recently the whole of the Nile valley, as far south as the equator, has been annexed by the Egyptian government. An army of about 14,000 men is maintained.

The agriculture of Egypt has always been considerable, there being three harvests in the year. The industry is limited: one peculiar branch is the artificial hatching of egrs ia ovens heated to the requisite temperature, a process which has been handed down from antiquity, and is now chiclly carried on by the Copts. Floating bee-hires are also peculiar to the Nile. The commeree is extensive and important: tho exports to Europe consist chiefly of cotton, flax, indigo, gum-arabic, ostrich feathers, irory; senna, and gold. The country forms part of tho great highway of trafic between Europe and Southern Asia. Railways, from the ports of Alexandria and Damietta in the Mediterranean, and from Suez on the Red Sea, unite at Cairo; and a railway now extends thence up the bank of the Nile to near the first eataract of the river at Assouan, in lat. $24^{\circ} \mathrm{N}$.
The Suez canal, uniting the Red Sea and the Mediterranean, was begun in April 1859, and was opened for traffic tea years later, in Norember 1869. The cutting runs from the artificial harbour of Port Said on the Mediterranean, through the shallow lagoon of Meuzaleh, and
through two smaller lakes with low sandhills between; nearer Suez a depressed ares, in which several salt lakes formerly existed, has been filled up by water let in by the canal, and now forms a wide expanse of water. In length the canal is nearly 100 miles, and has a depth throughout of 26 feet, with a general width of 200 to 300 feet at the top of the banks and 72 feet at the bottom. Vessels are able to steam or be towed through the canal in sixteen hours from sea to sea Extensive harbours and decks have been constructed both on the Mediterraneau side and at Suez. The number of vessels which entered Port Said in 1871 was 1215 , of 928,000 tons, exclasive of 87 war-ships.
Egypt proper is divided into three sub-pashalics-Bahari or Lower Egypt, Vostani or Middle Egypt, and Said or Upper Egypt. Cairo, on the east bank of the Nile, is the capital of Egypt, and is the largest town of Africa, containing 354,000 inhabitants: it has 400 mosques, and upwards of 130 minarets, some of them of rich and graceful architecture, presenting at a distance an appearance singularly imposing. Alexandria, on the coast, is the emporium of the commerce with Europe, and bas 220,000 inhabitants, among whom are 54,000 Europeans. Damietta has a population of 37,100 ; Rosetta of 18,300 . Suez, on the northern extremity of the Red Sea, is a small, ill-built town, but has assumed importauce es a good port since the establishment of the overland ronte to India and the completion of the maritime canal It has now nearly 14,000 inhabitants, of whom abont 2500 are Europeans Port Said has 8800 inhabitants, of whom one-half are foreigners.

Nubia extends along the Red Sea, from Egypt to Abyssinia, comprising the middle course of the Nile.

The natural features of the country are raried; the northern portion consisting of a burning sterile wilderness, while the southern, lying within the range of the tropical rains, and watered by the Abyssinian aftluents of the Nile, exhibits vegetation in its tropical glory, forests of arborescent grasses, timber-trees, and parasitical plants largely clothing the country. This latter territory, which may be called Upper Nubia, includes the region of ancient Merec, situated in the peninsula formed by the Nile proper, the Blue River, and the Atbara, and comprises, further sonth, the recently extinguished modern kingdom of Sennaar.

Nubia forms the link between the plain of Egypt and the high table-lands of Abyssinia; its general physical character is that of a slightly ascending region. The lowest parts in Upper Nubia scarcely exceed an altitude of 1300 feet; Khartum, at the confluence of the Blae and White Rivers, being 1345 feet above the level of the sea A chain of mountains and elerated land rises abruptly along the shores of the Red Sea, gradually sloping down to the valley of the Nile; the intermediate region being intersected by smaller ranges, groups of hills, and numerous wadys filled with sand. The spurs of the Abyssinian table-land, extending within the southern conines of Nubia, reach a height of 3000 fect. Besides the Nile, the country is watered by two other large rivers, its tributaries, the Bhar-el-Azrek or Blne River, and the Atbara or Talkazze, both being much alike in magnitude, and having their head-streams in the Absssinian table-laud.

The climate of Nubia is tropical throughout, and the heat in the deserts of its central portions is not exceeded by that of any other part of the globe. The southern half of the country is within the influence of the tropical rains, the nerthern partakes the character of the almost rainless Sahara; and while the latter is generally very salubrious, the forner is a land of dangerous fevers, particularly in the plains subject to inundations. Such is the Kolla, a marshy and swampy regiou of great extent, situated aloug the foot
of the Abyssinian Monntains, between the Blue River and the Takkazze.

The northern region is poor in natural productions, bet in the south the vegetation is most lusuriant; palms forn a prominent feature, and the monkey bread-tree attains its most colossal dimensions. The date-tree, dourra, cotton, and indigo are cultivated. The date-palm does sot ex: tend beyond the south of Abon-Egli, in lat. $18^{\circ} 36^{\prime}$.

The elephant occasionally wanders as far as Sennaar; the rhinoceros, lion, giraffe, and buffalo are more common. The waters are inhabited by crocodiles more ferocious than those of Egypt, and by huge hippopotami. The young hippopotamus brought to the Zoological Gardens of London in 1850, was captured in Nubia, in an island of the Nile, about 1800 miles above Cairo: no living socimen had been seen in Europe since the period when they were exhibited by the third Gordian in the Colosseum at Rome. Monkeys and antelopes are fornd in great numbers. The camel does not extend beyond the twelfth degree of latitude to the south. Ostriches roam over the deserts; and among the reptiles, besides the crocodile, are large serpents of the python species, and tortoises. Of the numerous insects the most remarkable is the scarabæus of the ancient Egyptians, still found in Sennaar. Of minerals Nubia poseesses gold, silver, copper, iron, salt.

In the inhabitants two principal rarieties are recognised, the pure original population, and their descendants, mixed with other nations. The Berberines inhabit the uorthern part, and the Bisharis the desert regions; the latter are the geruine Nobians, finely rooulded and dark complexiozed, supposed by some to agree more closely with the ancient Egyptians than the Copts, usually deemed their representatives. In the sonth-eastern part the true Negro element appears.
Nubia, now a province under the pashalic of Egypt, consisted formerly of a number of small and independent kingdoms. The Turkish conquest lasted from 1813 to 1822 ; in the latter years it was invaded and mercilessly ravaged by the army of Mahomet Ali, under his second son Ismayl, whose dreadful atrocities entailed a fearful fate upon him. self, having been surprised when attending a nocturnal banquet, at some distance from his camp, and burned to death.

The country is favourable for agriculture, which, however, is only carried on to a limited estent, by the women. Cattle are abundant, and the camels of the Bisharin and Ababde are famous for their enduring porers. Salt is largely exported from the shores of the Red Sea to India, and ivory, with other products of tropical Africa, forms a principal article of trade.

Khartum, the capital of Nnbia, the headquarters of the Egyptian government, and the chief seat of commerce, contains a population raricusly estimated at from 20,000 to 50,000 . It is a modern town, having been founded in 1821 ; and lies in a dry, flat, and unhealthy country, near the confluence of the two main branches of the Nile. It is in telegraphic comnunication with Cairo.
Kordofan, on the westera side of Nubia, lies between the parallels of 12° and 16°, and between the meridians 29° and 32°, containing about 30,000 square miles. It is a flat country, interspersed with a few hills, presenting in the dry season a desert with little appearanco of vegetation, and in the rainy season a prairie, covered with luxuriant grass and other plants. The general eleration of the country is 2000 feet, and somo of the hills attain a height of 3000 . The altitude of El Obeid is 2150 feet. There are no permanent rivers in the country, and the natural products are similar to those of the adjoining regions of Nubia
The population consists of Negroes. This conntry was, simultaneously with Nubia, made tributary to Egjph Tbo
commerce consists of gum-arabic, ivery, and gold, and is not inconsiderable. El Obeid, the chicf town, is composed of several villages of mud-built houses, thatched with straw, containing about 12,000 inhabitants

The boundaries of Abyssinia aro somewhat uncertain; but confining it to the provinces actually under the governnent of Christian or Mohammedan prinees, it may be deacribed as extending from about 9° to $16^{\circ} \mathrm{N}$. lat., and from 35° to $40^{\circ} \mathrm{E}$ long. Sco ABYSSinia.

The Sabaran countries extend from tho Atlantic in the West, to the Nilotic countries in the cast, from the Darbary States in the north, to the basins of the Rirers Senegal and Kawara, and Lake Chad in tho south. Tho area of this large space amounts to at least 2,000,000 square miles, or upwards of one-half of that of the whole of Europe. It is very scantily populated, but from our present defective knowledge of that region, the number of its inhabitants can be but roughly estiunated.

The physical configuration of tho Sahara has already been indicated. Notwithstanding the proverbial heat, which is almost insupportable by day, there is often great cold at might, owing to the excessive radiation, promoted by the clearness of the sky. Rain is nearly, though not entirely absent, in this desolate region. It appears that wheu nature has poured her bounty over the adjoining regions in the south, and has little more left to bestow, she sends a few smart shomers of rain to the desert, parched by the long prevalence of the perpendicular rays of the sun. The prevailing winds blow during three months from the west, and nine months from the east. When the wind increases, into a storm, it frequently raises the loose sand in such quantities that a layer of nearly equal portions of sand and air, and rising about 20 fect above the surface of the ground, divides the purer atmosplere from the solid earth. This sand, when agitated by whirlwinds, sometimes overwhelms cararans with destruction, and, even when not fatal, involves them in the greatest confusion and danger.

The natural products correspond with the physical features of the country. Vegetation and animal life exist only sparingly in the oases or valleys where springs occur, and where the soil is not utterly unfit to nourish certain plants. Amongst the few trees the most important is the date-palm, which is peculiarly suited to the dryness of the cimate. This useful tree flourishes best in the eastern part of the desert, inhabited by the Tibbus. The doumyalm is likewise a native of the same part, and seems entirely absent in the western Sahara; its northernmost limit is on the southern borders of Fezzan and Tegerry, in lat. $24^{\circ} \mathrm{N}$. Acacias are found in the extreme west towards Senegambia, furnishing the so-called gum-arabic. In many parts of the desert a thorny evergreen plant occurs, about 18 inches high. It is engerly eaten by the camels, and is almost the only plant which supplies them with food while thus traversing the desert. The cultivation of grains to a small extent is limited to the western oases of Tuat and uthers, a little barley, rice, and beans, being there grown. In the kingdom of Air there are some fields of maize and other grains; but upon the whole, the population depend for theso produets on Soudan and other regions. There are but a few specimens of wild animals in these wildernesses ; lions and panthers are found only on its borders. Gazelles and antelopes are abundant, hares and foxes but scarce. Ostriches are very numerous, and vultures and rarens are also met with. In approaching Soudan, animal and vegetable life becomes more varied and abundant. Of reptiles, only the smaller kinds are found, mostly harmless lizards and a few species of snakes. Of domestic animals, the most important is the camel, but horses and goats aro rot wanting, and in the country of the Tuaricks an excel. leat breed of sheep is found, while in that of the Tibbus a
large and fine raricty of the ass is valuable to the inhabitanta Of minerals, salt is the chicf production, which occurs chiefly near Bilma.

The habitable portions of the Sahara are possessed by three differcnt nations. In the extreme western portion are Doors and Arabs. They live in tents, which they remove from one place to another ; aud their residenees consist of similar encampments, formed of from twenty to a bundred of such tents, where they are governed by a sheile of their own body; each encampment constituting, as it were, a particular tribe. They are a daring set of people, and not restrained by any scruple in plundering, ill-treating, and even killing persons who are not of their own faith; but to such as are, they are hospitablo and benevolent. The boldest of these children of the desert are the Tuaricks, who occupy the middle of the wilderness, where it is widest. The form of their bodies, and their language, prore that they belong to the aboriginal inhabitants of Northern Africa who are known by the name of Berbers. They are a fine race of men, tall, straight, and handsome, witl an air of independence which is very imposing. They live chiefly upon the tribute they exact from all caravans traversing their country. They render themselves formidable to all their neighbours, with whom they are nearly always in a state of ennity, making predatory incursions into the neighbouring countries. The third division of Saharan people are the Tibbus, who inhabit the eastern portion, comprising ono of the best parts of the desert. In some of their features they resemble the Negroes. They are an agricultural and pastoral nation, live mostly in fixed abodes, and are in this respect greatly different from their western neighbours. Their country is as yet little explored by Europeans. The Tibbus are in part Pagans, whilo the other inhabitants of the Sahara are Mohammedans.

The commerce of tho Sahara consists chiefly of gold, ostrich feathers, slaves, ivory, iron, and salt, exchanged for manufactured goods, and transported across tho desert by great caravans, which follow lines uniting the greater cities and oases of the southern and northern borders.

Western Africa comprehends the west coast of Africa, from the borders of tho Sahara, in about lat. $17^{\circ} \mathrm{N}$. to Nourse River, in about the same latitude south, with a considerable space of inland territory, varying in its extent from the shores, and, in fact, completely undefined in its interior limits.

Senegambia, the country of the Senegal and Gambia, extends from the Sahara in the north to lat. 10° in the south, and may be considered as extending inland to the sources of the waters which flow through it to the Atlantic.

The western portion is very flat, and its contiguity to the great desert is frequently evidenced by dry hot winds, an atmosphere loaded with fine sand, and clouds of locusts. The eastern portion is occupied with hills and elevated laud. Under the 10th parallel the hills approach quitr close to the coast. The country possesses a great numbel of rivers, among which the Senegal, Gambia, and Rio Grands are the most important. Senegambia ranges, in point of heat, with the Sahara and Nubia. The atmosphere is most oppressive in the rainy scason, which lasts from June to November, when an enormous amount of rain drenches the country. The prevailing winds in that period are south-ivest, whereas in the dry season they are from the east. The climate is, upon the whole, most unhealthy, and too generally proves fatal to Europeans.

The vegetation is most luxuriant and vigorous. The baobab (monkey bread-trce), the most enormous tree on the face of the globe, is eminently characteristic of Senegambia It attains to no great height, but the circumference of tho trunk is frequently 60 to 75 fect, and has been found to measure 112 feet; its fruit, the monkey bread, is a princi-
pal article of food with the natives. Bombacee (cottontrees) are likewise numerous, and they are among the loftiest in the world. Acacias, which furnish the gum-äabic, are most abundant, while the shores are lined with mangrove trees. The flora and fauna are similar to those of Nubia. Gold and iron are the chief metals.
The inhabitants consist of various Negro nations, the chief of which are the Wolof.
The gum trade is the most important traffic on the Senegal ; bees-wax, ivory, bark, and hides, forming the chief exports from the Cambia.
Of European settlements are: The French possessions on the Senegal ; the capital of which is St Louis, built about the year 1626, on an island at the mouth of the river. The total population of the settlement amounts to about 210,000 .
The British settlement on the Gambia has about 7000 inhabitants. Bathurst is the chief town.
The Portuguese settlement consists of small factories suth of the Gambia, at the Bissagos Islands, Bissao, Cacheo, and some other points.
The west coast of Africa, from Senegambia to the Nourse River, is commonly comprised by the general denomination Guinea Coast, a term of Portuguese origin.
The coast is generally so very low, as to be visible to navigaturs only within a very short distance, the trees being their only sailing marks. North of the equator, in the Bight of Benin, the coast forms an exception, being high and bold, with the Cameroon Monntains behind ; as also at Sierra Leone, which has received its name (Lion Mountain) in consequence. The coast presents a dead level often for thirty to fifty miles inland. It has numerous rivers, some of which extend to the furthest recesses of Inner Africa.

The climate, notoriously fatal to European life, is rendered pestilential by the muddy creeks and inlets, the putrid swamps, and the mangrove jungles that cover the banks of the rivers. There are two seasons in the year, the rainy and the dry season. The former commences in the eouthern portion in March, but at Sierra Leone and other northern parts, a month later.

Vegetation is exceedingly luxuriant and varied. One of the most important trees is the Elais gaineensis, a species of palm, from the covering of whose seed or nut is extracted the palm-oil, so well known to English commerce and manufacture; several thousand tons are annually brought into the ports of Liverpool, London, and Bristol. The palm-oil tree is indigenous and abundant from the river Gambia to the Congo; but the oil is manufactured in large quantities chiefly in the country of the Gold and Slave Coasts. The former comprises nearly all the more remarkable of African animals: particularly abundant are elephants, hippopotami, monkeys, lions, leopards, crocodiles, serpents, parrots. The domestic animals are mostly of an inferior quality. The principal minerals are gold and iron. The population consists, besides a few European colonists, of a vast variety of Negro nations, sinilar in their physical qualities and prevailing customs, but differing considerably in their dispositions and morals.

The chief articles of commerce are palm-oil, ivory, gold, wax, rarious kinds of timber, spices, gums, and rice.

The divisions of Northern or Upper Guinea are mostly founded on the productions characteristic of the different parts, and are still popularly retained.

The British colony of Sierra Leone extends from Rokelle river in the north, to Kater river in the south, and about iventy miles inland. The chief portion of the settlement is a rugged peninsula of mountains with a barren soil, but surrounded by a belt of rich coast-land, with a moist and pestilential climate. The colony was founded in 1787,
and has been maintained with a view to the suppression of the West African slave trade. The population, consisting chiefly of liberated slaves, amounted, in 1869, to 55,374, of which number 129 were white men. Freetown, the capital is, after St Louis, the most considerable European town on the western coast of Africa.
The Malaghetta or Grain Coast extends from Sierra Leone to Cape Palmas. Malaghetta is a species of pepper yielded by a parasitical plant of this region. It is sometimes styled the Windy or Windward Coast, from the frequency of short but furious tornadoes throughout the year. The republic of Liberia, a settlement of the American Colonisation Society, founded in 1822, for the purpose of removing free people of colour from the United- States, occupies a considerable extent of the coast, and has for its capital Monrovia, a town named after the president, Mr Monro.
The Ivory Coast extends from Cape Palmas $3^{\circ} \mathrm{W}$. long., and obtained its name from the quantity of the article supplied by its numerous elephants. The French settloments of Grand Bassam, Assinie, and Dabou were abandoned in 1871.
The Gold Coast stretches from west of Cape Three Points to the river Volta, and has long been frequented for golddust and other products. By a treaty of February 18i1, the whole of the Dutch possessions on the Gold Coast were made over to Britain, and the Danish settlements of Christiansburg and Friedensburg were ceded to the English in 1849; so that the British coast now extends from the mouth of the Tenda river, in long $2^{\circ} 40^{\prime} \mathrm{W}$., to that of the Ewve, in long. $1^{\circ} 10^{\prime} \mathrm{E}$. of Greenwich. The protected territory extends inland from this coast strip to an average distance of 50 miles. Cape Coast Castle and Fort James, founded by the British, and Elmina (population about 10,000) the most important of the former Dutch statlons, with Accra, are the cheef settlements.
The Slave Coast tends from the river Volta to the Calabar river, and is, as its name implies, the chief scene of the most disgraceful traffic that blots the history of mankind. Eko or Lagos, one of the chief towns of the coast, was destroyed by the British in 1852, and was proclaimed a British possession in 1861. Palma and Badagry are also British settlements.
The kingdoms of Ashantee, Dahomer, Yoruba, and others, occupy the interior country of the Guinea coast. Ashantee the most powerful Negro state of Upper Guinea, is al exceedingly fertile and productive country. Its inhabitants, though skilled in some manufactures and of a higher -ntel. ligence than is usually found in this region, are of an exceedingly sanguinary disposition, and have frequently been involved in war with the British. The capital city, Kumassi, is believed to have a population of about 100,000 .
The coast from the Old Calabar river to the Portuguese possessions is inhabited by various tribes. Duke Tomn, on the former river, is a town of 4000 inhabitants, with considerable trade in palm-oil, ivory, and timber.

On the Gaboon river, close to the equator, are a French settlement (in 1871 the French retained only a coaling station), and American missionary stations. At the equator Southern or Lower Guinea begins, where the only European settlements are those of the Portuguese.

Loango is reckoned from the equator to the Zaire or' Congo river. Its chief town is Boally, called Loango by the Europeans.

Congo extends south of the Zaire, comprising a very fertile region, with veins of copper and iron. Banza Congo or St Salvador is the capital.

Angola comprises the districts of Angola proper, Benguela, and Mossamedes. In these regions the Portuguese settlements exteiniartiber inland than the two preseding
distriets, namely, about 200 miles. The capital, St Paulo de Loaudo, contains 12,300 inhabitants, and has a fine harbour. St Felipo de Benguela is situated in a picturesque but very marsliy and most unhealthy spot.

The coast from Bengucla to the Cape Colony may, in a general arrangement like this, be included cither within West Africa or South Afriea. The whole coast is little risited or known, being of a most larren and desolate description, and possessing few harbours. Ichabo island and Angra Peguena lay are visited for their guano deposits, and are clained as British possessions.

Under Soutls Africa the Cape Colony only is generally comprised. It takes its name from the Cape of Good Hope, and extends from thence to the Orange river in the north, and to the Kai river in the cast. A large proportion of the territory ineludel? within these limits, especially in the north, is either unoccup, ied, or, excepting missiouary stations, entirely in the hands of the aborigincs.

A part from the shores, the conntry consists of high lands, forming parallel mountainous ridges, with elecated plains or terraces of varying extent betwecu. The loftiest range, styled in different parts of its course Sneuw-bergen, Winterbergen, Nicuveld-bergen, and liogsenveld-bergen, names criginated by the Dutch, is the third and last encountered on proceeding into the interior from the south coast. This and the other elains are deeply cut by the transverse valleys called kloofs, which serve as passes across them, and appear as if produced by some sudden conrulsion of nature, subscquently widened by the action of the atmosphere and runLing water.

The high plains or terraces are remarkable for their extraordinary change of aspect in the succession of the seasous. During the summer heats they are perfect deserts, answering to the term applied to them, karroos, signifying, in the Hottentot language, "dry" or "arid." But the sandy soil being pervaded with the roots and fibres of various plants, is spontaneously clothed with the richest verdure after the rains, and becomes transformed for a time into a vast garden of gorgeous flowers, yielding the most fragrant odours. Adapted thus to the support of graminivorous animals, the karroos are the resort of antelopes, zebras, quaggas, and gnus in countless herds, and of the carnivorous beasts that prey upon them, the lion, hyæns, leopard, and panther. These quadrupeds, however, with the elephant, rhinoceros, hippopotamus, giraffe, buffalo, and ostrich, have been largely banished from their old haunts by the advaneing footsteps of civilised man, and are only found in the more secluded parts of the interior. The country has a singnlar and superb flora, but it comprises few native plants useful to man: many such have bcen now introduced. Heaths of varied species and great beauty abound; and geraniums are treated as common weeds. llany highly productive districts occur; corn, wines, and fruit being the chief objects of cultivation in the neighbonrhood of the Cape, while the more inland settlements are grazing farns. Some fine natural forests clothe the sides of the mountains; but in general the colony is deficient in timber trees, as well as in navigable streams, perennial springs, and regular rain. A great deposit of rich copper ore occurs near the mouth of the Orange; and salt is obtained for consumption and sale from salt lakes.

The clinate is exccedingly fine and salubrious. There are two seasons, characterised by the prevalence of certain winds. During the sumner, which lasts from September to April, the winds blow from south-east, cold and dry; during the winter, namely from Nay to September, north-west winds prevail. In the most elevated regions the winters are ocear sionally severe, and snow and ice occur.

The chief native tribes within the British territory are the IIottentots, liechuanas, and liaffres. Non manuacture
is conducted at the Cape except the making of wine, of which from 10,000 to 40,000 gallons are annually exported to England Various articles of provision are surplied to ships sailing between Europe and the East Indies.

Cape Town is the capital of the colony, and contains 23,460 inhabitants, of whon 15,120 are Europeans. Its commerce is considerable, and the port is frequented by 500 to 600 vessels cvery year.

The Orange river sovereignty, added to the British tenitorics in 1848 , but subsequently given up and constituted a free repullic, extends north of the Orange river as far as the Ky Gariep or Vaal river. In consequence of the discovery of rich diamond fields on the lower Yaal river and in the neighbouring territory of the Griqua chief Waterboer, who also petitioned to have his lands subjected to British rule, a wide country surrounding the diamondfields was incorporated with the Cape Colony in October 1871, under the name of Griqua Land West, divided into Griqus the districts of Pneil, Griqna Town, and Klipdrift. The Land " population of this new territory was estimated at 50,000 in 1872 , concentrated in camps round the chief diamondfields. In 1869, Bassuto Land, a mountainous territory at Bassut the hcad waters of the Nu Gariep branch of the Orange river, Land and on the inward slope of the Drakenberg range, was incorporated as a British possession.

Natal or Victoria, a district on the cast coast, and sepa-Nato' rated from the Cape Colony by Kaffraria, is a recently formed British settlement, which was created into a colony in 1856. It is highly favonred in those respects in which the Cape is most deficient, haring abundance of wood and water, with coal and various metallic ores, a fine alluvial soil, and a climate adapted to the cultivation of the products for which the home demand is large and constant-cotton, silk, and indigo. Pietermaritzburg, the capital of the settlement, lies 50 miles from the coast. Port Natal, now D'Urban, scated on a fine lake-ibe bay, is the only harbour.

The Transraal Republic is an inland state, between the Valal on the south and the Limpopo river on the north, having the Drakenberg edge on the east, and the Bechuana tribes, which oceupy the region bordering on the Kalahira desert, on the west, foupded by the Dutch boers emigrating from the Cape Colony. Its surface is an elerated platcau, thinly wooded in sone parts, but generally affording excellent pasture. The chief town is Potchefstroom, on a tributary of the Vaal; but the seat of government is at Pretoria, in the region of the head streams of the Limpopo.

Last Africa extends from Natal northwards to the Red Sea, comprising Sofala, Mozambique, Zanzibar, and the Sofan Somali country. But little is known of that region beyond the shores. The Sofala Coast, extending from Delagoa Bay to the Zambeze river, is flat, sandy, and marshy, gradually ascending towards the interior. It abounds with rivers, which are the source of yearly innndations. The soil is very fertile, and produces chiefly rice. In the interior, gold and other metals, as well as precions stones, are found. The Portugucse bave settlements at Sofala, in an unhealthy spot, abounding with salt marshes; it consists of only huts, a church, and a fort in ruins. Inhambane, near the tropic of Capricorn, has an excellent harbour.

Mozamlique extends from the Zambeze to Cape Delgado, and is similar, in its natural features, to the Sofala Coast. The greatest river is the Zambeze. The principal settlement of the Portuguese is at Quillimane, which is situated in a very unbealthy position on the northern arm of the delta of the Yambeze, surrounded with mangrove trecs.

The Zanzibar or Sawahili Coast extends from Cape Del- Zanzibu gado to the river Jub, near the equator. The coast is generally low, and has but few bays or harbours: its northern portion is rendered dangerous by a line of coral reefs extending along it. The region possesses a great number of
zivers, but none of them attain a first-rate magnitnde. The principal are the Rovuma, the Lufiji, Ruvu, Pangani, and Dana; the two latter rising in the snowy mountains of Kilima-njaro and Kenia The climate is similar to that of other tropical coasts of Africa, hot and unhealthy in gencral : in some portions, howerer, the elevated ground, and with it a more temperate and healthy climate, approaches the shorea to within a short distance. The vegetation is luxuriant, and cocoa-nut, palms, maize, rice, and olives are the chief articles of cultivation. The fauna comprises all the more characteristic African specios.

The chief inhabitants are the Sarabili, of mixed Arab and Negro descent, but the coasts are under the Arab dominion of the Imaum of Muscat, by whose efforts commerce with the nations of the interior has greatly increased.

The island of Zanzibar (Unguja of the Sawabili) is the residence of a Sultan, tributary to the Imaum of Nruscat, and the seat of extensive commerce. Mombas, on a small island close to the main shore, possesses the finest harbour on that coast, and has recently become famous as the seat of an important missionary station.

The Somali country comprisea the eastern horn of Africa, from the-equator northward to the Bay of Tadjurra, near the entrance into the Red Sea. The coast is generally bold and rocks, in some places corered with sand; and the extensive region it encloses presents a slightly ascending plain, traversed by large valleys of great fertility, among which the Wady Nogal is prominent. This country is not so well watered as the region to the south, and some of its rivers are periodical.
The Somali country is famous for its aromatic productions and gums of rarious kinds; and it is supposed that the spicer, and incense consumed in such large quantities by the ancient peaples of Egypt, Greece, Syria, and Rome, were derived from this part of Africa, and not from Arabia.
Zeilla and Berbera, on the northern coast, are the chief trading porta: the permanent population of the former is about 3000 , while the latter may be said to exist only during the winter, when no less than 20,000 strangers, at an average, arrive to pitch thcir tents, and thus create a great market-place. Harrar, in the Galla country, is the chief place in the interior, with 8000 inhabitants, who are Mohammedans. One-third of the population is Somali, one-third Arab.

Central Africa comprises the regions which extend from the southern borders of the Sahara in the north to Cape Colony in the south, and from Senegambia in the west to the territory of the Egyptian pashalic on the east. It comprehends the central basins of the great lakes from Lake Chad to the Nyassa, and the greater part of the basins of the Niger, Congo, Nile, and Zambeze. Even the Sahara may well be included in this general denomination. So little is yet known of this rast region that the general features of some portions only can be indicated. The greater portion seems to be densely peopled with numerous tribes, and to possess inexhaustible natural resources. The portion north of the equator, under the name Soudan or Nigritia, comprises a great number of states, among which the prinsipal are Bambarra, Timbuktu, and Houssa, in the west; Bornu, Baghermi, and Waday, around Lake Chad; Darfur in the east; and Adamaua in the south. The inhabitants are of Negro race, with many Arabs, Moors, and Berbers.
Bambarra occupies part of the basin of the Joliba, or upper source of the Quorra. The dominant inhabitants are the Mandingoes and Foulahs, who have emhraced Islamism, and are much more adranced in civilisation than the other Negro tribes. The country comprises extensive and excellent pastures, with abundance of domestic animals, as horned rattle, sheep, goats, and horses of a fine breed. Among the vegetable products the most remarkable is the butter-trce,
which furnishes an important article of agricultural industry and trade.

Sego, the capital, is sitnated on the Joliba, and contains 30,000 inhabitants. It was here that Mungo Park first caught sight of the long-sought river.
Timbuktu, or Jennie, comprises the basin of the Joliba below Bambarra, and lies partly within the Great Sahara Timbuktu, a few miles from the banks of the Joliba, and situated amid sands and deserts, is a celebrated centre of the North African caravan trade. It coutains from 12,000 to 15,000 inhabitants.

Houssa is an extensive country extending to the Sabara in the north, to the Joliba or Kawara on the rest, to Bornu on the east, and to about $10^{\circ} \mathrm{N}$. lat. on the south. Tho dominant race are the Foulahs, but the mass of the population are Negroes. It is a'very fertile and beautiful country, but the climate is insalubrions, and in many parts fatal to Eurnpeans. The inhabitants are engaged in pastoral, as well as in agricultural and commercial pursuits.

The capital, Sakatu, is one of the largest cities in Negroland; it is situated in a fertile but marshy plain. Kano, another large town, containing 30,000 to 40,000 inhabitants, is the great emporium of trade in Houssa; there the English merchandise coming from the north through the Sahara, meets with American goods coming from the Bight of Beniu. The manufactures of Kano consist chiefly of cloth, for the dyeing of which that town is famed all over Central Africa.
Bornn is one of the most powerful states of Negroland; Borna: extending on the west to the 10th degrec of long., on the east to Lake Chad and the kingdom of Baghermi, and on the south as far as Mandara and Adamaua, in about $11^{\circ} \mathrm{N}$. lat. Kanem, on the northern side of Lake Chad, has recently been conquerad and brought under Bornuese sovereignty.

The general character of Bornu is that of a plain, snhject to inundations, particularly near Lake Chad. It is very fertile, and cotton and indigo attain a high degree of excellence. The original Bornuese are an agricultural people.

Kuka, the capital and residence of the Sheik of Bornu, had in 1866 ahout 60,000 inlabitants.

Baghermi, another porrerful kingdom, is situated east of Baglermk Bornu. The boundaries, according to Dr Barth, who first visited this country and penetrated as far as Maseña, the capital, are on the west the river Logreme, a tributary of the Shary or Asu, by which it is divided from Bornu and Adamaua; on the north its limits are in about $12 \frac{1}{2}^{\circ} \mathrm{N}$. lat., and on the east $19 \frac{1}{2}^{\circ} \mathrm{E}$. long., both lines dividing it fronı Waday; the southern boundary is in about $8 \frac{1}{2}^{\circ} \mathrm{N}$. lat. Baghermi is an extensive plain or valley formed by the river Shary or Asu and its tributaries. The inhabitants are very warlike, and frequently engage in slave marauding expeditions into the neighbouring states to the south.
Maseña, the capital, hes in $11^{\circ} 40^{\prime} \mathrm{N}$. lat., and $17^{\circ} 20^{\circ}$ E. long.

Waday, or Dar Saley, lies east of Baghermi, and reaches Waday. as far as Darfur. It coniprises an extensive region, stretching as far as the basin of the Nilc. Lake Fittri, situated in the western portion, forms a basin, unconnected with that of Lake Chad, and by which the country as far as Darfur is drained. It has never been explored by Europans. The population comprises a great variety of tribes and different languaces.
Whara, the capital, is placed by Dr Barth in 14° N. lat., and 22° E. long.
Darfur, east of Waday, extends as far as Kordofan. The country rises towarda the west into a range of hills called Jebel Marrah. It is drained into the Nile. A great portion of the conntry is Sabaran in its character, while other parts are fertile and diversified. Browne, in 1703 , estimated the whole population at 200,000 . It has an extensire trade with Egypt.

Cobbeih, the capital, is a merchant fown, and contains about 6000 inhabitants.

Fumbina or Adamaua is an extensive country south of Houssa and Borna, under Foulah dominion. It consists of a large, fertile, and highly-cultivated valley, formed by the River Benue. Near Yola, the capital, the Benue receives the Faro, a large tributary coming from the south west. This country was first visited by Dr Barth in 1851.

Yola, the capital, lies in $8^{\circ} 60^{\prime} \mathrm{N} . l a t$. , and $13^{\circ} 30^{\circ} \mathrm{E}$ longitude.

South of the belt of Negro states of the Soudan bies the great unknown region of Central Africa. On the east the unexplored area is bounded by, the numerous states of the lake region made known by Burton, Speke, and Livingstone. Of these the chief are Unyamwesi, occupying the platean south of the Victoria Lake, and east of Lake Tanganyika, with the eapital town of Kasch or Tabora, frequented by Arab traders from Zanzibar; Karague on the western side of the Victoria Nyanza; and Ugauda, stretching round its north-western shores. In the interior, beyond Lake Tanganyika, Livingstone has recently made known the peoples of Manyuema land, where "there is no political cobesion; not one king or kingdom. Each man is independent of every other." To the south of the unknown region are the porerful Negro kingdoms of the Muata Yanvo and of the Cazembe, occupying the whole of the interior between 6° and $12^{\circ} \mathrm{S}$. lat. Kabebe, the capital of the former state, is believed to be in about lat. 8° S., long. $23^{\circ} 30^{\prime} \mathrm{E}$. of Greenwieh; and Lunda, the chief town of the latter potentate, is in the Luapula valley, south-west of the Tanganyika Lake, and was visited by Livingstone in 1867-68. The Makololo kingdom, occupying the central basin of the Zambeze river, with the chief town of Linganti, west of the Victoria Falls; and that of Mosilikatse in the southeast, between the Zambeze and the Limpopo rivers, are the great remaining divisions of Central Africa. Besides these, homever, innumerablo petty kingdoms, chiefships, and tribes subdivide the rast populations of Negroland.

To Africa belong a considerable number of islands. The Madeiras, belonging to Portugal, he off the north west coast of Africa, at a distance of about 360 miles. Madeira, the chief island, is about 100 miles in circuit, and has long been famed for its picturesque beauty, rich fruits, and fine climate, which renders it a favourite resort of invalids. Wine is the staple produce. Funchal, the chief torm, with 18,000 inhabitants, is a regular station for the West India mail steam-packets from Southampton, and the Brazilian sailing-packets from Falmouth.

The Canaries, belonging to Spain, the supposed Fortunate Islands of the ancients, aro situated about 300 miles south of Madeira. They are 13 in number, all of volcanic origin, Tencriffe being the largest. The latter is remarkable for its peak, which rises as a vast pyramidal mass to the height of 12,173 feet.

The Cape Ferde Islands, subject to Portugal, are a numerous group about 80 miles from Cape Verde. They obtained their name from the profusion of sea-weed found by the discoverers in the neighbouring ocean, giving it the appearance of a green meadow. They are also of volcanic origin.

Fernandor P_{0}, a very mountainous forest-covered island, is in the Bight of Biafra. The British settlement of Clarence Town was established in 1827, but afterwards abandoned. The island now belongs to Spain.

St Thomas, immediately under the equator, is a Portuguese settlement; as is also Prince's Island, in $2^{\circ} \mathrm{N}$. lat. Annobon in $2^{\circ} \mathrm{S}$. latu, belongs to the Spaniards.

Ascension, a small, arid, volcanic islui, was made a British port on the arrival of Napoleon Bonaparte at St Helena, and since retained as a station, at which ships may touch for stores. Green Hill, the summit of the island, rises to the height of 2840 feet.

St Helena is a huge dark mass of roca, rasing abruptly from the occan to the height of 2692 feet. James' Town is the only lown and port.

Madagascar, the largest island of Africa, and one of the largest in the world, is separated from the Mozambique coast by a channel of that name. about 250 miles, wide. The area exceeds that of France.

The high interior of the island is generally very fertile, with magnificent forests and fine pastures watered by numerous rivers, but a belt of hot swamo land with a deadly climate surrounds the coast.

The inhabitants are diverse races of Negro, Arab, and Malay origin. The Ovahs, a people of the central provinces, are now, dominant. The princioal town, Antananarivo, has about 80,000 inhabitants.

The French possess the islands of Sante Marie and Nossibe on the coast of Madagascar, and Mayotta island in the Comoro group.

The Comoro isles, four in number, are in the north part of the Mozambique Channel, and inhabited by Arab tribes.

Réunion or Bourbon, 400 miles east of Madagascar, is a colony of France, producing for export, coffee, sugar. cocisa, spices, and timber.

Mauritius, ceded to the British by the French in 1814, is 00 miles north-east of Bourbon. The sugar-cane is chiefly cultivated. Port Louis, the capital, beautifully situated, has 75,000 inhabitants. Within the iurisdiction of the Governor of the Mauritius are the islands of Rodriguez, the Seychelles, and the Amarante islands.

Socotra, a large island, east of Cape Jerdaffun, with an Arab and Negro population, has been known from early times; it belongs to the Imaum of Museat. This island was long celebrated as producing the finest aloetic drug; it is found still to produce a fine kind of aloe, though much of what passed as Socotrine aloes really came from India. Gums, tobacco, and dates are also exported.
(к. Ј.)

Note-The above article was completed before it was known with certainty that the saddest event in the history of African exploration had occurred. Dr Livingstone, to whom the article justly assigns "the first place among "African discoverers," äied of dysentery near Lake Bangweolo on the 4th of May 1873. The story of his latest discoveries, and of the rare devotion with which his native attendants carried bis remains with them during an eight months' march to the coast, belongs to a biographical notice. It is more fitting in this place to noté, as some consolation for an almost irreparable loss, that living stone's death seems to hare given a porrerful stimulus to the prosecution of the task he had so nearly completed. The expedition of Lieutenant Cameron, above referred to. is being carried out with a vigour and intelligence that give ample promise of a further limitation of the region of the unknown, if not of the complete solutiou of all outstanding problems. In the spring of 1874 he had commenced a thorough exploration of Lake Tanganyika. which, from his professional experience as a hydrographical surveyor, is expected to lead to very valuable results. And the complete success of Stanley's first memorable mission in search of Livingstone warrants confident hopes in regard to a' second expedition, also admirably organised and equipped, which has started under his direction.

SFRICANUS, Julius, called also Sextus by Suidas, a Christian historian of the 3d century, born, according to some, in Africa. and, according to others, in Palestine, of African parenss Little is known of his personal history, except that he lived at Emmaus, and that he went on an embassy to the emperor Heliogabalus to ask the restoration of that town, which had fallen into ruins. His mission succeeded, and Emmaus was henceforward known as Nicopolis. It is by no means certain that he was a bishop or even a priest, though the latter is probable. He
 from the creation to the year 221 A.D., a period, according to his compatation, of 5723 years. He calculated the period between the creation and the birth of Christ as 5499 years, and antedated the latter event by three years. This method of reckoning became known as the Alexandrian era, and was adopted by almost all the eastern churches. The history is no longer extant, but copious extracts from it are to be found in the Chronicon of Eusebius, besides fragments in Syncellus, Cedrenus, and the Paschale Chronicon. Eusebius has also given some extracts from his letter to Aristides, reconciling the apparent discrepancy between St Matthew and St Luke in the genealogy of Christ by a reference to the Jewish law, which compelled a man to marry the widow of his deceased brother, if the latter died without issue. His letter to Origen, impugning the authority of the apocryphal book of Susanna, and Origen's answer, are both extant, the former having been printed at Basle, 1674. The ascription to Africanus of a work entitled Kecroí, treating of agriculture, natural history, military science, \&cc., has been disputed on account of the inconsistency between it and the author's other writings. Neander suggests that it was probably written by Africanus before he had devoted himself to religious subjects.
AFZELIUS, ADAM, an eminent Swedish naturalist, born at Larf, West Gothland, in 1750. Haring studied at Upsala under Linnæus, he became teacher of oriental literature in that university in 1757, and demonstrator of botany in 1785 . For tro years (1792-91) he resided on the west coast of Africa as botanist to the Sierra Leone Company. After acting for some time as secretary to the Swedish embassy in London, he "returned home, became again a teacher in the university of Upsala, and was appointed professor of materia medica in 1812 He edited the autobiography of Linnæus (Upsala, 1823), a German translation of which appeared at Berlin in 1826. His literary work included also a lave number of botanical papers contributed to the Linnean Society of London and the Royal Academy of Stockholm, as well as treatises on certain plants of Guinea and Sweden. He died at. Upsala in 1836, having bequeathed his botanical collection to the university. Several species of plants, known as Afzelia, are named after this distinguished botanist.

AFZELIUS, Arwid August, the Swedish historian, poet, and comparative mythologist, was born at Fjell\&ker in 1785. For a while he was a schoolmaster in Stockholm, but afterwards entered the church, and became parish priest of Enköping, where he worked for just half-acentury, till his death in 1871 . His poeticai career began in 1811 and closed in 88 , when he wrote his Farewell to the Swedish Harp. One great work of his life was to collect and publish, in conjunction with the eminent Geijer, three volumes of Swedish Folk-songs; but he will be best remembered by his History of the Sivedish People, which has won him a European reputation. He did not live to bring this history lower down than 1709.
(E. w. G.)

AGA, or Agha, a word, said to be of Tatar origin, signifying a dignitary or lord. Among the Turks it is applied to the chief of the janissaries, to the commanders of the artillery, cavalry, and infantry, and to the eunuchs in
charge of the seraglio. It is also employed generally as a term of respect in addressing wealthy men of leisure, landowners, \&c. The word is found with a somewhat similar usage in Tartary, Persia, and Algiers.

AGADES, the capital of the kingdom of Air, or Asben, in Central Africa, situated in $17^{\circ} 2^{\prime} \mathrm{N}$. lat., $8^{\circ} 5^{\prime} \mathrm{E}$. long. The town is built on the edge of a plateau, 2500 feet abore the level of the sea, and is supposed to have been founded by the Berbers to serve as a secure magazine for their ex: tensive trade with the Songhay empire. The language of the people is a dialect of Songhay. In former times Agades was a place of great traffic, and had a population of about 50,000 . Its importance may be estimated by the fact that the king of Agades paid a tribute of 150,000 ducats to the king of Songhay. Since the beginning of the 16 th century the prosperity of the place has gradually declined. Extensive quarters of the town; which has a circuit of $3 \frac{1}{2}$ miles, are deserted and ruinous. The occupied houses number only 600 or 700 , and the population does not exceed 7000 . The houses, which are built of clay, are low and flat-roofed; and the only building of importance is the chief mosque, which is surmounted by a tower 95 feet high. There is little traffic in the markets; no money is used, and the usual medium of exchauge is millet. The chief trade is in grain. Agades derives its main importance from its situation on the direct route from the countries to the north-east to Sokoto and other important towns in the Hansa states. The great salt caravans pass through it, as well as pilgrims on their way to Mecca. From its healthy climate and adrantageous position, the place might prove to be a good station for a European agent. (See Barth's Travels in Central Africa, vol. i.)

AGAMEMNON. The stern obligations of a king and the majesty of his office, as compared with his humane desires and occasional frailty, give the keynote to the claracter of Agamemnon. But the kingly office, like the sceptre which was the symbol of it, had come to him from Pelops (Iliad, ii. 100) through the stained hands of Atreus and Thyestes, and had brought with it a certain fatality, by which his misfortunes, and especially the catastrophe at the close of his life, were explained. As his title of Atrides implies, Agamemnon was a son of Atreus, his mother being Aërope. In a later account he is a son of Pleisthenes. But, apart from this difference, it is agreed that he succeeded to the sovereignty of Atreus over Argolis, Corinth, Achaia, and many islands, his seat being at Mycene, not, as Æschylus for political reasons asserts, at Argos. The succession had पeeñ waurped by Thyestes and Ægisthus. During the usurpation Agamemnon and his brother Menelaus risited Tyndareus, the king of Sparta, and obtained in marriage his two daughters- the former Clytæmnestra, the latter Helena: with his help Agamemonon was reinstated in his rights. Menelaus succeeded Tyndareus. The children born by Clytæmnestra were Chrysothemis, Iphigenia, Electra, and one son, Orestes. Elserrhere are mentioned also Iphianassa and Laodice; but the latter was the original name of Electra, it appears, and it has becn suggested that Iphianassa stood in the same relation to Iphigenia. Agamemnon was then the niost powerful prince in Greece; and to him of right, as well as naturally, his brother Menelaus turned for aid to compel the Trojans to gire up his wife Helena, whom Paris had carried off. The various princes of Greece having been brought to unite in an expedition for this purpose, Agamemnon was chosen leader, he himself furnishing 100 ships and lending also 60 more to the Arcadians. It was not perhaps his fault that the Greeks landed by mistake on the coast of Mysia, from which, after plundering it, they took ship and were scattered in a storm; but it was owing to him (and this is the beginning of his ill-fate) that after again assembling in

Anlis, whence they lad set oat, the fleet was stom-bound. Ifo lad slain a deer sacred to Artemis, and boasted limself a better limiter than the goddess. This, as Calchas the seer read the divine will, could only be atoned fur by his ofiering up his daughter Iphigenia in sacrifice. Compolled by his duty to the expelition, he allowed her to be sent for, the pretext given to Clytamuestra being that she was t. be married to Achilles. But when the moment of saerifues came, the goddess substituted a stag, carried her off to the Tauri, and nade her immortal. The fleet now sailed; and except the quarrel betweeu hiun and Aclilles at Tenedus of Lemnus, there was no incident in which Agmemnon figrured particularly, until, in one of the raids on the towns round Troy, Brisels and Chrysels wero brought eaptives, and assigned, the former to Achilles, the latter to Aga-z:a::unn.-who, having to yield up his captive to appease Apello, clumed and took the other. Upon this Achilles withdrew from the war, and Agameranon endeavoured at first to maintain it without him. In the face of disaster lue repented, and offered reparation-sending costly presents by the hands of Phœonix, Ajax, and Ulysses. His offer rejected, he took the field himself, and did marvels of beavery, but was mounded and defeated. When Troy was finally taken and the captives distributed, he obtained Cassandra, and with her returned home; but before sailing the shade of A chilles appearci to lim, foretold what would lappen, and sought to restrain him. In his absence Clytrmmestra had yielded to the temptations of Egisthus, and, to cover ber shame, planned with him the death of her husband. The approach of Agamemnon being announced by a spy, a fenst and an affected welcome were prepared for him and his followers. At the feast they were fallen upon by hired murderers, assisted by Fgisthus and Clytemnestra, the latter herself slaying Cassandra (Odyssey, iv. 51:'537; xi. 385-461). According to Eschylus, Agamemnon was slain in his bath, his wife first throwing a piece of cloth over him to prevent resistance. For his death rengcance was taken by his son Orestes. In the legends of the Peloponnesus, Agamemnon was regarded as the highest type of a potrertul monarch, and in Sparta he was worshipped under the title of Zeus Agamemnon. Uis tomb was pointed out among the ruins of Mycenæ (Pausanias ii. 16.5).
(A. S. M.)

AGAPE, plur. Agape, the love-feast, or feast of charity; which among the primitive Christians usually accompanied the Eucharist. The word (áyátr, love) is first employed in this sense in the Epistle of Jude, verse 12. The sng. gestion of a connection between Christian love-feasts and the épavar and irarpía of Greece and Rome is both improbable and unnecessary. The feelings of love and brotherhood fostered by the new faith, strengthened as these must have been by the complete isclation of the little Cliristiau community, are quite sufficient to account for the existence of the Λ gapre, wiihout referring them to other nore or less similar institutions. According to Chrysostom, the Agape was a common feast, symbelising the community of goods when it no longer really existed, 10 which the rich brought provisions, and the poor, who lyrought nothing, were invited. At first it was observed probably every evening in immediato connection with the celebration of the Lord's Supper, though whether before or after is a point that has been much disputed. It closed nith the Loly Liss (ϕ í $\lambda \eta \mu a$ ajov, фí $\lambda \eta \mu a$ aүánns). The Corinthian church was the first to pecvert the Agape by destroying the community between rich and peor (l Cor. xi. 21). Partly perhaps on account of such irregularitics crtending, and partly to escape the notice of persecutors, it became usual about the middle of the 2 d century to separate the Lord's Supper from the Agape ty celebrating the former at the close of morning scrvice on Sunday,
aud the latter by itself after a considemille interal Abuses becoming more frequent, love-feasts were gradually put under greater restrictions. The ricli began habitually to absent thenselves from the Agapæ, which came thus to be regarded as a provision for the peor alone; and the Council of Gangra (360), to correct the abuse, pronounced an anathema upon any who should despise the Agapr. A number of synods and eouncils in succession condemmed the holuing of these feasts in churches, as well as the participation of the clergy in them, and at length the observance altogether died out. In modern times it has been revived in one form or other by the Muravian Brethren, the Wesleyan Methorlists, and, in Scotland, by the followers of liobert Sandeman.

AGAPETUS, deacon of the St Sophia Church at Constantinople, presented to the Emperor Justinian a work entitled Churta liegice, composed in 527, which contained advice on the duties of a Christian prince. It is highly valued, and has been several times reprinted. The best edition is that contained in Bundauri's Imperium Orientale (Paris, 1711). There is an English translation by Thomas P'aynell (1550); and a French translation, executed from a Latin version by Louis NIII., with the assistance of his tuter, David Rivanlt.

AGAIRDE; Artuur, a learned English antiquary, boin at Foston, in Derbyshire, about 1540. He was trained a lawyer; but entering the exchequer as a clerk, he became deputy-chamberlain in 1570. This office, which he held for forty-five years, gave him unrivalled opportunities for carrying on his favourite study. Along with his intimate friends, Sir Robert Cotton and Camden, he was one of the original members of the Society of Antiquarics. He made a special study of the Domesday Book, and prepared an explanation of its more obscure terms, which is of little worth. Hearne, in his Collection of Curious Discourses vritten by Eninent Antiquaries (Oxford, 1720), includes six by Agarde on such subjects as the origin of parliament, the antiquity of shires, the authority and privileges of heralds, dc. Agarde died in 1615, and was buried in the cloister of Westminster Abbey. He bequeathed to the exchequer all his papers relating to that court, and to his friend Sir Robert Cotton his ether manuscripts, abounting to twenty volumes.

AGASIAS, sen of Dositheus, a famous sculpter of Ephesus, who is supposed to have lived about the 4 th century. Ilis celebrated work, known erroneously as the Borghese Gladiator, was discovered at the commencement of the 13 th century in the ruins of an imperial palace at Antium, where the Apollo Belvidere was also found. It represents a figure in action, with the head uplifted as if to meet the attack of a horseman. According to Winckelmann, the representation of the figure is intensely real, without a touch of imagination. The statue forms part of the. Louvre collection.

AGASSIZ, Louts John Rudolph, was the son of a Swiss Protestant clergyman. His father was the pastor of the parish of Motiers, a small. Lown situated near the northeastern angle of the Little Murtensee, and not far from the eastern extremity of the Lake of Neuchatel. Agassiz was born at this retired place on May 28, 1807. Educated first at home, then spending four years at the gymnasium of Bienne, he completed his elementary studics at the academy of Lausanne. Whilst at this latter place he already became conspicuous amongst his fellow-students, not only for his love of the natural sciences, but for the manifest talent le displayed in pursuing them. 'The close alliance between these subjects and the science of medicine led him to adopt the latter as his profession, for which he studied successively at the universitics of Zurich, Heidelbeng, and Munich; at the same time availing himself of the advantajes afforder
by these universitics for extending his knowledge of natural listory, especially of botany. Having completed his academical conrse, he took his degrce of doctor of medicine at Municl.

Up to this time he had no particular inclination for the stndy of ichthyology, which soon afterwards became the great occupation of his life. Agassiz always declared that he was led into ichthyological pursuits through the follow. ing circnmstances :-In 1819-20, Spix and Martius were engaged in their celebrated Brazilian tour, and on their return to Enrope, amongst other collections of natural objects, they brought home an important one of the freshwater fishes of Brazil, and especially of the Amazon river. Unfortunately Spix did not live long enough to work ont the history of these fishes ; hence it became necessary that some other naturalist should undertake the task of describing them. It is no insignificont proof of the reputation which Agassiz had alreedy won, that, though little more than a youth just liberated from his academic stndies, he was selected for this purpose. His attention being thus directed to the special subject of ichthyology, he at once threw himself into the work with that earnestness of spirit which characterised him to the end of his busy life. Thus. in 1828 we find him, after describing a new species of Cynocephalns, publishing a description of a new cyprinoid fish. This was fullowed by a yet more elaborate research into the history of the cyprinoid and other fishes found in the lake of Neuchatel. Rapidly enlarging his plans, the publication of the last-uamed work was succeeded by the issne, in 1830, of a prospectus of a IIistory of the Freshwater Fishes of Centrul Europe. It was only in 1839, however, that the first part of this important publication appeared. The task of describing and figuring the Brazilian fishes of Spix and Martius: was comploted and the work published in 1829.

Acquiring fresh confidence through these labours, he now contemplated a yet greater task. Having become a professed ichthyologist, it was inpossible that the fossil fishes with: which the stratified rocks of his native monntains abound should fail to attract his attention. The rich stores furnished by the slates of Glarus and the limestones of Monte Bolca were already well known; but very little had been accomplished in the way of the scientific study of them. Agassiz at once threw himself into this new tield of labour with his wonted enthusiasm, and began the publication of the work which, more than any other, made him known to foreign naturalists, and laid the foundation of his worldwide fame. Five volumes of his Recherches sur les Poissons Fossiles appeared at intervals between the years 1833 and 1844. They were magnificently illnstrated, chiefiy throngh the labours of Dinkel, arr artist of remarkable power in delineating natural objects.

Agassiz soon found that his palæontological labours rendered a new basis of ichthyological classification absolutely necessary. The fossils rarely exhibited any traces of the soft tissues of fishes. They chiefly consisted of the teeth, scales, and fins, even the bones being perfectly preserved in but comparatively few instances. Hence the classifications of Cuvier and other naturalists mere of Jittle use to lim in deterraining the matual relations of the fossil forms. He therefore adoptcd his well-known classification, which divided fishes into four groups-viz. Ganoids, Placoids, Cycloids, and Ctenoids. The first of these groups was chieHy represented amongst living fishes by the Lepidosteus or bony pike of the great American rivers; by the Polypterus or Bischir of the Nile; and by the sturgeon. The last fish has a wide geographical range; but the other two, which best display the characters on which Agassiz based his Ganoid class, are limi.ted to the fresh-water rivers of local geographical areas. But in the Palrozoic and Mesozoic ages it was strikingly otherwise.

The Ganoids were the most remarkable as wr:l as the most widely diffinsed of primeval fishes; we find them equally in the frosh-water deposits of the weald, in the marine deposits of the colites, the chalk, and the magnesian limestone, and in the more mixed and dubious deposits of tic coal incasurcs. Agassiz, thercfore, was fully justified in attaching very great importance to this hitherto unrecog. nised class. Indecd, later ichthyologists-e.g., J. Nüller and Professor Owen-have found it necessary to retain the class in their recent classifications, though in a modified form. The remaining portions of Agassiz' system have not been adopted by them; bnt though rhey do not accept the terms Placoids, Cycloids, and Ctenoids as representing classes, all zoologists employ them as new and convenient adjectives, of the utmost value to students of systematic ichthyology. One reason for the rejcction of Agassiz' system by modern ichthyologists is the obvious one that he draws the characteristics of his classes fiom a single organ-the skin-and that not the most inportant. At the same time, it must be admitted that the llacoids, liko the Canoids, also constituted a natural group closely corresponding with the Pisces cartilaginei of Cuvicr and others. The distinction between Cycloids and Ctenoids was a much more trivial one, and needlessly separated closely-allied forms. It is only those who are familiar with the magnitude and difficulties of the task thus undertaken that can appreciate the daring courage of the youth who grappled with it. Under twenty-five years of age, and, as already observed, with limited financial resources, he nevertheless seems to have known no fear. He suon announced to geologists seseral important generalisations, the correctness of which has becn confirmed by all subsequent research. In particular, he pointed out that no examples of Cycloids and Ctenoids, compreheading thie bulk of the fishes now seen in our markets, were to be found in rocks of older date than the cretaccous age.

As the work proceeded it became obvious that it would over-tax the resources of the intrepid young znologist, unless some additional assistance could be afforded to him. The British Association for the Adrancement of Science wisely came to his aid, and the late Earl of Ellesmerebetter known in his youth as Lord Francis Egcrton-gare him yet more efficient help. The original drawings made for the work, chicfly by Dinkel, amounted to 1290 in number. These were nurchased by the earl; bat, with princely liberality, be left all that were necessary for the further prosecution of his labours in the hands of Agassiz.

It was whilst he was thus engaged that Agassiz paid hig first visit to England, for the purpose of studying the rich stores of fossil fishes with which this conntry alrounds. He was then in his youthful prime-a model of manly vigour and scientific enthusiasm; but aurongst his many qualities none were more remarkable than the quickness with which he detected the peculiarities of any new fussil, and the retentirencss of his memory, which enalled him to make ready use of his newly-acquircd knowledte. The consciousness that ne possessed these powers led him occa-sionally-though, it must be allowed, hut rarely-to trust unduly to them, and made him sometimes hasty and oflhand in his conclusions.

But fossil ichthyology, though a very large subject, was insufficient to occupy his energetic mind. In 1837 we find him issning the "Prodrome" of a monograph on the recent and fossil Echinodermata, the first part of which appeared in 1838; and in 1839-40 he published, in addition, two quarto volumes on the fossil Echinodernis of Switzerland. This division of the invertebrate animals was evidently a favourite one with him, since we liml it the subject of numerous menoirs which appeared from time to tinse during his later life

It Wats by these great undertakings that he chiefly won his distinguished position as one of the greatest leaders in scientifie research; but his observant faculties were by no means concentrated upon then exclusively. His intelleetual tentacula expanded in every direction. The history of the Belemnites, the miscular system of recent and fossil shells, the principles of classification of the animal kingdom, the embryology of the salmon, and critical studies of special genera of fossil Mollusca-all engaged his attention. During his travels in England in 1834 he was ever on the alert for new specimens for the museum at Neuchatel. One characteristic ineident of this kind may bo referred to here. A fine porpoise had been caught by the Scarborough fishermen. Agassiz was weary with trayel, and had but a few hours to remain in the town, but the chance could not bo allowed to escape; the creature was purchased, and midnight saw Agassiz and the writer of this sketch working by the dim light of two tallow candles dissecting tho animal, and shipping off its half-cleaned bones to Nemehatel. beforo he ventured to take the muchneeded rest.

Subsequently to his first visit to England the labours of Hugh Miller, Dr Malcolnson, and other geologists brought to light the marvellous ichthyal fauna of the Devonian beds of the north-east of Scotland. Murchison and Sedowick had some time previously dirceted attention to the existence of fishes of this geological age, especially amongst the bituminous shales of Caithness; but the more recent discoveries were of far greater interest than the earlier ones, because of the strange forms of the Pterichthys, the Coccosteus, and other species then made known to geologists for the first time. The supposition of Hugh Miller, that some of these fishes had vertical instead of horizontal mouths, suggestive of a transition from the crustacean to the ichthyal type, added fresh interest to tho subject in the eyes of a philosophie inquirer like Agassiz. Theso fossils were reported upon by hinz more than once, and were finally made the subjects of a special monograph, which was published in 1844. Miller's interpretation of the structure of the mouth Agassiz soon demonstrated to be erroneous.

The year 1840 witnessed the inauguration of a new movement, which has proved to be of the utmost importence to geological science. Previously to this date De Saussure, Venetz, Charpentier, and others had made the glaciers of the Alps the subjects of special study, and Charpentier had even arrived at the important conclusion that the well-known erratic Llocks of alpine rocks scattered so abundantly over the slopes and summits. of the Jura mountains, had been conveyed thither by glaciers. The question having attracted the attention of Agassiz, be at once grappled with it in his wontedly enthusiastic manner. He not only made suceessive journeys to the alpine glaciers in company with Charpentier, but he had a rude hut construeted upon one of the Aar glaciers, which for a time he made his comfortless home, in order that lie might the more thoroughly investigate the structure and movements of the ice. These labours resulted in the publication of his magnifieent illustrated folio entitled Etudes sur lcs. Glaciers. In this important work the movements of the glaciers, their moraines, their influence in grooving and rounding off the rocks over which they travelled, producing the striations and rockes moutonnés with which we are now so familiar, were treated with a comprehensiveness which threw into the shade all the writings of previous labourers in this field. He not only accepted Charpentier's idea that some of the alpine glaciers had extended across the wide plains and valleys drained by the Aar and the Rhone, and thus landed parts of their remains upon the uplands of the Jura, but he went still further in tho same direction. IIo
concluded that, at a period guolugically recent, Switzerland had been another Greenland; that instead of a few glaciers stretching their restrieted lines across the areas referred to, ono vast sheet of ice, originating in the higher $A l_{p s}$, had extended over the entire valley of north-western Switzerland until it reached the southern slopes of the Jura, which, though they checked and deflected its further extension, did not prevent the ice from reaching in wawy places tho summit of the range. At a later period we shall find him holding a similar view in the case of the vast plains spread out between the Andes and the eastern coast of South Ameriea. The publication of this work gave a fresh impetus to the study of glacial phenomena in all parts of the world. In 1841 Agassiz spent many weeks in his hut on the Lower Aar glacier, where he received as his guest the lato Professor James Forbes, who was also engaged upon the study of glacial phenomena. The latter philosopher, in his work on Norway and its Glaciers, recognised in tho fullest manner his indebtedness to Agassiz for much new light respecting the details of glacial action.

Thus familiarised with the phenomena attendant on tioo movements of recent glaciers, Agassiz was prepared for a new and most unexpected discovery which he made in 18.16, in conjunction with the late Irofessor luckland. These two savants visited the mountains of Scotland together, and found in six different localitics clear evidence of some ancient glacial action. Tho discovery was announced to the Geological Society of Londor in a joint communication from the two distiuguished observers. Similar discoveries were subsequently made by Buckland, Lyell, Ramsay, and others in various parts of Scotland, Westmoreland, Cumberland, and North Wales. The former existence of glaciers in each of these mountainous districts is a fact that no one now presumes to doubt any more than that these glaciers, cither directly, or indirectly in the shape of icebergs, have at least cuntriboted largely to the accumulation of those wide-spread deposits with which geologists are familiar under the name of drift and boulder formations.

But we must now follow Agassiz to a new splucre of labour. In 1838 he was.appointed to the professorship of natural history it Neuchatel, with a very limited income. In the autumn of 1846 he crossed the Atlantic, with the two-fold design of investigating the matural history ani: geology of the United States, and delivering a course of lectures on zoology at the Lowell Institute; and the tempting advantages, pecuniary and scientific, presented to him in the New World, induced him to settle in tho United States, where he renained to the end of his life. lle was appointed professor of zoology and geology in the university of Cambridge, U.S., in 1847. He left that post in 1851 for a medical professorship of comparative anatomy at Charlestown, but returned in 1853 to Cambridge.

This transfer to a new field, and the association with fresly objects of high interest to him, gavo his energies a new stimulus. Volume after volume now proceeded from his pen: some of his writings were popular, and addressed to the multitude, but most of them dealt with the higher departments of scientific research. Ilis work on Lake Superior, and his four volumes of Contrilutions to the N'utural Mistory of the United States, were of this latter character. But whilst thus working earnestly at American zoology, he still kept in view more generalised inquiries, the fruits of which appeared in 1854, with the title of Źologie Génêrale et L̇'squisses Générales de Zoologie contentint le Siructure, le Développement, la Classification, dec., de tous les I'ypes d'Amimaux vivants et détruits. Before leaving these literary labours, we must not overlook tho valuable service he rendered to science by the formation, for his own use, of a catalogue of scientific memoirs-an
extraordinary work for a man whose hands were already so full. This catalogue, edited and materially enlarged by the late Hugh Strickland, was published by the Ray Society under the title of Biblingraphia Zoologice et Geologice. Nor must we forget that he was bnilding up another magnificent monument of his industry in the Museum of Natural History, which rose under his fostering care, at Cambridge. But at length the grcat strain on his physical-powers began to tell. He then songht to restore hiswaning health by a southern voyage. His early labours among the fishes of Brazil had often caused him to cast a longing glance towards that country; and he now resolved to combine the pursuit of health with the gratification of his long-cherished desires. In April 1865 he started for Brazil, along with his admirable wife and an excellent class of assistants. Even on shipboard he could not be idle. In his outward voyage he delivered a course of lectures, open to all his fellow-passengers, but especially addressed to his assistants, and intended to instruct them in the nature and bearings of the great problems upon which they might hope to throw light during their stay in Brazil. An interesting account of this journey, to the success of which the emperor of Brazil contributed in every possible way, was published by Mrs Agassiz when they returned home, laden with the natural treasures of the Brazilian rivers.
In 1871 he made, a second excursion, visiting the southern shores of the North American continent, both on its Atlantic and its Pacific seaboards. He had for many years yearned after the establishment of some permanent school where zoological science could be studied, not in class-rooms or museums of dead specimens, but amidst the living haunts of the subjects of study. Like all truly great teachers, he had little faith in any school hut that of nature. The last, and possibly the most permanently influential, of the labours of his long and successful life was the establishment of such an institution, which he was enabled to effect through the liberality of Mr John Anderson, a citizen of New York. That gentleman not only handed over to Agassiz the island of Penikese, on the east coast, but also presented him. with $\$ 50,000$ wherewith permanently to endow it as a practical school of natural science, especially devoted to the study of marine zoology. Ansther American friend gave him a fine yacht, of 80 tons burden, to be employed in. marine dredging in the surrounding seas. Had Agassiz lived long enough to bring all this machinery into working order, it is difficult to exaggerate the practical adrantages which American science would have reaped from it when guided by such expcrienced hands. But it was otherwise ordained. The disease with which he had struggled for some years proved fatal on Dec. 14, 1873.

A letter to his old friend, Sir Philip M. de Grey Egerton, Bart., written but a few days before his death, and doubtless one of the last that he penned, showed that his spirit was still as indomitable and his designs as large as ever; and one of his latest expressed wishes was that he might be spared for four more years in order that the work he had contemplated might be completed.

Our available space will not allow us to give a detailed sketch of the opinions of this remarkable man on even the more important of the great subjects which he studied so long.' From first to last he steadily rejected the doctrine of evolution, and affirmed his belief in independent creations. In like manner he retained his confidence in the former existence and agency of vast continental ice-sheets, rather than in the combined action of more limited glaciers and icebergs, which nearly all modern geologists recognise as the producers of the drifts and boulder-clays. When studying the superficial deposits of
the Brazilian plains in 1865, his prvid imagnation coverod even that wide tropical arca, as it had covered Switzerland hefore, with one vast glacier, extcnding from the Andas to the sea. His daring conceptious were only equalled by the unwearied industry and genuine enthusissm with which he worked them out; and if in details his labours were somewhat defective, it was only because he had the courage to attempt what was too much for any one man to accomplish.
(w. o. w.)

AGATE (from Achates, a river in Sicily, on the banks of which it is said to have been found), a name applied by mineralogists to a stone of the quartz family, generally occurring in rounded nodules or in veins in trap rocks The number of agate balls in the rock often give it the character of anygdaloid; and when such a rock is decomposed by the elements, the agates drop out, and are found in the beds of streams that descend from it; or they may he obtained in quarrying. Great quantities are obtained from Oberstein and Idar, in Germany, where there are large manufactriies for colouring and polishing the stones; and many are brought from India and Brazil. Agate occurs in considerable quantity in Scotland, whence the stone is familiarly known to lapidaries as Scotch peblle; and very large masses of calceduny, a variety of it, are bronght froun Iceland, the Faroe Islands, and Brazil. Agate chicfly consists of calcedony, with mixtures of common quartz and occasional patches of jasper and opal. The colour markings are often in concentric rings of varying forms and intensity, or in straight parallel layers or bands. The colours are chiefly gray, white, yellow, or brownish-red. The composition of agate is not uniform; but it usually contains from 70 to 96 per cent. of silica, with varying proportions of alumina, coloured by oxide of irou or manginese. The principal varieties are-

1. Calcedony. In this the colours are in parallel bands The porosity of this stone, and the presence of iron in it, have given rise to a beantiful artificial process for heightening its natural colours, which has been long practised at Oberstein, and probably long known in India. The stones best suited for this purpose are such as when recently fractured imbibe moisture most readily. The stones are first dried without heat, then immersed in a mixture of honey and water, and afterwards placed in a heated oven, where they remain for two or three weeks, constantly covered with the liquid. They are then washed, dried, and put into an earthenware vessel containing sufficient sulphuric acid to cover them; this vessel is closed and placed in the oven for a space varying from one to twelve hours, according to the hardness of the stone. The agates are now removed, washed, and thoroughly dried; and after being kept in oil for twentyfour hours, are cleaned, cut; and polished. In the best specimens the gray streaks are increased in intensity; some exhibit brown streaks approaching to black, while white impenetrable parts assume a brighter hue by the contrast. This is the process employed to convert the veined calcedony or agate into onyx, especially for the production of cameos and intaglios, in imitation of the antique sculptured gems, of which admirable specimens are found in the cabinets of the curious, and especially in the Florentine Museum. In those minute but exquisite works the ancient Greeks especially excelled; and remarkable specimens of the art have been found in the tombs of Egypt, Assyria, and Etruria. In such works the figures, whether in relief or intaglio, appear of a different colour from the ground.
2. Carnelian, or red calcedony, when found, is almost always brownish or muddy. The following process is employed at Oberstein to convert both this sort and the yellowish-brown varieties into a rich red, so as to rival the Indian carnelian, which probably also has its colour beightened artificially :-After being thoroughly dried, the
ston ?s are dipped m sulphuric acid, and immediately exposed in a cuvered earthenware crucible to a red heat: the whole is allowed to cool slowly, and when cold the stones are removed and washed.
3. Mocha stones, originally brougut from the East, are clear grayish calcedonies, with clouds and daahes of rich brown of various shades. They probably owe their colour chicly to art.
4. Moss afates are such as contain arborisations or dendrites of oxide of iron, some of which seem to be petrifactions of real vegetable forms.
5. Bloadstone is 3 dark-green agate containing bright red spors like blood-drops.
6. Plasma, a grass-green stone, found engraved in ruins at Rome, on the Schwartzwald, and on Mount Olympas, appears to be calcedony coloured by chlorite.
7. Chrysoprase, found in Silesia, is an agato coloured apple-green by oxide of nickel.

The agate can be cut or sawed casily, and is used for making cups, rings, seals, handles for knives and forks, sword-hilts, rosary beads, and a great variety of trinkets. Many stones of this kind are marked with representations of men, animals, or inanimate natural oljjects; but there can be no question that a very large proportion of these are to be regarded as productions of art.

AGATHARCHIDES, a celcbrated Greek grammarian and geographer who flourished about I 40 years B.c., was. born at Cnidos. His works are lost, excent those passages quoted by Diodorus Siculns and other authors, in which he describes the gold mines of Upper Egypt, and gives the first philosophical explanation of the inundations of the Nile, which he ascribed to the rains on the mountains of Ethiopia. (Hudson's Greet Gcographers.)

AGATHARCHUS, a Greek painter, commemorated by Vitruvius for having first applied the laws of perspective to architectural painting, which he used successfully in preparing scenery for the plays of Eschylus. He flourished about 480 years b.c.

AGATHLAS, a Greek historian and poet, born at Myrina in Asia Mnor, about 536 A.d. He was educated at Alexandria, and in 554 went to Constantinople, where, after studying Roman law for some years, he practised as an adrocate. The title "Scholasticus," generally given to Agathias, was that by which advocates were known in Constantinople. Of the poetry by Agathias but little remains; his Daphniaca (Δ афииакá), a collection of erotic poems, being entircly lost; and only the introduction to his Kúk anthology from earlier and contemporary writers, being extant. A number of his epigrams may be found in the Anthologia Groce His principal work is his history, which begins, where Procopius ends, with the 26th year of the reign of Justinian (553), and carries on the narrative of events until 558. It is valuable as a chronicle, but the style is turgid, and great ignorance is shown of the history and geography of western Europe. It was printed in Greek, with a Latin translation by Bonaventura Vulcanius, at Leyden in 1594. The best cdition is that of Nicbulr (Bunn, I828). A French translation is included in the second volume of Louis Cousin's IIistory of Constantinople.

AGATIIO, an Athenian tragic poet, the disciple of Prodicus and Socrates, celebrated by Plato in his Protagoras for his virtue and his beauty. A tragedy of his obtained the prize in the fourth ycar of the 90th Olympiad, and he was crowned, in the presence of upwards of 30,000 persons, when a little over thirty years of age. There are no remains of his works, except a few quotations in Aristotle, Athenæus, and other's.

AGATHOCLES, a famous tyrant of Sicily, was the $80 n$ of a potter at Rhegium. By his singular vigour and abilities be raised himself through various gradations of
rank till he finally made himself tyrant of Syracuse, and then of nearly all Sicily. He defeated the armies of the Carthaginians several times, both in Sicily and Africa; but at length he met with a reverse, and his suldiers' pay being in arrears, they mutinied, forced him to fly his camp, and murdered his sons. Tecovering lineself, he relicved Corcyra, which was besieged by Cassander; burnt the Macedonian fleet; and revenged the death of lis children by putting the murderers, with their wives and families, to the sword. After ravaging the sea-coast of Italy he touk the city of Hipponium. The last years of his life were greatly harassed with ill-health and the turbulence ot his grandson Archagathus. He died in the seventy-second year of his age, b.c. 290, after a reign of twenty-cight year.

AGDE, a town of France, in the department of Herault, on the left bank of the river of that name, 30 miles S.W. of Muntpellier. It is a place of great antiquity, and is said tn have been founded, under the name of Agathe, by the Greeks. In the neighbourhood there is an extinct vulcano, and the town is built of black volcanic basalt, which gives it a grim and forbidding aspect. It has a fine old Gothic cathedral, a college, and a school of navigation. The Canal du Midi, or Languedoc canal, uniting the Garonne with the Mediterranean Sea, passes under the walls of the town, and the mouth of the Ilérault forms a convenient harbour, whicb is protected by a fort. This advantageously situated, the place commands an extensive coasting trade, more than 400 vessels annually entering the port. Soap and verdigris are manufactored, and the staple productions of southern France are largely exported. Population, 9747.

AGE, a term denoting generally any fixed period of time, is used more definitely in a variety of seuses. Classical mythology divided the whole history of the earth into a number of periods. Hesiod, for example, in his poom Works and Days, describes minutely five successive ages, during each of which the earth was peopled by an entirely distinct race. The first or golden race lived in perfect happiness on the fruits of the untilled earth, suffered from no bodily infirmity, passed away in a gentle slecp, and became after death guardian dxmons of this world. The second or silver race was degenerate, and refusing tc worship the immortal gods, was buried by Jove in the earth. The third or brazen race, still more degraded, was warlike and crucl, and perished at last by internal violence. The fourth or heroic race was a marked advance upen the preceding, its members being the heroes or demi-gods who fonght at Troy and Thebes, and who were rewarded after death by being permitted to reap thrice 2 -year the free produce of the earth. The fifth or iron race, to which the poet supposes himself to belong, is the most degenerate of all, sunk so low in every vice that any new change must be for the better. Ovid, in his Metamorphoses, follows Hesiod exactly as to nomenclature and very closely as to substance. He makes the degeneracy continuous, however, by omitting the heroic race or age, which, as Grote points out, was , probably introduced by Hesiod, not as part of his didactic plan, but from a desire to conciliate popular feeling by including in his poem the chief myths that were already current among the Grecks.

A definite period in history distinguished by some special characteristic, such as great literary activity, is generally styled, with some appropriate epithet, an age. It is usual, for example, to speak of the age of Pcriclcs, the Augustan age, the Elizabethan age; of the age of the crusades, the dark ages, the middle ages, the age of steam. Such isolated periods, with no continuity or necessary connection of any kind, are obviously quite distinct from the ages or organically-related periods intn which certioib
eminent modern philosophers lave divided the whole course of human history. According to Fichte's scheme there are five ages, distinguished by the relative predominance which instinct, external authority, and reason have in them respectively, instinct being supreme in the first and reason in the last. Comte's scheme distinguishes three ages according to the state of knowledge in each, and he supposes that we are now entering upon the third of these. In the first age of his scheme knowledge is supernatural or fictitious; in the second it is metaphysical or abstract; in the third it is positive or scientific. Schemes somewhat similar have been proposed by other philosophers, chiefly of France and Germany, and seern to be regarded by them as essential to any complete science of history.

In relation to individual as well as to social life, age is used with a considerable variety of application. It frequently denotes the total duration of life in man, animals, or plants, and in this sense belongs to the subject of Loxgevity (q.v.) It also denotes in man the various periods into which his life may be divided, either from a physiological or from a legal point of riem. In the former aspect perhaps the most common division is into the four ages of infancy, youth, manhood, and old age. These again have been increased to six or seren by some physiologists-infancy, childhood, beyhood or girlhood, adolescence, manhood or womauhood, age, and old age or second childhood. While both schemes have a sufficient basis of scientific accuracy, they bave also each attracted the fancy of the poet. Ovid in his Metamorphoses (xv. 198-213) makes a beautiful comparison between the four ages of a man's life and the four seasons of the year, in a passage which has been frequently imitated; and the sevenfold dirision has been exquisitely cast into poetic form by Shakespeare in As You Like It, act \because. scene 7 . The division of human life into periods for legal purposes is naturally more sharp and definite than the foregoing. It would be unscientific in the physiologist to nane any precise year for the transition from one of his stages to another, inasmuch as that differs very considerably among different nations, and even to some extent among different individuals of the same nation. But the law must necessarily be fixed and uuiform, and even where it professes to proceed according to nature, must be more precise than nature. The Roman law divided human life for its purposes into four chief periods, which had their subdivisions-(1.) Infantia, lasting till the close of the seventh year; (2.) The period between infantia and pubertas, males becoming puberes at fourteen and fermales at tweive; (3.) Adolescentia, the period between puberty and majority; and (4.) The period after the twenty-fifth year, when males become majores. The first period was one of total legal incapacity; in the second period a person could lawfully do certain specified acts, but only with the sanction of his tutor or guardian; in the third the restrictions were fewer, males being permitted to manage their own property, contract marriage, and make a will; but majority was not reached until the age of twentyfive. By English law there are two great periods into which life is divided-infancy, which lasts in both sexes until the twenty-first year, and mauhood of womanhood. The period of infancy, again, is divided into several stages, marked by the growing development both of rights and obligations. Thus at twelve years of age a male may take the oath of allegiance; at fourteen both sexes are held to have arrived at years of discretion, and may therefore choose guardians, give eridence, and consent or disagree to a marriage. A female has the last privilege from the twelfth year, but the marriage cannot be celebrated until the majority of the parties without the consent of parents or guardians. At fourteen, too, both sexes are fully responsible to the criminal law. Between seven and fourteen there is responsibility only if the accused be proved doli
capax, capable of discerning between right and wrong, the principle in that case being that malitia supplet utatem At twenty-one both males aud females obtaia their full legal rights, and become liable to all legal obligations. A seat in the British Parliament may be taken at twenty-one. Certain professions, however, demand as a qualification in entrants a more advanced age than that of legal manhood. In the church a candidate for deacou's orders must be twenty-three, and for priest's orders twenty-four years of age; and no clergyman is eligible for a bishopric ander thirty. In Scotland infancy is not a legal term. The time previous to majority, which, as in England, is reached by both sexes at twenty-one, is divided into two stages: pupilage lasts until the attainment of puberty, which the Lav fixes at fourteen in males and twelve in females; minority lasts from these ages respectively until twenty-one. Minority obviously corresponds in some degree to the English years of discretion, but a Scotch minor has more personal rights than an English infant in the last stage of his infancy, e.g., he may dispose by will of moveable property, make coutracts, carry on trade, and, as a necessary consequence, is liable to be declared a bankrupt. Among foreign nations the law on this matter is somewhat varied. In France the year of majority is twenty-one, and the nubile age, according to the Code Napoleon, eighteen for males and fifteen for females, with a restriction as to the consent of guardians. In Germany majority is usually reached at twenty-four, though in some states (Bavaria, Saxony, Würtemburg, and Baden) the age is twenty-one In the United States the age qualification for a president is thirty-five, for a senator thirty, and for a representative twenty-five.

AGELADAS, an eminent statuary of Argos, and the instructor of the three great scalptors, Phidias, Myron, and Polycletus. There is considerable difference in the statements of the date when he flourished. Thiersch meets the difficulty by supposing that there was another artist of the same name.

AGELNOTH, Ethelyoth, or Ethelnote, known also as Achelnotus, son of Egelmaer the Earl, Archbishop of Canterbury in the reign of Canute, was trained in the monastery at Glastonbury, for which be afterwards obtained new privileges from the king. According to TVilliam of Malmesbury, he exercised a great and salutary influence over Canute in the way both of encouragement and restraint. He was appointed dean of Canterbury aud chaplain to the king, and was raised to the archbishopric on the death of Living in 1020. He wisely counselled Canute to that course of policy which altimately led to the fusion of Danes and Saxons, and their united resistance to the invasion of the Normans; and similar pacific counsels in the church brought about a temporary cessation of the mutual persecution on the part of the Benedictine and secular clergy. It being necessary that the archbishop should risit Rome in person to receive the pall, he repaired thither in 1022 , and was received by Pope Benedictine VIII. with every mark of honour. At Pavia, on his way home, he purchased a relic, which was said to be the right arm of St Augustine of Hippo, at the cost of 100 talents of silver and 1 of gold. This he sent as a present to Leofric, the young Earl of Mercia. With his own wealth and liberal grants from Canute he restored and adorned his cathedraL. When Canute died, he made the arclbishop promise to be faithful to his sons by Emma, and the promise was so truly kept that Harold, the usurper, remained unconsecrated until after the death of Agelnoth (1038).
AGEN, the chief town of the department of Lot-etGaronve in France, is situated on the right bank of the Garonne, 73 miles S.E of Bordeaux. Through its excellent water communication it affords an outlet for the
agricultural produce of the district, and forms an entrepót of trade between Bordeaux and Toulouse. Its chief manufactures are sail-cloth, cotton, linen, leather, and stareh. It has a college and sceveral literary institutions, and is the seat of a bishop and a high court of justice. There is a fine bridge of cleven arches over the Garonne. In 1872 the population was 18,887 .

AGENT', in Diplomacy, Commerce, and Jurisprudence, is a name applied gencrally to any person who acts fer another. It has probably been adopted from France, as its function in modern civil law was otherwise expressed in Roman jurisprudence. Ducange (s.v. Agentes) tclls us that in the later Roman empire the officers who collected the grain in the provinces for the troops and the houseleld, and afterwards extended their functions se as to include those of government pestmasters or spies, came to be called agcntes in rebus, thcir earlier name having been frumentarii.

In Diplonacy, a elass of semi-ambassadors termed agents have been employed generally between states of unequal power. The small community might send an agent to propitiate some powerful government, and secure its protection. A great power mould, on the other hand, distribute its agents ameng the petty states which it kept in clientage, to see that no counteracting influence twas at work among them. In this shape our Indian government keep agencies in the proteetcd and other ncighbouring states. Similarly, theugh this class does not fall mithin the scope of public international law, the self-governing British colonies now employ agents to attend to their interests and represent them in the mether country. The status of diplomatic agents, not of the classes of ambassadors, envoys, ministers, or chargés d'affaires, is extremely ill-defined and uncertain. (Phillimore's International Law, ii. 246; Heffter Europäisches Völkervecht, § 222.) See Aabassador; Diplomacy.

The law of Principal and Agent has its origin in the laws of mandate ameng the Remans, and fortunately even in England the spirit of that system of jurisprudence perrades this branch of the law. The law of agency is thus almost alike threugheut the whole British empire, and a branch of the British commercial code, in which it is of great importance that different nations should understand each other's system, differs only slightly from the law of the rest of Europe.

In a general view of the law of agency it is necessary to have regard to the rights and duties of the principal, the agent, and the public. The agent should not do what he has no authority for; yet if he be seen to have authority, those with whom he deals should not be injured by secret and unusual conditions. The employer is bound by what his agent does in his name, but the public are not entitled to take advantage of obligations which are known to bs unauthorised and unasual. The agent is entitled to demand performance by the principal of the obligations undertaken by him within the bounds of his commission, but he is not entitled to pledge him with a recklessness which he would certainly aveid in the management of bis own affairs. It is in the regulation of these powers and corresponding checks in such a manner that the legal principle shall apply to daily practice, that the niceties of this branch of the law consist.

Agents are of different kinds, according to their stipu lated r consuetudinary powers. The main restraint in the possible porrers of an agent is in the old maxim, delegatus non potest delegare, designed to check the complexity that might be created by inquiries into repeatedly-deputed responsibility. The agent cannot delegate his commission or put another in his place ; but in practice this principle is sometimes modified, for it so may arise from the nature of hus uffice that he is to employ other persons for the
aceomplishment of certain objects Thus, there is nothing to prevent a commercial agent from sending a portion of the goods entrusted by him to his own agent fer disposal.

In the gencral case agency is constituted by the aceeptanee of the mandate-or autherity to act for the principal, and the erdence of this may be either verbal or in writing. The English statute of frauds requires an agent to have authority in writing for the purposes of its lst, 2d, and 3d clauses relating to leases. "And it is a general rule, that an agent who has to execute a deed, or to take or give livery or seisin, must be appeinted by deed for that purpose. Moreover, as a corporation aggregate can in general act only by deed, its agent must be so appointed, though it weuld seem that some trifling agencies, even for corporations, may be appointed without one." (Smith's Mercantile Lave, B. I. chap. iv.) It is a general rule that those obligations which can only bo undertaken by solemn formalities cannot be entered on by a delegate who has not received his authority in writing. But it is often constituted, at the same time that its extent is defined, by mere appointment to some known and recognised function-as where one is appointed agent for a banking establishment, factor for a merchant, broker. supcrcargo, traveller, or attorney. In theso cases, usage definas the powers granted to the agent; and the employer will not readily be subjected to obligations going beyond the usual functions of the effice; nor will the public dealing with the agent be bound by private instructions inconsistent with its usual character. While, however, the public, ignorant of such secret limitations, are not bound te respeet them, the agent himself is liable for the consequences of transgressing them. Ageney may also bo either created or enlarged by implication. What the agent has done with his principal's consent the public are justified in believing him autherised to continue doing. Thus, as a familiar instance, the servant whe has continued to purchase goods for his master at a particular shop on credit is presumed to retain authority and trust, and pledges his master's credit in farther purehases, though he should, without the knowledge of the shopkeeper, apply the articles to his own uses. The law is ever jealous in admitting as accessories of a general appointment to any particular agency the power to berrow money in the principal's name, to give his name to bill transactions, and to pledge him to guaranties; but all these acts may be authorised by implication, or by being the continuation of a series of transactions, of the same kind and in the same line of business, to which the principal has given his sanction. Thus an employer may, by the previous sanction of such operations, bo liable for the bills or notes drawn, indorsed, and accepted by his clerk or other mandatary; nay, may be responsible for the obligations thus incurred after the mandatary's dismissal, if the party dealing with him knew that he was countenanced in such transactions, and hai no reason to suppose that he was dismissed. In questions of this kind the distinction between a general and a special agent is important. A general agent is employed to transact all his principal's business of a particular kind, at a certain place,-as a factor to buy and sell; a broker to negatiate contracts of a partieular kind; an attorney to transact his legal business; a shipmaster to do all things relating to the employment of a ship. Such an agent's power to do everything usual in the line of business in which he is employed is not limited by any private restriction or order unknown to the party with whom he is dealing. On the contrary, it is incumbent on the party dealing with a particular agent, i.e., one specially employed in a single transaction, to ascertain the extent of his authority. The law applieable to a mercantile agent's power to pledge or etherwise dispose of the goods entrusted to him
being in an unsatisfactory state, a statutory remedy was applied to it by an Act of 1825 (6 Geo. IV. c. 94), which required amendenent in 1842 (5 and 6 Vict. c. 39).

The general object of these measures, which appear to extend to Scotland, is to make trausactions with an agent in possession of goods as safe as dealing with the owner, to all who treat with him, as purchasers or otherwise, in good faith, and in ignorance of his waut of ownership. Thus, when an agent ships goods in his own name, the consignee is entitled to a lien on them for any advances to the agent, or liabilities on bills or notes, if he has not notice by the bill of lading or otherwise at or before the time of the advance or receipt that such person is not the actual and boná fide owner. The presumption in such cases is ownership; and the burden of disproving it, as well as of showing that the consignee was aware of the mere agency, falls on the person questioning the validity. By the statutes, the person entrusted with and in possession of a bill of lading, dock warrant, warehouse-keeper's certificate, wharfinger's certificate, or other delivery warrant, is Leld the owner of the goods it represents, so as to render valid any transaction for their sale or disposition of the goods, or the deposit or pledge thereof, or of any part thereof, to parties ignorant of the limited ownership. Besides their effect in rendering valid, in this more comprehensive manuer, operations conducted under the appearance and supposition of absolute ownership, the acts have separate provisions for the security of those who deal with agents, knowing them to be such. The acts, however, must be studied in their very words, which are not remarkable for clearness. The following brief description of their general effect, taken from Chitty's Collection of Stulutes, may be useful:-"First, where goods or ducuments for the delivery of goods are pledged as a security for present or future advances, with the knowledge that they are not the property of the factor, but without notice that he is acting without authority, in such a case the pledgee acquires an absolute lien. Secondly, where goods are pledged by a factor without notice to the pledgee that they are the property of another, as a security for a pre-existing deht, in that case the pledgee acquires the same right as the factor had. Thirdly, where a contract to pledge is made in corsideration of the delivery of other goods or documents of title, upor which the persou delivering them up had a lier for a previous advance (which is deemed to be a contract for a present advance), in that case the pledgee acquires an absolute lien to the extent of the value of the goods giren up." The statutes are applicable only to proper mercantile transactions, and not, for example, to advances upon the security of furniture in a furnished house to the apparent owner. (See Smith's Leading Cases, rol. i. p. 759 sqq., 6th ed:)

The obligations of the principal are-to pay the agent's remuneration, or, as it is often called, commission, the amount of which is fixed by contract or the usage of trade; to pay all advances made by the agent in the regular course of his employment; and to honour the obligations lawfully undertaken for him. The agent is responsible for the possession of the proper skill and means for carrying out the functions which he undertakes. He must devote to the interests of his employer such care and attention as a man of ordinary prudence bestows on his own-a duty capable of no more certain definition, the application of it as a fixed rule being the function of a jury. He is bound to observe the strictest good faith; and in some instances the law interposes to remove him from temptation to sacrifice his employer's interests to his own: thus, when he is employed to buy, he must not be the seller; and when employed to sell, he must not be the purchaser. He ought only to deal with persons in good credit, but he
is not responsible for their absolute solrency unless he guarantee them. A mercantile agent guaranteeing the payments he treats for is said to hold a del credere commission.

In Scotland the procurators or sulicitors who act in the preparation of cases in the various law-courts, and all who take out the attorncy licence, are called agents. See Attorney.

In France, the Agents de Change were formerly the class generally licensed for conducting all negotiations, as they were termed, whether in commerce or the money market. Of late the term has been practically limited to those who conduct, like our stockbrokers, transactions in public stock; and it is understood that it is rather as speculators than as agents that the majority of them.adopt the profession. The laws and regulations as to courtiers, or those whoso functions were more distinctly confined to transactions in merchandise, have been mixed up with those applicable to agents de change. Down to the year 1572 loth functions were free; but at that period, partly for financial reasons, a system of licensing was adopted at the suggestion of the Chancellor l'Hopital. Among the other revolutionary measures of the year 1791, the professions of agent and courtier were again opened to the public. Many of the financial convulsions of the ensuing years, which were due to more serious causes, were attributed to this indiscriminate removal of restrictions, and they were reimposed in 1801. From that period regulations bave been made from time to time as to the qualifications of agents, the security to be found by them, and the like. They are now regarded as public officers, appointed, with certain privileges and duties, by the government, to act as intermediaries in negotiating transfers of public funds and commercial stocks, and for dealing in metallic currency.

AGESLLAUS, king of the Lacedæmonians, the second of the name, son of Archidamus II., was, through the influence of Lysander, raised to the throne in 398 b.c., in opposition to the superior claim of his nephew Leotychides. Immediately on his accession he advised the Lacedæmonians to anticipate the king of Persia, who was making great preparations for war, and attack him in his own dominions. He was himself chosea for this expedit
and gained so many advantages over the enemy that, if the league which the Athenians and the Thebans formed against the Lacedæmonians had not obliged him to return home, it seems probable that he would lave carried his victorious arms into the very heart of the Persian empire. But he readily gave up all these triumphs to come to the succour of his country, which he happily relieved by his victory orer the allies at Chæronea, in Bootia, 394 b.c. He obtained another near Corinth; but, to his great mortification, the Thebans afterwards gained several victories over the Lacedxmonians. This at first raiscd a clamour against him. He had been ill when the course of victory turned in favour of the enemy; but as soon as he was able to act in person his valour and prudence prevented the Thebans from reaping the advantages of their successes; so that it was generally beliered that, had he been in health at the beginning, the Lacedæmonians would have sustained no losses, and that without him all would have been lost. It cannot bo denied, however, that his fondness for war occasioned many losses to his countrymen, and led them into enterprises which in the end contributed much to weaken their power. He died in the third year of the 103 d Olympiad, being the 84th year of his age and 38th of his reign, and was succeeded by his son Archidamus. Agesilaus, though a vigorous ruler and great general, was of small stature, and lame from his birth. His accession to the throne was, indeed, opposed on this ground, an oracle having foretold evils to Sparta under a lame sovereignty. As we have seen, the oracle was
so far fulfilled that many troubles befell the state during his reign. Few of these, however, are traceable to the policy of the king, whose public life was illustrated by a scries of brilliant victories over the enemies of his country. In character, Agesilaus secms to have possessed the Spartan virtucs of courage, temperance, and fortitude, without the Spartan riccs of lardness, cupidity, and injustice. His life and merits have been commemorated by Xenophon, Plutarch, Diodorus Siculus, and Cornolius Nepos.

AGGREGATION, States or, the three states-solid, liquid, and gaseous-in which matter occurs, depending on the degree of cohesion that subsists between the molecules or atoms of material bodies. In the solid state, the molecules cohere so firmly that their relatire positions cannot be changed without the application of force, and the body retains a definite form ; in the liquid state, they more frecly and readily on each other, the cohesion that exists being so slight that the body has itself no form; in the gaseous state, they are affected by an clastic force that amonnts to repulsion, tending, to separate them, and so diffuse thein through an increased space. The metals, glass, wood, ©ic., are solids; water and atmospherie air are the most familiar types of liquid and gaseous bodies. The name fluid is sometimes used to denote both gases and liquids, which are designated elastic and non-elastic fluids respectively. These states of aggregation are not in erery case-many now believe they are not in any case-permanent aud unchangeable. Metals can be melted and vaporised; the liquid water is convertible into ice and into steam; and a number of what were formerly reckoned fixed or permanent gases have been liquified and solidified. Solids are reduced to liquid, and liquids to gaseous forms, principally by heat ; pressure effects changes of the opposite kind.

AGHRIM, or Aughrim, a small village in Galray, 4 miles W. of Ballinasloe, is rendered memorable by the decisive victory gained there, on 12th July 1691, by the forces of Willian IIL., under General Ginkell, over those of James II., under the French general St Ruth. The Irish, numbering 25,000 , and strongly posted behind marshy ground, at first maintained a vigorous resistance; but Ginkell, having penetrated their line of defence, and their general being struck down by a cannon-ball at this critical moment, they were at length overcome and routed with terrible slaughter. The loss of the English did not exceed 700 killed and 1000 wounded; while the Irish, in their disastrous flight, lost about 7000 men, besides the whole material of the army. This defeat rendered the adherents of James in Ireland incapable of farther efforts, and was speedily followed by the complete submission of the country.

AOINCOURT, or Azincourt, a French village, in the department of Pas do Calais, situated in $50^{\circ} 35^{\prime}$ N. lat., $2^{\circ} 10^{\prime}$ E. long., famous on account of the victory obtaincd there by Henry V. of England over the French. Following the example of scveral of his predecessors, the young king crossed over to France in the third year of his reign ${ }^{\circ}$ on a military expedition. Haring landed at the mouth of the Seine, he took and sacked Harfleur after a siege of thirty-six days, but the army was so much reduced in strength, especially by disease, that some of Henry's adwisers counselled a return home without following up the adrantage. The proud spirit of the young king, however, would not submit to this, and he resolved on a march through the country to what was then the English fortified town of Calais, though he knew that a force vastly superior to his own was in the field to oppose him. On the morning of Friday, the 25th of October, 1415 A.D., i). Crispin's day, the English and French armies were ranged in order of battle, cach in three lines, with bodies of cavalry on both wings. The Constable d'Albert, who zommanded the French army, fell into the snare that was
laid for him, by drawing up his army in a narrow plaiu between two woods. This deprived him in a great measure of tho adrantage he should have derived from the prodigious superiority of his numbers, by obliging him to make his lines unnecessarily deep, and to crowd his troops, particularly his cavalry, so close together that they could hardly move or use their arms. The numbers of the French are differently estimated at from 50,000 to 150,000 men, but the latter number is a gross exaggeration. The first line was commanded by the Constable d'Albert, the dukes of Orleans and Bourbon, and many other nobles; the dukes of Alençon, Brabant, and Barre conducted the second line; and the earls of Marle, Damartine, Fauconberg, scc, were at the head of the third line. The king of England placed 200 of his best archers in ambush in a low meadow on the flank of the first line of the French. His own first line consisted wholly of archers, each of whom, besides his bow and arrows, had a battle-axe, a sword, and a stake pointed with iron at both ends, which he fixed before him in the ground, the point inclining outwards, to protect hin from cavalry. This was a new invention, and had a happy effect. That he might not be encumbered, Henry dismissed all his prisoners on their word of honour to surrender themselres at Calais if he obtained the victory, and lodged all his baggage near the village of Maisoncelles, in his rear, under a slender guard. The main body of the English army, consisting of men-at-arms, was commanded by Henry in person ; the vanguard, committed to Edward Duke of York at his particular request, was posted as a wing to the right; and the rearguard, commanded by Lord Camois, as a wing on the left. The archers were placed between the wings, in the form of a wedge. The lines being formed, the king, in shining armour, mounted on a fine white horse, rode along them, and addressed each corps with a cheerful conntenance and in encouraging language. To inflame their resentment against their enemies, he spoke of the cruelty practised by the French against their prisoners; and to rouse their lore of honour, he declared that every soldier in the army who behaved trell should thenceforth be doemed a gentleman, and entitled to bear coat armour. The two armies, drawn up in this manner, stood a considerable time gazing at ono another in silence. But the English king, dreading that the French would discorer the danger of their situation and decline a battle, commanded the charge to be sounded, about ten o'clock in the forenoon. At that instant the first line of the English kneeled down and kissed the ground; and then starting up, discharged a flight of afrows, which did great execution among the crowded ranks of tha French. Immediately after, upon a signal being given, the archers in ambush arose, and, discharging their arrows on the Rank of the French line, threw it into some disorder. The battle now became general, and raged with great fury. The English archers, having expended all their arrows, threw away their bows, and rushing forward, made dreadful havoc with their swords and battle-axes. Tho first lire of the enemy was by these means defeated, its leaders being either killed or taken prisoners. The second line, commanded by the Duke d'Alençon (who had made a vorv either to kill or take the king of England, or to perish in the attempt), now advanced, and was mat by the second line of the English, led by the king. The duke forced his way to the king, and assaulted him with great fury; but Henry brought him to the ground, where he was instantly despatched by the surrounding soldiers, receiving inmmerable wounds. Discouraged by this disaster, the second line made no more resistance, and the third fled without striking a blow; yielding a complete and glorious victory to the English, after a violent strugglo of three hours' duration. In tha
circumstances, the victory could not be followed up. Henry and his army returned at once by Calais to England, and entered London with a pageant of unprecedented splendour. The number slain in the battle is variously stated. The loss to the conquerurs is generally reckoned at 1600 men , and the French are said to have left 10,000 slain on the field, including the constable, three dukes, five counts, and ninety barons. (Seô the Histories of Britain; and Battle of Agincourt, by Sir Harris Nicolas.)

AGIO (Ital. aggio, exchange, discount), a term used in commerce to denote the difference betreen the real and the nominal value of money. In some states the coinage is so debased, owing to the wear of circulation, that the real is greatly reduced below the nominal value. Where this reduction ameunts, e.g., to 5 per cent., if 100 sovereigns were offered as payment of a debt in England while such sovereigns were current there at their nominal value, they rould be received as just payment; but if they were offered as payment of the same amount of debt in a foreign state, they would be received only at their intrinsic value of $£ 95$, the additional $£ 5$ constituting the agio. Where the state keeps its coinage up to a standard value, no agio is required. The same principle is applied to the paper currency of a country when reduced below the bullion value which it professes to represent. According as there is more demand for gold or for paper money for the purposes of commerce, it often becomes necessary, in order to procure the one of the higher current value, to pay a premium for it, which is called the agio. In countries where silver coinage is the legal tender, agio is sometimes allored for payment in the more convenient form of gold.

AGIS. Four kings of this name reigned at different periods in Sparta. The first of the name was the son of Eurysthenes, and is supposed to have reigned about 1032 B.c. The designation of Helots is said to lave had its rise in his time, from the unsuccessful revolt of the inhabitants of Helos, and their final enthralment by the Spartans.

Agrs II. succeeded his father Archidamus, and reigned from 427 to 399 в.с. He distinguished limself during the Peloponnesian war as an able and successful general, and hcaded the Spartans at the great and dccisive battle of Mantinea.

Agls III. succeeded his father Archidamns III., 338 b.c. He took an active part in the leagne of the Grecian states against Alexander the Great, and at the head of their forces defeated a Macedonian ariny under Corragus. He was slain, about 331 b.c., in a battle with Antipater, under the walls of Megalopolis.

Agrs IV., son of Eudamidas II., and lineally desceuded from Agesilaus II., succeeded his father 244 b.C., and reigned four years. He was more distinguished for the social reforms he attempted to introduce at Sparta than for his success as a general. The degenerate state of the Spartan commonwcalth led bim to attempt a rcformation by restoring the institutions of Lycurgus, and, in the spirit of a true reformer, he set the example in his own person and household. His excellent intentions were seconded by all the younger and poorer portion of the community; but the rich and iusurious wero vchemently opposed to Aleasures which threatened to :nterfere so seriously with their influence and pleasures. His colleague, Leonidas, headed the opposition, and busily propagated the suspicion that Agis aspired to tyranny, by oblitcratiug; the distinccions of socicty and increasing the power of the multitude. Agis was supported by the infuence of his uncle Agesilaus, who, being decply in debt, was highly favourable to the proposed changes. Lysander and Mandroclides, two of the ephori, were also strenuous promoters of the reform. When the time came for Agis to propose in the senate a general discharge of debts and a new dirision
of lands, the measure mas lost by a minerity of one. The triumph of Leonidos, however, was short. Being accised by Lysander of having violated the laws, he took refuge in the temple of Minerra, and refusing to appear in his own defence, was degraded from his dignity and banished to Tegæa. His son-in-law, Cleombrotus, was elected in his stead. The next election of ephori proved unfavourable to the party of Agis. Lysander and Mandroclides were tried for innovation, but succeeded in persuading the two kings to eject the new magistrates from office, which was effected in the midst of much tumult. The reformation might now have been established but for the intrigues of Agesilaus, whose selfist schemes counteracted the good intentions of the tro kings. At this time the Achæans seut to Sparta for assistance in the war with the Jitolians, which was granted. Agis received the command of the troops, and though he gained no advantage over the cautious Aratus, the Achæan general, he conducted the campaign with considerable credit from the good discipline he maintained in his army. On his return he found that the misconduct of Argesilaus had resulted in a revolution and the reçall of Leonidas. He took refuge in the temple of Minerra, Cleombrotus in that of Neptune. Leonidas contented himself with banishing his son-in-law, but resolved on the ruin of Agis. The unfortunate king was accordingly seized and cast into prison, where, after a mock trial, he was sentenced to be strangled. His mother and grandmother in vain entreated to gain him a public hearing: they were insidiously permitted to visit him in prison, where they shared his fate.

AGISTMENT (from the old French gésir or gir, to lie; see Edin. Rev., rol. cxxviii. p. 79), the profit arising from taking in cattle to lie and pasture in one's lands, applied more particularly, in the first instance, to the proceeds of pasturage in the king's forests. The tithe of agistment, or "tithe of cattle and other produce of grass lands," was formally abolished by the Act of Union, on a motion submitted with a riew to defeat that measure. (Sce liclin. liev., vol. xxxiv. p. 73.)

AGNANO, Lago d', a small circular lake near Naples, about tro miles in circumference, and eridently situated in the crater of an extinct volcano. On its banks are the stufe, or natural vapour-baths of San Germano, beneficial in cases of rheumatic disease; and on its opposite shore is the famous Grotta del Cane, from the floor of which carbonic acid is continually evolsed, rising to a licight of about 18 inches, in such quantity as to kill dugs that enter it, while a man, on account of his crect posture, wholly escapes the effects of the gas. (Sce Spallanzani's Travels.) The grotto is a small artificial excaration, 12 feet long by 4 or 5 wide and 6 feet ligh, seemingly mado for obtaining puzzolano, or earthy velcanic tufa.

AGNATliS (Agnati), in liman Lav, are persons related through males only, as opposed to cognates. Relationship by agnation was founded on the ilea of the family held together by the patria potestas; cognatio involves simply the modern idea of kindred.

AGNESI, Marta Gaetana, an Italian lady preeminently distinguished for her scientific attamments, was born at Milan on the 16 th of May 1718, her father being professor of mathematics in the university of Bologna. When only nine years old, she had such command of Latin as to be able to publish an elaborate address in that language, maintaining that the pursuit of liberal studics was not improper for her sex. By her thirteenth year she had acquired Greek, Hebrew, French, Spanish, German, and other languages. She was in consequence generally known as "the Walking Polyglot." Two years later her father began to assemble in his bouse at stated intervals a circle of the most learned men in Bologna, before
whom she read and maintained a series of theses on the most abstruse philosophical questions. President De Brosses has given an interesting account of one of those meetings, at which he was present, in his Lettres sur 'Italie (tom. j. p. 243); and a permanent record of Agnesi's share in them has been presersed in the Propositiones Philosophica, which her father caused to be published in 1738 . Theso displays, being probably not altogether congenial to Maria, who was of a retiring disposition, ceased in ber twentieth year, and it is even said that she had at that age a strong desire to enter a convent. Though the wish was not gratified, she lived from that time in a retirement almost conventual, avoiding all socicty, and devoting herself entirely to the study of mathematics. The most valuable result of her labours was the Instituzioni Analitiche ad Uso della Gioventu Italiana, which was published at Milan in 1748. The first volume treats of the unalysis of finite quantities, and the second of the analysis of infinitesimals. A Frencle translation of the second volume, by D'Antelniy, with additions by Eossut, appeared at Paris in 1775; and an English translation of the whole rork by Colson, the Lucasian professor of mathematics at Cambridge, was published after his death at the expense of Baron Maseres. The great merit of the work was universally recognised at the time of its publication; and though in the long interval that elapsed before the English translation appeared the methods of analysis had been greatly improved, it was recognised by a writer in the Edinlurgh Review (1803) as still the best introduction to the works of Euler and nther mathematicians of the continent. Madame Agnesi also wrote a commentary on the Conic Sections of the Marquis de l'Hôpital, which, though bighly praised by those who saw it in manuscript, was aever published. In 1750 , on the illness of her father, sho was appointed by Pope Benedict XIV. to occupy the shair of mathematics and natural philosophy at Bologna. After the death of her father, in 1752 , she carried out a long-cherished purpose by giving herself to the study of theology, and especially of the fathers. Another purpose, which seems also to have been long cherished, was now also fulfilled. After holding for some years the office of directress of the Hospice Trivulzio for Blue Nuns at Milan, 3he herself joined the sisterhood, and in this austerc order ended ber days (1799).

AGNESI, Maria Teresa, sister of the above (died 1780), was well known as a musician, having composed a number of cantatas, besides three operas-Sophonishe, Ciro in Armenia, and Nitocri.

AGNOETE (from áyroć ω, to be ignorant of), in Church Ifistory, a sect of ancient hereties who maintained that Christ's hmman nature did not become omniscient by its union with 1 is divinity. Its founder was Themistius, a deacon of the Monophysites in Alexandria in the 6th century. The sect was anathematised by Gregory the Great.

AGNOLO, Baccin D', wood-carver, seulptor, and architect, was born at Florence in 1460. The first was his original calling, and he áttained considerable distinction in it before he turned his attention to architecture, which he went to Rome to study in 1530 . He still carried on wrood-carving, and his studio was the resort of the most celebrated artists of the day--Michael Angelo, Sansovius, the brothers Sangallo, and others. On his return to Florence be devoted himself chiefly to architecture, and planned many of the finest palaces and villas of that city, such as the Villa Borghese and the Palais Bartolini. The latter was the first dwelling-house which had what had previously been confincd to churches-frontispicees of columns to the doors and rindows. For introducing this fashion Agnolo incurred the ridicule of the Florentines; but it nevertheless established itself firmly. Another
much-adnired work of this wichitect is the campanife or bell-tower of the church Di Santo Spirito in Florence. He was also engaged to complete the drum of the cupola in the metropolitan church Di Santa Maria del Fiore; but Michael Angelo found fault with his plans, and the work remains unexecuted to this day. IIe dicd in 1543, leaving three sons, archite ts, one of whom, Giuliano, completed his father's unfinished works.

AGNONE, a town of South Italy, at the foot of Monte Capraro, 20 miles N.W. of Campobasso. It has $10,230 \mathrm{in}$ habitants, chiefly employed in the manufacture of copper wares, for the excellence of which it is celebrated.

AGNUS DEI, the figure of a lamb bearing a cross, symbolical of the Saviour as the "Lamb of God." The device occurs in medieval sculptures, but the mame je especially given in tho Church of Rome to a small cake made of the wax of the Easter candles, and impressed with this figure. Since the 9th century it has been customary for the pepes to bless these cakes, and distribnte them, on the Sunday after Easter, among the faithful, by whom they are highly prized as having the power to avert evil. In modern times the distribution has been limited to persons of distinction, and is made by tho pope on his accession, and every seven jears thereafter.

Agnus Des is also the popular name for the anthem beginning with these words, which is said to have been introduced into the missal by Pope Scrgius I. (68i-701). Based upon Jolnn i. 29, tho Latin form is Agnus Dei, qui tollis peccata mundi, miscrere nolis. In the celebration of the mass it is repeated three times before the communion, and it is also appended to many of the litanics.

AGOBARD, a l'rank, born in 759 , became coadjutor to Lcidräd, archbishop of Lyons, in 813 , and on the death of the latter succeeded him in the see (816). He was one of the chief supporters of Lothaire and Pepin in their conspiracy against their father, Lonis le Debonnaire, and was in conscquence deposed by the council of Thionville (835). On making an apology for his conduct, and becoming reconciled to the emperor, he was reinstated in 837. Agobard's works, which were edited by Baluze in 1665 (2 vols. 8ro), slow him to have been a man of clear intellect, strongly opposed to the superstitious notions of the time. He wrote against image-worship, the belicf in witcheraft, the ascription of tempests to the influence of sorcercrs, and trial by the ordeal of fire and water. In the adoptionist controversy Acgobard took a prominent part on the orthodox side. He died at Saintonge in 840.

AGONAMIA, in Roman Antiquity, festivals celcbrated on the 9th January, 21st May, and 11th December in each year, in honour of Janus, whom the Romans invoked before undertaking any affair of importance. Ovid, in his Fasti, i. 319-332, mentions various etymologics of the word.

AGONIC LINES (from a privative, and γ wria, an angle), the imaginary lines on the carth's surface where the magnetic needle indicates no declination or deviation from the terrestrial meridian-that is, points to the true north and south. There are two grat primary agonic lines, varying from time to time, the courses of which for the epochs 1787 (from Hanstecn's Magnetismus der Erde) and 1840 (by General Sir E. Sabine) are firured in Keith Johnston's I'hysical Atlas.
 in Grecian Antiquity, was the president or superintendent of the sacred games. At first the person who instituted the games and defrayed the expenses was the Agonothetes; but in the great public games, such as the Olympic, Pythian, \&c., these presidents were the representatives of different states, or were chosen from the people in whose country the games were cclebrated. They received the several

 from the rod or sceptre emblematic of their authority.
AGORA (áy'ipw, to congregate), the place used among the ancient Greeks as a public market, and corresponding in general with the Roman forum. From its convenience as a meeting-place, it became in most of the cities of Greece the general resort for social and political purposes. In Thessaly, however, the market-place was kept apart from "the field of freedom," where the commons met; and at Sparta a similar provision was made by the institutions of Lycurgus, that nothing might distract the attention of the auditors. At Athens, with the increase of commerce and political interest, it was found advisable to call public meetings at the Pnyx or the temple of Bacchus; but the important assemblies there, such as meetings for ostracism, were held in the agora. In the best days of Greece the agora was the place where nearly all public traffic was conducted. To frequent it, therefore, was equivalent to being actively engaged in business; and "he has forsaken the agora," indicated that a man was a suspicious character. The agora was most frequented in the forenoon, and then only by men. Slaves did the greater part of the purchasing, though even the noblest citizens of Athens did not scruple to buy and sell there. The name áropá was also given (and this is perhaps the primary use of the word) to the assemblies of the people in the Grecian states. These assemblies were convened by proclamation by order of the sovereign power, a herald inviting aii concerned to the agora. The right of speech and of vote in these assemblies appears to have been restricted to the nobles, all that was allowed to the populace being the indication of their sentiments on the topics brought before them by signs of applause or disapproval. At Athens the old agora lay to the west of the citadel. It was adorned with trees planted by Gimon the conqueror of the Persians; and around it numerous public buildings were erected, such as the senate hall and the law courts. The new agora lay to the north of the Acronolis, in the Eretrian quarter. Pausanias is the great architectural authority on the agoræ of Megalopolis, Corinth, Elia, Messina, Sparta, \&c. Palladius and Vitruvius also give details. The remains of different agore are described in the works of Texier, Newton, Barth, and other travellers.

AGORANOMOI, magistrates in the republics of Greece, whose position and duties were similar to those of the ædiles of Rome. In Athens there were ten, chosen annually by lot, five of whom took charge of the city, and five of the harbour. The former saw to the maintenance of order and decency in the markets, took cognisance of the purity of the articles exposed for sale and of all weights and measures, and collected the dues; the latter received the harbour dues and enforced the shipping regulations.
AGORDO, a town in North Italy, 12 miles N.W. of Belluno. The valley of Imperina, in its vicinity, contains the richest copper mines in Italy. Population, 3000.
AGOSTA, or Augusta, a city of Sicily, 14 miles N. of Syracuse, and in the province of that name. It is buite on a peninsula, and is united to the mainland by a narrow causeway. By some writers it is supposed to occupy the site of ancient Megara Hyblca. The modern city, which was founded by the emperor Frederick II. in 1229-33, suffered severely during the wars of succeeding centuries, and was several times sacked. It had, however, attained considerable opulence when, in 1693, it was overthrown by an earthquake, the effects of which were aggravated by the explosion of the powder magazine of the citadel. One-third of the iubabitants perished in this disaster. When the city was rebuilt, the streets were laid out in parallel lines, and the houses were constructed with low roofs, so as to mitigate the results of any recurrence of the calamity. Agosta is fortified towards both sea and laud; and the harbour, though
rather difficult of access, is conmodions and wcill sheltered. The chief trade of the town is in salt; and the other exports include wine, cheese, oil, honey, and sardines. Near Agosta the Dutch were defeated by the French in a naval engagement in 1676 , and their famous admiral, De Ruyter, was mortally wounded. Population (1865), 9735.
AGOSTINI, Leonardo, an emineat antiquary of the 17 th century, born at Siena. After being employed for some time by Cardinal Barberini to collect works of art for the Barberini palace, he was appointed by Pope Alexander VII. superintendent of antiquities in the Roman states. He issued a new edition of Paruta's Sicilian Medals, with engravings of 400 additional specimens; but a promised volume of letterpress explanation never appeared. In conjunction with Bellori he also published a work on antique sculptured gems, which was translated into Latin by Gironovius (Amsterdam, 1685).
AGOSTINO and AGNOLO (or Avgelo) DA SIENA, two brothers, architects and sculptors, who flourished in the first half of the 14th century. Della Valle and other commentators deny that they were brothers. They certainly studied together under Giovanni Pisano, and in 1317 were jointly appointed architects of their native town, for which they designed the Porta Romana, the church ạnd convent of St Francis, and other buildings. On the recommendation of the celcbrated Giotto, who styled them the best sculptors of the time, they were chosen to execute the tomb of Guido, bishop of A rezzo, which that artist had designed. It was esteemed one of the finest artistio works of the 14th century, but unfortunately was destroyed by the French under the Duke of Anjou.

AGOSTINO, Paolo, an eminent Italian musician, born at Valerano in 1593 . He studied under Nanini, and succeeded Ugolini as conductor of the Pope's orchestra in St Peter's. His musical compositions are numerous and of great merit, an Agnus Dei for eight voices being specially admired. He died in 1629.
AGOUTI, a genus of mammals (the Dusyprocta) found in South America and in some of the West Indian islands, belonging to the same family as the guinea-pig, viz., that of Cavidæ in the order Rodentia. The largest and commonest species is the D. Aguti, somewhat resembling a rabbit, but about the size of a hare, whence it is sometimes called the rabbit or hare of South America. The feet have large and strong claws, but the animal does not burrow; the hind legs are very long, and when eating it squats on them, feeding itself with its fore-paws; and the tail is, except in one species, a very short naked stump. The agoutis are gregarious, live chiefly in woods, and feed on vegetables exclusively, especially on roots and nuts. They commit great havoc in sugar plantations by gnawing the roots of the canes, and in sugar-growing localities are therefore destroyed as vermin. The flesh, which is tender and well-flavoured, is a common article of diet in Guiana and Brazil. When the Antilles and Bahamas were discovered they are said to have been overrun with these animals, which were the largest quadrupeds then found in the islands.

AGRA, a division, district, and city of British India, under the jurisdiction of the lieutenant-governor of the North-Western Provinces. The Agra Division comprises the six districts of Agra, Etárah, Mainpuri, Farrakhíbíd, Etah, and Mathurá. It is bounded on the N. by the Aligarh district; on the W. by the Bhartpur, Dholpur, and Gwalior states; on the S. by the Jalaun and Cawnpur districts; and on the E. by the Ganges. Agra division contains, according to the census of 1872 , a population of $5,038,136$ souls; of whom $4,607,946$ are Hindus, 427,834 Mahometans, and 2356 Christians and others.

Agra District lies between $26^{\circ} 43^{\prime \prime} 45^{\prime \prime}$ and $27^{\circ} 24^{\circ}$ $15^{\prime \prime}$ N. lat., and betwecn $77^{\circ} 28^{\circ}$ and $78^{\circ} 53^{\prime}$ E. long.

It is bounded on the N. by the district of Mathura; on the E. by the Mainpurl and Etárah distriets; on the S. by the Gwalior territory and the Dholpur state ; and on the W. by the lihartpur territory. Its area in 1872 was returned at 1873 squaro miles, and its population at $1,094,184$ souls. The general appearance of the district is that common to the Doab, a level plain intersected by watercourses (n alás) and ravines. Thẹ only hills are the sandstone elevations in the west and south-west of the district. The princcipál rivers are the Jamná, Chambal, Uttangan, and Kihari. The Jamná intersects the distriet, cutting off the subaivisions of Itmadpur and Firozíbid; and a branch of the Aligarh division of the Ganges Canal passes through its northern parts The general elevation of the district is estimated at from 650 to 700 fect above the level of the sea:- The soil is sandy; many of the wells are brackish, and the loeal water supply is scanty. The failure of the periodieal rains during the monsoon suffices to produce great scarcity, sometimes reaching the famine point. Only five towns are retnrncd by the census as containing upwards of 5000 inhabitants, riz., Agra city. (the capital of the district), population 149,008; Fathipur Sikrí, the site of Akbar's famous mosque and palace, 6878; Firozibâd, 14,255; Pináhât, 6571; and Saimrá, 5704. There are three municipalities, viz,' Agra city, Firozábid, and Fathipur Sikri. These muncipalities derive their local revenue from octroi and from property within the municipal limits. The total municipal income and its incidence per head of the population are as follows:-Agra city, municipal income, $£ 15,441$, incidence per head, 2 s . 03 dd . ; Firozábád, $£ 724$ 1s. per bead; Fathipur Sikrl, $£ 366$-1s. per head. The land revenue of the whole district was, stated in 1871 at $£ 162,882$, and the gross revenue at $£ 660,526$. A scheme of rural instruction by means of indigenous schools was introduced in 1848. In 1871-72 there were 431 schools in the district, attended by 10,823 pupils, of whom 8820 were Hindus, 1293 Mahometans, and 710 of other denominations. The educational establishments within the eity will be deseribed below. The police force consisted of 1358 regular police in 1871, equal to onc man to every 1.37 square miles of arca, or one to every 805 inhabitants; and a village watch or rural constabulary of 1921 men , being one man to every 0.97 square miles of area, or one to every 570 inhabitants. The chief crimes of the district, in common with the rest of the Doab, are burglary and theft.
Agra City, situated on the banks of the Jamná river, in $27^{\circ} 10^{\prime} \mathrm{N}$. lat., and ' $\mathrm{r}^{\mathrm{I}} \mathrm{I}^{\prime} \mathrm{E}$. long., is the head-quarters of the division and capitai of the district. Formerly it was the prcvincial capital also, but since the mutiny the seat of government has been removed from Agra to Allahâbid. The city, which is about 4 miles in length by 3 in breadth, sweeps along the banks of the river in a semicircle. The principal thoroughfares are a fine broad street intersecting the town from north to sonth; and the Strand, which runs along the banks of the river for a distance of 2 miles. This road measures 80 feet in width, and is said to have been constructed by the destitute poor during the famine of 1838 . In 1846 the population of the city was estimated at 66,000 ; in 1872 it was ascertained to be 149,000 . The.conservancy and improvement of the town are in the hands of a municipal committee, which derives its funds principally from octroi duties. In 1871-72, the minnicipal income was returned as follors:-Octroi duties, $£ 13,587$; miscellaneous receipts, snch as rent from land belonging to the municipality, \&c., $£ 1854$-total, $£ 15,441$. The details of muvicipal expenditure were as follow:-Establishment and cost of collection, $£ 1667,12 \mathrm{~s}$; ; police, $£ 4041,12 \mathrm{~s}$; conservancy, $£ 1749,12 s$; lighting, $£ 672,14 \mathrm{~s}$; watering, $\mathfrak{£} 555,10$ s.; original works, $£ 3561,16 \mathrm{~s}$. ; repairs, $£ 1429,2 \mathrm{~s} . ;$ educatio $1, £ 120$; vaccination, $£ 36,6 \mathrm{~s}$.; dispensary, $£ 360$;
charities, $£ 240$; grants to cantonments, museum, $\& \mathbb{C}$.-
 establishment in Agra is the Government College, a handsome building, situated in tho civil lincs a short distance from the town. It was established in 1820; in 1872 it containcd 385 pupils. The other chief schools are the StJohn's College, established by the Church Missionary Society in 1854; the Victoria College, established in 1862; and St Peter's Catholic Collcge. These three colleges in 1872 had 643 pupils on their rolls. There is also a medical college, founded in 1853. The total number of studente admitted into it daring the sixteen years from 1855 to 1870 inclusive, was 1168, of whom 235 passed the proscribed cxamination and received appointments in the government medical service. The Agra fort has a very imposing appcarance, but is of no great strength. It occupies a large space of ground on the banks of the river, enclosed by high walls and towers of red stono. The fortress was constructed by the Emperor Akbar in the latter part of the 16 th century, and exceeds a mile in circuit. In 1803 the place was held by the Marhattás; but being invested by Lord Lake's army, it surrendered after a day's bombardment. During the mutiny of 1857 it formed a place of refoge for the European and Christian community of Agra, and was threatened by the insurgent sepoys. The buildings of most note within the walls of the fort are the palace and hall of audience of Sháh Jahán, and the Motl Masjid, or "Pearl Mosque."
"In the centre of the palace", says Mr Fergusson in his Mistory of Architccture, vol. ii., pp. 699-700, "is a great court 500 feet by 370 , surrounded by arcades, and approached at the opposite enda throngh a succession of beautiful conrts opening into onc another by gateways of great magnificence. On one side of this court is the great hall of the palace, the Díwani-Khís, 208 feet by 76 , supported by three ranges of arcades of exquisite beaury. It is open on tarce aides, and with a niche for the throne at the back. This hall is now used as an arsenal. Behind it are two smaller courts, tho one containing the Diwani-Am or hall of private audience, the other the harem. The hall in the former is one of the most elegant of Shah Jahán's buildings, being wholly of white marble inlaid with precious stones, and the design of the whole being in the best atyle of his reign."

The Motl Masjid or Pearl Mosque is the most clegant mosque of Indian-Mahometan architecture. - Mr Fergusson describes it as follows:-
"Its dinensions are considerable, being externally 235 feet east and west, by 190 feet north and south, and the courtrard 155 feet square. The mass is also considerable, as the whole is raised on a terrace of artificial construction, by the aid of which it stands well oat from the surrounding buildings of the fort. Its chief beauty consists in its courtyard, which is wholly of white marble from the pavement to the summit of its domes. In design it soracwlat resumbles the great Dchli mosque, except that the minarets aro omitted, and the side gateways are only recesses. The western part, or mosque properly 80 called; is of white marble inside and out; and, except an inscription from the Kurán inlaid with black marble as a frieze, has no ornament whaterer beyond the lines of its own graceful arehitectura."

Agra, however, is even more famous for the Táj-Mahal, a splendid mausoleum built by the Emperor Sháh Jahán for the remains of his favourite wife, Mumtáza Mahal, and where he himself is also buried. The building is of white marble, with four tall minarets of the same material, one at each corner. The whole rises from an elevated marble terrace. The following account is extracted from Mr Fcrgusson's Mistory of Architecture, pp. 692-694:-

The enclosure, including the gardens and cuter court, is a parall elogram of 1860 feet by more than 1000 feet. The outer court, surrounded by arcades and adorned by fonr gatewaya, forms an oblong, occupying in length the whole breadth of tho inclosure, by about 450 feet in depth. The principal gateway, measuring 1]0 feet by 140 , leads from the court to the gardena, which, with their marble canals and fountains and cypress trees, are almost as beauti. ful as the tomb itself. The tomb atands on a raised platinem 18 feet high. faced with whito marble, and is axactly 818 feet square
at each corner of this terrace stands a minaret 133 feet in height, and of the most exquisite proportions-more leautiful, perhaps, than any other in India. In the centre of the marble platform stands the mauseleum, a square of 186 feet, with the corners cut off to the extent of 33 feet 9 inches. The centre of this is accupied by the principal deme, 55 feet in diameter and 80 feet in height, under which is an inclosure formed by a screen of trellis-work of white marble, a chef-d゙cuvre of elegance in Indian art. Within this stand the tio tombs. These, however, as is usual in Indian sepulchres, are net the true tembs; the bedies rest in a vault level with the surface of the ground, beneath plainer tembstones placed exactly underneath these in the hall abovc. In each angle of the building is a smaller dome of two storeys in height, 26 feet 8 inches in diameter, and connected by varieus passares and halls. The light to the central apartment is admitted only through double screeas of white marble trellis-work of the most exquisite design, one on the outer and one on the inner face of the walls. In our climate this would produce nearly complete darkness; but in India, and in a building wholly composed of white marble, this was required to temper the glare, which othermise would have been intolerable. As it is, no words can express the chastened beauty of that central chamber, seen in the seft gloom of the subdued light which reaches it through the distant and half-closed openings that surround it. When used as a pleasure palace, it must have been the coelest and the leveliest of garden retreats; and now that it is sacred to the dead, it is the most graceful and most impressive of the sepulchrea of the world. This building is an early example of that system of inlaying with precions stones which became the great characteristic of the style of the Mughuls after the death of Akbar. All the spardrils of the Taj, all the angles and mere impertant architectural details, are heightened by being inlaid with precious stones, such as agates, bloodstenes, jaspers, and the like. These are combined in wreaths, scrells, and frets, as exquisite in design as they are beantiful in colour; and, relieved by the pure wbite marble in which they are inlaid, they ferm the roest beautiful and precious style of ornament ever adopted in architecture. It is lavishly bestewed on the tornbs themselves and the screens that surround them, but more sparingly introduced on the mosque that forms one wing of the Tajj, and on the fountains and surrounding buildings. The judgment, indeed, with which this style of ornament is apportioned to the various parts is almost $2 s$ remarkable as the vrnament itself, ind cenveys a bigh idea of the taste and skill of the Indian architects of this age."
Tavernier, in his Travels (voL iii., p. 94), mentions that 20,000 workmen were incessantly employed on this work during a period of twenty-two years. The tomb of the Emperor Alsbar is contained in a splendid mausoleum at Sikandrá, a suburb of Agra city.
AGRAM, or Zagrab, the capital of the Austrian province of Croatia, is finely situated on a hill near the banks of the Save, in $45^{\circ} 49^{\circ} \mathrm{N}$. lat. and $16^{\circ} 1^{\prime}$ E. long., 160 miles south of Vienna. It is the seat of the governor of Slavonia and Croatia, of a bishop, of the courts of justice, and of the meetings of the provincial diet. Agram is divided into three parts, called the upper and lower towns, and the town of the bishop. It has a lyceum, library, museum, gymnasium, an ancient cathedral, and a large library. Some silk and porcelain are manufactured, and a brisk trade is carried on in grain, potash, tobacco, and honey. Population in 1869, 19,857.
AGRARLAN LAWS (Leges Agraric), when used in the most extended signification of the term, are laws for the distribution and regulation of property in land, The history of these enactments is not only important as explanatory of the constitution of the ancient republics, but is rendered highly interesting by the conflicting opinions which have been entertained respecting their object and operation. It seems to have been a notion generally entertained in the ancient world that every citizen of a country should be a landholder; and that the territory of a state, so far as it was not left uninclosed or reserved for public purposes, should be divided in equal portions among the citizens. Such a distribution of public land seems to have been acted upon as a recognised principle from the earliest period to which existing historical records extend. Hence we find the Almighty giving express instructions to Moses as to the manner in which the land of Canaan wai to be portioned out among the Hebrews (Num. xxxiii. 54), and naming the persons to whom the division was to be entrusted (Num.
xxxiv, 16-18). A division of the land was according1: made, and the portion assigned to each man became hi: inalienable property, and descended in perpetuity to $\cdot \mathrm{hi}$ heirs and successors. By the law of Jubilee, all lands werc restored free of encuribrances on the recurrence of thr "year of relcase;" so that, though a man's estate might, ir the interval, have been repeatedly sold or alienated, jet on the return of the fiftieth year it reverted to the heirs of thr orginal possessor (Levit. xxv. 10). In the republics of arcient Greece, and also in the Grecian colonies, a similas principle of division of land prevailed (Thuc. r . 4, Herod. iv. 159). Lycurgus is represented by Plutarch (Lycur.) as redividing the whole territory of Laconia into 39,000 parcels, of which 9000 were assigned in equal lots to as many Spartan families, and 30,000 , also in equal lots, to their free subjects; and although this statement is not borne out by any of the carly Greek historians, and is even inconsistent with the assertion of Aristotle (Polit. ii. 4), yet it is valuable as recognising the principle of the division of the public. lands. (See Thirlwall's Hist. of Greece, chap. viii, and Grote's Hist. of Greece, part ii chap. vi., with the authorities there quoted.)
It was long a prevalent and undisputed opinion that the territories of the Hebrews, and of the republics of ancient Greece, were divided into equal portions, and that the object of such a distribution was to maintain a state of equality among all the members of the community. This, however, does not appear to be consistent with the distinctions of rank which we find admitted in Scripture (Josh.
 remark of Thucydides (i 6), taken in connection with the statement of Aristotle (Polit. ii. 9), it may be legitimately inferred that property did not continue to be equally distributed at Lacedæmon. Distinctions of rank are clearly recognised in the legislation of Solon. Aristotle, in the Second Book of his Politics (chap. vi., \&c.), explains the constitutions of several of the ancient republics, and endeavours to show how the population is to be accommodated to this equal division of land; but it would be foreign to our object to review his arguments. It may be sufficient to remark that such an attempt to arrest the progress of enterprise is altogether inconsistent with the spirit of liberty which gave life and energy to the ancient republics; and that, though it might have been carried into effect under the despotism of Persia or the predominant rule of the kings of Macedonia, it was entirely at rariance with the freedom of opinion which prevailed in Greece, and the stubborn resistance to control which animated the Romans after the expulsion of the kings. But granting that such a policy had been practicable, it would have been highly inexpedient. The ignorant Hindu might remain satisfied with the caste which nature had transmitted to him through successive generations, because his progenitors had been prevented from emerging from their obscurity; but the citizens of Greece and Italy, being themselves constituent members of the body politic, and not ignorant of the power thereby conferred on them, could not have been kept in check by the same principle of fear. Such an attempt, moreover, to prevent the acquisition of property would have obstructed the advancement of the arts of civilised life, would have extinguished those feelings of patriotism which led the Greeks so often to hazard their lives in defence of their country, and, by engendering discontent and exciting internal commotions, would have made them an easy pres to their enemies.

The expression Agrarian Laws, however, is more com. monly applied to the enactments among the Romans for the management of the public domains (ager publicus); and to an account of these the remainder of our space must be devoted. It is a singular fact that, while almost every other
subject connceted with the Roman constitution had been suecessfully investigated and explained, the ohject and intertion of the agrarian laws were entirely misunderstood by scholars for many centurics after the revival of letters. They were invariably represented as intended to prohibit Roman citizens from holding property in land above a certain fixed amount; and as authorising the division among the poorer citizens of the estates of private individuals when these exceeded the preseribed limit; thus legalising a system of plunder which would have been subversive of all social order. No such doctrine had, indeed, been admitted in any well-regulated state, ancient or modern; nor did anything amalogous to it appear in the principles or practice of the Roman constitution; yet the expressions used by the ancient authors in reference to these enactments, and the disturbances to which they invariably gave rise, scemed to justify an unfavourable interpretation ; and the opinion, when once propounded, was unconditionsilly received by successive generations of learned men, notwithstanding the many embarrassments and contradictions to which it led.

Romulus is represented as dividing his small territory among the members of his infant community at the rate of two jugera (each extending to two-thirds of an English acre) a-piecé, as inheritable property. The whole district, however, was not thus assigned; one portion was set apart for the service of the gods and for the royal domains; and another was reserved as common land for pasture. The stock kept on the common land served to eke out a mainténance which tro jugera could not otherwise have furnished to a family, and an agistment was paid to the commonwealth for the pasturage: It is probable that the same principle prevailed under the regal government, and that successive adjustments of the territory were made. Such a law existed among those of Servius Tullius. The equality of property thus established seems to have been considered as a fundamental principle of the Roman constitution; and the agrarian laws were regarded as the necessary means of wresting from the large proprietors the possessions which they had illegally acquired. Machiavelli and Montesquieu both participate in this mistake, and are far from condemning the agrarian laws, even when taken in the common meaning. The former alleges that the interest of every republic requires that the state should be rich and the citizens poor, and thus justifies the assumed spoliation; while Montesquien receives it as an historical fact that Romalus adopted the principle of equality in his original distribution of the territory of Rome as the future ground of her strength, and that the tribunitian contests were but attempts to restore the original constitution. Adam Smith (Tealth of Nations, b. iv. chap. vii. part i.) assents to the same interpretation, without, however, any expression of approval.
The correct interpretation of the agrarian laws must thus be considered as of modern date. Amidst the violence of the French Revolution a scheme for the equal division of the national property was advocated, with great popular favour, by some of the frantic leaders, who sought a sanction for their extravagances in precedents drawn from the ancient republics, and particularly from the agrarian laws of the Romans. The subject was thus invested with a new interest, and engaged the attention of Professor Heyne of Göttingen, who in 1793 (Opus. Acad. iv. 350-373) addressed to the members of his university a paper in which he successfully combated the opinions which, up till that xine, had been entertained respecting them, and showed that their object had been entirely misunderstood. Other ariters, as Heeren and Hegewisch, embraced and illustrated his views; but it was reserved for the acuteness and learning of Niebuli fully to devclop the theory which had been
suggested, and to demonstrate the fact "that the agrariats laws of the Remans wero in no case intended to interfere with or affect private property in land, but related exclusively to tho public domain." The theory of Niebubr was too startling to meet with universal approval. It h ${ }^{2} s$ accordingly been assailed by Rudorff, Dureau de la Malle (Econ. Polit. des Romaines), Puchta, and others, who have ingeniously and plausibly supported the opinions formerly maintaiued; but their arguments fail to produce conviction. (Class. Mus., vol. ii.) The language of Livy passim, when referring to the agrarian laws, is inexplicable unless the interpretation of Niebuhr be adopted:-

Abstract

"If," says Dr Arnold, "amongst Niebubr's countless services to Roman history, any aingle one may claim our gratitude beyond tha rest, it is his explanation of tho true nature and character of the agrarian laws. 'lwenty four years have not set elapsed since he first published it, but it has already overthrown the deeply-rooted false impressions which prevailed universally on the subject; and its truth, liko Newton's discoveries in natural acience, is not now to be proved, but to be taken as the very corner-stone of all our researches into the internal state of the Roman people" (Uist, of Rome, vol. ii.)

In almost all countries the legal property of the land has been originally vested in the sovereign, whether we are to understand under that name a single chief, a particular portion of the nation, or the people at large. In the same manner, the property of all the land in a conquered country was held to be transferred to the sovereign power in the conquering state, and was assumed with more or less rizour as circumstances seemed to require. From the carliest times a portion of the Roman territory was thus regarded as the property of the state, and the profits arising from it were applied to the public service. The public domain (ager publicus) was at first small, but was gradually extended by the right of conquest till it embraced a large portion of the wholo peninsula. In this process of extension the subjugated communities were frequently mulcted of a proportion of their lands, varying according to the alleged offence or the resistance which they had offered to the arms of the conquerors. Thus the Boii were deprived of one-half of their territory; the Hernici forfeited two-thirds; and the whole of the ager Campanus, the richest district in Italy, was taken from the inhabitants of Capua on the capture of their city after its revolt to Hannibal.

The lands thus acquired were disposed of in rarious ways. A portion of them was frequently sold by auction to meet the immediate necessities of the state, and was thus conreyed in perpetuity to the purchasers. The disposal of the remainder depended on the gature and condition of the land, and its position in reference to the bulk of the com. munity. If in good condition and at no great distance from the city, it was frequently assigned, in small allot. ments of seven jugera (between 4 and 5 acres), to those of the poorer citizens, whose services in war gave them a claim upon the state; while in hostile districts and on exposed fronticrs military colonies were planted, each colonist receiving a fixed quantity of land. In both these cases the land so assigned ceased to form part of the public domain, and became the property of the recipients. In some cases the land, after having been assumed as public property, was allowed to remain in the hands of the former owners, who became the tenants of the state for a fixed period, and paid a certain rent to the Roman exchequer.
The preceding remarks refer only to arable or meadow land, rineyards, or olive-gardens, which could be turned to immediate advantage It is obvious, however, that in a country the greater part of which was acquired by conquest, large districts must have been laid waste, the inhabitante with their honses destroyed, and neither cultivators nor the means of cultivation left. Arrangecients of a differoat description were thercfore necessary for lands in this
position. Wide ranges of country, fit only for pasture, had to be disposed of, and were available to those alone who were able to stock them with flocks and herds, and to provide slaves to attend to and protect their property. Hence it was usual for the state to invite persons possessed of the necessary means to enter upon the occupation of such lands on adrantageous terms; an invitation with which the patricians, as being the wealthy class, could alone comply. The ordinary conditions were, that after the land was again brought into cultivation, the occupants should pay as rent one-tenth of the produce of the corn-lands, and one-fifth of the vines and fruit-trees, with a moderate rate per head for sheep and cattle grazing on the public pastures. The lands were not assigned for any definite period; the occupants were mereiy tenants at will, liable to extrusion whenever the state found it necessary to employ the land for any other purpose. It was a fundamental principle of Roman law that prescription could not be pleaded against the state; and consequently, though the right of occupancy might not only be transmitted from heir to heir, but might also be sold, no length of time could alter the precarious nature of the tenure by which the lands were held. The state always reserved to itself the power of resuming possession when it thought fit; and though such resumption might in many cases be attended by individual hardship, it was nevertheless justified by the original contract.
Much of the obscurity connected with the Roman agrarian laws has arisen from a misapprehension of the meaning of the words passidere, passessor, and possessio. These terme, when used in a strictly legal sense, denote merely occupancy by a tenant, and never imply an absolute right of property. The act of occupancy was termed usus, and the benefit derived by the state fructus.
"The ager publicus," eays Professor Ramsay, "having been scquired and occupied as explained abore, numerous abuses arose in process of time, especially among the tensnts belonging to the sectond class. These being, as we have said, in the earlier ages, exclusively patriciens, who at the same time monopolised the administration of prblic aflairs, they were in the habit of defrauding the state, either by neglecting altogether to pay the stipulated proportion of the produce, or by paying less than was due ; or, finally, of claiming, what was in rea'ty ager publicus, as their own private property; it being easy, of course, in the absence of all strict saperintendence and of scientific surveys, to shift the land-marks which separated public from private property. Meanwhile the deficiencies in the public treasury were made up by heavier taxes; and the plebeians complained that they were impoverished by new imposts, while the lands belonging to the community, which they bad acqnired by their blood, if fairly managed, would yield a sufficient return to meet all demands upon the exchequer; or, if portioned out in allotments among themselves, afford them the means of sup. porting the increased burdens. These complaints, unquestionably founded in justice, were soon vehemently expressed, snd were revived from time to time more or less loudly, and enforced 'more or less earnestly, according to the state of public feeling and the energy of the popular champions. It is true that the wealthier plebeians soon became tenants of the ager pubbicus as well as the patricians ; but although this circumstance materially strengthened the hands of the occupiers, it did not improve the condition of the poor, or make them less keenly alive to the injustice of the systera ngainst which they protested." (Manual of Rom. Antiq. p. 228.)

Assuming, then, that the agrarian laws had for their sole object the distribution and management of the public lands (ager publicus), their effect must have been felt in two waya:--(1.) In enforcing the regular payment of rent from the occupants, preventing them from exceeding the limits assigned to them, and compelling the surrender of portions for division among the poorer citizens; and (2.) In insisting npon the immediate application of newlyacquired territories to the establishment of colonies, or its assignment to individuals. It is obvious that the laws first referred to, as involving long-established interests. would necessarily lead to viofent contests.

The first agrarian law, properly so called, was proposed and passed by Sp. Cassius Viscellinus, when consul, 486 P. O. (Liv. ii.
41. Dionys. viii. 76), bat respecting the provisions of this we bave no precise information. Cassius was himself a patrician, and we may therefore infer that the law did not encroach upon the just rights of the dominant class to which he belonged. It is not the object of this article to traco in detail the various measures which were proposed, and the agitations with which they were severally attended. Three such are recorded during the 4 th century b.c. (Liv. iv. 36, 47, 48) ; but by far the most important measure of this class, ent that which served as the model of nearly all subsequent agrarias, laws, was that cartied by C. Licinius Stolo, when tribune of the people, in 367 B.o. (Liv. vi. 42). The provisions of this law were: (1.) That no one ehould occupy more than 500 jngera (about $33 S$ acres) of the public land; (2.) That none should bave more tban 100 large and 500 small cattle grazing on the public pastures ; and (3.) That every occupant of the public lands should employ a certain proportion of free labourers in cultivating it. Niebahr (vol. iii. p. 11, \&c. Eng. transl.) has endeavoured to supply the other details; hut these can be received merely as ingenious, and it may be saccessful, conjectures. For an able controversy as to this law see Class. Mruseum, vol. ii.

After the excitement occasioned by the passing of the Licinian law had subsided, two centuries were allowed to pass with only a single interference (Valer. Max. $.4,5 ;$ Polyb. ii. 21) with the occupants of the public lands; and during that time large additions had been made to the possessions of the state by the confiscations consequent upon the second Punic war. In the meantime the wealthier families had extended their possessions greatly beyond the limits prescribed by the Licinian law; while the small proprietors had disappeared, and the poor continued to increase. In 133 B.C., Tiberios Gracchus proposed and carried a modification of the Licinian law (Liv. Epit. Iviii. ; Appien. 1.. 9), which his premature death prevented from being carried into effect ; and a similar result attended the enactment of his brother (Liv. Epit. lx.) Both were set aside or eluded after the death of Caius. During the period which preceded the subversion of the republic various other laws were passed for the distribution of the public lands; but these it is not necessary to enumerate. It may be mentioned, in conclusion, as a significant fact, that the prominent adrocates of the agrarian laws, Cassius, Licinius, and the Gracchi, all belonged to the class which would have been injured by their operation had they led to an undne interference with private property.
(G. F.)

AGREDA, a town of Spain, in the province of Old Castile, 23 miles N.E. of Soria. It is the chief town of the mountainous district of the same name, and is built on the skirts of the Sierra Moncayo. At Agreda the river Queiles is crossed by a fine stone bridge of one arch. Population, 3120.
AGricola, Cneus Julus, was born at Forum Julii, now Frejus, in Provence, 37 A.D., and was in Vespasian's time made lieutenant to Vettius Bolanus in Britain. Upon his return he was ranked by that emperor among the patricians, and made governor of Aquitania. This post he held for three years; he then was recalled to Rome, and chosen consul, Britain being assigned to him as his province (78 A.D.) Here he reformed many abuses created by his predecessors, put a stop to extortion, and caused justice to be impartially administered. In the spring of 79 he marched towards the north, where he made new conquests, and ordered forts to be built for the Romans to winter in. He spent the following winter in concerting schemes to bring the Britons to conform to the Roman customs. He thought the best way of diverting them from their warlike propensities was to soften their rough manners by proposing to them new kinds of pleasure, and inspiring them with a desire of imitating the Roman manners. He eacouraged the erection of magnificent temples, porticoes, baths, and other fine buildings. The British nobles at length had their sons educated; and they who before had the utmost aversion to the Roman language now began to study it with great assiduity. They likemise adopted the Roman dress ; and, as Tacitus observes, they were brought to consider those things as marks of polite ness which were only so many badges of slavery. Agricola, in his third campaign, advanced as far as the Solway; and in his fourth he subducd the nations betrist the Sol_{3} way and the friths of Forth and Clyde, into which the rivers Bodotria and Glotta discharged themselves; and here he built a chain of fortresses to check the nations yef
unconquered. In his fifth he fixed garrisons along the western coasts, over against Ireland. In his sixth campaign he passed the river Bodotria; ordering his fleet, the first which the Remans ever had in those parts, to row along the coasts and take a view of the northern parts, The fleet sailed round by the northern and western coasts, and first proved Britain to be an island. In the following spring, the Britons raised an army of 30,000 men, under the command of Galgacus, to oppose the invaders. In the engagement that ensued at the foot of the Grampians the Romans gained the victory, and 10,000 of the Britons are said to have been killed. This happened in the reign of the emperor Domitian, who, growing jealous of the glory of Agricola, recalled him, under pretence of making him governor of Syria. Agricola was in Britain fully seven years, from 78 to 85 A.D. ; and he died on the 23d August, 93 A. D., when he bad attained the ago of 55 . Agricola was a man of great integrity; be possessed high military talents, together with administrative abilities of the first rank. The Life of Agricola, written by his son-in-law, the historian Tacitus, is a model of simole and dignified biography.

AGRICOLA, Ceristopi Ludweg, landscape-painter, was born at Regensburg on the 5th Nov. 1667, and died it the samo place in 1719. He spent a great, part of his lifo in travel, visiting England, Holland, and France, and residing for a considerable period at Naples. His numerous landscapes, chiefly cabinet pictures, are remarkable for fidelity to nature, and especially for their skilful representation of varied phases of climate. In composition his style shows the influence of Caspar Poussin, while in light and colour be imitates Claude Lorraine. His pietures are to be found in Dresden, Brunswiek, Vienna, Florence, Naples, and many other towns of botl Germany and Italy.
agricola (originally Landarann), Geora, a famous mineralogist, born at Glauchau in Saxony, on the 24th March 1494. After studying at Leipsic and in Italy, he practised for some time as a physician at Joachimsthal in Bohemia. In 1531 he was enabled to gratify his natural inclination towards the study of geology aud mineralogy by removing to the mining district of Chemnitz in Saxony, where be had been appointed professor of ehemistry. The rosults of his laborious investigations are chielly to be found in his great work De Re Metallica (Basle, 1546), which describes minutely the various methods of mining, of raising and dressing the ore, and of smelting, and contains a number of curious woodcuts. It has been several times reprinted, and a German translation by Lehmann appeared at Freyberg in 1806-10. He also wrote De Ortu et Causis Subterraneorum, De Animantibus Subterrancorum, De Natura Fossilium, besides other works. Agricola was the first to raise mineralogy to the dignity of a science, and he developed it to such an extent that no substantial advance was made upou his results until the middle of the 18 the century. He died at Chemnitz on the 21 st November 1555.

AGRICOLA, Jotiavy Friedricr, musicial, was born ${ }^{4}$ Dobitschen in Saxe-Altenburg, on the 4th Jan. 1720, and died in 1774. While a student of law at Leipsic be atudied music under John Sebastian Bach. In ! 741 he went to Berlin, where he placed himself under Quanz for instruction in musical composition. He was soon generally recognised as one of the most skilful organists of his time. In 1759, on the death of Graun, he was appointed tapellmeister to Frederick IL He composed several operas of great merit, as well as instrumental pieces and church music. His reputation chiefly rests, howaver, on his theoretical and critical writings on musical subjects.

AGRICOLA (originally Schnicter or Scanemer), Johanses, one of the foremost of the German refermers, was born on the 20th April 1492, at Eisleben, whence be is sometimes called Mragister Istebius. He studied at Wittenberg, where be soon gained the friendship of Luther. In 1519 he accompanied Luther to the great assembly of German divines at Leipsic, and acted as recording secretary. After teaching for some time in Wittenberg, he went to Frankfort in 1525 to establish the worship according to the reformed religion. He had resided there only a month when he was induced to go to Eisleben, where he remained till 1526 as teacher in the school of St Andrew, and preacher in the Nicolai chureh, enjoying great popularity in the latter capacity. In 1536 ho was recalled to Wittenberg to fill a professorial chair, and was welcomed by Luther. Almost immediately afterwards, however, a controversy, which had bcen begun ten years before and been temporarily silenced, broke out afresh with greater violence. Agricola was the first to teach tho views which Luther was the first to stigmatise by the now well-known name Antinomian. He held that while the unregenerate were still under the law, Christians were entirely free from it, being under the gospel alone. Ho denied that Christians owed subjection to any part of the law, even the Decalogue, as a rule of life. Luther conducted the argu ment with his usual vehemence, and there was in the heat of controversy probably a good deal of misrepresentation on both sides. In 1540 Agricola left Wittenberg secretly for Berlin, where he published a letter addressed to the elector of Saxony, which was generally interpreted as a recantation of his-obnoxious views. Luther, however, seems not to have so accepted it, and Agrieola remained at Berlin. *The elector Joachim IL of Brandenburg having taken him into his favour, appointed him court preacher and general superintendent. He held both offices unti' his death in 1566, and his career in Brandenburg was one of great activity and great influence. Along with tho Catholic bishops Von Plag and Michael Halding be prepared the Augsburg Interim of 1548. Agricola wrote a number of theolegical works which are now of little in. terest. He was the first to make a collection of German proverbs, which be illustrated with an appropriate courmentary. The most complete edition is that published at Wittenberg in 1592.
AGRICOLA, Rodolpaus (originally Roelof Huys. MANs), a distinguished scholar, born at Bafflo, near Gröningen, in 1443. He was educated at Louvain, where he graduated as master of arts. After residing for some time in Paris, he went in 1476 to Ferrara in Italy, and attended the lectures of the celebrated Theodore Gaza on the Greek language. Having visited Pavia and Rome, be returned to his native country about 1479, and was soon afterwards appointed syndic of Gröningen. - In 1482, on the invitation of Dalberg, bishop of Werms, whose friendship he had gained in Italy, he accepted a professorship at Heidelberg, and for three years delivered lectures in that university and at Worms on the literature of Greece and Rome. By his personal influence much more than by his writings he did a great deal for the promotion of learning in Germany. Hallam says that "no German wrote so pure a style, or possessed so large a portion of classical learning;" and the praises of Erasmus and other critics of the generation immediately succeeding Agricola's are unstinted. In his opposition to the scholastic philosophy he seems to have in some degree anticipated the coming of that great revolution in which many of his pupils were conspicuous actors. He died at Heidelberg in 1485. His principal work is the $D e$ Inventione Dialectica, in which he attempts to change the scholastic philosophy of the day. (See Vita et Merita Rudolplii Agricola, by T. F. Tresling, Gröningen, 1830).

A GRICULTURE

CHAPTER I.

IT would be interesting to know how the nations of antiquity tilled, and sowed, and reaped; what crops they cultivated, and by what methods they converted them into food and raiment. But it is to be regretted, that the records which have come down to us are all but silent unon these homely topics.

In Mr Hoskyn's admirable treatise ${ }^{1}$ we have an excellent specimen of what may yet be done to recover and construct an anthentic history of the Agriculture of the ancients, from the casual allusions and accidental notices of rural affairs which lie thinly scattered through the body of general literature ; and, more especially, from those mysterious records of the pest, which are now being rescued from their long burial ander the ruins of some of the most famous cities of antiquity. Although comparatively little has been found in such records bearing directly upon the subject, we must not despair of the learned industry and masterly skill of an advancing and searching criticism, gathering together these gleams of light, and making them happily converge upon the darkness which has hitherto interposed between us and a circumstantial knowledge of the methods and details of ancient husbandry.

Every reader of the Bible is familiar with its frequent refcrences to Egypt as a land so rich in corn, that it not only prodnced abundsnce for its own dense population, but yiclded supplies for exportation to neighbouring countrios Profane history corroborates these statements. Diodorms Siculus bears explicit testimony to the skill of the farmers of ancient Egypt. He informs us that they were acquainted with the benefits of a rotation of crops, and were skilful in adapting these to the soil and to the scosons. The ordinary annual supply of corn furnished to Rome has been estimated at $20,000,000$ bushels. From the same anthor we also learn that they fed their cattle with hay dnring the annual inundation, and at other times tethered them in the meadows on green clover. Their flocks were shorn twice annually (a practice common in several Asiatic countries), and thoir ewes yeaned twice a year. For religious as well as economical reasons, they were great rearers of poultry, and practised ariificial hatching, as at the present day. The abundance or scarcity of the harvests in Egypt depended chiefly upon the height of the annual inundation. If too low, much of the land could not be sown, and scarcity or famine ensued. On the other hand, great calamities befell the country when the Nile rose much above the average level. Cattle were drowned, villages destroyed, and the crops necessarily much diminished, as in.such cases many of the fields were still under water at the proper seed time. In 1818 a calamity of this kind took place, when the river rapidly attained a height of $3 \frac{1}{2}$ feet above the proper level.

It is from the paintings and inscriptions with which the ancient Egyptians docorated their tombs that we get the follest insight into the state of agriculture amongst this remarkable people. Many of these paintings, after the lapse of two or thrse thousand years, retain the distinctness of outline and briliancy of colour of recent productions. The acquaintance which these give us with their occupations, attainments, and habits is truly marrelious, and fills the

[^37]reader of such works as Wilkinson's Egypt with perfect amazement. Every fresh detail seems to give confurmation to that ancient saying, "There is nothing new under the sun." The pictures referring to rural affairs disclose a state of advancement at that early date which may well lead us to speak modestly of our own attainments An Egyptian vilia comprised all the conveniences of a European one of the present day. Besides a mansion with numerous apartments, there were gardens, orchards, fishponds, and preserves for game. Attached to it was a farm-yard, with sheds for cattle and stables for carriage horses. A steward dirécted the tillage operations, saperintended the labourers, and kept account of the produce and expenditure. The grain was stored in vaulted chambers furnished with an opening at the top, reached by steps, into which it was emptied from sacks, and with an aperturs below for removing it when required. Hand-querns, similar to our own, were used for grinding corn ; but they had also a larger kind worked by ozen. In one painting, in which the sowing of the grain is represented, a plongh drawn by a pair of oxen goes first; next comes the sower scattering the seed from a basket; he is followed by another plough; whilst a roller, drawn by two horses yoked abreast, completes the operation. The steward stands by superintending the whole. Nothing, however, conveys to us BC full an impression of the advanced state of civilisation amongst the ancient Egyptians as the value which they attached to land, and the formalities which they observed in the trausfer of it. In the time of the. Ptolemies, their written deeds of conreyance began with the mention of the reign in which they werel executed, the name of the president of the cocrt, and of the clerk who drew them. The name of the seller, with a description of his personal appearance, his parentage, profession, and residence, was engrossed. The nature of the land, its extent, situation, and boundaries; the name and appearance of the purchaser were also included. A clause of warrandice and an explicit acceptance by the purchaser followed, and finally the deed was attested by numerous witnesses (so many as sisteen occur to a trifling bargain), and by the president of the court.

The nomades of the patriarchal ages, like the Tartar, and perhaps some of the Moorish tribes of our own, whilst mainly dependent upon their focks and herds, practised also agriculture proper. The vast tracts over which they roamed were in ordinary circumstances common to all shepherds alike. Juring the summer thev frequented the mountainous districts and retired to the vallejs to winter. Vast flocks of sheep and of gosts constituted the chiel Fealth of the nomades, althongh they also possessed animals of the ox kind. When these last were possessed in abundance, it seems to be an indication that tillage was practised. We learn that Job, besides immeuse possessions in flocks and herds, had 500 yoke of oxen, which he employed in ploughing, and a "very great husbandry." Isaac, too, conjoined tillage with pastoral husbandry, and that mith success, for we read that he sowed in the land Gerar, and reaped an hundred-fold -s return which, it would appear, in some faroured regions, occasionally rewarded the labour of the husbandman. In the parable of the sower, our Lord (grafting his instructions upon the habits, scenery, and productions of Palestine), mentions an increase of thirtv, pizty and an
hundred fold. Such increase, although far aoove the average rate, was bometimes even gratly exoeeded, if we take the authority of Herodotus, Strabo, and Pliny.

Along with the Babylonians, Egypiians, and Romans, the Israelites are classed as ono of the great agricultural nations of antiquity. \& The sojourn of the Israclites in Egypt trained them for the more purely agricultural lifo that awaited them on their return to take possession of Canasn. Nearly the wholo population were virtually husbandmen, and personally engaged in its pursuits. Upon their entrance into Canaan, they found the country occupied by a dense population possessed of walled citics and innumerablo villages, masters of great accumulated wealth, and subsisting on the produce of their highly cultivated soil, which abounded with vineyards and olivesards. It was so rich in grain, that the iuvading army, numbering 601,730 able-bodied men, with their wives and children, and a mised multitudo of camp-followers, found "old corn" in the land sufficient to maintain them from the day that they passed tho Jordan. The Mosaic Institute contained an agrarian law, based upon an equed division of the soil amongst the adult males, a census of whom was taken just before their entrance into Canaan. Provision was thus made for 600,000 yeomen, assigning (according to different calculations) from sisteen to twenty-five acres of land to each. This land, held in direct tenure from Jehovah, their sovereign, was strictly inalienable. The accumulation of debt upon it was prerented by the prohibition of interest, the releaso of debts every seventh year, and the reversion of the land to the proprietor, or his heirs, at each return of the year of jubilee. The owners of these small farms cultivated them with much are, and rendered them highly productive. They were favoured with a soil extremely fertile, and one which their skill and diligence kept in good condition. The stones were carefully cleared from the fields, which were also watered from canals and conduits, communicating with the brooks and streams with which the country "was well watered everywhere," and enriched by the application of manures. The seventh year's fallow prevented the exhaustion of the soil, which was further enriched by the burning of the weeds and spontaneous growth of the Sabbatical year. The crops chiefly cultrvated were wheat, millet, barley, beans, and lentiles; to which it is supposed, on grounds not improbable,-may be added rice and cotton. The ox and the ass wero used for labour. The word "oxen," which occurs in our version of the Scriptures, as well as in tho Septuagint and Vulgate, denotes the species, rather than the sex. As the Hebrews did not mutilate any of their animals, bulls were in common use. The quantity of land ploughed by a yoke of oxen in one day was called a yoko or acre. Towards the end of October, with which month the rainy season begins, seedtime commenced, and of courso does so still. Tho secdtime, begun in October, extends, for wheat and some other white crops, through November and December ; and barley continues to be sown until about the middle of February. The sced appears to havo been sometimes ploughed in, and at other times to havo been covered by harrowing. The cold winds which prevail in January and February frequently injured the crops in tho more exposed and higher districts. The rainy season extends from October to April, during which time refreshing showers fall, chiefly during the night, and generally at intervals of a few days. The harvest was earlier or later as the rains towards the end of the season were more or less copious. It, however, generally commenced in April, and continued through May for the different crops. in succession. In the south, and in the plains, the harvest, as might be expected, commenced some weeks earlier than in the northern and mountainous districts. The slopes of
the hiles were carefully torraced and irrigated wherever practicable, and on these slopes the vine and olive were cultivated with great success." At the same time the hill districts and neighbouring deserts afforded pasturago for numerous flocks and herds, and thus admitted of the benefits of a mized husbaudry. With such political and social arrangements, and under the peculiarly felicitous climate of Juden, the country as a whole, and at the more prosperous periods of the commonwealth, must have exhibited such an example of high cultivation, rich and varied produce, and wide-spread plenty and contentment, as the world has never yet clsewhere produced on an equally extensivo cale Not by a figuro of speech but literally, every Israelits sat under the shadow of his own vine and fig-tree; whilst the country as a whole is described (2 Kings xviii. 32) as "a land of corn and wine, a land of bread and vineyards, a land of oil-olive and of honey." An interesting illustration of the adranced state of agriculture in these ancient times is afforded by the fact, that, making allowanco for climatic differences, the numerous allusions to it with which tho Scriptures abound seen natural and appropriate to the British farmer of the present day.

The unrivalled literature of Greece affords us littlo information regarding the practical details of her husbandry. The peoplo who by what remains to us of their poetry, philosophy, bistory, and fine arts, still exert such an influence in guiding our intellectual efforts, in regulating taste, and in moulding our institutions, were originally the invaders and conquerors of the territory which they have rendered so famous. Having reduced the aboriginal tribes to bondage, they imposed upon them the labour of cultivating the soil, and henco both the occupation, and those engaged in it, were regarded contemptuously by the dominant race, who addicted themselves to what they regarded as nobler pursuits. With the exception of certain districts, such as Bcootia, the country was naturally unfavourable to agriculture. When we find, however, that valleys were freed from lakes and morasses by drainage, that rocky surfaces were sometimes covered with transported soil, and that they possessed excellent breeds of the domesticated animals, which were reared in vast numbers, we infer that agriculturo was better understood, and moro carefully practised, than the allusions to it in their literature would seem to warrant.

Amongst the ancient Romans agriculture was highly estecmed, and pursued with earnest love and devoted attention. "In all their foreign enterprises, even in earliest times," as Schlegel remarks, "they were exceedingly covetous of gain, or rather of land; for it was in land, and in the produce of the soil, that their principal and almost only wealth consisted. They were a thoroughly agricultural people, and it was only at a latet period that commerce, trades, and arts, were introduced among them, and even then they occupied but a subordinate place."1 Their passion for agriculturo survived very long; and when at length their boundless conquests introduced an unheard-of luxury and corruption of morals, the noblest minds amongst them were strongly attracted towards the aucient virtue of the purer and simpler agricultural times. Several facts in Roman history afford convincing proof, if it were required, of the devotion of this ancient people to agriculture, in their best and happiest times. Whilst their arts and sciences, and general literature, were borrowed from the Greeks, they created an original literature of their own! of which rural affairs formed the substance and inspiration. Schlegel and Mr Hoskyn notice also the striking fact, that

[^38]whilst among the Greeks the names of their illustrious families are borrowed from the beroes and gods of their mythology, the most famous houses amongst the ancient Romans, such as the Pisones, Fabii, Lentuli, . \&c., have taken their names from their favourite crops and vegetables. Perhaps it is not too much to assert, that many of those qualities which fitted them for conquering the world, and perfecting their so celebrated jurisprudence, were acquired, or at all events neיrished and matured, by the skill, foresight, and persevering industry; so needful for the intelligent and successful cultivation of the soil. The words which Cicero puts into the mouth of Cato give a fine picture of the ancient Roman enthusiasm in agriculture. "I come now to the pleasures of husbandry, in which I vastly delight. They are not interrupted by old age, and they seem to me to be pursuits in which a wise man's life should be spent. The earth does not rebel against authority; it never gives back but with usury what it receives. The gains of husbandry are not what exclusively commend it. I am charmed with the nature and productive virtues of the soil. Can those old men be called unhappy who delight in the cultivation of the soil? In my opinion there can be no happier life, not only because the tillage of the earth is salutary to all, but from the pleasure it yields. The whole establishment of a good and assiduous husbandman is stored with wealth; it abounds in pigs, in kids, in lambs, in poultry, in milk, in cheese, in honey. Nothing can be more profitable, nothing more beautiful, than a well-cultivated farm."

In ancient Rome each citizen received, at first, an allotment of about two English acres. After the expulsion of the kings this allotment was increased to about six acres. These small inheritances must, of course, have been cultivated by hard labour. On the increase of the Roman territory the allotment was increased to fifty, and afterwards even to five hundred acres Many glimpses into their methods of cultivation are found in those works of Roman authors which have survived the ravages of time. Cato speaks of irrigation, frequent tillage, and manuring, as means of fertilising the soil. Mr Hoskyn, from whose valuable contribution to the History of Agriculture we have drawn freely in this historic summary, quotes the following interesting passage from Pliny, commenting on Virgil :1"Our poet is of opinion that alternate fallows should be made, and that the land should rest entirely every second year. And this is, indeed, both true and profitable, provided a man have land enough to give the soil this repose. But how, if his extent be not sufficient? Let him, in that case, help himself thus. Let him sow next year's wheat-crop on the field where he has just gathered his beans, vetches, or lupines, or such other crop as eariches the ground. For, indeed, it is worth notice that some crops are sown for no other purpose but as food for others, a poor practice in my estimation." In another place he tells us, "Wheat, the later it is reape?, the better it casts; but tho sooner it is reaped, the fairer the sample. The best rule is to cut it down before the grain is got hard, when the ear begins to have a reddish-brown appearance. 'Better two days too soon than as many too late,' is a.good old maxim, and might pass for an oracle." The following quotation from the same author is excellent:-"Cato would have this point especially to be considered, that the soil of a farm be good and fertile; also, that near it there be plenty of labourers, and that it be not far from a large town: moreover, that it have sufficient means for transporting its prodace, either by water or land. Also, that the house be well built, and the land about it as well managed. But I observe a great

[^39]error and self-deception which many men commit, who hold opinion that the negligence and ill-husbandry of the former owner is good for his successor or after-purchaser. Now, I say, there is nothing more dangerous and disadvantageous to the buyer than land so left waste and out of heart; and therefore Cato counsels well to purchase land of one who has managed it Fcill, and not rashly and hand-over-head to despise and make light of the skill and knowledge of another. He says, too, that as well land as men, which are of great clarge and expense, how gainful soever they may seem to be, yield little profit in the end, when all reckonings are made. The same Cato being asked, what was the most assured profit rising out of land? made this answer, - 'To feed stock well.' Being asked again, 'What was the next?' he answered, 'To fced with moderation.' By which answer he would seem to conclude that the most certain and sure revenue was a low cost of production. To the same point is to be referred another speech of his, 'That a good husbandman ought to be a seller rather than a buyer;' also, 'that a man should stock his ground early and well, but take long time and leisure before he be a builder;' for it is the best thing in the world, according to the proverb, 'to make use, and derive profit, from other men's follies.' Still when there is a good and convenient house on the farm, the master will be the closer occupier, and take the more pleasure in it; and truly it is a good saying, that 'the master's eye is better than his heel.'"
"It is curious," says Mr Hoskyn, "to read such passages as these, and to find the very same subjects still handled, week after week, in frcsh and eager controversy in the agricultural writings and periodicals of the present day, eighteen centuries after those opinions were written."

In the later ages of the empire agriculture was neglecterl, and those engaged in it regarded with contempt. Many fuir regions once carefully cultivated, and highly productive, were abandoned to nature, and became a scene of desolation, the supplies of overgrown Rome being drawn from Egypt, Sicily, and other provinces, which became notable as the granaries of the empire.

Uader the Goths, Vandals, and other barbarian conquerors, agriculture in Europe, during the middle ages, seems to have sunk into the lowest condition of neglect and contempt. We owe its revival, like that of other arts and sciences, to the Saracens of Spain, who deroted themselves to the cultivation of that conquered territory, with hereditary love for the occupation, and with the skilful application of the experience which they had gathered in other lands in which they had established their power. By them, and their successors, the Moors, agriculture was carried in Spain to a height which perhaps has not yet been surpassed in Europe. It is said, that so early as the tenth century the revenue of Saracenic Spain alone amounted to $£ 6,000,000$ sterling,-probably as much as that of all the rest of Europe at that time. The ruins of their noble rorks for the irrigation of the soil still zittest their skill and industry, and put to shame the ignorance and indolence of their successors. The same remark applies to the Spanish dominions in South America. In the ancient empire of Peru agriculture seems to have reached a high degree of perfection. The ruins of basins and canals, frequently carried through tunnels, prove their industry and skill in irrigation. One of their aqueducts is said by Mr Prescott ${ }^{2}$ to have been traced by its ruins for nearly 500 miles. They cultivated the sides of mountains, by means of terraces, which retained forced soil, and were skilled in the application of manure. That on which they chiefly de pended was guano, and their Incas protected the penguins, by which it was deposited, by strict laws, which made it

[^40]highly penal to kill one of these birds, cr to set foot on the islands at breeding time. The Spaniards thus obtained possession of two patrimonics, and have wasted them Soth.

The influence of the crusades upon the agriculture of this period is not to be overlooked. The dreadful oppression of the feudal eystem received at that time a shock most favourable to the liberties of man, and, with increasing liberty, more enlightened ideas began to be entertaincd, and greater attention to be paid to the cultivation of the soil.

But. during this long interval, the population of Europe was divided into two great classes, of which by far the larger one was composed of bondmen, without property, or the pormer of acquiring it, and small tenants, very little superior to bondmen ; and the other class, consisting chicfly of the great barons and their retaincrs, was more frequently employed in laying waste the fields of their rivals than in improving their own. The superstition of the times, which destined a large portion of the land to the support of the church, and which, in eome measure, secured it from predatory incursions, was the principal source of what little skill and industry were then displayed in the cultivation of the soil. "If we consider the ancient state of Europe," says Mr Hume," "we shall find that the far greater part of society were everywhere bereaved of their personal liberty, and lived entirely at the will of their masters. Every one that was not noble was a slave ; the peasants were not in a better condition; even the gentry themselves were aubjected to a long train of subordination under the greater barons, or chief vassals of the crown, who, though seemingly placed in a high state of splendour, yet, having but a slender protection from law, were exposed to every tempest of the state, and by the precarious condition on which they lived, paid dearly for the power of oppressing and tyrannising over their inferiors." - "The villains were entirely occupied in the cultivation of their mastrre land, and paid their rents either in corn or cattle, and other produce of the farm, or in servile offices, which they performed about the baron's family, and upon farms which he retained in his own possession. In proportion as agriculture improved and money increased, it was found that these serviccs, though extremely burdensome to the villain, were of little advantage to the master; and that the produce of a large estate could be much more conveniently disposed of by the peasants themselves who raised it, thais by the landlord or bis bailiff, who were formerly accustomed to receive it. A commutation was therefore made of rents for services, and of money-rents for those in kind; and as men in a subsequent age discorered that farms were better cultivated where the farmer enjoged security in his possession, the practice of granting leases to the peasant began to prevail, which entirely broke the bonds of servitude, already much relaxed from the former practices. The latest laws which we find in England for enforcing or regulating this species of ssivitude were enacted in the refgn of Henry VII. And though the ancient statutes on this subject remain still unrepealed by Parliament, it appears that before the end of Elizabeth the distinction between villain and freeman was totally, though insensibly, abolished, and that no person remained in the state to whom the former laws yould be applied."

But long before the 15th century, it is certain that there was a class of tenants holding on leases for lives, or for a term of years, and paying a rent in land produce, in services, or in money. Whether they gradually sprung ap from the class of bondmen, according to Lord Kames, ${ }^{2}$ or

[^41]existed from the earliest period of the feudal constitation, according to other writers, ${ }^{9}$ theirnumber cannot be supposed to have been considerable during the middle ages. The etock which these tenants employed in cultivation commonly belonged to the proprietor, who received a proportion of the produce as rent,-a system which still exists in France and in other parts of the Continent, where such tenants are called metayers, and some vestiges of which may yet be traced in the steelboro of the law of Scotland. Leases of the 13th century still remain, ${ }^{4}$ and both the laws and chartularies ${ }^{5}$ clearly prove the existence in Scotland of a class of cultivators distinct from the serfs or bondmen. Yet the condition of these tenants seems to have been very different from that of the tenants of the present day; and the lease approached nearer in its foras to a feu-charter than to the mutual agrecment now in use. It was of the nature of a beneficiary grant by the proprietor, under certain conditions, and for a limited period; the consent of the tenant seems. never to have been doubted. In the common expression "granting a lease," we have retained an idea of the original character of the decd, even to the present time.

The corn crops cultivated during this period seem to have been of the same species, though all of them probably much inferior in quality to what they are in the present day Wheat, the most valuable grain, must have borne a small proportion, at least in Britain, to that of other crops; the remarkable fluctuation of price, its extreme scarcity, indicated by the extravagant rate at which it was sometimes sold, as well as the preparatory cultivation required, may convince us that its consumption was confined to the higher orders, and that its growth was by no means extensiva Rye and oats furnished the bread and drink of the great body of the people of Europe. Cultivated herbage and roots were then unknown in the agriculture of Britain. It was not till the end of the reign of Henry VIII. that any salads, carrots, or other edible roots were produced in England. The little of these vegetables that was nsed was formerly imported from Holland and Flanders. Queen Catherine, when she wanted a salad. was obliged to despatch a messenger thither on purpose. ${ }^{6}$

The ignorance and insecurity of those ages, which necessarily confined the cultivation of corn to a comparatively srrall portion of country, left all the rest of it in \& state of nature, to be depastured by the inferior animals, then only occasionally subjected to the care and control of man. Cultivators were crowded together in miserable hamlets; the ground contiguous was kept continually under tillage; and beyond this, wastes and woodlands of a much greater extent were appropriated to the maintenance of their flocks and herds, which pastured indiscriminately, with little attention from their owners.
The low price of butcher-meat, though it was then the food of the common people, when compared with the price of corn has been justly noticed by several writers as a decisive proof of the emall progress of civilisation and industry.

One of the earliest and greatest agricultural grievances was the levying of Purverance. This originally comprehended the necessary provisions, carriages, \&c., which the nearest farmers were obliged to furnish at the current prices to the king's armies, houses, and castles, in time of war. It was called the great purveyance, and the officers who collected those necessaries were called purveyors. The smaller purveyance included the necessary provisions for the bousehold of the king when travelling through the

[^42]kingdom, and these the tenants on the king's demesne lands were obliged to furnish gratis, a practice that came to be adopted by the barons and great men in every tour which they thought proper to make in the country. These exactions were so grievous, and levied in so high-handed a manner, that the farmers, when they heard of the court's approach, often deserted their houses, as if the country had been invaded by an enemy. "Purveyance," says Dirom," "was perhaps for many centuries the chief obstruction to the agriculture and improvement of Great Britain. Many laws were made for the reformation and regulation of purveyance, bat without effect ; and the practice continued down to so late a period as the reign of James the First."

By statute 1449 , the tenant was for the first time seoured in possession, during the term of his lease, against a purchaser of the land; and in 1469 he was protected from having his property carried off for the landlord's debts, beyond the amount of rent actually due; an enactment which proves his miserable condition before that time.

Soon after the beginning of the 16 th century agriculture partook of the general improvement which followed the invention of printing, the revival of learning, and the more settled authority of government; and instead of the occasional notices of historians, we can now refer to regular treatises, written by men who engaged eagerly in this neglected and hitherto degraded occupation. We shall therefore give a short account of the principal works, as well as of the laws and general policy of Britain, in regard to agriculture, from the early part of the 16 th century to the Revolution in 1688, when a new era commenced in the legislation of corn, and soon after in the practice of the cultivater. ${ }^{2}$

Early Wores on Agriculture.

The first and by far the best of our early works is the Book of Husbandry, printed in 1534, commonly ascribed to Fitzherbert, a judge of the Common Pleas in the reign of Henry VIII. This was followed, in 1539, by the Book of Surveying and Improvements, by the same author. In the former treatise we have a clear and minute description of the rural practices of that period, and from the latter may be learned a good deal of the economy of the feudal system in its"decline. The Book of Husbandry has scarcely been excelled by any later production, in as far as concerns the subjects of which it treats; for at that time cultivated herbage and edible roots were still unknown in England. The author writes from his own experience of more than forty years; and, with the exception of passages denoting his belief in the superstition of the Roman writers, there is very little of this valuable work, in so far as regards the culture of corn, that should be omitted, and not a great deal that need be added, even in a manual of husbandry adapted to the present time. Fitzherbert touches on almost every department of the art, and in about a hundred octavo pages has contrived to condense more practical information than will be found scattered through as many volumes of later times; and yet he is minute even to the extreme on points of real utility. There is no reason to say, with Mr Harte, that he had revived the husbandry of the Romans; he merely describes the practices of the age in which he lived; and from his commentary on the old statute extenta manerii, in his Book of Surveying, in which he does not allude to auy recent improvements, it is probable that the management which he details had been long established. But it may surprise some of the agriculturists of the prcsent day to be told, that, after the lapse of almost three centuries, Fitzherbert's practice, in some material particulars, has not

[^43]been mproved upon; and that in several districts abuses until receutly existed, which were as clearly pointed out by him at that early period as by any writer of the present age.

The Book of IIusbandry begins with the plough and other instruments, which are concisely and yet minutely described; and then about a third part of it is occupied with the several operations as they succeed one another throughout the year. Among other things in this part of the work, the following deserve notice:-
"Somme (ploughs) wyll tourn the sheld bredith at every landsenda, and plowe all one way;" the eame kind of plough that is now found so usefal on hilly grounds. Of wheel-ploughs he observes, that "they be good on even grounde that lyetl lyghte;" and or such lands they are still most commonly employed. Cart-wheel. were cometimes bound with iron, of which he greatly approves. On the much agitated question about the employment of horses cz oxen in labour, the most important arguments are distinctly atated.
"In some places," he says, "a borse plough is better," and in others an oxen plough, to which, upon the whole, he gives the preference, and to this, considering the practices of that period, they were probably entitled. Beans and peas seem to have been common crops. He mentions the different kinds of wheat, barley, and oats ; and after describing the method of harrowing "all maner of cornnes," WA find the roller employed. "They used to role their harley grounde after a showr of rayne, to make the grounde even to morve." Under the article "To falowe," he observes, "the greater clottes (clods) the better wheate, for the clottes kepe the wheat warme all wynter ; and at March they will melte and breake and fal in manye small peces, the whiche is a new dongynge and refreshyrge of the corne." This is egreeable to the present practice, founded on the very samo reasons. "In May, the shepe folde is to be set out ;" but Fitzherbert does not much approve of folding, and points out its disadvantages in a very judicious manner. "In the latter end of May and the begynnynge of June, is tyme to wede the corne;" and then wo have an accurate description of the different weeds, and the instruments and mode of weeding. Next comes a second ploughing of the fallow; and afterwards, in the latter end of June, the mowing of the meadows begins. Of this operation, and of the forks and rakes, and the haymaking; there is a very good account. The corn harvest naturally followe: rye and wheat were usually shorn, and barley and oats cut with the acythe. This intelligent witer does not epprove of the practice, which still prevails in some places, of cutting, wheat high, and then mowing the stubbles. "In Somersetshire," he says, "they do shere theyr wheat very lows; and the wheate strawe that they purpose to make thacke of, they do not threshe it, hut cut off the ears, and byad it in sheves, and call it rede, and therowith they thacke theyr houses." He recommends the practice of setting up corn in shocks, with tro sheaves to cover eight, instead of ten sheaves as at present; probably owing to the straw being then ehorter. The corn was commonly housed; hut if there be a want of room, he advises that the ricks be built on a acaffold, and not upon the ground. Cornstacks are now beginning to be built on pillars and frames. The fallow received a third ploughing in September, and was sown about Michaelmas. "Wheat is moost commonlye somne under the forowe, that is to say, cast it uppon the falowe, and then plowe it under ;" ond this hranch of his subject is concluded with directions about threshing, winnowing, and other kinds of barn-work.

Fitzherbert next proceeds to live atock. "An housirnde," tot says, "can not well thryue by his corne without he h , ve other cattell, nor by his cattell mithout corne. And bycause that shepe, in myne opynyon, is the mooste profytablest cattell that any man can haue, therefore I pourpose to speake fyrst of shepe." His remarks on this eubject are so accurate, that one might imagine they came from a atoremaster of the present day ; and the minutia which he details are exactly what the writer of this article has aeen practised in the hilly parts of this country. In some places at present, "they neuer seuer their lambes from their darnmes; "and the poore of the peeke (high) countreye, and such othar places, where, as they vse to mylke theyr ewcs, they vse to wayno theyr lambes at 12 weokes olde, and to mylke their owes fue or syxe weekes;" but that, he observes, "is grcate hurte to the evres, and myll cause them that they wyll not take the ramme at the tyme of the jere for pouertye, but goo barreyne." "In June is tyme to shere shepe; and ere they be shorne, they must be verye well washen, the which shall be to tho owner greate profyte in the sale of his wool, and also to the clothe-maker." It appears that hand washing was then a common practice; and jet in the west and north of Scotland its introduction is of comparatively recent date. His remarks on horses, cattle, \&c., are not less interesting; and there is a very good account of the discasca of each species, and eome just observations on the advantage of mixing different kinds on the same pasture. Swine and boes conclude tlis branch of the work.

The autnor theu points out the great advantages of inclogure ; recommends "quycksetty'uge, dycliyuge, and hedgeyng;" and gives particular directions about sefles, and tho method of thaining a hedge, ns well as concerning the plantion and management of trees. Wo havo then a sloort information "for a youge gentylman that inteadeth to thryue," aud "a prolonge for the wiues oecupation," in somo iostinces rather too homely for the present time. Amoug other thincs, sho is to "mako her husband and herself somme elothes;" and "she araye hano the lockes of the shepe eyther to nake blankettes and courlettes, or bothe." This is not so much amiss ; but what follows will bring tho learned judro into disrepute even with our most industrions housewives. "1t is a wyues oceupation," he say -, "to wjoowo all maver of corves, to make malte, to washe and wTynge, to mako leye, shere corne, and, in time of pele, to helpo her husbande to fyll the macho wayio or dounge carte, dryus the ploughe, to loode heye, corne, and suche other; sud to go or nde to tho market to sel butter, ehese, mylke, esses, chekrns, capons, beones, pygges, gese, and all maner of coraes." The rest of the book contains some nseful advices about diligence and economy; and concludes, after the manaer of tho age, with many piaus exhortations.

Such is Fitzherbert's Book of Husbandry, and such was the state of agriculture in England in tha early part of the loth century, and probably for a long time before; for he wwhere speaks of the practices which be describes or recominends as of recent introduction.

The Bouk of Surveying adds considerably to our knowledge of the rural economy of that age. "Four maner of commeus" are descibed; several kinds of mills for corn and cither purposes, and also "quernes that goo with hand;" different orders of tenanto, down to the "boundmen," who "in some places contynue as j"ct ;" "and many tymes, by colour thereof, there be many freemen taken as boundmen, and their lands and goods is taken from them." Lime and marl are menticned as common manures; and the former was sometimes spread on the surface to destroy heath. Both draining and irrigation are noticed., though the latter but slightly. And the work concludes with an inquiry "how to make a township that is worth XX. marke a yere, worth XX. li. a year;" from which we shall give a specimen of the author's manner, as well as of the economy of the age.
" 1 t is undoulted, that to every townsbyppe that standeth in tylluge in the playno countrey, there bo crrable landes to plowe and oowe, and leyse to tye or tedder theyr horses and mares upon, and common $1^{\text {asture }}$ to kepe and pasturo their catell, beestes, and sheje upon; aad also they liave medowe grounde to get theyr hey upon. Than to let it be known how many acres of errable lande enery man lath in tyllage, and of the same acres in enery felde to chango with his neyghbours, and to leyo them toguyther, and to make hyn oue senorall close in euery felde for his errablo lands; and his leyso in euery felile to leve them togsther in one felde, and to make one sencrall close for them all. Aud also another seuerall close for his portion of his common pasture, and also his porcion of his meilowe in a sencrall close by itselfe, sud al kept in seuerall loth in wynter and somer; and eucry cottage shall haue his portion nssigned hym accordynge to his rent, and than slanl nat the ryche man onerpresso the pooro man with his cattell; and euery inan may eate his oun close at his pleasure. And vadonbted, that hay and strawo that will find ono beest in the house wyll finde two beestes in the close, and better they shall lyke. For those beestis in tho houso have slort heare and thynne, and towards March they will pylle and be baro ; and therefore they may nat alyde in the fylle before the hecrdmen in winter tyme for colde: And those that lye iu a close under a hedro haue longe heare and thyck, and they will neuer pylle nor be bare; aud by this reason the husbande anaye kepe twyse so many catell ns he did before.

This is the causo of "is apprownient. Nowe every husbando lath stre seuemall closes, whereof iii. be for corne, the fourthe for lins leyse, the fyfte for his conmanen pastures, and the sixte for his haye; and in wyuter time thero is hut one occupied with corne, anit than hath tho husbande other fyue to occnpy tyll leute come, and that he bath his falowe felde, his ley folde, and his pasturo felde al sommer. And when ho hath mowen his medowe then he bath his medowe grounde, soo that if he hath any wefke catell that woll be amended, or dyvers maner of catell, ho may pat them in âny close ho wyll, tho which is a great advantage; and if all ohnulde lyo commen, than woldo the edyche of the corne feldes and the affurmath of aii the medowes bo caten in X. or X11. dayes. And the rych men thant hath moche catell wold have the sdvantage, and the jrooro man cau have no hel ne nor relefe in wynter when he tiath muste nude ; and if an acre of lande be worthe ki.co gcus, or it
bo enclosed, It will bo worth Vili. pens, when it is enclosed by reason of the compostying and dongyng of the catell that shall go and lye urou it both day and nighte; and if any of his thre cloees that he hath for his cerne be worno or ware bare, than ho may breko and plewe up hic closo that he haddo for his layse, or the eloso that ho haddo for his commea pasture, or bothe, snd sowe thern with corne, and let the other lyo for a time, and so shall he have alway reist grounde, the which will bear nocho corne with lytel doago ; and also he shall bave a great profyte of the wod in tho bedges whan it is groweu; aud not only these profytes and advantages beforesaid, but he shall save moche mere than al these, for hy reason of these closes he shall save meate, drinke, and wages of a shepherde, the wages of the heerdmen, and the wages of the swine herde, the which may fortuno to be as chargeable as all his holle reat; and also his corne shall be better saved from eatioge or destroyeng with catel. For dout je nat but heerdemen with their catell, shepeherdes with their shcpe. and tieng of horses and mares, destroyeth moch corne, the which the hedges wold save. Paradueuture soroo men would say, that this shuld be against the common weale, bicause the shepeherdes, heerdmen, and awyncberdes, shnld than be put out of wages. To that it nay be answered, though theso occupations be not used, there be as many newe occupations that were not nsed before; as getting of quickesettes, dichiag, hedring, and plashing, the which the same men may use and occupye."

The next author who writes professedly on agriculture Tusser is Tusser whose Five Hundred Points of Husbandry, published in 1562, was formerly in such high repute as to be recommended by Lord Molesworth to bo taught in schools. ${ }^{1}$ The edition of 1604 is the one we make use of here. In it the book of husbandry consists of 118 pages, and then follows the Points of Housewifrie, occupying 42 pages more. It is writter in verse. Amidst a vast heap of rubbish, there are some useful notices concerning the state of agriculture at the time in different parts of England. Hops, which had been introduced in the early part of the 10th century, and on the culture of which a treatise was published in 1574 by Reynolde Scott, are mentioned as a well-known crop. Buckwheat was sown after barley. Hemp and flax are mentioned as common crops. Inclosures must have been numerous in several counties; and there is a very good comparison between "champion (open fields) country, and several," which Blythe atterwards transcribed into his Improver Inproved. Carrots, cabbages, turnips, and rape, are mentioned among the herbs and roots for the kitchen. There is nothing to be found in Tusser about serfs or bondmen, as in Fitzherbert's works. This author's dirision of the crop is rather curious, though probably quite inaccurate, if he means that the whole rent might be paid by a teuth of the corn.
> "One part cast forth for rent due out of hand.
> Oue other part for seed to sow thy land. Another part leave parson for his tith. Another part for larvest, sickle and sith. One part for plonghwrite, cartwrite, knaiker, and snith. Onc part to uphold thy teemes that draw therewith. Another part for servant and workman's wages laie. One part likewise for filbellie daie by daic. One part thy wife for needful things doth crave. Thyself and thy child the last part would have."

Tho next writer is Darnaby Googe, whose Whole Art of ITusbandry was printed in 1578 , and again by Markham in 1614. Tho first edition is merely a translation of a German work ; and very little is said of English husbandry in the second, though Markham mado some trifling interpolations, in order, as it is alleged, to adapt tho German husbandry to the English climate. It is for the most part made up of 'gleanings from tho ancient writers of Greece and Rome, whose errors are faithfully retained, with here and there some description of the practices of the age, in which there is little of novelty or importance. Googe mentions a number of English writers who lived about the time of Fitzherbert, whose works have not been preserved

[^44]For more than fifty years after this, or till near the middle of the 17 th century, there are no systematic works on husbandry, though several treatises on particular departments of it. From these it is evident that all the different operations of the farmer were performed with more care and correctness than formerly; that the fallows were better worked, the fields kept freer from weeds, and much more attention paid to manures of every kind. A few of the writers of this period deserve to be shortly noticed.

Sir Hugh Plat, in his Jewel House of Art and Nuture, printed in 1594 (which Weston in his catalogue erroneously ascribes to Gabriel Plattes), makes some useful observations on manures, but chiefly collected from other writers. His censure of the practice of leaving farm dung lying scattered about is awong the most valuable.

Sir John Norden's Surveyor's Dialogue, printed in 1607, and reprinted with additions in 1618, is a work of considerable merit. The first three books of it relate to the rights of the lord of the manor and the various tenures by which landed property was then held, with the obligations which they imposed. Among others, we find the singular custom, so humorously described in the Spectator, of the incontinent widow riding upon a ram. In the fifth book there are a good many judicious observations on the "different natures of grounds, how they may be employed, how they may be bettered, reformed, and amended." The famous meadows near Salisbury are mentioned; and when cattle hare fed their fill, hogs, it is pretended, " are made fat with the remnant-namely, with the knots and sappe of the grasse." "Clouer grasse, or the grasse honey suckle" (white clover), is directed to be sown with other hay seeds. "Carrot rnotes" were then raised in several parts of England, and sometimes by farmers. London street and stable dung was carried to a distance by water, though it appears from later writers to have been got for the trouble of removing. And leases of 21 years are recommended for persons of small capital, as better than employing it in purchasing land,-an opinion that prevails rery generally among our present farmers.

Bees seem to have been great favourites with these early writers; and among others, there is a treatise by Butler, a gentleman of Oxford, called the Feminine Monarchie, or the History of Bees, printed in 1609, full of all manner of quaintness and pedantry.

We shall pass over Markham, Mascall, Gabriel Plattes, and several other authors of this period, the best part of their writings being preserved by Blythe and Hartlib, of whom we shall say a little immediately. In Sir Richard Weston's Discourse on the Husbandry of Brabant and Flanders, published by Hartlib in 1645, we may mark the dawn of the vast improvements which have since been effected in Britain. This gentleman was ambassador from England to the elector palatine and king of Bohemia in 1619, and had the merit of being the first who introduced the great clover, as it was then called, into English agriculture, about 1645, and probably turnips also. His directions for the cultivation of clover are better than was to be expected. It thrives best, he saye, when you sow it on the worst and barrenest ground, such as our worst heath ground is in England. The ground is to be pared. and burnt, and unslacked lime must be added to the ashes. It is next to be well ploughed and harrowed; and about ten pounds of clover seed must be sown on an acre in April or the end of March. If you intend to preserve seed, then the second crop must be let stand till it come to a full and dead ripeness, and you shall have at the least fire bushels per acre. Being once sown, it will last five years; and then being ploughed, it will yield, three or four years together, rich crops of wheat, and after that a crop of oats, with which clover seed is to be sown again. It is in itself
an excellent manure, Sir Richard adds; and so it should be, to enable land to bear this treatment. In less than ten years after its introduction, that is, before 1655 , the cul. ture of clover, exactly according to the present method, seems to have been well known in England, and it had also made its way to Ireland.

A great many works on agriculture appeared during the time of the Commonwealth, of which Blythe's Improver Improved and Hartlib's Legacy are the most valuable. The first edition of the former was published in 1649, and of the latter in 1650; and both of them were enlarged in subsequent editions. In the first edition of the Improver Improved, no mention is made of clover, nor in the second of turnips, but in the third, published in 1662, clover is treated of at some length, and turnips are recommended as an excellent cattle crop, the culture of which should be extended from the kitchen garden to the field Sir Richard Weston must have cultivated turnips before this; for Blythe says, that Sir Richard affirmed to bimself he did feed his swine with them. They were first given boiled, but afterwards the swine came to eat them raw, and would run after the carts, and pull them furth as they gathered them,-an expression which conreys an idea of their being cultivated in the fields.

Blythe's book is tho first systematic work in which there are some traces of the alternate husbandry so beneficially established since, by interposing clover and turnip between culmiferous crops. Ho is a great enemy to commons and common fields, and to rotaining land in old pasture, unless it be of the best quality. His description of the different kinds of ploughs is interesting; and he justly recommends such as were drawn by two horses (some even by one horse), in preference to the weighty and clumsy machines which required four or more horses or oxen. Almost all the manures now used seem to bare been then well known, and he brought lime himself from a distance of 20 miles. He speaks of an instrument which ploughed, sowed, and harrowed at the same time; and the setting of com was then a subject of much discussion. "It wis not many years," says Blythe, " since the famous city of London petitioned the Parliament of England against twu anusancies or offensire commodities, which were likely in come into great use and esteem; and that was Newiastle coal, in regard of their stench, \&c., and hops, in regard they would spoyle the taste of drink, and endanger the people."

Hartlib's Legacy is a rery heterogeneous performauce, containing, among some very judicious directions, a great deal of rash speculation. Several of the deficiencies which the writer complains of in English agriculture must be placed to the account of our climate, and never have been or can be supplied. Some of his recomonendations are quite unsuitable to the state of the country, and display more of general knowledge and good inten. tion than of either the theory or practice of agriculture. Among the subjects deserving notice may be mentionerl the practice of steeping and liming seed corn as a prerentive of smut; changing every jear the species of grajn, and bringing seed corn from a distance; ploughing down green crops as manure; and feeding horses with broken oats and chaff. This writer seems to differ a good deal from Blythe about the adrantage of interchanging tillage and pasture. "It were no losse to this island," he says, "if that we should not plough at all, if so be that we could certainly have corn at a reasonable rate, and likewise vent for all cur manufactures of wool;" and one reason for this is, tbrit pasture employeth more hands than tillage, instead of repopulating the country, as was commonly imagined. The grout, which he mentions "as coming over to us in Holland ships," about which he desires information, was prebably the same with our present shelled barley; and mills
for manufacturing it were introduced into Scotland from Holland towards the beginning of the last century.
To tho third edition, published in 1655 , are subjoined Dr Beatie's Annotations with the writer of the Legacy's answers, both of them ingeninus, and cometimes instructive. But this cannot be said of Gabriel Plattes's Mercurius Lretificans, also added to this edition, which is a most oxtravagant production. Tbere are also several communications from Hartlib's different correspondents, of which the most interesting are those on the early cultivation and great value of clover. Hartlib himself does not appear much in this collection; ; but he scems to have been a very aseful person in editing the works of others, and as a collector of miscellaneous information on rural subjects. It is strange that neither Blythe nor Hartlib, nor any of Hartlib's correspondents, seem ever to have beard of Fitzherbert's works.
Among the other writers previous to the Revolution, we shall only montion Ray the botanist, and Evelyn, both men of great talent and researeh, whose works are still in high estimation. A nerv edition of Evelyn's Silva and Terra was published in 1777 by Dr Hunter, with large notes and elegant engravings, and reprinted in 1812.
The preceding review commences with a period of feudal anarchy and despotism and comes down to the time when the exertions of individual interest were protected and encouraged by tho firm administration of equal laws; when the prosperity or Great Britain was no longer retarded by internal commotions, nor endangered by hostile invasion.

Laws.

The laws of this period, in so far as they relate to ugriculture and rural economy, display a similar progress in improvement.

From the beginning of the reign of Henry VII. to the end of Elizabeth's, a number of statutes were made for the encouragement of tillage, though probably to little purpose. The great grievance of those days was the practice of laying arable land to pasture, and suffering the farm-houses to fall to ruin. "Where in some torms," aays the statute 4th Henry VII. (1488), "two hundred persons were oceupied and lived of their lawful labours, new there are occupied twe or three herdsmen, and the residue fall into idleness ;" therefore it is ordained, that houses which within three years have been let foi farms, with twenty acres of land lying in tillage or husbandry, shall be upheld, under the penalty of half the profits, to be forfeited to tho king or the lord of the fee. Almost half a century afterwards, the practice had become still more alarming; and in 1534 a new Act was tried, apparently with as little success. "Some have 24,000 sheep, some 20,000 sheep, some 10,000 , some 6000 , some 4000 , and some more and some less;" and yet it is alleged the price of wool had nearly doubled, "sheep being come to a few persons' hands." A penalty was therefore imposed on all whe kept above 2000 sheep; and no person was to take in farm more than two tenements of husbandry. By tho 39th Elizabeth (1597), arable lan ! made pasture since the 1st Flizabeth shall be again converted into tillage, and what is arable shall not be converted into pasture.

Many laws were enacted during this period against vagabonds, as they were called ; and persons who could not find employment seem to have been sometimes confounded with those who really preferred idleness and plunder. The dissolution of the feudal system, and tho suppression of the monasteries, deprived a great part of the rural population of the means of support. They could not be employed in cultivating the soil, for there was no middle class of farmers possessed of capital to be vested in improvements; and what little diapnsable capital vias in the
hands of great proprietors could not, in those ruae times, be so advantageously embarked in the expensive and preearious labours of growing corn, as in pasturage, which required much less skill and superintendence. Desides, there was a constant demand for wool on the Continent ; while the corn market was not only connued by laws against exportation, but fettered by restrictions on the internal trade. The laws regarding the wages of labour and the price of provisions are a further proof of the ignorance of the age in regard to the propel subject of legislation.

By the statute 1552 it is declared, that any person that shall buy merchandise, victual, \&ce., coming to market, or make any bargain for buying the same; before they shall be in the market ready to be sold, or ohall make ang motion for enhancing the price, or dissuado any persou from coming to market, or forbear to bring any of the things to market, \&c., shall be deemed a forestaller. Any person who buys and sells again in the same market, or within four miles thereof, shall be reputed a regrater. Any person buying corn growing in the fields, or any other corn, with intent to sell again, shall be reputed an unlawful ingrosser. It was also declared, that no person shall sell cattle within five weeks after he bad bought them. Licenses, indeed, were to be granted, in certain cases, and particularly when the price of wheat was at or under 6s. 8 d . a quarter, and other kinds of grain in that proportion.
The laws regarding the exportation and importation of Corn trade corn during this period could bave had little effect in encouraging agriculture, though towards the latter part of it they gradually approached that system which was finally established at and beon after the Revolution. From the time of the above-mentioned statute agaiust forestallers, which effectually prevented exportation, as well as the freedom of the home trade, when corn was above the price therein specified, down to 1688 , there are at least twelve statutes on this subject ; and some of them are so nearly the same, that it is probable they were not very carefully observed. The price at which wheat was allowed to be exported was raised from 6s. 8d. a quarter, the nrice fized by the 1 st and 2 d of Philip and Mary (1553), to 10 s. in 1562 ; to 20 s. in 1593 ; to 26 s . 8 d . in 1604 ; to 32 s . iv 1623 ; to 40 s . in 1660 ; to 48 s . in 1663; and at last, in 1670, exportation was virtually permitted without limitation. Certain duties, bowever, were payable, which in some eases seem to have amounted to a prohibition; and until 1660 importation was not restrained even in years of plenty and cheapness. In pernitting exportation, the object appears to have been revenue rather than the encouragement of production.

The first statute for levying tolls at turupikes, to make Tolls, 1863 or repair roads in England, passed in 1662.

Of the stato of agriculture in Scotland in the 16th and Scotiand, the greater part of the 17 th century very littlo is known ; 10 th and no professed treatiso on the subject appeared till after the 17 th cenRevolution. The south-eastern counties were the earliest ${ }^{\text {tur' } 28 .}$ improved, and jet in 1660 their condition seems to have been very wretched. liay, who made a tour along the eastern coast in that year, says, "We observed little or no fallow ground in Scotland; some ley ground we saw, which? they manured with sea wreck. The men seemed to bu very lazy, and may be frequently observed to plough in their cloaks. It is the fashion of them to wear cloaks when they go abroad, but especially on Sundays. They have neither good bread, cheese, nor drink. They cannot make them, nor will they learn. Their butter is very indifferent, and one would wonder how they could contrive to make it bo bad. They use much pottago made of coal. wort, which they call kail, sometimes broth of decorticated barley. The ordinary country-houses are pitiful cots, built of stone and covered with turfs, baving in them but one
coun, many of them no chimneys, the windows very small holes, and not, glazed. The ground in the valleys and plains bears very good corn, but especially bears barley or bigge, and vats, but rarely wheat and rye."1

It is probable that no great change had taken place in Scotland from the end of the 15 th century, except that teuants gradually became possessed of a little stock of their own, instead of having their farm stocked by the landlord. "The minority of James V., the reign of Mary Stuart, the infancy of her son, and the civil wars of her grandson Charles I., were all periods of lasting waste. The very laws which were made during successive reigns for protecting the tillers of the soil from spoil, are the best proofs of the deplorable state of the husbandman."2

Yet in the 17th century were those laws made which paved the way for the present improved system of agriculture in Scotland. By statute 1633, landholders were enabled to have their tithes valued, and to buy them either at uine or six years' purchase, according to the nature of the property: The statute 1685, conferring on landlords a puwer to entail their estates, was indeed of a very different tendency in regard to its effects on agriculture. But the two Acts in 1695, for the division of commons, aud separation of intermixed properties, have facilitated in an eminent degree the progress of improvement.

Progress of Agriculture from 1688 to 1760.

From the Revolution to the accession of George III. the progress of agriculture was by no means so considerable as we should be led to imagine from the great exportation of corn. It is the opinion of well-informed writers, ${ }^{8}$ that very little improvement had taken place, either in the cultivation of the soil or in the management of live stock, from the Restoration down to the middle of last century. Even clover and turnips, the great support of the present improved system of agriculture, were confined to a few districts, and at the latter period were, scarcely cultivated at all by common farmers in the northern part of the island. Of the writers of this period, therefore, we shall notice only such as describe some improvement in the modes of culture, or some extension of the practices that were formerly little known.

In Houghton's Collections on Husbandry and Trade, a periodical work begun in 1681, we have the first notice of turnips being eaten by sheep:-"Some in Essex have their fallow after turnips, which feed their sheep in winter, by which means the turnips are scooped, and so made capable to hold dews and rain water, which, by corrupting, imbibes the nitre of the air, and when the shell breaks it runs about and fertilises. By feeding the sheep, the land is dunged as if it had been folded; and those turnips, though few or none be carried off for human use, are a very excellent improvement, nay, some reckon it so though they only plough the turnips in without feeding." ${ }^{4}$ This was written in February 1694; but ten years before, Worlidge, one of his correspondents, observes, "Sheep fatten very well on turnips, which prove an excellent nourishenent for thom in hard winters when fodder is scarce; for they will not only eat the greens, but feed on the roots in the ground, and scoop them hollow even to the very skin: Ten acres (he adds) sown with clover, turnips, \&c., will feed as many sheep as one hundred acres thereof would before have done."5

[^45]At this time potatoes were beginning to attract notice.
"The potato," says Honghton, "is a bocciferons herb, with csculent roots, bearing winged leaves and a bell Cower.
"This, 1 have been informed, was brought first out of Virginia by Sir Walter Raleigh; and he stopping at lreland, some was planted there, where it thrived very well, and to good purpose ; for in their succeeding wars, when all the corn above the ground was destroyed, this supported them; for the soldiers, uniess they had dug up all the ground whero they grew, and almost sifted it, could nnt extirpate them; from whence they were brought to Lancashire, where they are very numerous, and now they begin to spread all the kingdom over. They are a pleasant food boiled or roasted, and eaten with butter and sugar. There is a sort brought from Spain, that are of a longer form, and are more luscious than ours; they are much set by, and sold for sirpence or eightpenco the pound." ${ }^{6}$

The next writer is Mortimer, whose Whole Art of Husbandry was published in 1706, and has since run through several editions. It is a regular, systematic work, of considerable merit; and will even now repay perusal by the practical agriculturist. From the third edition of Hartlib's Legacy, we learn that clover was cut green, and given to cattle; and it appears that this practice of soiling, as it is now called, had become very common about the beginning of last century, wherever clover was cultivated. Rye-grass was now sown along with it. Turnips were hand-hoed, and extensively employed in feeding sheep and cattle, in the same manner as at prosent.

The first considerable improvement in the practice of tbat period was introduced by Jethro Tull, a gentleman of Berkshire, who began to drill wheat and other crops about the year 1701, and whose Horse-hoeing Husbandry, published in 1731, exhibits the first decided stepin advance upon the principles and practices of his predecessors. Not contented with a careful attention to details, Tull set himself, with admirable skill and perseverance, to investigate the growth of plants, and thus to arrive at a knowledge of the priuciples by which the cultivation of field-crops should be regulated. Having arrived at the conclusion that the food of plants consists of minute particles of earth taken up by their rootlets, it fol. lowed, that the more thoroughly the soil in which they grew was disintegrated, the more abundant would bo the "pasture" (as he called it), to which their fibres would have access. He was thus led to adopt that system of sowing his crops in rows or drills, so wide apart as to admit of tillage of the intervals, both by ploughing and hoeing, being continued until they had well-nigh arrived at maturity:

As the distance between his rows appeared much greater than was necessary for the range of the roots of the plants, he begins by showing that these roots extend much farther than is commonly believed, and then proceeds to inquire into the nature of theirfood. After examining several hypotheses, he decides this to be fine particles of earth. The chief, and almost the only use of dung, he thinks, is to divide the earth, to dissolvo "this terrestrial matter, which affords nutriment to the mouths of regetable roots;" and this can be dono more completely by tillage. It is thereforo necessary not ouly to pulverise the soil by repeated ploughings before it be seeded, but, as it becomes gradually more and more compressed afterwards, recourse must be had to tillage while the plants are growing ; and this is hoeing, which also destroys the weeds that would deprive the plauts of their nourishment.

The leading features of Tull's husbandry are his practice of laying the land into narrow ridges of five or six feet, and upon the middle of these drilling one, two, or three rows, distant from one another about seven inches when there were three, and ten when only two. The distance of the

[^46]plants on one ridge from those on the contiguous one he called an interval; the distance between the rows on the samo ridge, a space or partition; the former was stirred repeatcdly by the horse-hoc, the latter by tho hand-hoe.

The extraordinary altention this ingenious person gave to his mode of culture is perhaps without a parallel:-
"I formerly was at much pains," he sajs, "and at somo chargo in improving my drills for pluting the rows at very near distanees, and had brought them to such jerfection, that one borse would dinw a drill with elevel shares, making tho rows ot three inclies and a half distance from one another; and at the samo timo sow in them three very different sorts of eeeds, which did not mix; and theso, too, at different depths. As the barley-rows wero seven inches asuader, tho barley lay four inches deep. A littlo moro than threo inches above that, in the samo channcls, was clover; betwixt overy turo of these rows was a row of St Foin, covered half an inch dece.
"I had a good cron of barlay the first year ; tho noxt year two crops of broal clover, where that was sown; and whero hon-clover Fias sown, a mixed crop of that and St Foin ; but I am since, by experience, so fully convinced of tho folly of these, or any otber mixed crops, and more especially of narrow spaces, that I have demolished these instruments, in their fill perfection, as a vain cariosity, the drift and use of them being contrary to the true principles and practice of horse-hoeing." ${ }^{1}$

In the culture of wheat, he began with ridges six feet broad, or cleven on a breadth of 66 feet; but on this he afterwards had fourtcen ridges. After trying different numbers of rows on a ridge, he at last preferred two, with an intervening space of about 10 inches. He allowed only thrce pecks of seed for an acre. The first hoeing was performed by turning a furrow from the row, as soon as the plant had put forth four or five leaves; so that it was doce beforc or at the beginning of winter. The next hoeing Wh: in spring, by which the earth was returned to the plants. The subsequent operations depended upon the circumstances and condition of the land and the state of the weather. The next year's crop of wheat was sown upon the intervals which had been unoccupied the former year; but this he does not seem to think was a matter of much consequence.
"My field," ho observes, "whereon is now the thirteenth crop of wheat, bas shown that the rows may successfully stand apon any part of the ground. The ridges of this field were, for the twelfth crop, changed from six feet to four feet six inches. In order for this alteration the ridges wero ploughed down, and then the next ridges were laid out the same way as the former, but one foot six inches narrower, and the double rows drilled on their tops; whereby, of consequence, there must be some rows standing on every part of the ground, both on the former partitions and on every part of tho intervals. Notwithstanding this, there was no manner of difference in tho goodness of the rows; nud the whole field was in every part of it equnl, and the best, I belicve, that ever grow on it. It is now the thirteenth crop, likely to be good, tirough the laud was not plonghed crossways."2

It follows, from this singular management, that Tull thought a succession of crops of different species altogether unnecessary; and be labours hard to prove sgainst Dr Woodward, that the advantages of such a change under his plan of tillage were quite chimerical, though ho scems to admit the benefit of a change of the sced itsclf.

In cultivating turnips he made the ridges of the same breadth as for wheat, but only one row was drilled on each. His management, while the crop was growing, differs very little from the present practice. When drilled on the level, it is impossible, he obscrves, to hoc-plough them so well as when they are planted upon ridges. But the sced was deposited at different depths, the lalf about four inches deep, and the other half exactly over that, at the depth of balf an inch.
"Thas planted, let the weather be never so dry, the decpest seed will come up, but if it raincth immediately after planting, the ohallow will come up first. We also make it come up at four times, by mixing our seed half new and half old, the new coming up a day qulcker than the old. These four comings up give it so
many chances for escaping the fly; it being often seen that the seed Bown over night will bo destroyed by tho ily, when that sown tho next morning will escape, and vice versa: or you may hoo-plough them when the fly is like to devour them; this will bury the grentest part of theso encmics: or elso you may drill in another row witheut now-ploughing tho land."

Drilling and horse and land hocing seem to have been in use before the publication of Tull's book. "Hocing," he says, " may be divided into deep, which is our horse-hocing; and shallow, which is the English hand-hocing; and also the shallow horse-hocing used in scme places betwixt rows, where the intcrvals are very norruw, as 16 or 18 inches. This is but an imitation of the hand-hoe, or a succedaneun to it, and can neither supply the use of dung nor fallow, and may bo properly called scratch-hoeing." But in his modo of forming ridges his practice seems to havo been original ; his implements display much ingenuity; and his claim to tho title of father of the present lorse-hoeing husbandry of Great Britain seems indisputable. A translation of Tull's book was undertaken at one and the same time in France, by three different persons of consideration, withont the privity of each other. Two of them afterwards put their papers into the hands of the third, M. du Ham.el du Monceau, of the Royal Academy of Sciences at Paris, who published a treatise on husbandry, on the principles of Mr Tull, a few years after. But Tull seems to hare had very few followers in England for more than thirty years. Tho present method of drilling and horse-honing turnips was not introduced into Northumberland till about the ycar $1780 ;^{3}$ and it was then borrowed from Scotland, the farmers of which had the merit of first adopting Tull's management in the culture of this root about 1760 . From Scotlaud it made its way, but slowly, into the southern parts of the island.

Tull's doctrines and practices being quite in advance of his own times, were, as is usual in such cases, vehemently opposed by his contemporaries. He was, in consequence, involved in frequert controversy, in conducting which he oceasionally showed an asperity of temper which excites our regret, but which is not to be wondered at, when wo consider the trials of patience which be encountered from the unreasonable opposition of the agricultural community to his improvements; the thwarting of his experiments by his own labourers, who, in their ignorant zeal against innovations, wilfully broko his machines, and disregarded his orders; and from acute and protracted bodily discase. The soundness of his views and practice, as regards turnip culture, came by-and-by to be acknowledged, and have since heen generally adopted, But it was only some twenty-five years ago that his full merit began to be under stood. The Rev. Mr Smith, in his Word in Season, about tiat time recalled attention to Tull's peculiar system of wheat culture in a way that startled the whole community; while Professor Way, in a serics of eloquent lectures delivered before the Royal Agricultural Society, showed that his scicuce was true in the main, and even more strikingly ahead of his times than his practice.

Among tho English writers of this period may be mentioned l’radley, Lawrence, Hales, Niller, Ellis, Smith, Hill, Hitt, Lisle, and IIóne. Most of their works went through several editions in a few years,-at once a proof of the estimation in which they were held, and of the direction of the public mind towards investigating the principles and practice of agriculture.

Of the progress of the art in Scotland, till towards the end of the 17 th century, we are almost entirely ignorant. The first work, written by Donaldson, was printed in 1697, under the title of IInsbandry Anatomized; or, an Inquiry into the Present DFanner of Teiling and Manuring the

Ground in Scotland. It appears from this treatise, that the state of the art was not more advanced at that time in North Britain than it had been in England in the time of Fitzherbert. Farms were divided into infield and outfield; corn crons followed one another without the intervention of fallow, cultivated herbage, or turnips, though something is said about fallowing the outfield; inclosures were very rare; the tenantry had not begun to emerge from a state of great poverty and depression; ard the wages of labour, compared with the price of corn, were much lower than at present; though that price at least in ordinary years, must appear extremely moderate in cur times. Leases for a term of years, however, were not uncommon; but the want of capital rendered it impossible for the tenantry to atterapt any spirited improvements.

Donaldson first points out the enmmon management of that period, which he shows to have been very unproductive, and afterwards recommends what he thinks would be a more profitable crurse.
"Of the dale ground," he says, "that is, such lands as are partly hills and partly valleys, of which sorts may be comprehended the greatest part of arable ground in this kingdom, I shall suppose a farmer to have a lease or tack of three score acres, at three hundred merks of rent per annum (£16, 13s. 4d. sterling). Perhaps some who are not acquainted with rural affairs may think this cheap; but those who are the possessors thereof think otherwise, snd find difficulty enough to get the same paid, according to their present way of manuring thereof. But that I may proceed to the comparison, 1 shall show how commonly this farm-room is managed. It is com. monly divided into two parta, viz., one-third croft, and two-thirds outfield, as it is termed. The croft is usually divided into three parts: to wit, one-third barley, which is always dunged that year barley is sown thereon; another third oats; and the last third pens. The outside field is divided into two parts, to wit, the one half oats, and the other half grass, two years successively. The product which may be supposed to be on each acre of croft, four bolls (three Winchester quarters, and that of the cutfeld, three (2 \ddagger quarters) ; the quota is seven ecore bolls, which we aball also reckon at five pounds (8s. 4d.) per boll, cheap year and dear year one with another. This, in all, is worth fi00 ($£ 58,6 \mathrm{~s} .8 \mathrm{~d}$. sterling).
"Then let us see what profit he can make of his cattle. According to the division of his lands there is 20 acres of grass, which cannot he expected to be very good, because it gets not leave to lis above two years, and therefore cannot be well swarded. However, usually, besides four horses, which are kept for plonghing the said land, ten or twelve nolt are also kept upon a farm-room of the above-mentioned bounds, but, in respect of the badness of the grass, as said is, little profit is had of them. Perhaps two or three stone of butter is the most that can be made of the milk of his line the whole summer, and not above two heffers brought np each year. As to what profit may be mada by bringing np young horses, I shall say nothing, supposing he keeps his stack good, by those of his own upbringing. The whole product, then, of his cattle cannot be reckoned above fifty merks ($£ 2,15 \mathrm{~s}, 6 \mathrm{~d}$.) For, in respect his beasts are in a manner half-starved, they are generally small; so that scarce may a beffer be sold at above twelve pounds ($£ 1$ sterling). The whole product of his farm-room, therefore, exceeds not the value of $£ 733$ ($£ 61,1$ s. 8 d . sterling), or thereabout."
'The labourers employed on this farm were two mer and one woman, besides a herd in summer, and other servants in harvest.

Donaldson then proceeds to point out a different mode of management, which he calculates to be more profitable; but no notice is taken of either clover or turnips as crops to be raised in his new course, though they are incidentally noticed in other parts of the work.

[^47]be in depth before your potatocs be coverea. You need not plant this root in your garden ; they are commonly set in the felds, and wildest of ground, for enriching of it." As to their consumption, they were cometimes "boiled and broken, and atirred with butter and new milk ; also roasted, and eaten with butter; yes, some make bread of them, by mixing them with oat or barley meal ; others parboil them and bake with them apples, after the manner of tarts."

There is a good deal in this little treatise about sheep, and other branches of husbandry; and, if the writer was well. informed, as in most instances he appears to have been, his account of prices, of wages, and generally of the practices of that period, is very interesting.

The next work on the husbandry of Scotland is, The Countryman's Rudiments, or an advice to the Farmers in East Lothian, how to labour and improve their grounds, said to have been written by Lord Belhaven about the time of the Union, and reprinted in 1723. In this we have a deplorable picture of the state of agriculture in what is now the most highly improved county in Scotland. His lordship begins with a very high encomium on his own performance. "I dare be bold to say, there was never such a good easy method of husbandry as this, so succinct, extensive, and methodical in all its parts, published before." And he bespeaks the favour of those to whom he addresses himself, by adding, "neither shall I affright you with hedging, ditching, marling, chalking, paring, and burning, draining, watering, and such like, which are all very good improvements indeed, and very agreeable with the soil and situation of East Lothian; but I know ye cannot bear as yet a crowd of improvements, this being only intended to initiate you in the true method and principles of husbandry." The farmrooms in East Lothian, as in other districts, were divided into infield and outfield.

Abstract

"The infield (where wheat is sown) is generally dirided by the tenant into four divisions or breaks, as they call them, viz, one of wheat, one of barlcy, one of pease, and one of oats, so that the wheat is sowd after the pease, the barley after the wheat, and the oats after the barley. Thc outfield land is ordinarily mado use of promiscuously for feeding of their cors, horse, sheep, and oxen; tis also dunged by their aheep who lay in earthen folds ; and oomstimes, when they have much of it, they fauch or fallow a part of it yearly."

Under this management the produce secms to have been three times the seed; and yet, says his lordship, "if in East Lothian they did not leave a higher stubble than in other places of the kingdom, their grounds would be in a much worse condition than at present they are, though bad enough."-"A good crop of corn makes a good stubble, and a good stubble is the equalest mucking that is." Among the advantages of inclosures, he observes, "you will gain much more labour from your servants, a great part of whose time was taken up in gathering thistles and other garbage for their horses to feed upon in their stables and thereby the great trampling and pulling up, and othe : destruction of the corns, while they are yet tender, mill bi prevented." Potatoes and turnips are recommended to be sown in the jard (kitchen-garden). Clover does not seem to have been in use. Rents were paid in corn; and, for the largest farm, which he thinks should employ no more than two ploughs, the rent was about six chalders of victual "when the ground is very good, and four in that which is not so good. But I am most fully convinced they should take long leases or tacks, that they may not be straitened with time in the improvement of their rooms; and this is profitable both for master and tenant."

Such was the state of the husbandry of Scotland in the early part of last century. The first attempts at improvement cannot be traced farther back than 1723, when a number of land-holders formed themselves into a society, under the title of the Society of Improvers in the Fnowledge of Agriculture
in Scotland. The Earl of Stair, one of their most active members, is said to have been the first who cultivated turnips in that country. The Select Transactions of this society wera collected and published in 1743 by Mr Maxvell, who took a large part in its proceedings. It is evident from this book that the society had cxerted itself in a very laudable manner, and apparently with considerable success, in introducing cultivated herbage and turnips, as well as in improving the former methods of culture. But there is reason to believe that the influence of the example of its numernis nembers did not extend to the common tenantry, who are always unwilling to adopt the practices of those who are Ftaced in a higher rank, and supposed to cultivate land for pleasure rather than profit. Though this society, the earliest probably in the United Kingdom, soon counted upwards of 300 members, it existed little more than 20 years. Maxwell delivered lectures on agriculture for one or tro sessions at Edinburgh, which, from the specimen he has left, ought to have been encouraged.

In the introductory paper in Maxwell's collection, we are told, that-

> "The praetice of dmining, inclosing, summor fallowing, sowing nax, heup, rape, turnip and grass seeds, planting cabbages after, and potatoos with, the plough, in fields of great extent, is iutrodnced; and that, according to the general opinion, more corn grows now yearly where it was never known to oprow before, theso twenty years last past, than perhaps a sixth of all that the kingdom was in use to produce at any time bofore."

In this work we find the first notice of a throshingmachine: it was invented by Mr Miehael Menzies, advocate, who obtained a patent for it. Upon a representatioc made to the socicty that it was to be seen working in several places, they appointed two of their number to inspect it; and in their report they say, that one man would be sufficient to manage a machine which would do the work of six. One of the machines was "moved by a great water-wheel and triddles," and another "by a little wheel of three feet diameter, moved by a small quantity of water." This machine the society recommended to call gentlemen and farmers.

The next work is by tho same Mr Maxwell, printed in 1757, and entitled the Practical Uusbandman; leing a collection of miscellaneous papers on Ilusbandry, \&c.: In this book the greater part of the Select Transactions is republished, with a number of new papers, among which, an Essay on the Husbandry of Scotland, with a proposal for the improvement of it, is the most valuable. In this he lays it down as a rule, that it is bad busbandry to take two crops of grain successively, which marks a considerable progress in the knowledge of modern husbandry; though he adds, that in Seotland the best hasbandmen efter a fallow take a crop of wheat; after the wheat, peas'; then barley, and then oats; and after that they fallow again. Tlie want of inclosures was still a matter of complaint. The ground continued to be cropped so long as it produced two seeds; the best farmers were contented with four seeds, which, was more than the general produce.
The first Act of Parliament for collecting tolls on the highway in Scotland was passed in 1750 , for repairing the road from Dunglass bridge to Haddington. In ten gears after, sevcral Acts followed for the counties of Edinburgh and Lanark, and for making the roads between Edinburgh and Glasgow. The bencfit which agriculture has derived from good roads it would not be easy to estimate. The want of them was one great cause of the slow progress of the art in former times.

The Revolution in 1688 was the epoch of that system of corn laws to which very great influence has been ascribed, both on the practice of agricutture and the general pro-
sperity of the country. But for an account of these and later statutes on the subject, we must refer to the articlo Corn Laifs.

The exportation of wool was prohibited in 1647 , in 1660 , and in 1688 ; and the prolibition strictly enforced by subsequent statutes. The effect of this on its price, and tho state of the wool trade, from the earlicst period to the middle of last century, are distinctly exhibited by tho learned and Laborions author of Memoirs on Houl. printed in 1747.

CHAPTER II.

RECENT BRITISH AGRICULTURR

Section 1.-Progress during the Eighteenth Century.

Before entering upon a description of the agriculture of Great Britain at the present day, it may help to set matters in a clearer light if we take just so much of a retrospect as will serve as a back-ground to our picture.

At the beginning of the 18th century the agriculture of our country was still of the rudest kind. With the exception of certain parts of England, the land was still for the most part unenclosed, the live stock of cach township grazing together, and the arable land being occupied in common field or run-rig. The practice of fallowing annually a pertion of the arable land, and of interposing a crop of peas betwixt the cereal crops, was becoming a coramon practice, and was a great improvement upon the previous and yet common usage of growing successive corps of white-corn until the land was utterly exhausted, when it was left to recruit itself by resting in a state of nature, whilo other portions were undergoing the same process. Clover and turnips had been introduced before this date, and were coming gradually into cultivation as field crops in the more advanced parts of England. Potatoes were commonly grown in gardens, but had not. yet found their way to the fields.

The gradual advance in the price of farm prodace soon after the year 1760 , occasioned by the increase of population and of wealth derived from manufactures and commerce, gave a powerful stimulus to rural industry, augmented agricultural capital, and called forth a more skilfnl and enterprising race of farmers. The arable lands of the country, which, under the operation of the feudal system, had been split up into minute portions, cultivated by the tenants and their families without hired labour, began now to be consolidated into larger holdings, and let to ihose tenants who possessed most cnergy and substance. This enlargerment of farms, and in Scotland the letting of them under leases for a considerable term of years, continued to be a marked feature in the agricultural progress ef the country until the cod of the century, and is to be regarded both as a cause and a consequence of that progress. Tha passing of more than 3000 inclosure bills during the reign of Geo. III., before which the whole number was but 244, shors how rapidly the cultivation of new land now proceeded. The disnstrous American war for a time interfered with the national prosperity; bat with the return of peace in 1783 , the cultivation of the country made more rapid progress. The quarter of a centr- immediutely following 1760, is memorable in our agricultural annals for the introduction of various important improvements. It was during this period that the genius of Bakewell produced such an extraordinary change in the character of our mure important brecds of live atock; but especially hy the perfecting of a new race of sheep-the well-known Leicestere - which have ever since proved such a boon to the cuuncry, and have added so much to its wealth. Bakewell' fanis as a brecder was for a time eninanced by, the improvement. which be efected on the long-horner catcle, ther the
prevailing breed of the midland counties of England. These, however, vere ere long rivalled, and have now been entirely superseded by the shorthorn or Durham breed, which the brothers Colling obtained from the useful race of cattle that had long existed in the valley of the Tees, by applying to them the principle of breeding which Bakewell had already established. A more rational system of cropping now began very generally to supersede the thriftless and barbarous practice just referred to of soming successive crops of corn until the land was utterly exhausted, and then leaving it foul with weeds, to recover its power by an indefinite period of rest. Green crops, such as turnips, clover, and ryegrass, began to be alternated with grain crops, and hence the name alternate husbandry, by which this improved system is generally known. The land was now also generally rendered clean and mellow by a summer fallow before being sown with clover or grasses.

Hitherto the husbandry of England had been very superior in every respect to that of Scotland. Improvements now, however, made rapid progress in the latter. Ifr Dawson, at Fruyden, in Roxburghshire, is believed to have been the first who grew turnips as a field crop to ary extent. This enterprising farmer heving heard of the success with which_this crop was cultivated in certain parts of England, took the precaution of seeing for himself the most approved mode of doing so before attempting to introduce it on his own farm. He accordingly went to Leicestershire, and presenting himself to the celebrated Bakewell in the garb of a Scotch ploughman, hired himself to him for six months in that capacity. Having in this thoroughly practical way acquired the knowledge he was in quest of, he told his employer (who would fain have retained him longer) that it was full time for him to be home to his own large farm. The season was too advanced to admit of his doing more that year than sow a few experimental drills, but the very next year he is said to have sown 70 acres. We have been unable to ascertain he exact date of this occurrence, but it is on record that as early as 1764 Mr Dawson had 100 acres of drilled turnips on his farm in one year.

A fev years after this the Messrs Culley-one of them also a pupil of Bakewell-left their paternal property on the banks of therTees, and settled on the Northumbrian side of the Tweed, bringing with them the valuable breeds of live stock and improved husbandry of their native district. The improvements introduced by these energetic and skilful farmers spread rapidly, and exerted a most beneficial influence upon the border counties. An Act passed in 1770, which relaxed the rigour of strict entails, and afforded power to landlords to grant leases and otherwise improve their estates, had a beneficial effect on Scottish agriculture. From 1784 to 1795 improvements advanced with stcady steps. This period was distinguished for the general adoption and industrious working out of ascertained improvements. Small's swing plough, aud Meikle's thrash-ing-machine, although invented some years before this, were now perfected and brought into general use, to the great furtherance of agriculture. Two important additions were about this time made to the field crops, viz, the Swedish turnip and potato oat. The latter was accidentally discovered in 1788, and both soon came into geueral cultivation. In the saize year Merino sheep were introduced by his Majesty, George III., who was a zealous farmer. For a time this breed attracted much attention, and sanguine expectations were entertained that it would prove of national importance. Its unfitness for the production of mutton, and increasing supplies of fine clothing sool from other countries, 8000 led to its total rejection.

In Scotland, the opening up of the country by the construction of practicable roads. and the enclosing and
subdividing of farms by hedge and ditch, was now in active progress. The former admitted of the general use of wheel-carriages, of the ready conveyance of produce to markets, and in particular, of the extended use of lime, the application of which was immediately followed by a great increase of produce. The latter, besides its more obvious advantages, specdily freed large tracts of country from stagnant water, and their inhabitants from ague, and propared the way for the under-ground draining which soon after began to be practised.

Section 2.-Remarkable progress from 1795 to 1815.
The agriculture of the country was thus steadily improv. ing, when suddenly the whole of Europe became iuvolved in the wars of the French Revolution. In 1795, under the joint operation of a deficient harvest, and the cutting off of foreign supplies of grain by the policy of Napoleon, the price of wheat, which, for the twenty preceding years, had been under 50 s. a quarter, suddenly rose to 81 s .6 d , and in the following jear reached to 96 s. In 1797 the fear of foreign invasion led to a panic and run upon the banks, in which emergency the Bank Restriction Act, suspending cash payment, was passed, and ushered in a system of unlimited credit transactions. Under the un natural stimulus of these extraordinary events, every branch of industry extended with unexampled rapidity. But in nothing was this so apparent as in agriculture; the high prices of produce holding out a great inducement to improve lands then arable, to reclaim others that had previously lain waste, and to bring much pasture-land under the plough. Nor did this increased tillage interfere with the increase of live stock, as the green crops of the alternate husbandry more than compensated for the diminished pasturage. This extranrdinary state of matters lasted from 1795 to 1814 ; the prices of produce even increasing towards the close of that period The average price of wheat for the whole period was 89s. 7d. per quarter; but for the last five years it ras 107 s ., and in 1812 it reached to 126 s .6 d . The agriculture of Great Britain, as a whole, advanced with rapid strides during this period; but nowhere was the change so great as in Scotland. Indeed, its progress there, during these twenty years, is probably without parallel in tho history of any other country. This is accounted for by a concurrence of circumstances. Previous to this period, the husbandry of Scotland was still in a backward state as compared with the best districts of England, where many practices, only of recent introduction in the north, had been in general use for generations. This disparity made the subsequent contrast the more striking. The land in Scotland was now, with trifling exceptions, let on leases for terms varying from twenty to thirty years, and in farms of sufficient size to employ at the least two or three ploughs. The unlimited issues of Government paper, and the security afforded by these leases, induced the Scotch banks to afford every facility to landlords and tenants to embark capital in tos improvement of the land. The substantial education supplied by the parish schools, of which nearly the whol, population could then avail themselves, had diffused through all ranks such ε measure of intelligence as enabled them promptly to discern, and skilfull- and energetically to take advantage of this spring-tide of prosperity, and to profit by the agricultural information now plentifully furnished by means of the Bath and West of England Society, established in 2777, the Highland Society, instituted in 1784, and the National Board of Agriculture, in 1793of which, borvever, more anon. As one proof of the astonishing progress of Scottish husbandry during this period, we may mention that the rental of land, which in 1795 amounted to $£ 3.000,000$, had in 1815 risen to
£5,278,685, or considerably more thau double in twenty years.

But of the causes which uave mfluenced the agriculture of the period under review, none have been so powerful as the extraordinary increase of our population, which, in round numbers, lass twice deubled during the past seventy years. Not ouly are there four times as many people requiring to be fed and clad now as there were then, but from the iucreased wealth and altered habits of the people, the individual rate of consumption is greater now than furmerly. This is particularly apparent in the ease of butchermeat, the consumption of which has increased out of all proportion to that of brcad-corn. To meet this demand, there behoved to be more green crops and more live stock; and from that has resulted mere wool, more mauure, aud more corn. While this ever-grewing demand for farmproduce has stimulated agricultural improvement, it has also operated in another way. The productiveness of the soil has been greatly increased, and will no doubt be-still more so in future ; but the area of the country cannot be increased Land-the raw material from which food is produced-being thus limited in amount and in increasing demand, has necessarily risen in price. So much is this the case, that whereas the average price of wheat for the five years preceding 1872 was $£ 2,15$ s. per quarter, or £2, 7s. 6d. less than during the five ycars preceding 1815, the rent of land is much higher now than it was then. The raw material of the food-grower having thus risen in price, his only resource has been to fall upon plans for-lowering the cost of producing his crops and for increasing their amount. To such an extent has he succeeded, that the produce market has been kept full, and prices have decreased. The business of farming has in the main been a less prosperous one than most other branches of national industry, and yet agriculture, as an art and as a science, has made steady progress. We believe it is only in this way that the contemporaneous existence of two things apparently so incompatible as a steady rise in the rent of land, and a steady decrease in the price of its produce, can be satisfactorily accounted for.

PROGRESS SINCE 1815.

Section 3.-Laws affecting Agriculture.
The abundant crop of 1813, and restored communication with the continent of Europe in the same year, gave the first check to these uunaturally exorbitant prices and rents. The restoration of peace to Europe, and the re-enactment of the Corn Laws in 1815, mark the commencement of another era in the history of our national agriculture. It was ushered in with a time of severe depression and suffering to the agricultural community. The immense fall in the price of farm-produce which then took place was aggravated, first, by the uupropitious weather and deficient harvest of the years 1816,1817 ; and still more by the passing in 1819 of the liill restoring cash payments, which, coming into operation in 1821, caused serious embarrassment to all persons who had entered into engagements at a depreciated eurrency, which had now to be met with the lower prices of an enhanced one. The muchdebated Corn Laws, after undergoing various modifications, and proving the fruitful source of business uncertainty, social discontent, and angry partizanshup, were finally aboushed in 1846, although the Act was not consummated until three years later. Several other Acts of the Legislature, passed during this period, have exerted an important influence on agrivalture. Of these, the first in date and importance is the Tithe Commutation Act of 1836. All writers an agrieulture had long concurred in pointing out the injurious effects on agriculture of the tithe system as it then etood. The results of the change have amply
verified the anticipations of those who were instrumental in procuring it. Since the removal of this formidablo hindrance, iuprovement has been stimulated by those Acts under which the Government has been erapowered to advance money on certain conditions for the draining of estates. An important feature in these advarces is, that the $6 \frac{1}{2}$ per cent. of interest charged upon them provides a sinking fund by which the debt is extinguished in twentytwo years. Additional facilities have also been granted by the Act passed in 1848 for disentailing estates, and for burdening such as are entailed with a share of the cost of certain specified improverneuts.

Section 4.-Cattle Murrain and Potato Disease.

Another class of outward events, which has had an important influence upon agriculture, requires our notice. We refer to those mysterious diseases affecting both the animal aud vegetable kingdoms, the causes and remedies for arhich have alike baffed discovery. The murrain, or "vesicular epizootic," appeared first in 1841, having been introduced, as is supposed, by foreign cattle. It spread rapidly over the country, affecting all our domesticated animals, except horses, and causing everywhere great alarm and loss, although seldom attended by fatal results. It has prevailed ever since, in a greater or less degree, and has been more widely diffused as well as more virulent in 1871 and 1872 than ever before. It was soon followed by the more terrible lung-disease, or plewro-pneumonia, which continues to cause serious mortality among our herds. In 1865 the rinderpest, or steppe murrain, originating amongst the vast herds of the Russian steppes, where it would appear to be never altogether wanting, had spread westward over Europe, until it was brought to London by foreign cattle. Several weeks elapsed before the true character of the disease was known, and in this brief space it had already been carried by animals purchased in Smithfield market to all parts of the country. After causing the most frightul losses, it was at last stamped out by the resolute slaughter of all affected animals and of all that had been in contact with them. In the attumn of 1872 this cattle plague was again detected in several cargoes of foreign cattle brought to our ports. Happily the stringent provisions of the Contagious Diseases (Animals) Act lad the effect of preventing its entrance, except in the case of one cargo brought to Huil, from which the plague was conveyed to several herds in the adjacent parts of Yorkshire, and caused considerable losses before it was again stamped out. Severe as have been the losses in our flocks and herds from these imported diseases, they have been as nothing in comparison with the effects of the mysterious potato blight, which, first appearing in 1845, has since pervaded the whole of Europe, and in Ireland especially proved the sad precursor of famine and pestilence. This seemingly insignificant blight for a time well-nigh withdrew from cultivation one of our most esteemed field crops; it influences the business of farming in a way that bafles the shrewdest calculators, and is producing social changes of which uo man can predict the issue.

Section 5.-Leading Improvements.

We can here do little more than enumerate some of the more prominent improvements in practical agriculture which have taken place during the period under review. Before the close of the past century, and during the first quarter of the present one, a good deal had been done in the way of draining the land, either by open ditches, or by Filkington's system of deep covered drains. This system has now been superseded by one altogether superior to it both in principle and practiee. In 1835, James Smith of Deanston (honour to his memory !) promulgated his now well-known
system of thorough draining and deep ploughing. It has been carried out already to such an extent as to alter the very appearance and character of whole districts of our country, and has prepared the way for all other improvements. The words "Portable Manures" indicate at once another prominent feature in the agriculture of the times. Early in the present century, ground bones began to be used as a manure for turnips in the eastern counties of England, whence the practice spread, at first slowly, and then very rapidly, over the whole country. It was about 1825 that bones began to be generally used in Scotland. In 1841 the still more potent guano was introduced into Great Britain; and about the same time, bones, under the new form of superphosphate of lime. By means of these invaluable fertilisers, a stimulus has been given to agriculture which can scarcely be over-rated.
The labour of agriculture has been greatly lightened, and its cost curtailed, by means of improved implements and machines. The steam-engine has taken the place of the jaded horses as a thrashing power. This was first done in East Lothian by Mr Aitchison of Drumore, who about 1803 had his thrashing-machinery, at his distillery aud farm of Clement's Wells, attached to a steam-engine, which was erected for him a few years previously by Bolton and Watt, for the works of the distillery. About 1818-20 several steam-engines on the condensing principle were erected in East Lothian, solely for the propelling of thrashing-machinery. One of these, put up by Mr Reid of Drem, at a cost of $£ 600$, is still doing its work there, and, strange to say, after the lapse of fifty-five years, looks as well and is as efficient as when first erected. It would be tedious to particularise other instances in this department, as it will be treatcd of fully in its proper place. It is especially in this department that the influence of the evermemorable Exhibition of the Industry of all Nations in 1851 has told upon agriculture. Reaping by machinery may virtually be regarded as one of the fruits of that great gathering.

The railwass, by which the country is now intersected in all dircctions, have proved of great service to farmers, by conveying their bulky produce to distant markets cheaply and quickly, and by making lime and other manures available to the occupiers of many inland and remote districts. In nothing has this benefit been more apparent than in the case of fatted live stock, which is now invariably transported by this means, with manifest economy to all concerned.

During the whole of this period there has been going on great improvement in all our breeds of domesticated animals. This las been manifested not so much in the production of individual specimens of high merit-in which respect the Leiccsters of Bakerell, or the short-horns of Colling, have perhaps not yet been excelled-as in the diffusion of these and other good breeds over the country, and in the improved quality of our live stock as a whole. The fattening of animals is now conducted on more scientific principles. Iucreased attention has also been successfully bestowed on the improvement of our field crops. Improved varieties, obtained by cross-impregnation, eithcr naturally or artificially brought about, have been carefully propagated, and generally adopted. Increased attention is now bestowed on the cultivation of the natural grasses. The most important additions to our list of field crops during this period have been Italian rye-grass, winter beans, white Selgian carrot, sugar beet, and alsike clover.

Section 6.-Increase and Diffusion of Agricultural Knowlenge.

Let us look now at the means by which, during this period, agricnltural knowledge has at once been increased
and diffused. Notice has already been taken of tix institution of the Highland Society and the National Boaro of Agriculture. These patriotic societios vere the means of collecting a vast amount of statistical and general informs tion connected with agriculture, and by their publications and premiums made known the practices of the best-farmed districts of the country, and encouraged their adoption elsewhere. These national ássociations were soon aided in their important labours by numerous local societies which sprang up in all parts of the kingdom. After a highly useful career, under the zealous presidency of Sir John Sinclair, the Board of Agriculture was dissolved but has left in its Statistical Account, county surveys, and other documents, much interesting and valuable information regarding the agriculture of that period. In 1800 the original Farmers' Magazine entered upon its useful carees under the editorship of Robert Brown of Markle, thc author of the well-known treatise on Rural Afairs. The Highland Society having early extended its operations te the whole of Scotland, by-and-by made a corresponding addition to its title, and as the Highland and Agricultura! Society of Scotland continues to occupy its important sphere with a steadily increasing membership, popularity, and usefulness. As its revenue and experience increased, it gradually extended its operations. In 1828, shortly after the discontinuance of the Farmer' Magazine, its Prize Essays and Transactions began to be issued statedly in connection with the Quarterly Journal of Agriculture, a periodical which until recently occupied a prominent place in our professional literature. This society early began to hold a great annual show of live stock, implements, \&c. the popularity of which continues unabated. 'In 1842, Mr John Finnie at Swanstone, near Edinburgh, having suggested to some of his neighbours the desirableness of obtaining the aid of chemistry to guide farmers in many departments of their business, the hint was promptly actcd upon, and these Mid-Lothian tenant-farmers had the merit of originating an Agricultural Chemisty Association (the first of its kind), by which funds were raised, and an eminent chemist engaged, for the express purpose of conducting such investigations as the title of the society implics. After a successful trial of a few years this association was dissolved, transferring its functions to the Highland and Agricultural Society, which has ever since devoted much of its attention to this subject. The nature and importance of the services which labourers in this department of science have rendered to agriculturs may be gathered from the society's Transactions, and numerous other publications of a similar kind. The Highland Society has of late years established itself on a broader basis, and imparted new enargy to its oparations by lowering its admissionfee in bchalf of tenant-farmers, who have in consequence joined it in great numbers, and now take an important part in the conduct of its business. The practice adopted by it, about the same time, of holding pcriodical meetings for the discussion of important practical questions, by means of essays, prepared by carefully selected mriers, did good service, too, to the cause of agricultural progress.
The adoption by Government of a proposal made by this society, to collcet the agricultural statistics of Scotland, showed at once how thoroughly it enjoyed the confidence of the tenantry, and how easily, and by what simple and inexpensire machinery, this most important and interesting inquiry could be conducted. Through an unforturate misunderstanding betwecn the Government and the society on a mere teclnical point, this most useful inquiry. came to an abrupt termination, after haring been conducted for five years. This brief experiment had, however, prored so conclusively the ralue of such statistics, and the ease with which they could be collected, that the Government soon
sfter took the matter in hand, and has ever since, through the agency of the officers of Inland Revenue, obtained sanual returns of croppiug and live stock for the whole of Great Britain.
The obrious success of this National Scottish Socicty has icd to the furmation of similar ones in England and in Ireland. The former, instituted in 1838, and shortly afterwards incorporated by royal charter, at once entered upon a carcer of uscfulness, the extent of which cannot well be over-rated. Its membership-comprising the most influential persons in the kingdom-and its revenues are now so large as to enable it to conduct its proceedings on a seale befitting its position and objects. Theso are of a varied character, but its cfforts are concentrated upon its journal and annual show. The former, published twice a-year, is chiefly composed of the cssays and reports to which the liberal prizes of the society liave been awarded, and undoubiedly stands at the head of our present agricultural periodicals. At the annual shows of the society, a prominent place istassigned to implements and machines. Such as admit of it, are subjected to cemparative trials, which are conducted with such skill and pains that the amards command the entire confidence of exhibitors and their customers. The extent and rapidity of the improvement in agricultural machinery which the society lias been mainly instrumental in offecting are altogether extraordinary.
There are few market towns of any importance that have not their organised club or occasional gathering of the farmers in their neighbourhood, for the discussion of professional topies. We have new also a goodly list of agricultural periodicals, both weekly and monthly, most of them ably conducted, which are extensively read, and are the means of collecting and diffusing much valuable knowledge, which, but for them, would often, as in former times, peris」 with its authors, or be confined to corners. Tho facilities now afforded by railways for cheap and expeditious travelling, induce most farmers to take an occasional peep st what is going on beyond their own neighbourkood. This, more than anything, deals death-blows to prejudices, and extends good husbandry.
The literature of agriculture bas been eariched by the contributions of many able writers. Some deserve to be particularly mentioned. The volumes of the late David Lov, Esq., on Practical Agriculture, Landed Property and Economy of Landed Estates, and Domesticated Animals, must ever be of standard authority on their respective subjects. Mr Henry Stephens' Bookiof the Farm, and Mr J. C. Merton's Cyclopedia of Agriculture, are invaluable to the agricultural student for their fulness, and for the minuteness of their details. Mr Caird's English Agriculture supplies the means for a most interesting comparison with the descriptions left to us by Arthur Young. Mr Moskyn's IIistory of Agriculture and Chronicles of a Clay Farm are the very gems of our professional literature. In a series of essays on our Farm Crops by Professor John Wilson of Edinburgh, the scientific and the practical are most baypily combined. Among the more, recent publicatious of value may be mentioned Loudon's Encyclopadia; How Crops Grow, by Mr Johnson; M'Cumbie's Cattle and Cuttle-Bicelers; Mechi's How to I'urm Profitally; Hozier's 1'ractical Remarks on Agricullural Drainage; 'Tedd's Amcrican W'heat Culturist, dcc. Johnston, Anderson, Way, and Voclcker, have done admirable service in expounding the chemistry of agriculture; Youatt, Spooner, and Yasey, its zoology; and Smith, Parkes, Webster, Lailey, Dentun, Scott Burn, and Starforth, its engincering, mechanics, and architecture.

In reviewing the bistury of our national agriculture for the pust sixty years, it is pleasing to note the growing
intelligence displayed by our agricultarists in the proso cution of their calling. It is curious, also, to observe the analogy between the order of that progress, and that which is usually observed in individual minds lor a long time we see agricultural secieties and writers occupying them. selves chiefly nbout the practical details and statistics of husbandry, and attaching much importance to empirical rulea Gradually, however, we observe, along with a zealous collecting of facts, a growing disposition to investigato the causes of things, and desire to know the reason why ono practice is prcferable to another. When, therefore, the Royal Agricultural Society adopted as its motto, "Practicn with Science," it expressed not more the objects to be aimed at in its own proceedings, than the characteristic feature of our present stage of agricultural progress.

CHAPTER III.

practict of britisl agriculturr

We shall nove endeavour to present a picture of British agriculture in its present state. In doing this, we shall take much the same course which we should pursuc, if wo wcre asked to conduct a visitor over our own farm, and to give him a detailed account of its cultivation and management. In the case supposed, we should, first of all, explaia to him that the farm comprises a great diversity of soils; that its fields are very variously circumstanced as regards climate, altitude, cxposure, and distance from the homestead; and that in its tillage, cropping, and general management, regard must be had to these diversities, whether natural or artificial. We should then conduct him through the homestead, pointing out the position and uses of the various farm buildings and of the machinery and implements contained in them. From thence we' should proceed to the ficlds to examine their fences and the tillage operations. With some observations about the succession of crops, and the manures applied to them, there mould follow an examination of the cultivated crops, pastures, and meadows, of the live stock of the farm, and of the measures adopted in reclaiming certain waste lands belonging to it. This survey being completed, there would naturally follow some discussion about the tenure of land, the capital required for its profitable cultivation, the condition of farm labourers, the necessity for devoting more attention to the education of the agricultural community, and the duty of the Legislature to remove certain obstructions to agricultural improvement.

Scction 1.-Soils.

The soil constituting the subject-matter on which the husbandman operates, its character necessarily regulates. to a large extent the nature of his proceedings. The soil or surface covering of the earth in which plants are produced is exceedingly varied in its qualitics. Being derived from the disintegration and decomposition of the rocks which constitute the solid crust of the globe, with a mixture of vegetable and animal remains, soils take their character from that of the rocks from which they have chicfly been derived. There is thus a generally prevailing rescmblance between the soils of a district and the rocks over which they lie, so that a knowledge of the composition of the one affords a key to the character of tho other. But this connection is modified by so many circumstances, that it is altogether impossible by the mere etudy of geology to acquire an easy and certain rule for determining the agricultural character of the soil of any particular district or ficld, as it has been the fashion with some writers of late ycars to assert "When, indced, we regard a considcrable tract of land, we can for the most part trace a connection between the eubjacent deposits and the suhsoil, and consequently the soil. Thus, in a country of
sendstone and arenaceous beds, we shall find the soil sandy; in one of limestone, more or less calcareous; in one of schistose rocks, more or less clayey. But even in tracts of the same geovrical formation, there exist great differences in the upper stratum, arising from the prevalence of one or Other member of the series, or from the greater or less inclination of the strata, by which the debris of the different, beds are more or less mixed together on the surface. The action of water, too, in denuding the surface at one part, and carrying the debris in greater or smaller quantity to another, exercises everywhere an important jnfluence on the character of soils. Thus the fertility of a soil on the higher ground, from which the earthy particles are washed, is found to be very different from that of the valley to which these particles are carried. It is seen accordingly, that within the limits of the same geological. formation, soils are greatly varied, and that the mere knowledge of the formation will not enable us to predicate the character of the soil of any given tract, either with respect to its texture, its composition, or its produrtiveness."1 Even a very limited acquaintance with the geology of Great Britain serves, however, to account for the exceedingly diversificd character of its aoils. The popular definitions of soils-and to these it is safest for practical farmers to adhere-have respect to their most obvious qualities. Thus they are designated from their composition, as clays, .loams, sands, gravels, chalks, or peats; or from their texture, in which respect those in which clay predominates are called heavy, stiff, or impervious; and the others light, friable, or porous. From the tendency of the former to retain moisture they are often spoken of as wet and cold, and the latter, for the opposite reason, as $d r y$ and warm. According to their measure of fertility, they are also described as rich or poor. The particular crops for the production of which they are respectively considered to be best adapted have also led to clays being spoken of as wheat or bean soils, and the friable ones as barl:y and turnip soils. This latter mode of discriminating soils is, however, becoming every day less appropitate; as those of the lighter class, when sufficicntly enriched by suitable manuring, are found the most suitable of all for the growth of wheat; while the efforts of agriculturists are now successfully directed to the production of root crops on soils so strong as heretofore to have been reckoned unfit for the purpose. But still, such extreme diversities as we everywhere meet with in our soils must necessarily lead to a corresponding diversity in their agricultural treatment, and hence the necessity for keeping this fact prominently in view in every refcrence to British agriculture as a whole.

Section 2.-Influence of Climate.

But if diversity of soil necessarily modifies the practice of the husbandman, that of climate does so far more powerfully. The soils of the different parts of the globe do not very materially differ from each other, and yet their vegetable products vary in the extrcme. This is chiefly gwing to difference of temperature, which decreaseg more or less regularly as we recede from the equator, or ascend From the sea-level. Places in the same latitude and at the same elevation are found, however, to vary exceedingly in ${ }^{-\infty}$ temperaturs, according to their aspect, the provailing winds to which they are exposed, their prosimity io seas or mountains, and the condition of their surface. The diferent parts of Great. Britain are accordingly found to possess very different climates. In passing from south to north, its mean temperature may be taken to decrease one degree Fahrenheit for every 80 miles of latitude, and the same
${ }^{1}$ Low's Practicul Agriculture, p. 62
for every 300 feet of clevation. The temperature of the west side of our island also differs materially from that of the east, being more equal throughout the year. This is owing to the prevalence of mild westerly winds charged with moisture, which, while they equalise the temperature, cause the average fall of rain on the west side of Britain to be in many cases double, and in some nearly three times that on the opposite side. In the central parts of England cultivation is carried on at 1000 feet of elevation, but 800 may be taken as tho ordinary limit In Scotland the various crops are usually from two to three weeks later in coming to maturity than in England. In both divisions of the island the western counties, owing to their mild and humid climate, are chiefly deroted to pasturage, and the eastern, or dry oncs, to tillage. As compared with the continent of Europe, our summers are neither so hot, our winters so cold, nor our weather so steady. We want, therefore, many of its rich products, but, on the other hand, our milder winter and moister climate are eminently favourable to the production of pasturage and other cattle crops, and admit of agricultural operations being carried on more regularly throughout the year. Indeed, looking to the immense varieties of the products of our soil, there is probably no other country so favourably circumstanced for a varied and successful agriculture.

Section 3.-Influence of Population, \&ice

Besides those variations in the agricultural practice of this country which arise from diversities of soil and climate, there are others which are due to the distribution of tho population. The proximity of cities and towns, or of populous villages, inhabited by a manufacturing or mining population, implies a demand for dairy produce and. regetables, as well as for provender and litter, and at the same time affords an ample supply of manure to aid in their reproduction. Such commodities, from their bulk or perish¿ble nature, do not admit of long carriage. The supplies of these must therefore be drawn from comparatively limited areas, and the character of the husbandry pursued there is determined apart from those general influences previously referred to. From these and other causes there is a diversity in the practice of British agriculture which increases the difficulty of describing it accurately. Indeed, it is so well known that there are peculiarities of character attaching to almost every individual field and farm, and still more to every different district or connty, which demand corresponding modifications of treatment in order to their successful cultivation, that a prudent man, if required to take the management of a farm in some district greatly inferior in its general system of farming to that which he may have left, will yet be very cautious in innorating upon specific practices of the natives.

To such peculiarities it is obviously inpracticable to refer in such a treatise as the present. They are referred to now because they suggest an explanation of some of those discrepancies in the practice and opinions of farmers, equally successful in their respective localities, which we constantly meet with; and because. in procceding to delineate the practice of Berwickshire, where our personal experience has been gained by upwards of forty years of actual farming, we would deprecate the idea of claiming for its modes a superiority over those of other districts. Its geographical position; and the mixed husbaudry pursued in it, would justify, in some measure, its being referred to as a fair sample of the national agricultura. But it is on the specific ground that it is best to speak from actual experieuce as far as that will serve. that we vindicate this selection.

CHAPTEX IV.

FARM-BUILDINGS.

Section 1.-General Requisites.

In pursuance of the plan already indicated, let us now refer for a little to Furm-Buildings. We have spoken of the soil as the raw material upon which the farmer operates: his homestead may, in like manner, be regarded as his manufactory. That it may serve this purpose in any good measure, it is indispensable that the accommodation afforded by it be adequate to the extent of the farm, and adapted to the kind of husbandry pursued upon it. It should be placed upon a dry, sunny, sheltered site, have a good supply of water, and be as near as possible to the centre of the farm. The buildings should be so arranged as to economise labour to the utmost. . It should be constructed of substantial materials, so as to be easily kept in repair, and to diminish, to the utmost, risk from fire.

The most cursory examination of cxisting homesteads will suffice to show that in their construction these obvious conditions have been sadly neglected. For one farm really well equipped in this respect, hundreds are to be met with in all parts of the kingdom, and more especially in England, most wretchedly deficient. Wherever this is the case, it is impossible that the farmer, however skilful or industrious, can make the most of his materials, or compete on equal terms with his better furnished ncighbours. As the agricultural community becomes more generally alive to the importance of economising labour by a judicious arrangement of buildings, and of reducing the cost of the production of beef (and adding to the anount and fertilising power of the home-made manure) by tl : manner in which the live stuck is housed, we may hope that improvement in this department will make rapid progress. Tenants will refuse to embark their capital, and wastc their skill and labour, on farms unprovided with suitable apparatus for cultivating them to the best advantage. Landlords and their agents will by-and-by find that until this is done, they must put up with an inferior tecentry, an antiquated husbandry, and with lower and worse-paid rents.

Section 2.-Plans.

In erecting new homesteads, or in making considerable additions to or alterations upon existing ones, it is of much importance to call in the aid of an arehitect of ascerained experience in this departrient of his art, and then to have the work performed by contracts founded upon the plans and specifications which he has furnished. A reasonable sum thus expended will be amply returned in the cost, trouble, and disappointment, which it usually saves to both landlord and tenant. It is to be hoped that in future a greater number of thoroughly qualified architects will devote themsel res to this department of their profession, and that they will meet with adequate encouragement. It is not, therefore, with the view of superseding their services, but simply to illustrate our references to existing practices, that we subjoin a plan of farm-buildings.
While protesting against the utter rudeness and inadequacy of the great majority of homesteads, we must also deprecate the hurfful expenditure sometimes lavished in erecting buildings of an extent and style altogether disproportionate to the size of the farm, and out of keeping with its homely purposes. When royalty or nobility, with equal benefit to themselves and their country, make agriculture their recreation, it is altogether befiting that in such cases the farm-yard should be of such a style as to adorn the park in which it is situated. And even those intended for plain everyday farming need not be unsightly: for ugliness is sometimes more costly than
elegance. Let utility, ceonomy, and comforr, first be secured, and, along with these, as much as possiblo of that pleasing effeet which arises from just proportions, Larmonious arrangement, and manifest adaptation to the use the buildings are designed for.

Section 3.-Principles of Arrangement.

The barn, with its thrashing-machinery, and other appurtenances, naturally forms the nueleus of the homestead, and regulates the distribution of the other buildings. The command of water-power will often determine the exact site of the barn, and indeed of the whole buildings. The cheapness and safety of this motive-power reuder it well worth while to make considerable sacrifices to secure it, when a really sufficient and regular supply of it can be had. Put the difficulty of securing this when the adjoining lands are thoroughly drained, and the great effieiency and facility of application of steam-power, are good reasons why precarious supplies of water-power should now be rated very differently than they were when a horse-wheel or windmill were the only alternatives. A very usual and suitable arrangement is to have the whole buildings, forming a lengthened parallelogram, facing south or southeast; the barn being placed in the centre of the north range, with the engine-house behind it, and the straw house at right angles in front, with doors on both sides for the ready conveyance of litter and fodder to the yards, dec. It is always advantageous to have the barn of sufficient height to afford ample accommodation to the thrashing and winnowing machincry. When the disposition of the ground admits, it is a great convenience to have the stackyard on a level with the upper barn, so that the unthrashed corn may bo wheeled into it on barrows, or on a low-wheeled truck drawn by a horse. Failing this, the sheaves are asually pitched in at a wide opening from a framed cart. The space on which the cart stands while this is going or is usually paved, that loose ears and scattered grain may be gathered up without being soiled; and it is a further improvement to have it covered by some simple roof, to protect the sheares from sudden rain.
It is a good arrangement to have the straw-barn fitted up with a loft, on the level of the opening at which the straw is discharged from the thrashing-mill, so as to admit of fodder being stored above and litter below. A sparred trap-door in front of the shaker retains the straw above, or lets it fall to the ground as required. This upper floor of the straw-barn is the most convenient place for fixing a chaff-cutter to be driven by the thrashing-porver. The granary should communicate with the upper barn, that the dressed grain may be raised to it by machinary.

A loft over the engine-room, communicating with the ioper bara and granary, forms a suitable place for fixing a Emanding-mill, bruising rollers, and cake-breakers, as it affords opportunity for having these machines easily connected with the steam-porer. It suits, ell to have the house in which cattie food is cooked attach, I to and under the same roof as the engine-house. One coal store and chimney thus seses for both. Over this cooking-house, and communicating with the grinding-loft, may advantageously be placed a kiln, to be heated by the waste steam from the engine. An open shed outside the barn, for the accommodation of a circular sam, is also a desideratum. By the aid of the latter machine and a handy labourer, the timber required for ordinary repairs on the farm may be cut out at trifling expense.

The cattle-housing, of whatever deseription, where there are the largest and most frequent demands for straw, is placed nearest to the straw-house, and in communication with the turnif-stores, and the house (if any) in which food is cooked or otherwise prepared. Where cattle are bred, the cow-house and calf-house are kept together. A roomy

VOL. I.
AGRICULTURE
Plate III.

PLAN OF HOMESTEAO FOR A FARM OF 500 ACRES BY CHARLES LYALL ESO.

working court is always a great convenience, and it suits well to have the stable opening to it, and the cart-shed and tool-house occupying another side. Costly machines, such as corn-drills and reaping machines, require to be kept in a locked place, to preserve them from the collisions, and the loss or derangement of their minute parts, to which they are exposed in an open cart-shed.

An abundant supply of good water is a most important matter. The best source is from springs, at such an elcration as to admit of its being brought in a pipe, with a continuous flow. Failing this a well and pump is the usual alternative, although it is sometimes necessary to collect the rain-water from the roofs, and preserve it in a capacious and carefully-made tank. In every case it is desirable to have a regulating cistern, from which it is distributed by pipe to every part of the homestead where it is rer ${ }_{1}$ uired. It is, in every case, of importance to have the eaves of the whole buildings spouted, and the rainwater carried where it can do no mischief. Where fattening cattle are kept in open yards with sheds, by spouting the eaves, and slightly hollowing the yards towards their centres, the urine to a large extent is absorbed by the litter, and retained in the manure. The effectual way, however, is to have the whole of the yards roofed over. The waste of food and litter, and the damage sustained alike by cattle and manure, from the excessive rainfall of winter 1872-3, has probably done more than any amount of argument could do to convince farmers of this. If stall feeding is practised, a pit is required, into which the solid dung is wheeied and the liquid conveyed by drains. Liquid manure tanks are at present in universal repute, but we shall endeavour to show, when trcating of manures, that they are not such an indispensable appendage to a farm-yard as is generally asserted. In Scotland it is customary to carry the dung from the byres into a yard in which young cattle are kept, where it is daily spread about and subjected to further treading, along with such quantities of fresh litter as are deemed necessary. That from the stables is carried into the adjoining feeding-yard, and it is usually remarked that the cattle occupying it make more rapid progress than their neighbours.

An important part of the buildings of a farm are the cottages for its labourers. It is in all cases expedient to have the people required for the ordinary working of a farm resident upon it; and it is always much better to have families, each in its own cottage, than a number of young people boarded in the farm-kitchen, or with the farmoverseer. These cottages are usually a little removed from the other farm-buildings, and it is, on various accounts, better to have them so. There is, however, an advantage in having the cottages of the farm-steward and cattleman either within the courtyard, or close to its entrance, that these responsible functionaries may at all times be near their charge, and especially that they may be at hand when any of the live stock require night attendance. As there are manifold advantages in having but one main entrance to the homestead, and that closed by a gate which an be locked at night, it will be obviously necessary to have the keeper of the key ilose at hand to open the gate by night if required. Much more attention than formerly is now paid to the construction of cottages. The apartments are better floord, higher in the roof, and so arranged as to secure comfort and decency. Besides a small garden, each cottage is usually provided with a pigsty and ash-pit, and in some cases with a coal-place and privy besides.

The position and style of the farmer's dwelling also claims a romark here. The approved mode used to be, to place it either directly in front or rear of the farm-yard, on the ground that the farmer would thus have his premises
and cattle under his eye even when in his parlour or tcdroom. As has been well remarked, "The advantages of this parlour-farming are not very apparent, the attendant evils glariagly so. If the condition of ready communication be obtained, the farm-house should be placed where the amenities of a country residence can be best enjoyed."1 On all hands we now hear it urged, that it is only by men possessed of capital and intelligence that the busincss of farming can be rendered remunerative. Those who desire to have such men for tenants will be more likely to succeed by providing a commodious and comfortable farmery. pleasantly placed among trees and shrubs, than by eetting it down in the precincts of the dung-hcap.

CHAPTER V.

FENCES.

> Section 1.-Benefit of Fences.

The fences by which farms are generally enclosed and subdivided form another part of what may be termed their fixtures, and may therefore be suitably noticed here. When lands are let to a tenant, the buildings and fences arc usually put into sufficient repair, and he is taken bound to keep and leave them so at the issue of his occupancy. Although there are sume persons who advocate the total removal of subdivision fences, it is admitted on all hands that the farm as a whole, and the sides of public thoroughfares which may intersect it, should be guarded by sufficient fences of some kind. The general belief has hitherto been, that there is a farther adrantage in having the land subdivided by permanent fences into enclosures of moderate size. The use of such partition fences is not only to confine the live stock to particular fields, or restrain them from trespassing on the other crops, but to afford shelter from cutting winds. It is now frequently urged, that the heavier cattle should never be turned to pasture at all, but kept on roots and green forage the whule year round, and that sheep can be managed satisfactorily by means of movable hurdles. It is highly probable that the practice of soiling will become more general, as it undoubtedly deserves to do. Still, this does not necessarily call for the total removal of subdivision fences, which we cannot but regard as an imprudent proceeding. It is probable that those who have adopted it have done so very much orring to the prevalence of the opposite extreme. There are large portions of the finest land in England so encumbered with lecdges and hedgerow trees, as to be utterly incapable of profitable cultivation. In many cases the fields are so small and the trees so large that their roots actually mect from the opposite sides, and pervade the entire surface soil of the area enclosed by them. When manure is applied to such fields, it is monopolised by these freebooters from the hedges, and the crops of grain or hay, such as they arc, are so screened from the sun and wind that there is great risk of their being spoiled in the harvesting. If drains are made in such fields, they are speedily filled up by the rootlets, and thus rendered useless. It has been computed that not less thar one and a quarter million acres aro occupied by hedgerows in England and Wales, and that if the land overshaded and plundered by roots be included, the amount is three millions. In Deronshire one-fourth of the euclosures in many parishes are under two acres; more than onc-third under three acres; and nearly two-thirds under four acles. Two millions, at least, of these acres might be redeemed, and what a margin is here available for increased production! The land thus wasted would probably yield a sum equal to county and poor rates, and perhaps malt-tax

[^48]too. 1 In such circumstances, it is no wonder that zealous agricultural improvers should look upon hedgerows much as Aunerican settlers do upon their forests, and, like them, be sometimes indiscriminate in their clearings. We believo that there is an advantage in having land, whether for pasture or tillage, subdivided into parallel-sided fields of frum ten to forty acres each, according to the size of the farm, by meaus of permanent fences of a kiud adapted to the locality

Section 2.-Varielies of Fences.

When the soil and climate are favourable to the growth of the common white thorn, hedges formed of it combine efficiency, cconomy, and ornament, in a greater degreo than any other fence. But to have a really efficient thorn ledge, much attention must be paid to its planting, rearing, and after management. In proceeding to run a new line uI thorn hedge, care must be taken that the soil is clean and in gond heart, and that the subsoil is porous and dry. When these conditions do not obtain, they inust be secured by fallowing, manuring, draining, and trenching. Tho young quicks should bo stout and well rooted; not taken indiscriminately as they stand in the nurserymen's beds; but of uniform stoutness. Such sclected plants are always to be had for a small additional price, which will be found to be well repaid in the superior progress of such plants, when contrasted with that of others taken as they chance to cume to kand. The embryo fance must bo kept free of weeds, and secured from the encroachments of cattle by a line of rails on both sides. Some persons advise that the young hedge should from the first be trimmed into line by using the pruning-hook after each year's growth. It is certainly better not to touch it with the knife, or, at least, only to restrain an occasional shoot that unduly overtops its neighbours, until the centre stems are at least a couple of inches in diameter. If the plants are then headed over feace-high, and the lateral shoots pruned to a straight line, a close fence with a substantial backbone in it is secured; whereas by pruning annually from the first, a fence is obtained that pleases the eye, but which, consisting only of a mass of spray, presents no effectual barrier to cattle. When a thorn hedge has reached the stage just referred to, the protecting rails may be remored, and the hedge kept in a neat and efficient state by annual pruning. On good, deep soil, thorns will stand this constant removal of the annual growth of spray for many years without injury, especially if the pruning is delayed until the leaf has fallen. In less favourable circumstances, it is found necessary from time to time to withhold the pruning-knife for a few years together. When the hedge has been reinvigorated by such periods of unrestrained growth, it can again be cut back to the centre stems, and subjected anew to a course of annual pruning. To insure a close fence; the bottom of tho bedge must at all tines be kept clear of tall weeds. The constant use of the weeding-iron is, however, objectionable ; for, besides being expensive, it injures the bark of the thorns and thereby impairs their health. It is quite sufficient to cut the weeds close to the surface twice a year by means of a reaping-hook or short scythe.

In arable lands, by this plan of keeping hedges about four feet high, and cutting down the weeds as required, an efficient and ornamental fence is maintained at comparatively small cost, and with little injury to the adjoining crops from shading, or the harbouring of weeds and vermin.

Although the white thorn forms a better hedge than any shrob yet tried for tho purpose in this country, there are many upland situations whero the beech and hornbeam grow more freely, and are to be preferred either alone or in

[^49]mixture with it. These plants, and also crab or slue, are sometirnes useful in filling a gap occasioned by the removal of a hedgerow tree or the death of a portion of thorn hedge.

In exposed situations, whero thorns do not thrive, Sto drystone walls are tho most usual substitute. When carefully constructed, of stones suitable for the purpose, they last a long time, and form an cacellent fence. Their durability is much eshanced by having the cope-stones set in lime-mortar. A layer along the centre of the wall, and an external painting, of line-mortar will also repay the additional first cost thus incurred. A wall of this kinu four feet high, exclusive of the corie, while quite sufficient to restrain cattlo and the heavier kinds of sheep, is no barrier to the mountain breeds, which can easily clear a six-foot wall.

A simple and very effective fence has, however, come Wurs much into usc of late years. It is composed of l, n wire (No. 8 being the size most commonly used), which is attached by small staples to common stakes, such as are used for wooden railings, driven firmly into the ground about five feet apart. The wire is drawn out of the coil, and the ends of the various lengths or threads aro neatly joined by first heating them, and then twisting the one into the other, until the quantity required for the stretch of fence is run out. It is then attached to every thind or fourth stako by a staple, which must not be driven bome. The other lines of wire are then treated in the same manner, cach being attached to tho stakes at such width apart as has been dotermined npon, and marked upon the stakes. A ready way of doing this is by stretching along the stakes a common gardener's line which has been previously rubbed with chalk, or a charred stick, and striking it against the stakes at the required heights, in the way that sawyers mark a plank. When the requisite number of wires has thus been loosely attached, they aro pulled as tight as possible by the hands of the workmen, after which a serew orlever is applied to each in turn until it is made perfectly tight. As the efficiency of this kind of fence is wholly dependent on perfect tightness being obtained, a stout straining-post must bo fixed securely in tho ground at the end of each line of fence. This serves tho double purpose of furnishing a fulcrum for tho stretching instrument, and a secure attachment for the ends of the wires. When the straining is accomplished. each wire is stapled to each stake. The grates are usually hung upon these straining-posts. Although wooden strain-ing-posts are commonly used, some persons prefer iron oned, fixed into large blocks of stonc. Five wires thus stretched, at an average width of six inches, form an effectual fence for the wildest shecp. They could, indeed, casily clear it so far as height is concerned, but they are afraid to leap at an object which they cannot see until they are close upon it. They may bo seen at first walking along the line anxiously looking for an opening, and if one more bold than the others makes a run at it, ho is sure to catch such a fall as effectually deters him from repeating the attempt. With these cheap and portable materials, which any labourer of ordinary intelligence can easily put together, a fence admirably adapted for enclosing or subdividing mountain pastures is now quite attainable by every sheep-farmer, and will well repay its cost. It is equally availablo for protecting young thorn hedges, and generally for all purposes for which wooden railing is used. As a fence for cattle or horses, it is advisable to add a singlo rail of wood nailed flat along the top of the stakes, which must be sawn off evenly for this purpose. As comnpared with rooden railing, wire is much cheaper and more durable, and more easily kept in repair. It is cheaper also than stone walls, available in many situations where they are not, and a more certain barrier to agile sheep; but it is less durable, and affords no shelter.

The latter defeat can in some situations be remedied by_{y}
raising a low mound of turf, ranning the wirceience along the top of this mound, and sowing on it the seeds of the common whin.

We have already noticed that the fences of a farm are usually erected by the landlord and kept in repair by the tenant. The latter is at least usually taken bound in his lease to keep and leave them in good order; but as this obligation is often very indifferently performed, and much damage and rexation occasioned io consequence, it is always expedient that a person should be appointed by the landlord to attend to the fences, and the half of his wages charged against the tenant. By such a course, dilapidation and disputes are effectually guarded against, and the eyesore of defective, ill-kept fences is wholly removed.

CHAPTER VI.

Mactines and niplements of husbandry. Section 1.-Recent Improvements.

That the cultivation of the soil may be carried on to the best advantage, it is necessary that the farmer be provided with a sufficient stock of machines and implements of the best. construction. Very'great improvement has of late years taken place in this department of mechanics. The great agricultural societies of the kingdom have devoted much of their attention to it; and under their auspices, and stimulated by their premiums, exhibitions, and competitive trials, manufacturers of skill and capital hare embarked largely in the business. In many instances the quality of the article has been improved and its cost reduced. There has hitherto been a tendency to produce implements needlessly cumbrous and elaborate, and to introduce variations in form which are not improvements. The inventers of several valuable implements, the exclusive manufacture of which they have secured to themselves by patent, appear to have retarded their sale, and marred their own profits by the exorbitant prices which they have put upon them. Some, however, have become alive to the advantages of looking rather to large sales with a moderate profit on each article, and of lowering prices to secure this. A most salutary practice has now become common of inventors of implements of ascertained usefulness granting ficence to other parties to use their patent-right on reasonable terms, and thus removing the temptation to evade it by introducing some alteration which is trumpeted as an improvement, although rcally the reverse.

The extended use of iron and steel in the construction of agricultural implements is materially adding to their durability, and geverally to their efficiency, and is thus a source of considerable saving. While great improvement has taken place in this department, it too commonly bappens that the village mechanics, by whom a large portion of this class of implements is made and repaired, are exccedingly unskilled, and lamentably ignorant of the principles of their art. They usually furnish good materials and substantial workmanship, but by their unconscious violation of mechanical laws, enormous waste of motive power is continually incurred, and poor results are attaived. This can probably be romedied only by the construction of the more costly and complex machines being carried on in extensive factories, where, under the combined operation of scientific superintendence, ample capital, and skilled labour, aided by steampower, the work can be so performed as to combine the maximum of excellence with the minimum of cost.

Section 2.- Ploughs.

We begin our brief notice of the implements of the farm with those used for the tillage of the soil Of these the Grst place is unquestionably due to the plough. A history of this implement, tracing its gradual progress from the
ancient Sarcle to its most improved form at the prescnt day, is necessarily a history of agriculture. So much is this the case that a tolerably correct estimate of the progress of the art in any country, whether in ancient or modern times, may be formed by ascertaining the structure of the plough. Much attention has been paid to its construction in Britaiu for the last hundred years, and oever more than at the present day. After all that has beon donc, it is still, however, au unsettled point which is the best plough for different soils and kinds of mork; and accordingly, many varying forms of it are in use in those parts of the kingdom which have the repatation of being mostskilfully cultivated. Eversince the introduction of Small's improved swing-plough, the universal belief in Scotland, and to a considerable extent in England, has been that this is the best form of the implement. Wheel ploughs have accordingly been spoken of by Scottish agriculturists in the most depreciatory terms, and yet it turns out that this has been nothing better than an unfounded prejudice; for when subjected to careful comparative trial, as has been frcquently done of late, the

Howard's Champion Plough.
balance of excellence is undoubtedly in favour of the plough with wheels. Its advantages are, that it is easier of draught ; that the quality of its work is better and greatly more uniform than can be produced by a swing plough; that in land rendered hard by drought, or other causes, it will enter and turn over even furrows where its rival either cannot work at all, or at best with great irregularity and serere exertion to the ploughman; and, lastly, that its efficiency is independent of skill in the ploughman. This last quality has indeed been usually urged as an objection to wheel-ploughs, as their tendency is said to be to produce an inferior class of workmen. Those who know the diffculty of getting a field ploughed uniformly, and especially of getting the depth of furrow specified by the master adhered to over a field, and by all the ploughmen, can best appreciate the value of an implement that, when once properly adjusted, will cut every furrow of an equal width and depth, and lay them all over at exactly the same angle. The diversity in the quality of the work at those ploughing competitions, to which only the picked mon of a ncighbourhood are sent, and where each may be supposed to do his very best, shows conclusively how much greater it must be on individus farms, even under the most vigilant superintendence. In every other art the effect of improved machinery is to supersede manual dexterity; and it does secm absurd to count that an objection in agriculture which is an advantage in everything else. There is more force in tho objection that wheol-ploughs are inferior to string ones in ploughing cloddy ground, or in crossing steep ridges, and that they cannot bo used for forming drills for turnip or other crops. This objection vanishes when it is knomn that in the most improved wheel-ploughs, the wheels can be laid asido at pleasure, aud that they can then be used in all respects as swing-ploughs. A mould-board, somewhat higher and wider behind than that best adapted for ordinary work, is required for forming turnip-drills. This, however, is easily managed by having two distinct mould-boards for each plough, or, better still, by using only the double mould hasard
nr bulling plough for drilling. An important feature in the English ploughs is, that they are fitted with cast-iron shares, which, being case-hardened on their under surface, wear unequally, and so preserve a sharp edge. The necessity for daily recourse to the smithy is thus removed, and along mith it that irregularity in the quality of the work and draught of the plough, which so often arises from witting or uuwitting aiterations being made in the set of the sharo in the course of its unceasing joumeys thither. These cast-iron shares are slightly more brittle than those made of malleable iron with steel points; but it is of importance in determining their comparative merits to bear in mind that the prime cost of the former-10d. to 1s. each-is so small as to render them at the year's end the least expensive of the two. When it is desired to turn a very deep furrow, a plough is used differing from the common one only in being somewhat larger and stronger in all its parts, with four horses to dram it.

Ploughs which break and stir the subsoil, writhont bringing it to the surface, by following in the wake of the common plough, are now much used. The first of the kind-the invention of the late Mr Smith of Deanston-is a ponderous implement, requiring at least four good horses to draw it. It is well adapted for displacing and aiding in the removal of earth-fast stones. The inventor has happily described its operation by terming it a " horse pick." Read's subsoilplough is a much lighter implement, which can nsually be drawn by two horses. Since the introduction of thorough draining, it is found beneficial to loosen the soil to a much greater depth than was formerly practicable, and this class of implements is well fitted for the work. It is always advisable to use this implement, and to mark and dig eat the large stones encountered by it, before introducing steam cultivation.

Broadshare or paring-ploughs are mueh nsed in various parts of England in the autumn cleaning of stubble. A broad-cutting edge is made to penetrate the soil to the depth of three or four inches, so as to cut up the root-weeds which at that season lie for the most part near the surface. These, as well as the stubble, being thus detached from the firm soil, are removed by harrowing and raking; after which the land is worked by the common plough. An implement of this kind is frequently used in carrying out the operation of paring and burning. Bentall's Broadshare has the reputation of being the best of its class; but we can confidently recommend the common plough, stripped of its mould-board and fitted with a share twelve inches broad, as not only the cheapest, but decidedly the must efficient scarifier that bas yet been used.

An ingenious Aberdeenshire mechanie, Mr Pirie of hinmundy, has recently invented a double-furrow plough, on an entirely new principle, which has met with general approval, and has already been adopted by all the great flough makers. By carrying the plough on three mheels, one on the land and two bevelled ones in the angle of the furrow, Mr Piric dispenses with both soles and side plates, and thereby lessens the friction, and avoids that hurtful glazing and hardening of the bottom of the furrow which attends the use of other ploughs. So much is the draught lessened by this improvement, that three horses and one man with this double-plough can perform as nuch work in a day as four horses and two men with two ordinary ploughs. For a seed-furrow or level field of free soil, two horses are quite able to worl the doubleplough.

Various implements of the plough type, so modified as to adapt them for particular processes, have from time to time been offered to public notice, but have failed to meet with general favour. We limit our notiee to those of oscertained utility, and refer the reader who desires fuller
information to Ransome's Implements of Agriculture, ${ }^{1}$ and the more recent work by Messrs Stephens and Scotl Buru, where he will find deseriptions of the most interesting of them.

> Section 3.-Grubbers, dce.

Next in importance to the plough is the class of imploments variously called grabbers, cultivators, drags, or scarifiers. To prepare the soil for the crops of the husbandman, it is necessary to pulveriso it to a sufficient depth, and to rid it of weeds. The appropriate function of tho plough is to penetrate, break up, and reverse the firm surface of tho field. This, however, is only tho first step in the process, and does but prepare for the more thorough disintegration which has usually been accomplished by harrowing, rolling, and repeated ploughings. Now, however excellent in its own place, the plough is a cumbrous and tedious pulveriser, besides needlessly exposing a fresh surface at each operation, and cutting the weeds into minute portions, which renders their removal more difficult. These defecte were long felt, and suggested the desirableness of having some implement of intermediate character betwixt the plough and harrow, which should stir the soil decply and expeditiously without reversing it, and bring the weeds unbroken to the surface. The whole tribe of grubbers, se., has arisen to meet this dermand, and we shall now consider the comparative merits of the more promineut of the group. The first notice is due to Finlayson's harrow, which, as improved by Scoular, was, until recently, tho best implement of its kind. Its faults-and they attach equally to Kirkwood's and Wilkie's-are, that it is severe work for tro horses, is liable to choke in tarfy or foul ground, and that it consolidates the bottom of the furrow, while producing a fine tilth on the surface. Finlaysou's grubber, in its inproved form, weighs about five cwt., and costs as many pounds.
Another useful implement of this elass which enjoys a large reputation in England is Bidule's scarifier. It is

Bidulle's Scaritier, as wivile by lausume in co.
mounted on four wheels--two small ones in front and two much larger behind. The frame and tines are of castiron, and can be raised and depressed at pleasure by means of two levers which regulate the depth to which the tines shall penetrate. The tines are prepared to receive case-hardencd cast-iron poiuts of different widths, or steel hoes of nino inches width, so that the implement can be uscd for breaking up and paring the surface, or for grubbing out weeds and pulverising the soil, as may be required. An important feature in this scarifier is, that it keeps its hold of a hard surface much better than a plough. It weighs half a ton, is drawn by four or sir horses, and costs about $£ 18$.

[^50]The Ducie or Uley cultivator has many features in common with Biddle's, and although brought forwand as an improvement upon it, has not established its title to be so regarded. The great weight, high price, and amount of horse-power required to work them, are serious objections to all these implements.

Of more recent notoriety than these, and contrasting with them favourably in these respects, is an implement invented by the late Mr John Tennant, at Shields, near Ayr, and now popularly known as Tennant's grubber. Its construction, as the annexed cut will show, is simple in the extreme. Its weight is about two cwt., its price $£ 4,10 \mathrm{~s}$.,

> Tenoant's Grubber, as improved by T. Brown, Edirgton.
a1:d its draught easily ovorcome by two horses. The depth at which it works is regulated by raising or lowering the shank which supports its wheels in front. Its tines can be easily moved on their supporting. bars, and it may be worked with five or seven as desired. By substituting a shorter hind bar, and setting the tines more closely together, it makes a most efficient drill-grubber. We shall have occasion to refer to this implement frequently in
treating of tillage operations. The improvement which Mr T. Brown has made on Tennant's grubber consists mainly in the mode of attaching the tines to the bars. This attachment, which the cut explains, has the merit of being at once very simple and very effcctual. The tines when thus fixed are as rigid as if welded to the bars, and yst, by merely slackening the screws and driving out the wedges, they can with ease and rapidity be either adjusted at varying widths apart, or detached for repair.

A, Tine; B, Keeper; C, Weige, Â Actual Sizc.
Section 4.-Steam-Pover Tillage Intplenzents.
Such are the most important of those implements t^{y} which the tilling of the soil has hitherto been accomplished, and upon which the farmer must continue to rely so long as ho uses the muscular force of animals as his motive power.

Fowler's Locomotive Engine, with Clip Drum.

Dint the progress of invention has at last made the steamengine practically available for this purpose, and accordingly we here introduce some notice of what has now been accomplished, in applying steam power to the cultivation of the soil.

After many abortive attempts to do this by moving the engine itself over the land to be operated upon, it is now admitted on all hands that the only available method is to
communicate the power from the engine to tho implemerts by means of steel wire-ropes and windlasses. This is done in a variety of ways, some of the most prominent of which we shall now describe. The systems actually in operation fall under two general classes, which are known severally as the "Direct" and the "Roundabont." The first of these is the system introduced by Messrs John Fowler \& Ca of Cornhill, London, and now so well known in connection with
their name. The late Mr John Fowler's first efforts were directed to the production of a draining apparatus, and it was after succeeding in this apparently more arduous effort that he adapted his tackle to the hauling of tillage implements. After various tentative changes, Mr Fowler settled on the forn which is.still in extensive use. It consists of a siugle locomotive engine, usually of 12 or 14 horse-power, with a windlass attached to it under the boiler. Around this wiudlass an endless steel wire-rope passes with a single turn in a groove, which, by means of hinged clips, lays hold of ucarly the entire circumference of the rope, and that with a force proportioned to the strain upon the rope, which thus obtains sufficient grip to couvey the necessary hauling power without risk of slipping upon the drum. This wirerope, which requires to be just twice as long as the field to be tilled is wide, passes round a sheave upon a self-acting anchor placed at the farther side of the field opposite to the engine. This anchor is a prominent feature in Mr Fowler's apparatus. It consists of a low truck on four wheels, with sharp disc edges, which cut deeply into the soil, and thus obtain a hold sufficient to resist the stmin of the wire rope. A box, loaded with stoues, is fixed on the outer side of this truck to hinder it from canting over. The sheave mounted upon this truck, besides serving its primary use, gives motion when required to a drum, which winds up a rope, the other end of which is fixed well a-head in the direction in which the truck is required to move. Thus the apparatus warps itself along the headland as the ploughing progresses, and is keptalwaysvis-d-vis to the engine, which moves itself forward by its own locomotive power at every bout of the ploughs,
and keeps abreast of them. That the rope may not dms upon the ground, friction rollers or rope- orters, as they are called, are placed at suitable intervals. Theso being mounted on wheels and string upon the rope, are now in a gond measure self-acting, as the tautness of the rope keeps them in its own line. The ploughs are fixed to a balance frame carried on two wheels, and are in duplieate, pointing to each other, so thet when the set at one end of the frame is in work, the opposite set is carried aloft in the air. The plough frame is thus hauled to and fro across the field, between the engine and movable anchor,' y-reversiug the action of the windlass; and it is adapted for taking from two to eight furrows at once, according to the power of the engine em ployed, or the nature of the soil that is operated upon.

Mesers Fowler have made this form of their apparatus more generally arailable by adapting it for attachment to the ordinary 8 -horse power thrashing-engine. When thas used the clip.drum is mounted on a separate frame and connected with the engine, which being stationed in a corner of the field to bo ploughed, the ropo is carried to two selfacting anchors, one at each side of the ficld, and thus encloses a triaugle. The plough is drawn to and fro betwixt these anchors, and as it gradually approaches the engine at each successive bout, the gearing on the plongh-frame tightens an the rope and accommodates it to the diminishing length required.

To work Forler's apparatus there is required one enginedriver, one ploughman, a stout lad to attend to the anchor, two hoys to shift the rope-porters, and a horse and boy to supply the engine with water and fuel.

About 1865 Messrs Fowler made an important addition to their apparatus by substituting a second engine for their movable anchor. In this arrangement, now well known as the "Double Engine system," a pair of locomotive engines, each having a plain winding drum instead of the clip-drum, are placed opposite to each other at the ends of the field to be operated upon ; the rope of each of the engines is attached to the plough, or other tillage implement, which is dramn to and fro betwixt them by each working in turn. While the engine in gear is coiling in its rope and drawing the plongh towards itself, the rope of the other engine is paid out with merely so much drag on it as to keep it from kinking or getting ravelled on the drum. The advantages claimed for this system are, ccunomy of power from the direct puill of the engiues on the implement; the facility and rapidity
with which the engines move themselves and the whole apparatus from field to field, or farm to farm, and take up their positions and get to work without the aid of horses; and the few hands required to work it. -Its drawbacks are the large first cost, and correspouding charge for wear and tear, depreciation, and interest; itsunsuitableness for working in small and irregularly shaped fields; and the injury done to headlands in wet weather. Its special adaptation is for large farms, and for working for hire ; and for these it is undoubtedly without a rival.

Mr William Smith of Woolston, Bedfordshire, may fairly be regarded as the pioneer of cultivation by steam power. At the meeting of the Royal Agricultural Society of. England at Carlisle in 1855, he witnessed the performance of the late John Fowler's steam draining-plough, and then contracted
with him to construct for him a windlass and other tilling apparatus, with whieh he got to work on his own farm in the antumu of that year. These two leaders in steamcultivation did not long work together. They had decided and diverse opinions as to the best road to success, and accordingly each for the future took his own course. Mr Smith's merit is not largely that of an original inventor of machinery, but rather that of a zealous, persevering, and successful applier of the inventions of others. But by his own example and his vigorous writings, he has contributed very largely indeed to the success of steam cultivation. He makes use of the ordinary portable engine, such as is employed as a thrashing power, which gives motion to a detached windlass with two drums, from which a wire-rope is carried round the area to be operated upon, and hence the name "Roundabout" applied to this system. This rope being attached by a turning bow to a powerful grubber, the implement is drawn to and fro across the field by reversing as required the action of the windlass, the slack half of the rope being uncoiled from the one drum as the part in work is wound up npon the other. His mode of working is to break up the ground by using a three-tined grubber, and then to go over it again with a seven-tined one, working at right angles to the first. Mr Smith zealously advocates the supe-
riority of grubbing to ploughing, being of opinion that if the soil is thoroughly broken up to a sufficient depth, it is better not to reverse the surface, as weeds are thus kept on the top, and the removal of them thereby greatly facilitated.
Mr Smith soon made an importaint addition to his system of tillage by means of an implement. which he calls a Ridger and Subsoiler. By means of it the soil, after being thoroughly smashed up by the steam-grubber, is thrown into 36 -inch ridges, the tine at the same time penetrating and loosening the subsoil in each furrow several inches deeper. His clay soil treated thus immediately after harvest is put into the best possible condition for benefiting by the alternations of wintry weather, for allowing rain-water to. pass readily and beneficially to the drains, and for yielding a friable seed-bed in spring. It has enabled him altogether to dispense with dead fallows; to grow abundant crops of wheat and beans alternately for a number of successive years, at an average annual cost of 8s. 6 d . per acre for tillage; and to keep his land perfectly clean under this constant eropping. He has the high merit not only of being the first man who successfully used steam power for the cultivation of a farm, but of demonstrating that this can be done with manifest economy even by the occupicrs of small farms,

Smith's Steam Cultivator as at work.
seeing that his own farm extends to but 180 acres of arablo land. After the lapse of eighteen years there is probably no one who yet practises steam cultivation with as great ouccess and economy. At the end of this period he reports that his engine and tackle are in excellent condition.

Mr Smith's apparatus was for a time manufactured by the well-known firm of J. \& F. Howard of Bedford, and moro recently by Barford \& Perkins of Peterborough. Siace 1860 the Messrs Howard have sent out a tackle of their own, in which the main features of Smith's system are retaiued, but to these they lave themselves added from time to time various improvements. By means of a self-acting mindlass and self-moving anchors, their tackle can how be worked by ono engineman (who also nttends to the windlass), one ploughman, and two porter-boys.

Although the earliest in date of invention, the most secent in actual operation is the tackle of Messrs Fisken,
which has features peculiar to itsclf. A single traction engine is stationed at any convenient point on the margin of or near to the field to be operated upon, the prefercnce always being given to a site where there is water, whence it can supply itself either by pumping or by the patent injector. The other parts of the apparatus are two self-moving anchor windlasses, which aro placed opposite to each other on two sides of the field, occupying the place and doing the work of the two engines in the double-engine system. Theso windlasses sre mounted on four disc wheels, and hare also a spud which cuts into the soil to give the nccessary resistance to the side pull. They each carry a winding-drum with tho necessary length of wire-rope, and these windlass-drumes wind ap and pay out alternately in precisely the same way as in Forwler's double engines. They also have each a winding-formard drum rith wire-rope and anchor fixed a-head, by means of
which they warp themselves forward and keep abreast as the work 1rogresses. Power is communicated from the engine to these windlasses by means of a light hemp rope, travelling at the speed of the fly-wheel, which is carried all round the field, and takes a double turn round a grooved pulley on each windlass. A set of anchor pulleys on wheels carry this rope round the corners of the field; aoother set of pulleys, ou stakes driven into the ground at suitable points, carry it off the ground; and a tension anchor mounted on four wheels, and having, like the windlasses, an apparatus by which it warps itself forward, and keeps the hemp-rope taut as the length out varies with the progress of the work. The windlasses have each a self-acting clutch, which stops the implement when any obstruction is encountered, and by which the attendauts stop it at the turnings, or when otherwise necessary, withnut in any case requiring to stop the enginc. By these arrangements the engine-driver does not require to have tho implement in sight, his duty being merely to drivo his angine at a uniform speed, as neither stopping nor reversing are required. The adrantages claimed for Fisken's tackle are those which it has in common with the other Roundabout systems, and, in addition, the use of a light hemp rope to convey power from engine to implement with less friction and cost than in other systems; great adaptability to fields of any size, or shape, or inequality of surface; and a capacity in certain circumstances of being worked by a fixed steam-engine or water power.

The Royal Agricultural Society of England has from the first deroted much attention and large funds to the promotion of steam cultivation, by the prizes offered at its annual shows, and by the reports published in its Journal from year to year. In the prolonged trial of steam-ploughs which took phace at Leeds in July 1861 under its auspices, the competition was mainly betwist Fowler's and the modificatiou, by Howard, of what is popularly known as Smith's system. The award of the judges was as follows:-"The £100 prize offered for the most economical application of steam power to the cultivation of the soil, was awarded to Mr Fowler for his 12 -horso power engine, moving anchorage, and plough ; and of the $£ 100$ offered for the most economical application of the ordinary thrashing-engine of the farm to steam cultivation, $£ 55$ was given to Mr Fowler, and $£ 25$ to Mr Howard. Besides these a silver medal is given to Mr Hayes, for his clever windlass for the same jurpose ; aud the same to Mr Roby for his combined engine and windlass."
During the summer and autumn of $1861, \mathrm{Mr}$ J. C. Morton, editor of the Agricultural Gazette, personally inspected the fanns of many of these parties, and published from time to time in that paper detailed accounts of his own observations and of the information supplied to him in regard to each case. In his New F'armer's Almanac for 1862, he condensed these reports, and from it we give the following extracts:-
"Little Woodeote Farm lies-a tract of open country and light calcareous soil of various depth-upon the chalk, about a mile from the Carshalton station on the London and Epsom railway. Mr Arnot has had Fowler's 10 -horse power stean-engine and ploughing apparatus since the harvest of 1859. His apparatus, rope, and engine cost $£$ ¢ 00. He works a three-furrow plough. The work done each year by the steam-plough on his 400 acre farm has thus been 393 acres in 185960 , and 389 acres in 1860-61. It has been done at the rate of six or seven acres a day for ordirary ploughing, and three acres a day (one acre per furrow) when at the 10 and 12 -inch deep work. It may average on the whole five acres a day, including all stoppages and remorals, and has thus taken close upon cighty days fur its accomplishinent. Lisides thas, Lowever, 150 acres
have been ploughed during the time for nelghbours at a charge, including everything, of 12s an acre. The engine is also used for thrashing purposes, and 220 acres at home and 250 acres elsewhere are thus thrashed out for hire.
"The cost of repairs has been uncoumonly swall-ineluding a new cog-wheel, repacking eylinders, and a thorough overhaul and cleaning of the whole apparatus at the eud of two years-besides the replaceruent of shares and sharpeniug of coulters for the plough, and the gradual wearing of the rope-porters. In all it has not nearly reached $£ 10$ a year, at which, nevertheless, we put it. The tear and wear of rope is reported as follows:-A new 400 -yard rope, lately bought, costing $£ 35$, has made the stock stronger and better than it was at the beginning. This charge may therefore be put agaiust more thai two years' work, and is equal to about $£ 15$ a year. - The weekly cost of labour when at work is as follows:-Engineer, 18s. ; ploughman, 14s.; anchor lad, 9 s. ; two porter lads, 6s. each ; horse and water cart, about 24 s . weekly-in all, $£ 3,17 \mathrm{~s}$. weekly, or as nearly as possible 12s. a day. The cost for oil is 1s. a doy, and for fuel, at nine or ten cert. a day, it may be put at los. daily. The chargo for depreciation at 10 per cent is $£ 70$ a year, and for interest of capital $£ 35$ a year. The whole aumual cost may thus be estimated :-

Labour, 80 days .	£43
Fuel and oil	44
Repairs and rope	25
Depreciation aud intorest of capital	105
Total	223

"But 500 acres of thrashing, and 70 or 80 acres peranuum of steam ploughing for hire, equal in all to at least forty days' work per annum, are also done by this enginc. And the profits of this work should be deducted from this sum before Mr Arnot's experience of his investment can be accurately described. The sum of $£ 222$, at which, if there had been no other use for engine and apparatys, his cost must have been estimated, is equal to 11 s. per acre over the work accomplished, much of which, however, was 12 inches deep. But if the proper share of the interest aud depreciation of capital be charged upon its work elsewhere for hire, the cost of steam ploughing will not exceed $£ 190$, or 10 s. 6 d . an acre. But Mr Aroot would contend that tise engine is not $£ 30$ worse than when he purchased it two years ago; and one-half of this, with interest of capital, will amount to $£ 50$, two-thirds only of which should be charged against the plough-work; and $£ 150$ would thus appear to be the anuual cost of ploughing 400 acres, or 7 s . 6 d . au acre. In fact, he might very well claim that this sum should be still further reduced by all the profit of his hire elsewherc, which can hardly bo put at less than 20s. a day, and this on forty days per aunum will amount to $£ 40$ or more; so that the net cost to him of his machinery has not been more thans £110 a year, or 5 s .6 d . an acre over his ploughing.
"What did it use to cost him when he worked thirteeu horses on his farm? He now works six horses. His horses get $2 \frac{1}{2}$ bushels of oats, and $2 \frac{1}{2}$ trusses of hay weekly each, during seven months:-

30 weebs at 11s. amount to	-	£1610 0
22 weeks on clover, \&c., at 5s.	-	5100
The annual food per horse		£22 00

"The aunual charge for depreciation, farrier, blacksmith, saddler, and implements, is at least $£ 5$ per horse, and for interest of capital in horse and implements at least $£ 2$ more. This makes the annual cost of each horse £29. The wages paid, in cash and cottage, to ploughmen is at least $£ 32$ per pair, or $£ 16$ per horse, and the whole cost is thus equal to $£ 45$ per horse per angum; which over seven horses amounts to $£ 315$ per annum-one-half more than the expeuditure, eves on the highest estimate, upon the
eugiue which has dispuced then, and ncarly double what Mr Aruot has actually incurred when he deducts his profits on its hire.
"A clay land farm near Eedford (the Woolston or Bedford applaratis), the Tiithe Firm of Stevingtou, occupied by Mr Willian Pike, is a tract naturally of poor clay soil. The exteut farmed by Mr Pike Las till lately been about 475 acres, of which 357 were arable; and fifteen horses were employed in five 3 -horse teams upon this exient. Now, about 600 acres are farmed, of which 420 acres are arable; and the whole is managed with ten horses and an 8 -horso power euginc, working grukbers on the Woolstou system. If the additioual land requires the same horse-power per 100 acres as was needed on the original farm, then, in place of ten horses, seventeen or eighteen must have bcen needed, and probably Mr Pike's mere saving by the use of his 8 -horse engine and cultivating apparatus does not fall short of $£ 300$ a year.
"The present cropping of the land is as follows :-125 acres are in wheat, of which 105 were partly after beans, cross-grubbed by steam-fuwer before sowing, and partly after clover, having been cross-grubbed also by steam-power more than once before the previous harvest time, aud then horse scarified and harrowed. The remainder was after horse cultivation. Tinere are 60 acres of beans after wheat, its stubble having been dressed with farm-yard dung, and then ploughed by horse power. There are 60 acres of grass and clover; 20 acres now in vetches have beeu crossgrubbed after a manuring; 25 acres in mangolds and turnips have been cross-grubbed in autumn, and again steam-scarified and crossed in spring; 50 acres in barley, and 25 acres in oats, make up the extent of the farm, and were got in after stém cultivation. By 'cross-grubbing' it is meant that the operation was repeated.
"More horse cultivation than usual was dőne in 1860. Clay land was fit only on rare ocasious, and both horse and steam porver were then used to the utmost. Mr Pike has had Mr Smith's grubber worked 'by an ordinary thrashing-engine since July 1858. Since that time 731 acres have been cross-grubbed, i.e., doubly-worked. In addition to this Mr Pike informs me that he has also cross-grubbed for hire 300 acres of land. For this he charges 25 s. an acre, the coals being supplied to the cuploycr.
"Excluding this item from our consideration in the neantime, and assuming that 730 acres-double cultivated between July 1858 and June 1861 -correspond to 250 acres annually, the average performance of the engine, including all stoppages except removals, has been six acres daily once cultivated. To do 250 acres twice would therefore occupy at least eighty-three days; adding three days for removals, there are eighty-six days' work of the steamcugine to be charged upon the steam cultivation of the farm. The following is the labour and its cost per week :-l engineer, 16 s ; 1 ploughman, 11 s ; ; 2 men shiftiug anchors, 22 s . ; 1 man at windlass, 12 s . ; 1 porter-boy, Cs.; 1 boy and horse with water cart, 248. : the whole amounts to $£ 3,19 \mathrm{~s}$., or 13 s . 2 d . daily. In addition to this we add the cost of coals, 10 cwts . at 19 s a a ton on the ground. or 9 s . 6 d daily. The oil at 5 s . a gallon costs about 1s. a day.
"The daily cost thus comes to 23 s . 6 d ., and this over eighty-six days amounts to about £100. Against the engiue and apparatus, costing about $£ 510$, we must put 10 per cent., or £ $£ 1$, for depreciation, and 5 per cent., or $£ 25,10 \mathrm{~s}$., for interest of capital. The cost of repairs may prerhaps be satisfied by an annual charge of $£ 15$; and for tear and wear of rope we have the following items: 1400 yards of irou wire-rope originally purchased, $£ 50$; steel ${ }^{101} \mathrm{lus}, 1400$ yards, since purchased, $£ 60$. Probably the
annual charge needed to maintain this may be nade on the theory that the rupe will last threc ycars, and $£ 25$ a year may suffice for this particular. Adding up these items, we have a sum total of $£ 216,10 \mathrm{~s}$. to be charged againist the farm for steam cultivation. Putting £:16 agaiust 500 acres once grubbed in the course of the ycar, we have a charge of about 8s. 7d. an acre for the grulbing. Mr Pike informed me that, during the three years of his steam cultivation, on several of the ten fields already specified, he has not.used the plough at all. Eveu the mixing of manure with the soil is done by the grubber. No plough is used to bury it. It is laid upou the land, and grubbed to and fro, aud thereby mixed sufficicntly. The cleanness of the land, too, is a fair testinony to the quality of cultivation by implements which stir, but do not overturn the soil.
"Mr Pike has till Jately used the grubber invented by Mr Smith of Woolston, with the turubuw apparatus fur turning the tool at the laud's end. Lattcrly he has used the cultivator of Messrs Howard, each tive of which is double, pointing both fore and aft, so that no turning at all is needed, the claw which follows in the wake of the working tooth as it goes coming into operation in its turu as it comes back again."
Mr Pike thus writes to Messrs Howard, of date December 2, 1861 :-
"GFntlemen, - I have cultivated my farm by steam-porrer for the last four years, and therefore feel mysclf in a position to speal positively of the merits of the system.
"My farm, belonging to the Duke of Bedford, consists principalls of poor, strong, killy, clay land, which, before 1 entered apon it, was laid up in three yard ridges, with water gutters drawn across the ridges to take off the water. Since I have stcam cultivated it, I have done away with ridges. and furrows entirely: my fields of 40 and 50 acres each, which are ateep in places, are all lasd on the fiat, and during the wettest season I have never secn any water stand upon them. I am convinced if land is broken up a good depth by the cultivator, and under drained, there is po need of any furrows, if it is ever so strong.
"I am enabled to manage iny farm with about half the number of borses. I do it with less trouble to myself. 1 an always more forward with my work, and the horses 1 do keep cost much less per head than formerly, as all the hard work is done by steam.
"The effect of deep stirring this soil is very apparent in the crops; my land is naturally very poor, 80 that very large yields are out of the question; but 1 am convinced 1 can grow much more corn by steam than by horse cultivation, and 1 can also grow a larger breadth of roet crops. I also find that by constant deep tillage my land moves easier every year, consequently $1 t$ is less expense to cultivate. I seldom use the plough, except my horses have got nothing else to dc.
"l break up my clover lays before harvest, and make a bastard fallow of therm. I am convinced this is the surest way of getting a good wheat erop on strong soil; and, besides cleaning the land, it has this edrantage, it does not leave so much work to do at Michaelmas. I also break up my tare land before harvest, so that after harvest I have nothing to do kut cultivate my bean and wheat stubbles.
"I put away my tackle ss seon as possible after we have heavy rains, the latter part of October or beginning of November, and do not bring it out again until the turnip land is ready to break up for barley. My object is to make the best use of the summer and the early sutumn.
"When I commenced cultivating by steam, I used to set down to little pieces, but I found that toe much tronble, therefore increased the length of my ropes, as I found it made very little difference to my 8 -horse engine whether I had out a long or short length of rope. I have now sufficient to de a 50 acre field, without moving eithes engine or windlass; this i my largest feld; I dug a pond at one end, and I do the whole without moving from the pond. When I can, I set my engine and windlass in an adjoining field, so ns to finish headlands and all complete, without going into it Wuter carting is a great expense, and in a wet season a great nuisance. I therefore have dug some ponds, and sometimes I dam up a ditch or master drain to obtain a supply.
"I am particularly pleased with the new apparatus you made for me last spring. The windlass is much easier moved about, snd is very aimple to mauage. Thie cultivator takes less time at land's end, there is no danger of overturning, it does not jump so much in work, and the lund aluares cause the land to lay looser. 'No matter
sow Fhand the groand, it will break it ap, and ou sidehills it gocs much stendier and better than my old ace.
"The first steel rupe I had did above 2000 acres, and I have a amall fortion of it at work yet. If peoplo mean to have their ropes last, they must keep them off the ground, and attend well to the coiling on the windlass drums. I like your new rollers, which carry the rope further from the ground - I am, Gentlemen, yours very truly;
" Messrs J. \& F. Howard, Bedford.
William Piem.'
lt is duo to Messrs Howard to state that their numerous ofler customers enneur in testifying to the general efficieney of their tackle, its littlo liability to breakage or derangement, and to the readiness with whieh their ordinary farm labourers have learned to work it efficiently.

By this time cultivation by steam-power had been adopted by enterprising individuals in ncarly every county in England, and was making steady progress in the face of many lindrances. In every instinnee the purehaser and his servants had to learn the use of novel and somewhat complicated machinery; much of whieh, as first sent out, proved to bo defective both in structure and in material. The fields also, through lack of preparation, often presented obstaeles which, os experienco was gaincd, were seen nud remedied. In a few instances, where the purchaser of steam tackle was either unablo to give his personal supcrintendence, or lacked the ueeded energy and perseverance to cope with the difficulties of a new enterprise, it proved a failure. But with rare execptions, easily aecounted for, it was everywhere demonstrated that by steam-power and appropriato implements, the tillage of the soil can be performed with a rapidity, efficiency, and coonomy far excelling what is practicable by animal power and the old implements.

In the autumn of 1866 , by which dato steam tillage had greatly extended, the Royal Agricultural Society of England scnt out three scts of commissioners to inspect and report on the position of stcam cultivation at that time. The reports ubtained were published in the Society's Journal for 1867, and present a mass of most interesting and instructivo information on the whole subject. The commissioners visited about 150 farms situatcd in nearly 40 different countics of England, and a few in East Lothian, containing an nggregate area of 66,000 acres, which they estimate to be aboui in third of the whole arca then under steim cultivation. They amply confirm what has already been stated ns to the success of this new system of tillage, and make it plain that tho changes thus brought about are of sueh importance as really to amount to is revolution in modera agriculture.

At its annual show in 1871, at Wolverhampton, the Euglish Society agaiu provided for a careful competitive trial of stcam-tillage machinery, when the following awards wero made :-
Class I.-For the best combination of machinery for the cultivation of the soil by steam-power-
1st Prize, £100-Awarded to Messrs J. Fowler \& Co., Leeds.
2d Prize, $£ 50$ - do. do. do.
Chass II.- For the best combination of machincry for the cultiva. tion of the soil by stems-power, the weight of the steam-engine not to exceed 10 tons--
1st Prize, $£ 50-\Lambda$ warded to Messrs Fowler, Leeds.
2d Prize, £25-Ararded to the Ravensthorpe Kingineering Co. (Fisken system.
Class III.-For the best combination of machinery for the cultivation of the soil by an oidinary ing 'cultural engine, whether self-propelling or portable.
st Prize, $£ 50$ - A warded to Messrs Fowler, I.eeds.
2d Prize, 225-Awanted to Messrs Howard, Bedford.
1 Silver Cup, value El 100 , offered by tho Right Hon. Lurd Vernon, presilent, for tho best comeination of maclinery for the cultiFation of the soil by stcam-power, the cost of which shall not exceod $£ 700$. The engine to be locimotive, and adapted for threshing sind other farm purposes, -Asarded to Messrs Fowler \& Co.,-Leeds.
Steaus ctatiration has now ceascd to be a norelty, and is
making rapid progress in all parts of Creat Britain and is foreign countries. In Mareh 1873, at an agricultural inece ing, it was stated by Messrs Forrler \& Co. of Leeds, that they are turning out aunually from thair works about Ico sets of their tackle for the home markct, and from 50 to 60 for foreign eouutries. Of their home sales about half aro to " private individuals, and half to persons who work them for lire. In a district around Magdeburgh fifty sets of their tackle aro employed in cultivating tho soil for tho growth of sugar-beet. The other leading makers aro also doing a large business, with tho certainty of its becoming larger every year. . The expiry of several patents applicable to steam cultivating tacklo is giving an additional stimulus to the manufacture of such machines. Partly in this way. and also by contrivances of their own, the Messrs Howard of Bedford have recently (1873) made very considerable changes and progress with their tackle. Their self-acting anehors, and their turning cultivator, which is constructed on au entirely new principle, are said to be respectively tho best of their kind

Section 5.-Harrows.

When a field bas been broken up by the plough, it is usually nextoperated upon by the harrow, whether tho object be to prepare it for and to cover in seeds, or to bring clods and roots to the surface. This is virtually a rake dragged loy horses. In its most ordinary form, the framework is of wood with iron tines, of which cach harrow contains twenty. Formerly each horse dragged a single harrow, although two or moro were worked abreast. Under this arrangement tho barrows had too much independent motion, and were liablo to get foul of each other. This has been remedied, first, partially, by coupling them loosely by riders, and then mare effectually by a hinge-like joining, which allows a separate vertical motion, but only a combined horizontal one. A rhomboidal form is also given to this pair of harrowsusually called lrakes-so that when properly yoked, no two tines run in the same track. This description of harrow is now frequently made entirely of iron.
)Howard's patent harrows are a further improvement on this implement. The zig-zag form given to each section cir

Howard'e Pátent Harrow.
ables the whole so to fit in, that the worling parts are equally distributed over the space operated upon. The number of times is 75 , instead of 40 , as in the form last noticed, and yet, from the form of frame and manner of coupling, the tines are well apart, and have cach a separate line of action. Practical farmers speak very highly of the effectivo working of this implement. By an exceedingly simple contrivance, the centre part when turned on its back forms a sledge on which its fellows can be piled and drawn along from one ficid to another. A light description of harrows, with smaller and more numerous tincs, is sometimes used for covering in grass-ceeds. If a harrow is to be used at all for this purpose, Howard's is a very suitable
kind, but a much better implement is Cartwright's chainharrow, which abrades the surface over which it is drawn to a degree that could not be anticipated from a mere inspection of the implement. It is formed by attaching to a draught-bar pairs of square-linked chains, each $7 \frac{1}{2}$ feet long, connecting them by cross links, and keeping the whole espanded by two movable stretehers. The old-fashionod ponderous break harrow is now entirely discarded, and the more efficicnt cultivator used in its stend. Λ form of the latter, from its close resemblance to harrows, is noticed now rather than before. It is a very strong iron harrow, with the tines made longer, and very considerably curved forwards. An iron rod with a loop handle is fixed to the hind bar, by meaus of which the driver ean easily hitch it up and get rid on weeds, \&c. Two such harrows are coupled torether and drawn by four horses. Its pulverising power is very considerable. But when elods have been brought to the surface, they are most effectually reduced by various l:inds of rollers.
Section 6.—Rollers.

Those formerly used were solid cylinders of timber or stone attached to a frame and shafts, for which hollow ones of cast-iron are now generally substituted. The simplest ferm of these has a smooth surface, and is east in sections to admit of more easy turning. They are made of diverse weights, so as to be adapted for the draught of one or two horscs as required. Those of the former description,weigh-

Smooth Cast-Iron Field Roller.

ing in all 6 cwt ., and costing as many pounds sterling, are exceedingly useful for all purposes where expedition rather than heavy pressuire is wanted. From their greator durability, smoother surface, and less liability to clog, the readiness with which they can be cast of any weight that is required, and their moderate price, it is probable that cast-irod cylinders will speedily supersede all others.

Several important variations on the common smooth roller have been introduced of late years. Of these the first notice is duc to Crosskill's clod-erusher, on the ground both of its intrinsic merit and the date of its introduction. It consists of cast-iron discs $2 \frac{1}{2}$ fect in diameter, with sorrated odge and a series of sideray-projecting toeth. Twenty-three of these discs are strung loosely upon a round azle, so as to revolve independently of each other. The frec motion thus given to each dise, and which has latterly been inereased by easting cach alternate one of greater diameter in the eye, adds at ouce to the pulverising and self-cleaning power of the roller. Three horses yoked abreast are required to work it. The axle is prolonged at each end sufficiently to rcceive travelling whecls, on which it is transported from place to place. Although primarily designed and actually much used for breaking clods, it is even more in request for consolidating loose soils, checking the ravages of wire-worm, and covering in clover and grass seeds. For the latter purpose, its action is perfected by attaching a few bushes to it, which fill up the indentations, and leave a surface so beautifully even as to rival the accuracy and neatness of a well-raked border. It is now to be had on a smaller seale adapted to the draught of two horses.

Cambridge's roller possesses several features in common with Crosskill's, aud is used for similar purposes. In the

Cambridge's Press-W'Leel Roller.
I form in which it was first brought out it consisted of dises, Ifiting close to each other, with fluted instead of serrated edges. In its recently improved form the discs are not made of uniform diameter as formorly, but each alteroate one in the set is raised about two inches, and has the centre hole, nof circular and close fitting to the axle, but triangular and wide. The result is that while the dises press uniformly on the surface orer which they are rolled, the larger ones rise above their fellows with a jerking motion, which gives a most efficient self-cleaning power to the implement, and thus admits of its being used when other rollers would be clogged. The eccentric dises are now made either with serrated or smooth edges as customers prefer. After careful trial we hare come to the conclusion that it is the most useful roller for general purposes which we yet possess.

Dist of Cambrilde's Roller, showing Sulf cleaning Action.
Undor this head may be noticed press drills, which, bs means of a series of narrow cylinders with conical edyes, form corresponding groores in loose soil. Seeds somn briad cast orei a surface thus treated come up in rews. The

land-presser is a modification of the press-roller. It is made with two or three conimal edged cylinders to fit into the seams of as many pluugh furruws, the other cud
of the axle on which they are fized being supported oy a plain carriage-wheel. It 29 drawn by one horse, and follows in the wake of two or three ploughs, according to the number of its cylinders. When wheat is sown after clover lea, this implement is found exceedingly useful in closing the seams and forming a uniform seed-bed.
The Norwegian, or, as it should rather be called, the Swedish harrow is strictlya clod-crushing implement. From its radiating spikes penetrating the snrface over which it is dramn, it has been called a harrow; but its revolving motion entitles it rather to bo classed with rollers. In its usual form it consists of three rows of east-iron rowels arranged upon parallel axles fixed in an iron frame, which is supported on three wbeels,-one in front and two behind. The outline and arrangements are in fact the same as in Finlayson'a grubber, only substituting parallel rows of rowels for tines. There is also the same leverage for raising and depressing the frame. But this implement has recently been constructed on a much simpler and cheaper plan, in which the wheels and lever apparatus are discarded altogether. It thus consists of a simple wrought-iron frame with four rows of rowels. A fer boards are laid across the frame, forming a platiorm over the rovels, on which the driver stands when it is wished to increase the weight and effeiency of the implement. On the upper side at either end is fixed a piece of wheel-tire, on which the implement, when turned on its back, can slide along, sledge-fashion, when it is mished to move it from place to place. As thus constructed it can bn made for about £5. This is the best implement yet introduced for breaking moist elods.

Section 7.-Breast-Plough and Trenching-Fork.

Before leaving the implemente of tillage, it may be proper to notice two, which have been a good deal brought under aotice of late years, viz, the breast-plough and trenchingforiz The former is extensively used in carrying out the process of paring and buming. It is the implerient known in Scotland as the flanghter (or thin turf) spade. In using it the workman guards his thighs with a piece of board, fastened on apron-wise, and with this presses against the cross-hcad of the implement, and urges forward its cutting edge. When a thin turf has thus been severed from the surface, he turns it over by a jerk of his arms. The fork is used in giving a deep autumn digging to land in preparation for root crops. Both operations can ordinarily be moro cconomically performed by using horse-power with suitable implements. Dut for clearing out corners of fields, bedge sides, and similar places, manual labour with these tools can frequently be made to supplement the plough to good purpose.

Section 8.-Implements for Sonoing.

A large portion of the grain annually sown in Great Britain is still distributed by hand from the primitive sowing-shect.

> "The sower stalks
> With measured step, and liberal throws the grain lutc the faithful bosom of the ground."

In Scotland a decided preference is still given to broadcast sowing, for which purnose a machine is used that corers from 15 to 18 feet, weording to the width of ridge adopted. It consists of 2 long seed-box, carried on a frame mounted on two wheels. From these motion is communicated to a spindle which revolves in the seed-bor, and expels the seed by means of cogs or brushes, through openings which can be graduated to suit the required rate of seeding. It is drawn by a single horse, is attended by one man, and can get over 30 aeres a day. It is peculiarly adapted for the regular distribution of clover and grass sceds Now that reaping by machinery has become so
general, there is an obvious advantage in having the felds as level and with as fcw open forms as possible, and hence of haring a marker attached to the sowing-machine. In one made by Sheriff at West Barns, by an ingenious apparatus on the principle of the odometer, the machine itself is made to register the space which it travels over, and thus to indicate the rate per acre at which it is distributing the seed. Excellent results have been, and still are, obtained fronı broadcast sowing. But as tillage becomes more perfect, there arises a demand for greater accuracy in the depth at which seeds are deposited in the soil, for greater precision in the rate, and regularity of their distribution, and for greater facilities for remoring weeds from amongst the growing crop. These considerations lecl, at a comparatively early period, to the system of sorring crops in rows or drills, and hence the demand for machines to do this expeditiously and aceurately. We accordingly find, in our best cultivated districts, the soming and after-culture of the crops now conducted with a precision which reminds the spectator of the processes of some well-arranged factory. This is accomplished by means of a rariety of drillingmachines, the most frominent of which we shall now notice.
The Suffolk drill is the kind in most general use. It is a complisated and costly machine by which manure and seeds can be simultaneously deposited. That called the "general purpose drill" can sow ten rows of corn, with or without manure, at any width between the rows from 4t to 10 inches, and at any rate per acre between two peeks and six bushels. It can be arranged also to sow clover and grass seeds,-the hearier seeds of clover being thrown out by minute cups,-and the lighter grass seeds brushed out from a separate compartment. It is further fitted for soming beans and turnips-the latter either two drills at a time on the ridge, or three on the flat. This drill, as most recently improved by Messrs Hornsby of Grantham and Garrett of Leiston, has an apparatus for preserving the machine in a level position when working on sloping ground. As a main object in drilling crops at all is to admit of the use of the hoe, it becomes an important point to accomplish the drilling with underiating straightness, and exact parallclism in each successive course of the drill This is now obtained by means of a fore-carriage, which an assistant walking alongside so controls by a lever as easily to keep the wheel in the same rut down which it had previously passed. Messrs Hornsby hare also introduced India-rubber tubes for conducting the seed, in place of the tin funnels hitherto used. These drills cost about £4

The Woburn drill of the Messrs Hensman is simpler in its construetion than those already noticed. "In all other drills, the coulters, which distribute the manure or seed, hang from the carriage. In this drill the carriage rests upon the coulters, which are like the iron of skates; it may be said, indeed, to run on four pairs of skates. Hence this drill's power of penetrating hard ground; and of giving a firm bed to the wheat-seed in soft ground. Each drill coulter, however, preserves its independence as when suspended. This self-adjustment is required by the inequality of tilled ground, and is thus obtained: each pair of coulters is fixed to the end of a balance beam, these again to others, and they to a centrai one. Thus each coulter, in well-poised rank, gives its independent share of support. It raries from the generality of drills, as it is drawn from the centre by whipple-trees instead of shafts; and the drill-man bebind can steer or direct the drill with the greatest nicety. The corn-box of the drill is entirely self-acting, and delivers the seed equally well going eithes up or down hill. It is also capakle of horse-hoeing, by attaching hoes to the levers instead of the coulter-shares

It is drawn-by a pair of horses, and the price from $£ 18$ to $£ 20 .{ }^{\prime \prime} 1$

Turnip drill.-In Scotland, and in the north and west of England, turuips are usually sown on the ridge by a machine which soms two rows at a time. In the southeastern parts of England, which are hotter and drier, it is found better to sow them on the flat, for which purpose machines are constructed which sow four rows together, depositing manure at the same time. Both kindz are adapted for sowing either *urnips or mangold-wurzel secds as required. With the view of economising seed and manure, what are called drop-drills have recently been introduced, which deposit both-not in continuous streams -but in jets, at such intervals apart in the rows as the farmer wishes the plants to stand. What promises to be a more useful machine is a water-drill invented by a Wiltshire farmer-Mr Chandler of Market Lavington. "His water-drill pours down each manure-coulter the requisite amount of fluid, mixed mith powdered manure, and thus brings up the plant from a mere bed of dust. Having used it largely during three years, I may testify to its exccllence. Only last July, when my bailiff had ceased turnip sowing on account of the drought, by directing the use of the water-drill, I obtained from this latter sowing an earlier and a better show of young plants than from the former one with the dust-drill Nor is there any increase of expense if water be within a moderate distance, for we do not use powder-manures alone. They must be mived with ashes, that they may be diffused in the soil Now, the expense and labour of supplying these ashes are equal to the cost of fetching mere water; and apart from any want of rain, it is found that this method of moist diffusion, dissolving, instead of mingling only, the super: phosphate, quickens its action even upon damp ground, and makes a little of it go further." ${ }^{2}$

Section 9.-Manure-Distributors.

The practice of top-dressing wheat, vetches, clover, or meadows, with guano and various light manures, has now so much increased, and the inconvenience of seattering them over the surface by hand is so great, that various machines have recently been invented for distributing them, which can also be used for sowing such manures over turnip drills, covering three at once. Such machines will probably be used in future for distributing lime, which can thus be done much more regularly than by cart and shovel, especially when it is wished to apply small quantities for the destruction of slugs or for other purposes. It seems quite practicable to have this or a similar machine so constructed as that it could be readily hooked on to the tail of a cart containing the lime or other substance which it is desired to distribute by it. The top-dressing material could by such an arrangement be drawn into the hopper of tho distributor as it and its tender move along, and the cart when emptied be replaced by a full one with little loss of time.
A cheap and effective machine, capable of being in a similar manner attached to a dung-cart, which could tear asunder fold-yard manure, and distribute it evenly in the bottoms of turnip drills, would be a great boon to farmers, and seems a fitting object to be aimed at by those possessed of the inventive faculty.

Section 10.-Horse-Hoes.

It has already been remarked that the great inducement to sorw grain and green crops in rows is that hoeing may be resorted to, for the double parpose of ridding them of

[^51]weeds and stimulating their growth by frequent stirring of the soil. It is now upwards of a century since Jethro Tull demonstrated, in his books and on his fields, tho facility with which horse-porver could be thus emplifyed. His system was early adopted in regard to turnips, and led, as we have seen, to a complcte revolution in the practico of agriculture. The peculiar manner in which he applicd his system to grain crops, and the principles on which ho grounded his practice, have hitherto been for the most part repudiated by agriculturists, who have thought it indispensable to drill their grain at intervals so narrow as to admit, as was supposed, of the use of the hand-boe only. But the accuracy with which corn-drills perform their work has been skilfully taken advantage of, and we now have horse-hoes, covering the same breadth as the drill, which can be morked with perfcet safoty in intervals of but seven inches' width. By such a machine, and the labour of a pair of horses, two men, and a boy, ten acres of corn can be hoed in as many hours. Not only is tho work done at a fifth of the expense of hand-hoeing, and far more effectually, but it is practicable in localities and at seasons in which haud-labour cannot be obtained.

Garrett's horsc-hoe is admitted to be the best implement of its kind. It can be used for hocing either beans, turnips, or corn, as the hoes can be adapted to suit any width betwixt rows, and the axle-tree bcing movable at both ends, the wheels, too, can be shifted so as to be kept between the rows of plants. The shafts can be attached to any part of the frame to avoid injury to the crop by the treading of the horses. Each hoe works on a lever independent of the others, and can be loaded with different weights, on the same principle as the coulters of the corndrill, to accommodate it to uneven surfaces and varying degrees of hardness in the soil

A great variety of implements, under the general names of horse-hoes, seufflers, scrapers, or drill-grubbers, fitted for the draught of one borse, and to operate on one drill at a time, is in use in those parts of the country where root crops are chicfly sown on ridgelets from 24 to 30 inches apart. With considerable diversity of form and etticiency, they in general have thesc features in common, riz., provision for being set so as to work at varying widths and depths, and for being armed either with hoes or tines, according as it is wished to parc the surface or stir tho soil more decply. A miniature Norreginu harrow is sometimes attached to drill-grubbers, by which weeds are detached from the soil, and the surface levelled nad pulverised more thoroughly. Teunant's grubber, with its tines set close together, and two horses yoked to it abreast by a tree long enough to allow them to walk in the drills on cither side of that operated upon, is the most effective implement for cultivating between the rows of beans, potatoes, turnips, or mangolds, that wo have yet seen used for this purpose.

Section 11.-Turnip.Thinners.

It sometimes happens, as when drought prevails while the earlier sowings of turnips or mangold are made, and this is followed by copious rains and forcing weather, that the farmer finds it impracticable to get the thinning-out of the scedlings overtaken as fast as is ncedful. To aid him in such emergencies, a class of maehines has been brought out, of which Huckvale's turnip-thinner may be named as a type. . They are rery farourably roported of by those who have used them. Such machines, drawn by one herse, and made to operate upon either one or two rows of young turnip plants, have first a paring apparatus, which clears off weeds from the sides of the rows, and along with this a set of revolving hoes by which gaps are cut in the rows of turnip plauts, and tufts of them aro left standing at any
requiticd distance apart. This does not dispense with the after use of the hand-hoe or fingers to eifect a perfect singling of the plants; but as a large apsce can be gone uver in a day at small cost, it enables the farmer to save his crop from getting overgrown and choked until he cad overtake the more perfect ${ }^{\text {sinnning of }}$ it. The next cless that clainas attention is

Section 1n.-IItarvesting Implements.

These, till little moro than twenty years ago, comprised only the reaping hook and seythe. An implement by means of which herso-power could be made availablo for this inportant operation has long been eagerly desired by farmers liepeatedly during the first half of the present century their hopes had becn excited, only to be disappointed, by the announcement of successful inventions of this kind. Theso hopes were revived, and raised to a higher pitch than ever, by the eppearance, in the Great Exhibition of the Industry of all Nations, of two reaping-machines, known as M'Cormick's and Hussey's, from the United States of Ameriea, where for several years they had been used extensively ard successfully. These implements wero subjected to repeated trials in different parts of England, on crop 1851, but never in circumstances which admittod of their capabilities being tested in a thoroughly satisfactory mauner.

At the first of these trials, mave under the auspices of the Royal Agricultural Society, the preference was given to M'Cormiclr's, to which the Exhibition Medal was in consequenee awarded. It turned out, however, that at this trial Hussey's machine had not \& fair chance, being attended by a person who had never before seen it at work, for, when a further trial took place before the Cleveland Agricultural Society, with Mr Hussey himself superintending his orra machine, an all but unanimous decision was given in his favour. Hussey's machine was in consequeneo adopted by the leadiag inplement makers. such as Messrs Garrett, Crosskill, dec.

Early in 1852, a very important commusication from the pen of the late Mr James Slight, curator of the museum of the Highland and Agricultural Society, sppeared in the Transactions of the Society, by which the attention of the public was recalled to a reaping-machine of home production, viz., that invented by the Rev. Patrick Bell, ininister of the parish of Carmylie in Forfarshire, and for which a premium of $£ 50$ lad been awarded to him by the Highland Society. This machine attracted much attention at that time. Considcrable numbers were made and partially used, but from various canses the invention was lost sight of, until, by the arrival of these American machines, and the notoriety given to them by the Great Exhibition, with concurring causes about to be noticed, a.d intense interest was again excited regarding reaping by maehinery. From Mr Slight's report, the public learned that the identical Bell's machiue, to whieh the prize was awarded, had for the previous fourteen years been statedly cmployed on the farm of Inch-Sichael in the Carse of Gowrie, occupied by Mr George Bell, a brother of the inventor, who, during all that period, had succeeded in reaping, on the average, four-fifths of bis crop by means of it every year. Mr Slight further stated, that at least four specimens of it had been carried to America, and that from the identity in principle betreen them and those now brought thence, with other corroborating circumstances, there is little doubt that the so-called American inventions are after all but imitations of this Scottish nachine. When it becane known that Bell's mnehing was to be exhibited, and, if possible, subjected to public trial, at the meeting of the Highland and Agricultural Soceety at Perth, in August 4852, the oveat was looked forward to by Scottish farmers
with eager interest. On that occasion it was accordingly again bronght forward, with seceral important improvements made upon it, by Mr George Bell, already referred to, and was fully tested in competition with Hussey's, as made by Crosskill. To the disappointment of many, Mlr M"Cormick did not think fit to enter the lists at this or pa some subsequent opportunities.
The success of Bell's machine on this occasion, and at some sulsequent public trials, gave it a high place in public estimation, and accordingly many of the implements manufactured by Mr Crosskill of Beverley, were sold to farmers in all parts of Great Britain, and especially in Scotland. After a hopeful start the success of this machine has not been so decided as was at first anticipated. In common with other reaping-machines, it had of course to contend with the disadvantages of unprepared felds and unskilful guides; but in addition to this, it was found to be too heavy in draught, too liable to derangernent, and (in the first issues of it) too easily broken in some of its parts to be fitted for ceneral use. These drawbaeks were, to a greatce or less extent, obriated by subsequent improvements, and the machine continued for a few years to receive a fair measure of public patronage. By-and-by it was in a great measure superseded by other self-delivery machines, such as Burgess \& Key's M'Cormiek, with its Archimedean screw, which, like Bell's, lays off the reaped grain in a continuous swathe, and by others which, by means of revolving rakes, lay it off in quantities suitable to form a sheaf. In crops of moderate bulk and standing erect, theso self-delivery machines make rapid and satisfactory works, but when the crop is lodged and twisted they are nearly useless. The consequence is that for several years, and especially in those districts where reaping by machinery is most practised, the preference is given to manual-delivery machines, on the ground that they are lighter of draught, less liable to derangement, less costly, more easily managed, and thus more to be deperided upon for the regular performance of a fair amount of daily work, than their heavier rivals And, aecordingly, light machines on Hussey's principle, but with endless variations, are at present most in demand.

Before learing this subject, a remark is due in connection with the strange neglect of Bell's macline for twenty-five years, and the cathusiasm with which it was hailed on its reappearance. The first is so far accounted for by the fact noticed by Mr George Bell, that such specimens of his brother's machine as formerly got into the hands of farmers were so imperfectly constructed that they did not work satisfactorily, sud thus brought discredit on his invention. Thetrue explanation seems to be. that at. that. date the country was not seady for such a machine. Not only was manual labour then sbundant and cheap, from the zumber of Irish labourers, who annually, as harvest drew near, flocked inte the arable districts of Great Britain, but thorough draining had made little progress, and the land waa everywhere liid into high riages, presonting a surface pecularly unfavourable for the successful working of a reaping-machine. Now, however, the conditions are reveraed. Emigration to the colonies, and the ever-growing demand for labourers in connection with factories, mines, docks, and railways, hape to a very great extent withdrawn the class of peuple that used to be available for harvest work, and have ao largely raised the rate of wages to those who atill remain as to render reaping-nachines indispensable to the farmer. The progress of thorough draining has at the same time enabled him to dispense with the old-fashioned ridges and furrows, and to lay his corn lands in the level state go favourable for reaping and other operations of husbandry. In these altered conditions lies the true explanation of the former apathy and subsequent enthusiasm manifested by our farmers to wards this invention.

Section 13.-Mooxing-Machines.
Another class of labour-saving machines, closely allied to those we have just desciribed, for which we are indebted to our American cousins, is mowing-machines. Several different forms of these were introduced and brought into somewhat general use during the years 1858 and 1859 . Having used such machines for the past fourteen years we can testify to their thorough efficiency, and to the very great saring of labour, and still more of time, which can be secured by means of them. In ore instance 30 acres of clover-a very full crop, and partially lodged-were mown in 32 hours, and this under all the disadrantages of a first start. This machine being of very light draught, a pair of horses can work it at a smart pace without difficalty. By employing two pairs of horses, and norking them by relay, it can, in the long days of June and July, be kept going sizteen hours a day, and will easily mow from 16 to 18 acres of seeds or meadow in that time, raking, moreover, better work than can ordinarily be obtained by nsing the scythe. These mowing-machines, which cost from £16 to £25 each, bave proved a most seasonable and truly important addition to our list of agricultural implements. That they may be used to adrantage, it is absolutely necessary to have the land well-rolled and carefully freed from stones.

Section 14.-Haymakers.

Haymakers are valuable implements, and well deserving of more general use. They do their work thoroughly, and enable the farmer to get through a great amount of it in snatches of favourable weather. Where manual labour is scarce, or when, as in Scotland, haymaking and turnipthinning usually come on hand together, the mower and baymaker render the horse-power of the farm available for an important process which cannot be done well unless it is done rapidly and in season,

Section 15.-Horse-Rakes.

Horse-rakes are in frequent use for gathering together the stalks of corn which are scattered during the process of reaping, for facilitatiog the process of haymaking, and also for collecting weeds from fallows. By an ingenious contrivance in the most improved form of this implement, the tecth are disengaged from the material which they bave gathered without interrapting the progress of the horse.

We seem to be verging on the time when, by means of machines worked by horse-power, farmers will be enabled to cut and carry their grass and grain with little more than the ordinary forces of their farms.

Section 16.-Wheel-Carriages.

The cartage of crops, manure, \&c., upon an arable farm, is such an important part of the whole labour performed upon it (equal, as shown by a recent estimate, to one-half), ${ }^{1}$ that it is a matter of the utmost consequence to hare the work performed by carriages of the most suitable kind. It was for a leng time keenly debated by agricultarists, whether waggons or carts are most economical This question is now undoubtedly settled. Mr Pusey aays, "It is proved beyond question that the Scotch and Northumbrian farmers, by nsing one-horse carts, save one-half of the horses which south country farmers still string on to their three-horse maggons and three-horse dung-carts, or dung-pots, as they are called The said threo-horse waggons and dung-pots rould also cost nearly three times as much original outlay. Few, I suppose, if any, farmers buy these expensive luxuries now, though it is wonderful they should keep them; for last year at Grantham, in a public trial, five horses with five carts rere matched agginst five waggons with ten horses, and the fivo

[^52]horses beat the ten by two loads." ${ }^{2}$ The one-horse carte here referred to are usually so constructed as to be easily adapted to the different purposes for which wheel-carriages are needed upon a farm. For each pair of wheels and axle there is provided a close-bodied cart, and another with sparred sides and broad shelvings, called a long-cart, or harvest-cart, either of which can easily be attached to tho wheels, according to the nature of the commodities to be carried. Sometimes a simple morable frame is attached to the close-body to fit it for carrying hay or straw; bat although one or two such frames are useful for casual parposes throughout the jear, they are inferior for harvest work to the regular sparred cart with its own shafts. In some districts the whole of the close-bodied carts ised on tie farm are made to tip. For many purposes this is a great conveniesce; but for the conreyance of grain to market, and generally for aỉ roud work, a firm frame is much easier for the horse, and less liable to decay and de rangement. The Bervickshire practice is to have one pail ot tip-carts on each farm, and all the rest firm or dormantbodied, as they are sometimes called.
Many farms are now prcvided with a water or tank cart, for conveying and distribating liquid manure.

Section 17.-Road-Engines.

Although many attempts have been made to adapt the locomotive steam-engine for the conveyance both of passengers and goods on common roads, the resulta hitherto hare not been altogether satisfactory. Progress is, however, undoubtedly being made in this effort; and in not a few instances such engines are actually in use for the carriage of heary goods If beet sugar factories should increase in Great Britain, the carriage of the roots from the farms to the factories will probably be performed by traction engines; for the inex. pediency of withdrawing the horse-power of the farm from its other urgent work at the season most suitable for delivering these roots to the sugar-maker presents at present a serious hindrance to the caltivation of this crop.

MACEINES FOR PREPARING CROPS FOR MAREET.

(Sections 18, 10, 20.)
Section 18.-Stecm-Engines
The extent to which steam-power is now craployed for itspurposes of the farm is another marked feature in the receat

progress of agriculture. We have already referred to the value of water-power for propelling agricultural machinery
${ }^{2}$ Mr Pusey's Report, in the Joumal of the Royal Agricultura Society of England vol xii. p. 61%.
when it can be had in sufficient and regular supply. As it is only in exceptional cases that farms are thus favoured, the steam-engine is the power that must generally be reekoned upon, and accordingly its use is now so common that a tall chimney has become, over extended districts, the prominent feature of nearly every homestead. It has been satisfactorily shown that grain can be thrashed and dressed by well-constructed, steam-propelled machinery, at onefourth the cost of thrashing by horse-power and dressing by hand-fanners. So great, indeed, is the improvement in steam-engines, and so readily can the amount of power be accommodated to the work to be done, that we find them everywhere superseding the one-horse gin, and even manual labour, for pumping, churning, coffee-grinding, \&c. Wherever, then, a tbrashing-mill is used at all, it may be safcly asserted that, next to water, steam is the cheapest power by which it ean be propelled. The portable engine is the form whiel has hitherto found most favour in the southern parts of the kingdom. Mr Pusey thus states the resson for which he regards them as preferable to fixed engines:-"If a farm be a large onc, and especially if, as is often the case, it be of an irregular shape, there is great waste of labour for horses and men in bringing home all the corn in the straw to one point, and in again carrying out the dung to a distance of perhaps two or three miles. It is therefore common, and should be general, to have a second outlying yard. This accommodation cannot be reconciled with a fixed engine.

Portable Thrashing-Nachine. (Clayton, Shuttleworth, \& Co.)
"If the farm be oi a moderate size, it will hardly-and if small will certainly not-bear the expense of a fixed engine: there would be waste of capital in multiplying fixed engines to be worked but a few days in the year. It is now common, therefore, in some counties for a man to invest a small capital in a movable engine, and earn his livelihood by letting it out to the farmer.
"But there is a furtner advantage in these movable engines, little, I beliere, if at all known. Hitherto corn has been thrashed under cover in barns: hut with these engines and the improved thrashing-machines we can-thrash the rick in the open air at once as it stands. It will be caid, How can you thrash out of doors on a wet day? The answer is simple. Neither can you move your rick into your barn on a wet day; and so rapid is the work of the new thrashing-machines, that it takes no more time to thrash the corn than to more it. Open-air thrashing is also far ploasanter and bealthier for the labourers, their lungs not being choved with dust, as under cover they ara; and there is, of course, a saving of labour to the tenant not inconsiderable. But when these movable steam-engines have spread generally, there mill arise an equally important.saving to the landlord in buildings. Instead of three or more barns
elustering round the homestead, one or other in constant want of repair, a single building will suffice for dressing corn and for chaff-cutting. The very barn-floors saved will be zo insignificant item. Now that buildings are required for new purposes, we must, if we can, retrench those buildinge whose objects are obsolete. Open-air thrashing may appear visionary, but it is quite common with the new machinery; nor would any one perform the tedious manocuvre of setting horses and men to pull down a rick, place it on carts, and build it up again in the barn, who had onco tried the simple plan of pitching the sheares at once into the thrashingmachine.".1
To us these reasons are ineonelusive.. A fixed engine can be erected and kept in repair at greatly less cost than a portable one of the same power. It is much casier to keep the steam at working pressure in the common boiler than in the tubular one, which, from its compactness, is generally adopted in portable engines. It is, no doubt, very convenicnt to draw up engine and machinery alongside a rick and piteh the sheaves at once upon the feeding-board, and very pleasant to do this in the sunshine and "caller air;" but we should think it neither convenient nor pleasant to have engine and thrashing-gear to transport and refix every time of thrashing, to have grain and chaff to cart to the barn, the thrashed straw to convey to the respective places of consumption, and all this in circumstances unfavourable to accurate and cleanly disposal of the products, and excessive exposure to risk of weather. Sudden rain will no doubt interrupt the carrying in of a rick in the one case as the thrashing of it in the other; but there is this vast difference in favour of the former, that the partially carried rick is easily re-covered; machinery, products of thrashing, and work-people, are safely under cover; and the engine is ready by a slight change of gearing for other work, such as bruising, grinding, or chaff-cutting.

It is urged on behalf of the portable engine, that in districts where the farms are generally small, one may serve a good many neighbours. Now, not to d well on the expense and inconverience to small oceupiers of frequently transporting such heavy carriages, and of having as much of their crop thrashed in a day (there being manifest economy in having at least a day's work when it is employed) as will meet theis demands for fodder and litter for weeks to come, we are persuaded that on farms of even 80 or 100 acres, a compact fixed engine of two or three horse-power will thrash, bruise grain, cut chaff, work a churn, and cook cattle food, \&c., more economically than such worl can be done in any other way. It is very usual to find on such farms, especially in dairy districts, an apparatus for cooking cattle food by steam, or by boiling in a large copper, where as much fuel is used every day, and as mueh steam generated, as would work such an engine as we have referred to, and do the cooking over and above. Even a small dairy implies a daily demand for boiling water to scrub vessels and cook food for cows. How manifestly economical, then, when the steam is up at any rate, to employ this untiring, obedient agent, so willing to turn the hand of anything, in performing the heavy work of the homestead with a power equal, perhaps, to that of all the men and horses employed upon the farm.
Whenever iillage by steam-power is fairly available, there will undoubtedly be an inducement to uso the portable engine as a thrashing-power that has not hitherto existed, as there will be a manifest economy in having both operations performed by the same engine. Even then, however, there is a high probability of its being found impracticable to withdraw the engine even once a week for the needful thrashing during the six or eight weeks immediately after

[^53]harvest, when it will be of such consequence to make diligent use of every available hour for pushing on the tillage.

The kind of fixed engine most approved for farm-work in the north of England and south of Scotland is the overhead crank engine, attached by direct action to the spurwheel, and sometimes even to the drum shaft of the thrashing-machine. Their cheapness, simplicity of construction, easy management, and non-liability to derangement, fit these engines in an eminent degree for farm-work. ${ }^{1}$

Section 19.-Thrashing-Machines.

It is now sixty-five years since an ingenious Scotch mechanist, Andrew Meikle, produced a thrashing-machine so perfect that its essential features are retained unaltered to the present day. Indeed, it is frequently asserted that, after all the modifications and supposed improvements of the thrashing-machine which have been introduced by various parties, the mills made by Meikle himself have not yet been surpassed, ao far as thorough and rapid separation of the grain from the straw is concerned. The unthrashed corn is fed evenly into a pair of slowly revolving fluted sollers of cast-iron, by which it is presented to the action of a rapidly revolving cylinder or drum armed with four beaters, which are square spars of wood faced with iron, fixed parallel to its axis, and projecting about four inches from its circumference. The drum is provided with a dome or cover, and the corn being partly held by the fluted rollera es it passes betwist the drum and its corer, the rapid strokes of the beaters detach the grain from the ears, and throw the straw forward upon slowly revolving rakes, in passing over which the loose grain is shaken out of the atraw, and falls through a grating into the hopper of a winnowing and riddling machine, which rids it of dust and chaff, and separates the grain from the unthrashed ears and broken straw, called roughs or shorts. The grain and roughs are discharged by scparate spouts into the apartment below the thrashing-loft, whenee the corn is fed into the rollers, and the thrashed straw falls from the rakes into the straw barn beyond. Since Meikle's time further additions have been made to the machinery. In the most improved machines driven by steam or a sufficient water power, the grain is raised by a series of buckets fixed on an endless web into the hopper of a double winnowing-machine, by which it is separated intoclean corn, Light, whites or capes, and small seeds and sand. The discharging spouts are sufficicntly elevated to admit of sacks being hooked on to receive the different products as they fall. When barley is thrashed, it is first carried by a separato set of elevatore, which can be detached at pleasure, into a "hummeller," ir which it is freed from the awns, and then raised into the second fanners in the same manner as other grain. The hummeller is a hollow cylinder, in which a spindle fitted with transverse blunt knives revolves rapidly. The rough grain is poured in at the top, and, after bcing acted upon by the knives, is emitted at the bottom through an opening which is enlarged or diminished by a sliding shutter, according to the degree of trimming that is required. A large set of elevators is usually etmploged to carry up the roughs to the feeding-board, that they may again be subjected to the action of the drum. The roughs are emptied, not directly on the feeding-board, but into a riddle, from which the loose grain passes by a canvas funnel direct to the wincower in the apartment below, and only the unthrashed ears and short straw are allowed to fall upon the board.

The alterations that have been made upon the thrashing-

[^54]machine since Meikle's time chiefly affect the drum. Meiklo himself tried to improve upon his beaters by fixing a projecting ledge of iron on their outer edges, so as to give them a scutching action similar to that of flaz-mills. This strips of the grain from oats or barley very well when thinly fed in; but its tendency is to ruk off the entire ears, especially of wheat, and also to miss a portion of the ears, whenever there is rapid feeding in. More recent trials of drums on the scutching principle show them to be on the whole inferior to the plain beater.

We have already referred to the general use of portable thrashing-machines in the eastern counties of England. These, for the most part, have drums with six beaters upon a skeleton frame, which revolve with great rapidity (about 800 times per minute, hence often called high-speed drum), within a concave or screen, which encloses the drum for about one-third its circumference. This screen consists alternately of iron ribs and open wire-work, and is so placed that its inner surface can be brought into year contact with the edges of the revolving beaters, and admits of this space being increased or diminished by means of screews. No feeding-rollers are used with this drum, the unthrashed corn being introduced directly to it.

Another form of drum, acting on the same principie as that just referred to, but cased with plate-iron, and having for beaters eight strips of iron projecting about one-fourth of an inch from its surface, and which works within a concare which embraces it for three-fifths of its circumference, is in use when it is desired to preserve the straw as straight and unbroken as possible. These are made of sufficient width to admit of the corn being fed in sideways, and are called bolting machines, from the straw being delivered in a fit state for being at once made up into bolts or bundles for market. Although the term beaters is isetained in describing these drums, it is evident that the process by which the grain is separated from the ears is rubbing rather than beating. This necessarily requires that only a narrow space intervene between drum and concare, and that the corn be fed in somewhat thinly. Such machines thrash clean, whether the ears are all at one end of the sheaf or not, and deliver the straw straight and uninjured; but it is objected to these by some that they are slower in their operation than those with the beating drum, are liable to choke if the straw is at all damp, that the grain is sometimes broken by them, and that they require greater power to drive them.

A further and more recent modification is the peg-drum. In this case the drum is fitted with parallel rows of iron pegs, projecting about $2 \frac{1}{2}$ inches from its surface, which in its revolutions pass within one-fourth of an inch of similar pegs fixed in the concave in rows running at right angles to the drum. Great things were at first anticipated from this invention, which, however, it has failed to realise. But iron pegs have more recently been added to the common beater-drum with apparent success. The beaters in this case are made one-half narrower than usual, and have stont iron pegs, formed of square rods, driven into their faces, angle foremost, and slightly reflected at the points. These act by a combination of beating and rippling, and are said to thrash clean and to be easily driven.

There is thus a great variety of thrashing-machines to be found in different parts of the country, the comparative merits of' which are frequently and keenly discussed by agriculturists. The extraordinary discrepancies in the amount and quality of the work performed by difierent machines, and in the power required to effict it, are due quite as much to the varying degrees of skill with which their parts are proportioned and put together, as to varying merit in the respective plans of construction.

In the best examples of 6-horse power stationary steamengines and thrashing-machinery, as found in the Lothians,

Nity quarters of griin, taking the avcrage of wheat, barley, and oats, are thrashed, dressed, and sacked up ready for market, in a day of ten hours, with a censumption of $7 \frac{1}{2}$ CWI. of good coals, and a gross expenditure for wages, value of horse labour fuel, and wear and tear of machinery, of 9 d . per quarter.
The exigeacics of the labour market are giving a powerful stimulus to the use of labour-saving contrivances of all kinds; and hence the receatiatroduction of straw elevators, to bo worked either by horse-power or by the same steamengine that'is driving the thrashing-machinery. The hatter plan finds most favour in England, where it has already been adopted to a considerable extent.

The Rogal Agricultural Society of Eagland las done much towards ascertaining the real merits of the various thrashing-machines now in use, by the carcfully conducted comparative trials to which it has subjected those which have been presented in competition for its liberal prizes. The accuracy of these trials, and the value of the recorded results, have been much enhanced by the use of an ingenious apparatus invented by Mr C. E. Amos, consulting engineer to the Society, which is figured and described at p. 479 of vol xi, of the Society's Journal. A pencil connected with this apparatus traces a dirgram upon a shcet of paper, recording every rariation of the porver employed during the experiment to work the machine under trial. For reasons already stated, we regard it as unfortunate that the patronage of this great Socicty has hitherto been so exclusively bestowed upoa portable machines

> Section 20.— Winnowing-Machines,

We hare already referred to the fanners, which, except in portable machines, are almost invariably found in combiation with thrashing-machinery, so us to deliver the grain into the corn-chamber in a comparatively clean state ; and we have also noticed the furthor contrivances by which, when there is a sufficient motive porwer at command, the complete dressing of the grain goes on simultaneously .ith the thrashing. The winnowers used in such cases do not differ in construction from those worked by hand. Indeed, it is usual to have one at least that can be used in either way at pleasure. In these machines the separation of the clean from the light grain, and of both from dust, sand, and secds of weeds, or other rubbish, is effected by directing an artificial blast of wind upon a stream of grain as it falls upon a riddle. There is thus a conbination of fanning and sifting, which is used in difereat degrees according to the victrs of the mechanist. In some forms of this machine the benefit of the artificial blast is in a great measure lost throngh an injudicious application of it.

Section 21.-Corn-Bruiser and Grinding-Mill.

The now frequent use of various kinds of grain in the fattening of live stocls creates a necessity for machines to prepare it for this purpose, either ty breaking, bruising, or grinding. A profusion of these, to be worked by hand, is everywhere to be met with. Such machines are always most economically worked by steam or water power. When that can be had, a set of rollers for bruising oats or linseed, and millstones to grind the inferior grain of the farm, form a most valuable adjition to barn machinery.

Section 22.-Cake-C'rushers.

Machines for breaking linseed-cake into large pieces for cattle, or smaller opes for sheep, aro now in geaeral use. The breaking is performed by passing the cakes between terrated roiners, by which it is nipt into morsels. These aro usually driven by hand; but it is always expedient to have a pulley attached to them, and to take edvantage of cechanical power whea arailable.

Section 23.-Chaff-Cutiers.
The use of this class of machincs has jacreased very much of late jears. Fodder whea cut into lengths of froal half-an-ioch to an inch is somerrhat more easily mesticated than when given to animals in its natural state; but the chief advantages of this practice arc, that it preveate waste, and admits of different qualities-as of hay and straw, straw and grecn forage, or chaff and pulped roots-bcing so mixcd that animals cannot pick out the one from amongst the other, but must eat the mixture as it is prescated to them. Such cut fodder also forms an excclleat rehicle in which to give meal or bruised graim, cither cooked or raw, to live stock. This applies particularly to shecp feeding on turnips, as they then require a portion of dry food, but waste it grievously when it is not thus prepared. Chaff-cutters are constructed on a varicty of plans; but the principle most frequently adopted is that of radial knives bolted to the arm of a tly-wheel, which work actoss the end of a feeding-box fitted with rollers, which draw forward the straw or hay and present it in a compressed state to the action of the kaives. A machine on this principle, made by Cornes of Barbridge, has gained the first premium in its class at receat mectings of the Rogal Agricultural Society of Eagland. Gillets' guillotine chaff-cutter is an exceedingly ingenious and efficient machine, performing its work with great accuracy, and without frequeat sharpcning of its one double-cdged knife. These machines are most economically worked by the power used for thrashing. The most convenient site for them is in the upper loft of the straw-barn, where the straw can be supplied with little labour, and the chaff either shoved aside, or allowed to fall as it is cut through an opeaing in the floor into the apartment below, and at once conveyed to other parts of the homestead. Tho practice on some farms where there is a fixed steam-engine, is to thrash 8 stack of oats in the forcnoon, and to cut up the straw, and bruise or grind the grain simultaneously, in the afternoon.

Section s4.-Turnip-Cutters.

Cattle and sheep which have arrived at maturty are ablo to scoop turnips rapidly with their sharp, gouge-like front tecth, and so can be fattened on this kind of food without an absnlute aecessity of slicing it for them. Eren for adult animals there is, however, si adrantage in reducing turnips to pieces which they can easily take into their mouths, and at once get between their grinders without any preliminary scooping; but for young stock, during the period of dentition, it is indispensable to their wart subsistence. It is largely through the use of slicing. machines that certain breeds of shcep are fattencd on turnips, and got ready for thie butcher at fourteen monthe old. It seems to be admitted on all hands that Gardener's patent turnip-catter is the best that bas yet been produced for slicing roots for sheep. It is now made entirely of iron, and is an exceedingly useful machine.
In cattle feeding it is not usually thought necessary to divide the roots given to them so minutely as for sheep. A simple machine, fashioned mach on the principle of nut-crackers, by which, at each depression of the lever handle, one turnip is forced through a set of knives which divide it into slices each an inch thick, is very generally used in Berwickshire for this purposc. Many persons, however, prefer to have the turnips put into the cattle-troughs whole, and then to have them cut by a simple cross-bladed haud-chopper, which at each blow quarters the piece struck by it. The mode of housing fattening cattle largely deternines whether roots can be most conveniently sliced before or after being put into the fecting-troughs

Section 25.-Tumip-Pulpers.
An opinion now obtains, and is on the increase, that it is advantagoous to rasp roots into minute fragments and mix them with chaff before giving them to cattle, as this not only facilitates mastication, but in wintry weather prevents the chilling effects of a bellyful of such watery food as turnips are when eaten alone. This system is peculiarly appropriate when it is desired to give a ferv roots to store cattie which are being fed mainly upon straw or coarse bay. When a few turnips or mangolds are put down in their natural state there is a scramble for the better fcad, in which the stronger cattle get more than their share, and the weaker are knocked about. But by pulping the roots and mixing them with a full allowance of chaff, every animal gets its fill, and there is nothing to quarrel about.
At the Carlisle meeting of the Royal Agricultural Society a premium was offered for machines to perform this kind of work, under the somewhat inappropriate designation of "pulping-machines." The prize was awarded to Mr Philips for kis machine, which reduces roots to minute fragments by means, of a series of circular saws. We learn from parties who have made trial of most of the machines of this class yet brought out, that they give the preference to that made by Bentail of Ma'don in Sussex.

Section 26.-Steaming Apparatus for Cooiving Cattle Food.

We have several times ailuded to the cooking of food for cattle. This is performed either by boiling in a common pot, by steaming in a close vessel, or by infusion in boiling water. Varieties of apparatus are in use for these purposes. A conrenient one is a close boiler, with a cistern over it, from which it supplies itself with cold water by a selfacting stop-cock. This is alike suitable for cooking either by steaming or infusing.

Section 27.-Weighing-Hachines.

It is of course indispensable for every farm to be provided with beam and scales, or other apparatus, for ascertaining the weight of grain, wool, and other commodities, in quantities varying from 1 lb . to 3 cwt . But, besides this, it is very desirable to have a machine by which not only turnips, hay, manures, \&ic., can be weighed in cart-loads, but by which also the live weight of pigs, sincep, and Lullocks can be ascertained. Such a machine, conveniently placed in the homestead, enables the farmer to check the weighing of purchased manure, linseed-cake, coal, and similar commodities, with great facility. It affords the means of conducting various experiments for ascertaining the comparative productiveness of crops, the quantities of food consumed by cattle, and their periodic progress, with readiness and precision. To persons unable to estimate the weight of cattle by the eye readily and accurately, such a machine is invaluable.

S'ection 28.-Concluding Remarkis on Implements.

We have thus enumerated, and briefly described, those machines and implements of agriculture which may be held to be indispensable, if the soil is to be cultivated to the best advantage. The list does not profess to be complete; but enough is given to indicate the progress which has recently taken place in this department. We have already referred to this department of the proceedings of the Royal Agricultural Society of England, and would earnestly recommend to all engaged in agriculture the careful study of the reports on implements contained in the ninth and subsequent volumes of their Journal. The care with which they have selected their judges, and the skilful manner in which those entrusted with the difficult and responsible office have discharged their duties, are truly admirable A few oxtracts from these reports will serve to show the
extent and value of this department of the Society's laboura In the report for 1849, Mr Thomson of Moat-Hal! eays"The Society's early shows of inplements must be viewed chiefly in the light of bazaars or expositions. Neithel sterards nor judges had yet acquired the experience requisite for the adequate discharge of their office, so that such meu as Messrs Garrett, Hornsby, Ransome, and a fer cthers, would have laughed in their sleeves had they bees, told that they could learn anything in the Society's show yard. In epite, howerer, of a creditable display on the part of a few leading firms, the majority of the inplements exhibited at these early shows were of inferior construction and workmanship, and the general appearance of the exhioitions meagre and unsatisfactory
"The attention of some of the leading members of the Society (especially of the late lamented Mr Handley) was earnestly directed to the improvement of this department, and they soon perceived that little was gained by collecting implements in a show-yard for people to gaze at, unless an adequate trial could be made of their respective merits. To attain this end great exertions were made, and evers improvement in the mode of trial was followed by sc marked an increase in the number and merit of the imple ments brought forward at. subsequent shows, as to provi the strongest incentive to further effort.
"At the Cambridge and Liverpool meetings, when thest trials were in their infancy, their main attraction consistec of ploughing-matches on a large seale, which gratified sight seers, bat gave no results that could be depended upon and therefore disappointed all practical men. It-would occupy time unnecessarily to trace the gradual changes which have led to the discontinuance of these shoriy exhi bitions, and the substitution in their place of quiet business-like trials, in the presence of stewards and judges alone. Suffice it to say, that what they have lost in dis play, they have gained in efficiency, and consequently in farour with those classes for whose benefit they were dosigned. At the York meeting, the improved mode of trying the thrashing-machines snpplied a deficiency which, until that time, had been much felt, viz., the absence of any means of ascertaining the amount of porrer expended io working the machines under trial; and it may now be asserted, with some confidence, that, with the exception of an occasional error or accident, the best implements ars uniformly selected for prizes.
"It now remains to answer the question proposed for consideration, viz, to what extent the great improvement made of late in agricultural implements is due to the exertions of this Society; and with this view a tabular statement is subjoined, which shows the relative extent and importance of the Society's two first and two last shows of implements :-

		No. of Exhibi:ors	Awards.		
		3одеу.	Sedals		
1839	Oxford		23	≤ 5	4
1840	Cambridge	36	0	7	
1848	York	146	230	21	
1849	Normich	145	364	13	

"From this it will be seen that at Cambridge, where the trial of implements was confined to one day, and was, is other respects, so immature as to be of little practical value, the number of exhibitors was only thirty-six, and the judges, in whom a certain discretionary power was rested, a warded no money and but seven medals, in consequonce of the scarcity of objects deserving of reward; whilst at. York, eight years after, when trials lasted several cays, and bad attained a considerable degree of perfection, the number of exhibitors had increased four-fold The additionai amount offered in prizes at the later meetings has undoubtedly assisted in creating this great increase of competition, but it cannot be considered the principal cause, since the impla
ment-makers are unanimous in declaring that, even when most successful, the prizes they receive do not reimburse them for their expenses and loss of time. How, then, are the increased exertions of the machine-makers to be accounted for? Simply by the fact that the trials of implements havo gradually won the confidence of the farmer, 80 that, when selecting implcments for purchase, he gives the preference to those which have received the Society's mark of approval. This inference is corroborated by the makers themselres, who readily admit that the winner of a prize, for any implement of general utility, is sure to reccive an ample amount of orders, and that the awsid of a medal is worth on an average $£ 50$."

In reporting upon the agricultural implement department of the Great Exhibition, Mr Pusey says-"The yearly shows and trials of the Royal Agricultural Society have certainly done more in England for agricultural machines within the last ten years, than had been attempted anywhere in all former time. It seems proved that since snnual country shows were established by Lord Spencer, Mr Handley, and others yet living, old implements have been improved, and new ones devised, whose performances stand the necessary inquiry as to the amount of saving they can effect. To ascertain that amount precisely is difficult ; but, looking through the successive stages of management, and seeing that the owner of a stock-fism is ensbled, in the preparation of his land, by using lighter ploughs, to cast off one horse in three, and by adopting other simple tools to dispense altogether with a great part of his ploughing,that in the culture of crops by the various drills, horse labour can be partly reduced, the seed otherwise wanted partly saved, or the use of manures greatly economised, while the horse-hoe replaces the hoo at onc-half the expense,-that in harvest the American reapers can effect thirty men's work, whilst the Scotch cart replaces the old English waggon with exactly half the number of horses,-that in preparing corn for man's food, the steam thrashing-machine saves two-thirds of our former expense, -and in preparing food for stock, the turnip-cutter, at sn outlay of 1 s ., adds 8 s . a-head in one winter to the value of sheep; lastly, that in the indispensable but costly operation of draining, the materials have been reduced from 80 s . to 15 s .- to one-fifth, namely, of their former cost,-it seems to be proved that the efforts of sgricultural mechanists have been so far successful, as in all these main branches of farming labour, taken together, to effect a saving, on outgoings, of little less than one-balf."

Since these reports were made, the demand for improved agricultural implements and machinery has increased enormously, so much so that the manufacture of them is now a most important and a rapidly increasing branch of our national industry, and we quite anticipate that in a short time there will be such a general sppreciation of the benefits of cultivation by steam power, and such a demand for engines and tackle to carry it out, as the makers and manufacturers will find it difficult to satisfy.

Scottish agriculturists, in reading these reports, will probably note with self-gratulation, that some of the improvements referred to as of recent introduction in England, viz., tro-horse ploughs and one-horse carts, have long been established among themselves. Indeed, they will find graceful acknowledgment of the fact in these reports. Unless altogether blinded by prejudice, they will, however, see that our brethren south of the Tweed hare already outstripped us in nuany particulars, sad that unless our national Society, our mechsnists, and farmers, exert themselves with corresponding judgment and zeal, we must henceforth bo fain to follow, where we at least fancy that we have hitherto been leading. But we have more important motives snd eacouragements to exertion than mere mational emulation. The extent to which the cost of production of farm produce has been
lessened by recent improvements in the implements of husbandry, snd in the details of farm management, is greater than many are aware of. It seems to be in this direction mainly that the farmer must look for a set-off against the eteadily increasing cost of land and labour. If by further improvements in his machinery and implements he is enabled to keep fewer horses, to get his deep tillage performed by steam power, and his mowing and reaping accomplished by the ordinary forces which he requires throughout the year, the reduction upon the prime cost of his produce will be really important. A hopeful element in this anticipated progress is that it tends directly to elevate the condition of the rural labourer. Every addition to the steam power and labour-saving machines used upon the farm implies an increased demand for cultured minds to guido them, a lessening of the drudgery herctofore imposed upon human thews and sinews, an equalising of employment throughout the year, and a better and steadier rate of wages. Believing, as we do, that on every farm enormous waste of motive power-mechanical, snimal, and manual-is continuously going on through the imperfection of the implements and machines now in use, we would urge upon sll concerned to look well to this; for, with all our improvements, there is undoubtedly yet a large margin for retrenchment here.

Besides the bulky sad costly implements now enumerated, every farm must be provided with a considerable assortment of hand-implements and tools, sll of which it is of consequence to have good of their kind. Although not individually costly, they absorb a considerable capital in the aggregate. When not in use, they require to be kept under lock, sid st all times need to be well looked after. Without waiting to describe these in detail, let us now see how the work of the farm is conducted.

CHAPTER VII. -

PREPARATION OF THE LAND FOR TILLAGE OPERATIONS. Section 1.-When Required.
Before those simple tillage operations which sre necessary in every instance of committing seeds to the carth can be gone about, there sre more costly snd elaborate processes of preparation which must be encountered in certain circumstances, in order to fit the soil for bearing cultivated crops. It is now only in exceptional cases that the British agriculturist has to reclaim land from a state of nature. The low-country farmer does occasionally meet with a pstch of woodland, or a bauk covered with gorse or brushwood, which he sets about converting into arable land. It is in the higher districts that, from the facilities now afforded for readily enriching poor soils by portable manures, the plough still frequently invades new portions of muir snd bog, and transforms them into fields. The occupiers of land in these upland districts are accordingly still familiar with the processes of paring and burning, trenching, removing earthfast stones, and levelling inequalities of surface. In breaking up land that has been for a course of years under pasturage, paring and burning are also frequently resorted to in all parts of the country. The grand improvement of all, thorough underground draingge, is common to every district and class of soils

Section 2.-Draining.

From the moist climatc of Britain, draining is undoubtedly the all-important preliminary operation in setting sbout the improvement of the soil

To drain land is to rid it of its superfluous moisture. The rivers of a country with their tributary brooks and rills sre the natural provision for removing the rain water which either flows directly from its surface, or which, after percolating through porous strata to an indefinite depth, is again discharged at the surface by aprings. The latter may
thus be regarded as the outlets of a natural underground dramage. This provision for disposing of the water that falls from the clouds is usually so irreguiar in its distribution, and so imperfect in its operation, that it leaves much to be accumplished by human labour and ingenuity. The art of the drainer accordingly consists-
lst, In improving the natural outfalls by deepening, straightening, or embauking rivers; and by supplementing these, when necessary, by artificial canals and ditches: and,
$2 d$, In freeing the soil and subsoil from staguant water, by means of artificial underground channels.
The first of these operations, called trunk drainage, is the most needful; for until it be accomplished there are extensive tracts of land, and that usually of the most valuable kind, to which the secondary process either cannot be applied at all, or only with the niost partial and inefficient results. Very mauy of our British rivers and streams fow with a sluggish and tortuous course throligh valleys of fiat alluvial soil, which, as the coast is approached, expand into extensive plains, but little elevated above the level of the sea Here the course of the river is obstructed by shifting shoals and sand-banks, and by the perindic influx of the tides. The consequence is, that immense tracts of valuable land are at all times in a water-logged and comparatively worthless state, and on every recurreuce of a flood are laid entirely under water. In a subsequent chapter on "Waste Lands" some account shall be given of the extent of this evil, and of the efforts that have been successfully devoted to its remedy. Some of these fen-land and estuary drainage works have been accomplished in the face of natural obstacles of the most formidable character, and constitute trophies of engineering talent of which the country may well be proud. Great as the natural difficulties are which have to be encountered in such cases, there are others of a different kind which have often proved more impracticable. It has been found easier to cxclude the sea and restrain landfloods, than to overcome the prejudices and reconcile the conflicting interests of navigation companies, commissioners of sewers, owners of mills, and landed proprietors. Although all these classes suffer the most serious losses and inconveniences from the defective state of many of our rivers, it is found extremely difficult to reconcile their conflicting claims, and to allocate to each his proper share of the cost of improvements by which all are to benefit. A nost interesting and instructiveillustration of the urgent necessity for improving the state of our rivers, of the difficulties to he encountered in doing so, and of the incalculable benefits thus to be obtained, has been given in an essay on Trunk Drainage, by John Algernon Clarke, Esq., published in vol. xv. (part first) of the Journal of the Royal Agricultural Society of England. Mr Clarke, after some most important observations on trunk drainage, describes in detail works projected under powers granted in an Act of Parliament, passed in 1852, "constituting commissioners for the improvement of the river Nene and the navigation thereof."

There is not a district of the kingdom in which works similar -in kind are not absolutely indispensable, before exteusive tracts of valuable land can be rendered available for protitable cultivation by means of underground drainage. It is interesting to know that thenecessity for trunk drainage, and the nueans of accomplishing it, were distinctly set before the public 200 years ago by a practical draining engineer, to whise writings the attention of the agricultural community has been frequently directed of lato by Mr Parkes, Mr Gisborne, and others. From the third edition (1652) of The Improver Improved, by Walter Blithe, the author referred to, in which the true principles of land drannage are stated as distinctly, aud urged as earnestly, as
by any of our modern writers, we here quote the following remarks:-
"A strait water-course, cut a considerable depth, in a thousand parts of this nation, would be more advantageous than wo are aware of, or I will task myself here to dispute further. And though many persons are interested therein, and some will agree, and others will oppose; oue creek lyeth on one side of the river, in one lord's maner, and another lyeth on the other side, and divers men own the same; why may not one neighhour change with another, when hoth are gainers? If not, why may they not be compelled for their own good, and the commonwealth's advantage! I daresay thousadds of acres of very rich land may herely be gained, and possibly es many more nuch amended, that are almost destroyed; but a law is wanting herein for the present, which I hope will be supplied if it may appear advancement to the public; for to private interests it is not possihle to he the least prejudice, when every man hath benefit, and each mau may also have an equall allomance if the least prejudiced.
"But. a word or two more, and se shall conclude this chapterand it is a little to further this improvement through a great destruction (as some may say); it is the removing or the destroying of all such mills, and none else, as drown and corrupt more lands than themselves are worth to the commonwealth, and they are such as are kept up or dammed so high as that they boggyfie all the lands that lye under their mill-head. Such mills as are of little worth, or are by constant great charges mointained, I advise to be pulled down; the advance of the land, when the water is let run his course, apd not iropounded, will be of far greater value many times. But in case the mills should be so necessary and profitable too, and far more than the lands they spoil, I shall then adrise, that under thy 2 nill-dam, so many fards wide from-it as maj prevent breaking through, thou make a very deep trench all along so far as thy lands are putrefied, aud thereinto receive all the issuing, spew. ing water, and therehy stop or cut off the feeding of it upen thy meadow, and carry it away back into thy back-water or false course, by as deep a trench, cut through the mest low and convenient part of thy meads. But put case that thon shouldst have no convenie. fall on that side thy mill-dam, then thou must make some course, or plant some trough under thy mill-dan, and ro carry it under into somu lower course that may preserve it from soaking thy mexdows or pasturcs under it; and by this means thon maist in a good measure reduce thy land to good soundness, and. probably wholly cure it, and preserve thy mill also."

It is painful to refiect that after the lapse of two centuries, we should still see, as Blithe did, much "gallant land" ruined for want of those draining operations which he so happily describes.

A clear outfall of sufficient depth being secured, the way is open for the application of underground draining. And here it may be proper to state, that there is very little of the land of Great Britain naturally so dry as not to be susceptible of improvement by artificial draining; for land is not in a perfect condition with respect to drainage, unless all the rain that falls upon it can sink down to the minimum Aepth $\approx=u i r e d$ for the healthy development of the roots of cultivacid crops, and thence find vent, either through a naturally porous subsoil or by artificial channels. Much controversy has taken place as to what this minimum depth is. Suffice it to say, that opinion is now decidedly in favour of a greater depth than was considered necessary even a few years ago, and that the best authorities concur in stating it at from three to four feet. There are persons who doubt whether the roots of our ordinary grain or green crops ever penetrate to such a depth as has now been specifed. A careful examination will satisfy any one who makes it, that minute filamentary rootlets are sent down to extraordinary depths, wherever they are not arrested by stagnant water. It has also been questioned whether any benefit accrles to crops from this deep descent of their roots. Some persons have even asserted that it is only when they do not find food near at hand that they thus wander. But it must be borne in mind that plants obtain moisture as well as nourishment by means of their rootos, and the fact is well known that plants growing in a deep soil resting on a porous subsoil seldom or never suffer from drought. It is instructive, too, on this point, to observe the practice of the most skilful gardeners, and see the impurtance which they attach to trenching, the great dejth
at which they often deposit manure, and the stress which they lay upon thorough drainage. On the other-hand, it is well known that soils which soonest become saturated, and run from the surface in wet weather, are precisely thoso which parch and get chapped the soonest in drought. The effectual way to secure our crops at onco from dromning and parcling, is to put the land in a right condition with respect to drainage.

All soils possess more or less the power of absorbing and retaining water. Pure clays have it in the greatest degree, and gritty siliccous ones in the smallest. In dry weather this power of attracting moisture is constantly operating to supply from below the loss taking place by evaporation at the surface. In heavy rains, as soon as the entire mass has drunk its fill, the excess begins to flow off below; and therefore a deep stratum, through which water can percolate, but in which it can never stagnate-that is, never exceed the point of saturation-is precisely that in which plants are most secure from the extremes of drought and drowning.

If a perfect condition of the soil with respect to drainage is of importance for its influence in preserving it in ar right condition as respects moisture, it is still more so for its effects upon its temperature. All who are conversant with rural affairs are fnmiliar with that popular classification of soils in virtuo of which such as are naturally dry are also invariably spoken of as warm and early; and conversely, that wet soils are invariably described as being cold and late. This classification is strictly accurate, and the explanation of it is simple. An excess of water in soil keeps. down its temperature in various ways. In passing into ths state of vapour it rapidly carries off the heat which the soil has ohtained from the sun's rays. Water possesses also a high radiating power ; so that, when present in the soil in excess, and in a stagnant state, it is constantly carrying off heat by evaporation and radiation. On the other hand, stagnant water convegs no heat downwards; for although the surface is warmed, the portion of water thus heated being lightest, remains floating on the surface, and will give back its heat to the atmosphere, but conveys none downwards. When the surface of stagnant water becomes colder than the general mass, the very opposite effect immediately ensues; for as water cools its density increases, and thus causes an instant sinking of the portion that has been cooled, and a rising of n warm portion from below to tako its place-this movement continuing unitil the whole has been lowered to 40°, at which point water reaches its maximum density, whilo, if the temperature be reduced a few degrees more, water will begin to freeze. It is thus that soil surcharged with water is kept at a lower temperature than similar soil that has a sufficient natural or artificial drainage.

But while the presence of stagnant water in a soil has this injurious power of lowering its temperature, a very different effect ensues when rain water can sink freely into it to a depth of several feet, and then find a ready exit by drainage; for in this caso the rain water carries down with it the heat which it has acquired from the atmosphere and from the sun-heated surface, and imparts it to the subsoil There is as jet a lack of published experiments to show the ordinary increase of temperature at various depths and in different soils, as the result of draining wet land. Those conducted by Mr Parkes, in a Lancashire bog in June 1837, showed, as the mean of thirty-five observations, that the drained and caltivated soil at seven inches from the surface pas 10° warmer than tho edjoining undrained bog in its natural state at the pame depth. It is understood that later experiments conducted by the same gentleman on an extended scale fully establish the fact, that an increased temperature of the soil is an unfailing accompaniment of taorough draining. The importance of this result cannot
well be over-rated. The temperature and other conditions of the atmosphere, which we call climate, are placed beyond human control; but this power of raising the temperature of all wet, and consequently cold soils, becomes tantamount in some of its results to a power of improving the climate. There are, accordingly, good grounds for stating that in numerous cases grain crops have ripened sooner by ten or twelve days than they would hnve done but for the draining of the land on which thes grew.

The points which we have thus bricfly touched upon ate so essential to an intelligent apprcciation of the subject, that we have felt constrained to notice them, howevel meagrely. But our space forbids more thanamereenumeration of some of the many evils inseparable from the presence of stagnant water in the soil, and of the benefits that flow from its remoral. Wet land, if in grass, produces only the coarser grasses, and many sub-aquatic plants and mosses, which are of little or no value for pasturage; its herbage is late of coming in spring, and fails early in autumn; the animals grazed upon it are unduly liablo to disease, and sheep, especially, to the fatal rot. When land is used as arable, tillage operations are easily interrupted by rain, and the period always much limited in which they can be prosecutcd at all; the compactness and toughness of such land readers each operation more arduous, and more of them necessary, than in the case of dry land. The surface must necessarily be thrown into ridges, nad the furrows and cross-cuts duly cleared out after each process of tillage, on which surface expedients as much labour has probably been expended in each thirty years as would now suffiec to make drains enough to lay it permanently dry. With all these precautions the best seed-time is often missed, and this usually proves the prelude to a scanty crop, or to a late and disastrous harvest. The cultivation of the turnip and other root crops, "which require the soil to be wrought to a deep and free tilth, either becomes altogether impracticable, and must be abandoned for the safe but costly bare fallow, or is carried out with great labour and hazard; and the crop, when grown, can neither be removed from the ground, nor consumed upon it by sheep without damago by poachinThe dung, lime, and other manure, that is applied to such land is in in great measure wasted; and the breaking of the subsoil and general deep tillage, so beneficial in other circumstances, is here positively mischievous, as it does but increase its power of retaining water. Taking into account the excassive labour, cost, and risk, iriseparable from the cultivation of wet land, and the scanty and precarious character of the crops so obtained, it would in many cases be wiser to keep such lands in grass, than to prosecute arable husbandry under such adversé circumstances. These very serious evils can either be entirely removed, or, at the least, very greatly lessoned by thorough draining. It often happens that naturally purous soils are so sonked by springs, or so water-logged by resting upon an impervious subsoil, or, it may be, so drowned for want of an outfall in same neighbouring river or stream, that draining at once effects a perfect cure, and places them on a par with the best naturally dry soils. In the case of clay soils, the improvement effected by draining is in some respects greater than in any other class, but still it cannot change the inherent properties of clay. This has sometimes been overlooked by sanguine improvers, who, hastily assuming that their strong land, when drained, would henceformard be as friable and sound as the more porous kinds, have proceeded to treat it on this assumption, and hnve found to their cost that clay, however well drained, will still get into mortar and clods, if it is tilled or trodden on too soon after rain. It is entirely owing to such rash and unskilful management that an opinion bas sometimes got abroad, that clay lands are injured by draining. They merely retain the qualities
peculiar to clay, and when tncy are treated judicionsly, show as good a comparative benefit from draining as other coils. The only instances in which even temporary injury arises from draining is in the case of some peaty and fen lands, which are so loose that they suffer from drought in protracted dry weather. As such lands are usually level and have water-courses near them, this inconrenience admits of an easy remedy by shutting up the main outlets, and then admitting water into the ditches. The drains in this way become ready channels for applying the needed moisture by a kind of subterraneous irrigation.

The beneficial effects of thorough draining are of a very decisive and striking kind. The remoral of stagnant water from a stratum of 4 feet in depth, and the establishing of a free passage for rain water and air from the surface to the level of the drains, speedily effects most important changes in the condition of the soil and subsoil Ploughing and other tillage operations are performed more easily than before in consequence of a more friable state of the soil. Moderate rains whick formerly wowid have sufficed to arrest these operations do so no longer, and heary falls of rain cause a much shorter interruption of these iabours than they did when the land was in its natural state. Decp tillage, whether by the common or subsoil plough (which formerly did harm), now aids the drainage, and is every way beneficial. Ridges and surface furrows being no longer needed the land can be kept flat, with great benefit to crops and furtherance to field operations. An earlier seed-tine and harvest, better crops, a healthier live stock, and an improved style of husbandry, are the usual and well known sequents of judiciously conducted drainage operations. In short, the most experienced and skilful agriculturista now declare with one consent that good drainage is an indispensable preliminary te good cultivation.
Although it has been reserved to the present times to see land draining reduced to a sjstem based on scientific principles, or rery great improvement effected in its details, it is by no means a modern discorerg. The Komans were careful to keep their arable lands dry by means of open trenches, and there are even some grounds for surmising that they used covered drains for the same purpose. Indubitable proof exists that they constructed underground chancels by means of tubes of burned earthenware; but it seems more probable that these were designed to carry water to their dwellings, \&c., than that they were used simply as drains. Recent irquiries and discoveries have also shown that it is at least sereral centuries, since covered channels of various kinds were in use by British husbandmen for drying their land. It is, at all evente, two centuries since Captain Walter Blithe wrote as follows :-
"Superfluous and venomous water which lyeth in the earth and much occasioneth bogginesse, mirinesse, rushes, fags, and other filth, is indeed the chief cause of barrenesse in any land of this nature. Drayning is an excellent and chiefest means for their reducement; and for the depth of such draynes, I cannot possibly bound, because I hare not time and opportunity to take in all circumstances.
And for thy drayning trench, it must be made so deepe that it goe to the bottome of the cold, spewing moyst water, that feeds the flagg and the rusk; for the widenesse of it, use thine owne liberty, but be sure to make it so wide as thou mayest goe to the bottorne of it, which must be so low as any moysture lyeth, which moysture usually lyeth under the over and second swarth of the earth, in some gravel or sand, or else, where some greater stones are mixt with clay, under which thou must goe halfe one spades graft deepe at least; yea, suppose this corruption that feeds and nourisheth the rush or flagg should lie a yard or foure foot deepe, to the boltome of it thou mast goe, if ever thon wilt Iravne it to farpose. Ard for the drayning trench
be sure thon indeavour to carry it as neare upon a straight line as possible. To the bottome where the spewing spring lyeth thou must goe, and one spades depth or graft beneath, how deep so ever it be, if thou wilt drayne thy larid to purpose. I am forced to use repetitions of some things, because of the suitableness of the things to which they are applyed; as also because of the slownesse of peoples apprehensions of them, as appears by the non-practice of them, the which wherever jou see drayning and trenching you shall rarely find few or none of them wrought to the botteme. . . . Go to the battome of the bog, and there make a trench in the sound ground, or elso in some old ditch, so low as thou verily conceivest thy sclfe assuredly under the level of the spring or spewing water, and then carry up thy trench into thy bogg straight through the midulo of it, one foot under that spring; but for these common and many trenches, oft times crooked too, that men usually make in their boggy grounds, some one foot, some two, never having respect to the cause or matter that maketh the bogg to take that way, I say away with them as a great piece of folly, lost labour and spoyle. After thou has brought a trench to the bottom of the beg, then cut a good substantial trench about thy bog; and when thou hast se done make one work or two just overthwart it, upwards and dovenwards, all under the matter of the bog. Then thou must take good green faggots, willow, aldcr, elme, or thorne, and lay in the bottome of thy works, and then take thy turfe thou tookest up in the top of thy trench, and plant upon them with the green sward downwards; or take great pebbles, stones, or flint stones, and so fill up the bottome of thy trench about fifteen inches high, and take thy turfe and plant it as aforesaid, being cut rery fit for the trench, as it may join close as it is layd downe, and then having corered it all over with earth, and made it even as thy other ground, waite and expect a monderfull effect through the blessing of God.".

These sagacious arguments and instructions were doubtless acted upon by some persons in his owa times and since; but still they had nerer attained to general adoption, and were ultimately forgotten. Towards the close of last century, Mr Elkiogton, a Warwickshire farmer, discorered ard promulgated a plan of laying dry sloping land that is drowned by the outbursting of springs. When the higher lying portion of such land is porous, rain falling npon it sinks down until it is arrested by clay or ather impervious matter, which causes it again to issue at the surface and wet the lower-lying ground. Elkington showed that by cutting a deep drain through the clay, aided when necessary by wells or augur holes, the subjacent bed of sand or gravel in which a body of water is pent up by the clay, as in a vessel, might be tapped, and the rater conreyed harmlessly in the covered drain to the nearest ditch or stream. In the circumstances to which it is applicable, and in the hands of skilful drainers, Elkington's plan: by bringing into play the natural drainace furnished by porous strata, is often eminently successful. His system was giren to the public in a quarto rolume, edited by a Mr John Johnston of Edinburgh, who does not seem to hare shared the engineering talents of the man whose discoveries he professes to expound. During the thirty or forty jears subsequent to the publication of this volume, most of the draining that took place was on this system, and an immense capital was expended in such works with rery varying results. Things continued in this position until about the Jcar 1823, when the late James Smith of Deansten, haring discovered ancw those principles of draining so long before indicated by Blithe, proceeded to exemplify them in his own practice, and to exponad them to the public in a way that speedily effected a complete revolution in the art of draining, and marked an era in nur agricultural progrcss. Instead of
persisting in fruitless attempts to dry extensive areas by a few dexterous cuts, he insisted on the necessity of providing every field that nceded draining at'all with a complete system of parallel underground clamels, running in the line of the greatest slope of the ground, and so near to each other that the whole rain falling at any time upon the surface should sink down and be carried off by the drains. The distances between drains be showed must be regulated by the greater or less retentiveness of the ground operated apon, and gave 10 feet as the minimum, and 40 feet as the naximum of these distances. The depth which lhe prescribed for his parallel drains was 30 inches, and these were to be filled with 12 inches of stones small enough to pass through a 3 -inch ring-in short, a new edition of Blithe's dmin. A main receiving-drain was to be carried along the lowest part of the ground, with sub-mains in every subordinate hollow that the ground presented. These receiving drains were directed to be formed with a culvert of stone work, or of tiles, of waterway sufficient to contain the greatest volume of water at any time requiring to be passed from the area to which they respectively supplied the outlet. The whole cultivated lands of Britain being disposed in ridges which usually lie in the line of greatest ascent, it becarue customary to form the drains in each furrow, or in each alternate, or third, or fourth one, as the case might require or views of economy dictate, and hence the system soon came to be popularly called furrow draining. From the number and arrangement of the drains, the terms frequent and parallel were also applied to it. Mr Smith himself more appropriately named it, from its effects, thorough draining. The sound principles thus promulgated by him were speedily adopted and extensively carried into practice. The great labour and cost incurred in procuring stones in adequate quantities, and the difficulty of earting them in wet seasons, soon led to the substitution of tiles and soles of burned earthenware. The limited supply and high price of these tiles for a time impeded the progress of the new system of draining; but the invention of tile-making machines by the Marquis of Tweeddale and others, removed this impediment, and gave a mighty stimulus to this fundamental agricultural improvement. The substitution of cylindrical pipes for the original horseshoe tiles has still further lowered the cost and increased the efficiency and permanency of drainage works.

The system introduced and so ably expounded by Smith of Deanston has now been vircually adopted by all drainers. Variations in matters of detail (liaving respect chiefly to the depth and distance apart of the parallel drains) have indeed been introduced; but the distinctive features of his system are now recognised and acted upon by all scientific drainers.

In setting about the draining of a field, or farm, or estate, the first point is to secure, at whatever cost, a proper outfall. The lines of the receiving drains must next be determined, and then the direction of the parallel drains. The former must occupy the lowest part of the natural hollors, and the latter must run in the line of the greatest ascent of the ground. In the case of flat land, where a fall is obtained chielly by increasing the depth of the drains at their lower ends, these lines may be disposed in any direction that is found convenient; but in undulating ground a single field may require several distinct sets of drains lying at different angles, so as to suit its several slopes. When a field is ridged in the line of the greatest ascent of the ground, there is an obvious convenience in adopting the furrows as the site of the drains; but wherever this is not the case the drains must be laid off to suit the contour of the ground, irrespective of the furronos altogether. When parts of a field are flat, and other parts have a considerable acclivity, it is expedient to cnt a receiving drain near to the bottom of the slopes. and to give the flat ground
an independent set of drains. In laying off receiring drains it is essentiul to give hedge-rows and trees a gool offing, lest the conduit should bo obstructed by roots. When a drain must of necessity pass near to trees, we have found it practicable to exclude their roots from it by the use of coal-tar. In our own practice, a drain carried through the corner of a plantation has by this expedient remained free from obstruction for now fourteen years. In this instance the tar was applied in the following manner:Sawdust and coal-tar being mixed together to the consistency of ordinary mortar, a layer of this was laid in the bottom of the trench; the drain-pipes were then laid, and completely coated over with the same mixture to the thickness of an inch, and the earth earcfully replaced in the ordinary way. When a main drain is so placed that parallel ones empty into it from both sides, care should be taken that the inlete of the latter are not made exactly opposite to each other. Indeed, we have found it expedient in such cases to have two receiving drains parallel to each other, each to receive the subordinate drains from its own side only. As theso receiving drains act also as ordinary drains to the land through which they pass, no additional cost is incurred by having two instead of one, provided they are as far apart as the other drains in the field. Much of the success of draining depends on the skilful planning of these main drains, and in making them large enough to discharge the greatest flow of water to which they may be exposed. Very long main drains are to be avoided. Numerous outlets are also objectionable, from their liability to obstruction. An outlet to an area of from ten to fifteen acres is a geod arrangement. These outlets should be faced with masonwork, and guarded by iron gratings.

The depths of the parallel drains must next be determined. In order to obtain proper data for doing so, the subsoil must be carefully examined by digging test-boles in various places, and also by taking advantage of any quarries, deep ditches, or other cuttings in the proximity, that afford a good section of the ground. We have already expressed an opinion that the drains should not be less than four feet deep; but it is quite possible that the discovery at a greater depth than four feet of a seam of gravel, or other very porous material charged with water, underlying considerable portions of the ground, may render it expedient to carry the drains so deep as to reach this seam. Such a seam, when furnished with sufficient ontlets, supplies a natural drain to the whole area under which it extends. When such exceptional cases are met with, they are precisely those in which deep drains, at wide intervals, can be trusted to dry the whole area. When the subsoil consists of a tenacious clay of considerable depth, it is considered by many persons that a greater depth than three feet is unnecessary. The greater depth is, however, always to be preferred; for a drain of four feet, if it works at all, not only does all that a shallower one can do, but frees from stagnant water a body of subsoil on which the other has no effect at all. It has indeed been alleged that such deep drains may get so closed over by the clay that water will stand above them. If the surface of clay sall is wrought into puddle by improper usage, water can undoubtedly be made to stand for a time over the shallowest drains as easily as over the deepest. But the contraction which takes place in summer in good alluvial elays gradually establishes fissures, by which water reaches the drains. In such soils it is usually a few years before the full effect of draining is attained. This is chiefly dne to the contraction and consequent cracking of clay soils in summer just referred to, and partly, as Mr Parkes thinks, to the mining operations of the common earth-worm. Both of these natural aids to drainage operate with greater force with drains four feetdeep than when they are shallower. The tardy percolation of water throngb
clay soils seems also a reason why in such cases it should get the benefit of a greater fall, by making the drain deep.
Draining is always a costly operation, and it is therefore peculiarly needful to have it executed in such a way that it shall be effectual and permanent. We advocate a minimum depth of four feet, bacause of our strong conviction that such drains carefully made will be found to have both these qualities. And this opinion is the result of dear-bought experience, for we have found it necessary in our own case to re-open a very considerable extent of 30 -inch drains in consequence of their having totaily failed to lay the land div, and to replace them boy four feet ones, which have proved perfectly efficacious. In doing this we have seen a 30 -irch drain opened up and found to be perfectly dry, and yet when the same trench was deepened to four feet there was quite a run of water from it. Now also that steam power has become arailable for the tillage of the soil, and is certain, at no distant day, to bo in general requisition for that purpose, it is peculiarly expedient to have the drains laid at such a depth as to admit, of that potent agency being used for loosening the subsoil to depths hitherto unattainable, not only without hazard to the drains, but with the certainty of greatly augmenting their efficiency. Therefore we eatarstly dissuade all parties who are about to undertake drainage works from giving ear to representations about the sufficiency and economy of shallow drains. These, doubtless, cost somewhat less to begin with, but in thousands of cases they fail to accomplish the desired end, and the unfortunate owners, after all their outlay, are left to the miserable alternative of seeing their land imperfectly drained, or of executing the works anew, and thus losing the whole cost of the first and inefficient ones. The extreme reluctance with which the latter alternative is necessarily regarded will undoubtedly operate for a long time in keeping much land that has been hastily and imperfectly drained from participating in the benefits of thorough drainage. The distance apart at which the drains should be cut must be determined by the nature of the subsoil. In the most retentive clays it need not be less than 18 feet. On the other hand, this distance cannot safely be exceeded in the casc of any subsoil in which clay predominates, although it should not be of the most retentive kind. In all parts of the country instances abound in which drains cut in such subsoils, from 24 to 30 feet apart, have totally failed to lay the land dry. When ground is once pre-occupied by drains too far apart, there is no remedy but to form a supplementary one betwixt each pair of the first set; and thus, by exceeding the proper width at first, the space betwixt the drains is unavoidably reduced to 12 or 15 feet, although 18 feet would originally have sufficed. It is only with a decided porosity in the subsoil, and in proportion to the degree of that porosity, that the space between drains can safely be increased to 24 , or 30 , or 36 feet. In those exceptional cases in which drains more than 36 feet apart prove effectual, their success is due to the principle on which Elkington's system is founded. A few years ago an opinion obtained currency, that as the depth of drains was increased their width apart might with safety be increased in a corresponding ratio. And hence it came to be confidently asserted, that with a depth of 5 or 6 feet a width of from 40 to 60 feet might be adopted with a certainty of success, cren in the case of retentive soils. We believe that experience has already demonstrated the unsoundness of this opinion. At all events, in recommending a minimum depth of 4 feet, we do so on the ground that (other things being equal) the whole benefits of drainage are more fully and certainly secured by drains of this depth than by those of $2 \frac{1}{2}$ or 3 feet. In ordinary cases an increase of depth does not compensate for an increase of the width apart of the drains. Draining can be carried on at all seasons, hut is usually best done in
summer or aurumn. The digging is usually paid for hr task work, and the setting of the pipes by day's wages. A thoroughly trustworthy and experienced workman is selected for the latter work, with instructions to set no pipes until he is satisfied that the depth of the drains and level of the bottoms are correct. When the soil is returned into the drains all defects are of conrse buried, and it therefore behores the landlord, or his substitute, whether tenant or bailiff, to exercise a vigilant oversight of draining operations. Unless carefully exccuted they cannot be efficient; and without etficient drainage all other agricultural operations must be carried on under grievous disadrantages. The extent oi land in Great Britain naturally so dry as not to need artificial drainage is very much less than even practical farmers. Who have not studied the subject, are at all aware of.

Cylindrical pipes with collars are undoubtedly the best draining material that has yet been discovered. The collars referred to are simply short pieces of pipe, just so wide in the bore as to admit of the smaller pipes which form the drain passing freely through them. In use, one of these collars is so placed as to encase the ends of each contiguous pair of tubes, and thus forms a loose fillet around each joining. The ends of these pipes being by this means securely kept in contact, a continuous canal for the free passage of water is infallibly insured, the joinings are guarded against the entrance of mud or vermin, and yet sufficient space is left for the admission of water. Pipes of all diameters, from 1 inch to 16 inches, are norr to be had; those from 1 to 2 inches in the bore are used for subordinate drains; the larger sizes for sub-main and main receiving drains, Collarsareused with the smaller sizes only, large pipes not being so liable to shift their position as small ones. In constructing a drain, it is of much importance that the bottom be cut out just wide enough to admit the pipes and no more. Pipes, when thus accurately fitted in, are much less liable to derangement than when laid in the bottom of a trench several times their width, and into which a mass of loose earth must necessarily be returned. This accurate fitting is now quite practicable in the case of soils tolerably free from stones, from the excellence of the draining tools that have lately been introduced. The following cut represents the most importaint of these tools.
c and e are long tapering spades ior digging out the middle and bottom spits. a, d, and f recurved scoops for clearing out the debris, and b a pipe-layer, by means of which a workman standing at the margin of a drain hooks up a. pipe and collar, and deposits them easily and accurately in the
 deep narrow trench.
If a quicksand is encountered in constructing a drain, it will be found expedient to put a layer of straw in the botton of the trench, and then, instead of the ordinary pipe and collar, to use at such a place a double set of pipes-ci:e within the other-taking care that the joinings of the innc: set are covered by the centres of the outer ones. By such precautions the water gets vent, and the running sand is excluded from the drain. When a brook has been divertcd from its natural course for mill-power or irrigating purposes, it often happens that portions of land are thereby deprived of the outfall required to admit of their being drained to
a proper depth. In such cases it is frequently practicable to obtain the needed outlet by carrying a main drain through below the water-course, by using at that point a few yards of cast-iron pipe, and carefully filling up the trench with clay puddle, so that there may be no leakage from the water-course into the drain. While this is being done the water must either be turned offor carried over the temporary gapin a wooden trough.

The cost of draining is so much influenced by the evervarying prico of labour and materials, and by the still more varying character of the land to bo operated upon, that it is impossible to give an estimate of the cost that will admit of general application. The following tabular data, taken chiefly from Mr Bailey Denton's valuable treatise, are presented to aid those who wish to form such an estimate:-

Table I.-Showing the number of rods of drain per acre at given distances apart, and the number of pipes of given lengths required yer aere.

Intervals between the dralns in feet	Rods per acre.	12-Inch pipes.	13-Inch pipes.	14-Inch pipes.	2s-Inch plpes
18	1463	2420	2234	2074	1936
21	$125 \frac{3}{7}$	2074	1915	1778	1659
24	110	1815	1676	1555	1452
27	977	1613	1489	1383	1290
30	88	1452	1340	2244	1161

Tablee II.-Showing the cost of draining per acre at different intervals between the drains.

Various attempts havo from time to time been made to lower the cost of draining land by tho direct application of aniinal or stcam power to the work of excavation. The

mnst euccessful of these attempts is the steam-dmining apparatus invented by Mr John Former of Bristol, usually
called Fouler's draining plough. A six-horse portable steam-engine is anchored in one corner of tho field to be drained. It gives motion to two drums, to each of which a rope 500 yards long is attached, the one uncoiling as the other is wound up. These ropes pass round blocks which are anchored at each end of the intended line of drain, and are attached one to the front and the other to the hinder end of the draining apparatus. This consists of a framework, in which is fixed, at any required depth not exceeding $3 \frac{1}{2}$ fect, a strong coulter terminating in a short horizontal bar of cylindrical iron, with a pieco of rope attached to it, on which a convenient number of drain pipes aro strung. This frame being pulled along by the engine, the coulter is forced through the soil at a regulated depth, and deposits its string of pipes with unerring accuracy, thus forming, as it proceeds, a perfect drain. The supply of pipes is kept up by means of holes previously dug in the line of the drain, at distances corresponding to the length of the rope on which they are strung. This machine was subjected to a very thorough trial at the meeting of the Royal Agricultural Society of England at Lincoln in 1854, on which occasion a silver medal and very high commendation were awarded to it. In March 1855 it was publicly stated that five of these implements are now at work in different parts of England, and that already 10,000 acres of land havo been drained by means of them. At the Lincoln trial it was satisfactorily proved that this implement could work at a depth of $3 \frac{1}{2}$ feet. As it moved along, the soil on each side, to the width of 2 or 3 feet, seemed to be loosened. It is therefore probable that this inplement, or at least one propelled on the same principle, may yet be used as a subsoil disin tegrator.

A great stimulus has recently been given to the improvement of land by the passing of a series of Acts of Parliament, which have removed certain obstacles that effectually bindered the investment of capital in works of drainago and kindred ameliorations. By tho first of these Acts, passed in 1846, a sum of $£ 4,000,000$ of the public money was authorised to be advanced to landowners to be expended in draining their lands. The Enclosure Commissionery were charged with the allocation of this money and the superintendence of its outlay. The most important provisions of this Act are that it enables the possessors of entailed estates (equally with others) to share in the benefits of this fund; that it provides, on terms very favourable to the borrower, for the repayment of the money 80 adranced by twenty-two annual instalments ; that before sanctioning the expendituro of these funds on drainage works, the commissioners must have a report from a qualified inspector, to the effect that they are likely to prove remuncrative ; and, finally, that the works must be performed according to specifications prepared by the inspector, and approved by tho commissioners, who have seldom allowed of a less depth of drain than $3 \frac{1}{2}$ fect. By the end of the year 1854 the whole of this money was allocated, and more than half of it actually expended. Scottish landowners were so prompt to discern, and so eager to avail themselves of this public fund, that more than half of it fell to their share. The great success of this measure, and the rapid absorption of the fund provided by it, soon led to further legislative Acts, by which private capital has been rendered available for the improvement of land, by draining and otherwise, on conditions similar to those just enumerated. These Acts are-

1st, The Private Moneys Drainage Act (12 and 13 Vict. c. 100), limited to draining.

2d, The West of England, or South-West Land Draining Company's Act (11 and 12 Vict., c. 142), for the purpose of draining, irrigation and warping, embanking, reclaiming and enclosing, and road-making.

34 , 'the General Land-Drainage and Improvement Company's Act (12 and 13 Vict. c. 91), for the purposes of draining, irrigating and warping, embanking, reclaining and enclosing, road-making and erecting farm-buildings.

4 ch , The Lands Improvement Company's Act (16 and 17 Vict. a 154), for the same purposes as the above, with the addition of planting for shelter. This company's powers extend to Scotland.

By theso Acts ample provision is made for rendering the dormant capital of the country available for the improvement of its soil. To the owners of entailed estates they are peculiarly valuable, from the power which they give to them of charging the cost of draining, \&ec., upon the inheritance. If such owners apply their own private funds in effecting improvements of this kind, they are enabled, through the medium of these companies, to take a rent-charge on their estates for repayment of the money they so expend, over which they retain personal controi, so that they can bequeath as they choose the rent-charge payable by their successor. Besides their direct benefits, these Drainage Acts have already produced some very important indirect fruits. They have led to many improvements in the manner of accomplishing the works to which they relate, to the wide and rapid dissemination of imprared modes of draining, \&ic., and, in particular, they bave had the effect of creating, or at least of greatly multiplying and accrediting, a staff of skilful and experienced draining engineers, of whose services ill whu are about to engage in draining and similar works will do well to avail themselves.

Section 3.-Removal of Earthfast Stones.

Newly reclaimed lands, and even those that have long been ander tillage, are frequently much encumbered with earthiast stones. This is particularly the case in many parts of Scotland. Their removal is alrways desirable, though necessarily accompanied with much trouble and expense. In our personal practice wo have proceeded in this way. In giving the autumn furrow preparatory to a fallow crop, each ploughman carries with him a few branches of fir or beech, oue of which he sticks in above each stone encountered by his plough. If the stones are numerous, particularly at certain places, two labourers, provided with a pick, \ddagger spade, and a long wooden lever shod with iron, attend upon the ploughs, and remove as many of the stones as ihey can, while jet partially uncovered by the recent furrow. Thase thus dug up are rolled aside upon the ploughed land. When the land gets dry enough in spring, those not got out at the time of ploughing are discovered by means of the twigs, and are then dug up. Such as can be lifted by one man are carted off as they are, but those of the larger class must first be reduced by a sledge hammer. They yield to the hammer more easily after a few days' exposure to drought than when attacked as soon as dug up. Before attempting to break very large boulders a brisk fire of dried gorse or brushwood is kept up over them until they are heated, after which a few smart blows from the hammer shiver them completely. Portions of otherwise good land are sometimes su full of these boulders, that to render it available, the stones must be got rid of by trenching the whole to a considerable depth. When ploughing by steam-power becomes general, a preliminary treaching of this kind will in many cases bo requisite before tillage instruments thus propelled can be uised with safety.

Section 4.-Pazing and Burning.

Paring and burning have, from an early period, been resurted to for the more speedy subduing of a rough uncultured surface. This is still the most approved method of dealing with such cases, as well as with any tough old sward which is agaju to be subjected to tillage. In setting about the
operation, which is usually done in March or April, a turf, not exceeding an inch in thickness, is first peeled off ib successive stripes by a paring-plough drawn by two horses, or by the breast-plough already described. Thess turfs are first set on edge and partially dried, after which they are collected into heaps, and burned, or rather charred. The ashes are immediately spread over the surface, and ploughed in with a light furrow. By this process the matted roots of the pasture plants, the seeds of wceds, and the eggs and larvæ of innumerable insects, are at once got rid of, and a highly stimulating top-dressing is supplied to the land. A crop of turnips or rape is then drilled on the fiat, and fed off by sheep, after which the land is usually in prime condition for bearing a crop of grain. This practice is unsuitable for sandy soils, which it only renders more sterile; but when clay or peat prevails, its beneficial effects are indisputable. We shall, in the sequel, give an example of its recent successful application.

Section 5.-Levelling.

Land, when subjected to the plough for the first time, abounds not unfrequently with abrupt hollows and pra tuberances, which impede tillage operatitns. These can be readily levelled by means of a bor shaped like a huge dust-pan, the front part being shod with iron, and a pair of handles attached behind. This levelling-box is drawn by a pair of horses. Being directed against a prominent part, it scoops up its fill of soil, with which it slides along sledge-fashion to the place where it is to discharge its load, which it does by canting over, on the ploughmass disengaging the handles.
In all parts of Great Britain, abundance of pasture land. and often tillage land also, is to be met with lying in broad. highly raised, serpentine ridges. These seem to bare originated when teams of six or eight bullocks were used in ploughing; and it has been suggested that this currature of tre ridges at first arose from its being easier to turn these long teams at the end of each land by sweeping round in a curre than by driving straight out. The very broad head. lands found in conmection with these curved ridges point to the same fact. A theory still lingers among our peasantry, that "water runs better in a crooked furrow than in a straight one," and has probably been handed down since the discorered awkwardness of curred ridges was first seen to need some plausible apology. These immense, wavelike ridges are certainly a great annojance to the modern cultivator; but still the sudden levelling of them is accompanied with so much risk, that it is usually better to cut drains in the intervening hollows, and plough aslant them in straight lines, by which means a gradual approximation to a level surface is made. A field in our orm occupation, which was levelled, by clearing down the old crooked ridges, fifty years ago, still shows, by alternate curving bands of greater and less lusuriance, the exact site of the crowns and furrows of the ancient ridges.
Section 6.-Trencking.

But for its tediousness and costliness, treaching tro or three spits deep by spade or fork is certainly the most effectual means for at onceremoring obstructions, levelling the surface, and perfecting the drainage by thoroughly loosening the subsoil. For the reasons mentioned, it is seldom resorted to on a large scale. But it is becoming a common practice, with careful farmers, to have those patches of ground in the corners, and by the fences of fields, which are missed in ploughing, gone over with the trenching-fork. The additional crop thus obtained may fail to compensate for this hand-tillage, but it is rindicated on the ground that these corners and margins are the nurseries of weeds which it is profitable to destroy.

CHAPTER VIIL.

TLILAGE OPERATIONS.

Section 1.-Ploughing.
When tle ratural green sward, or ground that has been cleared of a cultivated crop, is to be prepared for tho sowing or planting: of further erops, the plough leads the way in hreaking up the compaet surface, by cutting from it suceessive slices, averaging about ten inches in breadth by seven in depth, which it turns half over upon each other to tho righthand side. This turning of the sliees or furrows to one side only renders it necessary to squaro off the space to be ploughed into parallelograms, balf the slices of which are laid the one way and the other half the other, by the going and returning of the plough. These parallel spaces are variously termed ridyes, stetches, lands, or feirings, which in practiee vary in width from a few furrows to 30 yards. When very narrow spaces are used, a waste of labour ensues, from the necessity of opening out and then reclosing an estra number of index or guiding furrows ; while very wide ones involve a similar waste from the distance which the plongh must go empty in traversing at the ends. The spaces thus formed by equal numbers of furrow-slices turned from opposite sides bave neeessarily a rounded outline, and are segarated by open channels. In a moist climate and impervious soil, this ridging of the surface causes rain-water to pass off more rapidly, and keeps the soil drier than would be the case if $1 t$ was kept flat. Hence the cultivated lands of Great Britain alnost invariably exhibit this ridged form of surface. Until the art of under-ground draining was discovered, this was indeed the only mode of keeping cultivated ground tolerably dry. \therefore But it is at best a very defective method, and attended by many disadvantages. When land is naturally dry, or has been made so by thorongh drainage, the flatter its surface is kept the better for the crops grown upon it. We are not forgetful that thero are, in various parts of Great Britain, clays so impervious that probably no amount of draining or disintegratior of the subsoil will render it safe to dispense with ridging. These, however, are execptional cases, and, as a rule, such a condition of soil and subsoil should be aimed at as will admit of this rude expedient of ridging being altogethẹ dispensed with. Unless land can absorb the whole rain which falls upon it, its full range of fertility cannot be developed; for the same showers which aggravate the coldness and sterility of impervious and already saturated soils earry down with them, end impart to those that are pervious, ever fresh supolies of genial influences. Instead, then, of this perennial souree of fertility being encouraged to run of by surface channels, or to stagnate in tho soil and become its bane, let provision be made for its free percolation through an open stratum soveral feet in thiekness, and then for its eseape by drains of such depth and frequency as each particular case requires. When this is attained, a flat surface will generally be preserved, as alike conducive to tho welfare of the crops and to the suecessfal employment of machinery for soxing, weeding, and reaping them.

In all treatises on British agriculture of a date anterior w the first quarter of the present century, we find great stress laid on the proper formation of the ridges, careful cleaning out of the separating channcls or water-furrows, and drawing and spading out of cross-ents in all hollows, so , bat no water may stagnate on the surface of the field. As thorough under-draining makes progress, such directions are becoming obsolete. But whether ridging or flat work is 2sed, the one-sided action of the plongh renders it necessary, in setting abont the ploughing of a Geld, to mark it off into parallel spaces by a series of equi-distant straight lines. supposing the line of fence, at the sido at which be begins, to bo stragl.t, the plonghman takes this as his bose line;
and measuring from it, crects his three or more fciring poles perfeetly in line, at a distance from the fence equal to half the width of tho ridges or spaces in which it is proposed to plough the field. This operation-called in Seotland feiring tho land-is usually entrusted to the most skilful plonghrnan on each farm, and is regarded as a post of honour. Having drawn a furrow in the exact line of his poles, which practice enables him to do with an accuracy truly admirable, he proceeds, using always the last furrow as a fresh base from which to measure the next one, until the field is all marked off. When this is done, it presents the appearance of a neatly ruled sheet of paper. Besides the poles just referred to, the ploughman is frequently furnished with a cross staff, by means of which he first of all marks off two or more lines perpendicular to the straight sido at which be commences, and along theso he measures with his poles, which are graduated for the purpose, in laying off his parallel lines. This feiring is only required when a process of fallowing, in preparation for green erop, has obliterated the former ridges. In breaking up clover lea or older sward, tho ploughman begins at the open furrows, which afford him a sufficient guidc.

In ploughing for a seed.bed the furrow-slice is usually eut about five inches deep. In tho case of lea, it should be turned over unbroken, of uniform thickness, and laid quite close upon the preceding one, so as to hido all green sward. The improved wheel-plough already referred to does this work very beautifully, cutting out the slise perfectly square from the bottom of the furrow. The perfect uniformity in the width and depth of the slices cut by it permits the harrows to act equally upon the whole surface. When the slice is eut unevenly, they draw the loosened soil from the prominenees into tho hollows, so that one part is seraped bare, and the other remains untouched and unbroken. This must necessarily yield a poor seed-bed, and contrasts unfavourably with the uniform tilth produced by harrowing after such work as these wheel-plonghs invariably prodnce. In the Lothians and west of Scotland, a form of plough is much used for ploughing lea, which euts out the slieo with an acnte angle at the land side. This, when turned over, stands up with a sharp ridge, which looks partieularly well, and offers a good subject for harrows to work upon. But if a few of these furrow-slices are removed, the firm earth below exhibits the same ribbed appearance as the newly ploughed surface, instead of the clear level sole on which the right-angled slice cut by the whecl-plough is laid $\partial \mathrm{ve}$ so as to rest upon its lower angle. This ribbing of the unstirred subsoil is exceedingly objectionable in all kind: of ploughing.
In the sutumn ploughing of stubble-ground in preparation for the root-crops of the following season, a much deepes furrow is turned over than for a secd-furrow. In ordinary cases it should not be less than nine inches, while in very many, if ten or twelve ean be attained, so much the better. In all deep soils this bringing up and mixing with the sur. face of fresh material from below is highly beneficial. It roust not, however, be practised indiscriminately. Siliccous and peaty soils need compaetness, and to have the soil that has been artifieially enriched kept a-top. For such deep work as we havo notieed above, threo or even four horses are frequently yoked to the plough. When a field slopes considerably ono way, it is good praetieo to work the plough down the slope only, and return without a furrow. A pair of horses working in this way will turn as deep a furrow, and get over as much ground, as three will do taking a furrow both ways, and with less fatigue to themselves and to the ploughman.; After bringing a heavy furrow downhill, they get recruited in stepping briskly baek with only the plough to draw. This mode of ploughing one furrow houy the slono tends less to gather the soil wer
ward the bottom than oy using a turn-wrest plough across the slope. It is while giving this deep autumn furrow that the subsoil plough is used. It follows in the wake of the common plough, and breaks and stirs the subsoil, but without raising it to the surface. This is a laborious operation, and engrosses too much of the horse-power of the farm to admit of large breadths being overtaken in any one season. In all indurated subsoils, however, it repays its cost; for when once thoroughly done, it diminishes the labour of ordinary ploughings for several succeeding rotations, aids the drainage, and adds to the fertility of the soil It is in the performance of this deep autumn tillage and breaking up of the subsoil, that the steam-engine, with appropriate tackle, has begun to play an important part, and for which it will probably one day supersede all other means.

> Section 2.-Harroving, de.

The harrow, cultivator, and roller, are all more simple in their action and more easily managed than the plough. Harrowing is most effective when the horses step briskly along. The tines are then not merely drawn through the soil, but, in their combined swinging and forward movement, strike into it with considerable force. It is with reference to this that a single application of this implement is called a stroke of the harrows. Rollers are used to aid in pulverising and cleaning the soil, by bruising clods and lumps of tangled roots and earth which the other implements have brought a-top; in smoothing the surface for the reception of small seeds, or the better operation of the scythe and other implements; and for consolidating soil that is too toose in its texture. Except for the latter purpose, light rollers are much superior to heavy ones. When it is wanted, for example, to bruise clots of quickens, that the after harrowing may more thoroughly free the roots from the adhering earth, a light cast-iron roller, say of 5 cwt ., drawn by one horse, effects this purpose as thoroughly as one double the weight drawn by a pair,-and does it, moreover, in much less time, at less than half the expense, and without injuriously consolidating the free soil. These light rollers are conveniently worked in pairs, the ploughman driving one horse and leading the other. With a pair of active horses, and such rollers, a good deal more than double the space can be rolled in a day, than by yoking them both to one heary one of the same length of cylinder. For mere clod-crushing, provided the clods are moist, the Norwegian harrow is superior to any roller; and for compressing a loose surface or checking wire-worm, serrated or smoothedged discs, such as Crosskill's or Cambridge's, are better than smooth cylinders of the same weight, so that the heavy smooth roller, requiring two or more horses to draw it, is superseded by better implements for all purposes where rollers are used at all, unless it be for the rolling of the grass-lands.

As a general rule, none of these tillage operations can be performed to advantage when the soil is wet. When rain falls inopportunely there is a strong temptation to push on the field operations, before the soil has recovered the proper state of dryness. When this is dono the farmer almost invariably finds in the issue that the more haste he makes the worse he speeds. Soils with a good deal of clay in their composition are peculiarly susceptible of injury in this way. Nice discrimination is needed to handle them aright. They require, moreover, a full stock of well-conditioned horses, that the work may be pushed rapidly through in favourable weather, To manage such soils successfully, especially when root crops are grown, tries the skill of the farmer to the utmost. So at least it has hitherto been; but with steam-power to aid him, there is now a probability that the clay land farmer, by being able to break up his soil without treading it, and to get through
with a large extent of tillase when his land is in trin for it, may find it practicable to grow root crops on equal terms with the occupier of freer soil.

Section 3.-Fallowing.

When, by such operations as have now been described, land has been reclaimed from its natural state, and rendered fit for the purposes of the husbandman, it is everywhere so charged with the germs of weeds, most of which passess in a remarkable degree the power of reproduction and multiplication, that it is only by the most incessant and vigorous efforts he can restrain them from encroaching upon his cultivated crops, and regaining entire possession of the soil. He can do much towards this by ordinary tillage, and by sowing his crops in rows, and hoeing in the inter vals during the early stages of their growth. But if his efforts are restricted to such measures only, the battle will soon go against him. Besides this, all arable soils in which clay predominates, particularly when undrained, have such a determined tendency to become compact and scured, that under ordinary efforts they fail to yield a genial seedbed. There is a necessity, therefore, for having recourse, from time to time, to that ameliorating process of lengthened tillage called fallowing. This process begins in autumn, immediately after the removal from the ground of the cereal crop, which had been 60 wn upon the land newly broken up from clover leà or natural sward, and extends either to the time for sowing turnips and analogous crops in the following spring, or is continued during the entire summer in preparation for autumn-sown wheat. We shall first describe that modification of the fallowing process by which the soil is prepared for the sowing of drilled green crops, and then the more prolonged form of it usually called summer or naked fallow.

Green Crop Fallow.

The object aimed at being the thorough disintegration and cleaning of the soil, the usual practice is to begin by ploughing as deeply as is found practicable. This first or autumn furrow is accordingly turned over to a depth of 8 or 9 inches; or by using a stronger plough drawn by three or four horses, it is carried to 12 inches in depth; and in some cases, by following with a subsoil plough in the wake of the common one, the soil is stirred to the depth of 14 or 16 inches. All cultivators are agreed as to the importance of thus deeply and effectually disintegrating all soils that are naturally dry or thoroughly drained. In the case of undrained lands, and even of very unctuous clays, although well drained, such deep stirring of the soil in autumn does but increase its capacity of retaining the rains of winter, and of being thereby more effectually soured, and is therefore to be avoided. Assuming, however, that we have to do with soil thoroughly drained and moderately friable, it is undoubtedly beneficial to loosen it deeply and thoroughly at this stage. But before this deep ploughing is set about, it will be worth while to consider well its bearing upon the cleaning part of the process. On carefully examining the fields at the time of reaping the grain-crops, and from week to week thereafter, the roots of the couch grass are found at first lying close to the surface; but instantly, on their getting the ground to themselves, they begin to send out fresh fibres, and to push their shoot= deeply into the soil. In these circumstances, to proceed at once, according to the customary practice, to plough deeply, allows these weeds much time to increase, whils this laborious and tedious operation is going on; and although, when performed, it gives some present chec's to their progress, by burying them under a mass of loosel.ed soil, it not only increases the difficulty of their aifter remoral, but places them out of the reach of frost, and in the hest
possible position for pervading the entire soil, on the first recurrence of mild weather. The consequence is, that fallows 80 treated aro invariably found in spring more fully shocked with quickens than they were at the time of the autumn ploughing. Tho observation of this suggested tho practice, now very common in England, of cleaning fallmes in autumn before giving the first deep furrono. For this purpose, such implements as Biddle's scarifier, tho broad-share paring-ploughs, or better still, the common plough, divested of its mould-board and fitted with a share a font broad, are set to work as fast ns the grain-crops are reaped, and the mbole surface is rapidly pared st a depth of three or four inches. This enmpletely lnosens the yet shallinw-lying roots of the couch-grass, which are then freed from the adhering earth by the Norregian and chainharrow, raked together and burned, or carted off. Tbis pulverising of the surface soil in early autumn is usually followed by the springing up of an abundant crop of annual weéds and of shaken grain, which are thus got rid of by the suhsequent ploughing. So great and manifold are tho advantages of this modern practice. that in those districts where it is mnst in use. other sutumn work. even wheatsnwing, is comparatively neglected until it is accomplisbed. When the weeds bave been got rid of in this summary and inexpensive manner, deep ploughing is then resorted to with unalloyed'henefit. Whenever steam-power becomes fully available for tillage operations, this autumn cleaning and deep stirring of fallows will be aecomplished rapidly and effectually, and tho teams will meanwhile be set at liberty for root-storing, wheat-sowing, and other needful work, which can be well done only when accomplished during the brief season of good weather, which usually intervenes betwixt tho closo of harvest and beginning of minter.

In the ease of farms that hare for a lengthened period been carcfully cultivated, the stubble may be found so clean as not to require the whole area to be scarified in tho manner now described. Instead of this. it may suffice to have t'ie ground carefully examined, and such patches o: stray planis of conch-grass, or other perennial weeds, as are met with, forked out. By this means the fallows are kept clean at little expense, and when spring arrives, those repeated ploughings, and otber tedious and costly operations, are wholly avoided, in perfurming which the condition of the soil is marred and the best seed-time often missed. When fallows are thus cleaned in autumn, it is highly advantageous to cart on to them at onee, and cover in with a deep furrow, all the farm-yard dung that is on hand up to the completion of their first ploughing. From the length of time which must elapse before the land can again bo touched, it is quito safe, or rather it is highly advantageous, to apply all the recently mado dung, slthough in a very rough state. In doing this, it is necessary that a person precede each plough, sud trim the rank litter into the previous furrow, that it may bo properly covered up and regularly distributed. Unless this precaution is obsorved, the ploughs are constantly choked and iropeded, the manure is drawn together into unsightly hassoeks, and the whole operation is imperfectly performed. The recommendations to this practice areFirse, All important saving of labour; for the manure being carted dirent from the yards, \&c., on to tho land, and evenly spread over it, there is no forming, covering up, and turning of dunghills, or refilling and carting in spring. This heary work is accomplished at a ceason when time is less pressing than in spring, snd the sowing of the erop can be proceeded with more rapidly when the time for it arrives, and while weather farcu-s. Second, There is a sąring of manure by burying it st once in its rough state, instead of first fermenting it in lnero Leaps; bad a large portion of the fallow-break can inus be uressed with bome-mada manure.

Third, The rough dung thus plonghed in decomposes slowly, its virtues are absorbed and retained by the soil, with the whole mass of which it is thoroughly incorporated by the epring tillaga, and which, in consequence, is found, after auch treatraent, in a peculiarly mellow and favourable condition for receiving the seed

The advantages of auturn eleaning and manuring of land in preparation for green crops are so great that the utmost exertions should be mado to seeure them. Over a large portion of England tho harvest is usually so early as to leave ample time for aceomplishing the cleaning process before being arrested by bad weather. From the later harvest season and more humid elimate of Scotland, it is there more difficult to carry it out to the whole extent of the fallow-break ; but still, with promptitude and energy, much can be done. One of her shrewd and intelligent sone, Mr Tennant, the inventor of the grubber which bears his name. has, however, introduced a system of autumn tillage, founded upon the same principle, and aceomplishing virtually the same end, but less expensive and better adapted to the elimate of Scotland than that just described. So soon as the grain crops are barvested, Mr Tennent sets bis light grubbers agoing, and by working them over the whole field several times and in opposite directions, stirs the whole surface soil to the depth of six or eight inches, tears up and brings to the surface all root-weeds, where, after being knocked about and freed from adhering soil by repeated harrowings and a final grubbing, they are left for the winter. In our own practice we have latterly improved, as we imagine, on Mrr Tennant's plan by broadsharing the land before using the grubbers, and also by employing the Norwegian harrow instesd of the common one. The broadskaring ensures that the whole of the couch-grass and other weeds are thoroughly loosened without being buried, and the Norwegian harrow shakes out the roots from the adhering earth better than the common harrow. When it is intended to treat a feld in this way, care should be taken at barrest time to reap the crop as close to the ground as possible, as rank stubble seriously encumbers the tillage implements. In setting about tho grubbing of a field it is expedient also to begin with the Leadlands, and to work them thoroughly all round twice over, before they are trodden down by the frequent turning of the horses upon them. If this is omitted it will be found nearly impossible to bave the margins of the field as well cultivated as the rest of jt. A field thus treated presents for a time a singularly untidy and unpromising appearance; but the u!timate effects of the practice, as well in the cleaning as tho disintegrating of the soil, are very remarkable. When roots of couch-grass, \&ic, are freed from the soil, ind fully exposed to the vicissitudes of the weather at a season when their vital force is at the lowest point, they are unable to resist its effects, and gra. dually dic. If placed in similar circumstances in spring, with their vital energy in full play, the merest point of a root embedded in, or even in eontact with, pulverised soil, enables them to push down fresh fibres, to re-establish their connection with the soil, and to grow as lustily as ever. But so completely is the destruction of these pests secured hy this simple process of winter exposure, that on the return of spring they may be ploughed in with impunity. Mr Tennant assures us, that ever since he adopted this practice be bas been enabled to dispense with the removal of these weeds. Having had an opportunity of inspecting his farm, we are enabled to testify to its cleanness and high state of fertility. On this plan, then, the eleaning of fallows is accomplished by tillage operations alone, without any outlay for raking or land-picking, burning, or carting off. NCr is this done at the expense of the pulverising part of the process. On the contrary, Mr Tennant asserts, and we have so far verified his assertion by actual experiment, that by dis
untegrating the soil in autumn, as is done by this broadsharing, grubbing, and harrowing, it receives far more beneutt from the alternation of frost and thaw, rain and drought, than when merely ploughed and left lying during winter in compact furrow-slices. This plan affords the same facilities as the other for autumn manuring, if the weeds are raked off at once from so much of tho fallow-break as it is wished to manure before winter. When the remainder is ploughed in April following, more of it may then have the farm-yard dung applied to it in the same way. Agriculturists orre a large debt of gratitude to Mr Teanant for the invention of his beautifully simple and efficient grubber, and for this scientifc application of it to the fallowing process. Those who have been pursuing this system of tillage will be mnch interested in observing that it has been adopted by Mr Smith of Woolston, who is carrying it out to perfection by means of his steam-drawn implements.

The autumn tillage of the fallows baving been accomplished in one or other of the ways described, the land is left untriuched till the return of spring. If it is infested by annual weeds, it is expedient, as soon as it is dry enough to bear treading with inpunity, to lerel and stir the surface by a turn of the harrows. This slight moving of the mellowed surface-soil induces the seeds of weeds to germinate more quickly than they would otherwise do, and thus a crop of them is got rid of by the next tilling. Tinis preliminary harrowing is useful also in affording a level courso for the tillage inplements. By the time that the labour connected with the sowing of spring crops is orer, the fallows are usually dry enough to be stirred with safety. This point, wust, however, be well seen to, as irreparable mischiof is often done by going upon them too soon. And now it is, that, instead of rigidly following any customary routine of so many ploughings, harrowings, and rollings, the stilful cultivator will regulate his procedure by the actual circumstances of his sail, and the object which he has in view. What is needed for the successful growth of drilled green crops is to have the soil free from weeds, thoroughly disintegrated to the depth of six or eight inches, and yet mois \uparrow enough to easure the ready germination of seeds deposited in it. Where such autumn cleaning and manuring as we have described hare been successfully carried out, all that is needed, in order to obtain a proper tilth, is to go to work with light grubbers, first in the line of the previous furrows and then across them; and then to harrow, roll, and remove any weeds that have been missed in autumn, after which the soì will be in the best possible condition for drilling. On friable soils, this method of performing the spring tillare by means of the grubber instead of the plough is perfectly practicable, and has manifold advantages to recommend it. The saving of labour is very great, as a man and pair of horses will more easily grub four acres than plough one acre. Weeds are more easily removed, as the grubber pulls them out unbroken, whereas the plough cuts them in pieces. The soil that has been all winter subjected to the mollowing inluences of the weather, and which, in consequence, is in tho best jossible condition to yield a genial seed-bed, is retained a-top, whereas ploughing buries it and brings up clods in its stead. And, lastly, the soil being merely stiored, without having its surface reversed, its natural moisturo (or wiuter sap) is retaincd, whereby the germinating of seeds sown in it becomes almost a certainty. Tho importanco of this last point in the cultivation of such crops as the turnip, whose secds must usually be sown during hot and dry weather, can-scarcely be overrated. This practice is poculiarly appropriate for soils of loose texture, which aro invariahly injured by repeated ploughings. But it is also resorted to successfully on soils of the opposite extrene. Many farmers in the Lotlians now sTow abundant and ex-
tensive crops of turuips on strung chay soils by epreadage Liberal dressitis of dung on the stubble in autumn, ploughing it in with a deep furrow, leaving the land untouched until sowing-tine has fully arrived, and then stirring the mellowed surface soil by the grubbers, romoving weeds, and drilling and sowing at once without any ploughing. When this system is adopted on tenacious snils, it is prudent to operate upon portions of the field in det.ill, taking in only so much at a time as can be grubbed and drilled the same day; for if rain should intervene betwixt tho grubobing and the drilling, the soil would set liko mortar and the tido bo lust. When once the ridgelets are made up in good condition, they can withstand a fall of rain with comparative impunity; and hence the occurrence of a course of fino weather, when the season is jet too early for sowing, is sometimes taken advantago of by preparing the land and making it up into ridgelets, although it should require to remain in this state weeks, or even months, before sowing takes place. In such a case, inumediately before sowing, the ridgelcts are first partially levelled by harrowinglength-wise, in order to lousea the soil and destroy amual weeds, and then again made up by using a double-breasted plough. We must here, however, insist upon the importance of having the grubbing thoroughly performed, which it cannot be unless the tines penetrate tho soil as deeply as the plough has done at the autumn ploughing. It is owing to the neglect of this that the system has failed in the hands of many farmers, who first mismanage the operation, and then throw the blame upon the grubbers. To ensure success, the implement mast be set so as to work at its full depth, sufficient motive power being applied by yoking thrce horses, if necessary, to each grubber at the first and also at the second going orer, and there must be vigilant superintendence cxercised lest the ploughman do the work slightly. It is sometimes objected to this system of spring tillage, that it fails to rid the land of thistles and other tap-rooted weeds; but it is surely easier to fork these out as they appear, than to plough a whole field merely to destroy as many thistles as a man, it may be, wonld dig up in a day. By taking adrantage of the tilth obtained by the action of the elements, instead of first ploughing down the mellowed surface, and then attempting laboriously to reduce tho obdurate furrows by mechanical means, skilful and energetic farmers now succced in preparing even tenacious soils for drilled green-crops, at littlo expense, and with a good measure of certainty.

On these opposite classes of soils, then-the very loose, and the tenacious-spring tillage, in preparation for rootcrops, is performed to better purpose by means of the grubber than the plough. Betwixt these extremes, howerer, Lics the most valuable class of soils-the strong fertile loams -on which the heariest crops and best quality of Srredes are grown. With these it is usually expedient to have recourse to at least one spring ploughing, as soon, but only as soon, as the soil is dry cnough to crumble freely to the very bottom of the furrow. As this usually occurs from four to six wecks before the time of sowing the crop, it is advisakle to plough the entire ficld, and leare it so until rain falls, when a moderaio uco of the grubber, barrows, and light roller, usually suffices to produce a good tilth for ridging. When operetions are not thus fecilitated by a seesonablo fall of rain, it is necessary to proceed somerhat diverently. The field is lying as it mas left by the plough, with a rough dricd surface. If harrowed while in this state, an abundant crop of clods is brought to the surface, which quickly harden when thus fully exposed to drought. To aroid this inconrenieuce, the field is jirst rolled with a heary rollcr, and then grubbed across the direction in mhieh it was last ploughed. By this means tho cluds, being partially crushed and pressed down amongst the luose earth, resist the grubber, and are crumbled bv it. instead of bein 4
meroly raked out and left entiro on the surface, as would baypen but for this preliminary rolling. The grubbers are followed closely by harrows and a light roller, and these agaic by the grubbers; but this time with seven tinles on instead of five, after which a sufficient tilth is usually obtained. All this is on the supposition that the land is clean when these spring operations are commenced; for should it be otherwise, it is usually better to begin with the grubber on the stale winter furrow, and to get rid of the weeds, beforo using the plough. If it is found necessary to plough near to the time of sowing, then the harrow and roller must keep pace with the ploughs in order to retain moisture and prevent tho formation of clods. The Norwegian harruw is the proper implement to use in such cases. Let it ever be borne in mind that if the soil is eleaned and sufficiently disintegrated, the less working it gets at this stage the better.

It may be well indeed to remind the reader that although the fallowing process can most conveniently be gone about during tho period whieh intervenes betwixt the removal of a grain-crop from the ground and the sowing of the succeeding root-crop, and on this account is often spoken of in a loose way as being performed "in preparation for the rootcrop," it is a fallacy to regard this laborious and costly process of tillage and cleaning as undertaken solely or maialy for the benefit of the turnip or other root-crop, then about to bo sown. The other crops of the rotation beaefit by it in a far greater degree, and it would be required on their account although turnips were not grown at all, as may be seen in the case of clay lands with their periodic naked fallows. It is the overlooking of this fact which has led people to charge the whole cost of this fallowing process, and of adl the manure then applied to the land, against the turnip-crup, aod then to represent this crop as the most costly one which the farmer grows, -one which often yields him less than it cost to produce it. Undoubtedly the cost of the fallow must be charged equally against all the crops of the rotation.

Summer or Naked Fullow.

Having thus described at length that modification of the fallowing process by which the soil is prepared for the sowing of green crops, we shall now, as proposed, speak of that prolonged form of it ealled a summer or naked fallow. From the facilitics now afforded, by ineans of tile-draining and portable manires, for an extended culturo of green crops, this laborious and costly process, which in its day was justly regarded as the very ley to good and profitable farming, is now restricted to the more obdurate clay soils, or to cases where draining and other modern improvements are neglected. Tho manifold advantages of having abundant crops of turnips, or mangel-wurzel, instcad of naked fallow, aometimes tempt the occupiers of clay soils to push the cultivation of these crops beyond due bounds. We know of cases where, after large expenditure in draining, the cultivation of turnips has been carried to such an extent, and conducted so injudiciously, that the land has got foul and soured, and its gross produce has been reduced below what it was while the land was undrained, and under a regular system of all but exelusive naked fallows. Howerer thoroughly drained, clay soils retain their ticklish temper, and are so easily disconcerted by interference during unfavourable weather, that the prenaring of them for the cultivation of root-crops, and still more the removing of these crops when grown, is at best a bazardous business, and requires to be condueted with peculiar tact. Judicious farmers, who know by experience the difficulties that have to be overcomo in cultivating such soils, are of opinion that all that can yet be ventured upon with safety is to prolong the period of the naked fallow'a recurrence, rather than
entirely to dispense with it. After a series of alternate grain and cattlo crops, it is accordingly atill their practice. to wind up with a summer fallow, by which they rectify unavoidable defects in the tillage of preceding years, and put their land in good humour for entering again upon a fresl course of cropping.

This process is begun by a deep ploughing in autumn, is performing whieh the land is gathered into ridges, that it may be kept as dry as possible during winter. When tho more urgent labours of tho following spring are so far disposed of as to afford leisure for it , a second ploughing is given to tho fallow, usually by reversing the furrows of nutuma; This is followed at intervals by two cross-ploughings, whicharo made to reverse each other, in order to keep the land level. As it is the nature of these soils to break into lumps, under the action of the plough, rather than to crumble down, the clods thus produced get so thoroughly parched in dry weather, that reot-weeds enclosed in them are killed by sheer desiccation. To further this cheap mode of getting rid of them, the land is not rolled, but stirred by the grubber and harrow as frequently as possible, so as to expose the clods freely to the drought. We know by experience that fallows can be cleaned cffectually by thus taking advantage of the tendency in clay soils to bake excessively under exposure to the hot dry weather which usually prevails in Juno and July. Should the scason bappen to be a showery ono, this line of tactics inust needs be abandoned, and recourse had to the judicious use of the grubber, Norwegian and common harrow, in order to free the weeds from the soil, and then clear them of by raking or hand-picking. This is more costly, and, as we believe, less beneficial to the soil than the simple method first noticed, which should therefore be attempted in the first place. As in bay-making, much can bere be done in a few favourable days, by keeping grubbers and harrows at work, and turning the clods frequently. When farm-yard dung is to we applied to such fallows, it is desirable that it should be carted on and ploughed in before July expires. In applying it, two methods are followed. That usually adopted is, after marking off the ridges, to put down the dung in small heaps, at regular distances, and forthwith to spread it and plough it in. In the other, the land is formcd into ridgelets, running diagonally across the intended line of the ridges, and the dung is enclosed in them in the manner to be hereafter described in treating of turnip culture. In either way, after the lapse of several weeks, the surface is levelled by harrowing, and the land is gathered into ridges by the last of this series of ploughings, hence called the seea-furrow. When lime is to be applied to such land, this is the stage of the rotation which is usually choser for doing so. It is spread evenly over the surface, immediately before the last ploughing. In finishing off thia fallowing process, it is necessary, on undrained lands, to be carcful to clean out the ridge-furrows and cross-cuts, in anticipation of winter rains. But if euch land is worth cultivating at all, it is surely worth draining, and this operation once thoroughly performed, puts an end to all further solicitude about furrows.

CHATTER IK.

succession of crors.

Section 1.-Rotution necessary.

There aro few agricultural facts more fully yscertained than this, that the growth, year after year, on the same soil, of one kind of plants, or family of plants, and the removal from it, either of the entire produce, or at least of the ripened seeds of such plants, rapidly impairs tho general fertility of that soil, and, in particular cases, unfits it for bearing further erops of the kind by.which it has been exbausted. The explanation of the causes of this phenomenon,
belongs to the agricultural chemist or vegetable phssiolugist, to whom we willingly leave the task. What we have to do with is the fact itself, and its important bearing on agricultural practice. There is no natural teadency in the soil to deterioration. If at any time, therefore, the earth fails to yield its increasc for the use of man, it is owing to his own ignorance and cupidity, and not to any defect in the beneficent arrangements of the Creator. 'The aim, then, of the agriculturist, and the test of his skill, is to obtain from his farm abundant crops at a remunerative cost, and without impairing its future productiveness. In order to this, two conditions are indispensable,-first, that the elements of fertility abstracted from the soil by the crops removed from it be duly and adequately restored; and, second, that it be kept free from weeds. The cereal grains, whose seeds constitute the staple food of the human family, are neces. sarily the most important and valuable of our ordinary crops. The stated removal from a farm of the grain produced on it, and its consumption elsewhere, is too severe a drain upon its productive powers to admit of these crops being grown every year on the whole, or greater part of it, without speedily impairing its fertility. Supposing, however, that this waste could be at once repaired by the annual return to the soil of manure equivalent in constituent clements to the produce removed, the length of time which grain-crops occupy the soil, and their habit of growth, interpose peculiar difficulties in the way of cleaning it thoroughly, either before they are sown, of while they occupy the ground. Again, although bread-corii is tha most imoortant product of our soil, other commodities, such as butcher-meat, dairy produce, vegetables, wooi, aud flas, are indispensably required. The econcmical cuiture of the soil demands the omployment of animal power, which, to be profitably used, must be so distributed as to fill up the year. The maintenance of the working cattie, and of other live stock, implies the stated culture of a large amount of herbage and forage. Now, these varied conditions are duly inet by cultivating grain and cattle crops aitcrnately, and in about equal proportions. In carrying out these general principles, much discrimination is required in selccting the particular plants best adapted to the soil, climate, aud other circumstances, of each farm, and in arranging them in the most profitable sequences; for not only is it necessary duly to alternate grain and greeu crops, but, in general, there is a necessity, or at least a high expediency, in so varying the species or varieties of the latter class as to prolong, as much ns pessible, the periodic recurrence of any one of them on the same field. In settling upon a scheme of cropping for any particular farm, regard must be had to its capabilities, to the markets arailable for the disposal of its products, and to the command of manure. When these things have been maturely considered, it is always beneficial to conduct the cropping of a farm upon a settled scheme. The number of men and horses required to work it is regulated chiefly by the extent of the fallow-break, which it is therefore desirable to keep as near to an average annual breadth as possible. When the lands of a farm vary much-as regards fertility, fitness for particular crops, and proximity to the homestead,-they must be so apportioned as to make the divisions alloted to each class of crops as equal as possible in all respects, taking one year with another. Unless this is done, those fluctuations in the gross produce of farms which arise from varying seasons are needlessly, it may happen ruinously, aggravated; or such an accumulation of labour is thrown on certain years which may prove unfavourable ones as to weather, that the rork is neither done well nor in due season.

No better rotation has yet been devised for friable soils of fair quality than the well-known four-field or Norfolk system. By this courso half the arable lands are in grain-
crops, and half in cattle-crops, annually. It is indeed true that, in.the way in which this course has hitherto been usually worked, both turnips and clover have rccurred so frequently (every fourth year) on the same fields, that they have become subject to disease, and their produce excessively precarious. But the excellence of this course is, that its main features can be retained, and yet endless rariation be introduced in its details. For cxample, instcad of a rigid one-fourth of the land being each year under turnips, barley, clover, and wheat or oats, respectively, half only of tho barley division is frequently in practice now sown with clover seeds, and the other half cropped in the following year with beans, peas, potatoes, or vetches. On the same set of fields, coming round again to the same point, the treatment is reversed by the beans, \&c., and clover, being made to change places. An interval of eight years is thus substituted for one of four, so far as these two crops are concerned. Italian rye-grass, unmixed with any other plant, is now frequently taken in lieu of clover on part of the division usually allocated to it, and proves a grateful change both to the land and to the animals which cousume it. In like manner, instend of sowing turnips untaryingly every fourth year on each field, a portion of the annual division allotted to this crop can advantageously be cropped with mangel-trurzel, carrots, or cabbages, care being taken to change the site occupied by each when the same fields again come in turn. The same end is even so far gained by alternating Swedish with yellow or globe turnips. It is also found expedient, either systematically or occasionally, to sow a field with clover and pasture grasses immediately after turnips, without a grain crop, and to allow it to remain in pasture for four years. A corresponding extent of the other land is meanwbile kept in tillage, and two grais crops in succession are taken on a requisita portion to equalise the main divisions, both as respects amount of labour and the different staple products. A closer cover of grasses and a better pasture is obtained in this way than by first taking the customary grain crop after turnips; tho land is rested and invigorated for future tillage, the outlay on clover and grass-seeds somewhat diminished, and the land better managed for the interests of all concerned than by a rigid adherence to the customary rotation.

Section 2.-Restrictive Clauses in Leases Hurtful.

It is common enough for landiords, or their agents, to tie down the tenantry over large estates to the rigid observance of some pet rotation of their omm. In an unimprered state of agriculture, and for a tenantry daficient both in capital and intelligence, such trammels, kindly enforced, may be as beneficial to them as to their landlord. But when the culture of the soil is undertaken by men of good education, who bring to the business ample capital, and skill to use it to the best advantage, such restrictions are much more likely to do harm than good to both parties It is to be observed in regard to those restrictive clauses usually inserted in farm-leases,-such as, that tro graincrops shall never be taken in immediate succession; that no hay, straw, or turnips, shall be sold from the farm; that only certain limited quantities of potatoes or flax shall be grown; that land shall be two or more years in grass, \&c.,that they all proceed on the supposition that the farm is to maintain its own fertility. They obviously do not contemplate the stated purchase of large quantities of guano, bones, and similar extraneous manures, or the consumption by live stock of linseed-cake, grain, or other auxiliaries to the green crops produced on the farm. Norr, not only are such clanses incompatible with such a system of farming as we hare just now indicated, but their direct tendency, if enforced; is to hinder a tenant from adopting it even when disposed to do so. We hear now-a-days of teuants who are
annual parchasers of these extraneous fertilising substances to the extent of 203 . to 30 s . worth for ovory acre occupied by thern. To euforce the same restriction on such men as on others who buy none at all is obviously neither just nor pulitic; sud we believe that uny practical farmer, if he bad bis chuice, would rather bo tho successor of a liberal maurer, however he may have cropped, than of one who has farmed by rulo on the starving system. We are quite aware that, in regard to the first-mentioned of these restrictiuns (viz, that which forbids taking two grain-crops in innuediate succession), the contrary practice is still assected by arricultural authuritics to be necessarily bad farming. Nuw, we do not concur with this opinion, but believe, on the contrary, that when land is kept clean, snd is as bighly manured and well tilled as it must bo to grow cattle-erops in perfection, tho second successive crop of grain will usually be better than the first, its production nowise injurious to the laud, snd the practico, in such circumstances, not only not faulty, but an evidence of the skill and good management of the farmer. A frequent encomium applied to a particularly well-cultivated farm is, that "it is liko a garden." Tho practice of market-gardeners is also frequently referred to as a model for farmers. Now, tho point with them is to have every inch of their ground under crop of some kind at all seasons, snd to carry everything to market. Under such incessant cropping, the fertidity of the suil is maintained only by ample manuring and constant tillage. By these means, however, it is maintained, and the practice is extolled as the perfection of management. Such a system must therefore be as true in farming as in gardening, when the like cunditions are observed. Undoubtedly he is a good farmer, who, while keeping his land elean and in good beart, ubtains the greatest produce from it at the leasi proportionate outlay; and it is no valid ubjection to his practice merely to say that be is violatiug orthodox rotations.

Section 3.-Experiments at Rothamstead and Lois Weedon.

Some curious information has been obtained regarding the effects of growing successive crops of one kind of plant on the same field, from two examples of it that aturacted much attention. We refer to the experiments of Mr Lawes st Rothamstead, and of the Rev. Mr Smith at Lois Weedon. It is well known that Mr Lawes for a number of years devoted a considersble extent of land to the prosecution of a series of interesting experiments, one beld being allotted to experiments with wheat, another to turnips, and snother to beans. One acre in the wheat-field bore upwards of twenty successive crops of wheat without sny manure whatever. The land was annually scarified and thoroughly cleaned as soon as the crop was removed; it was then ploughed and again drilled with wheat, which was duly hoed in spring. Now, with occasional variation, due to the character of psrticular sezsons, Mr Lawes found that the average annual produce of this acre was 16 bushels of grain and 16 cwt . of straw, below which be failed to reduce it by these successive crops. His soil was a strong clay loam, resting at a depth of five or six feet upon chalk In the case of turmips, be found that, when treated in the same way, they cease sfter a few years to grow larger than radishes, nor could he, by the application of any amount or variety of manure which he tried, obtain a second successive crop equal to the first. With the wheat, on the antrary, the addition of four cwt. of Peruvian guano at once aubled the produce. Mr Smith's experiments, as is well known, were a revival of Jethro Tull's system of growing Wheat continually on the same ficld, by a plan of alternate strips of wheat and bare fallow, made to change places annually. He improved in so far upon 'Tull's practice, inasnuch as he thuruughly drained his land, and his fallow spaces fere deedly trenched every autuma, is well as ploughed
and hoed during the growng seasun. The result was tnat his land thus treated yielded an average snnual produce of $3 t$ bushels per acre for eleven or twelve successive crops Now, it is not our intention to offer any opinion on this as a system of wheat growing. We refer to it along with Mr Lawes's, for the purpose of showing that, notwithstaud. ing tho prevalent opinion that grain-crops exhaust the fertility of soils more rapidly than green crops, this is true only in a very restricted sense. Green crops judiciously interpused do undoubtedly serve a most important purpose in the meaus which they furnish for maintaining the fertility of a farm ; but it is worthy of note, that whereas, by the addition of suitable manure, thorough tillage, and diligent removal of weeds, clay soil at least will stand en indefinite succession of grain crops, the same means ehtirely fail io yield the same results with our most popular green crops. Our personal experience quite accords with this; for we suppose it will be admitted that the eorn crops of the country ere at the present day superior, both in quality and quas:tity, to those of any preceding period; whereas potatoes, turnips, and clover, which we have so long regarded as our sheet. anchor, have become increasingly precarious, aud threaten to fail us altogether. We offer these facts for the eunsideration of those who out-snd-out condemn the practice of suwing twu white crops in immediate succession. In stating this upinion, we must, however, guard against misanpre hension. Unless the land is highly manured and kept thoroughly clean, we are just as much opposed to the practice as any one can be; but when mischief is dune by it, we believe that it is due rather to the presence of weeds than to the second grain-crop. Neither do we plead for the absolute removal of restrietive clauses from farm leases. Human nature being what it is, men who do not see it to be for their own advantago to farm well, will, through ignorance or greed, ampoverish their land unless they are restrained. Clauses as to cropping should, however, be pruhibitory rather than preseriptive-have reference rather tu what is removed from the farm than to what is gruwu upus it-and they should be cuntingent upon the other practices of the teuaut. So long as he coutinues, by smple manuring and careful tillage, to maintain the fertility and general good condition of the farm reuted by him, it can be no advantage to his landlord to hinder him from cropping it st his own discretion. It will be seen from these remarks, that we attach more importance to thuse general principles which should regulate the succession of crops, than to the laying domn of formulie to meet supposed cases. The man who cultivates by mere routine is unprepared for emergencies, and is sure to lag in the race of impruvement; while be who studies prineiples is still guided by then, while altering his practice to suit changing circumstances.

CHAPTER X.

MaNURES.

Section 1.-Farm-yard Dung.

In our remarks on tillage operations and on the succession of crops, we have seen how much the practice of the ausband. man is modified by the kinds and amount of manures at his disposal. In describing the crops of the farm and their culture, frequent reference will also necessarily be made to the use of various fertilising substances; and we shall, therefore, before proceeding to that department of our subject, enumerate and br ofly remark on the most important of them. In such an enumeration, the first notice is unquestionably due to farm-yard dung.

This consists of the excrements of cattle, their litter, and the refuse of their fodder; usually first troddeu down in successive layers, snd partially fermented in the farm-gard, and then removed to some conveuient place and thrown tugether in beaps, where. by further fermentstion and d※cay,
it is reduced to a dark-coloured, moist, homogeneous mass, in which state it is usually applied to the land. It is thus the residuum of the whole products of the farm, minus the exported grain, and that portion of the other crops which, being first assimilated in the bodies of the live stock, is sold in the form of butcher-meat, dairy-produce, or wool In applying farn-yard dung to land there is thus a returning to it of what it had previously produced, less the above exceptinns. and such waste as may occur during the process of decay by gaseous exhalation or liquid drainage. It is ohvious that the value of such dung as a fertilising agent must depeud much on two circunstances, riz., 1st, The nature of the food consumed by the animals whose excrements are mingled with it; and, $2 d$, The success with which waste from drainage and exhalation has been prevented. When cattle used during the winter months to be barely kept alive on stauw and water, and were confined in an open yard, which, in addition to its own share of rain, received also the drip from the eaves of the surrounding build-ings-which, after percolating the litter, flowed unchecked into the neighbouring ditch-it is needless to say that the dung resulting from such a process was all but worthless. It is much to be rogretted that, from the faulty censtruction of farm-buildings, farmers still find it impossible to guard their dung-stores from injury and waste. When cattleyards are slightly hollowed towards their centre, and the surrounding eaves are spouted, the litter absorbs the whole of the urine and the rain which falls upon the uncovered area, while the treading of the cattle goes. far to prevent undue fermentation and escape of gases. The same remark applies still more strongly to covered bores, the dung resulting from this mode of housing fattening cattle being of the best quality. In the case of byres and stables it is certainly desirable to have a covered depôt, into which the litter and solid excrements may be wheeled daily, and to have the urine conveyed by proper drains and distributed ever this mass of solid matter. As there is usually more liquid than these can at once absorb, it is well to have a tank at the lorrest part of this depôt in which to store the surplus, that it may from time to time be returned upon the adjoining mass, or conveyed to heaps in the ficlds. Advantage is usually taken of frosty weather to cart out to the fallow division of the farm the dung that has accumulated in yards and boxes. It is formed into large equare heaps about four feet deep, in situations most convenient for ready application to the land when the season for sowing the crops arrives. It is desirable to prepare a site for these heaps by carting together and spreading dorn a quantity of earth (or peat, when that can begot), for the parpose of absorbing the ooze from the fermenting mass laid upon it. At the beginning of winter, the loaded dung-carts are driven on to the heaps, and their contents are spread evenly over it, laycr above layer, both to equalise the quality of the dungbeap as a whole, and, by the compression thus applied, to prevent a too rapid fermentation. When the heap has attained the requisite bulk, a covering of earth or peat is spread over it to keep it moist and to provent the escape of its ammonia. When this home-mide manure was the only kind statedly at the command of the farmer, it was considercd necessary, and we believe truly, te have it in an advancedstate of decomposition before applying it to a turnip crop. There was a waste of manure by this practice, but unless it was in a state to supply instant nourishment and stimulus to the young turnip plants, the crop was certain to be a deficient one. The application, along with farm-yard dung, of guano, superphosphate of lime, an.d other portable manures, quite does away with the necessity of having the former much rotted. These concentrated manures stimulate the growth of the plants during their carly stage, and put them in the best condition for making gradual use of the
slowly dissolving aung. Excessive decomposition of farmyard dung is now therefore avoided, and pains rather bestored to improre its quality by protecting it from the weather, and retaining its ammonia and natural juice. The cheapest, and perhaps also the best, nay of doing this is to cart the dung direct from the cattle-yard to the fields. and at once to plough it in.

Section 2.-Iiquid Manures.

We bave spoken of the importance of carcfully retaining the urine of the boused live stock, by having it absorbed in the solid matter of the dung-heap, and of collecting the surplus into a suitable tank, where it may be available for moistening the heap from time to time, and especially when about to be applied to the land. A system has, however, lately attracted much notice, by which pains are taken not only to preserve every drop of urine and ooze from dungheaps, but, as far as practicable, to apply the whole nuanure produced on the farm in a liquid form. It is in Ayrshire, and especially on the farm of Myrenill, that this systen has been carried out most fully. Our rcference will be best explained by quoting at length from the Minutes of Information issued by the General Board of Health regarding scrage manure.
"The dext farm visited was in the immediate vicinity of Glasgow, where the supply of liquid manure is derised from anotber source, and distributed in a difiterent manner. Tha sapply is froun a dairy of 700 cows, attached to a large distillery ; the entire drainage from the former flows in a full continuous stream into a tank containing 30,000 or 40,000 gallons, whence it is punped up imnuediately by a 12 -horse power engine, and forced through 4 -incly iron pipes, laid about 18 inches under ground, into large vats of cisterna piaced on the highcst points of the land to be irrigated. From these it descends by gravitation throngh another system of pipes la:d along the ridges of the bills, finding an outlet through stand-cocks placed at intervals, from which it is distributed throukh movable iron pipes fitting into each other, and laid along the surface in whaterer direction the supply is required. The land thus irmented consists of three farrma lying at sonie distance spart, the faribes: point to which the liquid is conveced being ahout two miles, and the highest elevation 80 feet above the site of the tank rad engine. The principal use to wlich the irrigation has been applied Las been to preserve the fertility of the pastures, the general appearance of which was at first rather disappointing, but this was explaived by the fact that they are fully stocked, and that the cows rush with avidity to those parts that have been last irrigated, and eat them down quite bare. As is the case in other instances, however, by far the most profitahle application has been found to be Italian ryegrass, of which 15 (Scotch) acres were under cultiration, some with seed supplied by Mr Dickinson, whuse successfill cultivation of it by similar means near London has long been known. The first cutting of this had yielded about ten tons the acre, the sccond vioe. ana tho third, which was ready for cutting, was estimated at ei,ht or nine more. Some crops of turnips aud cabbages were poiuted out to us in a state of vigorous growth, and with nore than common promise of abundance; these were raised by a dressing of ashes and refuse (of little frrtilising value, baving heen purchased at 2s. 6d. a ton), conjoined with tour doses of liquid, one after the preceding crop of oats had been carricd, one prior to sowing, and two more at difierent stages of growth. The enterprising gentleman who has carried out these works at his own expense, aud in spite of the discouragement arising from partial failure in his earlior attenuts, thergh speaking cautiously, as was natural io a tennut on a niuetecn years' lease, of the pecuniary results of this umlertaking, imparted some facts which leave little doubt that it must have beeu largely remunerative. Besides maintainiog, if not increasing, the fertility of the pastures, to which the solid manure from the byres was formerly devoted, at a heary cxpense of cartage (the whole of which is now saved), ho is enabled to sell all this maumre, of which we estimated the quantity at about 3000 tous a year, at 6s, a load. For a good deal of the Italiau rye-grass not required for his own coussumption, he obtained uprards of 13 s . a ton, the profit on which, taking into account the yield bcfore stated, may easily he imagiued. Thirteen carts, each containing six barrels of ten gallons each, are used to convey the milk to market, where it is sold at 5d. the Scotch pint, equal to six pints imperial measure. The income from milk would, therefore, be not less than $£ 43,6 \mathrm{~s}$. 8 d . per day, or $£ 15,816$, 18s. 4d. per annum.
"The next place visited was the farm of Myremill, near Maybole, in Ayrslure, the property of Mr Kennedy, who adopted and improved on the method of distribation just described. On thir
fann, about 400 imperial scres of which are laid down with pipes, some of the solid as well as the liquid manure has been applied by these means, guano and superphosphate of lime having been thus transmitted in anlution. whereby their value is considerably enchanced. This is especially the case with guano, the use of which is thus rendered is great measura independent of the uncertainties of climate, and it is mado capable of being applied with equar advontage in dry as in wet weather. Io aome respecta the farm labours under peculiar disudvantages, as water for the purpose of diluting the liquid has to be raised from a depth of 70 feet and from a distauce of more than 400 yards from the tanks where it is mized with the dminage from the byres. These tanks are four in number, of the following dimensions respectively : $-48 \times 14 \times 12$; $48 \times 14 \times 15 ; 72 \times 14 \times 12 ; 72 \times 17 \times 12$. They have each a separate conmunication with the well from which their contents are pumped up; which are used in different degrees of 'ripenesa,' a certain amount of fermentation induced by tho addition of repedust beiug considered desirable. The liquid is diluted, according to circamstances, with three or four times its bulk of water, and delivered at the rate of about $£ 000$ gallons on hour, that being the asual proportion to an acre. The quantity to be applied is determined by a float-gouge in the tank, which warns the engineer, whose business it is to watch it, when to cut off the supply, aud this is a signal to the man distributing it in the field to sdd another length of hoee, and to commence manuring a fresh portion of land. The pumps are worked by a 12 -horss power ateam-engine, which performa all the usual work on the farm, thrashing, cutting chatf and turnipr, crushing oil-cake, grinding, \&c., and pumping. The pipes are of iron; mains, submains, and service pipes, five, three, and two inches in diameter respectively, laid eighteen inches or tro fect below the surface. At certain points ara hydrants to which gutta-percha hase is attached in lengths of twenty yords, at the end of which is a sharp nozzle with an orifice ranging from one to one and a haif inch, according to tha pressure laid on, from which the liquid makes its exit with a jet of from twelve to fifteen yards. All the labour required is that of a man and a boy to odjust the hose and direct the distribution of the manure, and eight or ten acres may thus be watered in a day. There are now 70 acres of Italian ryegrass and 130 of root crops on the farm. The quantity they would aelire" by a jet from a pump worked by \& 12 -horsepower steamcngine would be 40,000 gallons, or 178 tons, perdiem, and the expense per ton about 2 d ., but a double bet of men would reduce the cost. The extreme length of pipe is three quarters of a mile, add with the hose the total extent of delivery is about $1,900,000$ yards, or 400 acres. To deliver the same quantity per diem by water-carts, to the samo extrene distance, would be impracticable. One field of rye. grass; aown in April, had been cut once, fed off twice with sheep, and was rcally (August 20th) to be fed off again. In another, after yielding four cuttings within the year, each estimated at 9 or 10 tons per acre, the value of the aftermath for tha keep of sheep was staled at 25 s . an acre. Of the turnips, one lot of swedes, dressed with 10 tons of solid farm manure, and about 2000 galluns of the liquid, hoving six bushels of dissolved bones along with it, was ready for boeing 10 or 12 days earlier thon another lot dressed with doubla the amount of solid manure without the liquid application, and were fully cqual to those in a neighbour's field which lad received 30 londs of farm-ynrd dung, together with 3 cwt . gueno and 16 oushels bones per acre; the yicld was estimated at 40 tons tha Scotch acre, and their great luxuriance seemed to me to justify tho expectation. From one field of white globe turnifis sown later. and manured solely with liquid, from 10 to 50 tons to the Scotch acre was expected. A fiedd of carrots, treated in the sama manner as tha swedes, to which a second application of liquid was piven just before thinning, promise from 20 to 25 bons the acre. Similarly favourable results have been oltained with cabbages; and that tha limit of fertility by these means has not yet been reaclied, was clearly shown in one part of the Jtalian ryc-grass which had accidentaliy received nora than its allowance of liquid, end which showed a marked increaso of luxuriance ofer that around it. The exact increase of produce has not been accurately determined, but tho number of cattle on the farm has increased very largely, and by means of the Italian ryc-grass ot least four times as many beasts as before can be kept now on the same extent of land, the fertitity of the land being at the same time increased. This plant, of all others, appears to receive its nourishment in this form with most gratitude, and to make the most ample returns fur it ; and great as ara the results hitherto obtained, I believe that the maximum of productiveness is nut yet renched, and that the present experiment must be carried yet further before we know the full capabilities. of this manure. Of ons important fact connected with this crop, I am essured, thot notwithstanding the rank luxuriance of its growth, animals fed upeu it not only are not ecoured, hut thrive more than on any other kind of grass in cultivation.
"Taking into the irrigation account the whola cost of the engine, and the whole of the fuel and wages-although half of these might have been deducted-tho following apyears to be the capital accocint and working expunses for fertilising Myremill farm :-

This omownt, divided by the number of acres, is cqual to tho anoual sum of 1 \&s per acre.
"I now come to the practical results of so cheap a mode of fer. tilising land.
"Mr loung informed me that in one of the fields ho had hime self measured the growth of Italian rye-grass, and had found it to be two inches in twenty-four hours; and thet within seven months Mr Kennedy had cut from a field we wera passing at the time 70 tons of grass per acre. Where tho whole is cut, four or five heary crops are thus taken; but upon some of the land during the last two sears 20 sheep to the acre have been penned in hurdles, and moved nbout the amma field from time to time; after each remove the fluid has been applied, and immediately followed by an abun dant growth of food. There is not the alightcst appearance of exhaustion in tha land, - its fertility appears to increase. I was informed that, before the liquid manure was used, the land would not keep more than a bullock or five sheep to the acre; now it wild maintain, if the crops are cut and carried in, five bullocks or twenty alicep to the scre. Some beans, bran, and oil-cake are bought fot the stock; but, on the other hand, one-third or more of the farm is kept in grain, notwithstanding the grast number of live stock
"Canuing Park.- Mr Telfer's farm, near Ays. This is a small dairy farm of 40 acres, near the level of the aca, and about a mile and a holf west of the town of Ayr. The subsoil ie beach gravel with a slight admiztuse of clay. Water is too abundant. It liks dead within about 20 inches of the surface, and in winter nearer than that.
"No bedding or litter is used here. The cors lie on cocon-nut mats. The ventilation is perfect ; and the air aweeter than in the majority of the dwelling-houses of humen beirgs.

The following appears to be the cost of carrying out the system of Mr Telfer's farm :-

"In aummer tho cows have a quantity of oil-creke, as well as grass; and in winter they have turnips or mangel-wurzel, bean or barley meal, and cut hicy or grass; the whole mess being stcamed together. Miss Bell, the cousin of Mr Telfer, manages the dairy, and said that last year the hay bought would amount to from $£ 36$ to $£ \pm 0$, and she shoull think the grain to not less than $£ 200$. Io general terms, the other food is proauced upon the farm. As to the produce of grass, which is the chief article, the first cutting during the present year was in the latter end of March about 18 inches thick. The second was from 18 incles to 2 feet thick. The third was from 3 feet to 4 feet 6 inches thick. The fourth nearly the eame. The fi[t] was 2 feet thick; and the sixth, in process of cutting at the tiane I was there wo measured at 18 inches thick. Taking the mean, where two dimensions are given for the saine crop, 1 find the aggregate denth of grass, grown and cut off this farm within seven months, to ve not less than 14 feet 3 inches. All this is, however, eaten upon the premises, and the whole marketable produca of the farm is represented by the milk and butter.
"As to the quentity and value of these, Miss Bell stated that the previous week the butter was 114 It and 120 It-together 231 lb , sold at ls. per pound. This, she stated, was about the average quantity and Frice. The amunat for butter would therefora le $£ 11,14 \mathrm{~s}$. per week, or per aınum $£ 608,8 \mathrm{~s}$. She informed me farther, that during about cighe months in the year, the cold milk rew lises about the same amount as the butter. In the summermonths, during hot weather, the market value of the milk is only about half that of tha butter. From these data, the amount for milk sold per annum is $£ 507$.
"'She total receipts for the two articles ofmilk and butter amouat to Elll 5.8 s . pcr arns.m.
"I only need to add that, previuusly to the adoption of the present gystem of farming, these 40 acres of land were oarely sufficient to support eight or nine cons, and would have been well let at a rental of 30 s . an acre."

The attention now so generally directed to this subject, and the importance attached to it in many quarters, justify this lengthened quotation, and call for some remarks upon it. We have carefully examined two of the instances referred to in this repurt, viz, Port-Dundas and Myremill; and some smaller experiments more cursorily. After doing so we are sorry to say that we have arrived at a very differeut estimate of this system of manuring from that expressed in the above quotations. We at once, and with pleasure, acknowlcdge that in so far as concerus the storing up aud preparing of the liquid manure, its application to the land, aud the production, by means of it, of crops of Italian rye-grass almost surpassing belief in their luxuriance and weight of. produce, Mr Kennedy's experiments have been crowned with complete success. The excelleuce of this grass as food for live stock, and their relish for it, is elso indisputable. Neither do we dispute the statements of thoso who tell us that manure, wheu largely diluted with water, and properly applied in the liquid form, is more
beneficial to plants than in any uther way in whicu is cun be presented to them. Admitting all this, the question remains, Has it yet been shown that this systen can be economically applied to ordinary farnis? Data are still wanting from which to answer this question conclusively, but we shall state some of the reasons which coustrail us, with our present information, to do so in the negative.

Supposing.an adequate motive power already to exist, and to be partly employed for other purposes, the capital that must be invested in providing the tanks and other apparatus necessary for carrying out this system amounts tu about $f\{$ per acre over a farm of average extent. If the system be a sound one, the great amount of this outlay caunot fairly be urged as an objection to it. The additiou of a permaneut rent charge of 53 . per acre to an entire farm, for a benefit which in any one year can be available to but a limited portion of it, is however a serious matter. In each case referred to in the Jinutes of Information, the whole annual charge, whether arising from iuterest on capital, wear and tear of machinery, or working expenses, is dividsd by the whole acreage of the farm. In the first seven cases given in the tabular statement, this mode of calculation is correct, as the whole areas do actually benefit
fable 111.-Showing Cost, dic., of the Application of Sewerage Waters aiul Liquid MFanures.

each year by the irrigating process. But when we come to those irrigated by machinery, we find that a half or twe Gifths only of the land receives the benefits of it in any one
year. If the annual charge in this latter class of cascs is divided by the acreage actually irrigated, it hecomes eridint that the expense is duoble that of the pusey meadows, und
equal to that of the old meadoiss noar E.dinburgh, instead of being less, as it is made to appear. Again, in cstimating the profits a opprosite cuurse is followed. While the charges are made to appcar less by spreading them over the whole area of the farm, the enurmous prodere of grass from the irrigated parts is put prominently forward, and little is said aboit its produce as a wholc. In the dairy cases, too, we are told of enormous gross profits, without being pointedly reminded that the larger portion of the keep of the cows, such as distillery offal, bean-mead, hay, and ceen straw aud turnups, is actually purchased; that in this way a quantity of extraneous inauure becomes available for the associated farm, sufficient (hovever applied) to maintain it in a state of fertility; and that thero would be haudsome profits from the dairy, irrespective of the farm altogether. In fact, town dairies usually hare no land attached to them. The corss are maintained solely by purchased food, and the salc of manure, biquid aud solid, forms one of the stated items of income. In Mr Harvey's and similar cases, tro separate businessos are in fact mised up, and yet the whole is spalien of in such a way as if the profit was mainly due to the use of liquid manure. Indeed, the whole of these Minutes of Information issued by the General Board of Health have an air of special pleading about them, which to us seriously detracts from their value.

The entire annual cost of applying manure in this manner is stated to amount to from 10s. to 14s. per.acre for the whole extent of the farm. Now this would suffice to provide annually. from 1 to $1 \frac{1}{2} \mathrm{cmt}$. of Perurian guano (even at its present high price) for every acre of the farm, or from 2 to 3 cwt . per acre, if applied, as the liquid is, to the portion under green crop ponly. The stated application of such a diressing of guano, in-scparate portions, and during showery weather, will be found to yield results little inferior to those obtained by the use of liquid manure. To do this requires no costly apparatus or permanent sinking of capital, and its applicaticn can.be' desisted frem at any time when found unremunerative. The adoption of this plan of applying the liquid manure of the farm necessarily demands that the whole system of management be accommodated to it. In order to furnish this liquid manure, the whole green crops must, summer and winter, be conveyed to the homestead, and there consumed in such a manner as that the urine and durig of the animals fed upon it may be scoured into the tanks. It is no such easy matter to replenish these tanks as some persons seem to think. When cattle are housed in boxes.or properly protected yards, the whole of the urine is absorbed by the litter, and goes to the field in the dungcart. This is certainly $\&$ more expensive way of convering it to the ficlds than by pipes. But then; as in the new system, the urine, de., is diluted with at least three times its volume of water, there are four tons of manure to convey on the one plan for onc on the other. Even where pipes are used, all the litter, and a portion at least of the dung, bas still to bee carted out, so that no claim of a saving of carriago can validly be put forward on behalf of this system; but its merits must be grounded solely on the superier efficacy of manure, when applied in a liquid instead of a solid form.
In the case of dry and loose soils, the consuming of the turnip crop, by folding sheep upon it, has hitherto been regarded as at once the cheapest way in-which it can be converted into wool and mutton, and the land consolidated and enriched, so as to fit it for producing grain and other crops. On tenacious soils, and in a moist climate, which is quite the case at Myremill, it is gertainly impracticable to pursue this system in winter. It is perhaps also the case that sheep are healthier, fatten more rapidly, and yield more wool, when fed under cover, than when folded on the open turnip field, Admitting all this, howevar, reare disposed
to think that these benefits are detter secured by Mr Finndell of Chadbury's plan of littering the pens with burut clar, which keeps the sheep clean, and their fect in good order, and, wheu tningled witb thriir urine and dung. forms a most valuable manure for any kiud of land. Were this carriod out by means of movablo covered pens, which could be erected and easily shifted from place to place in the turnip ficld, the carriage of the turuips and mauure would be greatly reduced, esprecially if accomolislred by means of the portable railway.
In the case of daries near towns, where the cows are hargely fod on brewery or distillery offal and other purchased iod, the circumstances are totally diffrient from thoso of crdinary farms, depending solely on thoir own resources. The liquid manure that.rrould otherwise run to waste; when thus applied, is so much clear gain, in so far as the value ci the increascd produce excceds the cost of application. It nay form a wholesome caution to some persotis to mention here that, notwithestanding all that has been mritten about the success of the spirited operations at Port-Dundas, we were told by Mr Harvey, that so dubieus is he still about it, that if the thing were to do again, he would rather kecp his money in his pocket, and let the urine run into the canal as formorly. If there is doubt even in such a case, how much more. when the manure must virtually le purchased. And this leads us to remarl that wo have better hopes of the ultimate success of this plan of manuring, when it is restricted to the application of the surplus liquid manure of the hemestead to some picce of meadow near at hand, supplementing this supply, when necessary, by dissolving guano in water, and scuding it through the pipes. These remarks apply even more strongly to the sewage from towns, The liquid, in this case, is highly charged with fertilising ingredients of the most raluable kind, sceing that it consists largely of night-soil from a population consuming much animal food. With few exceptions, this valuable liquid, which flows in such quantities from ali nur towns, is not only utterly lost, but is a grievous noisance, by polluring our streams and generating disease. In applying it as manure, the expense lies entircly in providing and working the necessary apparatus. In such cases, theu, with an unfailing supply, of highly fertilising liçuid, costing nothing to begin with, there is every inducement to put inte operation any plan by which it can be economically applied to field crops. The enhanced value of green forage in the vicinity-of towns is au additional motivefor attempting this. The profitable disposal of town serwage in a way neither injurious to the liealth nor offensive to the senises of the community, is, however, a problem yct remaining to be solved.

Thè ingenuity and enterprise displayed by Mr Rennedy and others, in their endeavours to cheapen by this means the cost of farm produce, and the frankness and untiring panenco with which they have shown and explained their proceedings to the unceasing stream of visitors, which the novelty of the opcritions attracted from all parts of the kingdom, and even from foreign countries, are altogether so .admirable and praiservorthy that it requires no slight effort to speak of them otherwise than approvingly. The confidencowith which various influentios parties have proclaimed the complete success of this scheme of irrigation, and recommended it for general adoption; seems, however, to require that those who have examined it, and arrived at an opposite conclusion, should publicly say so.
It is unreasonable to expect that private partics are to divulge their whole bssiness afiairs; and yet, withoutt a full Dr. and Cr. account for some ordinary arable farm treated ou this systenr, it is impossible to arrive at a scund judgment on its merits. Until this can be done, it would be better to abstain froṇ publishing partial statements, which teud only
to mislead the public mind. We offer these remarks in no spirit of hostility to this new system of farming. We shall rejoice unfeignedly to find that our opinion of it is erroneous, and that it really warrants the sanguine expectations which sorae parties entertain regarding it. We simply maintain that as yet the case is " not proven," and our counsel to those who are disposed to try it is, not to embark in it to an extent that would embarrass them, if, as we fear, it should prore a failure.

Section 3.-Guano.
Next to farm-yard manure, which must ever bo looked to as the chief means of maintaining the fertility of a farm, guano claims our notice. This substance is the dung of seafowl, and is found on rocky islets in parts of the world where rain seldom falls. The droppings of the myriads of birds by which such places are frequented have in many cases been permitted to accumulate during untold ages, and are now found in enormous deposits. The principal supply, both for quanitity and quality, has hitherto come from the Chincha Islands, on the coast of Peru. The introduction of this powerful and exceedingly portable manure gave a prodigious impetus to agricultural improvement. It is about thirty years since a few casks of this article were brought to Liverpool from Peru, where it has been known and prized as a raluable manure from the remotest periods. No sooner had its value been discovered by our British agriculturists than the demand for it became so keen, that the quartity imported rose from 2881 tons in 1841 to 283,300 tons in 1845. The price at which it was sold at first $\pi a s ~ £ 20$ per ton, from which, with increased supplies, it fell to $£ 11$, when the discovery in 1844 of a considerable deposit on the island of Ichaboe, on the coast of Africa, at once reduced the price to $£ 9$.

Discoveries have from time to time been made of other deposits on the African coast and in Australia The quality of both is much inferior to that from Peru. It is in a more advanced state of decay, and contains more moisture and sand. Great as was the deposit of this valuable fertiliser on the Chincha Islands, it rapidly diminished under the excessive demand for it from Great Britain and other countries. Gradually the quality became very inferior, and in 1871 it was announced that this deposit mas entirely exhausted. Considerable supplies are stiil obtained from other parts of the Peruvian coast; but unfortunately the quality is very inferior to that formerly obtained from the Chinchas. This circumstance mould not be of much consequence if the guano was offered for sale on fair terms; but as the agents of the Peruvian Government sell it only at one uniform price per ton, although different cargoes, and even different portions of any one cargo, vary excessively in quality, it is now an unsafe article for farmers to purchase.

We give here, from the Board of Trado returns, a table of the quantities of guano imported jearly, with the computed real value, from 1854 to 1872.

Table showing the Imports of Guaro from 1854 to 1872.

Year.	Tons.	Veiae	Year.	Tons	Value
1854	235,111	£2,530,272	1864	131,358	£1,457,088
1855	302,061	8,137,160	1865	237,393	2,675,995
1856	191,601	2,136,431	1866	135,697	1,439,679
1857	288,362	3,613,074	1867	192,308	2,109,506
1858	353,541	4,084,170	1863	182,343	2,039,478
1859	84,122	769,333	1869	210,010	2,640,983
1860	141,435	1,557,895	1870	280,311	3,476,680
1861	178,423	2,022,283	1871	173,678	1,994,145
1862	141,636	1,635,322	2	118,704	1,201,042
	233,574	2,658,856			

The dung of iirds, from its including both liquid and iolid excrements, is superior as a manure to that of quadru-
peds. Figeons' dung has long been in high repute as an excellent fertiliser, and brought a high price in days when portable manures were scarcely to be had. It is now little heard of, guano, the excrement of fowls which feed upon fish, being superior, weirht for weight. The dung of domestic poultry is usually mixed with the general dung. heap, but it could be turned to better account if lept by itself. It has been recommended to strew the floors of poul-try-houses daily with sawdust or sand, and to rake this with the droppings into a heap to be kept under cover and used like guano.

Section 4.-Bones.

It is now about sisty years since ground bones began to ou used by farmers in the east side of England as a manuro for turnips. At first bones were roughly smashed by hammers and applied in great quantities. By and by mills were constructed for grinding them to a coarse porder, in which state they continued to be used as a dressing for turnips, at the rate of sixteen to twenty bushels per acre, in all parts of the kingdom and to a very great extent, until the admirable discovery by Baron Liebig of the mode of preparing superphosphate of lime by dissolving bones in sulphuric acid. We slall not attempt to explain on chemical principles the monderful superiority of this substance over simple bonc-dust in promoting the growth of the turnip planto What we should do indifferently, by borrowing from others, will be found well done by variuus accomplished chemists who write specially on these subjects. We can, however, testify from experience to the important fact, that one bushel of boue-dust dissolved by a third of its weight of sulphuric acid is as a manure superior in value to four bushels of simple bone-dust. It is not merely, or even chiefly, in the lessened cost at which an acre of turnips can be manured that this superiority lies, but especially in this, that from the extraordinary stimulus given by superphosphate of lime to newly germinated turnip plants, they usually arrive at the stage when they are fit for thinning in from ten to fifteen days earlier than when somn orer farm-yard dung or simple bone-dust, or both combined. This shortening of the critical period during which the attacks of the insignificant but dreaded turnip-beetle so often baulk the hopes of the husbandman is an adrantage not easily estimated, and one well fitted to inspire him with confidence in the science to which he owes the discovery, and with grateful respect for the eminent discoverer. This porrerful effect in quickening the growth of the young turnip plants is possessed in nearly as great a degree by Peruvian guano, when it is supplied with sufficient moisture. In climates and seasons which may be characierised as moist and cool, guano mil show best results, whereas in those which are rather hot and dry superphosphate has the advantage. Accordingly we find guano the comparative favourite in Scotland, and its rival in the drier counties of England.

Guano is believed to encourage a great expanse of foliage, and to be more especially suited for early sorrings ; and superphosphate to influence development of bulb, and to deserve the preference for a later seed-time. The obvious inference is that, for the turnip crop at least, these raluable fertilisers should be used in combination; and actual experiment has rerified its soundness. The use of them is universal and ever on the increase. They constitute also the standard by which farmers estimate the cost and effects of other purchased manures. The extent to which they aro used, their high price, and the facility with which they can be adulterated mith comparatively worthless ingredients, have led to almost unparalleled frauds. The adulteration of manures has, in fact, become a regular trade. Had farmers only their bodily senses to aid them, the detection of this fraud rould be difficult-perhaps impossible. Here,
howover, they cin call the chennst to their aid, with the certainty of ascertainiug the real claracter of the articles which they are invited to purchase. If purchasers of mamares wond but insist in every instance pu gettiug from thes seller au amalysis by some competear chemist, and along with it a writteu warrandice that the stock is of the quality thercin indicated, detection and punishment of frand would be easy. In regard to superphosphate of lime, the farmer can purchase bone-dust and sulphuric acid and prepare it himself. We couducted this prore s for several ycars in the following way:-A trough was prorided $7 \mathrm{fect} \times 3.4 \times$ $2 \cdot 10$, made of $2 \frac{1}{2}$-inch deal, strongly jointed, and secured at the corners hy wooden pers, as iron uails would be corroded by the acid. This holds conveniently 48 bushels of boncs. The heap of bone-dust is then gone over with a barley riddle, and the small dust which prsses through this is laid aside to be used as a drying material for the other portion, after it is subjected to the acid. We find that a third part of the bone-dust passes through the riddle. Three bottles, or carboys as they are called, of concentrated acid, averasing 180 ib . each, are then emptied into the trough and nixed with cold water at the rate of $1 \frac{1}{2}$ of water, by mensure, to l of acid. Iu practice, the water is poured in first and then the acid. Into this mixture 48 bushels of bones, previously measured and laid close to the trough, are rapidly shovelled by two labourers, who will do well to be attired in clothes and shoes past spoiling. So soon as the bones begin to be thrown in, violent ebullition commences. By the time that the whole of the bones are thrown in, there will he barely liquid enough to moisten the last of them. The labourers therefore dig down at one end of the trongh till they reach the bottom, and then carefully turn back and inix the whole quantity until they reach the other end. The aurface is then levelled and covered with a layer of the dry riddlings two inches thick. In this state it is allowed to remain for two days, when the trough is emptied, and the same process is repeated until the whole quantity is gone over. When shovelled out of the trough the bones are found to Lave cecome a dark-coloured paste, still very warm, and emitting a aweetish smell. While one person throws it ont, another adds to it its proportion of dry riddlings, and mixes them carefully. This mass is heaped up in the corner of a shed, and augmented at each emptying of the trough, until the requisite quantity is obtained. After this the mass is carefutly turned over several times, at intervals of five or six days, and is then dry enough for sowing either by hand or machine. Some prefer moistening the bones with boiling water, and then adding pure acid as they are shovelled into the trough; but by first mixing the acid and water there is greater certainty of all the bones being equally acted npou. There is also great convenience in using the finest portion of the bone-dust for drying the other, as suitable material for this purpose is aometimes difficult to procure. The homely process now described is quite inferior to, and more costly than, that pursued in factories, and should only be resortcd to when a genuine article cannot otherwise be obtained.

We have referred to auperphosphate of lime prepared from bones. A new source of supply has, however, been discovered of late years, the extent and importance of which is becoming more apparent as investigation procecds. We allude to those phosphoric deposits found in such abundance in the crag, and upper and lower green-sand formations in the south of England. The existence of these fossil animal remains was first pointed out by Drs Mautel and Buckland, though it is to Professor Henslow that we are indebted for having called attention to their eminent agricultural ralue, and described the localities whenco they may be most readily obtaized. These remains consist of the fractured and rolled bones of sharks, gigantic aea-lizards, and whales, which at
one period of our earth's history must have existed in myniads in our oceaus and scas. Mixed with these bones are found many fish-teeth and shells of ditferent species, and likewise inmense uuubers of rolled, water-worn pelibles, which at one period were imagiued to be the fossilised ex. crements of the animals themselves, and were ou this account called coprolites by Professor Heuslow and others. Although this has since been proved a mistake, the uamo has been adopted, ind will probably be coutinued. Theso fossil bones, and so-called coprolites of the crag, are found in enormons quantities on the coast of Sufiulk, Norfolk, and Essex, whence Mr Lawes of Rothamstead obtained ucarly the whole of the material which ho employed ins the preparation of his well-known "coprolite manure," or "Lawes' super. phosphate." Already, it is belicved, scveral thousands of tons of these fossils in ono form or other are annually sold for manure, with a rapidly increasing demand. Those found in the crag formation are exceedingly hard, and require to be ground by powerful machinery, and dissolved in sul. phuric acid, to render the phosphate of lime availablo as mauure. Fossils, though less abundant in the green-sand, can be reduced to the requisite fineness by simple nachincry, and are then fit for agricultural purposes without any chemical preparation. They are found plentifully in the parish of Farnham, so long celebrated for the excelleuce and abundanco of its hops, which are now discovered to bo due to the presence in the soil of theso fossil remains. The discovery of these mines of manure in various parts of our country was made most seasonably, and has proved of immercic national importance. . When Liebig predicted that, "in the remains of an extinct animal world England is to find the means of increasing her wealth in agricultural produco, as she has already found the great support of her manufactur. ing industry in fossil fuel," he was regarded by many as merely indulging a fine philosophic fancy; but enough has already been realised to convince the most sceptical of the: importance of the data on which be founded his opinion.

On mixing a quantity of bone-dust with its own bulk of mould or sand, and wetting the whole with the liquid whicis oozes from the dung-hcap, violent fermentation immediately ensucs, dissolving the bones, and making them mor? readily available for the nourishment of the turnip crop. Many farmers are ao satisfied with this preparation, that they dispense with the acid. This is not judicious, as the superphosphate of lime is a more valuable manure than bones dissolved by simple fermentation.

Bones are sometimes applied as a top-dressing to grasa land with singular success. "This Cheshire practice consists in applying an extraordinary dose of bones to pastureland. 'For pasture land, especially the poorer kind,' says Mr Palin, 'there is nothing equal to bone manure, either as regards tho permanency of its effects, or the production of a sweet luxurious herbage, of which all cattle are fond. Many thousand acres of the poor clay soils have been covered with this manure during the last cight or ten years.' The average quantity used is about a ton and a half to the acre; it is therefore a landlord's improvement, on which seven or eight per cent. is generaly paid. Boiled bones act as long as unboiled bones, retaining the phosphorus, though not 80 quickly, having lost the animal matter. Boiled bones (1845) cost $£ 3,10$ s. per ton; the outlay then was five guineas per acre, sometimes $£ 7$ or $£ 8$. 'I have known,' says a correspondent, 'many instances where the annual value of our poorest clay lands has been increased by an outlay of from $£ 7$ to $£ 8$ an acre, at least 300 per cent.; or, in other words, that the land has been much cheaper after this outlay at 30 s ., than in its native state at 10 s . per acre; with the satisfaction of seeing a miserable covering

[^55] o. 58, and vol. xii. p. 91.
of pink-grass, rushes, hen-gorse, and other noxious weeds, exchanged for a most luxuriant herbage of wild clover, trefoil, and other succulent grasses.' Though much of the clover and trefoil mas disappear in five or ten years (some times they last fifteen years), an excellent herbage remains. 'Draining,' the writer adds, 'may be carried too far where boues are used, for boned lands suffer by a dry summer. The land should be kept cool.' I have found the same thing on water meadors. The freer the grass is growing, the more it suffers from drought; and this is natural, for a larger supply of sap is required. This writer adds, 'I have known many a poor, honest, but half-broken man, raiscd from poverty to comparative independence, and many a sinking family sared from inevitable ruin, by the help of this woinderful manure.' Indeed, I believe, land after boning will keep three cows where two fed before. As to this practice, however, caution is necessary. It seems to bciong to cold clays for grass in Cheshire, though on such soil it would hardly answer elsewhere, even for turnips. A Cheshire landlord told me that he had tried it vainly for grins in Suffolk. I know no case of its success out of Cheshire, unless in the bordering counties, and have heard some cases of its failure even in those. It will not do, therefore, at all to adopt it bastily. We only know it to hare succeeded about Cheshire, which is on the red marls geologically, and on the rainy side of the country, and must remember that it is a costly proceeding, striking in its success, but as yet circumscribed in its practice, and therefore in the proof of its efficacy." ${ }^{1}$

Section 5.-Rape-Cuke, \&c.

Rapecake reduced to powder forms an excellent manure for wheat and other crops. It is usually applied at the rate of from tour to eight cwt, per acre. The cakes resulting after oil has been expressed from camelina, hemp, and cutton seeds, and from pistachio and castor-oil nuts, from beech and other mast, all possess considerable value as manure, and were at one time available for that purpose. Most of them now command a price for cattle feeding that iorbids their usc as manure unless when in a damaged stats.
Section 6.-Blood, \&c.

All parts of the carcases of animals form valuable manure, and are now carefully used in that way whenever they are anfit for more important uses. The blood and other refuse Tom shambles and frcm fish-curers' yards, when mixed with rarth and dccomposed, make a raluable manure, and are agerly sought after by farmers to whom such supplies are accossible. In London a company has been formed by whom the blood from the shambles is purchased, and employed instead of water in preparing superphosphate of lime. which, when thus manufactured, contains an amount of ummonia which adds considerably to its efficary as a manure. In Australia and South America it has long been the practice to slaughter immense numbers of sheep and cattle for the sake of their hides and tallow only, there being no market for them as beef and mutton. To obtain the whole tallow, the carcases are subjected to a process of boiling by steam and afterwards to pressure, and are then thrown aside in great piles. This dried residuum is afterwards used as fuel in the furnaces of the steaming apparatus, and the resulting ashes constitute the bone-ash of commerce, which is now an important raw material in our mauure factories.

After many abortive attempts to convey Australian beef and mutton to the British market, the difficulty hes at last been orercome by enclosing the meat in a par-boiled state in tin cases, hermetically sealed. This has already grown

[^56]to a large trade, with every likelihood of its increasing rapidly. As the meat in these cases is sent free from bone, a plan has been found for rendering the bones also a profitable article of export. For this purpose they are crushed into compact cakcs 6 inches square by 3 inches thick, in which form they can be stowed in comparatively smal] space.
The refuse from glue-works; the blubber and dregs from fish-oil ; animal charcoal that has been used in the process of sugar-refining; the shavings and filings of horn and bones from various manufactures, and woollen rags, are all made a vailable for marure.

> Section 7.-Night-Soil.

Night-Soil is a porterful manure; buto owing to its offensive odour it has never been systematically used i. Britain. Various plans are tried for obriating this objection, that most in repute at present being its misture with charred peat. From the universal use of water closets in private dwellings, the great mass of this raluable fertilising matter now passes into sewers, and is carried ofi by streams and rivers, and is for the most part totally lost as a manure. When sewage water is used for irrigation, as in the neighbourhood of Edinburgh, it is to the night-soil dissolved in it that its astonishing effects in promoting the growth of grass are chlefly due. We have already expressed our viers in regard to the use of it in this diluted form of sewage water. That mode of applying it is necessarily restricted to lands in the ricinity of torms. Hitherto the numerous and costly attempts that have been made to separate the fertilising matter from the water in which it is contained have proved utter failures. The most feasible plan for the utilisation of night-soil that we have hitherto heard of is that brought forward by the Rev. Eenry Moule, Fordington Vicarage, Devon. In a tract addressed to cottagers he says,-"Now, my discovery is this: The earth of your garden, if dricd-or dried and powdered clay-will suck up the liquid part of the prisy soil ; and, if applied at once and carefully mixed, will destroy all bad smell and all nasty appearance in the solid part, and will keep all the value of the manure. Three half pints of earth, or even one pint, will be enough for each time. And earth thus mixed even once is very good manure. But if, after mixing, you throw it into a shed and dry it, you may use it again and again; and the oftener jou use it the stronger the manure will be. I hare used some seren and even cight times; and yet, even after being so often mixed, there is no bad smell with the substance; and no one, if not told, would know what it is." To adapt a privy for using dried earth in this way, he says,-"Let the seat be mado in the common way, only without any vault beneath. Under the seat place a bucket or box, or, if you have nothing else, an old washing-pan. A bucleet is the best, because it is nore casily handled; only let it have a good-sized bail or handle. By the side of the seat have a box that will hold (say) a bushel of dried earth, and a scoop or old basin that will take up a pint or a pint and a half, and let that quantity of earth be thrown into the bucket or pan every time it is used. The bucket may be put in or taken out from above by having the Thole cover moved with hinges ; or else, through a door in front or at the back." He has also inrented and patented an earth-closet, as a substitute for the ordinary water-closet, which he describes thus:-"The back contains dried and sifted earth, which enters the pan through a hole at the back of it, and covers the bottom, The bottom is moved by the handle and lever; the side of the pan acts as a scraper; and all that is upon the bottom is pushed off, falling into the bucket or shaft below. The earth thus applied at once prevents fermentation, and almost all exhalation and offensive smell The bottom returns to
its place by meaus of a suring, and a fresh supply of the erth salls upon it from the boz." ${ }^{1}$
This scheme has now beeu tested for a sufficient length of time, and on a wide enough scale, to show that in the case of private houses in rural districts, as well as in prisons, seylums, hospitals, public sehools, military camps, and factories, it is entirely successful as regards the sanitary results of its usc, and the value of the manure when applied to gardens attached to the premises from which it is obtained. But the cost nnd annoyance of moring so bulky a substance, and the small percentage of fertilising matter contained in it, forbid the expectation of its being adopted in tomns

Section 8.-Sea. Theel.

Along our sea-board large supplies of useful manure are obtained in the shape of drifted sea-weed. This is either applied as a top-dressing to grass and clover, ploughed in with a light furrow, for rarious crops, or mixed in dungheaps. It requires to be used in large quantities per acre -from 40 to 60 loads-and is eranescent in its effects. Grain grown on land manured with sen-weed is generally of fine quality, and is in repute as seed corn.

Section 9.-Manure Crops.
Crops of Buchzheat, Rape, Feiches, and Mrustard are some times ploughed in, while in a green, succulent state, to enrich the land. It is, howerer, more usual to fold sheer on such crops, and so to get the benefit of them as forage, as well as manure to the land. The leaves of turnips are frequently ploughed in after removing the bulbs, and nave a powertul fertilising effect.

Section 10.-Lime.

Besides manures of an animal and regetable origin, various mineral substances are used for this purpose. The most important and extensively used of these is lime. In the drier parts of England it is not held in much estcerc, whereas in the western and northern counties, and in Scorland, its use is considered indispensable to good farming. Experienced farmers in Burrickshire consider it desirable to lime the land every twelve jears, at the rate of from 120 to 200 bushels of the unslacked lime per acre. It is found especially beneficial iu the reclaiming of moory and boggy lands, on which neither green nor grain crops thrive until it has been applied to them. Its use is found to improve the quality of grain, and to cause it in some cases to ripen earlicr. It facilitates the cleaning of land, certain weeds disappearing altogether for a time after a dressing of lime. It is the only known specific for the disease in turnips called "fingers-and-toes," on which account alone it is frequently used in circumstarices which would othersiso render such an outlay unwarrantable. The practice, still frequent, of tenants at the beginning of a nineteen years' lease, liming their whole farm at a cost per aere of from $£ 3$ to $£ 5$, proves conclusively the high estimation in which this manure is held. The belief-in which we fully concur -is howerer gaining ground, that moderate and frequent applications are preferable to these heary doses at lengthened intervals.

When bare fallowing was in use, it was commonly towards the close of that process that lime was applied. Haring been carted home and laid down in large heaps, it was, when slaked, spread evenly upon the surface and covered in by a light furrow. It is now frequently spread upon the antumn furrow preparatory to root crops, and worked in by harrowing or grubbing, and sometimes by throwing the land into shallow ridgelets. Another method

[^57]much used is to form it into compost with decayed quickens, parings from road-sides and margins of ficlds, \&ic., which, after thorough intermixture by frequent turnings, is spread evenly upon tho land when in grass. A chear and effectual way of getting a dressing of such compost thoroughly comininuted and incorporated with the surface soil, is to fold sheen upon it, and feed them there with turnips for a few days. The value of such compost is much enhanced by mixing common salt with the lime and earth, at the rate of one part of salt by measuro to tuco parts of limo. A mixture of these two substances in these proportions prepared under cover, and applicd in a powdery state, is much approved as a spring top-dressing for corn crops on light soils. In whatever way lime is applied, it is important to remember that the carbonic acid which has leen expelled from it oy subjecting it in the kiln to a red heat, is quickly regained from the atmosphere, to which thercfore it should be as little exposed as possible befure applying it to the land. A drenching from heary rain after it is slaked is also fa:al to its uscfulness. Careful farmers therefore guard against these evils by laying on lime as soon as it is slaked; or when delay is unaroidable, by coating these heaps with earth, or thatching them with straw. In order to reap the full benefit of a dressing of lime it must to so applied as, while thoroughly incorporated with the soil, to be kept nea? the surface. This is more rarticularly to be attended to is laying down land to pasture. This fact is so well illustrated by an examplo quoted in tho article "Agriculture" in the Th edition of the present work that we here repeat it.
"A few years after 1754," says Yr Darson, "haring a consider. able exteut of outfield land in fallow, which I wished to lime prerious to its teing laid down to peature, and finding that 1 could not obtain a sufticient quantity of lime for the whole in proper time, I was induced, from obserring the effects of fine loam upon the surface of similar soil, even when corered with bent, to try a small quantity of lime on the surface of this fallow, instead of a larger quantity ploughed fown in the usual manaer. Accordingly. it. the autumn, about trenty acres of it were well harrorred in, oud teeu about fiftysix Winchester bushela only, of unslaked lime, were, after being slaked, carefully spread upon each English acre, and immediately well harrowed in. As many pieces of the lime, which had not been fully slaked at first, were gradually reduced to powder by the dews and moisture of the eaith, -to mix these with the soil, the land was again well harrowed in thres or four days thereafter. This land wes sown in the spring with oats, with white and red clover and rye.grass seeds, and well Lamerred without being ploughed again. The crop of cats was grood, the plants of grass sufficiently numerous and healthy; and they formed a very fize pasture, which continned good until ploughed soma years after for corn.
"About twelve years afterwards I took a lease of the hilly farm of Grubbet, many parts of which, though of an carthy mould tcler. ably deep, were too steep and elevated to be kept in tillage. As theso lands had been much exLausted by croppiag, and were full of couch. grass, to destroy that and procure a cover of fine grass, I fallored them, and laid on the same quantity of lime per acre, then harrowed and sowed oata and grass-seeds in the spring, exactly as in the las:mentioned experiment. The oats were a full crop, and the plants of grass aboudant. Several of these fields hare been now above thirty years in pasture, and are still producing white clover and other fine grasses; no bent or fog bas yet appeared upon them. It deserres particular notice, that more than treble the quantity of lime was laid upon fielda adjoining of a simiiar soil, bat which leing fitter for occasional tillage, upon them the lime was ploughed in. These fields were also sown with oats and grass secds. The letter throve well, and gare a fine pasture the first year; but afterwards tha bent spread so fast, that in three years there was more of it than of the finer grasses."

The conclusions which Mr Dawson draws from his extensive practice in the use of lime and dung deserve the attention of all cultivators of similar land :-
"1. That animal dung dropped apon coarse benty pasture prodices little or no improrement upon them; and that, even when aheep or cattle are confined to a small apace, as in the case of folding, their dung ceases to produco any beneficial effects after a few years, whether the land is continned in pasture of brought under the plougbi

1: 2. That even Fhen-land of this description is well fallowed end dunged, hut not limed, thongh the dung augments the produca of the aubsequent crop of grain, and of grass also for two or three years, its affects thereafter are no longer discernible either upon the one or the other.
13. That when this land is limed, if tha lime is kept upon the surface of the coil, or well mixed with it, and then laid down to pasture, the finer grasses continue in possession of the soil, even in elevated and exposed situations, for a great many years, to the exclusion of bent and fog. In the case of Grubbet-hills, it was observed, that more than thirty years have now elapsed. Besides this, the dung of the animals pastured upon such land adds every jear to tha luxuriance, and inproves the quality of the pesture, and augments the productive powers of the soil when afterwards plonghed for grain; thus producing apon a benty outfield soil effects similar to what are experienced when rich infield lands have been long in pasturc, and which are thereby more and more enriched.
"4. That when a large quantity of lime is laid on such land, and ploughed down deep, tha sama effects will not be produced, shether in respect to the permanent fineuess of tha pasture, its gradual amelioration by tha dung of the animals depasturcd on it, or its fertility when afterwards in tillage. On the contrary, unless the surface is fully mixed with lime, the coarse grasses will in a fev years regain possession of the soil, and tha dung thereafter daposited by cattla will not enrich the land for auosequent tillage.

Castly, It also appears from what has been stated, that tha four-ohift busbandry is only proper for very rich land, or in situations where thcre is a full command of dung; that by far the greatest part of the land of this country requires to be continued in grass two, three, four, or more years, according to its natural poverty; that the objection made to this, viz., that the coarse grasses in a few years usurp possession of the coil, must be owing to the surface soil not being sufficiently mixed with lime, the lime having been covered too deep by the plough."-Farmers' Magazine, vol. xiil. p. 69.

Section 11.-Marl.

Our remarks hitherto have had reference to carbonate of ume in that form of it to which the term lime is exclusively applied by farmers. But there are other substances frequently applied to land which owe their value chiefly to the presence of this mineral The most important of these is marl, which is a mixture of carbonate of lime with clay, or with clay and sand, and other compounds. When this substance is found in the proximity of, or lying under, sandy or peaty soils, its application in considerable doses is attended with the very best effects. The fen lands of England, the mosses of Lancashire, and sandy soils in Norfolk and elsewhere, have been immensely improved in this way. In Lancashire, marl is carried on the mosses by means of portable railways at the rate of 150 tons, and at a cost of about $£ 3$ per acre. In the fens long trenches are dug, and the subjacent marl is thrown out and spread on either side at an expense of 54 s . per acre. By this process, often repeated, of claying or marling, as it is variously called, the appearance and character of the fen lands have been totally changed, excellent wheat being now raised where formerly only very inferior oats were produced. As the composition both of peat and of clay marl varies exceedingly, it is always prudent, either by limited experiment or chemical analysis of both substances, to ascertain the effect of their admixture. Lime is always present in those cases which prove most successful; but an overdose does harm.

Section 12.-Shell-Lfarl.

Under some mosses and fresh-water lakes extensive deposits of shell-marl are frequently found. It contains a larger percentage of lime than clay marl, and must be applied more sparingly.

Section 13.-Chalk.

Throughout the extensive chalk districts of England, the practice of spreading this substance over the surface of the land has prevailed from the rezootest times. In the case of the Lícolnshire Wolds, once as celebrated for desolare barrenness as they now are for high culture and
smiling fertility, chalking was one important means of bring. ing about this wonderful improvement, as it still is in maintaining it. "The soil being but a few inches in depth, and often containing a large proportion of fints, naturally possesses very little fertility-often being a light sand, not strong enough naturally to grow turnips-so that the farmers were at first obliged to make a soil, and must now maintain its new-born productiveness. The three principal means by which this is done are the processes of chalhing, and boning, and manuring with sheep. A dressing of 80 or 100 cubic yards per acre of chalk is spread upon the land. and then a crop of barley is obtained if possible, being sown with seeds for grazing. The fields are grazed with sheep two years, the sheep being at the same time fed with oilcake; and then the land will be capable of producing a fine crop of oats. Bones are also used frequently for the barley crop, and when they first came into use were thrown upon the land in a chopped state, neither broken nor crushed, and as much as 40 or even 50 bushels per acre. The boning and sheep-feeding are in constant operation, but chalking is required only at intervals of a fev years. On the western side of the Wold district, wherever the chalk: adjoins the white or blue marl, an extensive application of it is made to the surface. Thus immense quantities of earth and stone have becn added by manual labour and horse-carriage to the thin covering of original soil; and, besides this, the soil is being continually deepened by deep ploughing, the chalk fragments thus brought to the surface crumbling into mould." ${ }^{1}$
In Dorsetshire "it is usual to chalk the land once in twenty years, the sour dcscription of soil being that to which it is found most advantageous to apply it. The chalk is dug out of pits in the field to which it is applied, and it is laid on sometimes with barrows, but chielly with the aid of donkeys. The first method costs 40 s . an acre, the last 35 s . when hire donkeys are used; 20s. to 25 s . where the donkeys are the property of the farmer. The chaik is laid on in large lumps, which soon break down by the action of frost and exposure to the weather. Chalk is occasionally burned and applied as lime, in which state it is preferred by many farmers, notrithstanding the additional cost of the burning." ${ }^{\text {.2 }}$

Section 14.-Shell-Sand and Limestone Gravel.

On the western shores of Great Britain and Yreland arc iound great quantities of sand mised with sea-shells in minute fragments. This calcareous sand is carried inland considerable distances, and applied to the land as lime is elsewhcre. Limestone gravel is also found in various places and used in the same rray.

Section 15.-Gypsum

Sulphate of lime or gypsum is considered an excellent top-dressing for clover and kindred plants. It is thought by some that the failure of red clover is to be accounted for by the repeated crops of that plant having exhausted the gypsum in the soil.'. Its application has been followed by favourable results in some cases, but has yet quite failed in others. It is applied in a powdered state at the rate of two or three crit. per acre when the plants are moist with rain or dew.

Section 16.-Burnt Clay.

About fifty years ago burnt clay was brought much into notice as a manure, and tried in rarious parts of the country, but again fell into disuse. It is now, however, more estensively and systematically practised than ever. Frequent

[^58]referenco to the practice is to be found in the volumes of the Journ:l of the Royul Agricultural Society of England. This burning of elay is accomplished in sereral ways. Sometimes it is burned in large heaps or elamps containing from 80 to 100 cart-loads. A fire being kiudled with some fagyots or brushwood, which is covered up with the clay, taking care not to let the fire break out at any point, more fuel of the kind mentioned, or dross of coals, is added as required, and more clay heaped on. A fierce fire must be avoilded, as that wonld make the clay into brickbats. A low, smothered combustion is what is required; and to maintain this a good deal of skill and close watching on the part of the workinan is necessary. A rude kiln is sometimes used for the same purpose. Either of these plans is snitable where the ashes are wanted at a homestead for absorbing liquid manare, \&c.; but for merely spreading over the land, that called clod-burning is preferable, and is thus deseribed in volume viii. page 78, of the Royal Agricultural Society's Journal:-" Roll and harrow, in dry weather, till the majority of clods are about the size of a large walnnt; nothing so good as the elod-crusher to forward this operation: when perfectly dry, collect them into rows about six yards apart, with iron-teethed ralkes; take a quarter of a whin faggot, or less, accordiny to size, previously cut into lengths by a man with an axe; place these pieces about four yards apart in the rows, cover them with clods, putting the finest mould upon the top of the heap, to prevent the fire too quickly escaping; observe the wind, and leave an opening accordingly; having set fire to a long branch of whin, run from opening to opening tiH two or three rows are lighted, secure these, and then put fire to others, keeping a man or two behind to attend to the fires and earthing up till the quantity desired may be burned, which will generally take four or five hours, say from 25 to 35 loads per acro of 30 bushels per load.
"This work is often put out to a gang of men at abont 103. per acre for labour, and the whins cost 43. 6d per acre, not including the carting.
"When the heaps are cold, spread and plough in. The great advantage of burning clods in these small heaps, in preference to a large one, is the saving of expense in collecting and spreading; there is much less red brick earth and more black and charred; no horses or earts moving on the land whilst burning ; and a large field may be all burned in a day or two, therefore less liable to be delayed by wet weather. In the heary land part of Suffolk, the farmers purchase whins from the light land occupiers, and often cart them a distance of fourteen or sisteen miles, when there is no work pressing on the farm. These are stacked up and secured by thatehing with straw, that they may be dry and fit for use when reqnired. Bean straw is the next best fuel to whins or furze, and it is astonishing to see how small a quantity will burn the elods if they are of the proper size and dry. Observe, if the soil is at all inclined to sand, it will not burn so well. I will here mention, that I often sift and store upa few loads of the best blackened earth to drill with my turnips, instcad of bnying artificial manure, and find it answers remarkably well, and assists in maintaining the position that a heary land farm in Suffolk can be farmed in the first-rate style without foreign incredients."
Burnt elay is an admirable vehicle for absorbing liquid manure. A layer of it in the bottom of cattle-boxes does goed service, at once in economising manure, and in yielding to the cattle a drier bed than they would otherwise have until the litter has accumulated to some depth. Valuable results have also beea obtained by using it for strewing over the llours of poultry-houses, and especially of pens in which sheep are fed under cover. In the latter case it is mixed with the excrements of the sheep as they patter over it, and
forms a substance not uulike gusno, nor much inferior to it as a manure. As an application to sandy or chalky soils it is invaluable. It is mainly by this use of burnt clay, in combination with fattening of sheep under cover, that M: Randell of Chadbury has so astouishingly increased the productiveness of his naturally poor clay soil. A Berwick. shire proprictor, himself a practical farmer, who risited Mr Raudell's farm in the summer of 1852, thus writes:-"I have sisited most of the best managed farms in England, at least thuse that have so much of late been brought under general notice; but without exception, I never saw land in the splendid condition his is in. The beanty of the system lies in the cheap method by which he has imparted to it this fertility, and in the manner in which he keeps it up. A large part of the farm consisted, fourteen years ago, of poor clay, and was valued to him at hisentry at 7s. bd. per acre. It is now bearing magnificent crops of all kinds, the wheat being estimated to yield from 6 to 7 quarters per acre.
" Mechi has enriched Tiptree-heath, it is true; put then it is effected at a cost that will make it impossible for hirs to be repaid. Mr Randell, on the other hand, has adopted a course that is nearly self-supporting, his only cost being the preparation of the clay. The great secret of his succest lies in his mode of using it ; and as I never heard of a similar process, I will briefly explain to you how it is done: -His heavy land not permitting him to consume the turnip and mangold crops on the ground, he carts them bome, and feeds his sheep in large sheds. They do not stand on boards or straw, but on the burnt clay, which affords them a beautiful dry bed; and whenerer it gets the least damp or dirty, a fresh coating is put under them. The monnd rises in height; and in February, when the shearlings are sold (for the sheep are only then twelve months old), the mass is from 7 to 8 feet deep. He was shearing his lambs when I was there, as he considers they thrive much better in the sheds without their fleeces. They are half-bred Shropshire downs; and at the age I mention, attain the great weight of 24 lbs , per quarter.
"I walked through the sheds, but of course they were then empty. I saw the enurmous quantity of what he called his 'home-made guano;' the smell from it strongly indicated the ammonia it contained. He had sown his turnips and other green crops with it, and what remained be us?d for the wheat in autumn. He assured me he had often tes ed it with other manures, and always found 10 tons of the compound quite outstrip 4 cwt . of guano, when they were applied to an aere of land separately."

Section 17.-Charred Peat.

Charred peat has been excessively extolled for its value as a manure, both when applied alone, and still more in combination with night-soil, sewage water, and similar matters, which it dries and deodorises. So great were the expectations of an enormous demand for it, and of the benefits to result to Ireland by thus disposing of her bogs, that a royal charter was granted to a company by whom its manufacture was commenced on an imposing scale. This charcoal is doubtless a useful substance ; but, as Dr Anderson has proved, peat, merely dried, is a better absorber and retainer of ammonia than after it is charred.

Section 18.-Soot.

Soot has long been in estimation as an excelle nt top dressing for cereal crops in the early stage of their growth, and for grasses and forage plants. It is applied at the rate of 15 to 30 bushels per acre. On light soils the addition of 8 or 10 bushels of salt to the above quantity of soot is said to increase materially its good effect. This misture trenched. or deeply ploughed in, is aloo ro-
oommended as one of the most powerful of all manures for carrots.

In London Labour and the London Poor we find the following statistics as to metrodolitan soot:-

Bash. of Soo: per anolum.

- 53,840 houses, at a yearly rental above $£ 50$, producing six bushels of soot each per annum

323,040 0.002 houses, at a vearly rental above $£ 30$ and below £50, producing five bushels of soot each per annum 163.980 houses, at a yearly rental below $£ 30$, producing two bushels of soot each per annum

450,010

Total number of bushels of soot annually pro- $\}$ 1,100,810 duced throughout London
The price of soot per bushel is but 5 d ., and sometimes $4 \frac{1}{2} \mathrm{~d}$., but 5 d . moy be taken as an average. Now, $1,000,000$ hushels of soot at 5 d . sill be found to yield $£ 20,833,6$ s. 8d. per annum " 2

Section 19.-Salt.

Common salt has often been commended as a valuable manure, but has never been used in this way with such uniform success as to induce a general recourse to it. We bave already spoken of it as forming a useful compound with lime and earth. It can also be used beneficially for the destruction of slags, for which purpose it must be sown over the surface, at the rate of four or five bushels per acre, early in the morning, or on mild, moist days, when they are seen to be abroad. It is used also to destroy grubs and wireworm, for which purpose it is sown in cousiderable quantity on grass land some time before it is ploughed up. It can be used safely on light soils, bnt when clay predominates, it causes a hurtful wetness, and subsequent incrustation of the surface. Its application in its unmized state as a manure is at best of doubtful beuefit; but in combination with lime, soot, nitrate of soda, and perhaps also superphosphate of lime, it appears to exert a beneficial influence.

Section 20. -Nitrate of Soda.

Cubic saltpetre, or nitrate of soda, has now become one of our staple manures. The fertilising power of common saltpetre or nitrate of potass has been known from the earliest times, but its high price has hitherto hindered its use as a manure, except in the form in which it is obtained as refuse from the ganpowder mulls. The cubic nitre is brought from Peru, where there are inexhaustible supplies of it. The principal deposits of nitrate of soda are in the plain of Tamarugal, at a distance of 18 miles from the coast. The beds are sometimes 7 or 8 feet in thickness, and from these it is quarried with ease It is not found in a perfectly pure state, but contains a mixture of several substances, chiefly common salt. To fit it for certain uses in the arts, it is subjected to a process of purification by boiling and evaporation But for its use as a manure this is altegether unnecessary, and the cost would be greatly lessened if the nitrate were imported as quarried. As cubic nitre and guano contain very nearly the same percentage of nitrogen (the element to which the fertilising puwer of all manures is mainly due), it may seem surprising that the former should ever be ysed in preference to the latter. In practice, however, it is found that when applied as a top-dressing in spring, the former afrequently yields a better profit than the latter; and hence the importance to farmers of getting it at a more reasonable price. Nitrate of soda is used as a manure for grain and forage crops. It is now extensively used as a topdressing for wheat. For this purpose it is applied at the rate of 84 db per acre, in combination with 2 cwt of salt. The nitre and salt are thoroughly mixed, and carefully somn,
${ }^{1}$ Farmers' Dfagazine for March 1852, p. 254.
by hand, in two or three equal portions, at intervals of several weeks, beginuing early in March, and finishing ly the third week in April. If ritre alone is used, it has a tendency to produce over-luxuriance, and to render the crap liable to lodging and mildew. But the salt is found to correct this over-luxunance, and a profitable increase of grain is thus obtained. Mr Pusey ${ }^{2}$ informs us that an application of 42 lb of nitrate of soda and 84 lb of salt per acre, applied by him to ten acres of barley that had been injured by frost, had such an effect upon the crop, that he had seven bushels more grain per acre, and of better quality, than on part that was left undressed for comparison. These seven bushels per acre were attained by an outlay of 6s. 4d. only. This nitre is also applied mith advantage to forage crops. Mr Hope, Feuton Barns, East Lothian, states that he finds the use of it as a top-dressing to clover, at the rate of one cwt. of nitrate and tro of guano per acre, profitable. Its beneficial effects are most apparent when it is applied to light and sterile soils, or to such as have been exhausted by excessive cropping.

Section 21.-Potash.

Crude potash, or kainite, has of recent jears been largely imported from Germany, and has been somewhat extensively used in combination with other manures for potatoes and other root crops-two cwt. per acre being a common rate for the potash.

Section 22.-Artificial Manures.

Besides those substances, the most important of which we have now enumerated, which are available as manure in their natural state, there are various chemical prodncts, such as salts of ammonia, potash, and soda, copperas, sulphuric and muriatic acid, d.c., which, in combination with lime, guano, night-soil, and other substances, are employed in the preparation of manures, with a special niew to the requirements of particular crops. In some cases these preparations have been eminently successful, in others but doubtfully so. Many failures are probably due to the spuriousness of the article made use of ; as it is known that enormous quantities of worthless rubbish have, of late years, been sold to farmers, under high soundng names, and at high prices, as special manures. We would recommend those who desire information regarding the preparation and use of such compounds to study the arricle on Agricultural Chemistry, by Mr Lawes of Rothamstead, in the Journal of the Royal Agricultural Society of England (vol. viii. p. 226); the accounts of experiments with special manures in the Transactions of the Highland and Agri cultural Society of Scotland; and the articles relating to Agricultural Chemistry in Morton's Cyclopoedia. Those who purchase manures of this kind ought to be very careful to insist in every instance upon the seller producing an analysis by some chemist of established character, and granting a written warranty that the article sold to them is at least equal to the value indicated by the analysis Were all farmers to insist upon this mode of buying their manures, they would at once put an end to that wholesale system of fraud by which they bave been so enormously cheated of late years.

In applying these concentrated manures, those only of a slowly operating character should be used in autumn or winter, and at that season should invariably be mixed with the soil Those in which ammonia abounds should in spring also be mixed with the soil when crops to which they are applied are somn. When used for top-dressing growing crops they should be applied only in wet weather.

[^59]
Charter xi

CULTIVATED CROPG-GRAIN CROPB.

Pursuinc.the plan announced at the outset, we have now to speak of ficld crops, and shall begin with the cereal grasses, or white-corn crops, as they are usually called by farmers.

Section 1.-Wheat.

It is unnecessary to dwell upon the value of this grain to the farmer and to the community. It constitutes emphatically our bread-corn-our staff of life. While its inerensed consumption is, on the one hand, an-indication of an improved style of living among the general population, its extended culture points, on the other, to an improving agriculture, as it is only on soils naturally fertile, or that have been made so by good farming, that it can be grown with success. Wheat is sown both in autumn and spriug, from which circumstance attempts have been made to classify its varicties by ranging them under these two general heads. This distinction can only serve to mislead; for while it is true that there are varieties best adapted for autumn and for spring sowing respectively, it is also true that a majority of the kinds most esteemed in Britain admit of being sown at either season, and in practice are actually so treated. It is not our intention to present a list of the varieties of wheat cultivated in this country. These are rery numerous already, and are constantly being augmented by the accidental discovery of new varieties, or by crossimpregnation artificially brought about for this purpose. The kinds at present in greatest repute in Scotland are the hardier white wheats, among which Hunter's white still retains the first place. There are many kinds which, in favourable seasons, produre a finer sample ; but its hardiness, productiveness, and excellent milling qualities, render it a general favourite both with farmers and millers. Its most marked characteristic is, that in rubbing out a single ear, part of the grains are found to be opaque and white, and others finty and reddish coloured, as if tro kinds of Theat had been mixed together. Selcctions from Hunter's wheat bave been made from time to time, and have obtained a measure of celebrity under various local names. The most esteemed of those is the Hopeton wheat. On very rich soils both these varietics have the fault of producing 100 much straw, and of being thereby bable to lodge. Hence, several new kinds with stiffer stram, and consequent lessened liability to this disaster, are now in request in situations whero this evil is apprehended. Fenton wheat, possessing this quality in an eminent degree, and being at the same time very productive, and of fair quality, is at present extensively cultivated. It has the peculiarity of producing stems of unequal height from the same root, which gives a crop of it an unpromising appearance, but has perhaps to do with its productiveness. The red-strazo white and Piper's thick-set have properties similar to the Fenton. Piper's had the repute of being the shortest and stiffest strawed wheat in cultivation, but after a brief popularity is now never heard of. The red-chaff wolite is productive, and sields grain of beautiful quality, but it requires good seasons, as it sheds its seeds easily and sjprouts quickly in damp weather. The Chiuddam, Trunp, white Kent, and Talavera, have each their admirers, and are all good sorts in favourable seasons; but, in Scotland at least, their culture is attended with greater risk than the kinds previously named; they require frequent change of socd from a sunnier climate, and are only adapted for dry and fertile soils with a good exposure. A new sort, called square-head, has quite recently been introduced, and is reported to be so exceedingly prolific as to yicld from six to eight busheis moro per acre than any wheat previously in cultivation. As red wheats nsually sell at from $2 s$ to 4 s .
less per quarter than white wheats of similar quality, they are lexs grown than herctofere. But being more hardy and less liable to mildew and sprouting than the finer white wheats, a recurrence of unfavourable seasons always leads to 20 increased cultivation of them. Some of these red wheats ase, however, sc productive that they are preferred in the best cultivated districts of England. Spalding's prolific holds a first place among these, being truly prolific, and producing grain of good quality. In Scotland it shows a tendency to produce a rough quality of grain. The Northumberland red and the golden creeping are there in estimation; the former being well adaptcd for spring sowing, and the latter for poor soils and exposed situations. Several new varieties of wheat have recently been introduced by Mr Patrick Sheriff of Haddington, formerly of Mungoswells. One is a.large-grained red wheat, another somewhat resembles Hunter's in colour, and the third has grain of a pearly whiteness. They have all the peculiarity of being bearded. They are all true autumn wheats; but they seem also 'well adapted for spring sowing, as they ripen early. A red bearded variety, usually called A pril woheat, from its prospering most when sown in that month, and which indeed is a true summer theat, is sometimes grown with advantage after turnips, when the season is two advanced for other sorts. But except upon poorish clay soils, it seems only doubtfully entitled to a preference over barley in such circumstances. The list now given could easily be extended; but it comprises the best varieties at present in use, and such as are suited to the most diversified soils, seasons, and situations in which wheat can be grown in this country. In regard to all of them it is reckoned aovantageous to have recourse to frequent charge of seed, and in doing this to give the preference to that which comes from a soil and climate better and earbier than those of the locality in which it is to be sown. Every farmer will find it worth his while to be at pains to find out from whence he can obtain a cliange of seed that takes well with his own farm, and having done so, to hold to that, and even to induce his correspondent to grow such sorts as he prefers, although he should have to pay him an extra price for doing so. An experienced farmer ouce remarked to the writer, that by changing his seed he got it for nothing; that is, his crop was more abundant by at least the quantity somn, from the single circumstance of a suitable change of seed. It is proper, however, to state, that this practice of clanting the seed is founded more upon mere opinion thau upon well-ascertained facts, and that in those instances where it has been follorved by beneficial results nothing is known of the causes to which such success is due. It is much to be desired that our agricultural societies should address themselves to the thorough investigation of a question of such vital importance. In fixing upon the kind of wheat which he is to sow, the farmer will do well to look rather to productiveness than to fine quality. For however it may gratify his ambition to show the heariest and prettiest sample in the market, and to obtain the highest price of the day, no excellence of quality can compensate for a deficiency of even a few bushels per acre in the yicld. It is of importance, too, to have seed-corn free from the seeds of weeds' and from other grains, and to see that it be true of its kind. Farmers who are systematically careful in these respects frequcatly obtain and extra price for their. produce, by selling it for seed-corn to others; and eveli ${ }^{\text {a }}$ millers give a preference to such clean samples.

But there are seeds which no amount of care or accuracy in dressing can remore from seed-corn-riz, these of certain parasitical fungi, which must be got rid of by a differcat process. The havoc caused to wheat crops by bunt, bleckhall, or pepper-brand (Uredo caries or Tilletia caries), before the discovery of the mode of preventing it
by steeping the seed-corn in some acrid or caustic bath, was often ruinous. The plan at first most usually adopted was to immerse the seed-wheat in stale chamber-lie, and afterwards to dry it by mixture with quick-lime. This pickle, as it is called, is usually efficaeious; but the lime veres the eyes and excoriates the hands and face of the sower, or elogs the hopper of the sowing-machine, and has therefore been superseded by other substances. Blue vitriol (sulphate of copper) is as goud as anything for this purpose, and is used in the following manner. A solution is prepared by dissolving powdered sulphate of copper in water, at the rate of two ounces to a pint for each bushel of wheat. The grain is emptied upon a floor ; a little of it is shovelled to one side by one person, while another sprinkles the solution over it, and this process is continued until the whole quantity is gone over. The heap is then turned repeatedly by two persons working with shovels opposite to each other. After lying for a few minutes, the grain absorbs the moisture, and is ready for sowing cither by hand or machine.

The season for wheat-sowing extends from September to April, but ordinarily that succeeds best which is comnitted to the ground duriug October and November. When summer-fallows exist the first sowings are usually made on them. It is desirable that the land neither be wet nor very dry when this takes place, so that the precise time of sowing is determined by the weather; but it is well to praceed as soon after 1st October, as the land is moist enough to insure a regular germination of the seed.

Over a large portion of England wheat is the crop usually sown after clover or one year's "seeds." In such cases the land is ploughed in the end of September, immediately harrowed, and wheat sown upon it by a drilling machine. On loose soils the land-presser is frequently used to consolidate the soil and to form a channel for the seed, which in such cases comes up in rows, although sown broadcast. It is more usual, however, first to level the pressed furrows by harrowing, and then to use the drill, by means of which various portable manures are frequently deposited along witL the seed-corn. The sowing of wheat after clover or "scens," as now deseribed, is rarely practised in Scotland. where it so invariably fails as to show that it is unsuited to our northern climate. It is here not unusual, however, to plough up such land in July or August, and to prepare it for wheat-sowing by what is called rag-fallowing. After the first ploughing the laud is harroved lengthwise, so as to break and level the surface of the furrows and close the interstices without tearing up or exposing any green sward. It is then allowed to lie for ten or fourteen dass to allow the herbage to die, which it soon does at this season when light is thus exeluded from it. A eross ploughing is next given, followed by repented grubbings,• harrowing, and rollings, after which it is treated in all respeets as a summerfallow.

The fallow and elover leas being disposed of, the land from which potatues, beans, pease, or vetehes have been cleared off will next demand attention. When these crops have been carefully horse and hand hoed, all that is required is to clear off the haulm to plough and sow. If the land is not clean, recourse must be had to a short fallowing process before sowing wheat. For this purpose the surface is loosened by the broadshare and grulber, the weeds harrowed out and raked off, after which the and is ploughed and sown. On soils well adapted for the growth of beans and wheat, viz., those in which elay predominates, any lengthened process of autumn cultivation is necessari'y attended with great hazard of being interrupted by rain, to the loss of seed-time altogether. Every pains should thereforc be taken to have the land so cleaved beforeand that these unseasonable efforts may be dispensed with; and to have
the soming and harrowing to follow so closely apon the ploughing as to diminish to the utmost the risk of hindrana from wet weather. As the crops of mangolds, carrots, a turnips arrive at maturity, and are either removed to the store-heap or consumed by stcep where they grow, succeas sive sowings of wheat can be made as the ploughing if accomplished and as the weather permits. It is to be noted, however, that it is only on soils naturally dry, or made so by thorough draining, and whieh are also cleax and in a high state of fertility, that wheai-soming can be continued with advantage during the months of December and January. If the whole of these conditions do not obtain, it is wiser to refrain until February or March. When these late winter srmings are made, it is of especial importanee to sow elose up to the ploughs daily, as a very slight fall of rain will, at this season, unfit the land fot bearing the harrows. This sowing and harrowing, in detail, is the more easily managed, that in the cirenmstances cross-harrowing is neither neeessary nor expedient. Undes the most favourable conditions as to weather and drainage, soils with even a slight adnixture of elay in their composition will at this season plough up sumewhat claminy, so that cross-harrowing pulls the furrows too much about, and exposes the seed, instead of covering it more perfectly. Tro double turns of the harruws lengthuise is is much as should be attempited at this scason.
The sowing of siring-wheat is only expedient on dry and fertile soils with a good exposure. Unless the whole conditions are favourable, there is much risk of spring-sown wheat being toc late to be properly ripened or well harvested. On the dry and fertile soils in the valley of the Tweed, where the entive fallow-break is sown with turnips and where consequently it is difficult to get a large breadtb cleared in time for sowing wheat in autumn, it is the practice to sow it largely in February and Mareh, and frequently with good suceess. Jany judicious farmers are, however, of opinion that, taking the average of a twenty years' lease, barley is a more remuncrative crop than spring-sown wheat, even under circumstances most favourable to the latter. When it is resolved to try $i t$, a very full allowance of seed should be given-not less than three bushels per acre, and $3 \frac{2}{2}$ will often be better. If the plants have room they will tiller; and thus the ripening of the crop is retarded, the risk of mildew increased, and the quality of the grain deteriorated. As much seed should therefore be sown as will yield plants enough to oceupy the ground fully from the first, and thus remove the tendency to tillering. By such full seeding a fortnight is frequently gained in the ripening of the crop, and this frequentls makes all the difference between a remunerative crop and a losing one.
Much controversy has taken place about the quantitics of seed-wheat which should be used per acre. The advor cates of thin seeding have been so unguarded and extro vagant in their encomiums of their favourite method, some of them insisting that anything more than a few quarts per acre does but waste seed and lessen the produce, -that many persons have been induced to depart froms their usual praetiee to their serious cost. It is true that with land in a high state of fertility, and lept scrupulously elean by frequent hoeings, a full crop of wheat may be obtained from balf a bushel of seed per acre, provided that it is sown in September, and depasited regularly over the surface. But what leyond a trifling saving of sced it gained by this practicis? And at what cost and lazard is even this secured? It is a mere fallacy to tell us, as the ndvocatcs of exeessively thin sceding so often do, that they obtair an increase of so many hundred-fold, whercas thick seeders cannot cxeced from twelve to twenty fold, when after all the gross produce of the latter may execed that of
the former by more than the quantity of seed saved, with less expense in culture, less risk from accidents and disease, an earlior harvest, and a better quality of grain. Sueh a crowding of the ground with plants as prevents the proper development of the ear is of course to be avoided; but the most experienced growers of wheat are convineed of the benefit of having the ground fully occupied at the time when active spring growth begins. This is sceured by asing two bushels per acre for the sowing made carly in October, and by increasing this quantity at the rate of half a peck per week until three bushels is reached, which may be held as the maximum. Less than this should not be used from the middlo of November to the end of the season. These are the quantities to be used in broad-cast sowing; when drilling or dibling is resorted to, two-fifths less sced will suffico. In Scotland, at least, often repeated trials have shown that larger crops are obtained by broadcasting than by drilling. The latter mode is, horrever, to be preferred wherever the land is infested by annual weeds, which can then be got rid of by hoeing. When clover and grass-seeds are sown with the grain crop, it is believed also that they thrivo better from the grain being sown in rows, probably because in this case light and air are less excluded from them. "It is believed also that in highly-Inanured soils of a loose texture, grain deposited somewhat deeply in rows is less liable to lodge than when sown broad-east and shallower. When drilling and heeing are resorted to, the latter is effected most cheaply and effectively by using Garret's horse-hoe. The mero stirring of the soil is considered by many farmers to be so beneficial to the wheat crop that they uso the horse-boe irrespective of the presence of weeds. Others are of opinion that, apart from the destruction of weeds, hoeing is injurious to grain crops, alleging that the cutting of their surface roots weakens tho stems and increases their liability to fall over. Carefully conducted experiments are required to settle this point. Wo have no personal experienco bearing upon it beyond this, that we bave repeatedly seen a wheat crop much benefited by mere harrowing in spring. It is always useful to roll wheat, and indeed all cereal crops, in order to facilitate the reaping process, although no other benefit should result from it. When the plants bave been loosened by evere frosts, or are siffering from tho attacks of the wire-worm, the use of Crosskill's roller is usually of great benefit to the crop.

A plan of growing wheat year after year on the same field without the use of manure was practised for a number of years by the late Rev. Mr Smith of Lois Weedon, Northamptonshire, and detailed by him in the pages of the Royal Agricultural Society's Journal, and in a pamphlet which has passed through many editions and had a very extensive circulation. His plan is to a certain extent a revival of that of Jethro Tull, but with this important difference, that whereas Tull occupied his ground with alternate double rows of wheat a foot apart, and vacant spaces, five feet wide, which were carefully cultivated by plougbings and horse-hneings repeated at intervals from the springing of the wheat until midsummer, Mr Smith introduced two important elements in addition, viz., thorough draining, and trenching the vacant spaces in autumn, so as to bring portions of subsoil to the surface. Λ field treated on this zystem consists of alternate strips of wheat and bare fallow, which ere made to exchange places year by year, so that each successive crop occupies a different site from its imraediate predecessor. It has also the benefit. of the fresh soil brought up by the previous autumn's doublodigging, which is subsequently mellowed and pulverised by lengthened exposure to the ntmosphere, and by frequent stirrings. The produce obtained by Mr Smith from his acre thus treated was enry nearly 34 buskels each year for
the first five years; but as his cropls steadily improved, his average at tho end of fourteen years was fully 36 bushels. Writing in July 1861, ho said, "The growing crop for 1861, notwithstanding the frost, looks strong and well, with scarcely a gap. Thus year after year gives growing confidence in the scheme." On steam-power being introduced, Mr Smith became convinced of the practicability of carrying out his system with advantage on an eutire farm. At first he restricted himself to the employment of manual labour, but he subsequently invented a set of implements for sowing covering in, rolling, and boeing his crops by horse labour. We give in his own words his directions for carrying out this system, what he believed to be the advantages of it, and the cost of thus cultivating an acre:-
"I auppose, at the outset, the land intended for wheat to be wheat laud ; having hesides a fair depth of ataple, and a subsoil, as will gencrally, though not universally be the case, of the same chemical composition with the surface. I suppose it dry, or drained three feet deep at least; well eleaned of Noceds; the lands cast; sud the whole tolerably leacl.
" 1 . First of all, then, plough the whole land, when dry, one inch deeper than the used staple. If it turn up cloddy, bring the cleds down with the roller or the crusher. Let this be done, if possible, in August. Harrow deep, so as to get five or six inches of loose mould to adnit the presser. Before sowing wait for rain. After the rain wait for a fine day or two to dry the surface. With this early commencement a woek or two is of no material impertance compared with that of ploughing dry and sowing wet.
"As early as possible, however, in September, get in your aced with the presser-drill, or with some implement which forms a firmbedded cbannel in which to deposit the seed, grain by grain, a few inches apart. Cover over with the crusher or rough roller.
" 2. When the lincs of wheat aprear above ground, grard sgainst the rook, the lark, and the slug-a trito suggestion, but ever needful, especially here. And now, and at epring, and all through summer, wateh for the weeds, and wage constant warfare against them. The battle may last for a year or two, or in some foul cases even more; but, in the end, the mastery. and its fruits, without fail, will be yours.
"3. The plant being now distiustly visible, dig the intervals two apits deep, increasiug the depth, year after ycar, till they come to twenty or twenty-four inches. lining up at first only four, or five, or six inches, according to the nature of the subsoil, whether tenacioua, or loamy, or light. To bring up more at the outset would be a wasteful and injucrious cxpense.
"The digging is dune thus:- Bcfore proceeding with the work, a few cuts are made within three inches of the wheat, the back of tho spade being towarda the rorrs. A few double appits, first of all, at the required depth, are then thrown out on the beadland, and there Icft for the prescnt. After this, as the digging proceeds, the staple is cast to the bottom, and the subsoil throwa gently on the tor, Thia process is carried on throughout the wholo interval; at the end of which interval, just so much space is left vacant as was occupied by the soil thrown out at the beginning of it. In commencing the second interval at that finished end, the eurth is thrown out as at first, not on the headland, however, but intu the vacant ajace of the first interval. And so on all over the acre.
" 4 . Late in winter, and carly in guring, watch your opportunity, in dry weather, before the roots of the plant are laid bere, to press them with the crusher.
" 5 . In the spring and early summer stir the speces between the rows as often as tho ourface becomes crusted over; and move the settled intervals four or five inches decp with the common scarifier, set first of all about twenty-cight inches wide, reducing the width till it cone by degrees to twenty-four and eightecn inches. Continua the process, if possible, at the last-named width, up to the time of tlowering in June.
"These operations are indispensable to full succeas, and happily ean be carried on at little cost ; for, while the intervals of eachacre can be scarified in fifty minutes, the horse-hoe implement, covering two lands at once, can stir between the ruws in twenty-five.
"6. lmmediately the crop is carricd, clean the intervals, and move them with the scarifier in order to sow, without delay, tho ahed grains. When these regetate and come up into plant, move the intervals again five or six inches deep, and ao destroy them. After that, levd with the harrow inuplement, and the land is ready for the drill.
"If anything occur to prevent the sowing early in September, and to drive you to the end of October, eet the drill for a thicker crop. IBut, if possible, aow carly-for thia reason. Tillered wheat has a bad name. But that has reference only to whent which has tillered late in the apring. And certainly, in that case, there is the fear of danger to the cron, and danger to the sample. Fur
smprosing no milucw to fall on it, even then the plant ripens uneveuly; the early stems being ready for the sickle, while the late-grown shoots have scarcely lost their verdure. But if mildew come when the stem is soft, aud succulent, and porous, instead of being, as it should he at that time, glased-and case-hardened agaiust its attacks, the enemy enters in and checks the circulating sap; and the cad is, blackened straw, light ears, and shrivelled grain. Thercforc, aow early. Let the plant tiller before'winter. Give cvery atern an equal start at spring; and then, with a atrict adhereuce to rule, there aced he no alarm as to the result, aubject oaly to those visitations from which no wheat, on any system, in the aame description of aoil, aud noder the same clinate, is aecure."-(See pamphlet, Word in Season, p. 36.)
"The advantages of the system of corn-growing which I have described are principally these:-First, while one crop of wheat is growing, the unsown intervals of the acre are being fallowed and prepared for another. This the farmer well knows to be of infinite moment, meeting, as it does, one of the greatest difficulties be has to contend with. Next, upon this half-portion of the acre, tilled as 1 describe, there is a yield equal to avcrage crops on a whole acre. Then, for half the portinn of an acre, there is, of course, only half the labour and half the expense of an entire acre required fror cultivation. And, lastly, the hand-labour required finds constant employment for the poor."-(Ioid., p. 17.)
"Aftcr harrowing, and cleaning, and levelling the whole, I marked out the channels for the seed with my presser implement, which is drawn with one horse, and presses two lands at once. My acheme of implements, to he complete, emhraced a drill, which was to act immediately behind the presscr-wheels, and to drop seed by secd into the hard channcls. The spindle of the presser was to turn the drill-wheels, and the boxes were to be made removable. Being uable to accomplish this in time for this year's sowing, I had the seed, as heretolore, dropped by hands, and covered over by rollers.
"These rollers form the roller implement in the same frame, and are managed thus: the three-wheelcd pressers are removed from their sockets, and in their place two rough rollers, formed of aeveral wheels on the eelf-cleaning principle, are introduced, and cover over two lands at once.
"The portion of the ficld thus seeded will lic in this firm but rough state till apring time. Then, when the rollers have been applied again to kcep the roots of the plant well in their place, they too will be removed from the frame, and light wheels and hoes will be attached, forming the horse-hoe implement, for hoeing and stirring between the wheat.
"There is yet one other use for the implement frame. The intervals of the wheat having been trenched in autumn, and well and frequently stirred by the common scarifier at spring, are ahut out by the wide-spreading wheat-plant in June from all further processes till the crop is cut and carried. They are then to be moved and levelled by the common one-horse acarifier for seedtime. After this will follow the harrow. The hoes will be removed from the frame, and two small. harrowe will be attached, to cover two lands at once; and with this implement the horse will walk on the stubble-land, between what before were the intervals. and the cycle of operations is now complete.
"In all these operations (excepting in that of scarifying) the sown lands, and lands about to be made ready for aowing, are antouched by the foot of man or horse.
"The time occupied in scarifying the land is about an hour the acre; in heavily pressing the chanmels for the seed, half an hour ; in the other operations ahout 20 or 25 minutes."-(Pp. 25, 26.)
"The presser-drill, spoken of in p. 25, is completed, and I now aow the four acres in 90 minutes, timed by watch; being at the rate of 18 or 20 acres a day in a day of 8 hours, with a horse of average power and speed.
"It has been thought advisable to keep the drill in its own frame, -devoting another frame to the roller-wheels or crusher, the hoas, the scarifiers, and harrows, all of which are made removable, and which, with the exception of the spade; the hand-hoe, and the common scarifier for stirring the intervals, perform the whole cycle of operations for cultivating the land for wheat."-(Pp. 33, 34.)
"I have only to show now, by my fresh balance-ahcet, how with suitable implements, on wheat-land, the whole scheme I propose is economical, as well as easy and expeditious.
"One double digging in autumu
Three stirrings with scarificr at spring (6d.)
One ditto with acarifier and harrow implement, before sowing
Two pecks of seed (5s. the bushei) .
Pressing and drilling
Rough rolling
Four hoeings betweon wheat with horse-shoe implement (6 d .)
Bird-kceping
£1 100
030 .

- 010

026
010
$0 \quad 0 \quad 0$
020 020

Erought forward
All the operations from reaping to marketing
Rates, taxes, and interest

Total emount of outlay	£2	2	0
1	2	0	
0	10	0	

"The produce, supposiag it equal to that of former years, in round numbers, would be:-
"Four quarters and two nushels of wheat (at 40s.). £8 100 One tos and 12 cwt of straw (at £2 the ton) . 340

Deduct outlay
111140

Total amount of profit $\quad £ \varepsilon 00^{\prime \prime}$

- (Bir., p. 30.)

Particular attention was dirccted to this system of wheat culture by a lccture on Tull's husbandry, delivered by Frofessur Way, at a council meeting of the Rogal Agricultura: Society of England, and by the animated discussion which followed; when several gentlemen who had visited Mr Smith's farm bore testimony to the continued excellence of his crops, and intimated that they and others had begun to test the systcm upon their own farms. If such a practice can indeed be pursued on the generality of clay-soils, then the puzzling problem of how to cultivato them with a profit is solved at once. It is not to be thought that practical farmers would regard otherwise than with incredulity a system which so flatly contradicts all existing theory and practice. The facts subrritted to them by Mr Smith bcing beyond challenge, they would naturally imagine there must be some peculiarity in the soil at Lois Wcedon which enabled it to sustain such heavy and continued demands on its fertility; and that the issuc, there and elsewhere, must cventually be utter sterility. For our own part, believing that we have cxceeding much to lcarn in every department of agriculture, we canuct thus summarily disposc of these facts. We simply accept them as true, and leave the exposition of them to experience, whose verdict we await with much interest.

But Mr Smith is not the only person who has furnished us with information regarding the continuous growth of wheat for a series of years on the same soil. Mr Lawes, at Rothamstead, in Herts, so well known by his interesting papers on agricultural chemistry in the Royal Agricultural Socicty's Journal, has furnished some facts in connection with the culture of wheat on clay soils to which farmers were little prepared to give credencc. Mr Caird, who visited Rothamstead earjy in 1851, thus refers to the subject in his valuable work:-
"On a soil of heavy loam, on which sheep cannot be fod on turnips, 4,5 , and 6 fect ahove the chalk, and therefore uninfluenced by it, except in so far as it is therehy naturally drained, ten crops of wheat have been taken in succession, one portion always withont any manure whatever, and the rest with a variety of manura, the effects of which have been carofully ohserved. The aeed is of the red cluster varicty, drilled uniformly in rows at 8 inches anart, and two bushels to the acre, hand-hoed twice in spring, and kepr perfectly free from weeds. When the crop is removed the land is acarified with Bentall'a skimmer, all weeds are removed, it is ploughed once, and the sced for the next crop is then drilled in. During the ten years, the land, in a natural stato, without manure, has produced a uniform average of 16 bushels of wheat an acre, with 100 lb . of atraw per bushel of wheat, the actual quantity varying with the change of scasons betwean 14 and 20 bushels. The repctition of the crop has made no diminution or changa in the uniformity of tha averagc, and the conclusion seems to be established, that if the land is keptclcan, and worked at proper seasons, it is impossible to exhaust this soil bclow the power of producing 16 bushels of wheat crory year.
"But this natural produce may be doubled by the application of certain manures. Of these, Mr Lawes's experiments led him to conclude that ammonia is the cssential requisitc. His conclusions are almost uniform, that no organic matter affects the produce of wheat, except in ao far as it yields ammonia; and that the wholo of the organic matter of the corn crop is taken from the atmosphere by the medium of ammonia. Therg is a constant loss of ammonia going on by expiration, ao that a larger quantity must be supplied than is contained in the crop. For practical purposes, 5 ib . of
ammonia is found to produce a bushel of wheat, and the cheapest form of ammoaia at present beiug Peruvian guano, 1 cwt of that eubstance saay bo calculated to give 4 bushels of wheat. Tho maturs produco of 16 busliels an acre may thereforo bo doubled by on application of a cwt of leruvian guano. To this, however, thero Le a limit-climato. Anmonia gives growth, but it depends on dimate whether that produce is straw or corn. In a wet, cold summer a heavy application of ammonia produces an undue dovelopraseat of tho circulating condition of the plent, the crop is laid, and tho farmer's hopes aro disappointed. Seven of corn to ten of struw is usually the most productive trop; five to ten seldom yiclds well. The yrudent farmer will therefore regulate his application of sminatia with a refereuco to the avemge character of the climate in which his farm is situated.
"The practical conclusion at which we ampive is thas, that in the cultivation of a cloy-land farm, of similar quality of soil to that of Blr Lawes, there ia no other rostriction necessary than to keep tho larad clean; that whilo it is very possible to reduce the land by rocds, it is impossibla to exhaust it (to a certain point it may bo reduced) by cleanly cultivated corn corps ; that it is an ascertained fact that wheat may be takeu on soils of this description (provided they are mauured) yearafter year, with no other limit than tho necessity for cleaning tho land, aad that may best bo accomplished by an occasinmal greea crop-tnrnip or mangold, as best suits-at great interrals, the strav beiag brought to the most rotten state, and applied in tho greatest possible quantity to insuro a good crop, which will cleau tho land well. If theso conelusions aro satisfactorily proved, the preseut modo of cultivating heavy clays may bo greatly changed, and the owners and occupiers of such soils bo better compensated in their cultivation than they havo of lato had reason co anticipate."-(Caird's English Agriculture, in 1850 and 1851, Mp. 460-462.) ${ }^{1}$

It is certainly curions to observe, that the addition of four cwt. of grano brings up the produce of Mr Lawes's acre from its average annual rate of sixteen bushels, under its reduced normal state, to very nearly the same as liev. Mr Smith's acre under his system of alternatestrips of corn and summer fallow.

From information carefully gathered, Mr Caird gives it as his opinion, that the average produce of wheat per acre in 26 of the 32 counties of England visited by him is $26 \frac{2}{3}$ bushels, or 14 per cent. higher than it was estimated at in the same counties by Arthur Young 80 years before. Were the country generally anything like as well cultivated as particnlar farms that are to be met with in all parts of it, we should have the present average increased by at least eight bushels per acre. 63 H per bushel is a weight indicating a good quality of grain. A good crop of wheat will yield a ton of grain and about two tons of straw per acre.

Besides its uses on the farm, wheat straw, in certain limited districts in the south of England, is an article of some value, as the raw material of a not unimportant native masufacture, namely, Straw-Plait. The first straws used for this purpose in this country were grown in the neighbourhood of Luton in Bedfordshire. This town is still the principal seat of the straw trade and straw bonnet manufactare, and the district around still produces the finest quality of straws; but straw-growing is now also carried on in parts of Hertfordshire, Buckinghamshire, Oxfordshire, and Berkshire. Light, ricl soils are best adapted for this purpose. The kinds of Theat grown with this view are the Red Lammas and the Chiddam. A bright, clean, tough striaw being required, it is necessary to begin reaping before the flag of the straw falls. If the straw is exposed to rain, it becomes rusted or spotted; if to rery hot and dry weather, it gets sumburnt and brittle. The utmost care and energy must, therefore, be used to get the crop dried, carried, and stacked as quickly as possible. In favourable zeasons an acre of wheat will yicld (besides the grain) from 15 cirt. to a ton of cut straws, of the ralue of $£ 6$ to £s per ton, clear of all expenses. The farmer sells his straw to a class of men called straw-factors, who draw and

[^60]cut the straws in his barn. The drawing and cutting-off of the ears being there performed, the factors remove the straw to their own premises. There it undergoes a farther cutting, is exposed to the fiunes of sulphur, assorted into proper lengths, and made up into marketable bunches of various sizes and qualities. These bunches are disposed of to the plaiters at the various markets of the district. About $50,000 \mathrm{fcmales}$ and boys are engaged in plaiting. No plait is made in factories, the worls being performed by the wive and childrent of agricultural labourers in their own cottages, where it is carried on all the year except in barvest. The straw trade, in its various departments, is of considerable importance and is steadily increasing. The gross returns are supposed not to fall short of $£ 1,250,000$ per nnnum.

There is now also a small demand for wheat straw for tho manufacture of paper.

Section 2.-Barley.

In Great Britain barley is the grain crop which ranke ncxt in importance to wheat, both in an agricultural and commercial point of viev. Its use as bread-corn is confined to portions of the lowlands of Scotland, where unleavened cakes, or "bannocks o" barley meal," still constitute the claily bread of the peasantry. It is moro largely used in preparing the "barley broth" so much relished by all classe in Scothand. To fit the grain for this purpose, it is prepared by a peculiar kind of mill, originally introduced from Holland by Fletcher of Saltoun, in which a thick cylinder of gritty sandstone is made to revolve rapidly withim a case of perforated sheet-iron. The barley is introduced betwixt the stone and its case, and there subjected to violeut rubbing, until first its husk and then jts outer coatings are removed. It is, however, in the production of malt liquor and ardent spirits, and in the fattening of live stock, that our barlcy crops are chiefly consumed. We have no doubt that it would be better for the whole community if this grain were more largely used in the form of butcher-meat and greatly less in that of beer or whisky. It has been customary for farmers to look upon distillation as beneficial to them from the ready matret which it affords for barley, and more especially for tya lighter qualities of this and other grain crops. But this is a very short-sighted view of the matter; for careful calculation shows that when the labouring man spends a shilling in the dram-shop, not more than a penny of it goes for the agricultural produce (barley) from which the gin or whisky is made; whereas, when he spends the same sum with the butcher or baker, nearly the whole amount goes for the raw material, and only a fraction for the tradesman's profits. And not only so, but the man who spends a part of his wages upon strong drink diminishes, both directly and indirectly, his ability to buy wholesome food and good clothing; so that, apart from the moral and social bearings of this question, it can abundantly be shown that whisky or beer is the very worst form for the farmer in which his grain can be consumed. Were the $£ 50,000,000$ at present amually spent in Great Britain npon ardent spirits (not to speak of beer), employed in purchasing bread, meat, dairy produce, vego tables, woollen and linen elothing, farmers would, on the one land, be relieved from oppressive rates, and, on the other, have such an increased demand for their staple products as would far more than compensate for the closing of what is at present the chief outlet for their barley.
There are many varieties of barley in cultivation, and some of them are known by different names in different districts. Those most esteemed at present in Berwickshire and neighbouring counties are the Chevalier, the Annat, and the commonearly long-ared. The chevalier produces the finest and heariest grain, weighing usually from 54 ib to 56 Io per bushel, and is in high estimation with maltsters.

It is also tall and stont in the straw, which is less liable to lodgo than that of the common barley; and when this accident does lappen, it has the valuable property of not producing aftershoots or greens. It requires about fourteen days longer than the common-early to reach maturity, but as it admits of being sown earlier than the latter sort, this is in practice no drawback to it. The Annat barley resembles the chevalier in its leading features, but is yellower in its complexion, and not quite so round in the grain. It ripens a few days carlier than the chevalier, and in our own experience is more productive. The commonearly is more liable than those just noticed to suffer from uver-luxuriance. It is generally used for the latest sowings on these portions of land from which the turnip crop has been longest in being removed.
In the elevated or northern parts of the kingdom, fourrowed barley, usually called bere or bigg, is cultivated, as it is more hardy, and ripens earlier than the two-rowed parieties. A new variety, called Victoria bere, is said to be so productive, and to yield sach a heavy sample, as to be worthy of cultivation even in lowland districts.

Barley delights in a warm, friable soil, and thrives best when the seed is deposited rather dceply in a tilthy bed. Being the grain crop best adapted for succeeding tarnips that have been consumed by sheep-folding, advantage must be taken of favouring weather to plough up the land in successive portions as the sheep-fold is shifted. So mach of it as is ploughed before 1st February will usually get so mollowed by the weather as to be easily brought into suitable condition for receiving the seed. In Scotland the usual practice is to sow broadcast on this stale furrow, and to cover the seed by simple harrowing. A better way is first to level the surface by a stroke of the harrows, and then to form it into ribs twelve inches apart by such an implement as has been described when speaking of Tennant's grubber. Orer this corrugated surface the seed is sown broadcast, and covered by another turn of the barrows. The ribbing loosens the soil, gives the seed a uniform and sufficient corering, and deposits it in rows. The only advantage of such ribbing over drilling is, that the soil is better stirred, and the seed deposited more deeply, and less crowded than is done by the ordinary drills. It is certainly of great advantage to have the seedcorn deposited in narrow lines, so far as the working of the horse-hoe is concerned; but we are convinced that stiffer stems, larger ears, a more abundant yicld, and a brighter sample, are likely to be obtained when the seed is loosely scattered in a channel three or four inches wide than when crowded into a narrow line. This grain is now sown considerably earlier than heretofore. When the soil is enriched by plentiful manuring, its temperature raised by thorough draining, and the climate and exposure favourable, it should be sown as early in March as possible, and will often do remarkably well although sown in February. This early sowing counteracts that tendency to overluxuriance by which the crop is so often ruined -in fertile soils. It is chiefly owing to this early sowing (although aided by the use of hummelling machinery) that the average weight of barley is so much greater now than it was thirty years ago. From 54 形 to 56 \# per bushel is now about the average weight in well-cultivated districts; while 57 Ib and 58 It is by no means rare. The produce per acre ranges from 30 to 60 bushels, 36 bushels being about the average. The quantity of seed used per acre is from $2 \frac{1}{2}$ to 3 bushels for broadcast sowing, and about a third less when drilled. As already remarked in regard to wheat, it is well, as the season advances, to avoid, by a fuller allowance of seed, the temptation to excessive tillering, and consequent unequal and later ripening. A good crop of barley yields about 1 ton each per acre of grain and straw.

Section 3.-Oats.

Over a large portion of England oats are grown only as provender for horses, for whish purpose they are fully ascertained to be superior to all other grains. Except, therefore, on fen-lands and recently-reclaimed muiry soils, the cultivation of oats in South Britain bears a small proportion to the other cereals. It is in Scotland, "the land o' cakes," that this grain is most esteemod and most extensively cultivated. Considerably more than balf of the annual grain crops of Scotlaud consists, in fact, of oats. The important item which oatmeal porridge forms in the diet of her peasantry, and of the children of her other classes, has something to do with this extensive culture of the ont; but it arises mainly from its peculiar adaptation to her humid climate. As with the other cereals, there are very numerous varieties of the oat in cultivation. In Messrs Lawson's Synopsis of the Vegetable Products of Scotland, it is said (Div. i. p. 80), "Our collection comprises nearly sixty varieties, about thirty of which are gromm in Scotland; but of these not more than twelve are in general cultivation. These twelve varieties, enumerated in the order of their general cultivation, arc, the Potato, Hopetoun, Sandy, Early-Angus, Late-Angus, Grey-Angus, Blainslie, Berlie, Dun, Friesland, Black Tartarian, and Barbachlaw." The first four kinds in this list are those chiefly cultivated on the best class of soils. It is to the produce of these that the highest market prices usually have reference. The weight per bushel of these sorts usually runs from 42 D to 46 Ib . From 50 to 60 bushels per acre is a usual yield of oats. The two last named kinds are chiefly esteemed for their large produce, and adaptation to inferior soils; but being of coarse quality, they are chiefly used for provender. A variety which stands the wnter is now frequently grown in England, for the double purpose of first fielding a sea sunable supply of green food to ewes and lambs in early spring, and afterwards producing a crop of grain. It has already been stated that in Scotland wheat does not prosper when sown after clover or pasture; but with the oat it is quite the reverse, as it never grows better than on land newly brokeu up from grass. It is, accordingly, almost invariably sown at this stage of the rotation. The land is ploughed in December or January, beginning with the strongest soil, or that which has lain longest in grass, that it may have the longest exposure to the mellowing influences of wintry weather. In March or April the oats are bown broadcast on this first ploughing, and covered in by repeated harromings. These are given lengthwise until the furrows are well broken down, for if the harrows are worked across the ridges before this is effected, they catch hold of the edges of the slices, and, partially lifting them, permit the seed-corn to fall to the bottom, where it is lost altogether. As it is only when a free tilth is obtained that the crop can be expected to prosper, care must be taken to plough early and somewhat deeply, laying the furrows over with a rectangular shoulder, to sow when the land is in that state of dryness that admits of its crumbling readily when trode upon, and then to use the harrows until they more smoothly and freely in the loose soil, two or three inches deep. The Norwegian harrow is an important auxiliary to the common ones in obtaining this result. When wild mustard and other annual reeds abound, it is adrisable to drill the crop and to use the horse-hoe. When the land is clean, the general belief in Scotland is that the largest crops are obtained by sowing broadcast. When the latter plan of sowing is adopted, from 4 to 6 tusbels per acre is the quantity of seed used. The latter quantity is required in the case of the Hopetoun and other largegrained parieties. The condition of the soil as to richness and friability must also be taken into account in deter
auning the quanuty of seed to be used. Wheu it is in high heart and likely to harrow kindly, a less quantity will auffice than under opposite condition. In breaking up a tough old sward, even 6 bushels per acro may be too little to sow. The following very interesting exporiment hearing on this point was made in the county of Fife:-"Mir Gulland, Wemyss, offered a sweepstakes in 1850, that 4 bushels of oats, sown per Scotch acre, in poor land, would yield a better produce than 8 bushols sown under similar conditions. The late Mr'Hill, maintaining the contrary, accepted the sweepstakes, and a number of others took up the same. Experiments were made by Mr Dingwall, Kamornie, and Mr Buist, Hattonhill. :-

In Mr Buist's experiments,

" 4 bush. soma rielded 23 bush. per acre, 34 lb per bush. 8 bush. sewn yielded 36 ", 34 ! to "
"In Mr Dingwall's experiments,
" 4 bnsh. sown yielded 45 bush. per acre, 35, ib per bush. 8 bush. воwय yielded 49 ", 39 Ib "
The adrocates for thin seeding will of course regard even the least of these quantities as foolishly redundant. It is quite true, that if the land is in good heart, the crop will ultimately stand close on the ground from a very small seeding; but it will take two or three weeks longer to do this than if the land bad been fully stocked with plants from the first, by giving it seed enough. In our precarious climate, where a late harvest and bad crops usually go together, it is of the utmost importance to secure early, uniform, and perfect ripening; and as liberal seeding tends directly to promote such a result, practical farners will do well to take care how they omit such a simple means of attaining so important an end. We believe that it is on the principle now indicated that the superior result, both as respects quantity and quality of produce, in the doubleseeded lots in the experiments now cited, is to be explained.

As with wheat, the rigour and productiveness of the oat is much enhanced by frequent change of seed. Our agricultural authorities usually assert that the change should, if possible, always be from an earlier climate and better soil. This is undoubtedly true as regards high-lying districts; but with a good soil and climate we have always seen the best results with seed from a later district. A homely old couplet tersely expresses the experience of our ancestors in this matter of the changing of seed-corn by directing us to procure -

> "Oats from the hills, bere from the sea, Gude wheat and pease wherever they be."

On poor hard soils it is usually remunerative to apply a cat. of guano per acre to the oat crop, sowing it broadcast, and harrowing it in along with the seed. As much additional produce is thus ordinarily obtained asmore than pays for the manure, and the land is, in all respects, left in better condition for the succecding green crop. In the case both of very light and strong clay soils, we bave obtained excellent results by applying a liberal dressing of farm yard dung in autumn to grass-land about to be broken up for oats. By using in this way the dung produced during the summer months, we have obtained abundant crops of oats from portions of land which, but for this, Tould have yielded poorly; and, at the same time, by applying the bulky manure at this stage of the rotation, instead of directly for the succeeding green crop, an important saving of time and labour has been effected, as we giall have occasion to notice when treating of turnipculture.

When the young oat plants bave pushed their second leaf, it is always beneficial to use the roller, as it helps to protect the crop from the evil effects of drought, and
facilitates the reaping of it. The oat frequently suffers much from a discase called "scegging" or "tulip root," which appears to be caused by the presence cf a maggot in the pith of tisuatems close to the ground. On land which is subject to this disease it is advisable not to sow early. A dressing of lime is also believed to be scrviceablo «s a preventative. On muiry soils this crop is also not unfrequently lest by what is called "slaying." This secms to result from the occurrence of frosty nights late in spring, when the crop is in its young stage, which, when grown on such soils, it cannot withstand. The application of large dressings of lime to light muiry soils greatly aggravates this tendency to slaying in the oat crop. The ouly effectual remedy is to improve the texture of the soil by a good coat ing of clay. Oats gield about 1 ton of grain and $1 \frac{1}{2}$ ton ci straw per acre.

Section 4.-Rye.

The extensive cultivation of this grain in any country being alike indicative of a low state of agriculture, and is a poor style of hiving among its peasautry, it must be regarded as a happy circumstance that it has become neariy obsoleto in Great britain. It is still occasionally met with in some of our poorest sandy soils, and patches are occissionally grown elsewhere for the sake of the straw, whioh is in estimation for thatching, for making bee-hires, and for stuffing horse-collars. Its cultivation as a catch crop, to furnish early food for sheep in spring, is on the increase.

Section 5.-Leguminous Crops-Beans.

The only members of this family statedly cultivated for their grain are beans and pease. Befure the introduction of clover and turnips these legumes occupied a nore important place in the estimation of the husbandman than they have done since. Indecd, in many districts naturally well adapted for the culture of turnips, that of beans and pease was for a time all but abandoned. Recently, however, increasing precariousness in the growth of clover, and even of turnips, where they have been sown on the same ground every fourth year for a lengthened period, has compelled farmers to return to the culture of beans and pease for the mere puipose of prolonging the intervals in the periodic recurrence of the former crops. But it is found, in regard to the bean itself, in districts where it has long occupied a stated place in rotations of six or seven years, that its average produce gradually diminishes. We have thus an additional illustration of the importance of introducing as great a variety of crops as possible into our neld culture. It is on this principle tbat beans and pease are now again extensively cultivated on dry friable soils. Winter beans, or pease of some early variety, are generally preforred in such cases. The grain of these legumes, though partially used for human food, is chiefly consumed by horses and by fattening cattle and sheep. Being highly nutritions, they are well adapted for this purpose. By growing beans on a limited portion of the land assigned to cattle crops, a larger weight of beef and mutton can be produced from a givea number of acres, than by occupying them wholly with roots, forage, and pasturage. Several varieties of field beans are cultivated in Great Britain, such as the common horse bean, the tick, the Heligoland, and the winter bean. The latter wis introduced into England about the year 1825, and there rises steadily in estimation. It has been tried in many parts of Scotland, and proves quite hardy, but is objected to from the exceeding shortness of its.straw. But for this, it is a valuable aequisition, as it ripens so much carlier than the spring-sown varicties. Beans should never be sown on land that is foul. By diligent horse and hand hoeing, land that is clean to begin with can be kept so under beans, and left in fine condition for carrying \& white
corn crop; but in opposite circumstances it is sure to get into utter confusion. It is found advisable, thercfore, to take beans after the white crop that has succeeded roots or a bare fallow. In Berwickshire, where a five-years' course, consisting of turnips, wheat, or barley, two jears' seeds, and oats, has long prevailed, beans are now not unfrequently introduced by substituting them for the second year's grass. A four-years' course with beans instead of a portion of the seeds is certainly preferable. In cultivating this crop the land is ploughed with a deep furrow in autumn, a dressing of dung being first spread over the surface and turned in by the plough. As early in March as the state of the soil admits, it is stirred by the grubber and harrowed. The seeds are then deposited either in narrow rows 14 inches, or in wider rows 27 inches apart. The latter width has long been preferred in Scotland, because of its admitting of the free use of the plough and the drill-grubber, in addition to the hoe, during the early stages of the plant's growth, and also from a belief that the free entrance of light and air, of which the wide rows admits, increases the productireness of the crop. We shall describe both modes of culture, and then state the grounds upon which, after long sharing in the opinion just noted, and following that practice, we now give a decided preference to sowing in narrow rows. In sowing at the wider intervals, the soil, having heen prepared as already stated, is formed, by a single turn of the common plough, into shallow drills 27 inches apart. Ten or twelve such drills being formed to begin with, the seed is scattered broadcast, at the rate of 3 busiels per acre, by a sower who takes in six of these drills at a time, and gives them a double cast, or by a drilling-machine, which sows three rows at once. The beans either roll into the hollows as they fall, or are turned in by the ploughs, which now proceed to opeu each a fresh divll, in going down the one side of the working interval, and to cover in a seeded one in returning on the other side. If tares are cultivated on the farm, it is usual to sow a small quantity (say a peck per acre) amongst the beans, on which they are borne up, and so ripen their seeds better, and gield more abundantly, than when trailing on the ground. When the crop comes to be thrashed the tares are easily separated from the beans by sifting. Ten days or so after sorving, the drills are partially levelled by a turn of the chain harrow; and if the land is cloddy, it is smoothed by a light roller. If showers occur when the bean plants are appearing above ground, or shortly after, the common harrows may be used again with the best effect in pulverising the soil and destroying newly-sprung weeds. A horse and hand hoeing is then given, and is repeated if wceds again appear. When the plants have got about 6 inches high it is beneficial to stir the soil deeply betwixt the rows by using Tennant's grubber, drawn by a pair of horses. For this, purpose the tines are set so close together as to clear the rows of beans, and the horses are yoked to it by a main tree, long enough to allow the horses to work abreast in the rows on either side of the one operated upon. The soil is thus worked thoroughly to the depth of 6 or 8 inches, without reversing the surface and exposing it to drought, or risk of throwing it upon the plants. Jnst before the blooms appear some farmers pass a bulking. plough betwist the rows, working it very shallow, and so as merely to move the surface soil towards the plants. This may do good, but a decp earthing up is hurtful. When the blooms open all operations should cease, as otherwise much mischief may be done. Such an amount of culture as has now been described may be thought needlessly costly and laborious, but unless a bean crop is kept clean, it had better not be sown. And it is to be remembered that the benefit of this careful tillaye is not
confined to it, but will lo equally shared in by the wheat crop that follows. The culture of winter beans differs only in this, that they require to be somn as carly in autumn as the removal of the preceding grain crup admits of. When it is determined to sow in 14 -inch rows, the sceds are deposited by any of the corn drilling-wachines in common use, set for the specified width of rows, or (which we prefer) the soil is formed intu narrow ribs or drills by means of the one-horse plough, the seeds are scattered broadcast by hand or machine over this corrugated surface, and they are covered by a double turn of the common harrows, and rolled by a light roller. As soon as the bean plants appear, care must be taken to keep down weeds by diligent hocing. Two good hoeings will usually suffice, for by the time that the second is accomplished, the crop will speedily so close in as to render any further hoeing impracticable and unnecessary. After repeated trials of these two modes of cultivation, made alongside of each other, we have found that the produce from the narrow rows has been at the rate of from 4 to 6 bushels more per acre than that from the wide rows, and that the soil has been left decidedly cleaner after the former than after the latter mode. It is certainly somewhat startling to find resalts so opposed as these are to preconceived opinion and approved practice. And yet, when the matter is well considered, it becomes obvious enough why it should be so. The wide rows admit of a most cffective process of tillage and hoeing up to the time when the beans come into bloom, when, however, it must wholly cease. But when farther culture is precluded, the need for it by no meaus ceases, seeing that the rows of bean plants csually remain sufficiently apart to admit of the continued growth of weeds during the long period which intervenes betwixt the blooming and the ripening of the crop. And hence it happens-especially if the spring prove cold and parching -that although the wide-rowed beans have been kept scrupulously clcan up to the time of blooming, their upright habit of growth renders it impossible that they can so close in upon the wide space betwist the rows, as to preoccupy and overshadow the ground sufficiently to keep it clean during the long period that the crop must neccssarily be left to its own resources. By sowing in narrow rows the crop is soon in a condition to defend itself against weeds and drought, and hence the saving of labour, the more bulky crops, and the cleaner stubble, which result frum sowing beans at 14 rather than 27 inch intervals.

In Scotland the haulm of beans is esteemed au excellent fodder for horses and other live stock, whereas in England it is thought unfit for such a use. The reason of this appears to be, that in the southern counties beans are allowed to stand until the leaf is gone and the stems blackened before reapiug; whereas in Scotland they are reaped so soon as the eye of the grain gets black. When well got, the juices of the plant are thus, to some extent, retained in the haulm, which in consequeuce is much relished by live stock, and yields a wholesome and nutritious fodder. A good crop of beans yields about I ton of grain and $1 \frac{1}{2}$ ton of straw per acre.

Section 6.-Pease.

Pease are somn in circumstances similar to those just detailed, but they are better adapted than beans to light soils. They too are best cultivated in rows of such a width as to admit of horsc-hoeing. The early stage at which they fall over, and forbid further culture, renders it even more acedful than in the case of beans to sow them only on land already clean. If pnnual weeds can be kept in check until the poase once get a close cover, they then occupy the ground so completely that nothing else can live under them; and the ground, after their removal, is found

In the choicest condition. A thin crop of pease should never be allowed to atand, as the land is sure to get perfectly wild. The difficulty of getting this crop well harvested renders it peculiarly advisable to sow only the early varictics

Section 7.-Other Crops.

The cereals and legumes now enumerated constitute the staple grain-crops of Great Britain. Others are grown occasionally, but more for curiosity than profit. Zcalous attempts were made by the late William Cobbet to introduce maize or Indian corn as one of our regular erops. It has been conclusively proved that none of its varieties yet tried can be ripened in the ordinary seasons of this country. It has indeed been suggested that it might form a useful addition to our garden vegetables,-using it, as it is done in America, by cooking the unripe cobs, and also that we might grow it beneficially as a forage crop. Lentiles have recontly been grown in different parts of the country; but both of these grains can be imported of better quality, and at less cost, than they can be grown at home.

There is great inducement to agriculturists to endeavour more earncstly to obtain improved varieties of grain by cross-impregnation of existing ones. Something has already been accomplished in this direction, but only enough to show what encouragement there is to persevere. Whenever the same skill and perseverance are directed to the improvement of field crops that our gardeners are constantly exerting, with auch astonishing results, on fruits, flowers, and vegetables, we may anticipate a great increaso of produce, not only from the discovery of more fruitful varieties, but of such as possess a special adaptation to every diversity in the soil and climate of our territory.

Section 8.- Harvesting of Grain Crops, and preparing them for Market.

Several distinct modes of reaping grain are in use. The most ancient, and still the most common, is by the sickle or reaping-hook, which is used either with a smooth or serrated edge. The latter was at one time preferred, as by it the work was performed most accurately. The amoothedged instrument is, however, now the favourite, as it requires less exertion to use it, and the reaper can, in consequence, get through more work in a day; and also because in using it the sialks are less compressed, and concequeutly dry farter when made into sheaves. In some parts of England the crops are reaped in a method called fagging or bagging. The cutting instrument used is heavier, straighter, and broader in the blade than the common reaping-hook. The workman uses it with a slashing atroke, and gathers the cut corn as he procecds by means $0_{:}^{f}$ a hooked stick held in his left hand. It is a aimilar process to the mode of reaping with the Hainault scythe-an instrument which has been tried in this country, bnt never adopted to any extent. The common scythe, especially with that form of handle known as the Aberdeen handle or sncd, is very cxtensively used for reaping grain in all parts of the kingdom. Indced, the practice of mowing grain has becn increasing of late years, and would extend more rapidly but for the greater difficulty of finding good mgwers than good reapers. A greater amount of dexterity is required to cut grain well by the acythe than by the sickle. The difficulty lies not in making amooth and clean stubble, but in so laying the asrathe as to admit of the corn being aheared accurately. When the mower lays his swathe at right angles to his line of progress, and the gatherer is skilful and careful, corn may be handled as neatly in reaping by the scythe as by the sickle. When the crope are not much laid or twisted, mowing is aomewhat the cheapest of these modes of reaping. Its chief recom-
mendation, however, is that mown sheares dry most quickly, and auffer least from a drenching rain. This arises from the stalks being less bandled, and so forming an open sheaf, through which the wind penetrates freely. Tightly bound sheares are always difficult to dry.

In Berwickshire and adjoining counties the reaping of the erops has hitherto been accomplished by employing, at day's wages, such a number of reapers as suffices to cut down the crops on each farm in from twelve to twenty days. The rate of wages paid to reapers for a number of years has ranged from 2s. 6d. to 3s. 6d. cach per diem, with victuals in addition, costing about eightpence for earb person. In marshalling the band, two rearcrs are placed on each ridge of 15 or 18 feet in breadth, with a binder to each four reapers, and a steward, or the farmer in person, to superintend the whole. When the crop is of average bulk, and lies favourably for reaping, each bandwin, or sct of four reapers and a binder, clear two acres in a day of ten hours, but $1 \frac{1}{4}$ to $1 \frac{1}{2}$ acre only, if it is bulky and lodged. The cost of reaping by this methed is therefo:e from 10s. to 15 s : per acre. With a reaping-machine cutting say six acres per diem, and requiring in all ten persons (five men and fire women or stout lads) to attend to and clear up after it, at an average wage, including victuals, of 3 s each, and allowing 3s. per diem to cover tear and wear, and interest on its prime cost, there seems a reasonable prospect of a goodly portion of our future crops being reaped for about 6s. per acre. The labour of the horses employed in working the reaper is not included in this estimate, as at this season they would otherwise bo idle, and yet eating nearly as much food as when at work. There would thus be a saving in actual outlay of about 5s. per acre. But this is the least.important view of the matter. On a Berwickshire farm producing 200 acres of crop, there are usually at least six pairs of horses kept, with a resident population sufficient to yield about thirty persons (including women and youths) available for harvest labour. The stated forces of such a farm will therefore auffice to man three reaping-machines, which, if the weather is farourable, and the crops standing erect or lying in one direction, will cut down the crop in about ten days. When portions of the crop are much lodged and twisted, it becomes necessary to employ part of the labourers in clearing out such portions by the scythe or sickle. It is often possible to I inage these awkward-lying portions by setting one or more men, each with a stout staff, to raise up the crop and lay it towards the machine. When two or more machines are used on the same farm, it is best to work them together by cutting the whole length or width of the field in whichever direction the general lay of the crop admits of them working to most advantage. As each machine completes its cat, it returns empty to the side from which it atarted; and they follow each other at auch an interval as gives time to the lifters and binders, who are placed equidistant along the whole line, to keep the course clear. In such cases a man is usually employed to aharpen the spare knives, to assist in changing them from time to time, and to attend to the oiling and trimming of the whole machinery. It is good econemy to have a spare machine at hand ready to put in the place of onc that may be disabled by 80 me breakage, and thus avoid interruption to the urgent work of reaping while the damage is being repaircd. Great progress has becn made in recent ycars in working. these machines skilfully and systematically; they are in general use in all well-cultivated districts, and the time appears to be at hand when the whole grain crops of the country will be reaped by mcans of them.

It is now agreed on all hands that grain should be reapea before it becomes what is called dead ripe. In the case of wheat and oats, when the grains have ceased to gield a
milky fluid on being pressed under the thumb-nail, and when the ears and a few inches of the stem immediately under thein have become yellow, the sooner they are reaped the better. Barley requires to be somewhat more matured. Unless the pink stripes on the husk have disappeared, and the grain las acquired a firm substance, it will shrink in drying, and be deficient both in weight and colour. When allowed to stand till it gets curved in the neck, the straw of barley becomes so brittle that many ears break short off in the reaping, and it then suffers even more than other grain crops under a shaking wind.

It is of great consequence to see that corn is dry when it is tied up in sheaves, that these are not too tightly bound, and that every sheaf is zept constantly on foot. From the increased demand for harvest labourers, and the rapidity with which operations must be carried forward, stooking is not now performed with the same accuracy that it was wont to be. There is therefore the greater need for employing a person to review the stooks daily, and keep every sheaf erect. It was formerly the practice in Scotland to set up oats and barley in full stooks of twelve cheaves each, viz., Give pairs and two hood-sheaves. These hood-sheaves are an excellent defence when wet weather sets in, but they retard the drying of the corn in fine weather, and there are now few binders who can set them up so as to etand securely. It is better, therefore, to aim at rapid drying, and for this purpose to have the sheaves small individually, and to set but four or six of them together. Large sheaves the worse to dry than emall ones, not only from their greater bulk, but from their being almost ineritably tighter bound. The utmost vigilance is required on the part of farmers to avoid this fault. Beans and pease are reaped by the sickle. The former are usually not bound into oheaves at once, but left prostrate in handfuls for a few days until they have withered a little. But it is on the whole safer to stook them as they are reaped. They are theu sheaved and bound with ties of twisted atraw, which must be provided beforehand. In stacking beans, the tops of the sheaves are kept outwards, as by this means fewer pods are exposed to the weather, or to the depredations of fowls, \&c., than when the butts are to the outside. Pease are rolled into wisps as they are reaped, and afterwards turned daily until they are fit to carry. When stacked, they must instantly be thatched, as they take in wet like a sponge. It requires no little discrimination to know when sheaves are dry enough to keep in a stack. The farmer finds it for his profit to consult his most intelligent and experienced labourers on this point. On thrusting the hand into a sheaf sufficiently dried, there is a lightness and kindliness to the touch not easily mistaken when once nnderstood. Whenever this is ascertained, the crop is carried with the utmost possible dispatch. This is best accomplished by using one-horse carts, and by huilding the sheaves into round stacks of ten or twelve loads each. Very large stacks are for ostentation, not for profit. The labour of pitching up the sheaves to them is needlessly great; corn is much sooner in a state to keep in small stacks than in large ones, and eooner gets into condition for market ; the crop is more accessible for thrashing in ten load quantities than in huge ricks; and the crop of different fields and kinds of grain more easily kept separate. While naming ten or twelve loads as a convenient quantity to put together in each stack, let it be observed that this assumes the sheaves to be in a thoroughly dry condition ; for in wet seasons it frequently happens that the sheaves have a sufficient degree of dryness to keep safely in stacks of five or sir loads each, although they will certainly heat if double these quantities are put together. Judicious farmers therefore accommodate the size of their stacks to the condition of the sheaves, and are more concerned to
get their crops secured rapidly and safely than to have their stacks of uniform size. For the same reasons, it is often expedient to stack portions of the crop either in the field where it grew or at some convenicnt site nearer than the homestead, but on the way towards it, and where two carts will suffice to keep each stacker in work. An incidental benefit from having the stacks in detached groups is, that it lessens the risk from fire.

It is always desirable to have the stacks built upon frames or stools elevated 18 or 20 inches from the ground. Besides the security from vermin thus attained, there is a free admission of air to.every part, particularly when aided by a triangle of rough timber in the centre, which speedily insures thorough dryness in the whole stack. When stacks are built upon the ground with a mere bedding of etraw under them, the grain from the basement tiers of sheaves is often lighter by several pounds per bushel than that frum the rest of it. A farmer who has bis rick-yard fully furnished with these frames can often carry his crop without risk-when, if built on the ground, it would inevitably heat-and have the grain in condition for market earlier by months than in the latter case. As the stacks are built,

they are thatched without delay. For this purpose, carefur farmers provide beforehand ample stores of thatch and straw ropes. The thatch is not elaborately dramn, but merely straightened a little as it falls from the thrashing mill, tied into large bundles, and built up into stacks, where it gets compressed, and so lies more evenly than is used direct from the mill A good coating of sush thatch secured by straw ropes, interlacing each other in chequers, forms a secure and cheap covering, easily put. on by ordinary farm labourers, and possesses, with all its roughness, an air of unpretending rustic neatness which harmonises well with surrounding objects, and which we greatly prefer to the elaborate ricks of the southern counties with their shaved sides, combed thatch, and weather-cock a-peal. Apart from its cost, the shaving of stacks is objectionable, as they then suffer more from a beating rain or snow-drift than when the natural roughuess is left apon them, on the same principle that a coarse, shaggy topcoat shoots off wet better than a smooth broadcloth A stout two-ply cord made of cocoa-nut fibre, or coir, is coming into use as a substitute for strav ropes in the thatching of stacks.

With proper machincry propelled by steam or water, the thrashing and dressing of grain is a simple and inexpensive process. As grain is now universally sold with a reference to its weight per bushel, its relative value depends mnch upon its dryness and thorough freedom from chaff, dust, light grain, and seeds of weeds. Farmers who are systomatically careful in the cultivation, harvestug, threshing, and dressing of their crops, can always command the best prices of the day. In preparing a parcel of grain for market, it is a good plan to measure a few sacks very, carefully, ascertain tho average weight of these, and-ther fill every remaining sack to that weight exactly.

CHAPTER XIL.

CULTIFATED CROPS-ROOT CROPS, Section 1.-Potato.
The events of late years render it necessary to regard this root somewhat differently than was warranted by its prerious history. Its value as an article of food, relished alike by prince and peasant, its casy culture, its adaptation to a very wide diversity of soil and climate, and the largeness of its produce, justly entitled it to the high estecm in which it was universally beld. Like many other good gifts, it was, howrever, grossly abused, and diverted from its legitimate use; and advantage was taken of its amazing productive pewers to elevate it from the place of an agrecable, wholesome addition to the daily food of the community to that of "the staff of life." In Ireland and the Highlands of Scotland, the people, already in a painfully degraded condition, and conterted with the potate as their sole food all the year round, took occasion, from its very productiveness, under the rudest culture, to subdivide their lands, and marry prematurely, with reckless improvidence, and amid an ever-deepening degradation. We know now, from the utter prostration and helplessness inte which this wretched population was at once thrown by the memorable potato disease, the terrible penalty which this abuse of "a good gift" has brought directly on the miserable sufferers, and indirectly on the whole community. It will be well if the stern lesson, enforced by famine and pestilence, have the effect of leading to a better social condition. Vierred in this light, the potato disease may yet prove a blessing to the nation. Its continued prevalence, although in a mitigated form, cannot well be regarded otherwise, when we remember the frantic eagerncss with which the Irish peasantry replanted their favourite root on the first indication of its returning vigour, and the desperate energy with which they cling to it under repeated disappointments. Apart from this speciality, the precarious health of this important esculent is inuch to be regretted. It seems contrary to analogy to suppose that it is likely either to be entirely lost or to manifest a permanent liability to disease. It seems more natural to suppose that by-andby the disease will disappear, or that some efficient remedy for it will be discovered. Railways afford great facilities for transperting this bulky commodity at little expense to great distances, and thus render the market for it available to a wider district. Apart from disease, this facility of transport would naturally insure its mere extended cultivation. This enlarged cultivation of a crop which, to be grown euccessfully, requires a soil rich in fertilising matters, has moreover been rendered practicable by the facilities which the farmer now has of obtaining guano and other portable manures.
The varieties of the potate, whether for garden or field colture, are exceedingly numerous, and admit of endless increase by propagating frem seeds. It would serve no useful purpose to enumerate here even a selection from the sorts in use in different parts of the country. In Messrs Lawson'a Symopsis of the Vegetable Products of Scotlond a description of 175 kinds is given, to which the reader is referred for particulars. When the crep is grown for cattle food, bulk of produce will be the primary consideration; but for sale or family use, flavour, kecping quality, and handsome appearance, will be particularly attended to. Exemption from cisease is nov a momeutous consideration, whatever the use for which it is grown. There is this difficulty, however, connected with selections on the score of healthiness, that while in each season since the disease breke out certain varieties have escaped, it is observed from year to year that the exempted list varies, certain kinds that had been previously healthy becoming as
obnoxious to discase as any, and others in a great measure escaping that had suffered much before. Indeed, certain partics, from observing that diseased tubers left in the ground have produccd healthy plants in the fellowing beason, have been induced purposely to plant diseased potatoes, and with good results. This, however, is probably due to the more fact of their being kept in the earth

In field culture the potato is frequently grown on a portion of the fallow break; but its appropriate place in the retation is that usually assigned to beans, with which, in an agricultural point of view, it has many features in common, and in lieu of which it may with adrantage"be cultivated. As the potato requires to be planted as early in spring as the weather will admit of, thus leaving little opportunity for cleaning the land, and as its mode of growth forbids any effective removal of root-weeds by after culture, it is peculiarly necessary to have the land devoted to this crop cleaned in autumn. Winter dunging facilitates the planting, and is otherwise beneficial to the crop by producing that loose and mellow condition of the soil in which the potato delights. The quality of the crop is also beliced to be better when the dung is thoroughly incorperated with the soil, than when it is applied in the drill at the time of planting. A liberal application of manure is necessary if a full crop is expected. The rank growth thus induced renders it, hewever, more obnoxious to the blight, and hence at present it is more prudent to aim rather at a sound crop than an abundant one, and for this purpese to stint the manure. When it is applied at the time of planting, the mode of procedure is the same as that which will presently be described in the section on turnip culture. The potato scts are prepared a few days before they are expected to be needed. Tubers about the size of an egg de well to be planted whele; and it is a good plan to select these when larvesting the crop, and to store them by themselves, that they may be ready for use withorit further labour. The larger tubers are cut into pieces having at least one seund eye in each, although two are better. It is of great consequence to have seed-potatees stored in a cool and dry pit, so that if possible they may be prepared for planting before they have begun to shoot. If there bas been any heating in the pit, the potatoes are found to be covered by a rank crop of shoots, which are necessarily` rubbed off, and thus the most vigorous eyes are lost, and much of the substance which should have nourished the young plant is utterly wasted. A sufficient number of dormant eyes are no donbt left, but from the comparatively exhausted state of the tubers, these produce stems of a weaker and more watery character, and more liable to disease than those first protruded. To avoid these evils, gardeners are at pains to invigorate their seed petatoes and husband their whole powers for early and vigerous growth by greening them in autumn, storing them in a cool place with a current of air passing through it, and then in early spring exposing them to light on a floor, whence they are carefully removed and planted with their short green shoots unbroken. Neither the greening nor the sprouting under cover and in the light can ordinarily be practised on the scale on which the field culture of the potate is conducted. But the important feature in it, viz, so treating potatoes intended for seed that the crop shall be produced from the first and most vigorous shoots, and that these shall obtain the fuli benefit of the natural pabulum stored up for their use in the parent tuber, should be carefully censidered and imitated if possible in field culture.

The report of the meeting of the Edinburgh Botavical Seciety, on 8th January 1852, bears that "Profeseer Simpson communicated the results of some experiments raade by himself and Mr Stewart relative to the growth of alpine plants after having been kept artificially covered
with snow in an ice-house for many months. Seeds and plants when kept in this way during winter, and then brought into the warm air of summer, germinate and grow with great rapidity. Mr Stewart had also made experiments with animals, and he found that the chrysalis so treated produced a moth in eleven days after being brought into the atmosphere, while another chrysalis of the same moth did not do so for three or four months after. In arctic regions the rapid growth of plants during the short eummer was well known. Professor Simpson alluded to the importance of similar experiments being made on the different kinds of grain. He referred to the rapidity of harvest in Canada and other countries where the cold lasted for many months, and he was disposed to think that if grain was kept in ice-houses during the winter, and sown in spring, there might be an acceleration of the harvest."

The suggestion for the treatment of seed corn is certainly deserving of trial; but the known difficulty of hindering the premature germination of potato sets in the ordinary method of storing them seems to point to them as the peculiarly appropriate subjects of such an experiment.

Potato drills should not be less than 30 inches wide, nor the sets less than 10 or 12 inches apart in the rows. The usual practice is to take the sets to the field in sacks, which are set down at convenient distances for replenishing the baskets or aprons of the planters. When a large breadth is to be planted, a better way is to have the sets in carts, one of which is moved slowly along in front of the planters A person is seated in the cart, who has by him several spare baskets which he keeps ready filled, and which are handed to the planters in exchange for empty ones as often as required. This greatly economises the time of the planters, and admits of a greater amount of work being accomplished by them in a day. Single-bout drills are quite sufficient, so far as the success of the crop is concerned. Sc soon as the young potato plants are fairly above ground, the drillgrubber should be set to work and followed up without delay by hand-hoeing. Mr Wallace, North Berwick Mains, ε most successful cultivator of potatoes, has for many years taken off all the shoots, save one, from the potato sets as they appear above ground, and the prunings are used in filling up blanks; the result has been that the produce of the solitary stem is both larger and of more equal size and quality than when the shoots are all left. A turn of the horse-hoe and another hand-hoeing after a short interval are usually required, after which the common practice is to earth up the rows by the double mould-beard ploughs. There is reason to believe that this latter practice usually does harm rather than good. It no doubt prevents the uppermost tubers from getting greened by exposure to the light, but it is believed that the injury iuflicted on the roots which spread into the intervals betwixt the rows far more than counterbalances any benefits that result, or have been supposed to result, from this earthing up. After the plants are a foot high, a slight stirring of the surface to keep down weeds is all the culture that is admissible consistently with the well-doing of the crop

When the crop is matured, which is known by the decay of the tops and the firmness of the epidermis when the tubers are forcibly rubbed by the thumb, advantage is taken of every dry day in harvesting the crop. With small plots, the fork is certainly the most efficient implement for raising the tubers; but on the large scale, when expedition is of great consequence, they are always unearthed by the double mould-board plough. Alternate rows are split open in the first instance, and then the intervening ones, as the produce of the first is gathered. When a convenient breadth has thus been cleared, a turn of the harrows is given to uncover such tabers as have been hid from the cleaners at the first going over. This work is now very
gencrally accomplished by means of a loulking-plonyh divested of its wings, and having attached to its solo a piece of iron terminating in radiating prongs. This being worked directly under the row of potato plants, unearththe tubers, and spreads them on the surface by one operation. The potatoes are gathered into baskets, from which they are emptied into carts and conveyed at ouce to some dry piece of ground, where they are piled up in long uarrow heaps and immediately thatched with straw. The base of the heaps should not exceed a yard in width, and should be raised above the surface lcvel rather thau sunk below it, as is very usually done. As the dangers to be guarded against are heating and frost, measures must be taken with an eye to both. The crop being put together in as dry and clean a state as possible, a good covering of straw is put on, and coated over two or three inches thick with earth, care beug taken to leave a chimney every two yards along the ridga By thus keeping the heaps dry and secure from frost, it is usually possible, even yet, to preserve potatoes in good condition till spring. Such diseased ones as have beer picked ont at the gathering of the crop can be used for feeding cattle or pigs. The fact that pigs fatten appa rently as well on diseased potatoes when cooked by steaming or boiling, as on sound ones, is certainly a very important mitigation of this drcaded calanity. There are several varieties of the potato, such as "yams," "lumpers,", "mangel-wurzel potato," \&c., which, although unfit for human food, are much relished by cattle, and which, from their abundant produce, healthiness, and great fattening quality, are well deserving of being more generally cultivated for the purpose of heing used in combination with turnips and other substances in the fattening of cattle. The turnip crop of recent years has been nearly as much diseased as the potato crop, and as one remedy against "fingers-andtoes" in the former is to let longer intervals of time intervene before their recurrence in the same field, and as it has been ascertained that an acre each of beans, potatocs, and turnips will produce more beef than three acres of turnips alone, it is worthy the consideration of those concerned whether it would not be prudent to substitute a crop oi these coarser potatoes for a portion of their turnip crop on fields or parts of fields that have borne diseased turnips in previous rotations. Elght tons per acre is a good crop of potatoes.

Section 2.-Turnips.

The introduction of turnips as a field crop constitutes one of the most marked epochs in British agriculture. To the present day no better criterion exists by which to estimate its state in any district, or the skill of individual farmers, than the measure of success with which this or other root crops are cultivated. We have already, in our section upon fallowing, described in detail the process of preparing the soil for drilled green crops. Referring the reader to what is there said, wo now procced with our description of turnip culture.

Previous to the introduction of bone-dust and guano, farm-yard dung formed, in the majority of cases, the ouly available manure for the turnip crop. It was almost invariably formed into heaps in the ficld to which it was to be applied, and repeatedly turned, as great stress was laid on laving it well rotted. The introduction of these inraluable portable manures has, however, not only immensely extended the culture of the turnip, but has materially modified the course of procedure. "On the first introduction of bone-dust the practice was to use the fold-yard dung as far as it would go, and to apply bone-dust alone, in quantities of from sisteen to twenty bushels per acre, to the remainder of the crop. Guano, too, for co time was nsed to some extent on the same principle; but now it is
most satisfactorily proved that whereas very good crops of turnips can be obtained by mauuring cither with dung alone, at the rate of from fifteen to twenty tons per acre, or bones alone, at the rate of sixteen to twenty bushels, or guano alone, at the rate of three or four cwt., much better crops can be obtained by alplying to each aere its propertion of each of these kinds and quantities of mauures. A portion of tho bones is now usually applied in the form of saperphosphate of live; and as this substance, and also guano, have a remarkable power of stimulating the growth of the turnip in its earliest stage, forcing it to the state fit for thinning from ten to fourteen days earlier than heretofore, there is now uo oceasion for the dung being in the aulvaneed state of decomposition that was formerly found necessary. Wheu farn-yard dung alone was used, it behoved to be in a soluble state, ready to furnish nourishment to the plant from the begiuning. But in bringing it to that state a considerable loss is sustained by fermentation, and its bulk is so much reduced that it becomes diflicult to distribute evenly the allomance which would be available for each acre, in order to give the whole crop a share of it. This, however, it is most desirable to do, as good farinyard manure contains in itself the whole elements required by the crop; aud hence an additional reason for the plans of applying farm-yard dung which have already been noticed. If that mado during the previons summer has been applied in autumn to the lea before ploughing for oats, as far as it will go, and another portion of the contemplated turnip break dunged before the winter furrow, with all that has been made up to that time, and the future accumulations up to April formed into heaps, to be applied in the drills for the latest sowings, the manures produced on the farm may be made to go over nearly the whole breadth under root crops.
Iu proceeding to sow those portions that were dunged before the oat crop and on the stubble, all that is required is to form the drills, and apply the guano or bones, or mixture of both, by hand. In doing this, ten or twelve drills are set out the evening before, that all may be ready for a good start. The light manure is taken to the field in carts, which are unyoked at convenient distances for replenishing the aprons of the young persons (one for each plough) or the machine by which it is distributed along the drills. Tho sowers of the manure being statted on the outside drills, the ploughmen proceed to open fresh ones inside in going, and to cover in the manure by reversing the first formed ridgelets as they return. The seed machine, sowing two rows at a time, follows close up to the ploughs, and thus the work goes'rapidly on, each plough getting over from $2 \frac{1}{8}$ to 3 acres a -day. When farm-yard dung is applied at the time of sowing, the process is the same, except that tho drills must be opened somewhat deeper, and that the dung-carts, followed by an adequate number of spreaders, precede the sowers of the light manures. In filling the dung-carts, one able-bodied labourer is required for each plough employed in drilling; and where these amount to three, six spreaders are required to distributo it evenly along the drills. In some districts the doublebreasted plough is used in forming the drills and covering in the dung. In the hands of a skilful ploughman that iomplement does certainly make neater work to look at; but so far as the success of the crop is concerned, the cormon awing-plough is preferable, for in covering in with it the earth is made to run over the top of the ridgelet, by which moans the clods fall into the hollow, and the finest of the mould is left on the top, where the seed is to be deposited. With the double mould-board this cannot so well be done, and the consequence is, that a groove is formed on the top of the ridgelet, in whieh the small dry clods, carried up by the tail of the mould-board, are left, forming the sorst
possiblo bed for the seed. In parching weather it is usual to pass a light roller over the drills immediately after' sowing, oo retain the moisturo and insure germination. The seed is deposited near the surface, half an inch of mould being a suffeient covering. The quantity sown is $2 \mathrm{D})$ per acro of globe or yellow turnip seeds, and 3 to 4 1t of swedes. Care must be taken that the seed is fresh, so as to have a vigorous and thick plant. Thick sowing increases tho difficulty of thinning out the plants, but it lastens their growth, and diminishes the risk of failuro from the depredations of the turnip bectle. The time of sowing in the south of Scotland extends from the beginning to the end of May for swedes, and thenco to the middle of June for yellows and glokes. 1 partial sowing of yellow or globo is, however, mado by careful stoclmasters before sowing the swedes, to be ready for use by the end of August or beginning of September, when pasturage fails. Sowings of early varieties, such as the stubble turnip, and certain yollow kinds, aro also made after winter tares or other catch crops, until the middle of July; but in Scotland they cannot be sown later than this with advantage, unless for the production of a crop of seed. The average weight per acre of swedes may be stated at 18 tans, and of turnips at 22 tons, but double these rates have occasionally been obtained. Recent experiments go to show that with liberal manuring and early sowing, the weight of the crop is considerably increased by thinning out the plants at wider iutervals than has hitherto been customary. The usual practice in Seotland has been to sorv in ridgelets 27 inches apart, with 9 or 10 inches be twixt the plants. Recent experiments establish the fact that, with 15 inches from plant to plant, much larger bulbs and a greater acreablo produce are obtained. As it is ascertained that in the case of swedes the largest bulbs are also the best in quality, it is of the greater consequence to allow them ample room.

The thinning is commenced as soon as the rough leaf is fairly developed. Previous to this operation the horse-hoe is worked betwixt the rows for the double purpose of destroying weeds and facilitating the operation of thinning. This operation is sometimes still farther facilitated by using Huckrale's machine, which slaps out the rows so as to leave tufts of plauts at regular distances apart. The singling of the plants is performed by the hand-hoe. The young persons by whom this work is usually performed advance in echelon with their backs to the untouched work, the steadiest and most expert worker leading the band. This arrangement insures a uniform rate of progress, savea the finished work from being trodden upon, and keeps the workers closely under the cye of the steward. This thinning of the rows, so as to leave single plants at regular intervals of 12 to 15 inches apart, is accomplished by an alternate thrusting and drawing motion of the hoe, which a littlo practice enables tho workers to perform with such precision that very rarely do thoy either make a gap or leave double plants, and still moro rarely do they require to stoop down to disentangle them with their fingers. Three of these workers can usually thin an acro in a day. With ordinary earo on the part of tho overseer, there is no great difficulty in getting the plants left single at proper intervals; but it is very difficult to get the hoers trained to select and leave only the stoutest plants. And yet so important is this, that, all other things kiug equal, a differenco of two to three tons per acre in the rate of produce has been ascertained to result on comparing rows that had been thinned by a person who took pains to select and leave the best plants, with others on which they had been left indiscriminately. When the plants have rallied after the thinning, and begun to grow rapidly, the usual practice has been to turn a furrow from either side
of them into the middle of the interval by a one-horse plough, and then to level this down by a turn of the horsehoe. A great improvemcut on this practice is to use Tennant's grubber instead, adjusted for drill work in the manner already described. By thus using a strong implement drawn by two horses, the soil in the intervals betwixt the rows can be stirred a foot deep if required, without any risk of hurting the young plants, and this, too, is accomplished by a single operation. A second hand-hoeing is then given, which usually completes the after culture.

The nature of the soil will generally determine the mode of consuming the crop. On all loose, dry soils, feeding off by sheep is the most profitable plan; whereas on deep, strong loams, it is advisable to withdraw the rhole produce, and have it eaten by cattle, as, unless in very favourable weather, when even a fourth is fed off by sheep, the extra manuring does not compensate to the after crops for the injury which they usually sustain from the treading and poaching. On the poorest class of light soils the whole crop should, if possible, be consumed where it grows by sheep; but on those of a betier description, a third, a' half, or two-thirds rray be withdrawn for the feeding of cattle, according to circumstances. Whatever the proportion left on the ground, care is to be taken to regulate the intervals so as to distribute the treading and droppings of the sheep as equally as possible over the field.
.The management of the turnip crop so as that it may be supplied to the live stock in the best possible condition during the entire season, is a point of the greatest importance. The portion that is to be used as cattle food is removed from the ground as soon as the crop is suff. ciently matured, and before the time when drenching rains and severe frosts may prdinarily be looked for. The best way of preserving turnips is by storing in broad flat heaps, not exceeding 20 inches deep, on some dry and sheltered situation, open to the sun, and covering them with a good coating of straw. It takes less labour to put them together in this way, and less straw to cover them; and being less exposed to frost and parching winds, they retain their juices much better than when stored in long narrow heaps. The pulling of swedes preparatory to storing is much facilitated by passing under them a sharp share, and so cutting across the tap-roots without displacing the bulbs. The thatch of the corn-stacks that are thrashed in autumn is usually reserved for covering turnip heaps. After lst November it is well to make diligent use of every favourable hour in thus securing the turnip crop.

The portion to be fed off by sheep must necessarily be treated in a different manner. What is to be used after Christmas can be very readily defended against frost by earthing up in the drills with the common plough. But as what is to be consumed by the young sheep must be pulled and trimmed at any rate, in order to be sliced, the best way is to throw the turnips into heaps at regular distances, and cover them with a thin coating of earth. By this means the turnips are kept from running to stems, and the sheep get them clean and fresh, whatever the state of the weather. ${ }^{\text {i }}$ The same end is secured by opening a trench by a bout of the common plough, into which the turnips from two drills on either side are laid in regular order with their tops uppermost, and the earth tursed over upon them by reversing the course of the plough. When wanted for use they ars again unearthed by means of the plough. The feeding qualities of turnips are so seriously impaired by exposure to frost, even when they

[^61]escape actual destruction, that the expense of securing them by one or other of these methods is always amply repaid. In very mild winters, again, storing is equally effective in preventing the virtues both of the turnips ani the soil from being wasted by the pushing of the seed stems

The turnip is liable in the early stages of its growth to the attacks of various insects. The most formidable of these enemies is the turnip beetle, which frequently settles upon the plants as soin as they appear above ground in such numbers as totally to destroy the whole of them. The best way of guarding against these nimble adversaries is to endeavour, by careful preparation of the soil, liberal manuring, and thick seeding, to secure a thick plant and rapid growth; for thenever the rough leaf is expanded the risk from this quarter is over. From time to time the young turnip plants are assailed by the larva of certain butterflies and moths, which sometimes appear in such num. bers as to cause serious alarm, but ordinarily their attacks occasion but a slight check to the growth of the crop.

A far more formidable evil is the disease called "fingers and toes," which, although long known, seems to be steadily extending, and has been wider spread and more virulent since 1851 than in previous years. This truly formidable disease sometimes shows itself by the time that the plants are ready for thinning, but more usually it is about the stage when the second hoeing is given that unmistakable indications of its presence are observed. The crop appeare in high health, and is making rapid growth, when suddenly, under hot sunshine, numbers of the plants are seen to droop with flaccid leaves; and examination being made, it is found that the disease has already made serious progress. In some cases it is chiefly confined to the tap-root, which is distorted with knobby excrescences. In others, the roots present a thickened, palmated appearance, giving rise to the popular name for the disease, "fingers and toes;" while in others the lateral roots expand into glandular-looking tubers, which frequently appear partially above ground at distances of several inches from the central stem. For a time all these forms of the excrescences present a smooth bealthy looking skin, yielding no trace of the presence of insects of any kind, either externally or internally. By-and-by the skin cracks over the excrescences, which speedily assume a gangrenous appearance. Indeed, the whole symptome present a striking analogy to cancer in the animal systera. By the time that the healthy plants are approaching near to maturity, the móst diseased ones have usually lost all resemblance to turnips, and there remains on the land a substance like rotten fungus. In very bad cases whole acres together are found in this state, with here and there a sickly distorted turnip still shoming a fer green leaves. At other times a few only of the plants àre wholly destroyed; the field, to a casual observer, looking not much amiss, though a closer inspection proves that the general crop is of stunted growth, with few plants entirely free from the disease. Such partially diseased roots are not absolutely rejected by sheep, but they are evidently unpalatable and innutritious, while the crop as a whole is more speedily consumed than its general appearanco would lead one to expect. When this disease appears on farms that have previously been exempt from it, it is usually confined for a year or two to simall patches, which, however, in the absence of remedial measures, steadily and rapidly extend, not only on the recurrence of a turnip crop on the same fields, but over the other parts of the farm. Indeed, there are not wanting indications of its being propagated by contagion; as, for instance, when tainted roots are carted into pastures, and the disease shows itself most in those places where they have been consumed, when, in course of rotation, the field comes afterwards to bear a turnip crop. When they are consumed br cattle in fold-yards, the dung
may be the medium of contamination, on the supposition that this conjecture is well-founded. Ploughing land in a wet state evidently aggravates the disease. We know of one instanco where a strip down the middle of a ficld was ploughed in auturna while soaked by rain, on which wet ploughed portion the turnips were evidently more diseased than over the rest of the field. In another instanco which came under our personal observation, a ditch running along part of the top of a ficld of upwards of 50 acres, was scoured in spring, and tho mud spread back over the headland. The whole field was, in the same season, sown with turnips, which proved an excellent crop, entirely free from "fingers and toes," with the exception of that portion of headland on which the mud was spread, where every plant was discased. Although wholly in the dark as to the nature and propagation of this disease, it is well to know that the judicious application of lime is a certain remedy. In order, however, to its efficacy, it must be applied in a powdery state after the autumn.ploughing, and immediately incorporated with the soil by harrowing; or else, as a compost with earth, spread on the lea before breaking up for oats. We know from experience that a very moderate dose (say four tons of unslaked shells to the acre) applied in this way will suffice to prevent the disease. It is on light soils that its ravages are most frequently experienced, and to these heary doses of lime are unsuitable. Indeed, whether for promoting the general fertility of soils, or for warding off the attacks of this disease, moderate applications of lime every twelve years or so seem preferable to heavier dressings at longer intervals. The name "fingers and tocs" is not unfrequently applied to a distinct disease to which the turnip, in common with the cabbage and other coleworts, is liable-namely anbury or club root. When the knobby excrescence which is found on plants affected by anbury is broken up, it is found to encase a white maggot, whose presence is the obvious cause of the mischief. We have seen young cabbages which had begun to droop from clubbing, when pulled up, freed from the parasite, and replanted, regain healthy growth and come to prosperous maturity. In the case of the "finger and toe," the most careful investigation, aided by the microscope, has hitherto failed to detect any inscct cause for this disastrous malady.

Section 3.-Mangel-Wurzel.

This root has been stcadily rising in estimation of late years. It is peculiarly adapted for those southern parts of England where the climate is too hot and dry for the successful cultivation of the turnip. A competent authority declares that it is there easier to obtain 30 tons of mangold than 20 tons of swedes, and that it is not at all unusual to find individual roots upwards of 20 lb io weight. In Scotland it is just the reverse, it being comparatively easy to grow a good crop of swedes, but very difficult to obtain 20 tons of mangold. This plant is very susceptible of injury from frost, and hence in the short summer of Scotland it can neither be sown so early nor left in the ground so late as would be requisite for its mature growth. These difficalties may possibly be got over either by the selection of hardier varieties or by more skilful cultivation. Its feeding quality is said to be nearly equal to that of the swede; it is much relished by live stock-pigs especially doing remarkably well upon it; and it has the very important property of keeping in good condition till midsummer if required. Indeed, it is only after it has been some months in the store heap that it becomes a palatable and safe food for cattle. It is, moreover, exempt from the attacks of the turnip beetle. On all these accounts, therefore, it is peculiarly valuable in those parts of Great Britain where the summer is usually hot and dry-conditions of
climate which are favourable to the mangold and peculiarly unfavourable to the turnip.

Up to the act of depositing the seed, the processes of preparation for mangold are identical with those described for the turnip; winter dunging being even more appropriate for the former than for the latter. The ridgelets being formed 28 inches apart, and charged with a liberal allowance of dung and guano, the sceds are deposited along the top, at the rate of about 4 th per acre. The common drilling machines are easily fitted for sowing its large rough seeds, which should bo sown from tho 10 th to the 25 the April. The after culture is also identical with that of the turnip. The plants are thinned out at distances of not less than 15 inches apart. Transplanting can be uscd for filling up nf gaps with more certainty of success than in the case of swedes. But we find it much more ceonomical to avoid such gaps by sowing a little swede sced along with the mangold. Several varicties of the plant are cultivatedthose in best repute being the orange globe, the long yellow, and the long red. This crop requires a heavier dressing of manure than the turnip to grow it in perfection, and is much benefited by having salt mixed with the manuro at the rate of 2 or 3 cwt . per acre. The crop requires to bu secured in store heaps as early in autumn as possible, as it is easily injuréd by frost. The following graphic description of this process is by Mr Morton of Whitfield :-
"The mode of harvesting our root crop which we haro adopted for several years is this: We lct the lifting, cutting off the leaves and the roots, and putting the roots into the cart-at so much per acre, accerding to the weight of the crop-to one man, who gets other men to join with him in the work and sbaro in the profits; and the arrangement I require to be adopted is, that the one-horso carts, which I employ to haul the roots, shall be constautly employed, and I require from 10 to 20 loads or tons of roots to loo filled hourly. The number of carts required is according to tha distance of the field from the atore; thus the distance from the middle of the field to the store being 15 clains, four carts are required ; 22 chains require five carts ; and 30 chains require seven carts.
"The mode of lifting the roots.-Five men are employed to pull up the roots; each man pulls up two rows; standing between the rows, ha takes with his left hand a root from the row on his left side, and with his right hand a root from the row on his right side, and pulling both up at the same time, places them side by side, across the row where he pulled up the roots with his right hand, so as to have the tops lying in the space between the two rows he has pulled ap; the next man takcs the two rows at the right hand of the last two rows we have just described, and he, with each of his hands, pulls up a row, snd places them on the line of the row which bo has pulled up with his left hand, with the root end lying towards the rout end of the first row, so that we have new four rows of roots lying close together in two Jows, side by aide, with their leaves on the outside of each of these rows, and the roots of each row nearly tonching each other ; and every four rows, when growing, are thus, when pulled, laid in two rows, root to root, occupying not more than 27 inches. Now, as the next four rows are lifted in the same way, and placed in like manner, we bavo a space unoccupied of three times 27 inches, or 6 fect 9 inches between each double row of roots, for the cart to go between them (riz., this double row of bulba after they bave had tho leaves and roats cut uff), to carry off the bulbs to the atore. After the five meu who are pulling the roots there follew ten women or boys, with knircs made of picces of old scythes, who, with repeated blows, cut off the leares and roets witheut ever moving ono of them with their hands; this is constant bot not hard work, and it requires ten active women or boys to keep up with the five men pulling.
"Immedistely on the heels of the cutters follow the carts between the twe double rows of bulbs as thay lie, having thein leaves and roots cut off; and a man, one of the principals of the gang, and nine yonng active boys and girls, throw up the bulbs as fast as they can into the cart, the man apcaking to the horse to move ferward or atop as they clear the ground; when one cart in full, an empty one has veen brought by ene of the boys who drive the carts, and placed immediately behind the full one; so that, as be moves off with the full cart, the man calls the horse with the empty cart to move forward, and they proceed to throw the roots into the cart as fast as they did inte the one that has just gone off the field.
"The pulling of the reots and the filling of the carts being the principal work, one of the leaders is in each of these deparments of
the work; so that, by his example, he shows those with him how he wishes them to work, and thus the work proceeds with the utmost regularity and despatch; 20 cart-loads are hourly filled in the fields and delivered in the store; 180 to 182 loads of 22 cwt . and 23 cwt . each in a day of nine hours ; thus a cart-load is filled cvery three minutes by 10 pairs of hands, which are pulled by five pairs of hands, and the leaves and roots cut off by 10 pairs of hands -in all 25 pairs of hands, men, women, and boys. This has been repeatedly done in a day.
"The stores are made of posts and rails, enclosing a space 9 feet apart and $4 \frac{1}{2}$ feet high, and of any length, if the space will admit, and as near to where they are to be consumed as possible. The posts are 5 feet apart, let into the ground 13 inshes, and $4 \frac{1}{3}$ feet above, with five rails above, 4 or 5 inches wide, nailed to the inside of the posts ; and each of these stores is 3 feet apart. I have 14 of them, about 70 feet long each, which is suffient to store from 1000 to 1200 tons of bulbs."

The heaps are carefully thatched, and the spaces betwixt them filled with straw to keep out frost.
It is believed that in many cases crops of turnip and mangold could be more cheaply stored by means of the portable railway than by carts, and with less injury to the land. This is especially the case with clay soils and in wet seasons. In using it, eight drills of roots are trimmed and laid in two rows, as Mr Morton describes; the rails are shifted between the pairs of rows in succession; and the roots are pitched into light trucks, which a man pushes before him to the headland, where the contents are discharged by tipping. Being there heaped up and thatched, the roots are carted to the homestead as required.

Section 4.-Carrot.

This root, though so deservedly esteemed and uaiversally grown in gardens, has not hitherto attained to general cultivation as a field crop. This is owing chieliy to certain practical difficulties attending its culture on a larger scale. Its light feathery seeds cannot easily be sown so as to secure their regular germination; the tardy growth of the young plants, and the difficulty of discriminating between them and weeds makes the thinning a troublesome affair; the larvesting of the crop is comparatively expensire; and it is only on sandy and light loamy soils, or those of a peaty character, that it can be grown successfuily. The increasing precariousness in the growth of potatoes, turnips, and clover, and the consequent necessity for a greater variety. of green cropz, entitle the carrot to increased attention as a field crop. Its intrinsic qualities are, however, very valuable, especially since the introduction of the white Belgian variety. On light soils it is alleged that larger crops of carrots can be obtained than of turnips, and with less exhaustion of their fertility, which is explained as arising from the greater depth to which the carrots descend for their nourishment. This root is eaten with avidity by all kinds of farm stock. Horses, in particular, are very fond of it, and can be kept in working condition with a considerably smaller ration of oats when 20 th of carrots are given to them daily. It can also be readily kept to an advanced period of spring when stored with ordinary care.

The mode of culture is very similar to that already described for mangel-wurzel. A usual practice is to prepare the seed for sowing by mixing it with moist sand, and turning the mass repeatedly for several days until germination begins, when it is sown by hand at the rate of 6 to per acre of the dry seeds, in a seam opened by the coulters of the corn or turnip drill, according as it is wished to have it on the flat or on ridgelets. Some prefer merely to rub the mixture of seeds and sand or mould betwixt the palms, until the seeds are thoroughly separated from each other, and so divested of their hairs as, when mixed with sand, to run from a drilling machine. It is of the utmost importance to secure seeds of the previous year's growth, as if older their germination cannot be depended upon. Much care is also needed in saving the seed only from selected roots, as
carrots have a decided tendency to degenerate. The white Belgian variety is certainly the best for farm use, not only from the weight of crop, but from its growing more rapidly in its earliest stage than other approved sorts, and showing a broader and deeper coloured leaf, which can more easily be discriminated from weeds, and thus admitting of the earlier use of the hoe. When the sowing and first hoeing and thinning of the crop are got over successfully, the after culture of the crop is very simple; all that is needed being the occasional use of the horse and hand hoe to keep dorn weeds. The fork must be used in lifting the crop. The greens are then cut off and given to young stock or cows, and the roots stored in long narrowh heaps, exactlyas mangold. Fifteen tons per acre is an average crop, although on suitable soils, with liberal manuring and skilful cultivation, double the weight is sometimes obtained. Those who intend to cultivate this crop statedly will do well to raise their own seeds from carefully-selected roots. Unless genuine and fresh seed is aomn, failure and disappointment can scarcely be avoidéd.

Section 5.-Parsnip.

This plant bears so close a resemblance to the earrot, and its culture and uses are so similar, that they need not be repeated. It can, however, be cultivated successfully over a. much wider range of soils than the carrot, and, unlike it, rather prefers those in which clay predominates. It is grown extensively and with great success in the Channel Islands. The cows there, fed on parsnips and hay, yield butter little inferior, either in colour or flavour, to that produced from pasture. About 10 th of seed are required per acre. It requires, like that of the carrot, to be steeped before sorving, to hasten germination, and the same care is needed to have it fresh and genuine. It should be sown in April. The roots, when matured, are stored like carrots.

Section 6.-Jerusalem Artichoke.

.This root, although decidedly inferior to the potato in flamour, is yet deserving of cultivation. It grows freely in inferior soils, is easily propagated from the tubers, and requires little attention in its cultivation. When once estao'ished in the soil, it will produce abundant crops for successive years on the same spot. It is sometimes planted in woods to yield shelter for game, for which purpose it is admirably fitted, as it grows freely under the shade of trees, and yields both food and covert. In properly-fenced woods it might yield abundant and suitable food for hogs, which could there root it at their pleasure, without damage to anything. Where they had mast along with these juicy tubers, they would undoubtedly thrive apace. After they had grubbed up what they could get, enough would be left to reproduce a crop for successive seasons. Such a use of this esculent seems well deserving of careful trial.

CROPS ANALOGOUS TO DRILLED ROOT CROPS.

(Sections 7, 8, 9.)

There are several crops which, under a strict classifica. tion, should be noticed among forage crops rather than here, but which, in an agricultural point of view, are so closely analogous to drilled root crops that we regard this as the suitable place in which to notice them.

Section 7.-Cabbage.

On strong rich soils large crops of very nutritions food for sheep or cattle, and of a kind very acceptable to them, are obtained from the field culture of the Drumhead cabbage. A seed-bed is prepared in a garden, orchard, or other sheltered situation, about the second week in August, either by soming in rows 12 inches apart, and thinning the plants
sbout 3 inches in the rows, or broadcast in beds. As early in apring as the land on which the erop is to be grown is dry enough for being worked, let it be theroughly and deeply stirred by one or more turns of the grubber. Assuming that a liberal dressing of dung has been put into it at the autumn ploughing, 3 or 4 cwt . of guano are now scattered evenly over the surface and ploughed in by a deep equare furrow. A lot of plants being brought from the seed-bed, a band of planters, each provided with a dibble and a piece of rod 27 inches long, proceed to insert a row of plants the length of the rods apart in each third plough-seam, the result of which is that the plants stand in regular rows 27 inches apart every way, and can afterwards be kept clean by horse and hand hoeing like any other drilled green crop Cabbages aro much in repute with breeders of rams and prize sheep, which fatten rapidly on this food. Cabbages are usually drawn off and given to sheep on their pastures, or to cattle in byres and yards; but they are also fed off, where they grow, by sheep, in the same way as turnips. It is an exhausting crop when wholly drawn off, and on this account is sometimes grown with advantage on spots greatly enriched by irrigation with servage or otherwise, and where the succeeding grain crop is expected to suffer from over-luxuriance, the cabbages being grown, as the phrase goes, to "take the shine out of it." In favourable circumstances, from 30 to 40 tons per acre of this nutritious crop may be obtained. From what has been said it is evidently not adapted for extensive field culture; but on most farms a few acres might be grown annually with great advantage. It is a peculiarly suitable food for either sheep or eattle during the autumnal transition from grass to turnips.

Section 8.-Rape.

This plant is peculiarly adapted for peaty soils, and is accordingly a favourite crop in the fen lands of England, and on recently reelaimed mosses and moors elsewhere. Its growth is greatly stimulated by the ashes resulting from the practice of paring and burning. In these cases it is sown broadcast; but when such soils are brought into a regular course of tillage, it is drilled, and otherwise treated in the same manner as turnips. As we shall consider its culture under the head of "Oil-producing Plants" (chap. xiv. sec. 5), we shall only say further here, that its highly nutritious leaves and stems are usually consumed by folding aheep upon it where it grows, and that there is no green food upon which they fatten faster. Oecasionally it is caried to the homestead, and used with other forage in cariying out the system of soiling cattle.

Section 9.-Kohl-Rabi.

This plant has been frequently recommended to the notice of farmers of late years. Like mangold, it is better adapted than the turnip for strong soils and dry and warm elimates. It may be either sown on drills in the samo manner as the turnip, or sown in a seed-bed and afterwards transplanted. The latter plan is expensive, if it is desired to cultivate the erops to any extent; but is commendable for providing a supply of plants to make good deficiencies in the rows of otber crops, or when a small quantity only is wanted. By sowing a plot of ground in Mareh in some sheltered corner, and transplanting the crop early in May, it is more likely to prosper than in any other way. Cattle and sheep are fond of it, and it is said not to impart any unpleasant flavous to milk. We have seen a few trials of it in Scotland as a field crop; but, from whatever canse, the weight of food produced per acre was greatly less than from the mangolds and swedes growing alongside of it. For further information about this plant, the reader is referred to the Book of the Farm, vol ii. p. 87; Hemlett Davis's

Farming Essays, p. 90 ; Lawson"s Synopsis of the Vegetable Products of Scolland, div. ii. p. 109. Lawson says that the pulp or flesh of kohl has the same taste as the leaves of the cabbage, and benco its adaptation as food for milch cows.

CHAPTFR XHL

CULTIVATED CROPN. - HERBAGE AND FORAGE CROPQ

Section 1.-Grasses, dec.

Under this general heading we propose to include what we have to say concerning the grasses, whether natural or cultivated, and those other crops which are grown expressly for the sake of the cattle food yielded by their leaves and stems. This hind of farm produce is either consumed where it grows by depasturing with live stock, or mown and given to them in a green state under cover, or dried and stored for after use. It thus embraces the cultivation of these crops, and their disposal, whether by grazing, soiling, or haymaking. Following this method, we shall first of all briefly deseribe the cultivation of those pasture and forage erops which are of best reputo in British husbandry.

Tillage lands are now everywhere cropped according to some settled rotation, in which the well-recognised principles of the alternate husbandry are carried ont according to tho actual circumstances of each locality. With rare exceptions, such lands at stated intervals bear a crop of the elovers or cultivated grasses. As these are usually sown in mixture, especially when intended for pasturage, the resulting erop is technically called "secds." As it is of importance to have the land clean and in good heart when such crops are sown, they usually follow the grain crop which immediately suceceds the fallowing process Being for the most part of a lower habit of growth, these ean be sown and grown along with white corn crops without injury to either. When the latter are harvested, the former, being already established in the soil, at once occupy it, and grow apace. By this arrangement there is therefore secured an important saving both of time and tillage. Barley being the erop amongst which the seeds of the elovers and grasses are most frequently sown, and amongst which, upon the whole, they thrive best, it is customary te sow these small seeds at the same time as the barley, and to cover them in with a single stroke of the common harrows. This is erroneous practice, both as regards the time and manner of sowing these small seeds. We have already mentioned, in the proper place, that barley should be sown as carly in March as possible. Now, if the clovers, sic., are sown as early as this, they are almost certain to get so forward as both to rob the barley of its due share of nourishment, and, when it is reaped, to bulk so largely in the sheaves as to retard their drying, and aggravate the risk of their being ill harvested. It is found, too, that if there be plants enough, the clovers stand the winter better, and ultimately yield a better erop, when, at the reaping of the grain crop, they are puny-looking than when they are very strong. It is better, therefore, to delay the sowing of the small seeds till the end of April or beginning of May. As to the manner of covering them in, we have to remark that the smaliness of these seeds and their mode of germinating alike require that they receive only the very slightest covering of soil. This important fact is so well illustrated in the following table, which exhibits the results of somo earefully-condacted experiments, reported to the Highland Society by Mr Stirling of Glenbervie, that we shall here quote it :-
"Column I. contains the scientific names.
Column II. contains the average weight of the seods per bushe in rouulls.

Column III．contains the avemge number of seeds in one ounce． Volumn IV．shows，in inches，the depth of corer at which the greatest number of seeds brairded．
Column V．shows，in inches，the depth of cover at which only about half the number of seeds brairded．
Column V1．shows，in inches，the least depth of cover at which ane of the seeds brairded．

I．	II．	III．	IV．	V．	VI．
Agristis stolon vulgaris，．	$\begin{aligned} & 13 \\ & 12 \end{aligned}$	$\begin{aligned} & 500,000 \\ & 425,000 \end{aligned}$	0 to $\frac{1}{1}$	$\frac{1}{2}$ to ${ }^{\text {a }}$	1
Aira cxspitosa，	14	132，000	0 to $\frac{1}{2}$	3 to	$2\}$
Alopecrusus pratensis，	，	－6，000	0 to $\frac{1}{4}$	1 told	21
1 uthoxanthum ollora－ tum，．．	6	71，000	0 to $\frac{1}{8}$	1 to 14	2
$\left.\begin{array}{l}\text { Arthenatherum avena－} \\ \text { cenm，}\end{array}\right\}$	7	21，000	1to ${ }^{\text {a }}$	$1 \frac{1}{2}$ to $1 \frac{3}{4}$	4
$\left.\begin{array}{c}\text { Brachypodium sylva－} \\ \text { ticum，．．}\end{array}\right\}$	10	15，500	0 to \ddagger	$\frac{1}{2}$ to $\frac{1}{3}$	2
Cynosurus cristatus，．	26	28，009			
Dactylis glomerata， lomerata gigantea	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$40,000$	0 to ${ }^{\frac{1}{4}}$	${ }_{3}$ to 1	24
Elymus arenarius，	11	21,320 2	1 to $1 \frac{1}{8}$	2 tor $2 \frac{1}{2}$	5
geniculatus，	12	2，300			
Festuca duriuscu	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 39,000 \\ & 20,500 \end{aligned}$	O to	$1^{\frac{3}{4} \text { to }}$ to 1	27 23 29
elatior gigo	$\begin{aligned} & 14 \\ & 13 \end{aligned}$	20，500	0 to	$1 \ddagger$ to $1 \frac{1}{2}$	3^{24}
heterophylla，．	12	33，000	0 to 1	1 toli	21
gigantea，	16	8，600			
orina，	14	64，000	0 to． 1	to 1	2
ovina tenu	15	80，000			21
pratensis，${ }_{\text {pratensis }}^{\text {coliucea，}}$ ：	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	26,000 24,700	0 to $\frac{1}{8}$	\％${ }^{\frac{1}{2}}$	$2 \frac{1}{2}$
rubra，	10	39，000			
Glyceria aquatica，	13	58，000	\} to $\frac{1}{1}$	to 1	$2 \frac{1}{2}$
fluitans，．－	15	33,000			
Holcus lanatus，． mollis，		95,000 85,000	$\frac{1}{1}$ to $\frac{1}{2}$	星 to 1	$2 \frac{1}{2}$
Loliura italicum，	15	27，000	0 to	1 to $1 \ddagger$	$3 \ddagger$
perenne，	18－30	15，000	\pm to	18 to 18	$3 \frac{1}{2}$
Milinm effrsum，－	25	80，000	I to	1 to	$2 \frac{3}{4}$
Phalaris arundinacea， Phlcum pratense，	48 44	42，000			\ldots
Phlcum prat Poa nemora	44 15	74,000 173,000	0 to 1		2
$\left.\begin{array}{c}\text { nemoralis semper－} \\ \text { virens，．．．}\end{array}\right\}$	15 ${ }^{\frac{1}{2}}$	133，000	0 to $\frac{1}{1}$	7 to $\frac{1}{1}$	1
pratensis， trivialis，	$\begin{aligned} & 13 \\ & 15 \end{aligned}$	$\begin{aligned} & 243.000 \\ & 217,000 \end{aligned}$	0 ，to $\frac{1}{1}$	教	1¢
Psamma arundinacea，．	15	10，000	$\frac{1}{2}$ to $1{ }^{\frac{1}{4}}$	$1{ }^{\frac{1}{2}}$ to $1^{\frac{3}{4}}$	18
Trisetum	51	118，000	0 to f	星 101	2
Acbillea Millefolium，	30	200，000	$\frac{1}{1}$ to $\frac{1}{2}$	$\frac{1}{2}$ to ${ }^{\text {a }}$	14
Cichorium Intylus （chicory），	32	21，000			
Lotus corniculatus，	62	28，000	0 to	$\frac{1}{4}$ to	12
majar，	64	51，000		to	1！
sativa，	60	12，600			18
Onobrycuis sativa，	26	1，280	\％to 1	2 to 2t	4！
Petrosalinum sativum，	41	12，800			
Plantago lanceolata，	52	15，600	\ddagger to $\frac{1}{8}$	$1 \frac{1}{17}$ to $1 \frac{1}{2}$	23
$\left.\begin{array}{c}\text { Poterium Sanguisorba } \\ \text {（burnet），}\end{array}\right\}$	25	3，320	$\frac{1}{2}$ to	118 to 13	4
Trifolium fliforme，．	65	54，000	0 to		1\％
lybridum，	63	45，000	0 to	${ }^{1}$ to ${ }^{\text {a }}$	$1{ }^{1}$
pratense，．${ }_{\text {pratense }}$ ererenne，	64	16，000	0 to	$1{ }^{1}$ it to $1 \frac{1}{2}$	${ }_{2}^{2}$
pratense perenne， repens，	$\begin{aligned} & 64 \\ & 65 \end{aligned}$	16,000 32,000	O to	1）to $1 \frac{1}{2}$	1ț

＂The results in the three last columns of the preceding table were obtained by sowing the seed in finely－sifted dark loam，which was kept moist throughout the process of germination，to which is attributable the circumstance of so many of the sorts vegetating best （as shown in Colnma IV．）without covering，and under full exposure to the light．The combination of such favourable circumstances of soil and moisture can，however，seldom bo calculated apon in field sowing，therefore a covering of monld for the seeds，however slight，is alvays advisable．But it will be seen，by the results in Column V1．，that a great number of seeds must be inevitably lost from over－depth of covering，anless the ground be in all cases care－ fully prepared and pulverised before sowing cither the natural or －rtificial grasses．＂${ }^{2}$

From this it is evident that to scatter these tiny seeds over a cloddy surface，and then to harrow it，may more
aptly be called ourying than sowing them．Che following is a more rational mode of proceeding：－When these seeds are to be sown among winter wheat，it is expedient to begin by using the horse－hoe（supposing the wheat to have been drilled），as well to loosen the surface and produce s kindly bed for the sceds as to destroy weeds．In the case of broadcasted wheat，a turn of the harrows secures the same end．In the ease of the more recently sown barley all that is needed is to smooth the surface with the one horse roller．Over the ground thus prepared the small seeds are distributed by a broadcast sowing－machine， which corcrs at once a space of 15 or 18 feet in width． The covering is then effected by simply rolling with the smooth noller，or by dragging over the surface the chain－ harrow，which may either be attached to the sowing－machine or to a separate frame ；or by using Cambridge＇s or Crosskill＇s roller，with a very light chain harrow attached to it．On clay soils the chain－web is to be preferred；but on loose soils Crosskill＇s roller imparts a beneficial firmness，and， with its tail－piece of chain－web to fill up the indentations， gives an accuracy of finish which rivals the neatness of a newly－raked garden plot．We have long regarded this covering in of grass seeds as the most important use to which Crosskill＇s valuable implement is put．The only drawback to it is，that it makes a heavy demand on the horse－power of the farm at a pressing season．As it can only be worked in dry weather，it is advisable，when the land is in trim，to work it double tides by means of a relay of horses．This mode of procedure is alike applicable to the sowing of mixed clovers and grasses，and to that of the clovers alone，and is the course usually pursued in sowing for one or two years＇＂seeds．＂

When it is intended to lay down arable land to grass for several years，or to restore it to permanent pasture or mearow，it is always advisable to sow the seeds without a cor： 1 crop．This doubtless involves $3 n$ additional cost at the outset，but it is usually more than repaid by the en－ hanced value of the pasture thus obtained．To grow the grasses well，the soil should be pulverised to the depth of 3 or 4 inches only，and be full of manure near the surface． There is no better way of securing these conditions than by first consuming a crop of turnips on the ground by sheep folding，and then pulverising the surface by means of the grubber，harrow，and roller，without ploughing it．

Much diversity of practice exists in regard to the kinds and quantities of seeds used in sowing down with a grain crop．In Scotland from 2 to 4 pecks of ryegrass seeds， with from 10 to 14 Ib of those of red，white，alsike，and yellow clovers，in about equal propcrtions，is a common allowance for an acre．A pound or trro of field parsley ia occasionally added，or rather is substituted for an equal weight of clover sceds．The natural grasses are seldom sown，and only．when the land is to be laid to permanent pasture．In England ryegrass is in much less repute than in Scotland，the clovers being there very generally sown unmixed，and always in larger quantities than we hare Just named -20 B per acre ocing a common allowance． There can be little doubt that both these plans are faulty．

When a good natural pasture is carefully examined，it is found to consist of an emazing number of different grasses and other plants．Not only does a natural pasture contain a great raricty of herbage at any one time，but it has its plants which replace each other at different seasons；and some also which are prominent only in wet years and others in dry ones．The provision thus made for affording st all times such a variety of food as is at once grateful and whele－ some to the animals which browse on it，and for keeping the ground fully occupied under ceery diversity of seasons and weather，is truly admirable，and the study of it well
fitted to interest and instruct tho busbandman. The importance of this subject is beginning to be sppreciated by agriculturists; as one proof of which we now sec our leading secdsmen regularly advertising for sale an extensive list of grasses and other pasture plants. Most of them also, for the guidance of their customers, point out the kinds and quantities per scre which are sppropriate for diversity of soils and other circumstances. We refer, as an example of this, to the manual of Messrs Lawson of Edinburgh, who have deroted much attention to this subject.
The following Tables will be found useful:-
"I.-For Alternate Hesbaidry.

For 1 year's Hay Forlyeariallay. and 1 year's Pasture.			$\begin{aligned} & \text { For } 1 \text { year'a ITay } \\ & \text { and } \\ & 2 \text { years' Fasture. } \end{aligned}$
	10	\%	Io
Loliam italicum.......	2	9	9
perenne.	18	18	18
Dactylis glomerata	-	2	2
Phleum pratense	1	2	2
Medicago lupulina	-	1	1
Trifolium hybridum.........	1	2	2
pratense	8	4	2
pratense percnne	-	2	4
repens	2	4	4
	39	14	14
	39	44	44

"For sheep pastures it will often be found advantageous to add from 2 to 4 is per acre of parsley secd to the above mixtures; and for pastures in certain opland districts established practice will jnstify the introchuction of an additional pound or two of yellow clover (Bfedicago lupulina), together with from 2 to 3 it of ribgrass (Plantago lanceolata). And for very heary as well as for peaty soils, 1 to $1 \frac{1}{2}$ to of Phleum pratense may be added advantageously, both for hay and pasture.
"II.-For Permanent Pasture. No. I.

Alopecuras pratensi	1
Dactylis glomerata.	6
Festuca duriuscula	2
elatior.	2
pratensis	2
Lolium italicum.	6
perenne	8
Phleum pratense.	2
Poa nemoralis semp	2
trivialis	3
Medicago lupulina	1
Trifolium pratensc.	1
perenne	3
repens	6

"In certain cases the following sdditions to Table II. may be made-namely, 1 to 2 Ib each of Festuca rubra and Poa pratonsis on dry sandy soils; 1 to of A-killea Nillefolium, and 1 to 2 to of Petrosalinum salivem in sheep pastures; 2 Ib chicory (Cichorium Intybus) in cattle pastures, 6 or 10 It of Onobrychis sativa and 4 to 6 It of Poterium Sanguisorba (burnet) in dry calcareous aoils. When a crop of hay is taken the first year, both the rycgrasses (Lolium) may be increased by a third; and 2 to of Trifolium pra. terse added. Also $\frac{1}{2}$ to 1 to per acre of Anthoxanthum odoralum When occasionsl crops of hay sre to be taken." 1

When land has been thus sown for a permanent pasture, care should be taken not to sllow a sheep to set foot upon it for the first two years, for if these industrious nibblers are allowed to crop the tender clover seedlings before they sre fully established in the soil, they are certain to remove the crowe from most of them, and thus ruin the pasture at the very outset. Innumerable instances of failure in the attempt to obtain good permanent pastures are entirely oving to this premature grazing by sheep. The first growth should therefore be morm, care belng taken to do so before nay of the grasses have flowered. Then roll repeatedly, and stock with young cattle only until the second season is over.
llaring described the means to be used for obtaining
${ }^{1}$ Morton's Cyclopacdia of Agriculture-article "Grases," vol. i. r. 1000.
good pastures, let us now consider how to use them profitably. The art of grazing embraces tb: practical solution of two important problenss, viz, $1 s t$, तuw to obtain the greatest amount and best quality of herbage from any given pasturo; and $2 d$, How to consume this herbage by live stock so as to make the most of it. 'The grazier has ever to keep in view what is best for his land and what is best for his stock; and must take his measures throughout the entire scason with au cye to buth th ses objects. As regards the first of them, experience yivlds the following maxins for his suidance:-

Never to stock his pastures in opring until genial meather is fairly established.

Never to allow the grasses to run to sced, nor parts of a field to be eaten bare, and others to get rank and coarse.

Duly to spread sbout the ciroppings of the cattle, to remove stagnant water, and to extirpate tall weeds.

Some time about midsummer to make a point of having the pasture caten so close that no dead herbage or "foggage" shall be left on any part of it.

In what more immediately concerns the welfare of the live stock he is in like manner taught in stocking his pastures-

To adapt the stock, as regards breed, size, condition, and numbers, to the actual capabilities of the pasturage.

To secure to the stock at all times a full bite of clean, fresh-grown, succulent herbage.

In moving stock from field to ficld to take care that it be a change to better fare-not to worse.

Pasturage consists either of natural herbage or of "seeds." In the south-eastern counties of Scotland there is littlo good old grass; all the really fertile soils being employed in arable husbandry, with the exception of small portions around the mansions of landowners. The pasturage consists, therefore, for the most part of the cultivated clovers and grasses. Comparatively few cattle sre ihere fattened on grass; the object of graziers being rather to stock their pastures with young and growing animals, and to get them into formard condition for being afterwards fattened upon turnips. The grazing scason is there also much shortcr than in England, old grass seldom affording a full bite for a well.conditioned bullock before the middle of May, or later then the middle of September. It is quite otherwise in England, various parts of which sbound with old grass lands of the rery richest description, on which oxen of the largest sizo can be fattened rapidly. These, in many cascs, admit of being stocked towards the end of April, and under judicious management continue to rield excellent pasturage for half the year. When stocked with cattle in fresh condition, two sets or "runs" are not unfrequently fattened in such pastures in the same season. These grass-fed cattle begin to come to market early itu July, and for four or five months thereafter coustitute the chief supplies of beef in our markets.

Cattle already well-fleshed sre alone suitable for turning into these rich old pasturcs. When this is attended to, and care taken not to over-stock the pastures until they yield a full bite, the progress of the oxen will usually be very rapid. It is now customary to hasten this progress by giving about 4 th of oilcake to each beast daily. The dust and crumbs being sifted out, the bits of cako are strewn upon the clean sward, from whence they are quickly and carefully gleaned by the cattle. This is usually a profitable practice. It brings the beasts forward rapidly, improves their appearance and bandling, and, besides enriching the land, admits of about twelve per cent. moro numbers being fed upon a given acraage. Theso choice old pastures are usually occupied in combinstion with others of inferior quality. The most forward lot of cattle haviug been fattened and sold off from the former,
they are ready to receive a fresh stock. If it is contemplated to get them also fattened before the expiry of the geason, they are not put on the best land instantly on the first lot being sold ; but a crowd of sheep or storebeasts being turned upon it for a few days, the existing herbage is cleared off, and the pasture (Anglice) "laid in " or (Scottice) "hained," until a fresh clean growth fits it for receiving a suitable number of the best cattle from the other pastures. - It is inexpedient to graze sheep promiscuously with cattle on these best lands, as they pick out the sweetest of the herbage, and so retard the fattening of the oxen. Neither do we approve of having horses among such cattle; not so much from their interfering with their pasturage as from the disturbance which they usually cause by galloping about. This does not apply to the draughthorses of a farm, which are usually too tired and hungry when turned out from the yoke to mind anything but food and rest, but it is better thrift to soil them; and frolicsome, mischievous colts are unsuitable companiens for sedate, portly oxen. In farourable seasons, the grass often grews more rapidly than an ordinary stocking of cattle can consume it, in which case they select the best places, and allew the herbage on some parts to get rank and coarse. If these rank places are neglected until the herbage gets dry and withered, the finer plants die out, the coarser-growing grasses usurp the ground, and the pasturage is injured for future years. To check this evil in time, these neglected places should be mown, and the grass either brought to the homestead for soiling, or left to dry where it grew; in which state the cattle will eat up most of it, and be the better for it, especially if their bowels are unduly relaxed by the succulence of the growing herbage. The remarks now made apply equally to all old pastures employed for the fattening of cattle, although not of the first quality. All that is required is, to observe a due proportion between the capabilities of the pasturage and the breed and size of the cattle. A pasture that will fatten a fifty stone ox may be quite inadequate for one of seventy, and the hardy Galloway or West Highlander will thrive apace where the heavier and daintier shorthorn could barely subsist.

With the exception of the best class of rich old pastures, grass is usually consumed to greater profit by a mixed stock of sheep and store cattle than by one kind of animals only. This holds true both as regards the natural herbage of pastures or water meadows, and cultivated grasses, clovers, or sainfoin. When old pastures and mixed "seeds" are grazed chiefly by sheep, the same rules apply that have already been noticed in counection with cattle. The herbage should if possible be fully established in a growing state, and so far advanced as to afford a full bite, before the pasture is stocked in spring. If the aheep are turned into it prematurely, their close nibbling hinders the plants from ever getting into a state of rapid growth and productiveness, and the necessity imposed upon the stock of roaming over the whole field, and keeping long afoot before they can glean enough to appease their appetite, is prejudicial alike to them and to their pasture. The prudent grazier endeavours to avoid these evils by having stores of swedes or mangolds to last until the full time at which he may reckon on having goed pasturage. In distributing the flocks to different fields, the best pasturage is allotted to those that are in most forward condition. It is advan. tagesus to have the pastures so subdivided that one pertion may be double stocked while another is rested. By frequently removing the stock from the one portion to the other the herbage of each by turns gets time to grow and freshen, and is mere relished by the sheep, and more wholeaome than when the whole is tainted by their uninterrupted occunation of it. In the case of clover, trefoil, sainfoin, and water-meadows, this principle is vet more fully carrind
out by folding the flock and giving them a fresh piece daily. The crop is thus eaten clese off at once in daily portions, and the plants being immediately thereafter left undisturbed, and receiving over the whole area their due share of the excrements of the flock, grow again more rapidly than when subjected to constant browsing under a system of promiscueus grazing. This plan of folding sheep u upon such crops has the same advantages to recommend it as soiling, only that it is cheaper to shift the fold daily than to mow and cart home the forage and carry back the manure. In the case of water-meadows it is the practice to irrigate them afresh as each crop of grass is fed off. This is attended with considerable risk of the sheep getting tainted with rot, which must be guarded against as much as possible. In the first place, it is well to give them a daily allowance of bran, beans, or cake, aud salt; and besides this, to put on this land only such sheep as are nearly ready for the butcher. They will thus fatten very rapidly, and be slaughtered before there is time for harm to ensue.

The modes of grazing which we bave now described are appropriate for sheep in forward condition. The poorer pastures are usually stocked with nursing erves and lean sheep bought in from higher grazings. Lambs, both before and after weaning, require clean pastures, and of course freqnent changes. If kept on tainted pastures, they are certain to become subject to diarrhœea, to be stinted in their growth, and to have their constitution so weakened that many of them will die when afterwards put upon turnips. To avoid these evils, they must be frequently moved from field to field. A sufficient number of store cattle must be grazed along with them, to eat up the tall herbage and rank patches avoided by the sheep. After the lambs are weaned, the ewes require to fare rather poorly for a time, and can thus be made use of to eat up the worst pasturage, and the learings of the young and fattening sheep. When the latter, with the approach of autumn, are put upon aftermath, clover stubbles, rape, cabbages, or turnips, their previous pastures should in succession be thickly stocked by the erves and other store stock, so as to be eaten bare and then left to freshen and get ready for the ewes by rutting-time, when they require better food. In depasturing sheep on poor soils it is usually highly advantageous to give them a daily allowance of grain or cake in troughs, which must be shifted daily, so as to distribute the manure regularly over the land. By means of this auxiliary food sheep can be fattened on land the herbage of which would not alone suffice for the purpose. It admits also of a larger number of sheep being kept per acre, and of the pasturage being fed off more closely than could otherwise be done. The produce of poor siliceous soils, both in grass and after crops, is much increased by the additional manuring and treading which the consumption of such extraneous foed upon them occasions.

It is always advantageous to have pastures provided with a shed, under which the stock can find shelter from auddeu sterms, or from the attacks of insects and the acerching rays of the summer's sun. When such sheds are regularly strewed with dried peat or burnt clay, much valuable compost for top-dressing the pasture can bo obtained. The dung of the cattle, thus secured and applied, benefits the pastures more than that which is dropped upon it by the animals. Such clots require to be spread about from time to time.

The temperate climate of Britain is so peculiarly farourable to the growth of the grasses and other pasture plants, and to the keeping of live stock with safete in the open fields for a large part of the year, that the prutice of consuming these creps by depasturing, as already described, has hitherto been decidedly preferred to soiliny. One con-
eequence of this is, that forage crops have been comparatively neglected. There is now, however, a growing convetion among agriculturists that it is more convenient to koep neat cattle and horses, during summer, in yards or loose boxcs, and to feed them with succulent forage, morn snd brought to them daily as it is needed, than to turn them adrift to browse in iha fields. Tha pasturing plan is preferred by many because it involres the least labour, and is alleged to be more healthful to the animals. In behalf of the soiling plan it is urged that a given space of ground under grecai crop keeps nearly twice as much stock, when its produce is mown and consumed elsewhere, than when it is constantly nibbled and trodden upon ; that housed cattle being exempted from the vicissitudes of the weather, the attacks of insects, mutual disturbance, and the labour of gathering their food, eat less and yet fatten more rapidly than they do at pasture; that more good is gotten of their excrements when mixed with litter and trodden down under cover, than when dropped about in the open fields; and that land from which a green crop has been mown, when ploughed up, is freer of weeds and (other things being equal) bears a better corn-crop than that which has been pastured. It is a further recommendation to the soiling plan that it admits of oilcake or meal being administered along with green food with a precision and economy that is unattainable in the pasture felds. There being so many and such cogent reasons in favour of the practice of soiling, we may warrantably anticipate that it will in future be much more generally adopted. It is proper, however, to notice that the success of this system is absolutely dependent on the follewing conditions:-The grecn food must be mown and brought home at least twice a-day, oxing to the rapidity with which it ferments when put together; it must be given to the atock not less than four times daily, and only in such quantity at each feed as thay can eat clean up in the interval betwixt meals; they must have constant and ampls supplies of pure water and of fresh litter ; and, in particular, matters must be so erranged that there shall be an unfailing supply of green forage of the best quality through the entire season. This is accomplished either by successive cuttings of one kind of crop from the ame ground-as of irrigated meadow or Italian ryegrass-or by a combination of such crops as nsturally come to maturity in succession, or are made to do so by a sequence of sorings. From what has been said it is obvious that soiling can only be carried out successfully with a moderately good soil and climate, a liberal use of manure, and skill and foresight on the part of the farmer. With these, however, its results will usually be highly satisfactory. It is peculiarly adapted for cley soils, on which the cultare of root erops is attended with much difficulty, and where there is, therefore, abundance of litter for use in summer, and much need for the soiling system to get it converted into good manure.

Section 2.-Natural Meadow Grass.

In proceeding to notice the crops most usually cultivated in Britain for green forage we shall begin with natural meadono grass. In the bouth-western parts of England abundant crops of grass are obtained by irrigation with wster alone. Our remarks will here, however, be restricted to those situations where sewage from towns or villages is availabla. Wherever a few scores of human families are congregated together, and have thair dwellings properly drained and supplied with water, there is an opporturity for manuring a considerable extent of meadow with the sewage-water accruing from them throughout the year. The celebrated meadors in the environs of Edinburgh are intcresting illustrations of the value of such water for irrigating purposes, and of the sstonishing bulk
of rich herbage which can be obtaineu in the course of a year from an acre of land thus treated. From the thickness of the crop in these meadows, and the rank luxuriancor of its growth, the grass must be cut before it exceeds tersinches in height, as otherwise the bottom gets blanched and the grass rots out. The mowing begins usually in. A pril and continues till November, so that by fitly proportioning the bead of stock to the extent of meadow, and haring the latter arranged in plots to be mown inregular succession, soiling can be practised throughout the season by the produce of the meadow alone. This practice is necessarily limited to situations where sewage-water is. available. The following excerpts from a paper read before the Rogal Scottish Society of Arts in January $1867 O^{\prime \prime}$ the Collection, Remoral, and Disposal of the Refuse of the City of Edinburgh, by Charles Macpherson, C.E., burgh. engineer, to which tha society's silver medal was awarded. will explain this system and exhibit its results:-
"The waters of the Craigentinny Burn, the Lochrirr Burn, the Jordan Burn, and the Broughton Burn, are used in irrigating part of the lands adjoining the course of the respective streams. The waters of the Craigentinny Burn are used for irrigating about 250 acres; Lochrin Burn, about 70 acres; Jordan Burn, about 11 acres ; and Broaghton Burn, abont 5 acres-being 336 acres in all irrigated by the water flowing in these four nstural outlets for the drainage of Edinburgh.
"The area within the city draining towards the Craigentinny Burn - to the meadows irrigated by the waters of which 1 shall confine these remarks-is about one square mile and a balf in extent From this district there flows about 20 cubic feet of spring-water per minute; the surplus rainfall being the non-absorbed portion of 24 inches per annum; and the sewage from a population of 95,589 persons, according to the census of 1861, with a water supply of say 25 gallons per head. Of this population abont 60,000 have the use of wster-closets; snd excrementitious matter from about 15,000 or 20,000 of the remainder finds its way to the sewers connected with the burn at the rate of about 265 feet per minnte of semage.
"Various kinds of soil are irrigated. The aubsoil of the part of the meadows nearest tha city is peat, with loam over it near the course of the burn; while to the northward it is naturally sand, bat the sand has been taken away, and the ground mede up with rubbish of buildings, \&c., dressed off with soil. Furtber down the course of the atream tha soil is reldish clay, or losmy clay, or sandy clay: while at the part of the Figgate Whins adjoining the sea-ahore it is pure sand, with a coating of rich loam, varying from 1 inch to 4 or 5 inches deep, entirely derived from repeated spplications of the sewage, no soil haring been ever spread over the sand. The deeper soil is nearest the channels for conreying the sewage to tha land. Tha meadorss on the farm of Lochend, at Restalrig, and at Craigentinny, have a slope transversely to the course of the etream, varying from the steepest part, 1 in 25 , which is of small extent, to sbont 1 in 50 , which is the alope of the greatest part of these meadowa The Figgate Whins were \&rtificially levelled to allow of irrigation.
"It is important to remark that the land (except the sand at the Figgate Whins) has been drained thoroughly to a depth of \& fect below the surface. It was found that with shallower drains the sewage was drawn off by the drain, learing the lower part of the ground without irrigation. At the Figgate Whins the scrage soaks. into the sand, and oozes ont upon the ses-shore.
"The kinds of grasses grown are Italian ryegrass and meadow grass. The ryegrass requires to be resown every third yesr; but the mesdow grass has not required resowing, not even on the Figgate Whins, which were sorn abont forty jears ago, when the ground was first irrigated. Opinions differ as to which grass is best adaptad for tha purpose; but ryegrass seems to produce the heavier cropa The irrigated ground is let off in small plots or squares for the scason to the highest bidder. The grass is cut by the tenant as reqnired, so that the aunual yield of any particular plot has never been accurately ascertained; but an average crop is considered to be from 30 to 40 tons per acre, in four cuttings. Tho Girst cutting takes place st the beginning of April, and the last at the end of September, the let of the gronnd expiring at 1st October. The time of cutting the intermediste crops depends npon the wants of the temant.
"The whole grass isesten by abont 3100 cows-the number pravious to the cattle plague-in Edinburgh, Newhaven, Leith, and Portokello; but after the fourth crop is cut, sheep are turned on some parts of the ground about the beginning of November, and remain for aboat a fortnight, ahould the weather be favourable. The shcep do not eeem to thrive, however, althongh the food is plentiful. Tha grass has been found most suitable for feeding corre-the attempts to nas it for feeding other animals having been found nat to answer, and.
the cost of converting it into hay being proved to be such ss to render the process unprofitable.
"The price paid for the plots varies considerably, the best being known to bring £40 per acre, while others are as low as $£ 15$ or $£ 20$. Last s. "sau, owing to the cattle plague, the former high prices could not be obtained. The best land produces the heaviest crop; but on the Figgate Whins, mere irrigated sand, the first crop is earlier in the season-a matter of such consequence that, although the annual yield is less, the rent paid for these plots is about as high as for the plots producing the heavier crop. The rental of the Figgate Whing previous to the irrigation was, I have been informed, about 20s. per acre; while, when irrigated, parts have been let for some jears at £40 per acre. The only works having been the levelling of the sandy hillocks and formation of channels for the sewage-neither of them very costly operations-and the annual outlay being small, the increased annual value of that land may be stated at not much less than the differeace between the tro sums.
"It might be an interesting speculation to consider how far the cost of the works necessary for collecting and removing the seware from the district of the city draining towards Craigentinny might have been defrayed by the advance of rent obtained by the disposal of the sewage in irrigating the land along the course of the stream. The cost of the whole sewerage works (including many of the branch drains) constructed within the district in the city which is drained to the Craigentinny Burn, may be stated at $£ 96,000$. Assuming that the annual rent of the 250 acres irrigated was $£ 5$ per acre un an average previous to beiog laid out for irrigation, while the reut was mised to $£ 25$, then the difference, $£ 20$ per acre, is the annual value of the irrigation. There heing 250 acres, gives $£ 5000$ as the return, or upwards of 5 per cent. on the cost of the sewers.
"The produce of the various irrigated meadows round Edinbargh is sufficient to supply the present demand for grass; necessitating any further application of the aewage to some other kind of crop, unless a more extensive market is obtained for the grass produced."

Section 3.-Italian Fiyegrass.

Italian ryegrass can be cultivated over as wide a range of soils and climate as any forage crcp which we possess, and its value for soiling is every day getting to bo more generally appreciated. When first introduced, and indeed until very recently, it was chiefly sown in misture with other grasses and clovers for pasturage, a purpose to which it is well adapted from its early and rapid growth in spring. Its true function, however, is to produce green food for soiling, for which purpose it is probably unrivalled. It is in connection with the system of irrigation with liquid manure that its astowishing powers have been most fully developed. - When grown for this purpose it is sown in April, on land that has borne a grain crop after turnips or summer fallow. If sown with a grain crop as thickly as is requisite, it grows to nearly the height of the grain, and both are injured. A liberal dressing of farm-yard dung is spread upon the stubble in antumn, and immediately ploughed in. In the end of March or beginning of April the land is prepared for the seed by being stirred with the grubber and then well harrowed. The seed, at the rate of 4 bushels per acre, is then sown in the way already described for clover and grass seeds. When the liquid manure system is practised, the crop is watered as soon as the young plants are about an inch high, and so rapid is its growth in favourable circumstances that a cutting of 10 tons per acre has in some cases been obtained six weeks after soring. When there is no provision for supplying liquid manure, a top-dressing of guano, nitrate of soda, soot, or the first two articles mixed, is applied by hand-sowing, care being taken to give this dressing when rain seems at hand or has just fallen. A similar top-dressing is repeated after each cutting, by which means three cuttings are ordinarily obtained from the same space in one season. A very great quantity of stock can thus, be supported from a very limited extent of ground. This grass is also found to be very grateful to the palates of horses, cattle, and sheep, which all thrive upon it. Though so very succulent, it does not produce.purging in the animals fed upon it. It is peculiarly suitable feeding for milch corrs, as appears from the published account at Canning Park. Such results
as those obtained by Mr Kennedy and uthers are not to be expected unless under similar conditions; but on good loams, clean and in good heart, and under such treatment as is described at the beginning of this section, as large crops of this grass as of red clover may be reckoned on, with at least equal feeding powers, and with a degree of certainty which the farmer cannot now entertain in regard to the latter crop. If it is regularly mown when the ear begins to show, and care taken never to allow the seed to form, it is fully ascertained that this grass will grow abundantly for a second ycar, with the advantage of being ready for use very nuch earlier than in its first season. It is sometimes sown in autumn, but those who have had the fullest experience in its cultivation give a decided preference to spring soming, either after a grain crop which has followed a green crop or fallow, or at once after turnips, itt is of great importance to get fresh and genuine seed. That directly imported from Italy yields the best crop when orierwise goad. As a proof of the fondness of sheep for this grass, it has been observed that when it had been sown in mixture srith red clover and cut for hay, sheep, on being turned loto tho afternath, eat down the Italian rycgrass in prefereace to the clover.

Section 4.-Crinson Clover.

Crimson clover, though not hardy enough to withstand the climate of Scotland in ordinary winters, is a most valuable forage crop in England. It is sown as quickly as possible after the removal of a grain crop at the rate of 18 to to 20 to per acre. It is found to succeed better when only the surface of the soil is stirred by the scarifier and barrow than when a ploughing is given. It grows rapidly in spring, and fields an abundant crop of green food, peculiarly palatable to live stock. It is also suitable for making into hay. Only one cutting, however, can be obtained, as it does not shoot again after being mown.

Section 5.-Red Clover.

This plant, either sown alone or in mixture with ryegrass, has for a long time formed the staple crop for soiling; and so long as it grew freely, its power of shooting up again after repcated mowings, the bulk of crop thus obtained, its palatableness to stock and feeding qualities, the great range of soils and climate in which it grows, and its fitness either for pasturage on soiling, well entitled it to this preference. Except on certain rich calcareous clay soils, it has now, however, become an exceedingly precarious crop. The seed, when genuine which unfortunately is very often not the case, germinates as freely as ever, and no greater difficulty than heretofore is experienced in having a full plant during autumn and the greater part of winter; but over most part of the country, the farmer, after having his hopes raised by seeing a thick cover of vigorous-looking clover plants over his field, finds to his dismay, by March or Aprij, that they have either entirely disappeared, or are found only in capricious patches here and there over the field. No satisfactory explanation of this clover failure has yet been given, nor any certain remeds, of a kind to be applied to the soil, discovered. One important fact is, however, now well established, riz, that when the cropping of the land is so managed that clover does not recur at shorter intervals than eight years, it grows with much of its pristine rigour The knowledge of this fact now defermines many farmers in varying their rotation so as to secure this important end. At one time there was a somewhat prevaleat belief that the introduction of beans into the rotation had a specific influence of a beneficial kind on the clover when it came next to be sown ; but the true explanation seems to be, that the beans operate favourably only by the incidental circumstance of almost neces-
sarily lengthening the interval betwixt the recurrences of clover.

- When the four-course rotation is followed, no better plan of managing this process has been yet suggested than to sow beans, pease, potatoes, or tares, instead of clover, for oue round, making the rotation one of eight ycars instead of four. The mechanical condition of the soil seems to have something to do with the suecess or failure of the clover crop. We have often noticed that head-lands, or the convcrging line of wheel tracks near a gateway at which the prceeding root crop had been carted from a field, have had a good take of elover, when on the field generally it had failcd. In the same way a ficld that has been much poached by shecp while consuming turnips upon it, and which has afterwards been ploughed up in an unkindly state, will have the elover prosper upon it, when it fails in other cases where the soil appcars in far better condition. If red clover can be again made a safe crop, it will be a boon indeed to agrieulture. Its seeds are usually sown along with a grain crop, any time from 1st February to May, at tho rate of 12 it to 20 ib per aere when not combined with other clovers or grasses.

Italian ryegrass and red clover are now frequently sown in mixture for soiling, and succeed admirably. It is, however, a wiser course to sow them separatcly, as by substituting the Italian ryegrass for clover, for a single rotation, the farmer not only gets a crop of forage as valuable in all respects, but is enabled, if Lo choose, to prolong the interval betwist the sowings of elover to twelve years, by sowing, as already recommended, pulse the first round, Italian ryegrass the second, and elover tho third.

These two crops, then, are those on which the arableland farmer mainly relies for green forage. To have them good, he must be prepared to make a liberal application of manure. Good farm-yard dung may be applied with advantage either in autumn or spring, talcing care to cart it upon the land only when it is dry enough to admit of this being done without injury. It must also be spread very evenly so soon as emptied from the carts. But it is usually more expedient to use either guano, nitrate of soda, or soot, for this purpose, at the rates respectively of 2 cwt ., 1 cwt ., and 20 bushels. If two or more of these substances are used, the quantities of each will be altered in proportion. They are best also to be applied in two or three portions at intervals of fourteen to twenty days, beginning towards the end of December, and only when rain seems imminent or has just fallen.

When manure is broadcast over a young clover field, and presently after washed in by rain, the effect is identical with that of first dissolving it in water, and then distributing the dilution over the surface, with this difference, namely, that the first plan costs only the price of the guano, dcc., and is available at any time and to every one, whereas the latter implies the construction of tanks and costly wachinery.

Section 6.- Vetches.

Vetches are another very valuable forage crop Being indigenous to Britain, and not fastidious in regard to soil, they can be cultivated successfully under a great diversity of circumstances, and are well adapted for poor soils. By combining the winter and spring varieties, and making osveral sowings of each in ite season at intervals of two or three weeks, it is practicable to have them fit for use from May till October, and thus to carry out a system of soiling by weans of vetches alone. But it is usually more expedient to ure them in combination with grass and clover, beginning with the first cutting of the latter in May, taking the winter vetches in June, recurring to the Italian ryegrass or clover as the second cutting is ready, and
afterwards bringing the spring vetches into use. Each erop can thus be used when in its best state for eattle food, and so as gratcfully to vary their dietary.

Winter l'etches.-There is no botanical difference between winter and spring vetches, and the seeds being identical in appearance, caution is required in purchasing seed to get it of the right sort. Seed grown in England is found the most suitable for sowing in Scotland, as it vegetates more quickly, and produces a more vigorous plant than that which is home-grown. As the great inducement to cultivatc this crop is the obtaining of a supply of nutritious green food which shall be ready for use about the Ist May, and so as to fill up the gap which is apt to occur betwixt the root crops of the previous autumu and the ordinary summer fond, whether for grazing or soiling, it is of the utmost importance to treat it in such a way that it may be ready for use by the time mentioned. To secure this, winter tares should be sown in August if possible, but always as soon as the land can be cleared of the preceding crop. They may yield a good crop though sown in October, but in this case will probably be very little in advance of early-sown spring vetches, and possess little, if any, advantage over them in any respect. The land on which they are sown should be dry and well sheltered, clean, and in good heart, and be further enriched by ploughing into it from 12 to 15 loads of farm-yard manure. Not less than $3 \frac{1}{2}$ bushels of seed per aere should be sown, to which some think it bencficial to add half a bushel of wheat. Rye is frequently used for this purpose, but it gets reedy in the stems, and is rojected by the stock. Winter beans are better than either. The land having been ploughed rather deeply, and well harrowed, it is found advantageous to deposit the seed in rows, either by a drilling-machine or by ribbing. The latter is the best practice, and the ribs should be at least a foot apart and rather decp, that the roots may be well developed before top-growth takes place. As soon in spring as the state of the land and weather admits of it, the csop should be hoed betwixt the drills, a top-dressing at the rate of 40 bushels of soot or 2 cwt . of guano per acre applied by soming broadcast, and the roller then used for the double purpose of smoothing the surface 80 as to admit of the frec use of the scythe, and of pressing down the plants which may have been loosened by frost. It is thus by early sewing, thick seeding, and liberal manuring, that this crop is io be forced to an early and abundant maturity. May and June are the months in which winter vetches are used to advantage. A second growth will be produced from the roots if the crop is allowed to atand; but it is much better practice to plough up the land as the crop is cleared, and to sow turnips upon it. After a full crop of vetches, land is usually in a good state for a succeeding crop. When the whole process has been well managed, the gross amount of cattle food yielded by a crop of winter vetches, and the turnip crop by which it is followed in the same summer, will be found considerably to exceed what could be obtained from the fullest crop of turnips alone, grown on aimilar soil, and with the same quantity of manure. It is vain to sow this crop where gamé abounds.

Spring Vetches, if oown about the 1st of March, will be ready for use by lst July, when the winter vetches are just cleared off. To ohtain the full benefit of this crop, the land on which it is sown must be clean, and to keep it so a nuuch fuller allowance of seed is required than is usually given in Scotland. When the crop is as thick oet as it should be, the tendrils interwine, and the ground is covered by a solid mass of heibage, under which no weed can live. To secure this, not less than 4 bushels of seed per arre should be used if sown broadcast, or 3 bushels if in drills. The latter plan, if followed by hocing, is eertainly
the best; for if the weeds are kept in check until the crop is fairly established, they have no chance of getting up afterwards. With a thin crop of vetches, on the other hand, the land is so certain to get foul, that they should at once be ploughed down, and something else put in their place. As vetches are in the best state for use when the seeds begin to form in the pods, repeated sowings are made at intervals of three weeks, beginning by the end of February, or as early in March as the season admits, and continuing till May. The usual practice in Scotland has been to sow vetches on part of the oat break, once ploughed from lea. Sometimes this does very well, but a far better plan is to omit sowing clover and grass seeds on part of the land occupied by wheat or barley after turnips, and having ploughed that portion in the autumn to occupy it with vetckes, putting them instead of "seeds" for one revolution of the course.
When vetches are grown on poor soils, the most profitable way of using them is by folding sheep upon them, a práctice very suitable also for clays, upon which a root crop cannot safely be consumed in this way. A different course must, however, be adopted from that followed when turnips are so disposed of. When sheep are turned in upon a piece of tares, a large portion of the food is trodden down and wasted. Cutting the vetches and putting them into racks does not much mend the matter, as much is still pulled out and wasted, and the manure unequally distributed over the land. To avoid those evils, hurcles with vertical spars, bet:vixt which the sheep can reach with head and neck, are now used. These are set close up to the growing crop along a considerable stretch, and shifted forward as the sheep eat up what is within their reach. This requires the constant attention of the shepherd, but the labour is repaid by the saving of the food, which being always fresh and clean, does the sheep more good. A modification of this plan is to use the same kind of hurdles, but instead of shifting them as just described, to mow a swathe parallel to them, and fork this forward within reach of the sheep as required, repeating this as often during the day as is found necessary, and at night moving the sheep close up to the growing crop, so that they may lie for the next twenty-four hours on the space which has yielded food for the past day. During the night they have such pickings as have been left on the recently-mown space, and bo much of the growing crop as they can get at through the spars. There is less labour by this last mode than the other, and having practised it for many years we know chat it answers well. This folding upon vetches is suitable either for finishing off for market sheep that are in forward condition, or for recently-weaned lambs, which, after five or six weeks' folding on this clean, nutritious herbage, are found to take on more readily to eat turnips, and to thrive better upon them, than if they had been kept upon the pastures all the autumn. Sheep folded upon vetches must have water always at command, otherwise they will not prosper.
As spring-sown vetches are in perfection at the season when pastures usually get dry and scanty, a common practice is to cart them on to grass land and spread them out in wisps, to be eaten by the sheep or cattle. It is, however, much better cither to have them eaten by sheep where they grow, or to cart them to the homestead.

Section 7.-Beans.

The common field bean has not hitherto been recognised as an available forage plant. Mr Mechi has, we believe, the merit of first showing its great value for this purpose. In the hot dry summer of 1868 , when pastures utterly failed, and men were at their wits' end how to keep their stock in life, he bad recourse to his bean crop, then at
its full growth, and its green pods flled with soft pulse. His plan of using it was, to mow the needed quantity daily, pass it through a chaff-catter, and then send it out in trouglas to his sheep in their pastures, and to his cattle in their stalls. The quantity of green food per acre yielded by a full crop of beans when used in this way is very great, and probably exceeds that of any other crop we grow. As Mr Mechi observed, on first announcing his practice, "no farmer need to be at a loss for food for his live stock who has a crop of beans at command." We know that many farmers availed themselves of this seasonable hint with the very best results. That pre-eminently successful grazier, Mr William M‘Combie, M.P., Tillyfour, has, in his instructive pamphlet, shown how useful it is to have a few arres of mixed beans, peas, and tares ready to give to cattle in forward condition in the month of August, by laying down to them daily on their pastures a supply of this very palatable and nourishing forage. By this expedient they make rapid progress at a season when they would lose the condition they had already gained if left dependent on the then failing pasturage. We can testify from experience that we never have our cattle make such rapid progress on any kind of food as when thus supplied with green pulse on autumn pastures.

Section 8.-Mustard.

After a crop of retches has been consumed, if the season is too far advanced to admit of turnips being sown, it is not unusual to take a crop of white mustard or crimson clover.

By means of the crops now enumerated, the practice of soiling can be carried out in all cases where it is practicable.

There are other valuable crops of this kind, several of which we shall now describe; but their culture is either limited by their requirements in regard to soil and climate, or attended with too great expense to admit of their competing with those already described.

Section 9.-Sainfoin.

Chis very important forage plant would be well entitiod to a more prominent place in our list but for the circumstance that it is only on dry calcareous soils that its excellences are fully dereloped; and to these, atcordingly, its culture may be said to De confined. In all the chalk districts of England sainfoin occupies an important place in the rotation of crops: Referring to the chalky downs round Msley in Berks, Mr Caird says:-"About a tenth part of the land is kept under sainfoin, in which it remains for four years, being each sear cut for hay, of which it gives an excellent crop. A farmer having 40 acres of sainfoin sows out 10 acres and breaks up 10 acres annually. This goes regularly orer the whole farm, the sainfoin not returning on the same field for considerable intervals, and when its turn comes round the field receives a rest of four years from the routine of cultivation. It is then ploughed up in spring, and sown with oats on one furrow, the crop of which is generally excellent, as much as 80 bushels an acre not being uncommon." 1 The seed, at the rate of 4 bushcls pcr acre, is drilled in immediately after barley or oats has been sown, working the drill at right angles to its course when it deposited the grain. It is frequently pastured for one or more years before being mown either for green forage or for hay. It is sometimes allowed to stand for eight or ten years, but the plan described in the above quotation is the more approred one. A variety called giant eainfoin has been introduced by Mr Hart of Ashwell, Herts. As compared with the common sort it is more rapid in its growth in

[^62]opring, and stall more so after the first and second cuttings Thrce cuttings for hay, and one of theso ripening the seed, hhve beeu yielded by it in one year, and a good eddish after all. Tho yield from it in the first year after sowing is large in comparison with the common sainfoin, from its athaining maturity much sooner; but for the same reason it is thought judieious to break it up after threc years, while still in viguur.

Section 10.-Lucerne.

Lucerne io much cultivated as a forago crop in Franco and other parts of the contineut of Europe, but has never cume into general use in Britain. It is, however, frequently met with in small patches in districts where the soil is very light, with a dry subsoil. Its thick tap-routs penetrate very deeply into the soil; and if a good cover is once obtained, the plants will continue to yield abuudant cuttings of herbage for eight ur ten years, provided they are statedly top-dressed and kept free from perennial weeds. In cultivating lucerne, the ground must first be thoronghly cleaued, and put into good heart by consuming a turuip erop upon it with sheep. In March or April, the surfacesoil having first been brought to a fine tilth, the seed, at the rate of 10 th per acre, is sown in rows 15 to 18 inclies apart. As suon as the plants appear they must bo freed frums weeds by careful hoeing and hand-weeding, repeated as occasion requires. Little produce is obtained from them the first season, and not a very beavy cutting the second; but by the third year two or more abundant crops of herbage will be produced, peculiarly suitable for horscfeed. It is the slow growth of the plants at first, and the difficalty of keeping them free from weeds on those dry soils which alone are adapted for growing lucerne, that have deterred farmers from growing it more extensively than has hitherto been done. We have grown it suecessfully in Berwickshire on a muiry soil resting on sandstone rock, in an exposed situation, at an elevation of 400 feet. The time to eut it is, as with clover and sainioin, when it is in full fower.

Section 11.-Chicory, dec.

Chicory, burnet, cow-parsnip, and prickly comfrey, all known to be palatable to cattle and yielding a large bulk of produce, have probably been less carefully experimented with than their merits deserve. Although they have long figured in such notices as the present, or in occasional paragraphs in agricultural periodicals, they have never yet, that we are aware of, been subjected to such a trial as either conclusively to establish their claim to more extended culture, or to justify the neglect which they have hitherto experienced.

Section 12.-Gorse or Whin.

Notwithstanding its formidable spines, the young shoots of this hardy evergreen yield a palatable and nutritious winter forage for horses and cattle. To fit it for this purpose it must be chopped and bruised to destroy the spines. This is sometimes done in a primitive and laborious way by laying the gorse upon a block of wood and beating it with a mallet, flat at one end and armed with crossed knife-edges at the other, by the alternate use of which it is bruised and chopped. There are now a varicty of machines by which this is dose rapidly and effieiently, and which are in use where this kind of forage is used to any extent. The agricultural value of this plant has often been over-rated by theuretical writers. In the ease of very poor, dry soils, it does, however, yield much valuable food at a season when green furage is not otherwise to be had. It is on this account of importance to dairymen; aud to them it has this further recummendatiou, that cows fed
npon it give much rich milk, which is free from any unpleasunt flavour. To turn it to good account, it must be sown in drills, kept clean by hueing, and treated as a regular green crop. If sown in March, on land fitly propared and afterwards duly cared for, it is ready for use in the autumn of the following year. A succession of euttings of proper age is obtained for several years from the same field. It is eut by a short stout scythe, and must be brought from the field daily; for when put in a heap after being chopped and bruised it heats rapidly. It is given to horses and cows in combination with chopped hay or straw. An acre will produce about 2000 faggots of green two-year-old gorse, weighing 20 Dt each.

This plant is invaluable in mountain sheep-walks. The rounded form of the furzo bushes that are met with in such situations shows how diligently the annual growth, as far as it is accessible, is nibbled by the sheep. The food and shelter efforded to them in snow-storms by clusters of such bushes is of such importance that the wonder is our sheep farmers do not bestow more pains to have it in adequate quantity. Young plants of whin are өo kept down by the sheep that they can seldum attain to a profitable size unless protected by a fence fur a few years.

Section 13.-Tussac Grass.

The tussac grase of the Falkland Islands has of late years attracted considerable attention as a furago plaut From its gigautic growth, even in those mugenial reyions, and the extraordinary relish mauifested fur it by horsew and cattle, sanguine hopes wero eutertained that it was to prove a truly valuable addition to our prcsent list of forage plants; but the attempts hitherto made to iutruduce it in Britain have not been of a very encouragiug kind. The only successful cases have been in the Orkneys and in Lewis. Messrs Lawson of Edinburgh, who have given much attention to it, say-"Our own experience leads to the conclusion, that localities within inlluence of tho sea spray, the soil being of a peaty nature, are without doubt the best adapted for the growth of tho tussac; and in such places it is likely to be of great scrvice, as few other nutritivo grasses will exist there. In our own experimental grounds it does not thrive well; which may perhaps be accounted for by the uature of the soil, which is light and dry. Regarding its value as a forage plant, we have before us an analysis made, at our request, by Professor Johnston, the results of which show that 'the tussac grass ought to be very nutritive.' Propagation, in the absence of seed, is easily effected, under favourablo cireumstauces, by subdivision of the routs."

We have thus noticed all the more important of our forage crops of ascertained value. Additions will probably be made to them from time to time: especially from the increased attention now bestowed on green crops of all kinds. It has lately been suggested that maizo and also lupins, although unfit for our climate as grain erops, might with advantage be tried as forage plants. Buth are successfully grown for this purpose in Germany. Being unable to withstand frost, they should be suwn not earlier than May. The maize requires a deep rich soil; the lupins again are said to do best on light siliceous soils. Both should be sown in rows 15 to 18 inches apart, and seeded at the rate of 2 bushels per acre. A trial which we made with lupins (both the blue and the ycllow sorts) in 1858 , on a light muorland, proved a total failure.

Section 14.-IIaymaking.

Having spoken of the cultivation and use in a green state of herbage and forage erops, it remains to describe the process by which they are preserved for use in a dry state, or made into hay. On every farm a supply of good
hay, adequate to wo wants or its own live stock, is, or at least ought to be, statedly provided. This is no doubt an expensive kind of food, but on the other hand it is bighly nutritious, and conduces much to the healthfnlness of the animals fed upon it. Many a valuable farm horse is annually sacrificed to a false economy in feeding him solely on innutritious straw or ill-gotten hay. The owners of such stock would do well to consider that the dcath of a horse yearly, and the impaired health and condition of the whole stud, more than counterbalance any saving that can be effected by using bad fodder instead of good. -But the great consumption of hay is by the numerous borses constantly required in this country for other purposes than farm labour. In the vicinity of towns bay is therefore a staple agricultural product, and haymaking an importan't branch of rural cconomy. It is one in the practice of which English farmers generally excel their brethren north of the Tweed. In the counties near the metropolis, in particular, this process is conducted with admirable skill.

In converting the grasses and forage plants into hay, the object is to get quit of the water which they contain, amounting to nearly two-thirds of their weight, with the least possible loss of their nutritive qualities. In order to this the crops mist be mown at that stage of their growth when the greatest weight of produce with the maximum of autritive value can be obtained; and then it is necessary so to conduct the drying process that the inspissated juices shall not be washed out and lost by external wetting. A simple and sufficiently accurate rule for determining the first point is to mow when the plants are in full flower. If this stage is exceeded, buth the quality of the bay and the amount of the foggage or aftermath are serionsly impaired. It follows from this that mowing should be commenced somewhat earlier than the stage indicated, otherwise, before the whole can be cut the last portion will have exceeded the proper degree of ripeness. By cutting a part too soon a slight loss of weight is incurred, which, hawever, is compensated for by a better aftermath; whercas if part is allowed to mature the seeds, there is a loss of weight, quality, and aftermath. Haymaking, to be done well, must be done quickly, and in order to this a full supply of labourers is indispensable. As a good morter can cut on an average an acre in a day, as many must be engaged as can overtake the extent of crop while it is in the best state for cutting. It is of great importance, too, to have the grass cut close to the ground. A loss of from 5 to 10 per cent. on the gross produce is frequently incurred by unskilful or careless mowers leaving the sward too high. Now that efficient mowing-machines can be had, this work can be performed with a celerity and accuracy hitherto onattainable. To admit of accurate and expeditious mowing, whether by scythe or machine, care must be taken, at the proper season, to remove all stones and other obstructions, and to make the surface smooth by rolling.

Confining our attention, in the first place, to natural meadow grass, let us glance at the process ag conducted by those who are most proficient in it. The mowers having commenced their work at sunrise, the baymakers, in the proportion of two men and thrce women to each morrer, so soon as the dew is off, shake out the swathes evenly over the whole ground, until they have overtaker as much as they can get into cocks the same day. This quantity they now turn and toss about as frequently as possible, getting it, bcfore evening, either into a compact windrow, or forming it into very small cocks. Next day these cocks are again opened out, and as much more of the grass in swathe as can be overtaken, all of which is anew subjected to the same repeated turnings, and again, as evening spproaches, secured from dcw and rain hy windrowing
and cocking; that which is driest heing put into large cocks than on the previous day. If the weather is hot and parching, that which was first cut is by the fourth day ready for the stack, and is immediately varried. A large rick-cloth is drawn over the incipient stack until more bay is in condition to be added to it, and then, if weathes favour, the whole process, from mowing to starcking, for a time goes on simultaneously, and is specdily completed. As the building of the stack proceeds, its sides arc. by pulling, freed from loose hay, and straightench; and when completed it is thatched with the least pussible delay. If the weather prove showery, the grass is left untouched in the swathe until it begins to gct yellow on the under aide, in which case it is usually turned over without opening out until weather again favour. To produce fine bay, care must be taken to sccure from dew or rain by cocking before nightfall all that has been spread out during the day-never to touch it until dew or wet is off-to shake all out so thoroughly as that the whole may be dried alike -and never to suffer it, after being tedded out, to lic so long as to get scorched on one side. When thesc operations are conducted successfully, the bay is of a fine light-greeu colour, dellghtfully fragrant, and retains its nutritions matter unimpaired. To accomplish this in our variable clinate much skill and energy, and an ample command of labour, are necessary

The cost and labour of this process are now, indeed, much reduced by the use of machinery, consisting of mower, tedder, and rake, by means of which a man and pair of horses can do the work of ten scythemen, and another man and horse can toss. turn, and draw into windrows as much grass as could be overtaken in the same time by fifteon people. The hay-tedder, morenver, shakes out the grass mare thoroughly than it can lee done by hand. After the bay is gathered into rows, horse labour is also sometimes employed to collect it into heaps by means of a sweep, that is, a piece of plank with a ropo attached to each end of it, by which a horse draws it along on edge, while two lads hold it down, and the hay is thus pushed forward in successive portions, which are then by band labour made into orderly cocks. The yield of meadow hay ranges from 1 to 2 tous per acre, and the cost of making it is about 10 s . per ton. In London lay is brought to market in trusses, each weighing 56 \#H, 36 of which are called a load. In cutting up a stack these trusses are removed from it in compact cubes, which are then neatly secured by bands of tmisterl hay.

In converting the cultivated forage crops, such as clover (either pure or mixed with ryegtass), sainfoin, lucerne, or vetches, into bay, the procedure varies considerably from that pursued with the natural grasscs. A considcrable part of these plants consists of broad tender leaves, which, when scorched by the sun, become so dry and brittle that, on the least rough handling, they fly into dust, aud aro totally lost. These crops, therefore, do not admit of being shaken asunder and tossed about like the natural grasses, a circumstance which unfortunately forbids the use of the tedding-machine in getting thern. The swathes are accordingly left untouched until they have got slightly withered on the upper side, after which they are turned several times with as little brcaking up as possible; made up first into small cocks, opened out again, gently turned, and made into larger cocks, which as speedily as possible are carried and stacked. These crops can be stacked with safcty in a very green state by mixing with them frequent layers of clean dry straw, by which the redundant juicas are absorbed, and injurious heating prevented. The straw thus impregnated acquires a flarour which renders it malatable to cattle; but it is adrisable, when this practice is adopted, to cut the whole into claff before using it as fodder.

When it is desired to save the sceds of Italian or common ryegrass, the crop, after being inown, is allowed to lie for a day or two in swathe, and is then neatly gathered into sheaves, bound, and stooked, precisely like a crop of oats. When sufficiently dried, the seed is either thrashed out in the Geld, the straw stacked like other hay, and the seed spread thinly over a granary floor, and turned several times daily until it is dry enough to keep in a bin or in sacks; or the sheaves are built into small round stacks, which stand until the seed is wanted, when it is thrasked out by machinery like grain.

Ot late years we have frequently sccured considerable quantities of useful hay by nowing seeds that had been pastured by sheep in the early part of the season. In July we run the mowing-machines over such fields, taking care to set the cutting-bar higle enough to leave the fresh-grewn Lerbage untouched, and to reniove only that of older and taller grewth. 'She moirn stuff is left untoached for two or three days; is then drawn together by the horse rake, and put into cocks for a short time, or carted at once to the riek-yard as weather permits. In this way much herbage that would otherwise go to waste is converted into useful winter fodder, and a fresh-grown clean pasture *ecured for lambs or other stock.

CHAPTER XIV.

cultivated crops-crops of limited cultivation.

Under this head swe shall notice a variety of crops which, however valuable in themselves, and important to the farmers of particular localities, are, from one cause or other, bot adapted for general cultivation.

Section 1.-Flaxs

FItax is probably the most important of these erops. Inaeed, from the rapid growth of our linen trade, the growing demand for lingeed and its products, and the fitness of the soil and climate for the successful growth of flax, it is not without cause that its more extended cultivation has been so strenuously urged upon our farmers, and that influential societies have been organised for the express purpose of promoting this object. Viewed merely as an agricultural crop, the cultivation of flax ia exceedingly simple, and could be practised as readily and extensively as that of the cereal crops. The difficulty is, that before it can be disposed of to any advantage, it must undergo a process of partial manufacture ; thus there is required not only an abundant supply of cheap labour, but such an amount of shill and personal superintendence on the part of the farmer as is incompatible with due attention to corn and cattle husbandry. If a ready and remunerative market were available for the fibre in its simple form of flax straw, this, in combination with the value of the seed for cattle feeding, would at once hold out sufficient motive to our farmers to grow it statedly and to any required extent. Until this is the case, its culture cannot extend in the corn-growing districts of Great Britain. In Ireland and parts of the Highlands of Scotland, where there is a redundant population much in want of such employment as the flaz crop furnisbes, and where the climate is suited for its growth, it is highly desirable that its culture should extend, and prubablo that it will do so. Flas prospers most when grown upon land of firm testure resting upon a moist subscil. It does well to succeed oats or potatoes, as it requires the soil to le in fresh condition without being too rich. Lands nevly broken up from pasture suit it well, as these are gemerally frcer from weeds than those that have been long under tillaze. It is usually inexpedient to apply manure directly to the flax crop, as the tendency of this is to pronluce over-luxuriance, and thereby to mar the quality
ot the fibre, on which its value chiefly deponds. For the same reason it must be thickly seeded, the etfect of this being to produce tall slender stens, free from branches The land having beern ploughed in autumn, is prepared for sowing by working it with the grubber, harrow, and reller, until a fine tilth is obtained. On the smoeth surface the seed is sown broadcast by haud or machine, at the rate of 3 bushels per acre, and covered in the same manner as clover seeds. It is advisable immediately to hand-rake it with common hay-rakes, and thus to remove all stones and clods, and to secure a uniform close cover of plants. When these are about 3 inches long the crop must be carefully band-wceded. This is a tedious and expensive process, and hence the impertance of sowing the crop on land as free as possible from weeds of all kicds. To obtain flax of the very fincst quality the crop must be pulled as soon as the flowers fall, but in the improved imodsa of steeping, whether by Schenck's or Watt's patent, the value of the fibre is not diminished by allowing the seeds to mature. It must not, however, be allowed to become dead ripe, but should be pulled whenever the seeds appear, on opening the capsule, to be slightly brown-coloured. The pulling requires to be managed with much care. It is performed by men or women, who seize a small quantity with both hands and pull it by a slight jerking effort. The important point to be attended to is to keep the butts even' as successive quantities are seized and twitched from the ground. When a convenient handful has been pulled it is laid on the ground, and the nest parallel to it at a foot or so apart. The next handfuls are laid across these, and so on until a small pile is made, af ter which another is begun. After lying in this position for a few days, the seed-vessels or bolls are separated from the flax by lifting each handful separately and pulling the top through a ripple or iron comb fixed upon a piece of plank. As many of these handfuls as will make a small sheaf are then laid very evenly tagether, and bound near both ends with bands formed of a few stems of flax. These sheaves are set up in atooks, and when dry enough to keep without heating are stacked and thatched until an opportunity occurs of disposing of the flax straw. Sometimes tho flax is bound into sheaves and stooked as it is pulled, and treated exactly Like a grain crop. In this case the seed is separated from the straw by passing the head of each sheaf between iron rollers. The only objection to this plan is that the bolls of separate sheaves get so entangled in each other as to render it exccedingly difficult to handle them in carrying the crop, and in building and taking down the stacks, without dis. arranging the sheaves and wasting much straw and seed.
It would be tedious to enter here into a minute detail of the ordinary method of separating the flax fibre frum the woody part of the stem. Suffice it to say that in the ordinary practice the sheaves or beets of flax straw are immersed in a pit or pool filled with clear soft water. The aheaves aro kept under water by laying boards upon them loaded with stones to keep them down. Fere the flax undergoes a process of fermentation by which the parts aro separated. About nine or ten days are usually required for this purpose, but this is much influenced by the temperature. A good deal of skill and close watching is required to know exactly when it has been watered enough. The flax is now taken from the pit and evenly spread upon a smooth, clean, recently-mown meadow, where it lies for about ten days more, receiving several turnings the while. When the retting, as this is called, is perfected, the flax is carefully gathered up when perfectly dry, and again ticd into sheares, in which state it is stored under cover until the breaking and scutching can be overtaken.

All this necessarily requirte much skilful watching and nice manipulation,-more, as we have already said, thai is
compatible with the other avocations of an extensive farmer. There are, however, improved modes of accomplis'ing this preliminary manufacture of flax which, wherever established, pave the way for the growth of flax as an ordinary field crop. For these see article Flax.
The extent of flax cultivation in Ireland is considerable, but the acreage has been gradually diminishing during late years. In 1864 it reached the maximum, 301,693 acres; next year it fell to 251,433 . Since 1869 it has steadily declined, there being 229,252 acres in flax crop that year, and only 122,003 in 1872.

Hemp, although at one time very generally grown in Great Britain, is now so rarely met with that it is unnecessary to enter into details of its cultivation.

Section 2.-Hops.

The hop is an important crop in several of the southern counties of England. Although an indigenous plant, it was originally brought into England for cultivation from Flanders in 1525. It is cultivated to a considerable extent in Belgium, Bavaria, in the United States of America, and more recently in Australia. Hops, as is well known, are chiefly used for preserving and imparting a peculiar flavour to beer. Probably the only parts of the hop flower which enter into the composition of the beer are the seeds, and the yellow glutinous matter which surrounds the outer integuments of the seed, and lies at the bottom of the petals. This yellow matter (technically termed the condition of the hop) has an intensely bitter taste, and emits a peculiar and very agreeable aroma, which, however, is extremely volatile; and hence the necessity for close packing as soon as possible after the hops are dried. When kept over a year, much of this aroma flies off, and hence new hops are indispensable in brewing the first kinds of beer. Several varieties of the hop are cultivated in England. Of these, the Farnham and Canterbury whitebines and goldings are esteemed the finest. These are tall varieties, requiring poles of from 14 to 20 feet. The grapes, so called from growing in clusters, and of which there are several varieties of various quality, require poles from 10 to 14 feet long. Jones's, adapted for lighter and inferior land, requires these but 8 to 10 feet. The colegates are a hardy and late-ripening variety, which grow best on stiff soils; and the Flemish redbine, only cultivated from its less liability than the other to be attacked by the aphis or black blight.
The hop is a very exhausting crop for the land, requiring to be planted only on the most fertile soils, and to have them sustained by frequent and large dressings of manure rich in. nitrogen. Hops are principally cultivated in the counties of Kent, Sussex, Surrey, Hants, Worcester, and Hereford, and to a more limited extent in Essex, Suffolk, and Nottingham. The best quality of hops are grown at Farnham in Kent, upon the outcrop of the upper greensand formation, from whence the phosphatic nodules or coprolites now so well known in the manure market are obtained. In 1871 the land under hop cultivation in Great Britain measured 60,030 acres; in 1872 it amounted to 61,927 acres, of which there were in Kent 37,927 , in Sussex 9738 , and in Hereford 6106 acres.

In forming a dew plantation, the ground soon after Michaelmas is trenched to the depth of 18 inches, if it has previously been in meadow or old pasture, taking care not to bury the surface-sail above balf that depth. Subsoil-ploughing will suffice with land that is in tillage. If the land is wet, drains are made from 4 to 5 feet deep, laid with pipes, and a foot of broken etones orer them, to prevent the loots of the hops from obstructing the pipes. The distance hetween the drains is determined by the necessities of each case. Perfect draining is essential to the success of the crop; and the hops are plsnted in squsres or triangles at cqual distances, varying from 6 to 7 feet, according to the fertility of the sail and the grenter or less luxuriant habit of growth of the variety selected. The plants are reised by cutting of the lavers or shoots of the pre-
ceding year, which are beddud ont during the munth of March in ground previously prepared; and in the succeeding antumn become what are called nursery piants or belded sets. Early in Nozember these are planted, one, two, or three being used for a lill according to the atrength of the plants. Care must be taken to introduce a sufficient number of male plants, six hills to the acre being deemed. sufficient. The presence of these is found to induce earlier maturity, and to improve both the quality and weight of the crops. The ground must at all times be kept free from weeds and have a good depth of pulverised soil. From the first, a stick, 6 feet high or so, is placed to each hill, to which all the young bines, as they shoot ont during summer, must be tied. A liberal dressing of superphosphate of lime and guano is in June hoed in around eacb hill, which is repeated in July, under which treatment 2 or 3 cwt . of hops is obtained the first year, in addition to a crop of mangolds, turnips, or potatoes, grown in the intervals between the hills. On newly broken up ground lime is applied the following apring. When a plantation has been established, the annual rontine of culture begins in autumn, as soon as the crop has been gatbered, when the haulm is atripped from the poles, and stored away as a aubstitute for straw. The poles are stacked or piled in quantities of 400 or 500 , at regular distances on the graund. During winter they are sorted and repointed when rcquired, and new ones substituted for those that are broken or decayed; this work and the carrying on of manure being accomplished in frosty weather. The ground is dug over by the fork at this season. In March the earth is removed from the plants by a beck or pronged hoe till the cromu is exposed, that the plant may bs pruned. Immediately after this the poles are set, the length and number of these for each hill depending upon the kind of hops and amount of grow th anticipated. They are fixed into holes made for them by a hop-bar. As the season advances, the ground is hoed and again dug or atirred by a nidget or acarifier drawn by a horse. Early in Mlay the bines or young shoots, as soon as long enough, are tied to the poles with rushes or bast. This tying is repested several times as the bines get higher, and has even to be done by step-ladders. In June the hops are earthed up or hilled, at which time weak plants get a dressing of guano. Throughout th : summer wéeds are destroyed as they appear, and the soil kept loose by the nidget or the hand-hoe. - It poles are blown over by high winds, they are immediately replaced. The picking' of the hops usually begins about the second week in September, and furnisbes ample employment for several weeks to the entire population of the districts, and to a large influx of strangers ; men, women, and children all engaging in it. The hop-pickers are arnanged into companies, aud are supplied with baskets or bins, holding 7 or 8 bushels each, which are gauged with black lines inside to eave the trouble of measuring. Each company is under the superintendence of a hop-bailiff, who keeps au account of the earnings, \&c. Under him are several men called pole-pullert, whose duty it is to supply the pickers with poles of hops, and to assist in carrying the picked hops to the carts. Tbey use an iron lever called a hop-dog in pulling up the poles. The hops are picked, one by one, into the bins, care being taken that no bunches, nor leaves, nor mouldy hops, are included. The hops are dried in kilns or oast-houses, on floors of haircloth. Greatimprovements bave been made of late years in the construction of these oasts. Much vice discrimination is required in managing the drying so as to produce the best quality of Lops. As aoon as they are removed from the kiln they are packed into pockcts, which during the process are suspended from a hole in the floor, and the hops trodden into them by a man. This is now done more accurately by machines, in which a piston presses the hops into the pockets. Hop-grawing is a hazardous speculative business, the return at times being very great, and at other times not covering expenses. This arises from the liability of the hop to the attacks of insects, but more especially to blight and mould. The blight is caused by innumerable hordes of the Aphis humuli, which sometimes destroy the plants altagether. The mould is a parasitical fungus. It is believed that a means has at last been discovered of checking the ravage of these assailants, by enveloping each plant separately in a light covering, and subjecting it to the fumes of tobscco in the case of blight, and to a cloud of powdered brimstone in the case of mildew. In blight years it usually happens that some grounds altogether escape, in which case the returns from them are coormous, owing to the enhanced price.

Section 3.-Sugar-Beet.

The Silesian white beet bas long been cultivated in various states of continental Europe for the production of sugar, and in several of them is now a staple product of very great value and importance. After several abortive attempts to introduce this indusiry into our own country, it scems at last to have obtained a frm footing in England, through the enterprise and Ferseverance of Mr: गaues

Duncan, sugar-refiner, of Miacing Lane, London, who five years ago erected the necessary buildings and machinery at Lavenham, in Suffolk. Through the kindncess of Mr Duncan we are cnabled to submit to our readers the following details regarding this most interesting enterprise.

The ougar factory at Lavenham was erected in 1868, although not completed until February 1869. Mr Duncan had first of all contracted with various farmers in that neighbeurhood to grow beet for him at the price of 20 s . per ton of clean roots, delivered at his factory, with the option to the growers of receiving back the resulting pulp at 12 s per ton, if removed as made. Mr Duncan elao procured from the continent the necessary supplies of seed of the best sort, and furnished the growers with instructions as to the proper mode of cultivation. In growiag mangolds farmers try to grow the largest possible weight per acre, and for this purpose they manure heavily, and give the individual plants ample epace. This will not do in the case of sugar-beet, as it is found that small roots are richest in sugar, and that $2 \frac{1}{2} \mathrm{fb}$ each is the best size to aim at. The endearour, therefore, must be to have the roots small individually, and yet to sccure a good weight per acre. As the part of the bulb that grows above ground contains very little sugar, a further object is to have as little of it exposed to light as possible. All this is accomplished by sowing the crop in rows about 16 inches apart, and leaving the plants close to each other. If all is well managed, the crop should yield from 15 to 20 tons of cleaned roots per acre. The delivery of the roots at the factory begins about the end of September, when they are carted direct from the ficld as they are pulled. The cxigences of wheat-sowing and othor field labour at that season induce the growers to store a considerable part of their beet crop at home, and to deliver it at the factory from time to time as they can overtake this heavy cartage. The roots lose weight rapidly when kept in clamps, to cover which a little extra price is given as the season advances. The convenience of the growers is much furthered by this arrangement ; but it sometimes results in irregular supplies, and consequent loss to the manufacturer.

Owing to the extreme drought of 1868 the beet was lato in being sown, and the crop was small, amounting only to 1200 tons; but it was exceedingly rich in suǵar. The following season was moist, and the yield per acre good, but the area under crop was small, and the total quantity delivered at the factory about 3000 tons. The year 1870 was again an extremely hot and dry one, with a gross produce of 4500 tons, which yielded 12 per cent. of syrup. The produce in 1871 was 6000 tons, yielding 10 per cent. of syrup, and that of 1872 exceeded 7000 tons of very good roots; but the wetness of the season and strikes among the labourers so protracted the factory work, that instead of being completed in December it was prolonged antil March, and the percentage of sugar mas smaller than it ought to have beea. The particulars of this last crop are as follows. The total weight of cleaa roats from 571 acres was-

Sn that wi it a tntal average of $13 \frac{3}{4}$ tons per acre, twa-thirds
of the crop averaged 15 tons, and the remaining third only $9 \frac{1}{3}$ tons. The proportion of feeding pulp has been large in 1871 and 1872,-both having been inoist seasons, -and has been 22 per cent. of the weight of the roots. In 1870 it was only 19 per cent. The details of the disposal of the pulp from crop 1872 are also interesting. Of 1235. tona of pulp purchased by nine farmers-
697 tons were taken biy one,
$326 \quad " \quad$ by another,
116 by auother,
$95 \quad " \quad$ by another, not a grower of beet.

In addition to these quantities sold, about 500 tene were stored at the factory, where at the aame time about 100 tons of crop 1871 were still on hand, and in excellent condition. To this latter fact we can add our own testimony, having been favoured by Mir Duncan with a sample of it after it had been eighteen months in store, when we found it perfectly sweet and good, retaining unimpaired the taste and smell of fresh beet-root. The mode of storing the pulp is very simple. On a piece of dry ground a trench is dug out about 7 feet wide and 1 foot deep. Into thia trench the pulp is firmly trodden by the feet of the labourers, and gradually drawn to a point, procisely as is done in storing roats. The whole is then covered with earth to the depth of 12 inches; and thus stored, the pulp keeps mell for two or three years. In using it, a thin crus' from the outsides is rejected. In Germany and Austrio tanks of brick-worl are used to economise space, but not in France or Belgium. Three tons of this pulp are ests. mated to be equal in fceding value to one ton of good hay. Hitherto farmers give the preference to fresh-made pulp; but Mr Duncan regards this as quite a mistake, as in hin own practice he finds that pulp a year old is a better feeding material than when newly made. In 1872 he fattened 50 cattle on pulp three jears old, and in the summer of 1873 he had 60 cattle consuming the surplus of the previous scason. These cattle (27 yearlings and 33 two-year-olds) consumed daily 35 cwt . of pulp and 4 cwt . of cut chatif (of hay and barley stram) mixed together. The older beasts receired daily in addition 7 ib each of bean-meal, on which ration they made good progress. To meet the cartage difficulty, Mr Duncan contracted that year (1873) with one grower to perform the baulage of 2000 tona of beet roots a distance of 5 miles by a traction engine.

Several joint-stack companies bave been formed for prosecuting this industry, but Mr Duncan's is the only factory as yet in actual operation. It is known also that Mr Lawes and Dr Gilbert have for several years been engaged in extensive expcrimente on sugar-bcet, and with most successful results.

The manufacture of sugar from beet-root has attained to very great dimensions on the contir.ent of Europe. It is known that from the crop of $187 \dot{y}$ there has been produced $1,025,000$ tons of sugar, worth $£ 24$ per ton, and 250,000 tons of molasses, worth $£ 3$ per ton, and that new factories, some of them on a gigantic scale, are now in course of erection. A most important fact connected with this rapidly-catending industry is that the crection of a sugar factory is immediately accompanicd by an improvement in the agricuiture, and an increase in the value of the land, of the surrounding district. In many places farmers gladly contract to supply beet-root ai 18 s . per ton for ten years, on condition that they receive back purs in fair proportion to the quantity of root supplied by thern. Russia produces the finest quality of bent, instances being known in which the raats yielded 10 per cent. of loaf-sugar. There are good grounds for concluding that Russia will at no -very distant dats take a prominent place as a sugarDroducing country

There scems at present a reasonable prospect that the
callivation of sugar-beet will be adopred in various parts of our own country. It has already been proved that the beet grown in the south-eastern counties of Eugland is richer in sugar than that produced in the north of France. And it seems well worth while to ascertain, by careful experiment, whether in certain parts of Scotland, such as the Lothians, Fife, and the carses, sugar-beet could not with advantage be substituted for the precarious and exhausting potato crop. The repeal of the sugar-duty would give a great stimulus to this enterprise, and should be pressed for in the interest of our uative agriculture.

Section 4.—Chicory (for its Roots).

The very cxtensive and constantly increasing consumption of the roots of chicory as a substitute for coffee, renders it now an agricultural crop of some importance. The soils best adapted for its growth are deep friable loams. The process of cultivation is very similar to that required for the carrot, excepting only that it is not sown earlier than the first week of May, lest the plants should run to seed. When this happens, such plants must be thrown aside when the crop is dug, else the quality of the whole will bo injured. About 4 ib of seed is the quantity to sow per acre, either broadcast or in rows. The latter is undouhtedly the hest mode, as it admits of the land being Eept clean, and yields roots of greater weight. The crop is ready for digging up in Novemher. A long stout fork is the best implement for this purpose. In using it, 'eare must be taken to get out the roots entire, not only for the sake of the roots, but to lessen an inconvenience attendant on the culture of this plant, namely, that the fragments left in the soil grow amongst the after crops, and are as troublesome as weeds. The roots, when dry, are carefully washed, cut into thin slices, and kiln-dried, when they are fit for the coffee-grinder. From 1 to $1 \frac{1}{4}$ tons per acre of the dried root is an average produce.

Section 5.-Oil-yielding Plants.

Various plants are occasionally cultivated in Britain for the sake of the oil which is expressed from their ripened seeds. We have already noticed the value of flax-seed for this purpose, although the fibre is the product which is chiefly had in view in cultivating it. The piants most commonly sown expressly as oil-yielding crops are-rape (Brassica Napus), colza (Brassica campestris oleifera), gold of pleasure (Camelina sativa), and the poppy (Papaver comniferum). Rape is the plant most frequently and exrensively grown for the production of oil. The colza is said to yield better crops of seed than the other species. This plant is much cultivated in Flanders for this purpose. In Great Britain it seems rather on the decline. It is chiefly on rich alluvial soils that this crop is gromn. For a seed-crop rape is sown in June or July, precisely in the manner already described for turnips. The young plants are thinned out to a width of 6 or 8 inches apart, and afterwards kept clean by hoeing. The foliage may be eaten down by sheep early in autumn, without injuring it for the production of a crop of seed. In spring the horse and hand hoe must be used, and the previous application of 1 or 2 cwt . of guano will add to the productiveness of the crop. It suits well to lay down land to clover or grass after a crop of rape or turnip seed, and for this purpose the seeds are sown at the time of giving this spring culture. The crop must he reaped as soon as the seeds are obsorved to acquire a light brown colour. The reaping is managed precisely as we have described in the case of beans. As the crop, after being reaped and deposited in separate handfuls on the ground, very soon gets dry enough for thrushing, and as the seed is very easily shed after this is the case, this prucess nust be performed as rapidly as
possible. Sometimes it is conveyed to the thrashing-mill on harvest carts, on which a cloth is stretched to save ths seeds knocked out in the loading and unloading, but more usually the flail is used on temporary thrashing-floors prow vided in the field by spreading down large cloths. The crop is gently lifted from the ground and placed, headn innermost, on a blanket which two persons grasp by the corners, and carry to the thrashing-floors. A large number of people are required to push this process through rapidly, for unless the crop is quickly handled, a great loss of seed ensues. The seed is immediately spread thiuly upon \& granary floor, and frequently turned until dry enough to keep in sacks, when it is oleaned and disposed of. On good soil and in favourable seasons the yield sometines reaches to 40 bushels per acre. The haulm and husks are either used for litter or burned, and the ashes spread upou the land. It makes good fuel for clay-burning.

Section 6.-Seeds of Agricultural Crops.

In the case of seed-corn it is customary for farmers either to select from, the best of their own growth, to exchange with or purchase from neighbours, or, if they wish a change from a different locality, to employ a commissionagent to buy for them. In all districts there are careful farmers who, by occupying land that produces grain of good appearance, and being at pains to have good and pure sorts, are stated sellers of seed-corn, and manage in this way to get a few shillings more per quarter for a part of their produce. It is therefore only in the case of new and rare varieties that professional seedsmen ordinarily deal in seed-corn. There are, however, other field crops, such as clovers, grasses, turnip, mangold, carrots, winter vetches, \&c., the seeds of which, to a large extent, pass through the hands of seedsmen, and the growing of which is restricted to particular districts, and is in the hands of a limited number of farmers. These seed crops are sometimes very remunerative to the grower; but are hazardous ones for farmers to attempt at their owin risk. The only safe course is to grow them at a stipulated price, to the order of some thoroughly respectable seedsman, and to hold to the production of the particular kind or kinds which he requires. This applies in a less degree to the clovers, and to the more commonly cultivated grasses, than to the other seeds just referred to. Such an arrangement is beneficial to all concerned.
We have already described (chap. xiii sec. 13) the mode of sanng the seeds of Italian or common ryegrass; and as other grasses are managed in the same way, it is unnecessary to say more regarding.them.

It is only in the southern parts of England that clover is grown for the sake of its seeds. When it is meant to take a crop of seed, the clover is fed off with sheep, or mown early in the season, and then allowed to produce its flowers and ripen its seeds. This preliminary eating or cutting over causes the plants to throw up a greater number of seed-stems, and to yield a fuller and more equally ripening crop. The crop is mown when the seeds are seen to be matured. In the case of white clovcr the cutting takes place while the dew is upon the crop, as working amongst it when dry mould cause a loss of seed. After mowing and turning the crop, the ground is raked mith close-toothed iron rakes, to catch up loose heads. The thrashing is a twofold process-first the separation of the heads or cobs from the stam, called "cobbing," and then of the seeds from the husks, called "drawing." This was formerly accomplished by a laborious and tedious process of thrashing with flails, but it is nuw done by machinery. In farourable seasons tho yield is about 5 or 6 bushels (of 70 tb each) per acre.

Turnip seed is the next most important crup of this kind

From the strong tendency in the best varieties of turnips and stredes to degenerate, and the readiness with which they hybridise with each other, or with any member of the frmily Brassica, no snall skill and pains are needed to raise seed that can be depended upon to yield roots of the best quality. Turnip seed is saved cither from selected and transylanted roots, or from such as have been sorm for the express purpose, and allowed to stand as they grow. The first plan, if the selection is made by a competent judge, is undoubtedly that by which seed of the purest quality is obtained. But it is an expensive way, not only from the labour required in carrying it out, but from the yield of seed being generally much less than from plants that have not been disturbed. Professional seed-growers usually resort to a compromise by which the benefit of both plans is secured, viz., by selecting with great care and transplanting a limited number of bulbs, and saring the seed obtained from them to raise the plants which are to stand for their unain seed crop. The latter are carefully examined when they come into bloom, and all plants destroyed the colour of whose flower varies from the proper shade. Turnips that are to bear seed are purposely sown much later in the season than when intended to produce cattle foorl, as it is found that bulbs about 1 lb weight are less liable to be injured by frost or to rot before the seed is matured, than those of larger size. The management of a turnip-seed crop, both as regards culture and harvesting, is identical with that of rape for its seeds, which has already been described.

Mustard.-Both the white and brown mustard is cultivated to some extent in various parts of England. The former is to be found in every garden as a salad plant; but it has of late been coming into increasing favour as a forage crop for sheep, and as a green manure, for which purpose it is ploughed down when about to come into flower. 'The brown mustard is grown solely for its secds, which yield the well-known condiment. When white mus. tard is cultivated for its herbag, it is sown usually in July or August, after some early crop has been removed. The land being brought into a fine tilth, the seed, at the rate of 12 D per acre, is sown broadcast, and covered in the way recommended for clover seeds. In about six weeks it is ready either for feeding off by sheep or for ploughing down as a preparative for wheat or barley. White mustard is not fastidious in regard to soil. When grown for a seed crop it is treated in the way about to be described for the other variety. For this purpose either kind requires a fertile soil, as it is an exhausting crop The seed is sown in April, is once hoed in May, and requires no further culture. As soon as the pods have assumed a brown colour the crop is reaped and laid down in handfuls, which lie until dry enough for thrashing or stacking. In removing it from the ground it must be handled with great care, and carried to the thrashing-floor or stack on cloths, to a void the loss of seed. The price depends much on its being saved in dry weather, as the quality auffers much from wet. The ficld varies from 20 to 30 bushels per acre, and the price from 10 s . to 20 s . per bushel. It is chielly grown on rich alluvial soils in the south-castern connties of England. This great evil attends its growth, that the seeds which are unavoidably shed in harvesting the crop remain in the soil, and stock it permanently with what proves a pestilent weed amongst future crops.

Market Gardening. - In Essex and Kent no inconsiderable cztent of land is annually occupicd in growing the seeds of the staple crops of our kitchen and flower gardens. Wholesale seedsmen contract with farmers to grow these secds for thom at a stipulated price.

The growth of fruits and of culinary vegetables is in various parts of Great Britain an important departwent of
farming-for the scale on which it is conducted allies it quite as much to agriculture as to horticulture. In the countics cmatiguous to Lundon thousands of acres are occupied in growns regetables and in producing fruit. Vory large aumbers of persuus find employnnent in these market gardens. The system of cultivation pursucd in them is admirable. The soil is trenched two spits deep for nearly every crop; it is boavily manured and kept scrupulously clean by incessant hoeing. Whenever a crop is removed, some other suited to the season is instantly put in its place, and not an inch of ground is suffered to be unproductive. A young farmer, 'bent on knowing his business thoroughly, could not occupy a few,montls to better purpose than by placing himself under one of these clever market gardeners.

Kent has long been peculiarly celobrated fer its orchards The best of thein are on the borders of the greensand formation, or ragstone as it is provincially called. Alples, pears, plums, cherries. and nuts are produced in inmeuse quantities. The filbert plantations alone are said to occupy 5000 acres. An abundant and cheap supply of fruit and vegetables for the inhabitants of our towns is undoubtedly an important object, and is likely to occupy increased attention wherever a suitable soil and exposure, with facility of carriage by railway, are combiied. In Cornwall and in the Channel Islands the cultivation of brocoli and early potatoes is an important and growiug industry.

CHAPTER XV.

LIVE STOCK—HORSES.

The breeding and rearing of domesticated animals has ever been a favourite pursuit in Great Britain, and has been carried to greater perfection than any other department of rusal affairs. In no other country of similar extent can so many distinct breeds of each class of these animals be found-most of them excellent of their kind, and admirahly adapted to the particular use for which they are designed. Observing the usual order, we notice first Horses.

Section 1.-Breeds.

Here we shall confine our attention to those breeds which are cultivated expressly for the labours of the farm ; for although the breeding of saddle-horses is chiefly carried on by farmers, and forms in come districts an important part of their business, it does not seem advisable to treat of it, here. It is a department of husbandry requiring such a combination of fitness in the soil, climate, and cnclosures of the farm, of access to first-class stallions, and of taste and judgment on the part of the farmer, that few indeed of the many who try it are really successful. The morale too of the society into which the breeding of this class of horses almost necessarily brings a man is so unwholesome, that none can mingle in it freely without experiencing to their cost that "evil communications corrupt good manners." We have noted it as a fact of peculiar significance, in this connection, that of the few men who really make money by this Lusiness, scarcely one desires to see it prosecuted by bis sons.

The immense size and portly presence of the English black horse entitle him to priority of notice. This breed is widely diffused throughont England, though found chiefly in the midland counties. It is in the fens and rich pastures of these counties that the celebrated dray horses of London are bred and reared. These horses are too elow and heary for ordinary farm-work, and would not be bred but for the high prices obtainod for them from the great London brewers, whe pride themselves on the great size, majestic bearing, and fine condition of their team horses. The breeders of these horses omploy broud mares aud young
colts exclusively for therr.arm-work. The colts are highly fed, and worked.very gently until four years old, when they are sold to the London brewers, often at very great prices. The same breed is largely used in England for ordinary farm labour, although not found of such gigantic proportions as in those districts where they are bred for the special destination just referred to. Although very docile, their short step, sluggish gait, large consumption of food, and liability to foot lameness, render them less profitable for ordinary farm-work than the breeds about to be mentioned.

The Suffolk Punch is a well-marked breed which has long been cultivated in the county from which it takes its name. These horses are, for the most part, of a sorrel, bay, or chestnut colour, and are probably of Scandinavian origin. They are compact, as their name imports, hardy, very active, and exceedingly honest pullers. These horses at one time were very coarse in their form and rather slow; but they have now been so much improved in form and action that we find them the chief prize-takers at recent exhibitions of the Royal Agricultural Society.

The Cleveland Bays are properly carriage-horses; but still in their native districts ithey are largely employed for field work. Mr Milburn says--"The Cleveland, as a pure breed, is losing something of its distinctiveness. It is running into a proverb, that 'a Cleveland horse is too stiff for a hunter, and too light for a coacher;' but there are still remnants of the breed, thongh less carefully kept distinctive than may be wished by advocates of purity. Still, the contour of the farm-horses of Cleveland has the lightness, and hardiness, and steadiness of the breed; and it is singular that while the lighter soils have horses more calculated for drays, the strong-land farmer has the compact and smaller, but comparatively more powerful animal""

In the north-eastern counties of England, and the adjacent Scottish borders, compact, clean-legged, active horses, of medium size, with a remote dash of blood in them, are generally preferred to those of a heavier and slower kind One needs only to see how such horses get along at turnipsowing, or with a heary load in a one-horse cart, to be convinced of their fitness for the general work of a farm.

The Clydesdale Horses are not excelled by any cart breed in the kingdom for general usefulness. They belong to the larger class of cart-horses, sixteen hands being an average height. Brown and bay are now the prevailing colours. In the district whose name they bear the breeding of them for sale is extensively prosecuted, and is conducted with much care and success. Liberal premiums are offered by the local agricultural societies for good stallions. Horses of this breed are peculiarly distinguished for the free step with which they move along when exerting their strength in cart or plough. Their merits are now so generally appreciated that they are getting rapidly diffused over the country. Many small farmers in Clydesdale meke a business of raising entire colts, which they either sell for stallions or send into distant counties to serve for hire in that capacity.

In the Highlands of Scotland, a breed of hardy and very serviceable ponies, or "garrons," as the natives call them, are found in great numbers. In their native glens they are employed in tillage, and although unfit for stated farm-work in the low country, are even there often used in light carts for work requiring despatch rather than great power. Similar ponies abound in Wales.

Section 2.- Breeding of Cart-Horses.

In breeding cart-horses regard must be had to the purpose for which they are designed. If the farmer contemplates the raising of colts for sale, he must aim at a larger frame than if be simply wishes to keep up his nwo at rotb.
of worhing cattle. These considerations will so far guide him as to the size of the mares and stallions which he selects to breed from; but vigorous constitutions, perfect freedom from organic disease, symmetrical form, and good temper are qualities always indispensable. Notbing is more common than to see mares used for breeding merely because, from lameness or age, they have ceased to be valuable for labour. Lameness from external injury is, of course, no disqualification : but it is mere folly to expect valuable progeny from unsound, mis-shapen, ill-tempered, or delicate dams, or even from really good ones, when their vigour has declined from age. A farmer may grudge to lose the labour of a first-rate mare for two or three months at his busiest season ; but if he cannot make arrangements for doing this, he had better let breeding alone altogether; for it is only by producing horses of the best quality that it can be worth his while to breed them at all. It is always desirable that both sire and dam should have arrived at maturity before being put to breed.

The head of the cart-borse should not be large, at least not heary in the bones of the face aud jaws, nor loaded with flesh. Full development of brain is, indeed, of great importance, and hence a horse somewhat wide between the ears is to be preferred. Prick ears and narrow forehead have by some been reckoned excellences, but we have so invariably noticed such horses to be easily startled, given to shying, and wanting in courage and intelligence, that we regard such a form of head as a defect to be aroided. The éye should he bright, full, and somewhat prominent, the neck inclining to thickness, of medium length, and slightly arched, and the shoulders oblique. Upright shoulders haye been commended as an advantage in a horse for draught, it being alleged that such a form enables him to throw his weight better into his collar. It should be remembered, however, that the horses which display the greatest powet in drawing heavy loads are characterised by muscular vigour and nervous energy rather than mere weight of carcase; and these qualities are more usually found in connection with the oblique shoulder than the upright one-not to mention that this form is indispensable to that free and full step so necessary in a really useful farm-horse.
"The back sbould be straight and broad, the ribs well arched, and the false ribs of due length, so as to givo the abdomen capacity and roundness. The tail should be well set out, not too drooping, and the quarters should be full and muscular. The horse should girth well, and have his height in his body rather than in his.legs, so as to look less than measurement proves him to be. The forelegs should be strong, and flat below the knee, and by no means round and gummy either before or behind, neither should they have whita hair about them, wor much hair of any colour. The hocks should be broad in front, and neither too straight nor too crooked, nor jet cat-hammed. All diseases of this joint, whether curbs, spavins, or thoroughpins, are sufficient grounds for rejecting a borse. The feet are a matter of very much importance. The tendency of many heary horses is to have thin horn and flat feet. A stallion possessing such feet is exceedingly objecticmable. Plenty of horn is a recommendation, and the feet had better be too large than too small. The brood mare should possess as many of the points now enumerated as possible. If the mare is small but symmetrical, we may very properly select a large stallion, provided ho has good action. If, on the other hand, the mare is large and has a tendency to coarseness, we should select a middle-sized horse of symmetrical appearance."'

Sixteen hands is a good neight for a farm-horse. Except för very heary land, we have always had more satisfaction from horses slightly below this standard than above it.

We have repeatedly put a well-bred saddle mare to a cart-horse, and have invariably found the produce to prove excellent farm-horses. The opposite cross, betwist a cartmare and blood stallion, is nearly as certain to prove ungainly, vicious, ond worthless. These horses are generally

[^63]inuch strut.ger than their appearance indicates, dave great powers of eudurance, and can be kept in prime working condition at much less cost than bulkier auimals. It is on hauscnlar porer and nervous energy that the strength of aninals depends, and this, thercfore, should be sought after in the farm-horse rather than mere bulk.

Cart-mares should not foal earlier than May Pronded they are not unduly pushed or put to draw heavy loads, they may be kept at work almost up to their time of foaking, and are thus available for the pressing labours of spring. I_{t} is of inportance, too, that the pasture should be fresh and the weather mild ero their nursing duties begin. Mares seldom require assistance in bringing furth their young, and although it is well to keep an eye upon them when this cvent is expected, they should be kept as quiet as possible, as they arce.impatient of intrusion, and easily distarbed in such circumstances. A sheltered paddock with good grass, and where there are no other hotses, is the must suitable quarters for e mare that has newly foaled. There must be no ditch or pond in it, as young foals have a peculiar fatality for getting drowned in such places. A nare, in ordinary condition, receives the stallion on the ninth or tenth day after foaling, and with a greater certainty of concciving than when it is delayed until she is again in heat. If the mare's labnur can at all be dispensed with, it is desirable to havo her with her foal for two months at least. SLe may then be put to easy rork with perfect safoty, so that cha is not kept away from the foal longer than two or tiree laors at a time. When the foal has got strong enongi, it may even bo allowed to follow its dam at her work, and to get suck as often as it desires it. Towards the end of September foals are usually weaned, aud are then put under cover at night, and receive a little corn, a:ong with succulent food. Good bay, tran, carrots, or stredes, and a fam oats, must be given regularly during the firct wintepr, with a warm shed to lie in, and ans open court for exercise. At treaning it is highly expedient to put a carasin on colts, and lead them about for a few times. A few lessons at this early age, when they are easily controlled, sares a world of trouble afterwards. Before being turned to grass in spring, they should, on the same principle, be tied up in stalls for a wees or so. It 19 customary to castrate cults at a year old. Some, indeed, advise its being done a few weeks after birth, when, of course, the pain to the animal and nisk of death are less. It mnst, huwever, be borne in mund that this early emasculatiou will probably ensure a skranky neck, whereas a natural tendency to this defect can in good measuro be remedied by deferring the operation. Ws have seen a puny colt much improved in figure by being left entire until be was two ycars old. By giveng good pasturs in summer, and a hberal allowance of iay, roots, and oats in winter, colts may with safety, and even bencit, be put to moderate work in their third spring. Sonse time before this is done they should be put through a short course of trnining, to use them to the bit, and make them quiet and handy. Many good cart-horses are ruined for want of a httle timely attention in this way. When they have got familiar with the harness, they shonld be yoked to a \log of wood, and made to draw that up and down the furrows of a fallow field, until they become accustomed to the restraint and exertion, after which they may with safety be put to plough alongside a steady and good-tenipered borse, and, what is of equal consequence, under the charge of a steady, good-tempered ploughman. As they should not have nove than five hours' work a-day for the first summer, it is always an advantage to have a pair of them to yoke at the same time, in which case they take half-day about, and du a full horse's work betwixt them. With such moderate work and generous feeding their growth will be promoted.

By midsummer, the press of field labour beng over, it is adrisable to turn the striplings adritr, and let them enjuy themsolves in a good pasture until after harvest, when they can again be put to plough. Ilorses should not be required to draw heary loaded carts until they are five year's uld When put into the shafts earher than this they frequently get strained and stiffened in their joints. On cvery iarm requiring four or five pairs of horses is is highly expedient to have a pair of joung ones coming in nnqually. 'Shis enables the farmer to be provided against contiagencics, and to have his stable occlipied at all times with hurses in their full vigour, which go through their work with spirit, and never falter for a little extra pushing in emergencles.

Section 3.-Feeding and General Management of Farm-Horses.

As there is true cconomy in employing only the best quality of borses, and these in their prine, so also is there in feeding them uniformly well, and looking to their cumfort in all respects. The following quotation from tho Transactions (for October 1850) of the Highland and Agricultural Society of Scotland, describes the practice of some of our most exverienced farmers in this particular:-
"The syster. of feeding I adopt Is as follows:-From the nidulo of October till the end of May my horses get one feed of steamed food and two feeds of oats daily, with the best oat or wheat straw for fodder. Inever give bran strave unless it has been secured in fine condition, having often seen the bad effects of it, partly owin!, I think, to its long exposure to the weather. In ous ratalule climate, and from the quantity of sand rhich adheres to 1 t, I use it genterally for Jitter. The steamed food used is well washed Swedish tunuips and potatoes in equal proportions, mixed with sifted wheat-chaff. In those jears when we had a total loss of potatoes Swedisa turuip alone was used, but not with the same good effect us when mixed with potatoes. This year, having plenty of diseased potators in a firm state, I give a larger proportion of potatoes than turnip, and never upon any occasion give oat husks, commonly calleil mealseeds, haing uiten seen their injurious effects. At tive ocilock in the morning each Lorse gets 6 ib weight of bruised oats, at noon the same quantity of oats, and at half-past seren P.an. 47 it weight of steamed foed. I find that it takes 62 ft weight of uusteazued potatoes and turnip to prodece 47 1t steamed ; to each feed of steamed food, 4 oz. of common salt are added, and mixed up with one-fourth part of a bushel of wheat-chatf, weighing about $1 \frac{1 \mathrm{lb}}{}$, a greater quantity of what-chaff than this having generally too laxative an effect. Each horse eats from 14 to to 18 to of foditer during the twenty-four hours, besides what is required for hatter. In sprim: 1 sonuetumes give a mixture of bruised beans and odts, instead ol oats alone, from June to the middle of Octoker those horses that are required for the werkisg of the green crop, driving manure, and ha.iTcit work, are fed with cut grass and tares in the house ; and about 7 th of oats ench day, given at twice, increasing or decreasing the quantity according to the work they have to do ; and 1 turu out to pasture only those horses that are not required until the husy season. I desapprove of horses that are regularly worked leving turned out to grass, and exposed to all the changes of our variahle climate, as I believe it to be the origin of many diseases. By this mode of feediug the borses are aiways in fine sleek conditioa, and able for their work. I bare acted upon this system for the last fifteen years, have always had from 16 to 20 horses, and duriug that period I have only lost 7 horses, 3 of them from accidental causes ; and I attribute this, in a great measure, to the mode of fceding, and in particular to the steamed food."

The treatment of horses differs somewhat in other places from that now detailed. In Berwickshire, for example, they are usually turned to pasture as socn as the mildness of the weather and the forwardness of the pasture admit of it. While employed in carrying the crop, their fodder consists largely of tares, and afterwards till Martinnos they are fed on hay. From this date uat and bean straw, with 8 or 10 Bb of raw swedes to cach per duem, is substituted till the lst of March, when, with the recurrence of harder labour, hay is again given till the return of the grazing scasun. During three-fourths of the year they reccive about 16 ib of uats per diem, in three separate feeds. From the cluse of turuip-sowing until harvest, oats are cither withlecld ur given only when a harder day's work occurs. 'The praciuce

SBOTMTM-EORNTD BUILs
PHCNIX
Bred lay and the propery of JP Crusp. Howkhill Norchumberlard
Wivner un 1852 of the furst Prwes goven by the Aigrowlaural Socuctis of Englised Scoctaind efráurd

SIRORTN-RORNED COW
ChARTY
Ered by and Lb Propergy of JI Bovit Wicriaby Yontshine
of bruising the whole of the oats given to horses, and also of chopping their hay, is now very prevalent. By giving a few pounds of chopped hay with each feed of bruised oats, and oat-straw in the racks, during the whole of the winter half-year, horses are kept in better condition and at no more-expense than by giving them stran alone for half the period, and hay alone the other half. We are persuaded, also, that unless horses are stripped of their shoes and turned adrift altogether for a summer's run, soiling in boxes or sheds, with an open yard, is preferable to grazing. Hay and oats ought undoubtedly to constitute the staple fare of farm-horses. Without a liberal allowance of suitable and nourishing food, it is impossible that they can perform the full amount of wark of which they are capable, or be sustained for any length of time in robust health. When alleged very cheap plans of feeding horses are inquired into, it is usually found that the amount and quality of the work performed by them is in fitting proportion. In this, as in so many other things, cheapness and economy are not convertible terms. The true way to economise the horse-labour of a farm is to bave only good and well-fed animals, and to get the greatest possible amount of work out of them.

CRIAPTER XVI.

LIVE STOCK-EATTLA

Section 1.-Breeds-1st, Heavy Breeds.

As our limits do not admit of even a brief notice of all those breeds of cattle for which Great Britain is so famous, we shall restrict our remarks to some of the most important of them. Without entering upon curious speculations as to the origin of these breeds, we proceed to notice them in the order suggested by their relative importance in practical agriculture. The large lowland cattle thus claim our first attention, and amongst them we cannot hesitate in assigning the first place to the

Short-horns.-It appears that from an early date the valley of the Tees possessed a breed of cattle which, in appearance and general qualities, were probably not unlike those quasi shorthorns which abound in various parts of the country at the present day. $\mathrm{B}_{\vec{j}}$ the time that the Messrs Colling came upon the fiel ${ }^{3}$ it is evident that there were many herds around them in which considerable improvement had already been effected, and that they commenced their memorable efforts in cattle-breeding with exceedingly hopeful materials to worls upon. But in their masterly hands these materials seemed at once to acquire an unwonted plasticity; for in an incredibly short time their cattle exhibited, in a degree that has not yet been excelled, that combination of rapid and large growth with aptness to fatten, of which their symmetry, good temper, mellow handling, and gay colours are such pleasing indices and accompaniments, and for which they have now acquired a world-wide celebrity. It was by judicious selection in the first instance, and then by coupling animals of near affinity in blood, that they so developed and stereotyped these qualities in their cattle as to entitle them at once to take rank as the progenitors of a new and well-marked breed. These Durham, Teeswater, or Short-horn cattle, as they were variously called, were soon eagerly sought after, and spread over the whole country with amazing rapidity. For a time their merits were disputed by the eager advocates of other and older breeds, some of which (such as the long-horns, once the most numerous breed in the kingdom) they have utterly supplanted, while others, such as the Herefords, Devons, and Scotch polled cattie, have each their zealous admirers, who still maintain their superiority to the younger race. But this controversy is meanwhilo getting practically decided in favour of the short-
horns, which constantly encroach upon their rivals even in their headquarters, and seldom lose ground which they once gain. Paradoxical as the statement appears, it is jet true that the very excellence of the short-horns has in many cases led to their discredit. For many persons desiring to possess these valuable cattle, and yet grudging the $\cos t 0_{i}^{\varepsilon}$ pure-bred bulls, or being ignorant of the principles of breeding, hâve used worthless cross-bred males, and so have filled the country with an inferior race of cattle, bearing indeed a general resemblance in colour, and partaking in some measure of the good qualities of short-horns, but utterly wanting in their peculiar excellences. By ignorant or prejudiced persons the genuine race is nevertheless held answerable for the defects of the mongrels which usurp their name, and for the danaging comparisons which are made betwixt them and choice specimens of other breeds. That the short-horn breed should spread as it does, in spite of this hinderance, is no small proof of its inherent excellence, and warrants the inference that whenever justice is done to it, it will take its place as the one appropriate breed of the fertile and sheltered parts of Great Britain. This"desirable consumination has hitherto been retarded by the scarcity and high price of pure-bred bulls. We are quite aware that bull-breeding, as hitherto conducted, is a hazardous and unremunerative business, notwithstanding the great prices sometimes obtained for first-class aninals. We are of opinion, however, that it might be conducted in such a way as to be safer and more profitable to the breeder, and more beneficial to the country at large, than it has hitherto been. Therc is at present a large and growing demand for good yearling short-horn bulls, at prices ranging from $£ 25$ to $£ 50$. With a better supply both as to qualit! and numbers, this demand would steadily" increase, for w' have long observed that there is no want of customers for really good animals at such prices as we have named. When higher prices than these are demanded, farmers who breed only for the production of beef feel that they are beyond their reach, and are fain to content themselves with lower-priced and inferior animals. We are glad, therefore, that it is a steadily increasing practice for breeders of shorthorns to dispose of their young bulls by an annual anction sale on their own premises; or for a number of breeders to concur in cffering their lots for sale on the same day at some ceutral auction mart. The good effects of this increasing supply of well-bred bulls are becoming apparent in the improved quality of the cattlo now brought to our markets.

A great stimulus has been given to the breeding of highclass short-horns by the extraordinary prices which of late have been obtained for animals of certain favnurite and fashionable strains. To illustrate this we give the following particulars of the four principal sales of the year 1872:-
The late Mr Pawlet's - herd of 60 animals averaged $19518 \quad 7$ Mr G. Bowly's . .
 7
8 $\begin{array}{llllll}\text { Earl of Dunmore's } . & \text { Downa's ", } & 64 & 242 & 18 & 9 \\ \text { Mlessrs Harward \& }\end{array}$

It is said that the operations of one enterprising Canadian breeder-Mr Cochran of Hillburst-have had a powerful effect in determining these extroordinary market rates for short-horns of the choicest type. One cargo, including forty short-horn bulls and heifers, and choice specimens of Cotswold sheep and Berkshire pigs, taken out by this gentleman in 1870, is said to bare cost him £15,000. American breeders of short-horn cattle have now established a herd-book of their own, and have been so successful in their offorts that already they hare made numerous sales to English breeders at long prices. While we write, accounts have come of the sale by auction, on 10th September 1873, of the herd of Mr Campbell of New Yark Mills, ueas

Utica, when 108 animals realised $\$ 580,000$. Of these 10 were bought by British breeders, 6 of which, of the Duchess family, averaged \$24,517, and one of them, "Eighth Ducless of Genera," was bought for Mr Pavin Davies of Gloucestershire at the unprecedented prico of $£ 8120$. Choice specimens of theso cattle are now also being sent in large nurmbers to our Australian colonios and to various parts of the continent of Europe. Indeed, it may be said of them, that, like our people, they aro rapidly spreading over the world.
As already hinted, the Hereford is the breed which in England contests most elosely with the short-horns for the palm of exeellenee. They aro admirable grazior's cattle, and when of mature age and fully fattened, present exceedingly level, compact, and massive carcases of excellent beef. But the cews are poor milkers, and the oxen require to be at least two years old before being put up to fatten-defeets which, in our view, are fatal to the claims which are put forward on their behalf. To the grazier who purchases them when their growth is somewhat matured they usually yield a good profit, and will generally excel short:herns of the same age. But the distinguishing charaeteristic of the latter is that, when properly treated, they get suficiently fat and attain to remunerative weights at, or even under, two years old. If they are kept lean until they have reached that age their peculiar excellenee is lost. From the largeness of their frame they then cost more money, consume more food, sad yet do not fatten mơre rapidly than bullocks of slower growing and more compactly formed breeds. It is thus that the grazier frequently gives his verdiet in favour of Herefords as compared with short-horns. Even under this mode of management shorthorns will usually yield at least as good a return as their rivals to the breeder and grazier conjointly. But if fully fed from their birth so as to bring into play their peculiar property of growing and fattening simultaneously, we feel warranted in saying that they will yield a quicker and better return for the food consumed by them than cattle of any other breed. Unless, therefore, similar qualities are developed in the Herefords, we may expect to gee them more and more giving place to the short-horns. These remarks apply equally to another breed elosely allied to the Herefords, viz., the
North Devons, so much admired for their pleasing colour, elegant form, sprightly gait, and gentle temper, qualities which fit them beyond all other cattle for the labour of the feld, in which they are still partially employed in various parts of England. If it could be proved that ox-power is really more economical than horse-power for any stated part of the work of the farm, then the Devons, which form such sdmirable draught oxen, would be.deserving of general cultivation. It is found, however, that when agriculture reaches a certain stage of progress, ox-labour is inadequate to the mure rapid and varied operations that are called for, and has to be superseded by that of horses.

Scotland possesses sereral indigenous breeds of heary cattle, which for the most part are black and homless, such as those of Aberdeen, Angus, and Galloway. These are all valuable breeds, being charaeterised by good milking and grazing qualities, and by a hardiness which peculiarly adapts them for a bleak elimate. Cattle of these breeds, when they have attained to three yeara old, fatten very rapidly, attain to great size and weight of carcase, and yiold beef which is not surpassed in quality by that of any catule in the kingdom.

The cows of these breeds, when coupled with a short horn bull, produce an adinirable cross-breed, which combines largely the good qualities of both parents. The great saving of time and food which is effected by the earlier maturity of the cross-breed has induced a very
extensive aduption of this practice in all the north-astern counties of Scotland. Such a system is nocessarily inimieal to the improvement of the pure native breeds; but when cows of the cross-breed are coutinuously coupled with pure shorthorn bulls, the progeny in a few gencrations become assimilated to the male pareut, and are charactersed by a peculiar vigour of constitution and excellent milking power in the corss. With such native brecids to work upon, and this aptitude to blend theroughly with the short-horn breed, it is much more profitable to introduce the latter in this gradual way of continuous erossing than at once to substitute the one pure breed for the other. The cost of the former plan is.much less, as there nceds but the purchase from time to time of a good bull; and the risk is ineomparably less, as the stock is acelimatised from the first, and there is no danger from a wrong selection. The greatest risk of misearriage in this mode of changing the breed is from the temptation to which, from mistaken economy, the breeder is exposed of rearing a eross-bred bull himself, ur purehasing a merely nominal short-horn bull from others.

From this hurried review of our heary breeds of cattle it will be seen that we regard the short-horn as incomparably the best of them all, and that we anticipato its ultimate recognition as the breed which most fully meets the requirements of all those parts of the country where grain and green crops are suceessfully cultivated.

2d.-Duiry Breeds.

The dairy breeds of eattle next claim our attention, for although eattle of all breeds are used for this purpose, there are several which are eultivated chiefly, if not exclusively, because of their fitness for it. Dairy husbandry is pro secuted under two very different and well-defined classes of circumstances. In or near towns, and in populous mining and manufacturing districts. it is cerried on for the purpose of supplying families with new milk. In the western half of Great Britain, and in many upland districts, where the soil and elimate are more favourable to the production of grass and other green erops than of corn, butter and checso constitute the staple products of the husbandman. The town dairyman looks to quantity rather than quality of milk, and seeks for cows which are large milkers, which are long in going dry, and which can be readily fattened when their daily yield of milk falls below the remunerative measure. Large cows, such as short-horns and their crosses, are aceordingly his favourites. In the rural dairy, again, the merits of a cow are estimated by the weight and quality of the checse or butter which she yields, rather than by the mere quantity of her milk. The breeds that are cultivated expressly for this purpose are accordingly characterised by a less fleshy and robust build than is requisite in grazier's eattle. Of these we select for special notice tho Ayrshire, the Suffolk dun, and the Jersey breeds.

The Ayrshires, by common consent, now occupy the very first rank as profitable dairy cattle. From tho pains which have been taken to develop their milk-yielding power it is now of the highest order. Persons who have heen conversant only with grazing cattle cannot but be surprised at the strange contrast between an Ayrshira cow in full milk and the forms of cattle which they have been useat to regard as most perfect. Her wide pelvis, dcep flank, and enormous udder, with its small wide-set teats, secm out of all proportion to her fine bone and slender forequarters. As might be expected, the breed possesses little merit for grazing purposes. Very useful animals arc, however, obtained by crossing these cows with a shorthorn bull, and this practice is now rather extensively pursned in the West of Scotland by farmers who combine dairy husbandry with the fattening of cattle. The function of the Ayrshire cattle is, howerer, the dairy. For this they are unsurpassed, either as respects the amount of produce yielded by them in proportion to the food which they consume, or the faculty which they possess of converting the herbage of poor exposed soils, such asahound in their native district into butter and cheese of the best yuslity.

Bred by the Rughe Fion ${ }^{\text {ble }}$ the Earl of Talbow

EWIE \&IAMEM.SOUTM DOWN BRETBD
Brad by Thamus ELiman Esq: Beddingtarm

The county of Suffolk has for craturies peen celebrated for its dairy produce, which is chiefly obtaincd from a polled breed of cattle, the prevailing colour of which is dun or pale red, from which they are known as the Suffolk Duns. They have a strong general resemslance to the Scotch polled cattle, but nevertheless seem to be indigenous to Suffolk. They are ungainly in their form and of little repute with the grazier, but possess an undoubted eapacity of yielding a large quantity of milk in proportion to the food which they consume. They are now encroached upon by, and will probably give place to, the short-horns, by which they are decidedly excelled for the combined purposes of the dairy and the fattening stall.
The breeds alresdy referred to are those to which professional dairymen give the preference, but the cattle of the Chunnel Islands, of which the Jersey may be regarded as the type, are so remarkable for the choice quality of the cream and butter obtained from their rather scanty yield of milk, that they are eagerly sought after for private dairies, in which quality of produce is more regarded than quantity. The rearing of heifers for the English market is of auch importance to these islands that very stringent regulations have been adopted for insuring the purity of their peculiar breed. These cattle in general are utterly worthless for the purposes of the grazier. The choicer specimens of the Jerseys have a certain deerlike form which gives them a pleasing aspect. Tine race, as a whole, bears striking resemblance to the Ayrshires, which are alleged to owe their peculiar excellences to an carly admixture of Jersey blood.

3d.-Mrountain Breeds.

The mountainous parts of Great Britain are not less favonred than the lowlands in possessing breeds of cattle peculiarly adapted to the exigencies of the climate.
'Ihe Kyloes or West Highland cattle are tha most prominent of this group. They are widely diffused over the Highlands of Scotland, but ara found in the greatest perfection in the darger Hebrides. Well. bred oxen of this breed, when of maturs growth and in good condition, exhibit a symmetry of form and noble bearing which is unequalled by any cattle in the kingdom. Although somervat slow in arriving at maturity, they are contented with the coarsest fare, and ultimately get fat where the daintier short-horns could barely exist. Their hardy constitution, thick mellow hide, and shaggy coat, peculiarly adapt them for a cold humid climate and coarse pasturage. Fewer of these cattle are now reared in the Highlands than formerly, owing to the lessened zumber of cottars and small teuants, the extension of shcep husbandry, and latterly from the excessive multiplication of deer forests. Large herds of cows are, however, kept on such portions of farms as are unsuited for sheep walks. The milk of these cows is very rich, bet as they yield it in small quantity, and go soon dry, they are unsuited for the dairy, and are kept almost solely for the purpose of suckling each her own calf. The calves are generally housed during their first winter, but after that they shift for themselves out of doors all the year round. Vast droves of these cattle are annually transferred to the lowlands, Where they are in request for their serviceableness in consuming profitably the produce of coarse pastures and the leavings of daintiser atock. Thase of a dun or takny colour are often selected for grazing in tha parks of the aristocracy, where they look quite as picturesque as the deer with which they are associated. ludeed, they strikingly resemble the so-called wild cattle that are carefully preserved in the parks of several of our nobility, and like them are probably the descendants of the cattle of the ancient Britons. This view is confirmed by the strong family likeness borne to them by the

Welsh caule, which is quite what might, be expected from the many features, physical and historical, which the two provinces bave in common. Although the cattle of Wales, as a whole, are obviously of common origin, they are yet ranged into several groups, which owe their distinctive features either to peculiarities of soil and climato or to intermixture with other breeds. The Pembrokes may be taken as the type of the mountain groups. These are herdy cattle, which thrive on scanty pasturage aud in a humid climate. They exeel the West Highlanders in this respect, that they make good dairy cattle, the cows being peculiarly adapted for cottagers' purposes. When fattened they yield beef of excellent quality. Their prevailing and most esteemed colour is black, with deep orange on the naked parts. The Anglesea cattle are larger and coarser than the Pembrokes, and those of Merioneth and the higher districts are smaller, and inferior to them in every respect. The county of Glamorgar possesses a peculiar breed, bearing its name, which has long been in estimation for combined grazing and dairy purposes. It has latterly been so much encroached upon by Herefords and short. homs that there seems some likelihood of its becoming extinct, which will be casase for regret, unless pains are taken to occupy its place with cattle not inferior to it in dairy qualities. . We conclude this rapid review of our native breeds by noticing the most simernlar of them all, viz.

The Shelland cullle, which are the most diminutive in the world.

The carcase of a Shetland cow, Then fully fattened, scarcely exceerls in weight that of a long-woolled wether. These luttle creatures ure, however, exccllent milkers in proportion to their size; they are very hardy, are contented with the scantiest pasturage, come early to maturity, are easily fattened, and their beef aurpasses that of all other breeds for tenderness and delicacy of flavour. The diminutiva cows of this breed are not unfrequently coupled with short-horn bulls, and the progeny from such apparently prepostorous unions not only possess admirable fattening qualities, but approximate in bulk to their eires These curious and handsome little creatares, apparently of Scandınaman origin, are so peculiarly fitted to the circumstances of their bleak and stormy habitat, that the utmont pains ought to be taken to preserve the breed in purity, and to improve it by judicious treatment.

Section 2.-Farm Management of C'attle.

We shall now endeavour to describe the farm management of this valuable class of animals, under the heads of breeding, rearing, fattening, and dairy management. The proceedings of those engaged in the breeding aud rearing of cattle for the production of beef are, however, largely determined by the character of the soil and climate of particular districts and farms. The occupiers of all comparatively fertile soils carry forward to maturity such animals as they breed, and dispose of them directly to the butcher. Those who are less fortunately circumstanced in this respect advance their young cattle to such a stage as the capabiiities of their farms admit of, and then transfer them to others, by whom the fattening process is conducted. It cannot be tor strongly impressed upon those who ongage in this business that it never can be profitable to breed inferior cattle; or (however good their quality) to suffer their growth to be arrestcd by cold or hunger; or to sell them in a lean state. In selecting a breeding stock of cattle, the qualities to be aimed at are a sound constitution and a symmetrical form; aptitude to fatten, quiet temper, and large milk-yielding power in the cows. As all these qualities are hereditary, cattle are valuable for breeding purposes not merely in proportion as they are developed in the individuals, but according to the measure in which they are known to have been possessed by their progenitors. A really good pedigree adds therefore greatly to the value of breeding-stock. It is doubtless important to have both parents good; but in the case of ruminants, the predomnating influence of the male in determining the qualities of the progeny is so well ascertained, that the selection of the bull is a matter of prime importance. We are able to state, from 'ample personal experience, that by using a bull that is at.once good himself and of good descent, a level and valuable lot of calves can be obtained from very indifferent cows. It is indeed miserable economy to grudge the price of a good bull Coarse, mis-shapen, unthnfty cattle cost just as much for rearing and fattening as those of the best quality, and yet may not be worth so much by $£ 3$ or $£ 4$ a-head when they come ultimately to market. The loss which is annually sustained from breeding inferior cattle is far greater than those concerned seem to be aware of. It is impossible to estimate this loss accurately, but from careful observation and inquiry we are confident that it amounts to not less than 50s. a-hcad on one-half of the fat cattle annually slaughtercd in Great Britain. If this be so, it follows that without expending a farthing more than is done at present on food, housing, and attendance, the profit which would accrue from using only the best class of bulls would be equivalent to an advance of 1 s . per stone in the price of beef as regards half of the fat bullocks brought to market. This profit could, moreover, be sccured by a rery moderate outlay ; for if properly gone about, the best class of bulls mught be omployed without adding more than 3 s . or 4 s . a-hcad to the price of each calf reared. We may surely anticipate that such a palpable source of profit will not continue to be neglected by the breeders of cattle. There are many instances in which landlords would find it
much for their interest to aid their tenantry in at once procuring really gond bulls. Cattle shoms and prizes are meful in their way as a means of improving the cattle of a district, but the introduction of an adequate number of bulls from herds already highly improved is the way to accomplish the desired end cheaply, certainly, and speedily. We must here protest against a practice by which shorthorn bulls are very often prematurely unfitted for brecding. Their tendency to obesity is so remarkable that unless they are kept on short commons they become unwieldy and unserviccable by their third or fourth year. Instead, however, of counteracting this tendency, the best animals are usually "made up," as it is called, for cxhibition at cattle shows or for ostentatious display to visitors at home, and the consequence is, that they are ruined for breeding purposes. We rejoice to see that the directors of our national agricultural societies are resolutely sctting their faces against this pernicious practice. It is needful certainly that all young animals, although intended for breeding stock, should be well fed, for without this they cannot attain to their full size and development of form. But when this is secured, care should be taken, in the case of all breeding animals, never to exceed that degree of flesh rhich is indispensable to perfect bealth and vigour. The frequent occurrence of abortion or barrenness in highpedigrced herds seems chiefly attributable to orcrfecding. The farmer who engages in cattlc-breeding with the view of turning out a profitable lot of fat bensts annually', will take funins first of all to provide a useful lot of cows, such as will produce good calves, and if well fed while giving milk will yicld enough of it to keep two or three calves a-piece. That he may be able to obtain a sufficient supply of good calves he will keep a really good bull, and allow the cottagers residing on the farm or in its neighbourhood to send their cows to hin free of charge, stipulating only that when they hare a calf for sale he shall have the first offer of it.

Cows are an expensive stock to keep, and it is therefore of importance to turn their milk to the best account. It is poor economy, however, to attempt to rear a greater number of calres thian can be done justice to. Secing that they are to be reared for the production of beef, the only profitable course is to feed them well from birth to maturity. During the first weeks of calf-hood the only suitable diet is unadultered milk, warm from the cow, given three times a-day, and not less than tro quarts of it at each meal. By three weeks old they may be taught to eat good hay, linseed cake, and sliced swedes. As the lntter items of diet are relished and freely, eaten, the allowance of milk is gradually diminished until about the twelfth week, when it may be finally withdrawn. The linseed cake is then given more frecly, and wnter put within their reach. For the first six weeks calres should be kept each in a separate crib; butafter this they are the better of having room to frisk about. Their quarters, however, should be well abeltered, as a comfortable degree of warmth greatly promotes their growth. During their first summer they do best to be soiled on vetches, clorer, or Italian ryegrass, with from 1 ith to 2 ib of cake to each calf daily. When the green forage fails, white or jellow turnips are substituted for it. A full allowance of these, with-abundance of oat straw, and not less than 2 ID of cake daily, is the anpropriate fare for them during their first winter. Swedes will be substituted for turnips during the months of spring, and these ngain will gire place in due time to green forage or the best pasturage. The daily ration of cake should never be withdramn. It greatly promotes growth, fattening, and general gond health, and in particular is a specific afrinst the disease called hlackleg, which often proves a fatal to young cattle. Young cattle that have heen skil.
fully managed upon the system which we have cow sketched, nre at 18 months old already of great size, with open horns, mellow hide, and nill those other features which indicate to the experienced grazier that they will grow and fatten rapidly. This style of management is not only the best for those who fatten as well as rear, but is also the most profitable for those who rear only.

We have already stated that in Scotland comparatively few eattle are fattened on pasturage. An incrcasing number of fat beasts are now prepargd for market during the summer months by soiling on green forage; but it is by means of the turnip crop, and during the winter months, that this branch of husbandry is all but exclusively conducted in the northern half of Great Britain. But a few years ago the fattening of cattle on Twecdside and in the Lothians tras conducted nlmost exclusively in open courts, with sheds on one or more sides, in which from two to treenty animals trere confined torgether, and fod on turnips and straw alone. Important changes have now been introduced, both as regards housing and feeding, by means of which a great saving of food has been effected. Under the former practice the eattle reccived as many turnips as they could eat, which, for an average-sized two-ycar-old bullock, was not less than 220 lb daily. The consequence of this enormous consumption of watery food was, hat for the first month or two after being thus fed the animals were kept in a state of habitual diarrhœa. Dry fodder was, indeed, always placed within their reach; but as long as they had the opportunity of taking their fill of turnips, the dry straw was all but neglected. By stinting thens to abont 100 d of turnips daily, they can be compelled to eat a large quantity of straw, and on this diet they thrive faster than on turnips at will. A better plan, however, is to render the fodder so palatable as to induce them to eat it of choice. This can be done by grating down the turnips by one or other of the pulping-machines now getting into common use, and then mixing the grated turnip with an equal quantity, by measure, of cut straw. Some persons allow the food after being thus mixed to lio in a heap for tron days, so that fermentation may ensue before it is given to the eattle. There is, however, a preponderance of evidence in favour of using it fresh To this mess can conreniently be added an allowance of ground cake, whether of linseed, rape, or cotton seed, and of meal of any kind of grain which the farmer finds it most economical at the time to use. The ground cake and meal are, in this case, to be thoroughly mired with the pulped turnip and cut straw. The same end can be accomplished by giving a moderate feed (say 50 D) of sliced roots twice a-day, and four hours nfter each of these meals, another, consisting of cut straw, cake, and meal. In this case the chaff and farinaceous ingredients should be mixed and cooked by steam in a close vessel; or the meal can be boilcd in arn open kettle, with water enough to make it of the consistency of gruel, and then poured over the chaff, mixed thoroughly with it, and allowcd to lie in a hesp for two or three hours before it is served out to the cattle. From 2 to 4 ib of meal, \&c., a-head per diem is enough to begin with. But as the fattening process gocs on it is gradually increased. and may rise to 7 or 8 . ID during the last month before sending to market. It is advisable to mix with the cooked mess about 2 ounces of salt per diem for each bullock. An important rccommendation to this mode of preparing cattle food is, that it enables the farmer to use rape-cake freely; for when this articlo is reduced to a coarse powder, and heated to the boiling point, it not only loses its acrid qualities, but acquires a amell and flarour which induce cattle to" sat it greedily. Moreover, if the rape-seeds should have been adulterated with those of wild mustard hefore going to the crushing-mitl (as not unfrequently happens),
and a cake is thus produced which in its raw state is poisonous to cattle, it has been ascertained that boiling deprives such spurious cake of its hurtful qualities and renders it safe and wholesome. As rape-cake possesses fatrening elements equal to those of linseed-cake, and can usually be bought at half the price, it is well worth while to have recourse to a process by which it can so easily be rendered a palatable and nourishing food for cattle.
Fattening cattle are usually allowed to remain in the pastures to a later date in autumn than is profitable. The pressure of harvest work, or the immature state of his furnip crop, often induces the farmer to delay housing his bullocks untill long after they have ceased to make progress on grass. They may still have a full bite on their pastures; but the lengthening nights and lowering temperature lessen the nutritive quality of the herbage, and arrcst the further accumulation of fat and flesh. The hair of the cattle begins also to grow rapidly as the nights get chilly, and causes chem to be housed with rougher coats than are then expedient. To avoid these evils the farmer should early in August begin to spread on the pasture a daily feed of green forage, consisting of vetches, peas, and beans grown in mixture in about equal propertions, which if well podded and full of soft pulse, stupplies exactly the kind of food required to compensate for the deterierating pasturage. Early in September cabbages and white globe turnips should be given on the pasture in lieu of the green forage. After ten days or so of this treatment they should be transferred to their winter quarters. For the first twe menths after they go inte winter quarters they make as good progress on yellow turnips as on any kind of roots; for the three following months well stored swedes are the best food for them; and from the beginning of March until the end of the season, mangelds and potatoes, in the proportion of four parts of the fermer to one of the latter. The chaif of wheat, oats, or beans, if telerably free from dust, is quite as suitable as cut straw for mixing with the pulped roots and cooked food. The addition of a small quantity of chopped hay, or of the husks of kiln-dried oats, to the other food, usually induces cattlo to feed more eagerly. In short, the animals must be closely watched, and occasional variations made in the quantity and quality of the food given te, particular individuals or of the general lot as their circumstances may require. Besides the food given in the manger it is desirable that each animal should receive a daily allewance of fresh oat straw in a rack to which he has access at pleasure.

A better appreciation of the effects of temperature on the animal econemy has of late years exerted a beneficial iufluence upon the treatment of fattening cattle. Observant farmers have long been aware that their cattle, when kept dry and moderately warm, eat less and thrive faster than under opposite conditions. They accounted for this in a vague way by attributing it to their greater comfort in such circumstances. ¿̈cientific men have now, however, showed us that a considerable portion of the food consumed by warm-blooded animals is expended in maintaining the natural heat of their bodies, and that the portion of food thus disposed of is dissipated by a process se closely analugous to combustion that it may fitly be regarded as so much fueL. The fat which, in favourable circumstances, is accumulated in their bedies, may in like manner be regarded as a store of this fuel laid ap tor futuro emerfencies. The knowledge of this fact enables us to understand how largely the profit to be derived from the fattening of cattle is dependent upon the manner in which they are housed, and necessarily forms an important element in determining the question whether yards, stalls, or boxes are best adapted for this parpose. A really good system of housing must combine the following conditions :-

Ist, Facilicies for supplyms tond and litter. and for re moving duws with the utmost econcminy of tine and labour, 2d, Complote freednu from disturbance.
3d, A minticme and unvarynn: defree of warmth:
4tn, A constant supply of pure arr,
5th, Oppurtuntt ior the cattle havng a slight degre. of exercise ; and
6 th , The production of manure of the best ouality.
We have no hesitation in expressing our opinton that the whole of these conditions are attained most fully by means of well-arranged and well-ventilated boxes Stailis are to be preferred where the saving of hitter is an object, and yards for the rearing of young cattle, which require more exercise than is suitatie for fattening steck. These yards are now, however, in the most improved modern homesteads, wholly roofed over, and thus combine the good quaities of both yard and bex.

CHAPTER XVII.

LIVE STOCK-sheep.
When Fitzherbert so long ago said, "Sheep is the most proñtablest cattle thai a man can have," he expressed an opinion in which agriculturists of the present day fully concur. But if this was true of the flocks of his time, how much more of the many admirable breeds which now cover the rich pastures, the grassy downs, and the heath. olad mountains of our country.: Their flesh is in higb estimation with all classes of the community, and constitutes at least one-balf of all the butcher meat consumed by them. Their fleeces supply the raw material for one of our most flourishing manufactures. They furnish to the farmer an important source of revenue, and the readiest means of maintaining the fertility of his fields.

Section 1.-Breeds.

The distinct breeds and sub-varieties of sheep found in Great Britain are very frumerous. We have no intention of describing them in detail, but shall confine our observatiens to those breeds which by common consent are the most valuable for their respective appropriate habitats. They may be itlly classed under three heads - viz., the heary breeds of the plains, those adapted for downs and similas localities, and the mountain breeds.
1st.-Heavy Breeds.

Of the first class, the improved Leicesters are still the most impertant to the country. They are more widely diffused in-the kingdom than any of their congeners. Although, from the altered taste of the community, their mutton is less esteemed than formerly, they still constitute the staple breed of the midland counties of England Leicester rams are also more in demand than ever for crossing with other breeds. It is now about a century since this breed was produced by the genius and persever. ence of Bakewell, in whose hands they attuined a degree of excellence that has probably not yet been exceeded by the many who have cultivated them since his day. The characteristics of this breed are extreme docility, extra. ordinary aptitude to fatten, and the carly age at which they come to msturity. The most marked festure in their structure is the smallness of their hcads, and of their bones generally, as contrasted with their weight of carcase. They are clean in the jaws, with a full eye, thin ears, and placid countensnce. Their backs are straight, broad, and flat, the ribs arched. the belly carried very light, so thast they present nearly as straight a line below as above; the chest is wiuc. the skin very mellow, and covered with s beantiful Seece of long, seft wonl, which weighs on the average from 6 to 7 db . On good soils and under careful treatruars
these sheep aro currentify brought to weigh from 18 to 20 to per quarter at 14 months old, at which acre they are now usually slaughtered. At this age their flesh is tender and juicy; but when feeding is carricd on till they are older and bearier, fat accumulates so unduly as to detract-from the palatableness and market value of the mutton.

Lincoins.-These were at one time very large, ungainly animals, with an immense flece of very long wool. By crossing them with the leiceaters the character of the breed has been entirely changed, and very greatly for the better. It is now, in fact, a aub-variety of the Leicester, with larger frame and heavier ficeca than tha pure breed. Their wool, lowever, retains its distinctive charscteristiesviz., great length of staple, an unctuous feeling, and, in particular, a brightness or lustre which adds largely to its value. Sheep of this kind are reared in immense numbers on the wolds and heaths of Lincolnshire, and sre aold when ahout a year old in the wool, and in very forwarl condition, to the graziers of the fens and marshes, who ultimately lring them to very great weights.

Cotrwolds, aometimea called Glo'aters or New Oxfords, are also large and long-woolled aheep, with good figure and portly-gait. Great improvement has been cffected in this breed during the last 30 ycars, in consequence of which they are rising rapidly in public estimation. The qualities for which they are prized are their hardiness, docility, rapid growth, aptitude to fatten, and the great weight to which they attain. Their chief defect is that they yield mutton aomewhat coarse in the grain and with an ondue preponderance of fat. But in sddition to their great merits as a pure breed they ara especially valuable for the purpose of crossing with Downs and other abort-woolled aheep. Of this we ahall speak more particularly when we come to notice the Cross-breeds.

Teescaters.-This breed, found formorly in the vale of the Tees, used to have the reputation of being one of the largest and heariest of our native breeds. They liad lighter tieeces than the old Lincolna, but greater aptitude to fatten. Like them, however, they have been so blended with Leicester blood as.to have lost their former characteristics. Aa now met with, they constitute aimply a sub-variety of the latter breed.

The Kents or Romney Marsh Sheep, ara another distinct long. woolled breed which have much in common with the old Lincolns, although they never equalled. them either in tha weight or quality of their fleece. They too bave been much modified by a large infusion of Leicester blood; but as thcir distinctive qualities fit them well for a bleak and humid habitat, there is now an aversion to risk these by further crossing. As they now exist they ara a great improvement upon the old breed of the Fentish marshes ; and this, in the first instance at least, was the result of crossing rather than selection.

2d.-Down and Forest Breeds.

The breeds peculiar to our chalky downs and other pastures of medium elevation next claim our notice.

Southdonons. - Not long after Robert Bakewell had hegun, with admirable akill and persererance, to bring to perfection his celrbrated Leivesters, which, as we have seen, have either superseded or totally altered the character of all the heary breeds of the country, another breeder, Mr John Ellman of Glynde, in Sussex, equal to Bakewell in judgment, perseverance, and zeal, and wholly devoid of his illiberal prejudice and narrow aelfishness, addressed himself to tha task of improving the native shecp of the downs, and aucceeded in bringing them to as great perfection, with respect to early maturity and fattening power, as they are perhaps susceptible of. Like Bakewell, he early began the practice of letting out rams for hire. These were soon eagenly sought after, and the qualities of his improved flock being rapidly communicated to others, the whole race of down sheep has more or less become nssimilated to their atandard. Thess improved Southdowns have, in fact, been to all the old forest and other fine-woolled breeds what the Leicesters bave been to their congeners. Many of them lave entirely disappeared, and others only. survive in those modifications of tha improved Southdown type which are to be found in particular localities. These down sheep possess certain well-marked features which distinguish them from all other breeds. They have a close-set fleece of fine wool, weigling, when tho animals aro well fed, about 4 lb . ; their faces and legs ars of a dusky brown colour, their neck slightly arched, their limbs ahort, their carcase broad and compact, their offal light, and their buttocks very thick and square behind. They are less impatient of folling, and suffer less from a pasture being thickly stocked with them than any other breed It is in councetion with this breed that the practice of folding as a ineans of manuring the soil is so lareely carried ont in tho chalk districts of England. It is well ascertainel that tha injury done to a lock by this practice exceeds the benefit conferred on the crops. Now that portable manures are so abunlant, it is to be hoped that this pernicious practice of using aheep as mere muck machines will be everywh.ere practice of

These alhecp are now usually classed as Sussex Downs and Hampshire Downs, the former being the most retined type of the clasa, both as regords wool and carcase, and the latter, as compared with them, haviog a heavier flece, stronger bone, and somewhat coarser and larger frame.

The Shropslife sheep, while partaking of the generad characteristics of the Southdown, is so much heavier both in flecee and carcase, and is altogether so much more robust on animal, that it now claims to be ranked as a separate breed. The qualities just referred to as diatinguishing it from other downs seem, loowever, to be the result of selection rather than of crossing with other breeds, and thue tha Sbropshire sheep, while a pure down, ia yet of ao distinct a ty ρ p from the high-bred "Southdown," that it is well ontitled to be recognised as a distinct and very valuable brecd, as has been done by the Royal Socicty, which now assigus it a acparata class at its annual meetings. Shropshire rams ara eagerly aought after, and many brecders of eminence in that county have now their annual aales of these animals.
These breeds are peculiarly sdapted for all those parts of England whers low grassy hills occur, interspersed with, or in proximity to, arable land. In auch aituations they ara prolific, hardy, and easily fattened at an early age. 15 is to their peculiar adaptation'for croasing with the long-woolled breeds that they aro indebted for their recent and rapid extenaion to other districts.
Dorscts. - Thia breed has from time immemorial been naturalised in the county of Dorset and adjacent parts. They are a white-faced, torned breed, with fine wool, weighing aboutt 4 to per fleece. They sre a hardy and docile race of sheep, of good size, and fair quality of mutton. But the property which distinguiahes them from every other breed in Great Britain is the fecundity of the ewes, and their readiness to receive tha male at an early aeaaon. They have even been known to yean, twice in the sams year. Being, in addition to this, excellent nurses, they have long been in use for rearing housa lamb for the London market. For this purpose the rams are put to there early in June, ao that ths lambs are brought forth in October, and are ready for market by Chriatmas. But for this peculiarity, they would ere now have ahared tha fate of ao many other native breeds, which have given place either to the Leiceaters or Southdowns, according to the nature of the pastures. So long. howeser, as the rearing of early house lamb ia found profitable, there is a sufficient inducement to preserve the Dorset breed in their purity. as they are unique in their property of early yeaning.

3d.-Mountain Breeds.

Cheriots. - As we approach and cross the Scottish border we find a range of hills covered with coarser herbage than the chalky downs of the sonth, and with a climate considerably mora rigorons. Here the Sonthdown sheep have been tried with but indifferent success. This, bowever, is not to be regretted, aeeing that the native Cheriot breed rivals them in most of their good quaditics, and possesses in addition a hardibood eqnal to the necessities of the clinate. This breed, besides occupying the grassy hiils of the border countiea, is now found in great force in the north and weat Highlands of Scotland. In the countiee of Sutherland and Caitbness, where they were introduced by the late Sir John Sinclair, they have thriven amazingly, and in tha hands of soma apirited breedera have sttaincd to as great perfection as in their nstive district. During the last 30 yeara this breed has undergone very great improvement in aize, figure, weight of Qeece, and aptitude to fatten. In proof of this, it is enough to mention that Cheviot wether lambs asa now in the border counties brought to markst when weaned, and ars transferred to tha low country graziers, by whom they ara sent fat to the butcher at aixteen months old, weighing then from 16 to 18 Ib per quarter. This is particularly the case in Cumberland, where Cheviot lambs are preferred to all other breeds by the low-country farmers, by whom they ara managed with great skill and success. It is not at all unusual with them to realise an increaso of from 20 s. to 25 s . per head on the purchass price of these lambs, after a twelvemoath's keep. This fact is pcculiarly interesting from the proof which it affords of a hitherto unsuspected capacity in Theriots, and probably in othcr npland breeda, to attain to a profitalie degree of fatness and weight of carcass at almost as early an age as the lowland brceds when the same attention and liberal fceding is bestowed upon them. There is no breed equally well adapted for elevated pastures, conaisting of the coarser grasses with a mixture of heath; but whenever, from the nature of the soil or greater elevation, the heaths unmistakably predominate, a still hardier race is to be preferred, viz. -

The Blackfaced or Heath Breed.-They are accordiugly fonnd on the mountainous parts of Yorkshire, Lancashire, Cumberland, and Westmoreland ; over the whole of the Lammermuir range, the upper part of Lanarkshire, and generally over the Highlands of Scotland. Both male and female of this breed have horna, which in the forner are very large and spirally twisted. The face and legs ars black or specked with black, with an occasional tendency to thia colour or the fleece; but there is nothing of the brown or ruaset colour which distinguishes the down breeds. The choicest flocks of these sheer

C $\mathbb{B} \mathbb{E}$ WIOR \mathbb{E} W
Bred by, and the Property of MI Thomas Ellioz. Hyndhopen Raxberghshere

Onc Year Old
Shed by kr Thomas Robertson Bmoundea. Cuury of Recobles

Bred by and che Propercy of iv＇Dictunson．Nagdalere Hall Raxburghehere

【区ロCESEERIEN
are found in Lanarkshire and in the Lammermuirs, where considerable pains are now bestowed on their improvement. Their chief defects are coarseness of fleece and slowness of fattening until their growth is matured. In most flocks the wool, besides being open and coarse in the staple, is mixed with kemps or hairs, which detract from its value. Kams with this defect are now carefully avoided by the best breeders, who prefer those with black faces, a mealy mouth, a slight tuft of fine wool on the forehead, horns flat, not very large, and growing well out from the head, with a thickset fleece of long, wavy, white wool. Greater attention is now also being paid to their improvement in regard to fattening tendency; in which respect we do not despair of seeing them brought nearer to a par with other improved breeds. Whenever this is accomplished wo shall possess in the breeds now enumerated, and their crosses, the means of converting the produce of our fertile plains, grassy downs, tough upland pastures, and heath-clad mountains, into wool and mutton of the best quality, and with the utmost economy of which the circumstances admit.

In the higher grounds of Cumberland, and also in Westmoreland, Laneashire, and parts of Yorkshire, two varieties of the heath breed of oheep are found, viz., Herdwicks and Lonks-which, with a general resemblance to the blackfaced Highland breed, differ froun it in baving a close-set fleece of fine ooft wool. They are sometunes described by eaying that they have "the lleece of a Cheviot on the carcase of a Highlander ;" but the Herdricks are so emall, and both breeds are so inferior to the blackfaced in aptitude to fatten, that they are losing ground in their native districts, where the blackfaces are spreading rapidly, being in great repute for breeding crosses to long-roolled rams.

4th.-Cross-Breeds.

We have thus enumerated the most important of our pure breeds of sheep, but our list would be defective were we to omit those cross-breeds which are acquiring increased importance every day. With the extended cultivation of turnips and other green crops there has arisen an increased demend for sheep to consume them. Flockmasters in upland districts, stimulated by this demand, happily bethought them of putting rams of the improved low-country breeds to their Cheviot ewes, when it was discovered that the lambs produced from this cross, if taken to the low country as soon as weaned, could be fattened nearly as quickly, and brought to nearly as good weights, as the pure low-country breeds. The comparatively low prime cost of these cross-bred lambs is a farther recommendation to the grazier, who finds also that their mutton, partaking at once of the fatness of the one parent and of the juiciness, hagh flavour, and larger proportion of lean flesh of the other, is more generally acceptable to consumers than any other kind, and can always be sold at the best price of the day. The wool, moreover, of these crosses, being at once long and fine in the staple, is peculiarly adapted for the manufacture of a class of fabrice now much in demand, and brings in consequence the best price of any British-grown wool. The individual fleeces, from being close set in the pile, weigh nearly as much as those of the pure Leicesters. On all these accounts, therefore, these sheep of mixed blood have risen rapidly in public estimation, and are produced in ever-iccreasing numbers. This is accomplished in several ways. The occupiers of uplying grazings in some cases keep part of their ewe flock pure, and breed crosses from another part. They sell the whole of their cross-bred lambs, and get as many females from the other portion as keeps up the number of their breeding flock. This system of crossing cannot be pursued on the most elevated farms, as ewes bearing these heavier crossed lambs require better fare than whea coupled with rams of their own rase. The surplus ewe lambs from such high-lying grazings are an available source of supply to those of a lower range, and are eagerly sought afier for this purpose., Others, trowever, take a bolder course. Selecting a few of the choicest pure Cheviot ewes which they can find, and putting these to a first-rate Leicester ram, they thus obtain a supply of cams of the first cross, and putting these to ewes, also of the first cross, manage in this way to have tbeir entire flock halfsred, and to go on continuously with thes own stock
without advancing beyond a first cross. They, however, never keep rams from such crossed parentage, but always select them from the issuie of parents each genuine of their respective races. We know several large farms on which flocks of crosses betwixt the Cheriot ewe and Leicester ram have been maintained in this way for many years with entire success ; and one at least in which a similar cross with Southdown ewes has equally prospered. Many, however, prefer buying in females of this first cross, and coupling them again with pure Leicester rams. In one or other of these ways cross-bred flocks are increasing on every side. So much has the system spread in Berwickshire, that whereas, in our memory, pure Leicesters were the prevailing breed of the county, they are now confined to a few ram-breeding. flocks. The cross-breed in best estimation in England is that betwixt the Cotswold and Southdown, which is in such high repute that it is virtually established as a вeparate breed under the name of Oxford Downs. In Scotland the cross betwist the Leicester ram and Cheriotewe is that which seems best adapted to the climate and other conditions of the country, and is that accordingly which is most resorted to on farms a portion of which is in tillage. On higher grounds a cross betwixt the Cheriot ram and blackfaced ewe is in good estimation, and has been extending cousiderably in recent y yoris. This cross-breed seems to equal the pure blackfaced in hardiness, and is of considerably greater value both in fleece and carcase. This cross-breed is known by the name of Halfangs. As in the case of the Leicester-Cheviot eres, flocks are maintained by using rams of the cross-breed.

Section 2.一Management of Lowland Sheep.

As the management of sheep is influenced mainly by ths nature of the lands upon which they are kept, we shall first describe the practice of Lowland flockmasters, and afterwards that pursued on Highland sheep-walks.
On arable farms, where turnips are grawn and a breeding stock of sheep regularly kept, it is usual to wean the lambs about the middle of July. When this has been done, the aged and faulty ewes are drafted out, and put upon good aftermath or other succulent food, that they may bo got ready for market as soon as possible. In many districts it is the practice to take but three crops of lambs from each ewe. A third part of the breeding flock-viz., the fou--year-old ewes-is thus drafted off every autumn, and their places supplied by the introduction of a correspondir, number of the best of the ewe-lambs of the preceding year's crop. These cast or draft ewes are then sold to the occuspiers of richer soils in populous districts, who keep thera for another season to feed fat lambs. Such parties boy in a fresh stock of ewes every autumn, and, as they phrase it, "feed lamb and dam." In other cases the ewes are kept as long as their teeth continue sound, and after that they are fattened and sold to the butcher directly from the farm on which they have been reared. When the ewes that are retained for breeding stock have been thus overhauled, they are put to the worst pasture on the farm, and run rather thickly upon it. Attention is necessary, for some days after weaning, to see that none of them suffer from gorging of the udder. When it appears very turgid in any of them, they are caught and partially milked by hand; but usually the change to poorer pasturage, aided by their restlessness and bleating for want of their lambs, at once arrests the flow of milk:- The time of admitting the ram is regulated by the purpose for which the floek is kept, and by the date at which fresh green food can be reckoned upon in spring. When the produce is to be disposed of as fat lambs, it is of course an object to have them early; but for a holding stock, to be reared and fattened at fourteen to sixteen
months old, from 20th Septernber to 20th October, accord* ing to the climate of the particular locatity, is a usual time for admitting rams to erres. A few weeks beforo this takes place tho erwes are removed from bare pasture, and put on the freshest that the farm affords, or, better still, on rape; failing which one good feed of white turnips per diem is carted and spread on their pastures, or the ewes are folded for part of the day on growing turnips. The rams are turned in amongst them just when-this better fare has begun to tell in their improving appearance, as it is found that in such circumstances they come in heat more rapidly, and with a greatly increased likelihood of ronceiving twins. On level ground, and with moderatesized enclosures, one ram suffices for sixty ewes; but it is bad economy to overtask the rams, and one to forty ewes is better practice. Sometimes a large lot of ewes are kept in one flock, and several rams, at the above prcportion, turned among them promiscuously. It is better, however, mhen they can be placed in separate lots. The breasts of the rams are rubbed mith ruddle, that the shepherd may know what they are about. Those who themselves breed rams, or others who hire in what they use at high prices, have recourse to a different plan for the purpose of getting more service from each male, and of knowing exactly when each erre may be expected to lamb; and also of putting each ewe to the ram most suitable to her in point of size, figure, and quality of flesh and fleece. The rams in this case are kept in pens in a small enclosure. What is technically called a teaser is turned among the general flock of owce, which, on being seen to be in heat, are brought up and put to the ram that is selected for them. They are then numberea, and a note kept of the date, or other wise a common mark, varied for each successive week, is put on all as they come up. The more usual practice is to mark the breast of the ram with ruddle, as already described, for the first seventeen days tbat they are among the ewesthat being the time of the periodic recurrence of the heat -and then to use soot instead. When lambing-time draws near, the red-rumped ewes, or those that conceived from the first copulation, are brought into the fold, and the remainder after the lapse of the proper interval. If all goes on well, six weeks is long enough for the rams to remain with the lock. The erves are then put to more moderato fare, taking care, horever, not to pinch them, but to preserve the due medium betwixt fatness and poverty. Under the first-mentioned extreme there is great risk of losing both ewe and lamb at the time of parturition; and under the second, of the ewe shedding her mool, and being unable to nourish her lamb properly either before its birth or after. When there is a considerable breadth of grass-land, the grit or in-lamb ewcs are run thinly upon it so long as the weather continues moderate. Is the pastarage fails or winter weather sets in, they receive a daily feed of turnips or bay, or part of both. In districts where the four-course rotation is pursued, and wheat sowh after seeds, there is a necessity for keeping the erres wholly on turnips and chopped hay or straw. In this case they are made to follow the fattening sheep, and to eat up their scraps, an arrangement which is suitable for both lots. A recently-introduced practice is better still-namely, to feed the ewes at this season on a mixture of one part by measure of pulped turnips or mangel-wirzel to two of chopped straw, which is eerred out to them in troughs set down in their pastures. From the large quantity of straw which ewes are thus induced to eat, they can be allowed to take their fill of this mixture, and be kept in a satisfied and thriving state with a very moderato allowance of roots. As their time to lamb draws near, the mess should be made more nourishicg by adding to it grourd rape-cake, beas-meal, and bran, at the rate of
from th to $\frac{1}{3} \mathrm{~d}$ of a pound of each of these articles to each ewe daily.

The period of gestation in the erre is truentr-one weeks No lambs that are born more than twelre days short of this period survive. Before any lambs are expected to arrive a comfortable fold is provided, into which either the entiro flock of ewes, or those that by their markings are known to lamb first, are brought every night. This fold, which may either be a permanent erection or fitted up annually for the occasion, is provided all round with separate pens or cribs of sizo enough to accommodate a single ewe with her lamb or pair. The pasture or turnip fold to which the flock is turned by day is also furnished with several temporary but well-sheltered cribs, for the reception of such ewes as lamb during the day. It is of especial consequence that ewes producing twins be at once consigned to a separate apartment, as, if left in the crowd, they frequently lose sight of one lamb, and may refuse to orn it when restored to them, even after a very short separation. Some ores will make a favourito of one lamb, and wholly repudiate the other, even when due care has been taken to keep them together from the first. In this caso the favourite must either be separated from her or be muzzled with a piece of network, to prevent it from getting more than its share of the milk in the shepherd's absence. Indeed the materaal affection seems much dependent on the flow of milk, as ewes with a.woll-filled udder seldons trouble the shepherd by such capricious partialities. As soon as the lambs have got fairly afoot, their dams are turned with them into the most forward piece of seeds, or to rape, rye, winter-ats, or water-meadow, the great point being to have abundance of succulent green food for the ewes as soon as they lamb. Without this they cannot yield milk abundantly, and without plenty of milk it is im possible to have good lambs. It is sometimes necessary to aid a lamb that has a pnor nurse with cow's milk. This is at best a poor alternative; but if it must be resorted to, it is only the milk of a farrow cow, or at least of one that has been calved sis months, that is at all fit for this pur. pose. To give the milk of a recently-calved cow to a young lamb is usually equivalent to knocking it on the head. Ewe milk is poor in butter, but very rich in curd, which is known to be also in a measure the character of that of cows that have been long calved and are not again pregnant. We have found the Aberdeen yellow bullock turnip the best for pregnant and nursing ewes. Mangelwurzel is much approved of by the flockmasters of the southern counties for the same purpose. It is of importance at this season to remove at once from the fold and pens all dead lambs, and filth of every kind, the presence of putrefying matter being most hurtful to the flock. Should a case of puerperal fever occur, the shepherd must scrupulously avoid touching the ewe so affected; or if he has done so, some one should take his accoucheur duties for a few days, as this deadly malady is highly contagious, and is often unconsciously communicated to numbers of the flock by the shepherd's hands. Unnecessary interference with ewes during parturition is much to be depre cated. When the presentation is all right, it is best to leave them as much as possible to their natural efforts. When a false presentation does occur, the shepherd must endeavour to rectify it by gently introducing his hand after first lubricating it with fresh lard or olive-oil. The less dogging or disturbance of any kind that ewes reccive during pregnancy the less risk is there of unnatural presentations. As soon as lambs are brought forth the shepherd must give them suck. When they have once got a bellyful, and are protected from wet or excessive cold for two or three days, there is no fear of their taking harm from ordinary weather, provided only that the ewes have plenty of suite
able food. Lambs are castrated, acied, and ear-marked, with least risk when about ten days old. Ewes with lambs must have good and clean pasturage throughout the summer. For this parpose they must either be run thinly among cattle or have two or more enclosures, one of which may always be getting clean end fresh for their reception as the other gets bare and soiled. We have not found any advantage in allowing lambs yeaned in March to run with their dams beyond 20th July. A clover eddish or other perfectly clean pasture is the most suitable for newlyweaned lambs. Such as abound in tath, as it is called in Scotland-that is, rank herbage growing above the droppings of sheep or other animals-are peculiarly noxious to them. Folding upon rape or retches suits them admirably, so that fresb supplies are given regularly as required. Sheep, when folded on green rye or vetches, require a good deal of water, and will not thrive unless this is supplied to them.

All sheep are liable to be infested with certain vermin, especially "fags" or "kaids" (Melophagus ovinus) and lice. To rid them of these parasites various means are resorted to. Some farmers use mercurial ointment, which is applied by parting the wool, and then with the finger rubbing the ointment on the skin, in three or four longitudinal seams on each side, and a few shorter ones on the neck, belly, legs, \&c. Those who use this salve dress their lambs with it immediately a fter shearing their ewes, and again just before putting them on turnips. More frequently the sheep are immersed, all but their heads, in a bath in which arsenic and other ingredients are dissolved. On being lifted ont of the bath, the animal is laid on spars, over a shallow vessel so placed that the superffuous liquor, as it is wrung out of the fleece, flows back into the bath. If this is done when the ewes are newly shorn, the liquor goes farther than when the process is deferred until the lambs are larger and their wool longer. It is a good practice to souse the newly-shorn ewes, and indeed the whole flock at the same time, in a similar bath, so as to rid them all of vermin. ${ }^{1}$

As turnips constitute the staple winter fare of sheep, it is necessary to have a portion of these sown in time to be fit for use in September. Young sheep almays show a reluctance to take to this very succulent food, and shoula therefore be put upon it so early in autumn that they may get thoroughly reconciled to it while the weather is jet temperate. Rape or cabbage suits admirably as transitionary food from grass to tarnips. When this transference from summer to winter fare is well managed, they usually make rapid progress during October and November. Some farmers recommend giving the hoggets, as they are now called, a daily run off from the turnip-fold to a neighbouring pasture for the first few weeks after their being put to this diot. We hare found it decidedly better to keep them steadily in the turnip-fold from the very first. When they are once taught to look for this daily enlargement, they become impatient for it, and do not settle quietly to their food. If possible, not more than 200 should be kept in one lot. The joungest and meakest sheep should also bave a separate berth and more generous treatment. Turnips being a more watery food than sheep naturally feed upon, there is great advantage in giving them from the first, alaag with turnips, a liberal allovance of clover hay cut ints half-inch chaff. When given in this form, in suitable troughs and in regular feeds, they will eat up tho whole without waste, and be greatly the better for it. To

[^64]economise the hay, equal parts of good oat stram may bo cut upawith it, and will be readily eaten by the flock A liberal supply of this dry food corrects the injurious effects which are so often produced by feeding sheep on turnips alone, and at the same time lessens the consumption of the green food. We beliere also that there is true economy in early beginning to give them a small daily allowance, say $\frac{1}{}$ 开 each, of cake or corn. This is more especially desirable when sheep are folded on poor soil. The extraneous food both supplies the lack of nutrition in the turnips and fertilises the soil for bearing succeeding crops. An im. mense improvement has been effected in the winter feeding of sheep by the introduction of machines for slicing turnips. Some careful farmers slice the whole of the turnips used by their fattening sheep, of whatever age; but usually the practice is restricted to boggets, and only resorted to for them when their milk-teeth begin to fail. In the latter case the economy of the practice does not admit of debate. When Mr Pusey states the difference in value between hoggets that have had their turnips sliced and others that have not, at 8 s. per head in favour of the former from this cause alone, we do not think that he over-estimates the benefit. Those who slice turnips for older sheep, and for hoggets also as soon as ever they have taken to them, are, we suspect, acting upon a sound principle, and their example is therefore likely to be generally followed. There is no doubt of this at least, that hoggets frequently lose part of the flesh which they had already gained from the slicing of the turnips being unduly delayed. By 1st December their first teeth, although not actually gone have become so ineficient that they require longer time and greater exertion to feed their fill than before; and this, concurring with shorter days and colder weather, operates much to their prejudice. When the slicing is begun, it is well to leave a portion of growing turnips in each day's fold, as there are always some timid sheep in a lot that never come freely to the troughs; and they serve, moreover, to occupy the lot during moonlight nights, and at other times when the troughs cannot be instantly replenished. As the sheep have access to both sides of the troughs, each will accommodate nearly as many as it is feet in length. There should therefore be provided at least as many foot-lengths of trough as there are sheep in the fold. The troughs should be perpendicular at their outer edges, as the sheep are less apt to scatter the sliced turnips on the ground with this form than when they slope outwards. It is expedient to have a separate set of similar troughs for the cake or grain and chopped fodder, which it is best to use mixed together.

As the season when frost and snow may bo expected approaches it is necessary to provide in time for the flock having clean unfrozen turnips to eat in the hardest weather. To secure this, care must be taken to have always several weeks' supply put together in heaps and covered with earth to a sufficient thickness to exclude frost. The covering with earth is the only extra cost incurred from using this precaution, for if slicing the roots is practised at all, it necessarily implies that the roots must be pulled, trimmed, and thrown together, and this again should be done in such a way as to insure that the dung and urine of the sheep shall be equally distributed over the whole field. This is secured by throwing together the produce of 18 or 20 drills into small heaps, of about a ton each, in a straight row and at equal distances apart. For a time it will suffice to cover these beaps with a few of the turnip leaves and a spadeful of earth here and there to prevent the leaves from being blown off. This arrangement necessitates the regular moving of the troughs over the whole ground. As the heaps are stript of their covering special care must be taken to scatter the tops well about, otherwise ther
will be corresponding rank spots in the grain crop that follows.

On light dry soils it is usually most profitable to consume the whole turnip crop where it grows by sheep, and to convert the straw of the farm into dung by stere cattle kept in suitable yards, to which a daily allowance of rape or cotton cake is given, with wholesome water constantly at their command. But it may at times oe more profitable to use young sheep instead of cattle for this purpose, and it is quite practicable to do so. In the winter of 1865-66, in consequence of the prevalence of rinderpest, we had recourse to this expedient with entire success. A lot of 200 hoggets was put into two contiguous yards, of a size which ordinarily had accommodated 15 cattle each; the hoggets were fed on hay cut into chaff, which was served to them in troughs so placed as to be protected from rain. Along with this chaff they recoived 2 theach daily of mixed cakes and grain, and a constant supply of water. A covered passage by which the yards communicated was costed with quicklime, which was stirred up daily and added to trice a-week. Care was taken to drive the whole lot of sheep over this limed passage once every day, with liberty to thern to pass and repass as much as they liked at all times. The yards were kept clean by being thinly covered over with fresh straw every day. By this means, and by an occasional paring of the hoofs when seen to be necessary, their feet were kept perfectly sound. In other respects they throve well, and the death-rate was unusually small.

To clear the ground in time for the succeeding grain crop a portion of the turnip crop is usually stored on some piece of grass or fallow, where the flock is folded until the pastures are ready to receiye them. As the date of this varies exceedingly, it is well to lay in turnips for a late season, and rather to have some to spare than to be obliged to stock the pastures prematurely. If corn or cake has been given in the turnip field, it must be continued in the pasture. Hoggets that have been well managed will be ready for market as soon as they can be shorn, and may not require grass at all. They usually, however, grow very rapidly on the first flush of clovers and sown grasses, especially when aided by cake or corn. When the soil is of poor quality, it is expedient to continue the use of such extra food during summer. The best sheep are generally sent to market first, and the others as they attain to a proper degree of fatness. Store sheep or cattle are then purchased to occupy their places until the next crop of lambs is weaned.

Lowland flocks are for the most part ehorn in May, although many fat sheep are sent to market out of their wool at a much earlier date. Indeed railway transit has made it practicable to forward newly-shorn sheep to market so quickly that there is now little risk of their suffering from-exposure to bad weather, and accordingly few fat sheep are now sent to market rough after the 1st of April. But in the case of nursing ewes and store sheep of all kinds it is highly inexpedient to deprive thern of their fleeces until summer weather has fairly set in. Accordingly, the latter half of May and the first half of June are, in ayerage seasons, the best shearing time, beginning with the hoggets and ending with the ewes.

This practice of shearing a portion of the flock so early es April renders it necessary to make a change on that mode cf sheep-washing so well described by the author of the Seasons. Artificial washing-pools are accordingly now prorided by damming up some small stream of clean water. The bottom is paved and three sides faced with bricks set in cement, with a sluice to let off the foul water when uecessary. The most accessible side of the pool is formed of strong planks, securely jointed, behind which the men engaged in washing the sheep stand dry, and ac-
complish their work much in the way that a washerwoman does hers at her tub. A sloping rassage at the upper end of the pool allows the sheep to walk out, one by one, as they are washed. One such pool is often made to accommodate several neighbouring farms.

Section 3.-Mranagement of Mountain Sheep.

We have already taken notice of the extent to which Cheriot sheep have of late years been introduced in the Highlands of Scotland. Many of the immense grazings there are rented by farmers resident in the south of Scotland, who only visit their Highland farms from time to time, and intrust the management of their flocks and shepherds, which rival in numbers those of the ancient patriarcha, to an overseer, whose duty it is to be constantly on the grounds, to attend in all respects to the interests of his employer, see his orders carried into effect, and give him stated information of how it fares with his charge.

The following pertinent remarks we quote from an oxtensive and experienced Highland sheep-farmer:-
"The management of flocks in the Highlands is much the same as on high and exposed farms in the higher districts of Roxburgh shire, Dumfriesshire, and Selkirkshire, as regards. the ewo hirsels ; the ewe lambs either not being weaned, or that only for eight or ten days, so that they may continue to follow their mothers. The wether lambs are sent to the wether ground about the beginning of Angust, and herded on the part of it considered most adapted for their keep till about the middle of Oetober, when they are eent to turnips mostly in Ross-shire, where they remain till the middle of March or beginning of April. This is one of the heaviest items of expensa in Highland farming, amounting to fully 4 s . per head; and thus, apon a farn equally stocked with ewes and wethers, adds just about one-third to the rental of tha farm. On the return of the wether hogs they are put to particular parts of the wether ground, at large amongst the other ages of wether etock, where they rumain until drawn out when three years old at the usual season to send to market ; with this exception, that the year following (when they are dinmonts), the smallest of them, those that are not considered capable of wintering at home, ay to the extent of two or three to the acore, are again drawn out and eent with the hogs to turnips.
ijir seiliar, in his Peport of the County of Sutherland, gives a very minute and detailed account of the mode of management as practised on his farms. This, horvever, does not apply to extensive West Highland farms, which have no arable farms attached, no fields to bring in the diseased or falling-off part of the stock to, nor is it ever practicable to shift any part of the etock to different parts of the farm from that on which they have been reared."

Sheep Farming on the hills drained by the Tweea.

Until quite a recent date the grassy hills enclosing the upper valley of the Tweed and its numerous tributaries were stocked almost entirely with Cheviot sheep, and the highest and most heathery portions of the Lammermuir hills with the blackfaced breed. Since about the year 1850, under the stimulus of a growing demand and rapidly advancing price for cross-bred lambs, a great change of practice has been going steadily on. Formerly, on such hill-country farms, cultivation of the soil was restricted to a very small scale indeed, but latterly it has been extending up the valleys and hill-sides at a rapid rate. Large areas of rough natural pasture are yearly bcing converted into fields, which are well enclosed by substantisl stone walls, and by draining, liming, and the liberal application of portable manures, are made to produce luxuriant crops of turnips, oats, and the cultivated clovers and grasses. As this process of reclamation goes on, half-bred sheep (LeicesterCheviots) are substituted for pure Cheviots, the lambs of this cross breed being at weaning-time worth from 10s, to 15s. more per head than Cheriots, their fleces heavier by 2 Ib each as well as more valuable per ib , and the draft efves also more valuable in about the same proportion as the lambs. These half-bred sheep must be kept almost exclusively on the reclaimed lands, which, however, will keep about double the number of this more valuable breed of
sheep than they did of the less valuable when in their natural unreclaimed state. When the lowrist-lying and kindliest soils of such farms have thus been improved and devoted to the keeping of half-bred sheep, the higher and poorer parts are often unfit for keeping Cheviot sheep, and are stocked with the bardier blackfaced breed. Cheviots are in consequeuce rather at a discount at present as coripared with a period still recent.

The general management of these hill-country half-bred flocks does not differ materially from those of the plains. They require generous fceding, and being prolific and good nurses, they pay well for it. The oats grown on such farms are disposed of most profitably when consumed by the flock.

We begin our description of the management of strictly hill flocks with autumn, and assume that the yearly cast of lambs and aged ewes has been disposed of, and only as many of the ewe lambs retained as are required to. keep up. the breeding stock. A former practice was to keep these ewe lambs or hoggets by themselves on the best portions of the respective walks, or rakes as they are called on the Borders. Now, however, they are kept apart from their dams only as long (eight or ten days) as suffices to let the milk dry up; whereupon they are returned to the flock or hirsel to which they belong, and at once associate again each with its own dam. The hoggets, under the guidance of the ewes, are thus led about over the ground, according to varying seasons, and under the promptings of an instinct which far surpasses the skill and care of the best shepherd. The latter, indeed, restricts his interference chiefly to keeping his flock upon their own beat, and allows them to distribute themselves over it according to their oim choice. When thus left to themselves each little squad usually selects its own ground, and may be found, the same individuals about the same neighbourhood day after day. This plan of grazing the hoggets and ewes together has been attended with the best results. There are far fewer deaths among the former tban when kept separate, and being from the first used to the pasturage and acquainted with the ground, they get inured to its peculiarities, and grow up a bealthy and shifty stock, more easily managed and better able to cope with trying seasons than if nursed elsewhere, and brought on to the ground at a more advanced age. Each hogget and its dam may be seen in couples all through the winter and spring, and with the return of summer it is a pretty sight to see these family groups grown into triplets by the addition to each of a little lamb.

As the autumn advances, the flockmaster makes his preparations for smearing or bathing. The smearing material is a salve composed of tar and butter, which is prepared in the following manner :-Six gallons of Archangel tar and 50 Eb of grease-butter are thoroughly incorporated. and as much milk added as makes the salve work freely This quantity suffices for 100 sheep. This salve destroys vermin, and by matting the fleece is supposed to add to the comfort and healthiness of the sheep. It adds considerably to the weight of the fleece, but imparts to it an irremediable stain, which detracts seriously from its value per 形. A white salve introduced by Mr Ballantyne of Holylee is now in repute on the borders. It is prepared as follows: -30 Ib butter, 14 tb rough turpentine, and 3 lb soft soap are melted and mingled in a large pot; 2 娄 soda and $\frac{1}{2}$ fo arsenic are then dissolved in a gallon of boiling water, and this, along with 12 gallons more of culd water, is intimately mixed with the other ingredients, and yields enough for dressing 100 sheep at the rate of a quart to each. Some persons, belicring the arsenic an unsafe application, substitute for it half-argallon of tobacco juice. Instead of the rough turpentine, some also use half-a-gill of spirit of tar for each sheep; this
ingredient being mixed in each quart-ootful at the time of application.

In applying these salves, the sheep are brought to the homestead in daily detachments, according to the number of men employed, each man getting over about sixty in a day. A sheep being caught and laid upon a stool, the wool is parted in lines running from head to tail, and the tar salve spread upon the skin by taking a little upon the fingers and drawing them along. In using the white salve each shepherd has a boy assistant who pours the liquid salvo from a tin pot with a spout, while he holds the wool apart. This white salve destroys vermin, and is believed to nourish the wool and to promote its growth. Of late years the practice of dipping has largely been substituted for salving or pouring. It is practived as already described in the case of low-country flocks, save only that with large flocks it is expedient to have it performed at some central and otherwise convenient part of the grounds. Instead of a movable tub and dripping board of wood, it is better to have a fixed one built of concrete, or bricks set in cement, with a paved dripping pen large enough to hold 50 sheep in each of its two divisions. The other requisites are a boiler to supply hot water for dissolving the dipping stuff, a pipe to convey cold water to the bath, and a waste pipe to empty it for cleansing. This salving or dipping must all be accomplished before the 20th November, about which time the rams are admitted to the flock. Before this is done another preliminary is required. As the ewe hoggets graze with the flock, it is necessary to guard them from receiving the male, for which purpose a piece of cloth is sewed firmly over their tails, and remains until the rams are withdrawn. This is called breeking them. On open hilly grounds about forty ewes are sufficient for each ram. To insure the vigour and good quality of the flock, it is necessary to have a frequent change of blood. To secure this by purchasing the whole rams required would be very costly, and the efore each flockmaster endeavours to rear a home supply. For this purpose he purchases every autumn, often at a high price, one or tro choice rams from some flock of known excellence, and to these he puts a lot of his best ewes, carefully selected from his whole flock. These are kept in an enclosed field until the rutting season is over, and after receiving a distinctive mark are then returned to their respective hirsels. From the progeny of these selected ewes a sufficient number of the best male lambs is reserved to keep up the breeding stock of the farm. The rams are withdrawn from the flock about 1st January, and are then kept in an enclosed field, where they receive a daily feed of turnips.

Except in beavy falls of snow and intense frosts, the flocks subsist during the entire season on the nntural produce of their pastures. It is necessary, however, to be provided for such emergencies both as regards food and shelter. For this purpose cach shepherd has at suitable parts of his beat several stells or artificial shelters, such as are described at p. 402, and beside each of them a stack of hay from which to fodder the flock when required. So long as the sheep can get at heather or rushes by scraping away the snow with their feet they will not totach the hay, but when the whole surface gets buried and bound up, they are fain to take to it. The hay is laid out in handfuls over the snow, twice a day, if need be. The hay should, howeper, be administered with caution, and never to a greater extent than is absolutely necessary. Whenever there is a lull in the storm, the shepherd should use his utmost endearour to move the flock out from their shelter to the nearest piece of rough heather or ground from which the mind has drifted off the snow, and where the sheep cau by scraping with their feet get at their natural food. This sliould be done not merely to economise hay, but hernnse
it is found that sheep invariably come through the hardships of "ivinter in better condition when thus encouraged to shift as much as possiblo for themselves, than when fed to the iull on hay, and allowed to keep to their shelter all the day.

Much vigilance, promptitude, and courage, sro requred on the part of shopherds in theso wild and stormy districts in getting their flocks into places of safety on the breaking out of sudden snow-storms, and tending them skilfully there.

In spring sdrantage is taken of any dry weather tnat occurs to set fire to the roughest portions of the old heather and other coarse herbage, and this being thus cleared off, a fresh young growth comes up, which yields a sweeter pasture to the flocks for several succeeding years. Careful shepherds are st pains to manage the muir-burning so as to remove the dry effete herbage in long narrow strips, and thus to secure a regular intermixture of old and young heath.

The lambing season.is one of much anxiety to the master; and to his shepherds and their faithful sagacious dogs it is one of incessant toil. They must be a-foot from "dawn till dewy eve," visiting every part of their wide range several times a-day, to see that all is right, and to give assistance when required. The ewes of these hardy mountain breeds scldom require man's assistance in the act of parturition, but still cross presentations and difficult cases occur even with them. Deaths occur also among the newly-dropt lambs, in which case the dam is taken to the nearest stell, and a twin-lamb (of which there are usually enough to serve this purpose) put in the dead one's place. The dead lamb's skin is stript off, and wrapt about the living one, which is then shut up beside the dam in a small crib or parik, by which means she is asually induced in a few hours (and always the sooner the more milk she has) to adop's the supposititious lamb. As the lambing season draws to a close, each shepherd collects the unlambed ewes of his flock into an inclosure near his cottage, and examines them one by one to ascertain which are pregnant. To the barren ones he affixes a particular mark, and st once turns them again to the hill, but the others sre retained close at hand until they lamb, by which means he can attend to them closely with comparatively little labour. The lambs are castrated and docked at from 10 to 20 days old. For this and for all sorting and drafting purposes an ample fold and suit of pens, formed of stout post and rail, are provided on some dry knoll convenient for each main division of the flock. To this the flock is gently gathered, and penned off in successive lots of 10 or 12, taling care that each lamb has its own dam with it before it is penned, and to do this with as little dogging and ruaning as possible. The male lambs of the pure blackfseed breed, when designed to be kept as wethers, are not castrated until they are eight or ten weeks old, partly because then this is done sooner their horns have a tendency to get so crumpled as to grow into their eyes, and partly because a bold horn is thought to impreve the appearance of $\& n$ aged wether.

On these eluvated sheep-walks shearing does not take place untid Julg. It cannot, in fact, be performed until the young wool has begun to grow or rise, and so admit of the shears werking freely betwixt the skin and the old matted flecce. The sheep are previously washed by causing them to swim repcatedly across a pool with a gentle curreut fowing through it. They are made to plunge in from a bank raised, either naturally or artificially, several feet above ths surface of the water. This sousing and swimming in fure water cleanses the fleece far more effectwally than could be supposed by persons accustomed only ω the mode pursued in arable districts. Shearing takes
place three or four days after washisg, and in the intcrima much vigilance is required on the fart of the shepherd to prevent the sheep from rubling thenselves under banks of moss or earth, and so undoing the washing. In the case of blackfaced llocks washing is now not unfrequently altogether dispensed with, because the greater weight of unwashed wool more than counterbalances the difference in price betwixt washed and unwashed fleeces. Each man usually shears abuut 60 sheep a-day. It is neither practicable nor expedient to shear these mountain sheep so closely as the fat denizens of lowland pastures. For this operation each shearer is provided with a low-legged sparred stool, having a seat at one end, or with a bench built of green turf. These are arranged in a row close in front of a pen, in which the unshorn sheep are placed. The shearers being seated, each astride his stool or bench, with their backs to the pen, a man in it catches and hands over a sheep to each of them. The sheep is first laid on its back upon the stool, and the wool shorn from the under parts, after which its legs are bound together with a soft woollen cord, and the fleece removed, first from the one side and then from the other, by a succession of cuts running from head to tail. The fleeces are thrown upon a cloth and inmediately carried to the wool-room, where, after being freed from clots, they aro neatly wrapped up and stored away. Before the shorn sheep are released each receives a mark or buist by dipping the owner's cypher in melted pitch, and stamping it upon the skin of the animal. To discriminate different ages and hirsels, these marks vary in themselves or are affixed to different parts of the sheep. Once or twice a year all stray sheep found upon the farms of a well-defincd district aro brought to a fixed rendezrous, where their marks are examinod by the assembled shepherds, and each is restored to its proper owner.

Weaning takes place in August or early in September. A sufficient number of the best ewe lambs of the pure brecds are selected for maintaining the llock, and are treated in the way already noticed. With this exception, the whole of the lambs are sold either to low-country graziers or as fat lambs to the butcher. Tho Nether lambs usually go to the former, and the ewe lambs of the cross betwixt blackfaced ewes snd Leicester rams to the latter. These cwes being excellent nurses, make their lambs very fat in favourable scasons, in which case they are worth more to kill as lambs than to rear. Immediately after the weaning, the ewes which have attained mature age are disposed of, generally to low-country graziers, who keep them for snother year, and fatten lamb and dam. To facilitate the culling out of these full-aged ewes, each successive crop of ewe lambs receives a distinctive carmark, by which all of any one age in the flock can be at once recognised.

Section 4.-Wool.

Wool is such an important part of the produce of our flocks that it seems proper to offer a few remarks upon it before leaving this subject, although it will fall to be considered under its proper heading. We here insert with much pleasure the following communication received from the late John Barff, Esq., of Wakofield :-

[^65]have also Downe and balf-breds. Kent has its own sheep, called Kents; the wool being much finer than the real long-wool sheep, running in quality and. weight of feece between the latter and the Down, something like your half:breds from Cheviot ewes by Leicester rams. They have somewhat of a similar sheep in Devon, Cornwall, Hereford, and Shropshire, but the quality in the two former counties scarcely so fine as the two latter, or the Kent wools. Norfolk has tha original Down and the half-bred; Surrey, Suffolk, Essex, Sussex, and Hampshire are nearly all Down wools, though in these counties, upon some of their best lands, where they can cultivate the turnip, the half-bred are being introduced ; and I need scarcely say'to you, the Leicester oheep, as well as half-breds and Cheviots, are to be found in Durham, Northumberland, Berwickshire, Roxburghshire, Lothians, and other parts of Scotland where the turnip is cultivated; and in those parts where it is not, and on the hills, the Cheriot and blackfaced prevail. The blackfaced are used for low padding cloths, carpets, and horse-rugs. The Down wools were formerly all used for cloths and fannels; but now, from tha improvement in worsted machinery, one-third is used for worsted yarns and goods; and as the portion suitable for combing purposes is more valuable for this purpose than for cloths or flaunels, the grower aims af getting it as deep-stapled as possible; and this has led to a great increase in the weight of the fleece, but at the same tims a deterioration in. the quality. The Leicester, Lincolnshire, and half-bred, and Cotswolds, as well as the Kents aud Devons, are entirely used for worsted yarns and goods; and a very small portion of the wools imported come in competition with them. The nearest approach is a little imported from Holland and Denmark ; but they partake more of your cross from a blackfaced etve by a Leicester ram. The Irish wools are either the longwoolled sheep similar to the Leicester, the mountain sheep similar to your Cheviot, or the small Welsh sheep. The Irish wools are generally open-haired, and have not the richness of the Leicester or our English, and are not so much csteemed or valuable as English wool of apparently the same quality by $\frac{1}{2}$ d. to 1 d . per tb . Richness of handle is now very desirable, as there is a demand for what are called glossy yarns, which wools fed on pasture or good new seeds only can produce, and which cannot be obtained from the wools grown on chalk or hard lands, such as our midland counties-viz., Oxford, Bedford, and Northampton-generally produce
"In - ery fleece of wool there are two or three qualities-not more thin two or three in the blackfaced, four or five in the long. woolled sheep, five or six in the half-bred, and seven or eight in a Down fleece ; and I may say every fleece undergoes this sorting or separation before being put into any process of manufacture. Of course the more there is of tha best quality in any fleece tha more desirabla and valuable the fleece is ; in blackfaced, to be free from dead hair or kemps; and we find in all the other wools that the more close the stapla and purly the wool, the more it yields of the finer qualities; whillst the open-haired makas more of the lower quakity. The breeder should therefore, in selecting his tupe with a view to good wool; chooss them with a closa purly staple. A grest deal of the excellence, however, of wool depends upon the nature of the aoil on which tha sheep ara fed. Upon the chalk and sandy hard lands we always find the worst qualities of wool of its kind, whilst the hest comes from the rich good lands, where thera is plenty of old grass or seeds. Thus the wools of Roxburghshire, as a general rule, are better than Berwickshire or Lothian ; Leicester, Lincolnahire, Nottingham, and Warwickshire, auperior to Oxford, Cambridga, Bedford, or Northampton; and in Downs, Sussex and Surray, better than Essex and Norfolk, from their downs being more grassy and tha land better. Tha principal quality required in wool is a rich soft handle, as such is always found to improve in every process it is put through in the various stages of its manufacture, whilst the wools grown on chalk or hard lands, and which have a hard bristly handle, get coarsar as they progress in the manufacture.
"With regard to the salves or baths used for destroying vermin, we do not know what. kinds are usea in the different localities, but of those used with you we dialike the spirit of tar and tobacco. Wilson of Coldstream's dip appears to answer, and one called Ballantyne's, used in Selkirkshire ; but in all these a great deal depends upon their being properly attended to, and being put on at tha proper season. If put on in the autumn, we don't perceive that thay have been ueed, and whenever wa have. to make a complaint on this head, we find it arises from the baths haring been used in spring."

CHAPTER XVIIL

LIVE STOCK-GOATS, \&O.

Section 1.-Goats.

Goats never occupied an important piace among the domesticated animals of the British Islands, and, with the $\mathbb{X}_{\mathrm{L}}=$ ption of Ireland, their numbers have been constantly
diminishing. By the strtistical returns it appears that in 1871 there were 232,892 goats in Ireland, which in 1872 had increased to 242,310 . The value of goat's milk, as a source of household economy, is much greater than is usually supposed. This is so well shown by Cuthbert W. Johnston, Esq., in an article in the Farmers Maggzine, that we shall quote from it at snme length.
"The comfort derived by the inmates of a cottage from a regular supply of new milk need hardly be dwelt upon. Evcry cottager's wife over her tea, every poor parent of a family of children fed almost entirely on a vegetabla diet, will agrea with me that it is above all things desirabla to ba able to have new milk as a variation to their daily food of bread and garden vegetables. The inhabitant of towns and of suburban districts, we all know, is at the mercy of the milk dealer; the milk he procures is rarely of the best quality, and under the most favourable circumstances he receives it with suspicion, and his family consume it with sundry misgivings as to its wholespmeness.
"Having personally experienced these difficulties, and' having about three years since commenced the attempt to supply my family with goat's milk, and as our experience is cheering, I desira in this paper to advocate the claims of the milch goat to tha attention of the cottager, and the other dwellers in the suburban and rural districts.
"Few persons ars perhaps uware of the gentleness and playfulness of the female goat-horv very cleanly ara its habits, how readily it accommodates itself to any aituation in which it is placed Confined in an outhonse, turaed on to a common or into a yard, tethered on a grass plat, it seems equally content. I have found it readily accommodate itself to the tethering system, fastened by a leathern collar, rope, and iron swivel, secured by a staple to a heavy log of wood. Tha \log is the best (and this with a emooth even surface at the bottom), because it can be readily moved about from one part of the grass plat to another. The goast, too, uses the \log as a resting-place in damp weather. The goat ahould be furnished with a dry sleeping-place, and this, in casa of its inhabiting open yards, can ba readily furnished; snything that will serva for a dry dog-kennel will be comfortable enough for a goat.
"The milk of tha goat is only distinguishabla from that of the cow by its superior richesss, approaching, in fact, tha thin cream of cow's milk in quality. The cream of goat's milk, it is true, separates from tha milk with grest tardiness, and never so oomplately as in the case of cow's milk. This, however, is of little conseqnence, sinca the superior richness of goat's milk renders the use of its cream almost needless. The comparative analyais of milk of the cow and gost will ahow my readers how much richer the latter is than that of tha former; 100 parts of each according io Mr. Regnault, gave on an average-

So that, while the milk of the cow yields 12.6 per cent. of solid matters, that, of tha goat produces 17 per cent., goat's milk yield. ing rataer more butter, rather less sugar of milk, but considerably mors caseine (cbeese) than that of the cow.
"It must not be supposed that the taste of tha milk of the goat differs in any degree from that of tha cow; it is, if anything, sweeter, but it is quita deyoid of any tasta which might very reasonably ba supposed to be derivalla from the high-ilavoured shrubs and berbs upon which the animal delights to browse.
"The amount of the milk yielded by the goat varies from tro quarts to one quart per day; it is greatast aoou after kidding tinje, and this gradually decreases to about a pint per dar, a quantity which will continus for twelre months. This is not a large supply, it is true; but still it is one which is available for many very useful purposes; and ba it remembered that when mixed with more than its own bulk of lukewarm water, it is then in every respect superior to the milk supplicd by the London dairymen.
"In regard to the best variety of goat to be kept, I mould recom. mend the smooth-haired kind, which are quite devoid of beards or long hair. In thia opinion I am confirmed by an experienced correspondent, Mr W. 1I. Place of Hound Houss, near Guildford, who ramarked, in a recent obliging communicntion-'I found that the short-haired goats with rery little beards were the best milkers; but from these I seldom had more than four pints a.day at the best (I should say three pints were the averaga), and this quantity decreases as tho time for kidding approaches (the goat carries her young 21 to 22 weeks). Thay should not be fed too well near the time of kidding, or you will losa the kids. In winter I gave them hay, together with mangel-wurzel, globa and Swedists tumips, carrots, and sometimes a few oats, and these kept up their milk as wcll as anything, but of course it'was most abundant whea
they could get fresh grass. The milk I always fonnd excellent, but I never had a sufficient quantity to induce me to attempt makIng butter except once, as an experiment: my cook then made e little, which was easily done in a little box-churn; the butter proved very good. I found the fiesh of the kids very tender and delicate.
"I can add littlo to Mr Place's information as to their food; mine have generally fed out of the enme rack as a Shetland pony, with whom thoy are on exce!lent terms. The pony throughout the eummer is soiled with cut grass, and I notice that the goats pick out the eorrel, eow thistle, and all those weeds which the pony rejects.
' In the garden (if they are, by any chance, allowed to browse), I notice that they eelect the rose-trees, commor laurels; arbutus, laurestinas, and the laburnum. Of culinary vegetables they prefer cabbages and lettuces ; they also bite pieces out of the tubers of the potato. They carcfully pick up the leaves, whether green or autumasl, of timber trees; of these they prefer those of the oak and elm, and delight in acorns and oak-spples. We are accustomed to collect and etore the acorna for them egainst winter; spreading the acorns thinly on a dry floor, to avoid the mouldiness which follows the eweating of scorns laid in a heap. As I have before remarked, none of these astringent eubstances oflect the taste of their milk; and I may here observe that, with ordinsry gentleness, thero is no more difficulty, if 80 much, in milking a goot than a cow.

- The he-goat éngenders at a year old. Tho ahe-goat can prodnce When eaven months old. She generally yeans two kids. The manure of the goat is perhsps the most powerful of all our domestic snimals.
"Such are the chief facts which I have deemed likely to be useful in inducing the extended keeping of the milch gost. It is an animal that, I feel well assured, may be kept with eqnal advantága by the cottager and the dwellers in larger bouses. It is useless to compare it with the cow, or to euppose thet the goat can supplant it in situations where the cow can be readily kept; bnt in the absence of pastures, and in places where there is too little food for cows, I feel well convinced that, with ordinery care and attention, and a moderate frmacss in overcoming the prejudices of those unaccastomed to the goat (and unless these are found in the owner, live stock never are profitable), the value and the comfort of a milch goat are much greater than is commonly known.
"The waste produce of 3 garden is exceedingly usoful in the keep of a goat. By them almost every refuse weed, all the cuttings and clearings which are wheeled into the rubbish-yard, are carefully picked over and consumed. To them the trimmings of laurels and other evergreens, pea-haulm, and cabbage stalks, \&c., are all grateful variations of their food. In winter a little sainfoin, hay, or a few osts, keeps them in exceilent condition. In summer, the mowings of a small prass-plot, ratered with either common or sewage water, will, with the aid of the refuse garden produce, koep \& gost from the ond of April until October."

Section 2.-Hogs.

Although occupying a less prominent place in the estimation of the farmer than the or and sheep, the hog is nevertheless an animal of great valuc. He is easily reared, comes rapidly to maturity, is not very nice as to food; consuming offal of all kinds, and yields a larger amount of flesh in proportion to his live weight and to the food which he has consumed, than any other of our domesticated animals whose flesh is used for food. To the peasantry he is invaluable, enabling the labouring man to turn the scraps evon from his acanty kitehen, and from his garden or allotioent, to the best account. On such fare, aided by a little barley or pollard, he can fatten a good piga and supply his family with wholesome animal food at the cheapest possible rate.

The breeds of swine in Great Britain are numerons, and so exceedingly blended that it is often impossible to discriminate or classify them propedy. The original breeds of the cointry seem to be two, riz., "The old English Hog," Lall, gaunt, Fery long in the body, with pendent ears and a thick cōvering of bristles. The represen. tatives of this old breed aro found chiefly in the western courties of England, especially in Lancashire, Forkshire, and Cheshire, where hegs of immense size are still reared, but greatly improved as compared with their ancestry. Their bones ere smaller, their hair finer sal thinner set, their skin thinner and with a pink tint, the ears etill peadulous but much thinner, the carcase much thicker, and their propensity to fatten preatly increased. This large breed is exceedingly prolific, and the sows are exallent nurses, it being quito commoy for them to farrov and rear from 12 to 18 pigs at
each litter. They are somewhat tardy in erriving at maturity, amd do not fatten readily until that is the case. After sixteen mionths old they, however, lay on flesh very rapidly, grow to very great woights, aud produce hams of excellent quality, with a iarge proportion of lean flesh in them. The Berkishire and IJampshire hoy ecems originally to heve been from the eame stock, but by some early cross acquired the thicker carcase, prick-ears, shorter limbs, and earlier maturity of growth, by which they are characterised. The other native breed is found in the Highlands and Islands of Scotland. They are very small, of a dusky brown colour, with coarse bristles along the epine, and prick-eers. They are oxceedingly hardy, and subsist on the poorest fare, boing offen left to range about without shelter, and eupport themselves as they beet can on the roots of plants, shell-fish, sesmeed, and dead fish cast up by the tide.
The improved breeds now so abundant have been oltained by crossing these old races with foreign hogs, and chiofly with the Chinese and Neapolitan. Our modern while breeds, with prick-earg, short limbs, fine bone, delicate white flesh, end remarkable propensity to fatten at an early age, are indebted for these qualities to the Chinese stocks, The improzed black breeds, of which the Essex may bo selected as the type, and whick possess the qualities just onumerated in even a greater degree, are o cress from the Neapolitan. They are cheracterised by their very small muzzle, fine bone, black colour, and soft skin nearly destitute of heir. They can be brought to profitable maturity at from eight to twelve months old, the white breeds at from tweise to sixteon months, Both kinds are peculiarly euitable for producing aroall pork to be used fresh, or for pickling. The flesh of these omaller breeds produces, however, oxcellent bacon when used in that manner, end at less cost than that of the larger breeds, for this roason, that it is only from the flesh of 3 hog that bas reached maturity that bacon of the first quality can be produced; and as these have reached that point at an age when the others are but ready for beginning the fattening process, it follows that the carcase of the former, in a state fit for curing, is prodnced at less cost than that of the latter. Sows of the Neapolitan breed and its crosses are better mathers end nurses than the Chinese. Both kinds requiro peouliar care to prevent the pregnant sow from becoming hurtfully fat. Unless kept on poor and ecants fere they inevitably become useless for the purpose of breeding. The Berkshire heg combines the good qualities of the larger end emaller breeds already referred to, eo happily, that he deservedly enjoys the reputation of being as profitable a sort for the farmer as can be found. With proper treatment he arrives at maturity st sbout sixteen months old, yiolds a good weight of carcase for the food which bo has consumed, and his flesh is well adspted for being used either as fresh meat, pickled pork, or becon, according to the age at which he is slaughtered. A rery profitable hog is also obtained by coupling eows of the larger breeds with males of some of the amaller races.
It too frequently happens that less care is bestowed on the breeding of pigs than of the other domesticated animals.

From the early age at which they begin to breed there is need for constant change of the male, to prevent the intermingling of blood too near akin. These animals, too, are excecdingly sensitive to cold, and often suffer much from the want of comfortable quarters. Whether for fattening hogs, or sows with young pigs, there is no better plan than to lodge them in a roomy house with a somewhat lofty thatched roof, the floor being carefully paved with atone or brick, and the area partitioned off into aeparate pens, each furnished with a cast-iron feeding-trough at the sido next the dividing alley, and with adequate drainage, so that the litter in them may be always dry. The period of gestation with the som is sixteen weeks, and as her pigs may be weaned with safety at six weeks old, she usually farrowa twice in the year. In this climate it is desirable that her accouchement should never occur in the winter months. It is a common arrangement to have a pig-shed so placed that the store pigs lodged in it can have access to the cattle-courts, where they grub amongst the litter, and pick up scattered grains that have escaped the thrashing-mill, and fragments of turnips and other food dropped by the cattle. On such pickings, and the wash and offal from the farm kitchen, aided by a few raw potatoes, Swedes, or mangold, and in summer by green vetches, a moderate number of store pigs can be got into forward condition, and afterwarda fattened very quickly. by putting them

Ewe in her second deece
Brat by Mr Bushop of Loserham House. Kers

SOW OR TMT TATRGE EFGTHSIB BREED
Sout by and che Poperey of ICEddison. Vontishere
ENCYCLDPEOIA BRITANAICA, NINTH EDITION
into pens and improving their fare. There is no cheaper way of fattening hogs than by feeding them ${ }^{*}$ on boiled or steamed potatoes, mashed and mixed with a portion of barley or pease-meal. When barley-meal alone is used, it should be mixed with cold water, and allowed to soak for twelve hours before being given to the hogs. A few morsels of coal should be frequently thrown into their troughs. These are eaten with evident relish, and conduce to the health of the animals.

An interesting account of the most approved methods of cutting up, curing, and disposing of 'carcases of pork, is given in the Journal of the Royal Agricultural Society, vol. xi, p. 585.

> Section 3.-Poultry.
is a class of stock deserving more attention than farmers generally give it. There are, indeed, few farm-yards untenanted by fowls of some sort, and few homesteads without a poultry-house. It is rare, however, to meet with an instance where the breeding and management of poultry is conducted with the care and intelligence so frequently bestowed on other kinds of live stock. Now, if poultry is kept at all, whether for pleasure or profit, it is surely worth while to use rational means for securing the object in view. To have good fowls, it is necessary to provide a dry, warm, well-ventilated house, in which they may roost and deposit their eggs. This house must be kept olean, and its tenants regularly supplied with abundance of suitable food. Constant and careful attention is also absolutely indispensable. On farms of the lesser sort, this duty is usually undertaken by the farmer's wife or daughters. It will, however, in most cases be better to entrust the entire charge of the poultry to some elderly female servant. who shall give her undivided attention to it.

The kinds of poultry most suitable for a farm-yard are the common fowls, geese, and ducks. Turkeys and gaineafowl are difficult to rear, troublesome to manage, and less profitable than the other sorts. Of the common fowl there are now many excellent and distinct breeds. The Cochin China or Shanghae is the largest breed we have. They are hardy and very docile ; their flesh is of good quality when young; their eggs, of a buff colour, are comparatively small but excellent in flavour, and are produced in great abundance. The hens resume laying very soon after hatching a brood; sometimes so soon as three weeks. They are the more valuable from the circumstance that their principal laying season is from October to March, when other fowls are usually unproductive. The Dorkings, of which there are several varietiea, as the speckled, the silver, and the white, are not excelled by any breed for general usefulness. The hens are peculiarly noted for their fidelity in brooding, and their care of their young. The Spanish fowls are very handsome in their plumage and form, have very white and excellent flesh, and lay larger eggs than any other breed. The Polish and Dutch every-day layers are peculiarly suitable where eggs rather than chickens are desired, as the hens of both these breeds continue to lay for a long time before showing any desire to brood.

It is to be recommended that, except in situations where a a good price can be got for chickens, the return should be sought for chiefly in eggs.

A suitable stock of fowls being selected, pains must be taken to preserve their health and other good qualities by breeding only from the best of both sexes, and these not too near akin. A very simple plan for securing this is to select a.cock, and not more than six or eight hens, of the best that can be got, to entrust these to the care of some neighbouring cottager, whose dwelling is sufficiently apart eo prevent intercourse with other fowls. and then to use
only the egrgs from these selected fowls for the gencral hatching. There are many advantages in such a course. The whole stock of fowis can thus be had of uniform character and superior quality. If it suit the fancy or object of the owner, his fowls may be of several distinct breeds without any risk of their intermingling; the select breeding stocks can be kept up by merely changing the cock every second year, and not more than one cock to thirty hens need he kept for the general stock, as it is no consequence whether their eggs are impregnated or not. Besides having the run oi the barn-door, cattle-courts, and stack-yard, fowls are greatly benefited by having free access to a pasture or roomy grass-plot. If the latter is interspersed with evergreen shrubs so much the better, as fowls delight to bask under the sunny side of a bush, besidés seeking shelter under it from sudden rain. Their court should also be at all times provided with clean water, and a heap of dry sand or coal-ashes, in which they wallow, and free themselves from vermin. To keep them in profitable condition, they require; besides scraps from the kitchen and refuse of garden stuffs, \&c., a daily feed of barley or oats at the rate of a fistful to every three or four fowls In cold weather they are the better of having some warm boiled potatoes thrown down to them, as also chopped liver or scraps.of animal food of any kind. There is an advantage in haring the poultry-house adjoining to that in which cattle-food is cooked in winter, as, by carry. ing the flue of the furnace up the partition-wall, the fowls get the benefit of the warmth thus imparted to their roostr ing-place. Saw-dust, dried peat, or burnt clay, are suitabls materials for littering poultry-houses, and are preferable to straw. By strewing the floor with such substances two or three times a week, each time carefully removing the provious application, and storing it with the mingled droppings of the fowls under cover, a valuable manure can be secured. When 100 common fowls, a score of geese, and a dozen or two of ducks are kept, the quantity and value of the manure produced by them, if kept by itself and secured from the weather, will surprise those who have not made trial of such a plan.

Of late years the breeding of poultry has in various parts of the kingdom become quite a passion. Not only have many separate treatises been published entirely devoted to this subject, but every agricultural periodical now bears evidence to the popularity of this pursuit.

Section 4.-Treatment of Live Stock under Discase.

Time was when every such treatise as the present was expected to contain a description of the diseases to which the domesticated animals are most subject, and instructions for their treatment under them. . But now that farriery is discarded and veterinary medicine is taught in colleges, the handling of such a subject is obviously beyond the province of a practical farmer. A few general observations is all, therefore, that we offer regarding it. The prorince of the stockmaster obviously is to study how to orevent disease, rather than how to cure it. For this end lit him evercise the utmost care, first, in selecting sound and vigorous animals of their respective kinds, and then in avoiding those errors in feeding and general treatment which are the most frequent causes of disease. When cases of serious disease occur, let the best professional aid that is available be instantly resorted to; but in all those cases which farmers usually consider themselves competent to treat we adrise that they should trust rather to good nursing, and to the healing power of nature, than to that indiscriminate bleeding and purging which is ao commonly resorted to, and which in the maiority of cases does harm instead of good.

CHAPTER XIX.

ILPROVEMENT OF WASTB LANDS.

Notivithstanding the greit progress which agricnltare has made, and the immense amount of capital, energy, and skill which for generations has been brought to bear upon the improvement of our soil, there are still large portions of the surface of our country lying in their natural state, and usually classed under the head of Waste Lands, in contradistinction to those which are under tillage, or have at some time been subjected to the plough. Of this (so called) waste land but a limited portion is absolutely. unproductive. Mucin of it is capable of being converted into arable land, and doubtless will in course of time be so dealt with, but in the meantime this class of waste lands, and very much more that will never be tilled, is of great and steadily increasing value as sheep-walks. Even for this purpose most of it is susceptible of great im. provement, and would well repay it. These lands are comprised under the following descriptions:-1st, Those hilly and mountainous parts of Great. Britain which, from their steep and rugged surface and ungenial climato, are unfit for tillage; $2 d$, Those which lie uncultivated owing to natural poverty of soil, its wetness, or the degree to which it is encumbered with stones; $3 d$, Bogs and mosses; 4th, Lands so near the sea-level as to be more or less liable to be submerged ; and $5 t h$, Blowing sands:

Section 1.-Inprovement of Iigh-lying Shuep Pastures.

The lands referred to under the first of these heads are of very great extent, embracing the whole of the mountainous parts of Scotland and Wales, and much of the high grounds in the north of England and south of Scotland. These high grounds afford pasturage for innumerable flocks of sheep of our raluable mountain breeds. The business of sheep-farming has received a great stimulus of late years trom the ever-growing demand for shecp to consume the green crops of arable districts. These upland sheep-walks are accordingly rising in value, and their improvement is becoming every day of increasing importance. The improvement of these hill grazings embraces these leading features, viz, drainage, shelter, and .enclosuro. Until of late years our hill flocks were peculiarly liable to the rot and other diseases arising from the prosence of stagnant and flood water upon their pastures. Many grazings that had at one time an evil reputation on this account now yield sound and healthy sheep, solely from the care with which they have been drained. To guard against the pernicious effects of flooding, the courses of brooks and runnels, which in leavy rans overflow their grassy margins, are straightened, deepened, and widened, to such ari extent as is required to carry off all flood water without allowing it to. orerflow. Some grounds are naturally eo.dry that this is all that is required to render them safo. But in general the slopes and hollows of hilly grounds abound with springs and deposits of peat, and with flats on which water stag. nates after rain. On well-managed grounds such places are covered with a nctwork of open drains or shallow ditches, about 30 inches wide at top and half as many deep, by which superfluous water is rapidly carried off. The cutting of these drains costs from 89, to 10 s. per 100 rods (of six yards each). In pastoral districts there are labourers who are skilled in this kind of work, and to whom the laying out of the lines is frequently entrusted, as well as the execution of tho work. On very steep places they are careful to aroid a run directly down the declivity, as a strong current of water in such circumstances gutters the bottom of the drain, and clowes those below with the debris thus produced; but with this exception the drains are ${ }_{3}$ lways run straight down the greatest slope of the ground.

When such drains have been properly nnde, it is necea sary to have them statedly overhauled and kept in good order.
Nest in importance to drainage is good and sufficient shelter. This, in the absenco of natural coppices of birch or hazel, is provided by means of clumps and belts of fir plantation. These should always be of such extent that the trees may shelter each other as well as the sheep. Trees planted in a mass always shoot up faster than in narrow strips, and restrain the snow-drift which passes through the latter. A shepherd who knows. the ground well should always be consulted about tho sites of such plantations. The conditions requisite are, that the soil be such as trees will grow in ; that it be so far removed from any brook, ravine, or bog, as to be accessible to the flock from all sides; that there be rough herbage, such as heather, gorse, or rushes, near at hand, which the sheep may be able to get at in deep snow; that it be contiguous to the sheep-walk, and placed so as to afford defenco against the most prevalent winds. A less costly shelter is formed by building what are called stells, which consist of a simple dry-stone wall enclosing a circular space twenty yards or so in diameter, with an opening on one side ; or forming a cross, in one angle of which the shecp find shelter from whatever point the wind blows. A haystack is a necessary adjunct to such defences.

It is a further point of importance to have such grazings surrounded with a ring fence, consisting either of drystone walls, turf walls with wire a-top, or a simple wire fence. This prevents trespass; and the sheep having freedom to range, without watching, up to the boundary, more of them can be kept on the ground than when they are ever and anon turned back by the shepherd. These needful and inexpensive improvements are now generally attended to over the wide pastoral districts of the Scottish border countics. In the remote Highlands they aro still much neglected. There are, however, few agricultural improvements which field so quick and certain a return.

Section 2.—Reclaiming of Moor Lands.

The improvement of the second class of these urreclaimed lands is now much facilitated by the readiness with which portable manures can be obtained for them. Draining and enclosing here necessarily demand the first attention. In some cases the land is so encumbered with stones that careful trenching of the whole surface is the only way of getting rid of them. In the north of Scotland many thousands of acres formerly useless have been convertcd into valuable arable land by this means.

In nearly all parts of the country thero are cxtensivo tracts of this muiry soil, producing only a scanty and coarse herbage, which are susceptible of remunerative improvement. We are happy in being able to submit to the reader the following detailed account of a successful instance of this, kindly furnished to us by George A. Grey, Esq. of Millfield Hill, Northumberland :-
"It is said that necessity is the mother of invention. I was told by seme of my friends that I had given too high a price fur this estate, and that it would be a dearer farm to me now than when 1 rented it from Lord Grey. To overcome this opinion or fact, I thought of several plans of making it more remunerative, and decided on that which I am new about to describe.
"On the high part of tie farm, at an elevation of from 400 to 500 fect above the sea, I had upwarls of 100 acres of meirland of a poor description, which had never been under the plough. This consisted of shert beath, bilberry bushes, and dry white bent grass, and a soft dry deep moss, delightful as a Turkey carpet under foot, and excel. lent excursive ground for old honters, with a small portion of spratty grass and rashes in the damp hollows. The soil is of a free turnif and barley lcam on the fotten whinstone. By planting on the west side, and in seme places suitahle for shelter, I reduced the quantity to about 100 acres. 'This I divided into three fields of abeut 35 ecres cact.
" My great dread was tha. length of time which such a rough dry surface wonlu require to decomposa sufficiently to allow of cultivation, having seen heathery moors in many parts of Scotland lying for two, three, aad four years before crops could be obtained, owing to the great cover of coarsa vegetation preventing the furrow from lying over, and keeping the land so open and dry through aummer that if a braird of corn or green crop was obtained, it would wither away in dry weather.
"I had heard of paring and burning, bnt knew nothing of the process. I, however, obtained the nacessary information very much from Mr Langlands of Be.vick, who had practised it to a consider: s.ble extent. With what I saw there I was so much pleased that I datermined to proceed at once.
"I also saw Mr Langlands"s work done by a paring-plough, such as is used in tha south of England, with a wide plata to cut a furrow of 10 or 12 inches in width. On the point of this is an' upright piece of ateel, trich cnts and divides the heath, -tha inould-board turns tha furrow over flat on its back, and from end to end of the landing tha furrows lay side hy side like planks from a saw-mill, and wera about half an inch in thickness.
"I must, however, remark, as a cantion to others against falling into the same error as I did, that this land had been in tillage st bome former time, and was in ridges with a regular surface, so that when the plough was scl, it cut the whole furow at a uniform depth, ard was drawn by two horses with ease, and at an expense of about eight shillings per acre.
"I got this plough, and gave it a fair trial, but from my land never having been laid smooth, it cut one part as thin as was wished, and the next yard perhaps six or twelva inches thick, which caused a great extra expense in drying, lifting, and burning, and, wasted more soil than was necessary or desirabla. Also my land having a great deal of small whinstone below the turf, tha steel plate frequently got injured and broken. It was therefore with great reluctance laid asida, and the ordinary method of paring by hand adoptod, which is alower and much more expensive, but very perfect. It saves soil and cheapens the burning operation, the paring being so thin when tha heath, \&c., was divided, that light could be seen through the sod, which was only held together with the roots and fibres.
\because I began with No. I field in July 1849. I let the paring and burning to a company at 25 s . per acre, but they made low wages, and after getting more than their work came to, gava up the job. I then got some experienced hands to pare, and paid them tha usual wages, at that time 9s. per week, and gave them their food, say 13 s . per week, the work being very hard. The total cost of this averaged me 24 s .9 d . per acre. A portion of tha top part of No. 1 was left undone owing to the lateness of tha season. This was dry benty turf. It was ploughed in the common way, and grew no oats in 1850. It was again ploughed and much harrowed and rolled, and sown with the remainder of the field in 1851 with rape, and has grown only a few plants at wide distances. It is still in such a dry undecomposed state that although it is on the high part of the field whera sheep draw to lie, I do not expect that it will grow a crop of corn next year; while a portion which was pared down the middle of it grew good corn and rape.
"A portion of No. 2 field was also ploughed in the ordinary way. This was moist land, growing shorter and sweater grass than any other. It grew a very thin irregular crop of oats in 1850, not within threa-quarters per acre of the pared land, but is now (1851) bearing a good erop of oats, that field being a second time in oat crop. To return:
"I had a fair crop of rape in the autumn of 1849 on a consider. able portion of No. 1, where it was sown in tolerable season during all August; after that it appeared to be too late. All was, however, ploughed up at once to secure the ashes, and was well harrowed and aown with oats in the spring of 1850. Thia pared land turned out to be much too thickly sown at four bushels per acre. Corn tillers so much on such land that in some parts it prevented it from coming to maturity. I have since sown much thinner, asy three oushels per acre, and even in soma degrea I find the same fault, there being from five to eight stems from one root. My crop of 1850 turned out to be 30 bushels per acre, but it was on tha point of being cat when the high wind in August devastated this district, and that lying high and fully exposed to the wind suffered most severely. 1 should say it was not below six quarters per acre, and the quality of the grain good.
"In Juna and July 1850 Y nared No. 3 by the same hands who rintshed my work the previous year. I let the burning of it to an Irishman at. 2s. 6 d. per acra, binding him to burn it closely piled up in good-sized heaps lika hay-cocks, to prevent the escape of the ashes in the ahape of simoke into the stmosphere.
"This, with tha paring, cost me on 36 acres 19s. 6d. per acre. I got 20 acres of it ploughed and aown with white turnips, broadcast in July and Augist. I had a close nice crop, though the roots were amall, which kept a large Aock of sheep fer several weeks. This had tha good effect of treading down tha land and making it plough
better for osts.
"Nos. 1 and 2 were limed at the rate of 7 loads per acre. In

June 185I No. 1 was aown broadcast with rape, by mixing 4 lb . of rape seed with one bushel of oat shellings for an acre, aud sowing them out of a grass-seed machine. The crop is very close and fine, and has kept twenty scores of sheep from an early day in August to this date (September 27th).
"No. 2 in 1851 was again sown with oats, which proved a very fine crop, as also did No. 3. The produce was about nine quarters per acre. The oats are very thick and tall, and have very leng, large heads, and the grain is plump and good; the stalks being strong, the crop is not lodged so as to injure the yield. I estimate it at certainly 7亩 quarters per acre, but ahall calculate it at 6 quarters.
"I sow on that land the sandy oat, being early, not liable to lodga nor to shake in moderately high winds, although it was not proof against that of 1850 .
"Previously to breaking ap I drained with pipes all the land which required drying, of which I shall give a statement, along with the expenses and profits of the whole.
"The result shows that if I had, some years ago, when price. of grain were good, done as a tenant what I have done now, I should have been amply repaid by the first or second crops, and have had my farm for the remainder of a twenty-one years lease worth fully $£ 100$ a year more than when I began.
"The result of my experience is, that I neither agree with tha generality of Scotsmen nor with many Southeras. The former are of opinion that burning wastes tha vegetable matter, which should be kept to decompose and enrich the soil, not coasidering that at once the land receives a rich dressing of ashes quite equal to two quarters of bones, or 4 or 5 cwt. of the best grano ; and that, during tha several years which suich a slow process would require to taka place, the land might be much more enriched by growing and having eaten upon it fine crops of rape and turnip, and by producing heavy corn crops, which would in a much shorter space be returied to it in the shape of manure; and also that by the process of burning the land is freed from the larvæ of insects, such as grubs, slugs, wireworms, \&c. \&c., which are engendered among the rough grass, and fostered for a length of time under the rough, dry, undecomposed turf; to say nothing of the length of tima which tha speculator is kept out of a large amount of capital and interest, instead of having the former returned with the latter after the first or at most the second year.
"The latter, again (the Englishmen), are too much in the habit of repeating the operation of burning, even after the land has lain in grass only for a fev years, when it might as well be ploughed and cultivated without such expense, thereby unnecessarily reducing tha soil, thera not being the same difficulties to be overcome nor the same advantage to be gained from it.
"I should certainly burn all land with a rough harsh aurface, and should as certainly plough and sow all land with a sweet grassy face upon it.
!" In my opinion there are few farms in this country which do not contain certain portions of land capable of remunerative improveraent, and I have shown that such improvement is quite within the scopo of a tenant with a lease, without which no man can farm well, at least in the Northumbrian system. Yould it not be better, then, for landlords, tenants, ard tha cauntry generally, were tenants to employ labourers on works so speedily remunarative to themselves, rather than run to their landlord whanever they feel the scraw, and ask for abatement of rent, or to be allowed to plough out some piecu of valuable old grass, or otherwisa cross crop thair land, with a view of obtaining eome temporary advantage, but in the end to the inevitable injury of all concerned? (Signed) "G. A. Grey.
"Millfield Hill, Dec. 1, 1851."
From a statement of outlay and returns appended to the above paper it appears that the profits on the three fields were respectively $£ 50,12 \mathrm{~s} .5 \mathrm{~d}$, $£ 84,19 \mathrm{~s}$. 3 d ., and $£ 39$, 2s. 9d., from which, however, there falls to be deducted the expense of fencing ($£ 35$), leaving a gross profit of £139, 14s. 5d.

Section 3.-Reclaiming of Bogs.
The reclamation of extensive bogs, or deposits of peat, is a more arduous undertaking, requiring a considerable expenditure of capital and longer time before a return is obtained from it. . The extent of land of this description in Great Britain and Ireland is very great. Very exaggerated statements of the profits to be derived from its improvement have often been published, and not a few persons have incurred serious loss by rashly undertaking this kind of work. On the other hand, when bogs are favourably situated with reference to a command of marl or other calcareous matter, to assist in their decomposition and consolidation, and of manure to enrich them, their
reclamation has proved a very profitable speculation. The well-known instance of Chat Moss in Lancashire affords so interesting an example of this that we shall here quote a description of it.
"Chat Moss, well known as that black barren awamp between Liverpaol and Manchester, contains 6000 acres, one-half of which is in the township of Barton, and the remainder in the townships of Bedford, Astley, and Worsley.
"The principal part of this moss, which lies in Barton townahip, belongs to the Trafford family, and is entailed, but the ancestor of the present Sir Thomas de Trafford appears to have obtained, at the latter end of the last century, an Act of Parliament to grant a nincty-nine yearg"lease of 2500 acres to a Mr Wakefield, who about the year 1805 disposed of his interest in it to the late William Roscoe, of literary celebrity, who spent a large sum in a fruitless endeavour to improve it, failing in which, the lease was sold in 1821 to other parties. J. A. Brown, Esq., of Woolden Hall, bought 1300 acres ; the lato Edward Baines, Bi.P. Wor Leeds, purchased the remaining 1200 acres. The most extensive and successful efforts st improving thie moss have been made on a part of the 1200 acres baught by Mr Baines, who, besides occupying the part operated apon by Mr Roscoe, improved a considerable breadth himself, sud let eeveral portions to other parties, who have made considerable progress in improving small portions. The most extensive operations, however, npon the whole, have been carried out by a company to whom Mr Baines, in 1828 , granted a lease of 550 acres for 68 years, the remainder of the original torm, at a nominal rent for the first year, inoreasing gradually till at the end of five years the rent attained its maximum of $£ 165$ per annum for the 650 acres. This company, which was formed at the time the Liverpool and Man. chester Railway was in progress of being made on the property, consisted, amongst others, of aome practical farmers, and originated with William Recd, who for the three first years was the manager, and resided on this farm, which they called Barton Moss farma. During that period I had the pleasure of paying my friend Reed a visit, and of wituessing the okill and success attending his enterprise and various experiments.
"The first operation, that of draining, had been effected by open. ing side drains at intervals of fifty yards, into which were laid covered ones six yards apart, at right angles with and emptying into the open eide drains.
"The moss being in a semi-fluid state, it was necessary to proceed slowly with draining, taking out only one graft or depth at a time, allowing it to remain a week or a month, according to the atate of the westher, befora taking out the eecond graft; this admitted of the sides becoming consolidated, and of the oecond graft being taken ont without the moss closing in. It was again allowed to remain as before till sufficiertly dry to admit of the third being removed.
"The open drains were mede 3 feet wide and 3 fcet 6 inches deep, and the covered drains 16 inches wide and 3 feet deep; the last graft of the latter being only about 6 inches wide at the top, tapering to 4 inches at the bottom, and being taken out of the middle of the cut, left a shoulder on each side. The sod or graft first taken out had by this time become tough and dry, and was placed, with the beath side downwards, in the shoulder, thus leaving the narrow spit at the bottom open for a depth of about 14 inches; the other square eod being put on the top, completed the drain."
"The cost of this mode of draining, ineluding the side drains, pas about 88s. per acre. The drains first put in required to be renewed in a fow ycars, in consequence of the moss becoming so much consolidated and reduced in height that the plongh, as well as the horses' feet, broke through the roof, althongh the horses wers ehod with 'pattens,' or boards of abont 10 inches equare, with the angles taken off. The second draining, bowever, was more permanent, and would probably not have required renewing for many. years but for the moles, which have been very troublesome in working down to the drains, and filling them up in various places; 80 that the operation of draining has required to be partially renewed in every field, and in many of them entirely eo; and thus these little animals have been the cause of a very considerable increase in the cost of labour. It has subsequently been found advisable to put the under drains in at 4 yards, instead of 6 yards asunder, and the advantage in one crop has been quite sufficient to pay the extra cost. A two-borso engine was erected, which drives the thrashing-machine, strsw-catter, and crashing-mill; and the escape-steam from it eteams the horses' food.
"The buildings were erected principally of timber, covered with asphalted felt.
${ }^{\text {" After draining, making roads, and burning off the beath plant, }}$ the land was ccarified lengthwise of the fields by 8 implement with knives shaped like coulters, reversed, sharp on the conver side, fixed in two bars, and drawn by three horses yoked abreast.
"The tough surface was by this means cnt at every four inches; the land was then plonghed scross the scarifying; a roller, surrounded with knives, was next pased across the plough; after this the land was well harrowed till sufficiently reduced.
"From 60 to 100 cabic yands of marl were pnt on an acre, and in the following summer the land was manured, also by meane of the movable railway, at the rate of fifty tons of black Janchester manure per acre, and planted with potatoes, which were followed by wheat, sown with red clover and ryegrass, for mowing for one or two years ; then oats and potatoes, \&c., as before. These were all flourishing crops; the wheat in particular looked bright and beautiful. The potatoes were aold for $£ 25$ and $£ 30$ per acre, which more than paid the whole cost of improvement. Mr John Beli, resident bailiff, has mado many valuable experiments relative to the improvement of raw moss, one of which has resulted in a discovery likely to be of considerable importance, which is, that a mixture of lime and salt applied a while before eccding, with the addition of a good dressing of guano, in the proportion of four tone of lime and five cwt. of salt per acre, qualifies it to produce a crop of potatoes or asts equal to that after the spplication of 60 yards of marl per acre. It is essential that the mixture should be spread while it is hot Mr Evens (one of the proprietors) is convinced that the peat on the surface ought never to bo burned; he has alwaye found that, wiben the heathsod is turned down to decay, much befter crops have been obtained than when it has beēn burnt off, or than when the top has been taken away cither for fuel or other purposes. What are termed moss-fallows, - that is, parts which have had the moss taken off for fuel, -will never bear so good a crof as the npper surface, however deep the moss may be undernesth. " -(Notes on the Agricullure of Laneashire, with Suggestions for its Improvement, by Jonathan Binns.)

About a century ago, Lord Kames, on becoming proprietor of the estate of Blair-Drummond, in the county of Perth; began the improvement of a large tract of worthe less moss by a totally different process from that now detailed. In this case the moss had accumvlated upon a good alluvial clay soil. Instead, therefore, of attempts being made to improve the moss itself, it was floated off piecemeal into the neighbouring Firth of Forth. The supply of water required for this purpose was obtained from the river Teith, from which it was raised to the requisite height by a powerful water-wheel. Being conveyed through the moss in channels, successive layers of peat were dug and thrown into these channels, which were shifted as occasion required, until the whole inert mass was removed. A thin stratum next the clay was burnt, and the ashes used as manure. An immense extent of moss has thus been got rid of on that estate and on others in the neighbourhood, and "an extensive tract of country, where formerly only a few enipes and muir-fowl could find subsistence, has been converted, as if by magic, into a rich and fertile carse of allurial soil, worth from $£ 3$ to $£ \overline{0}$ per acre."

Section 4.-Reclaiming of Fen Lands.

We next notice the fen lands of England. "In popular language, the word fen designates all low wet lands, whether peat-bog, river alluvium, or salt marsh ; put in the great Bedford level, which, extending itself in Cambridgeshire and five adjoining counties, is the largest tract of fen land in the kingdom, the farmer always distinguishes, and it is thought conveniently and correctly, between fen land and marsh land. By the former they mcan land partly alluvial and formed by river floods, and partly accumulated by the growth of peat. Such lands are almost invariably of a black colour, and contain a great percentage of carbon. By marsh lands they mean low tracts gained from the sea, either by the gradual silting up of estuaries or by artificial embankments." Low-lying peat occurs in small patches in nearly every maritime county of Britain, being usually separated from the sea or from estuaries by salt marsh or alluvium. There is a large extent of such land in Somersetshire yet but paritially drained, and a still larger breadth in Lancashire, where its improvement makes steady progress. In Kent, on the seaboard of Norfolk, on both shores of the Humber, and stretching along the sides of its tributaries, there are immense tracts of this description of land. But these are all exceeded" in importance by the "great level of the fens, which occupies, the southeastern quarter of Lincolnshire, the northera half of Cambridgeabire, and
spreads also into the counties of Norfolk, Suffolk, Huntingdon, and Northampton. Its length is about 70 miles, its breadth from 3 or 4 to 30 or 40 miles, the whole area being upwards of 1060 square miles, or 680,000 acres. On the map the fens appear like an enlargement of the Wash, and in reality have the aspect of a sea of land, lying between that bay and the high lands in each of the above-named counties, which seem to form an irregular coast-line around it." This fen country has for centuries been the scene of drainage operations on a stupendous scale. The whole surface of the great basin of the fens is lower than the sea, the level varying from four to sixteen feet below bighwater mark in the German Ocean. The difficulty of draining this flat tract is increascd from the circumstance that the ground is highest near the shore, and falls inland towards the foot of the slope. These inland and lowest grounds consist of spongy peat, which has a natural tendency to retain water. The rivers and streams which flow from the higher inlands discharge upon these level grounds, and originally found their way into the broad and shallow estuary of the Wash, obstructed in all directions by bars and shifting sand-banks. These upland waters being now caught at their point of entrance upon ihe fens, are confined within strong artificial banks, and so guided straight seaward. They are thus restrained from flooding the low grounds, and by their concentration and momentum assist in scouring out the silt from the narrow channel to which they are confined. The tidal waters are at the same time fenced out by sea-banks, which are provided at proper intervals with sluice doors, by which the waters escape at ebb-tide. To show the extent of these operations, it may be mentioned that the whole sei-coast of Lincolnshire and part of Norfolk, a line of at least 130 miles, consists of marsh lands lower than the tides, and is protected by barrier banks, besides which there are hundreds of miles of river embankments. When this does not provide such a drainage as to admit of cultivation, the water is lifted mechanically by wind or steam mills into the main aqueducts.

The first use of steam-engines for the purpose of draining was in Deeping fen, where, in 1824-5, two, of 80 and 60 horse-power respectively, were erected. By means of these two engines upwards of 20,000 acres have now a good drainage, whereas formerly forty-four wind-mills, with an aggregate power of 400 horses, failed to keep them sufficiently dry. The scoop-wheel of the larger engine is 28 feet in diameter, and the float-boards are 5 feet wide. It was intended to have a "dip" of " 5 feet, but the land has subsided so much in consequence of the draining that it seldom has a dip of more than 2 fcet 9 inches. The water is lifted on an average 7 feet high. When both engines are at work they raise 300 tons weight of watér per minute.
The soil of the fens consists for the most part of darkcoloured peat, from 1 to 8 or 10 feet in depth. The surface in general is not pure peat, but is mixed with silt or other soil. Under this there is in general a stratum of brown spongy peat, which sometimes rests upon gravel, but for the most part upon clay, which usually contains a portion of calcareous matter. The removal of the water has of course been the primary improvement; but subsidiary to this the rapid amelioration and great fertility of the fen lands are largely due to this fortunate conjunction of clay and peat. The early practice of the fen farmers was to pare and burn the surface, grow repeated crops of rape, oats, wheat, \&c., and burn again. The subsidence of the soil subsequent to the draining and repcated paring and burning, brought the surface ncarer to the sibjacent clay, which the cultivators by and by began to dig up and spread over the surface. This practice is now universal, and its
continued use, together with carcful cultivation and liberal manuring, has changed a not very productive peat into one of the most fertile soils in the kingdom Nowhere in our country has the industry and skill of man effccted greater changes than in the fens. What was once a dismal morass, presenting to the view in summer a wilderness of reeds, sedges, and pools of water, among which the cattle waded, and in winter almost an unbroken expanse of water, is now a fertile corn land. .The fen men, who formerly lived upon the adjacent high lánds, and occupied themselves with fishing, fowling, and attending to their cattle, have now erected homesteads upon the fen lands, divided them by thorn hedges, and brought them into the highest state of cultivation.

We referred at the outset to the distinction betwixt fen land and marsh land. The following pertinent observations on the reclamation of marsh land are extracted from Mr David Stevenson's paper in the Highland and Agricultural Society's Transactions, vol. iii., 1871.

First, In order to insure success, the space to be reclaimed muet be within the influence of wster containing much alluvial matter, and not on the shores of an open sandy estusry.
Secondly, The spaces to be reclaimed should ba allowed to receive the deposit left by the tide for as long a period as possible, and no attempt should be made entirely to exclude the water from them, until they have by .gradual sccretion attained the level of at least ordinary apring tides.

The first case to which I shall refer is Loch Foyle, a situation where the amount of salt water greatly preponderates over the freah. Extensive reclamations have been made there, and I hsve received from Mr G. Henry Wiggins, of Londonderry, some notes regarding them, from which I extract the following intereating informstion:-
"After the aalt water had been excluded, shallow surface drains were made with spsdes or forks, and in about two fears ryegrass grew pretty freely: exceptional apota remained barren for soma time. The grass was followed by oata, which improved as the salt laft the aoil. Deeper draining allowed the cultivation of flax and clover; afterwards, on deeper draining, all ordinary crops began to grow well-wheat, beans, turnips, mangold, and carrots-but all requiring fully as much manure as any old upper land. These sloblands, says Mr Wiggins, yield a great return for manure, but must have manure on the lower and damper portions. Feorin grass grows well without manure.
"Whenever the ditches have so far drained the soil as to sllow of its becoming cracked and open to tha air, the crops begin to increase in produce, but the full value of the soil ia never known until thoroughly under-drained with tile or stone ; it then mostly yields excellent crops of almost any produce, clover and ryegrass for hay being perhaps the most profitable. Grazing the land does not answer, except from the beginning of May to the end of September; after this the soil is too cold snd damp for the beasts to lie down, and they begin to fail."

The expense of these intakes on the Foyle may be taken at about $£ 20$ an acre to get them from the sea; the expense of bringing the land when got into cultivation will come to at least $£ 10$ more; making a total of $£ 30$ per acre. The best lands are worth 50 s . to 40 s . the Cunningham or Scotch acre, and the lowest and wettest parts perbaps not more than 10s.-aay 309. round as a fair average. To this has to be added the expense of keeping up the banks and pumping water; so that I believe Mr Wigging ia right when he says that no great profit can be expected, and that these mattera are generally undertaken by hopeful and energetic enthusiasts, who seldom realise their axpectationa, and afterwards fall into the hands of other parties, who are perhaps rather more successful.

The reclamationa made by the Ulverston and Lancaster Railway in Morecambe Bay were rapidly formed by the emisnkment for .carrying the railway, which was made in pretty dicep water. 'Like the Foyle, there is also predominance of sea-wster. Mr G. Drewry, of Holker in Lancashire, has faroured me with the following informa-tion:-"A portion of the land enclosed by the railway in 1856 was grassed over, and the remainder was sand without any vegetation on it. After it wss levelled it was divided into ficlds by open ditches and wire fences; the ditches had to be made very wide at the top, in order to get them to stand. The land was ther drained with 3 -inch pipes, each drain opening into the ditch at each side of the field. The tiles were sll covered round with peat moss, to act as a filter to prevent the aand from running into them. The sand is so fine that without this preeaution the drains would have filled up very quickly. The drainage is the great difficulty, as they are very apt to fill up after avery precaution has been taken.
"On the portion which was grassed over, two crops of oats were frst taken, and then it was green-cropped. It grew for a for years
good crops of wheat, beans, and clover, as well as Swedisn turnips and mangolds; but though a great quantity of manure was used, the crops fell off, and at presont it is vearly all in grass. The portion which rras bare eand was treated in the same way, oxcept as to the first two crops of oats. It was gaven-cropped after it had beon enclosed abont two years. After the railway was mada there was no means of silting the land. The tida was entirely kept out; had it been admitted, this land would have been much more valaable and mach higher-we would then have had a better drainage and a richer asan. That portion which mas grassed over at the time it was enclosed is still mach the best
"When land is reclaimed from the sea, the firt thing to be looked to is a good ontfall for the water, and, when it is possible, no doubt it is very desirable that the land should be eilted unp gradually. In our case this could not be done, as the reclamation of the land wres i very eecondary affair.'

In the district called Marshland, in Norfolk, extending between the Ouse and the Nen; in that called South Holland, in Lincolnshire, stretching between the Nen and the Welland; northward of Spalding, and also north-east of Boston, there is a considerable tract of marine clay coil. In Marshland this is chielly arable land, producing large crops of wheat and beans; but in Lincolnshire it forms exceedingly fine grazing land. This tract lies within the old Roman embankment' by which the district was first defended from the ocean. Ontside this barrier are the proper marsh lands, which have been reclaimed in portions at successive periods, and are still intersected in all directions by ranges of banks. The extracrdinary feature of this tract is, that the surface outside the Roman bank is 3 or 4 feet higher than that in the inside, and the level of each now enclosure is more elevated than the prerious one. The land rises step by step as the coast is appreached, so that the most recently reclaimed land is often 12 or even 18 feet higher than the lowest fen land in the interior, the drainage from which must nevertheless be conveyed through these more elevared marshes to the sea.

Lands such as some of those which we have just been describing are often greatly improved, or rather may be said to be made, by means of a peculiar mode of irrigation called "warping." It is practicable only in the case of land lying below the level of high tide in muddy rivers. It is little more than a century since it was first practised in England, the first instance of it being near Howden, on the banks of the Humber. But although the practice is comparatively new in Britain, it has long been in use on the continent of Europe, particularly in Italy, and is thus described by Mr Cadell:-"In the Val de Chiana, fields that are too low are raised and fertilised by the process called colmata, which is done in the following manner:The field is surrounded by an embankment to confine the water. The dike of the rivulet is broken down so as te admit the muddy water of the high floods. The Chiana itself is ton powerful a body of water to be used for this purpose; it is only the streams that flow into the Chiana that are thus used. This water, is allowed to settle and depasit its mud upon the field. The water is then let off into the river at the lower end of the field by a discharging course caked scolo, and-in French canal d'ecoulement. The water-course which conducts the water from a river, either to a field for irrigation or to a mill, is called yora. In this manner a field will be raised $5 \frac{1}{2}$ and sometimes $7 \frac{1}{2}$ feet in ten years. If the dike is broken down to the bottom, the field may be raised to the same height in seven years; but then in this case gravel is also carried in aiong with the mud. In a field of 25 acres, which had been six years under the process of colmata, in which the dike was broken domn to within 3 feet of the bottom, the process was seen to be so far advanced that only another year was requisito for its completion. The floods in this instance had been much charged with soil. The water which comes off cultivated land cumpletes the prosess sooner than that which comes
off hill and woodland. Alnost the whole of the Val di Chiana has been raised by the process of colmata." 1

Section 5.-Blowing Sands.

On many parts of our sea-coasts, and capecially in the Hebrides, there occur extensive tracts of blowing eands, which are naturally not only sterile themselves, but a source of danger to better lands adjoining them, which in some instances have been quite ruined by the sand deposited upon them by the winds. This mischief is effectually provented by a process beautifully simple and useful, namely, planting the sand-banks with sea bent-grass (Arundo arenaria), the matting fibres and stems of which not only bind the sand, but clothe it with a herbage which is relished by cattle, and which, being able to resist the severest winter weather, furnishes a valuable winter forage in these bleak situations. The bent-grass can be propagated by seed, but in exposed situations it is found better to transplant it. This operation is performed betwixt October and March, as it succeeds best when tho sand is moist and evaporation slow.

CHAPTER XX.

OENERAL OBSERVATIONG.

According to the method proposed at the outset, we now offer a few observations on scveral topics connected with our Bubject.

Section 1.-Of the Tenure of Land.

The extent of land in Graat Britain occupicd by its owners for agricultural purposes bears a very small proportion to the whole area. The yeoman class is still numerous in several parts of England, but must have diminished greatly from that continuous amalgamation of small estates into large ones which has formed a marked feature in our social history during the present century. This change, although to be regretted on public grounds, has had a favourable influence on the cultivation of the soil, for it almost invariably bappens that a larger produce is obtained from land when it is occupicd by a tenant than when it is cultivated by its proprictor. As a matter ol fact, the land of the country is now, with trifling exceptions, let out to professional farmers in quantities varying from the rood-allotment of the village labourer to the square. miles of the Highland grazier. Farms of all sizes are usually to be found in any district, and most important it is that this should be the case; but the cxtent of farms is chiefly determined by the amount of hired labour emploged upon them, and the mersure of personal superintendence on the part of the tenant which the kind of husbandry pursued upon them cal's for. We accordingly find that in very fertile tracts, in the vicinity of towns, and in dairy districts, they seldom exceed 200 acres; where the ordinary alternate husbandry is practised the average ranges from 300 to 400 ; in more elevated tracts, where a portion of natural sheep-walk is occupied along with arable land, it rises to 800 or 1000 ; while that of the sheep grazings of our hills and mountains is limited only by the capital of the tenant. About a century ago there occurred in various parts of Great Britain a similar amalgamation of small holdings into farms of the sizes which we have now referred to as is at present in progress in Ireland. This enlargement of farms, with the employment of increased capital in their cultivation, insures á more rapid reclaman tion of waste lands, and general progress of agriculture up to a certain point, than would otherwise take place. But as every step in advance beyond this point implies an

[^66]
E.B.S

increase of outlay in proportion to the extent, and the need for closer superintendence, it reems likely that, in future, the size of arable farms will not further increase, but may rather be expected to approximate towards that which at present obtains in suburban districts.
Farms are held either by yearly tenancy or under leases for a specificd number of years. The latter plan is that upon which nearly the whole lands of Scotland are let; and it obtains also to a considerable extent in the northern counties of England, in West Norfolk, and in Lancashire. But with these and other exceptions, amounting altogether to about a tenth part, the farms of England are held by yearly tenancy, which can be terminated by either of the contracting parties giving the other six months' notice to that effect. This precarious tenure has been attended by far fewer changes than a stranger might suppose, owing to the highly honourable conduct for which English proprietors as a class have long been noted. On all the large estates it is quitu common to find families occupying farms of which their ancestors have been tenants for generations, or even for centuries. The mutual esteem and confidence which usually subsist between such landlords and tenants are undoubtedly much to the credit of both, but not the less bas the system, as a whole, operated uniavourably for all concerned ; for however numerous and striking the exceptions", it is yet the fact that under this system of tenancy-at-will less capital has been invested in the improvement of farms, less labour has been employed, and less enterprise displayed in their ordinary cultivation, less produce has been obtained from them by the occupiers, and less rent has been received for them by the owners, than in the case of similar lands let on leases for a term of years. These different results ensue, not because tenants with leases are abler men or better farmers than their neighbours who are without them, but solely bcause the one system recognises certain important principles which the other ignores. It is contrary to human nature to expect that any body of men will as freely invest their capital, whether in the shape of money, skill,-or labour, in a business yielding such slow returns as agricultare, with no better glarantee that they or their families shall reap the fruits of it than the continued good-will of existing proprietors or those who any day may succeed them, as they will do with the security which a lease for a term of years affords. It does therefore seem strange that a majority of the farmers of Great Britain should be tenants-at-will, and still more strange that they should be so of choice. It is nevertheless true that a considerable portion of the tenantry of England are even less disposed to accept of leases than their landlords are to grant them. The latter cling to the system because of the greater control which they thereby retain over their estates, and the greater political influence with which it invests them: the former do so because low rents are oue of its accompaniments. Since the removal of restrictions on the importation of foreign agricultural produce, there are indications that neither landlords nor tenants are so well satisfied with this system of tenancy-at-will as they once were. Not only is the granting of leases becoming more common than it has hitherto been, but there is a growing desire on the part of tcnants to obtain the bencfit of that guarantee for the realising of their capital which tenant-right affords to enterprising farmers who may have unexpectedly to quit their farms. In certain districts of England this claim, called tenant-right, has been recognised so long that, apart either from written stipulation or statutory enactment, it has, by mere usage, attained to something like a legal standing. In Lincolnshire an out-going tenant can, by virtne of this usage, claim from his landlord or successor repayment, in certain definite proportions, of the cost of such ameliora-
tions of a apecified kind as he may have made during the last yeara of his occupancy, and the benefits of which his removal hinders him from realising in the natural way.

Tenant-right is certainly a valuable adjunct to tenancy-at-will, but still it does not meet the real exigencies of the case. There are feelings inherent in man's nature which cause him to recoil from exertions the fruits of which are as likely to be enjoyed by a stranger as by himself or his family.' This repugnance, and its paralysing influence, is not to be removed by a mere " right" to pecuniary compensation. It ia certainty of tcnure-so far at least as human arrangements can be certain-which will really induce a farmer to tbrow his whole heart into his business. It is accordingly to this principle that leases owe their value, and by it also that the only weak point in them is to be accounted for. The first years of a lease are usually characterised by an energetic performance of various improvements, whereas towards its close there is usually such a withdrawing even of ordinary outlay as is unfavourable to the interests of both landlord and tenant. There is at present a very generally entertained opinion that this inconvenience would be obviated by engrafting the system of tenant-right upon that of leases. So strongly has the current of opinion been running in this direction that a bill has been submitted to the legislature for the purpose of conferring on out-going tenants a legal claim to compensation for certain specified investments which may bave been made by them, but of which their removal hinders them from reaping the benefit. This bill further provided that in the event of a tenant having erected buildings for his own accommodation without the sanction of his landlord, be should have a right to remove the materials if the landlord or incoming tenant declined to purchase them. Through accidental circumstances this bill was withdrawn without being discussed, but it is certain to be re-introduced; and sooner or later to be passed. It is norr admitted on all hands that land.cannot be cultivated to its full measure of productiveness without a large investment of capital, and that this outlay, when once incurred, cannot be reconped for several years at the least. It is in rain, therefore, to expect that these so much needed investments will be made until those who should make them are secured against having their property confiscated by a siv months' notice to quit.

It seems to be generally admitted that twenty-one sears is the proper duration for an agricultural lease. Such a term suffices to give confidence to the tenant in embarking his capital, and secures to the landlord his legitimate control over his property, and due participation in its varying value. It is generally felt by tenants that the lease or document in which their agreement with their landlord is engrossed might with adrantage be mnch shortened, as well as simplified in its terms. When treating of the succession of crops we have already expressed our views regarding those restrictive clauses which usual ${ }^{17}$ occupy a prominent place in such mitings. Such restrictions are of course introduced with the view of guarding the property of the landlord from deterioration; but when he is so unfortunate as to meet with incompetent or dishonest tenants, they entirely fail to sccure this object, and yet are a hindrance and discouragement to enterprising and con scientious tenants. It is probable that the existence of the laws of distraint in England and byputhec in Scotland, which give to landlords a lien over the effects of their tenantry in security for the payment of the current year's rent, has had its influence io adding to the number and stringency of these clauses, and has encouraged the practico of letting lands by tender to the highest offerer. For the law in question, by rendering landlords to a considerable extent independent of the personal character and pecuniary
circumstances of the occupiers of their land, has obviously a direct tendency to render them less cautious than they would otherwiso be, and to induce them, when tempted hy the promise of high rents, to trust moro to this legal se.!u- than to the moral character, busincss habits, professional skill, and pecuniary competency of caudidates for their farmos.

Section 2.-Capital required for working a Farm.

The amount of capital that is required in order that the business of farming may be conducted advantageously, is largely determined by the nature of the soil, \&c., of each farm, the system of management appropriate to it, the price of stock and of labour; and the terms at which its rents are payable. In the case of land of fair quality, on which the alternato husbandry is pursued, and when tho reats are payable as tho produce is realised, $£ 10$ per acre may be regarded as an amount of capital which will enable a tenant to prosecute his business with advantage and comfort. In letting a farm, a landlord not only does a just and prudent thiug for himself, but acts as a trne friend to bis proposed tenant, when he insists upon being shown that the latter is possesserl of ayailable funds to an amount adequate to its probablo requirements.

The importance of the topics to which we have thus referred is happily expressed by Mr Pusey, when, after enumerating various agricultural desiderata, he says, "In some decrree none of us carry out all that is in our power; but want of capital and want of confidence in the tenure of farms are, I suppose; the two principal causes of this omission."

Section 3.-Education of Farmers.

But the mere possession of capital does not qualify a man for being a farmer, nor is there any virtue inherent in a lease to insure his success. To these must be added probity, knowledge of his business, and diligence in prosecuting it. These qualifications are the fruits of good education (in the fullest sense of that term), and are no more to be looked for without it than good crops withont good husbandry. Common sehool instruction will, of course. form the groundwork of a farmer's education; but to this should be added, if possible, a classical cnrriculum. It has been the fashion to ask, "Of what use are Greek and Latin to a farmer?" Now, apart from the benefit which it is to him, in common with other men, to know the structure of language, and to read with intelligence the literature of his profession, which more and more abounds in scientific terminology, we believe that no better discipline for the youthful mind has yet been devised than the classical course which is in uso in our best public schools. Of this discipline we desire that every future farmer should have the advantage. But the great difficulty at present lies in finding appropriate occupation for such youths between their fifteenth and twentieth years. In many cases the sons of farmers are during that period put to farm labour. If they are kept statedly at it, and are made proficient in zvery kind of work pesiormed on a farm, it is a good professional training as far as it goes. The more common one-at least as regards the sons of the larger class of farmers-which consists of loitering about without any stated occupation, attending fairs and markets, and probably the race-course and hunting-field, is about the most absurd and pernicious that can well be imagined. Such youths are truly to be pitied, for they aro neither inured to bodily labour nor afforded the benefits of a liberal education. It need not surprise any one that such hapless lads often prove incompetent for the struggles of life, and have to yield their places to more vigorous mer who have enjoyed the benefit of "bcaring the yoke in their youth." Unless
young men are kept at labour, either of mind or of body, until continuous exertion during stated hours, confinement to one place, and prompt ubedienco to their superiors have ceased to be irksome, there is little hope of their either prospering in busincss or distinguishing themselves in their profession. Owing to the altered habits of society, there is now less likelihood than ever of such young persous as wo aro referring to being subjected to that arduous training to bodily labour which was once the universal practice ; and bence the necessity for an appropriate course of study to tako its place. Many Scottish farmers endeavour to supply this want by placing their sons for several years in the chambers of an attorney, estate-agent, or land surveyor, partly in order that they may acquire a knowledge of accounts, but especially fur the sake of the wholesome discipline which is implied in continuous application and subjection to superiors. It is also common for such youths to be scnt to Elinburgh for a winter or two to attend the class of agriculture in the University, and perhaps also that of chemistry, and the Veterinary College classes. This is well enough in its way; but there is wanting in it an adequate guarantee that there is real stady-the actual performance of daily mental work. The agricultural college at Cirencester appears to come more fully up to our notion of what is needed for the professional training of farmers than any other institution which we yet possess. Wo shall rejoice to see such opportunities of instruction as it affords multiplied in Treat Britain. After enjoying the benefits of such a course of training as we have now indicated, young men would be in circumstances to derive real advantagi from a residence with some experienced practical farmer, or from a tour through the bestcultivated districts of the country. We are well aware that what we have now recommended will appear sufficiently absurd to the still numerous class of persons who believe that any one has wit enough to be a farmer. But those who are competent to judge in the case can well afford to smilo at such ignorance. They know that agriculture is at once an art, a science, and a business; that the researches of naturalists, chemists, geologists, and mechanicians are daily contributing to the elucidation of its principles and the guidance of its practice; and that while its pursuits afford scope for the acutest minds, they are relished by the most cultivated. As a business it shares to the full in the effects of that rehement competition which is experienced in every other branch of industry, and has besides many risks peculiar to itself. The easy routine of the olden time is gone for ever; and without a good measure of tact, cnergy, and industry, no man can now obtain a livelihood by farming. It is desirable that all this should be known, as nothing has been more common than for parents who have sons too dull to be scholars or too indolent for trade, to put them to farming; or for persons who have earned a competency in some other calling to covet the (supposed) easy life of a farmer, and find it to their sorrow a harassing and ill-requited one.

Section 4.-Farm Labourers.

The agriculture of a country must ever be largely affected by the condition and character of the peasantry by whom its labours are performed. An acnte obscrver has shown that in England a poor style of farming and low wages-that good farming and high wages, usually go together ; and that a low rate of wages is significantly associated with a high poor-rate. The worst paid and worst lodged labourers are also the most ignorant, the most prejudiced, the most reckless and insubordinate. The eminence of the agriculture of Scotland is due in large measure, to the moral worth and intelligence of her peasantry. For this she is indebted to the earlv establish-
ment of teer parochial scnools, and to the aterling quality of the elementary education which the children of her tenantry and peasantry have for generations received in these schools together. These schools had unfortunately become inadequate to the increased population; but still in the rural districts of the Scottish lowlands it is a rare thing to meet with a farm labourer who cannot both read and write. Apart from higher benefits, the facilities which the services of such"a class of labourers have afforded for the introduction and development of improved agricultural practices, the use of intricate machinery, and the keeping of accurate accounts, cannot well be over-rated. It is än interesting testimony to the value of a sound system of national education that our Scottish peasantry ahould be in auch request in other parts of the kingdom as bailiffs, gardeners, and overseers: Recent legislation warrants the expectation that this inestimable blessing will apeedily bo enjoyed by our entire population.

The pernicions influence of the present law of settlement and removal upon the English labourer is now attracting the attention which it so urgently demands. .The proprietors and tenants of particular parishes in various parts of England at present combine to lessen their own share of the burden of the poor-rate by pulling down cottages and compelling their labourers to reside out of their bounds. The folly and cruelty of such short-sighted policy cannot be too strongly reprobated. These poor people are thus driven into towns, where their families are crowded into wretched apartments, for which they must pay exorbitant rents, and where they are constantly ezposed to moral and physical contamination of every sort. From these comfortless abodes the wearied and dispirited men must trudge in all weathers to the distant scene of their daily labours. One cannot conceive of a prosperous agriculture co-existing with such a aystem, nor feel any aurprise that thieving, incendiarism, and burdensome rates should be its frequent accompaniments. It is pleasant to contrast with this closeparish policy the conduct of some of our English nobility, who are building comfortable cottages and providing good schools for the whole of the labourers upon their princely estates.

About the middle of the 18th century, when the old township system began to be broken up, and the land to be enclosed and arranged into compact farms of considerable size, it happily became the practice in the south-eastern counties of Scotland, and a portion of the north of England, to provide each farm with its own homestead, set down as near its centre as possible, and with as many cottages as would accommodate all the people statedly required for the work of that farm. These cottages, always placed in convenient proximity to the homestead, are let to the tenant along with the farm as a necessary part of its equipment. The farmer hires his servants by the year at stipulated wages, each family getting the use of a cottage and small garden rent free. The farmer has thus always at hand a staff of labourets on whose services he can depend; and they, again, being engaged for a year, are never thrown out of work at slack seasons, nor are they liable to loss of wages from bad weather or casual sickness. This arrangement bas the further advantage of the men being removed from the temptations of the village alehouse. So successfully has this system worked that the counties in which it prevails have long had, and still have, an agricultural population unequalled in Great Britain for intelligence, good conduct, and general well-being.

Over s. very large portion of Scotland, and more especially in the counties lying betwixt the Forth and the Moray Frith, while the arrangement of farms and mode of manageinent are substantially the same as those of the bordem counties, there is this marked difference, that the ploughmen as a rule

Live by themselves in bothies. They are for the most part unmarried men, although not a few of them have wives and children living under the most unfavourable conditions in distant towns and villages ; and so it comes to pass, under this bothy system, that about two-thirds of all the men statedly employed in farm labour are shut out from all the comforts and blessings of family life, and have become in consequence rude, reckless, and immoral. Until a quite recent date this system, because of its supposed economy, was stoutly defended both by landlords and farmers; but its evil effects have become so manifest as to convince them at last that the system is wrong, and there is now in consequence a general demand for mor ${ }^{\circ}$. ttages on farms.

The condition of the agricultural labourers in the southern counties of England has long been of a most unsatisfactory character. The discontent that had long existed among them has at last, in the summer of 1873 , culminated in. wide-spread combinations and strikes for higher wages and better terms. To a large extent the labourers have been able to make good their demar is, although at the cost of much unhinging of old relau.ons betwixt them and their employers, and a great deal of mutual grudging and jealousy. The thorough healing of chronic social maladies is always difficult, and usually demands the patient use of a variety of remedial measures. We venture to express the opinion that much benefit would ensue from the adoption in southern England of the essential parts of the border system, viz., cottages on each farm for all its regular labourers, yearly engagements, and a cow's keep as part of the wages of each family. ${ }^{1}$

Section 5.-What the Legislature should do for Agriculture.

The further progress of our national agriculture is undoubtedly to be looked for from the independent exertions of those immediately engaged in it ; but important assistance might be, and ought to be, afforded to them by the legislature, chiefly in the way of removing obstructions. What we desiderate in this respect is the repaial, or at least the important modification, of the law of distraint and hypothec; the commutation of the burdens attaching to copyhold lands; the reformation of the law of settlement; the removal of the risk and costs which at present interfero with the transference of land; the endowment of er adequato number of agricultural colleges, with suitable museums, apparatus, and illustrative farms; and the compulsory adoption of a uniform standard of reights and measures. We desire also to see the arterial or trunk drainage of the country undertaken by government. Until this is done, vast tracts of the most fertile land in the kingdom cannot be cultivated with safety and economy, or attain to the productiveness of which they are capable. It is the opinion of Mr Bailey Denton, the eminent draining engineer, that not more than three millions of acres of the land of Great Britain have yet been drained. Our national interests surely require that its agriculture should be freed from such obstructions as these, and that it should receive the benefit of a fair share of public provision, such as is made for training youths for the learned professions and for the public service ; and of such grants as are given in aid of scientific research for the encouragement of the fine arts, and for the furtherance of manufactures and commerce.

We cannot close this section without referring to another grievance which has long had a most depressing effect on the agriculture of particular districts of our country, and is now, we regret to say, spreading rapidly to all parts of it,

[^67]in the excessive preserration of game. This evil has been greatly aggravited since that mode of sporting called the battue has unhappily become the fashion. For this amusement a very large head of game is reckoned to be indispensable, and proprietors who engage in it are naturally enough led to vie with each other as to who shall shaw the greatest quantity of game, and report the heaviest bag, at their respective shooting parties. All this necessarily inuphes a grievous waste of farm produce, and frightful loss to farmers whose crons aro exposed to the incursions of the privileged rermin. Worst of all, these hordes of game present such irresistible temptation to poaching that the rural population is demoralised by it to an alarming estent. So long as field sports were in a great measure restricted to resident landowners and their personal friends, they werc, with rare exceptions, careful not to allow their tenants to be injured by game. Now, however, thcre are multitudes of men who, having acquired wealth in business, are eager to engage in field sports, and ready to give almost any amount of money for tL , privilege of doing so. These game tenants are often ntterly regardless of the intcrests of farmers, and cause them both loss and annoyance. All this is occasioning such an amount of heart-burning and alienation of feeling between different classes of society as cannot fail to have disastrous consequences. A few years ago the removal of hares and rabbits from the list of animals protected by the game-laws would, so far at least as landlords and their tenants are concerned, have put an end to all this misery. The refusal of so moderate a concession has in all likelihood sealed the fate of these oppressive laws which bave so long embittered society and disgraced our country.

Section 6.-Concluding Remarks.

On carefully comparing the present condition of British agriculture with what it was forty years ago, the change for the better is found to be very greas indeed. But on all hands there are many indications warranting the anticipation that the progress of discovery and improvement in future will be more steady, more rapid, and more general than it has hitherto been. There is not only a more general and more earnest spirit of inquiry, but practical men, instead of despising the aids of science, scek more and more to conduct their investigations under its guidance. Experiments are made on an ever-midening scale and upon wellconcerted plans. Their results are so recorded and published that they at once become arailable to all, and each fresh investigator, instead of wasting his energies in re-discovering what (unknown to him) has been discorered before, now makes his start from a well-ascertained and ever-advancing frontier. Formerly the knowledge of the husbandman consisted very much of isolated facts, and his procedure was often little better than a groping in the dark. As the rationale of his vaiious processes is more clearly discovered, he will be enallec to conduct them with greater economy and precision than he can do at present: A clearer knowledge of what really constitutes the food of plants, and of the various influences which affect their growth, will necessarily lead to important improvements in all that relates to the collection, preparation, and use of manures.

What may truly be called a revolution in agriculture is now in the act of rapid development, in the application of steam-power to the tillage of the soil, which is spreading on every side. Enough has already been accomplished to show that, under the combined influence of drainage and steam tillage, the clay soils of England will speedily have their latent fertility brought into play in a manner that trill mightily augment our supplies of homegrown bread-
en:n and butcher-meat. It may indeed now be reasonably anticiputed that these hitherto impracticable soils will again take their place as our best corn-growing lands, and that those large portions of the country where for a long time our national agriculture presented its poorest aspect, may ere long exlibit its proudest achievements.

In closing this rapid review of British Agriculture, it is gratifying and cheering to reflect that never was this great branch of national industry in a healthicr condition, and never were there such solid grounds for anticipating for it a steady and rapid progress. The time has hardly yet gone by when it was much the way with onr manufacturing and trading men, and our civic population generally, to regard our farmers as a dull, plodding sort of pcople, greatly inferior to themselves in intelligence and enctgy. Many of them seem now, howover, to be awakening to the fact that their rural brethren possess a full share of those qualitics which so honourably distinguish the British race. Nay, some of them may have experiencod no little surprise when they became aware that in a full compctition of our whole industrial products with those of other nations, as at Paris in 1855, and at similar and more recent international expositions, the one department in which Britain confessedly outstripped all her rivals was not in any of her great staple manufactures, but in the live stock of her farms, and in her agricultural implements and machinery

List of Plates accompanying this Articles

Prato
No. III. Plan of Covered Homestcad for a amall Farm, by Mr J. Comie.
IV. Ground Plan of Steading and Óffices on the Horno Farm of the Earl of Southeek.
V. Shorthora Bull and Cow.
VI. Hereford Bull, and South Down Ewe and Lamk

V1I. Cheviot Ewe and Blackfaced Hcath Sheep.
ViIi. Leicester Ram and Ewe.
IX. Romsey Marsh Ewe, and Sow of the Large English Bred

The following description has been supplied along with the plan given in Plate IV.:-"It represents the ground plan of a steading of oflices recently built on the home farm of the Earl of Sonthesk, planned by Charles Lyall, Esq., his lordship's factor. It contains a powerful thrashingmill, corn-bruiser, oil-crusher, chaff-cutter, and turnipslicer, all driven by a portable steam-engine; and is amply supplied with water for the troughs, and is lighted by gas. It may be regarded as a model, containing as it docs all the converiences and appliances necessary for the completo development of the stock and implement departments. It is calculated for an occupancy of 500 acres, and was built, including the steam-engine, at a cost of about $£ 5000$."

This plan may very well illustrate the present state of opinion as to whether or not cattle shouid be kept wholly under cover. It gives an aftirmative answer to this question in the casc of fattening cattle; but for breeding stock of all ages it provides accommodation in open yards. This we consider the best arrangement; for it is impossible in the case of breeding stock to retain that fine coat of hair which so enhances the good looks and value of high-class cattle without such an amount of exposure to the weather as is afforded by open yards with covered sheds. There is one feature in this plan which we cannot but regret, viz, its bothy. It is indeed one of the best of its kind, having a separate sleeping-place for each of its inmates, and suitable arrangements for their cleanliness and comfort; but the meanest cottage in the country, inasmuch as it admits of family life, is to be preferred to the most perfect bothy.
(J. w.)

CHAPTER XXI

LARGE AND SMIALL FARMING.

No treatise on agricuiture will in these days be considered complete which does not take note of some of the various modes in which the treatment of the soil may be affected by variations in the cultivating occupier's form of tenure. A farm may be the property of its occupier, or be held by him at will or on lease. According to its extent it will be the subject of grande or of petite culture, expressions which in the following pages will be Anglicised as large and small culture or farming. If a farm be of small size, and if its occupant be ałso its owner, peasant proprietorship comes into play. If it be let, its rent may consist of a payment of predetermined amount in money or in kind, or may, instead of a fixed portion, be a predetermined proportion of the annual produce. It may be let to one individual, singly responsible for the rent and for all imposts, fiscal or other, and exclusively entitled to the whole of the remaining net produce; or it may be held in common by any number of coparceners, all co-operating in the cultivation, and jointly and severally responsible for the rent and other dues, and all participating in the net profits.

Each of these systems has its adrocates, and of one of them, at least, the admirers are so much enamoured as to be unable to perceive merit in any of the rest. A judgment upon them that would be generally acceptable is therefore impossible, and need not be attempted here. Nothing more will be aimed at than such an impartial estimate of the advantages and disadvantages of each as may help an vubiassed reader to judge for himself.
I. In regard to tenancy at will and to leases, little recd be added to the observations made in previous clapters of this article. For the consideration, however, of those who insist on the undoubted fact that in Great Britain, where tenancy at will is still the rule, and leases as yet only the exception, the same families, alttough liable to be ousted at six months' notice, are nerertheless often found occupying the same land from generation to generation, the following may be suggested ss a not improbable explanation of the landlord's nonexercise of the power of eviction. It may perhaps be not so mrich that the farmers really confound past continuity with iuture permanency of tenure, as that their want of security for the future prevents their investing liberally in improvements, and thereby bringing the land into a condition calculated to attract higher bidders for its possession. Such increase as does take place in its lettable value is chiefly due to enhancement of the prices of produce; and to a rise of rent proportionate to such enhancement the old tenants readily submit rather than be removed. The principal loser here is the landlord, whose short-sighted policy deters his tenants from a species of enterprise the benefit of which mould eventually become principally his orn. If the tenants took the trouble to make the comparison, they might, it is true, deliberately prcfer the mere chance of a long series of years at a low rent to the certainty of the same low rent for a limited term, coupled with the nearly equal certainty of a rise of rent at the end of the term. Their gains in the former case, they might argue, however meagre, might at least be casily earned; whereas materially to increase them in the latter casc, although perhaps possible, would be possible only at the expense of much anxiety of mind as well as of much extra sweat of the brow.
II. Of grande culture, or large farming, it may perhaps be thought almost superfluous here to enumerate the recommendations, which indeed on one condition are obrious and incontrovertible. Provided a large farmer bs possessed of
capital duly proportioned to the extent of his holding, and of intelligence to employ his capital judiciously, his husbandry can scarcely fail to prove abundantly satisfactory. In a territory entirely parcelled out among farmers of this description there would, from a purely agricultural point of view, seem little left to desire. The system certainly approaches towards the realisation of the great object of all agriculture-that of the production of the greatest possible quantity and the best possible quality of raw material for the use of man. The distinguishing characteristic of large culture is the scope it affords for the application to husbandry of the great principle of division of labour. A well-managed large farm is indeed a factory for the production of regetable and animal substance. The extensive scale on which operations are there carried on necessitates the employment of several persons, to each of whom some special occupation may be assigned, and constant practice naturally increases the labourer's skill. Time, too, is saved which .would otherwise be lost in turning frequently from one occupation to another; ana there is also a further saving in implements, large and small, and in draught cattle, fewer of which will suffice for the tillage of a given area held entire than would be needed if the same acreage were divided amongst numerous tenants. Some, again, of the more important of agricultural operations, and notably those of drainage and irrigation, are in many situations incapable of being efficiently performed except on a large scale; and though they may be, and often are, most efficiently performed on the rery largest scale by a combination of small landholders, still every such combination must necessarily be preceded by negotiations involving indefinitely prolonged delay, with which a single individual, occupying the entire tract, could at his option dispense. And a similar remark applies to the costlier implements and machines, in the adoption of which associations of small farmers may slowly follow the example of individual laige farmers, but which they would not, without such example, have themselves adopted-which, indeed, unless previously patronised by large farmers, would never have been offered for their adoption. Probably no inventive genius, however disinterestedly ardent, would have been at the pains to derise a steam thrashing-machine or a steam plough, had there not been wealthy agriculturists, some of whom might readily be persuaded to risk, at their own cost and charges, an immediate trial of any promising invention. Farmers of limited means, eren when living in the same neighbourhood, would have to be educated into faith in the novel apparatus before the inventor would get a single specimen taken off his hands.

[^68]stances, as a guide to follow or a beacoin to aroid. Every one interested in such matters knows how mnch has been done in this way by successive Dukes of Bedford and Portland and Marquesses Townsheud; by the late Earls of Leicester and Scarborough and Earl Spencer ; and by the present Earl of Ducie and Earl Grey ; uor are there many ways in which a landed aristocracy can better rebut the reprosch of inutility than by thus doing honour to agriculture, and having the honour reflected back on themselves.

As already binted, however, it is only on condition of being condncted with adequate capital that large farming can succeed. True, with deficient capital anall farming could succeed no better, perhaps indeed not so well ; but then there is much more danger of the needful capital being wanting to a large farmer than a small one. Whatever, from $£ 5$ to $£ 20$, be the desirable proportion per acre, the number of persons possessing tho $£ 50$ or $£ 200$ required for stocking a farm of ton acres is likely to be everywhere many times more than fifty-fold that of those possessing the $£ 2500$ or the $£ 10,000$ which a single farm of 500 acres would require. Besides, in countrics abounding with forturate individuals able to count their ponnds sterling by the thousand, promising modes of investing ench considerable sums abound proportionally; and even in a country so exceptionally rich as our own, the number of capitalists prepared to invest their thousands in farming is sadly below the unmber of farms which would be all the better for having the samo chousands ao invested. We are justified then by experience in saying, that wherever large farming is the rule, there will probably be rery many farmera without adequate capital Now, in agricul. tore, inadequate capital means, among oither things, insufficient live stock and insufficient manure, and, as an inevitable consequence, defective crops. It means, in short, imperfect cultivation.
III. From these premises it would apparently result that small farmers will generally bo more nearly provided with the capital required for their business than large ones; and such seems to be actually the fact whereever peculiar circumstances have not been at work as preventives. It is not indeed so in Ireland, where feudal oppression or anarchy, alternating with alien misrule, has in all generations made destitution the heritage of the peasantry. Neither is it so in France, where the swarms of petty landholders had little of either precept or example to teach them that to employ their spare napoleons in thoroughly cultivating the few acres they already possess, would be a much better investment of their money than the purchase with it of an additional acre or two to be as imperfectly cultivated as the rest. In England the system of small cultivation, strictly so called, has probably ceased to exist, now that amateur farming has come so much into fashion, and that the instances have become comparatively so numerous of men of considerable substance turning to farming for a livelihood. It will not, however, help us much, when endeavouring to ascertain the relative merits of two rival agricultural systems, to contrast good specimens of the one and bad specimens of the other. If we would accurately gauge their respective capabilities, we should take them both at their best, and the comparison here of large with small farming will accordingly be of the former as it presents itself in England, and of the latter as developed in Flanders. Now, in the territory first named the average capital of occupants of 100 acres and upwards would certainly not be understated, and would probably be materially overstated, at $£ 6$ per acre; yet M. de Laveleye, while giving $£ 8$ "as the average for Flanders (where the medium size of farms is but $7 \frac{1}{2}$ acres in the western, and no more than 5 acres in the eastern province), adds that good farmers, judging of others by themselves, would call that sum much too low even for an arerage; and further remarks that, although a small tenant may, on entering, have only $£ 8$ an acre, the additions be is continually making to his live stock, and his continually increasing purchases of manure, commonly raise the.$£ 8$ to $£ 16$ before the expiration of his lease. He also informs us that in other Belgian districts-in the Ifesbayan portions of Brabant and Hainault, whereof one-sixth is occupied by farms of 100 acres and upwards, and in the Condrusian portion of the province of Namur, where farms of 250 acres and upwards are pretty numerous-a farmer's average
capital is estimated at betreen $£ 5,12$ s. and $£ 6,8$ \& , and between $£ 3$ and $£ 4$ per acre respectively. True, as already intimated, there are certain descriptions of stock on which the small farmer's expenditure must nccessarily somewhat exceed his rival's-ten Flemish farmers of 10 acres each being probably obliged to keep ten horses, while an English farmer of 100 acres might not perhaps bave occasiou for more than a pair, reducing also his number of carts, ploughs, and the like, in similar proportion. But after all reasonable deduction on this account, the balance of capital remaining for the purchase and maintenance of those aninais and materials of which no farmer ever has too many or too much, is in general much greater in the Fleming's case than in the Englishman's. "It would startle the English farmer of 400 acres of arable land," said Mr Rham forty years ago, "to be told that he should constantly fced 100 head of cattle, yet this would not be too large a proportion if the Flemish system were strictly followed, a beast for every 3 acres being a common Flcmish proportion, and on very small occupations, where spade husbandry is used, the proportion being still greater." "That the occupier," be proceeds, "of only 10 or 12 acres of light arable soil should be able to maintain four or five cows may appear astonishing, but the fact is notorious throughout the Waes country." These statements ere of somewhat ancient date, but are still as applicable as ever. During a recent tour through Belgium, tho present writer visited two farms near St Nicolas, in the Pays de Waes-the first two that came in his way. On one, of 10 acres, he found four cows, two calves, one horse, and two pigs, besides rabbits and poultry. On the other, of 38 acres, one bull, six cows, two heifers, one horse, and seventy-five sheep-these last, however, being allowed, in addition to what they got on their owner's ground, the run of all the stubbles in the commune; the whole commune, on the other hand, being allowed the use of the bull gratis. A few days later the writer went over a farm a ferv miles from Ypres. On this, of 32 acres in extent, he counted eight cows, six bullocks, a calf eight weeks old, and four pigs. To possess plenty of live stock is to possess in an equal abundance the first requisites of sustained fertility. "No cattle, no dung; no dung, no crop," is a Flemish adage; and the wealthicst of English agriculturists are less prodigal of manure than the Flemish peasantry. Mr Caird, in his instructive and interesting treatise on English Agriculture, cites as something extraordinary that, for a farm six miles from Mancacster, manure should have been bought at the rate of 12 or 13 tons an acre; but this, which in England passes for lavishness, might seem more like niggardliness in Flanders; for there from 10 to 15 tons of good rotten dung and 10 hogsheads of liquid from tho urine tank, per acre, are quite common sacrifices and libations to the Sterculine Saturn, and some 30s. worth of purchased fertilisers-bones, wood-ashes, linseed-cake, and guano-are not unfrequently superadded. Nay, when potatoes are the crop for whose increase the deity is invoked, 60 tons of manure per acre are no unusual quantity to lay on. The holder of the farm of 32 acres near Ipres, just alluded to, assured the writer, in his landlord's presence, that, over and above what his own cattle supply, he purchases manure to the value of no less than $£ 200$ annually.

Ono of the respects in which small culture has been admitted to stand at some disadvantage in comparison with large is that of division of labour; but against whatever loss of time or evan inferiority of skill may result from the necessity there is for cach of the labourers engaged in the former culture to occupy himself witb a variety of operations instead of confining himself to one, are to be set the additions volontarily made to the labour employed, and also its euperior heartiness. The tillage of a small farm is executed often entirely, and almays in freal measure, by the farmer bimself and the members of his family; and when these have adequate security that the entire increase of the soil, over and alove a slecified
quantity, will belong to themselres, they.generally do their utmost to make the increase as large as possible. Not, indeed, always. Industry, in common with other virtues, is greatly influenced by ezample; and small leaseholders, or even small freeholders, thinly interspersed among numerous tenants-at-will, are much more likely to accept as their standard of becoming exertion the habitual list lessness of the latter than to set up an independent standard of their own. Where, however, small farmers are in a decided majority, they are, unless some extraordinary circumstances are in operation to depress their energy, sure to appear as models of diligence. Their activity is not then restricted within set hours of work. Whenever a thing requires to be done is with them the proper time for doing it, and early and late, consequently-long before the hired journeyman comes in the moming and long after he has gone home in the evening-they may be seen afield, doing, too, whatever they do, not only with all their might, bnt with all the heed which people usually bestow on their own affairs, even though they bestow it on nothing else. In particular, they waste nothing-least of all anything that can be used as manure. Now, there are no crops which would not be the better for such special attention, and there are some to which it is an almost indispensable condition of excellence. Flax, hemp, hops, wine, cil, and tobacco fornish instances of culture in which the individual plants require, or at any rate abundantly repay, separate care. Bnt such minnte attention no anpervision can ensure-no rate of hire can command. It is habitually rendered by those only who are directly interested in rendering it, or otherwise directly stimalated - by the small farmer and the amall farmer's wife and children all working with their own hands for their own behoof, and by his servants, if he have ainy; for that must be a pitiful creature indeed whd, with his employer working by his side, will let his employer work harder than himself. Herein, then-(in the greater quantity and better quality of work which the same nomber of persons will do in small as compared with large farming)-cousisting the distinctive excellence of the former aystem, how far does this connterbalance the superiority of large farming in regard to the saving of labour and implements? There can be no more conclusive mode of answering this question than by contrasting the substantial results of the two aystems, adopting as tests the respective amounts both of gross and of net produce Now, in England the average yield of wheat per acre was in 1837 only 21 bushels, the highest average for any aingle county being no more than 26 bushels. The highest average since claimed for the whole of England is 32 bushols; but this is pro. nounced to be much too high by the best, perhaps, of all anthorities, Mr Caird, whe gives $26 \frac{1}{2}$ bushels as "the average of figures furnished to him by competent judges in all parts of the kingdom," adding, as the result of his own observation, that 32 bushels, as an average produce, is to be met with "only on farms where both soil and management are superior to the present average of England." In Jersey, however, where the average size of farms is only 16 acres, the average produce of wheat for the five years ending with 1833 was, by official investigation, ascertained to be 40 bushels. In Guernsey, whêre farms are still smaller, 32 bushels per acre was, according to lnglis, considered, abont the same time, "a good, but still a common, crop;" and the light soil of the Channel Islands is naturally by no means particularly suitable for the growth of wheat. That of Flanders, originally a coarse silicious sand, is particularly unsuitable, and accordingly little wheat is sown there, but of that little the average yield, at least in the Waes district, is, according to a very minute and careful observer, from 32 to 36 bushols. Of barley, a more congenial cereal, the average is in Flanders 41 busbels, and in good ground 60 bushels; while in England it is probably under 33, and would certainly be over otated at 36 bushels. Of course the English averages are considerably exceeded in particular localities-on auch farms, for instance, as those of Mr Paget, near Nottingham, and of Mr Stansfeld, in the West Riding of Yorkshire, wheat crops of 46 bushels per acre being not extraordinary, and of 56 bushels not unknown ; but these exceptional cases may be more than matched in Gnernsey, where the largest yiold of wheat per acre, in each of the three years ending with 1847, was proved to the satisfaction of the local agricultural society to have been not less than 76,80 , and 72 bushels respec tively. Of potatoes, 10 tons per acre woull anywhere in England, even on the rich "warp lands" bordering the tidal affloents of the Humber, be considered a high average crop; but in Jersey the average is reckoned at 15 tons, -and near Tamise, in eastern Flanders, Mr Rham found a cultivator of 8 acres of poor land raising nearly 12 tons from one of them. Clover, again, "the glory of Flemish farming," "is nowhere else found in such perfect luxuriance" as in Flanders, where it exhibits "a vigour and weight of produce truly aurprising," especially when it is discovered "that such prodigious crops are raised from 6 tb of seed per acre." Most of the other green crops, and also most of the root crops, grown in Flanders deserve to be spoken of in similar terms; and to the extraordinary number of cattle fed upon these green and root crops referenre has already been made. lf any reliance may be placed on thope atatistics, it cannot, however startling at first hearing, be too
much to affirm that in the Channel Islands and in Flanders the average of gross produce is greater than in England by fully onefourth, or say by the equivalent of 9 bushels of wheat per acre.

Gross produce, however, is not the only thing to be considered, for there is no doubt that on equal areas small farming employs more hands than large; and it might be that the entire produce of a emall farm was not more than sufficient to feed the extra nouths. This would not necessarily be an evil, unless on the assiumption that the condition of agricultural labourers is necessarily so wretched that an increase in their number is tantamount to an increase of wretchedness. Possibly, however, the extra produce might be less than sufficient to feed the extra moaths, so that the quantity of net produce remaining available for sale to the non-agricultural portion of the community would be diminished; and, if this were really the fact, it might be conclusively condemnatory of small farming. Nor, to prove that it is nst the fact, will it suffice to urge that land, when divided among numerons occupants, commonly fetches a mach higher rent than when united into a few extensive hold-ings-that whereas, for example, 30s. an acre would in England be considered a fair and even a high rate for middling land, it most be very middling land indeed which in Guernsey will not let for at least £4, while in Switzerland, another territory of petite culture, the average rent is $£ 6$. For these, higher rents might be the results of an incident, not of culture, but of tenure-of that excessive competition for land which is unhappily a too frequent accompaniment of small farming. Neither will it snffice to show that, although the agricultural population of a minutely-divided territory is always far denser than that of one of large farms, certain territories of the former description are nevertheless among those which maintain the largest manufacturing and coromercial popu-lation-Belgium, for instance, being second to England alone in that respect, and Switzerland and Rhenish Prussia being likewise cases in point. For it may obriously be replied that the non-agricultural classes of a community need not be entirely dependent for food on home produce, but may derive part of their supplies from abroad, and it may generally be impossible to ascertain what is the proportion imported. This objection does fiot, indeed, apply to the Channel Islands; and Mr W. T. Thornton has, in a new edition of his Plea for Peasant Proprietors, -been at considerable pains to prove that in Guernsey two, and in Jersey four, non-agricultural inhabitants are maintained on the produce of every acre and a half of cultivated land, whereas in England only one such person is so fed. Be this as it may, a preferable, or at any rate more generally applicable, test is the proportion between the extra production of small farming and the consumption of the extra labourers therein employed. Now, in Flanders and in the two principal Channel Islands the agricultural population is about-four times as dense as in England, being at the rate of about one persua for every 4 acres, instead of one for every 17 ; but cause has also been shown for believing that in Flanders and in the same islands the average produce of the soil is greater than in England by the equivalent of 9 bushels of wheat per acre, or of 153 bushels for every 17 acres. But 153 bushels, or say 19 quarters, of wheat is much more than three persons-and these not all adult males, but, more likely, a man, a woman, and a child-would consume, even if it were supplied to them, and there were nothing else for 'them'to eatt; and is fully three times as much as three such persons of the farm labourers' class in any part of Europe liore the means of procuring. After deduction, therefore, of their consumption, 'there would still remain available for sale to non-agricalturists. from the produce ω

17 acres under small culture, the equivalent of nearly 100 bushels of wheat moro than could be spared for the same purposo from an equal extent of land under a large farmer. These conclusions are not pat forward as more than soughly approximate, nor, indced, in tho present disgraceiully defective state of British agricultural statistics, are any but rough approximations on the subject possible. But, unless very wido iadeed of the truth, they must be acknowledged to furaish sdequato reason why rural magnates should not engruss all our praises, and why the honest egricultural muse should reservo a share of commendation for small leaseholding farmers also.
IV. And while so much can be said for small leaseholders, it is obvious that every one of tho arguments adduced in favour of that class applies with redoubled force to small freeholders cultivatiug their omn freeholds. A peasant proprietor, whose whole produce belongs to himself, is of course richer than be would be if be had to pay rent -can more easily bear the expenses of cultivation, of procuring proper implements and manure. of drainage and irrigation, and of the keep of live stock. Small leaseholders, as a class, lay out more money on their land, in proportion to its extent, than large occupiers; but a small frecholder has more money to lay out than a leaselolder of the same degree, and has besides stronger motives for laying it out on improvements. "A sinall proprictor," says Adam Smith, "who knows every part of his little territory, who views it with all the affection which property, especially small property, naturally inspires, and who, upon that account, takes pleasure not only in cultivating but in adorning it, is generally of all improvers the most industrious, the most intelligent, and the most successful." It might have been added, that he is likewise the most enterprising. He need not carefully calculate whether his outlay will be fully recovered by him within a certain term of years; he has only to considerwhether the incteased value of his land will be equal to fair interest on the sum which the improvemeuts will cost. He does not require that the principal should ever be returned. He is satisfied to sink it for ever in his own land, provided that, in that safest of all investments, it promise to yield a perpetual annuity equal to what would be its annual increase in another employment.

Igain, the peasant proprieter has the strongest possible incentives to diligence. A man never worles so well as When paid by the piece; but even then, the more he is paid, the better he works. The small leaseholder, not less than the small proprietor, is paid in proportion to his Labour; but the latter is paid at a higher rate, for be takes to himself the whole fruit of bis labour, while the former must content himself with part. The proprietor, too, knows that, so long as his labour continues equally prodactive, his remuneration will remain the same; while that of the tenant, though augmented solely by his own exertions, may be diminished at the expiration of his lease. Besides, many rural operations sield no profit until after a long lapse of time; and the annual profit of others is so small that the enjoyment of it in perpetuity is requisite to recompense the labour expended. Such operations are seldom undertakes except by proprietors. No tenant would think of planting an orchard such as Arthur Young saw near Sanve on a tract consisting "seemingly of nothing but bare rocks;" or, as in the mountains of Languedoc, would "earry earth in baskets on the back to forma a garden where nature had denied it;" or would enclose and till fields and gardens on a "wretched blowing sand uaturally as white as snow." But, as Youvg exclains, "give a man the sccure possession of a bleak rock, aud be will turn it into a garden!" There is "no way so sure of carrying tillage to a mountain-top as by fermitting the neighbouring villagers to aequire it is property. Tho
magic of property turns sand to gold." It may perhaps be objected that the gold does not repay the cost of transmutation, and that therefore the labour expended upon it has been wasted; and no doubt a monied speculator, who should engage in such alchemy with hired labour, might never recover the amount of his outlay. But-and here comes a conclusive answer to those who, instead of admiring such achievements, condemn them as mere waste of power-the peasant who performs them on his own account performs them with labour which would otherwise be valueless at that particular time. When the hired journeyman has earned his day's wages, and gives himself up to rest or amusement, the littlo landorner is content to recreate hinself by turning to some lighter work. It is sufficient amusement for him to weed or water his cabbages, or to train or prune his fruit-trees; and, in wet or wintry weather, when outdoor work is seareo worth paying for, and when the day-labourer must often remain idle becaase no one will employ him, then it is that the independent cottager builds up terraces on the steep hillside, or lays the site of a garden among roeks. It is, in short, one prime excellence of peasant proprictorship that it stirs into activity labour which otherwise would not bave been exerted-in other words, would not have existed, and the fruits of whiel, consequently, however insignificant, are at any rate all pure gain.

The pastoral tribes, by which most civilised countrics were originally occupied, lave almost invariably becn follored, either immediately or after a certain interval, by a race of peasant proprietors. The revolution has taken rilace at different stages of national progress, but seareely an instance can bo mentioned in which it has not oecurred sooner or later. In territories of very small extent, very barren or much intersected by mountains, rivers, or other natural barricrs, it has commonly becn cocral with the first appropriation of land by individuals. In snch situations, the original tribes of nomad herdsmen must necessarily have been small for want of pasture; and the same cause must have prevented any individual from acquiring very great numbers of cattle, and from very greatly strpassing his compauions in wealth and power. All must have been nearly equal in rank; and, whenever a partition of their common territory was resolved upon, every one, no doubt, made good his claim to a sbare. On the other haud, in countries containing abundance of good pasture, separate tribes might expand indefinitely, the cattle of single proprietors bo counted by thousands and tens of thousands. Great wealth would then imply great disparity of rank, and rich herdsmen would have many poor retainers entirely indebted to their bounty, and consequently eutirely devated to their service. Such dependants, when the community passed from a migratory and pastoral to a stationary and agrieultural condition, could put forward no pretensions on their own behalf. Their relation to their masters would rernain the same as before, or rather would be exchanged for a more stringent form of bondage. From servants they would become serfs, and the duty assigned to them would he that of tilling their masters' fields, os they had previously tended his herds. In tha course of ages, however, they would inlperceptibly acquire some important privileges. Residing for many suecessive generations on the lands allotted to them for their own subsistence, and paying to their lord always the same, or nearly the same, portion of the produce, they would come at length to be regarded as conditional proprictors of their respective holdings, or as perpetual lessees at a quit and almost nominal rent. Their proprictary title, although at first merely preseriptive, would be eventually legalised; and thus it is that from villeins and serfs has descended n progeny no less respectable than English copy-holder3 and German baucrs.
V. In one or other of these ways almost every couniry on the face of the globe which has passed regularly through the various stages that separate barbarism from civilisation, has been at some period, as many are still, occupied in great measure by peasant proprietors. In those conntries, however, in which peasant proprietorship bas beel evolved from serfdom, there must have been, intermingled with the lands held by servile tenure, cthers, not less extensive, in the immediate occupation of a rural aristocracy. These seignorial domains would long continue to be cultivated by the serfs or slaves of their respective omners. but as feudal and domestio slavery fell
into desuetude, the landjords, in order to get their lanas tilled, would be reduced to the necessity of holding out :nducements to free hnsbandmen to lend their assistance. In England, where, thanks to the comparative security enjoyed by industry, plebeiaus of some substance were already not rare, it might suffice to offer tenancies for terms of years or for lives; but, in those continental countries in which feudal misrule had given way, only to be replaced by monarchical tyranny, it was generally mecessary for the landowner, who desired that his forms should be tolerably stocked, to stock them himself. Hence arose a system which, having never existed in England, has no English name, but which in certain provinces of Italy and France, where it was once almost universal, and is still very common, is called mezzeria and métayage, or halv-ing-the halving, that is, of the produce of the soil betrveen landowner and landholder. These expressions are not, however, to be understood in a more precise sense than that in which we sometimes talk of a larger and a smailer balf. They mercly signify that the produce is divisible in certain definite proportions, which must obviously vary with the varying fertility of the soil and other circumstances, and which do in practice vary so much that the landlord's share is sometimes as much as two-thirds, sometimes as little as one-third. Sometimes the landlord supplies all the stock, sometimes only part-the cattle and seed perhaps, while the farmer provides implements; or perhaps only half the seed and half the cattle, the farmer finding the other halves-taxes too being paid wholly by one or the other, or jointly by hoth.

Now, with whatever virtue a system like this may be condition. ally credited, it plainly can have no virtue at all except on con. dition of its being believed to be permanent. The métayer must have full confidence that the landlord, although authorised by law, will be prevented by respect for custom, from increasing his exac. tions; hut even on tlis condition the system is open to the serious objection, that the metayer will deem it his interest to lay out on the land as little as possible, if anything, of his own, except labour. If in England, previously to tithe commutation, a farmer was discouraged from spending money on improvements by the knowledge that the parson woud claim one out of every ten additional shesves of corn or pounds of butter produced in consequence, what chance is there of a metayer risking a similar expenditure, while knowing that the landlord's share of the consequent produce would be a moiety or more instead of a tenth? In this particular, metayage closely resembles English tenancies at will, which practically render it almost equally incumbent on the land. lord to bear the entire capense of all costly improvements, and over which métayage, in another and nearly allied particular, possesses a marked advantage. Although the métayer may, for one very cogent reason-a reason, however, likely to be somewhat counteracted by belief, whether well or ill founded, in the fixity of his tenure-be reluctant to use in his business eny capital of his own, he mill, for the converse of that same reason, be anxious to make the most of the capital entrustcd to him by his landlord. He is his landlord's partner, eatitled to a moiety or thereabout in his landlord's gains. It is his interest, then, to gec the most out of the land that can be brought out of it by means of the landlard's stock. Virtually, indeed, he is himself, in a qualified sense, a peasant proprietor, possessing in a minor degree all the stimulants to dilirgence, hecdful. aess, and thrift, incidental to that character; and thero can scarcely, therefore, 'be inherent in his constitution any such incurable vice es would warrant his being condenned a priori. Equally with other people he is entitled to be judged by his behaviour. As to this the testimony of experience is very conflicting. English writers who see nothing of métayage at liome, and may be suspected of looking with not wholly unprejudiced eyes at what they see of it abroad, were, until Mr J. S. Mill adopted a different tone, unani. mous in condemaing it. They judged it, however, by its appear. ance in France, where it has never worn a very attractive asnect. In that country every form of agriculture still retains many of the traditions of the antc-Revolutionary period, and métasage, in particular, labours under great difficulties in consequence. Under the ancien régime not only were all direct taxes paid by the métayer, the noble landowner being exempt, but these taxes, being assessed according to the visible produce of the soil, operated as penalties upon all endeavours to augment its productiveness. No ronder, then, if the métayer fancied that his interest lay less in exerting himself to
than in studying how to defraud the latter of part of his rightful share; nor any great wonder either if he has not yet got entirely rid of habita so acquired. Pather would it be strange if he bad, especially when it is considered that he still is, as his predecessors were formerly, destitute of the virtual fixity of tenure without which métayage cannot reasonably be expected to prosper. French métayers, in Arthur Young's time, were "removable at pleasure, and obliged to conform in all things to the will of their landlorks," and so in general they are still. Yet even in France, according to M. de Lavergne, although "métayage and extreme rural poverty usually coincide," there is one province, Anjou, where the contrary is the fact, as it is also in Italy. Indeed, to every tourist who has passed through the plains of Lombardy with his eyes open, the knowledge that metayage has for ages been there ths prevailing form of tenure ought to suffice for the triumphant vindication of métayage in the abstract. Its perfect compatibility with the most flourishing agriculture must be clear to any one who, noting the number and populousness of the cities in the Lombard provinces, is at the same time aware how much of agricultural produce those provinces export and how little they import. An explanation of the contrasts prescnted by métayage in different regions is not far to seek. Métayage, in order to be in any measure worthy of com. mendation, must be a genuine partnership, one in which there is no seeping partner, but in the affairs of which the landlord, as well as the tenant, takes an active part. If he do this, he cannot be an absentee. He must be on the spot to judge when and what advances are required from him, and to watch over their proper application; to that end conforring habitually with the métayer, and taking as well as giving counsel on the suoject, as on one in which both are equally concerned. This exhibition of common interest on one side is sure to beget it, if previously wanting, on the other; feelings of mutual attachment insensibly spring up, and the spirit which governs the mutual relations becomes one of friendly and almost aflectionate association. Such is, or at any rate used to be, the state of affairs in Piedmont, in Lombardy, and in Tuscany; and wherever the same description applies, the results of metayage appear to te as eminently satiactory, as they are decidedly the reverse wherever the landlord holds himself aloof, contenting himself, as it were, with putting out his stock to usury, and never intervening except to carp at the smalless of the returns. Instead of community, there is then conflict, of interests. Anta. gonisra takes the place of association. The landlord grudges the scantiest advances, and even of those the farmer does his best to cheat the soil, which, starved by them who ought to feed it, leares them to starve in return.
On the whole, and according to preponderance of testimony, métayage must perhaps be admitted to be everywhere showing a tendency to degenerate after the above fashion; yet even so, the worst that need be said of it is, that it is becoming an anachromism; this, moreover, being perhaps a reproach less to itself than to the age in which we live. 1 t is the present generation of mankind who are chiefly to blame if the ties which anciently linked together employers and employed in more or less kindly fellowship, are now-a-days, in agriculture as in other departments of industry, visibly decaying, and if each section of the agrarian class, bidding the others keep their distance, prefers to perform its own functions separately, and without more of natural intercourse than business obligaiions, arranged beforehend, render indispensable. But whenever, irom whatever cause, landowners hare come to he regarded by landholders as mere receivers of rent, métayage cannot possihly thrive, and it is accordingly dying out, even in the quarters to which it has hitherto appeared most congenial. Even in the Milanese, where the minute and assiduous attention to details which métayers, next after pessant proprietors, can best be depended on for hestowing, is in especial de. mand for sericulture and viticulture, métagage is undergoing changes which M. de Lavelese (Economic Lurale de la Lombardic) describes as follows:-
"The primitive conditions of contract which fixcd, according to local and traditional usagc, the cultivator's share, are daily more and more departed from. For a considerable time past, in the parts about Como and Milan, to the arrangement for sharing by halves, which now applies only to plantation crops, grasses, and cocoons, has been added a clause providing for the annual pasment of a detcrminate quantity of corn; and, as this quantity is settled no longer by lacal custom, but by the demands of the proprietors ant tho offers of intending tenauts, it follows that métayage is losing its character of fixity, and falling under the law of increase which goverus farming rent. The clause in question is continuslly bccoming more and more of a habit; and, even where it has not yet been adopted, the ancient contract has undergone other and not less regretable modifications. The high price of commodities, particularly of silk, having markedly augmented the profits of the méta. yers, the landlords have arsiled themselves of this circumstance to introduce new stipulations-sometimes taking more than half of the cocoons, sometimes claiming a quantity of mulherry leaves to sell for their own profit, sometimes taking tithes first ond then halving the residue. All this is done with the same aim and the
ame result, the arm being to secure to tho landlord the whole benefit of continually rising prices, the result that of depriving the mélayer of the security which the primitive bgreement gave hum, and of subjecting him to all the disadrantages of a leaseholder without any of the latter's compensationg."
VI. The plan of industrial partnerships, wherever it has had a fair trial, has invariably been attended by the happiest results; but it has hardly yet been fairly tried in farming, where, horrever, its application would in ono respect bo comparatively easy. In most other kinds of business, to determine to the satisfaction of both parties concerned bow much, if any, of extra profits had been due to extra zeal no the part of the employed, might be an operation of some difficulty; But there need never be any doubt whether the crops of a given acreage were or were not above the average, or what, therefore, if any, was the surplus in which, according to the agreement, the employed were entitled to participate. That farmers would risk but little and only occasional loss, and in the long run would be sure to gain considerably, by permitting their labourers to share with them in a surplus which the labourers would have by voluntary exertion to create before they could share in it, may perhaps to an indifferent bystander seem a self-evident proposition. Farmers in general, however, may long be prevented from recognising its truth by an intervening haze of traditional prejudice, which must first be cleared away, and the removal may occupy so much time that not improbably another and more advanced form of agricultural co-operation, not needing the farmers' concurrence, may in the mean time come into vogue.

Intermingled with the multitudinous peasant proprietary of France are not only a much larger number of well-to-do country gentlemen than is commonly supposed, but also a not inconsiderable sprinkling of rural magnates, who, even beside English dukes, might well pass for extensive landowners. Among these latter are representatives of some of the oldest and noblest French families-men rejoicing in the grand historic names of Rochefoucauld, Noailles, Luynes, Montemart, D'Usez, and the like-who having at the restoration been partially reinstated in the domains of which the first revolution had despoiled them, disappeared, on the second expulsion of the Bourbons, from cour and office, and, returning to their country seats, betock themseives, under the Orleaniit dynasty and second empire, to the improvement of their estates. A difficulty which here confronted them was that of finding tenants possessed of capital enough for any but very small farms, and this they have latterly endeavoured to obviate by devising, under the name of métayage par groupes, an expanded modification of a discredited tenure. This consists in letting a considerable farm, not to one métayer, but to an association of everal, who work together for the general good, under the supervision either of the landlord himsnlf, or of a manager or bailiff of his appointment. This plan is by no means the novelty it may perhaps sppear, its near counterpart having within. the present century existed in some singular patriarchal communities - Jaults, Guittards, and Garriotts (see Thornton On Laiour, 2d edition, pp. 488-90), in Nivernais and Auvergne, and still existing among the massari of the subalpine districts of northern Italy. Its merit consists in its tendency to excito among the associates the generons emulation and other healthy stimulating and controlling influences of co-operative fellowship; but as yet it has scarcely been long enough in operation to show very decisively how it is likely to work. In the event of its proving
a marked success, it may become the starting-polis of much further progress. One easy and important step in advance would be for a body of métayers to persuade their laudlord to let them have their farm on lease, and at a fixed rent, thus raising themselves to that higher stage of agricultural co-pperation of which an irpperfect but encouraging example bas been afforded among ourselves by Mr Gurdon's well-known experiment at Assington in Suffolk. Of the two or three scores of labourcrs whe are there parties to the leases by which two farms-one of 130 , the nther of 212 acres-are held, not more than ten or a dozen have regular work in their own fields, the rest being therefore little more than passive capitalists, sleeping partners in the concern, while the active roembers receive, in addition to wages at the rates current in the neighbourhood, no larger shares in the profits than the members who do not exert themselves to increase those profits. Nevertheless, to sum up in a single phrase of especial significance for our present purpose the praises of the results achieved, Mr Gurdon declares that "he has no other land so well farmed "as that on which the co-operative principle is even thus partially applied. It would seem, therefore, that the adoption of the same pricciple in its integrity would result in better farming still, and it may be hoped that the question will, at Assington or elsewhere, be ere long put to the proof.
(w. T. т.)

Alpabetical Contents.

Anctent busbandry, 291
Articbokea, 869.
Bakew ell, 302.
Barley, 338.
Barna, 308.
Beand 360,
Bueh 88L.
Belbaven, 80L
Blood, 849 .
Blood, 409.
Bogdsmen, 294
Bones, 347
Rreate plongh, 3
Breeding, 302.
Cabbure, 369
Capital, 408.
Carrats, 323.
Carts, 323.
Chotia, cutting, 826.
Chel cuttiag, 82
Chalk 881.
Cblcory, $878,883$.
Clay, burnt, 381.
Cleanlog. 338
Climste, 308 .
Clovers,
Colzs, 383.
Colzs, 383.
Co-operatJon,
Cottages, 309.
Cottager,
Culley, 303.
Culley, 303
Culifratera, ateam, 315,
Dewbon, 303.
Denaldson, 30 L
Dralalag. 82
Drille, 820.
Education, 408.
Egrph anclent 291.
Fallnwlng, 837 ; aummer,
840.

Furm bulldinge, 308.
Farmlag, large, 411:
amall, 412.
Fences 309.
Fens, 404
Fiax 380.
Fowler, 816.
Costs, 399.
Gorse, 878.
Grald crops,
as
Grala crops,
Grasses, suciont,
Greece, anciont
Grinding, 828 .
Grabbera, 312
Gribling, 338
Gusno, 847.
Oэpsum, 851.
Hsirowing, 387
Hartow, 818.0
Harvating, 862.
Hamakerm 828.

Maymaking, $\$ 79$. Highland Soclety, 303, 205. History, anclens, 291 ,
1688-1760, 299:
1688-1760, 299;
1780-1790, 802;
1.96-1818, 303
Recent 304.

Recenth 80
Hoes, 321.
Hees 321 .
Hopscs, Earm_{4}
Howard, 818.
Implementa, 811.
lmprovemonts, recenh 805 .
Indisn corm, 382.
Jewish hasbandry, 291.
Knowledge, Incresse of, 303.

Kobl Ra ${ }^{2}, 370$
Labourers, 408.
Land tenure, 408.
Large fartaing, 411.
Laws, old, 298; recent,
304.
Leasea, 407, 411 ; restric.
tive, 341.
Legislation, 409
Levelline, 33
Lime, 850.
Literatore, 299, 306.
Lncerne, 378.
Mischlaes, 21
\#ifalz, 362 .
Maize, 362.
Mangel-warzel, 36
Manure distribators, 821.
Manure distibators,
Manures, 842; stiticlal.
Manures, $842 ;$ skt
383 ; llould, 343.
Marl, 85 i .
引axwell, 302.
Métayago, 414
Middle ages, 293.
Moerland, 402. Mowing-mochines, 22 Mowing-machinea, Mustard, $377,384$.
Nitrate of anda $3 E 3$. Nitrste of
Onts, 359. Onta 359.
Olls, 883. Paring, 835. Parsnipa, 869. Pasture, 870.
Pastures, 8 beep, 402 Peaast proprletors, 114. Peadant prope, 361 .
Peaser Pezh charted, 852. Perh char
Pigs, 400. Plonghing, 338. Ploughs, 311 ; steam, 814. Popalation infuenco of.

Potach, 358 Potato discase, 304. Potatoes, 364. Pouilry, 101. Rallways 308.
Rallways 308
Rakes, 323.
Rape, $870,888$.
Rape-cake, se9.
Reaplog-machine
Reclaiming, 402.
Reciaiming, 302.
Rosd steamern 823.
Pollers, 819.
Romers, silg. 292.
Rome, snclent, 292
Ropt cropa 364.
Rotatjon crops, $\$ 40$.
Rye, 850.
Rye, 850,
Ryegiss, 878.
Ralnfoin, 877.
Salt, 353.
Salt, 358.
Scotland 248
Ses weed, 350
Seed, 883 .
Sews ge, 349.
Sheep, 391; farming, sos.
Sheep, 391: farm
pastures. 402.
pmall farming 212.
Socictles, $808,805$.
Socicties,
Solla, 206.
Solls 806.
Sowlag Implementa, 820
Sowlag Implementa, 820
Spa' mediaval, 293.
Spa', medis
Stacking, 868.
Stacking, 863.
Stalistics,
Gcvermmer Statst
305.
Steam-enginea, 323.
Steam-engines, 323.
Stesm-power, 818,510,
Stones,
Temoral of,
Stones, retioval of, 285
Swine, 400 .
Swine, 400 .
Tensnteright, 407
Tenante, life, 294.
Tenure, innd,
Threshing-machines, $80 t$
Threвhiog-machi
324.
$\left\lvert\, \begin{aligned} & \text { Trenching, } 338 \text {; fork, } 320 \\ & \text { Tall, } 229 \text {; }\end{aligned}\right.$
Tall. 299
Tarnsp cutters 826 ; pplp
era 826 ; thin nurs $82 L$
Turalpe, 299, 365.
Tarnips 298.
Vagabonde, 298
Vetches, 378.
Waste lands, 402.
Waste lands,
Water, 809.
Water, 809.
Wheat S44
Wlonn Slog, \because :
Wool, 89,

AGRIGENTUM, in Ancient Geography, a city on the eouth coast of Sicily, part of the site of which is now occupied by a town called Girgenti, from the old name. (See Girgentri.) It was founded by a colony from Gela, 582 b.c. An advantageous situation, a free government, and an active commercial spirit raised the city to a degree of wealth and importance unknown to the other Greek settlements, Syracuse alone excepted. The prosperity of Agrigentum was interrupted by the usurpation of Phalaris which lasted about fifteen years. He met with the common fate of tyrants, and after his death the Agrigentines enjoyed their liberty for sixty years; at the expiration of which term Theron usurped the sovereign authority. The moderation, justice, and valour of this prince preserved him from opposition. He joined his son-in-law Gelon, king of Syracuse, in a victorious war against the Carthaginians. Soon after his decease, 472 b.c., his son Thrasydeus was deprived of the diadem, and Agrigentum restored to her old democratical government, which she retained till the Carthaginian invasion in 406 b.c. During this interval of prosperity were executed most of those splendid public works which excited the admiration of succeeding ages, and caused Empedocles to remark "that the Agrigentines built their dwellings as though they were to live for ever, and indulged in luxury as if they were to die on the morrow." The total number of the inhabitants at this period was estimated by Diodorus at 200,000 . The power of the Agrigentines now experienced a terrible reverse. They were attacked by the Carthaginians in 406 b.c., their armies routed, their city taken, and their race almost extirpated, scarcely a vestige of their material greatness being left. Although some of the fugitive inhabitants availed themselves of permission to return to the ruined city, and after a few years were even able to shake off the yoke of Carthage, Agrigentum never fully recovered from this fatal disaster. Such was the condition of the city 340 B.c. that Timoleon, after his triumph over the Carthaginians, found it necessary to recolonise it with citizens from Velia in Italy. During the first Punic war Agrigentum was the headquarters of the Carthiaginians, and was besieged by the Roman consuls, who, after eight months' blockade, took it by storm. It nevertheless changed masters several times during the contest, and in every instance suffered most cruel outrages. At the close of the war Agrigentum finally feli under the dominion of Rome.
The profuse luxury and display for which the Agrigentines are celebrated in history were supported "by a fertile territory and an extensive commerce, by means of which the commonwealth was able to resist many shocks of adversity. It was, however, crushed in the fall of the Eastern Empire, and the Saracens obtained possession of the city.

Agrigentum occupied a hill rising between the small rivers Agragas and Hypsas, and was remarkable for its strength as a fortress. The whole space comprehended within the walls of the ancient city abounds with traces of antiquity. Of its many celebrated edifices, the most magnificent was the temple of Olympian Jupiter. Of this vast structure nothing remains except the basement and a few fragments of the columns and entablature; but these and many other monuments attest the ancient magnificence of the Agrigentines.
AGRIONIA, festivals celebrated annually by the Boootians in honoar of Dionysus, in which the women, after playfully pretending for some time to search for thet god, desisted, saying that he had hidden himself among the Muses. They were solemnised at night by women and the priests only. The tradition is that the daughters of Minyas, baving despised the rites of the god, were seized with
frenty and ate the flesh of one of their children, and that the Agrionia were celebrated in expiation of the offence.

AGRIPPA, Herod, the son of Aristobulus and Berenice, and grandson of Herod the Great, was borr about 11 B.C. Josephus informs us that, after the deatk of his father, Herod, his grandfather, sent him to Roms to the court of Tiberius. The emperor conceived a greal affection for Agrippa, and placed him near his son Drusus whose farour he very soon won, as well as that of the empress Antonia. On the death of Drusus, Agrippa, who had been recklessly extravagant, was obliged to leav! Rome, overwhelmed with debt, and retired to the castle of Malatha. After a brief seclusion, Herod the tetrarch, his uncle; who had married Herodias, his sister, zade him principal magistrate of Tiberias, and presented him with a large sum of money; but his uncle grudging to continue his support, and reproaching him with his bad economy, Agrippa left Judea, and soon after returned to Rome. There he was received with favour by Tiberius, and commanded to attend Tiberius Nero, the son of Drusus. Agrippa, however, chose rather to attach himself to Caius, who at that time was universally beloved, and so far won upon this prince that he kept him continually about him. Agrippa being one day overheard by Eutyches, a slave whom he had made free, to express his wishes for Tiberius's death.and the advancement of Caius, was betrayed to the emperor and cast into prison. Tiberius soon after died, and Caius Caligula ascended the throne 37 A.D. The new emperor heaped wealth and favours upon Agrippa, changed his iron fetters into a chain of gold, set a royal diadem upon his head, and gave him the tetrarchy of Batanæa and Trachonitis, which Philip, the son of Herod the Great, had formerly possessed. Tn this he added that held by Lysanias; and Agrippa returned very soon into Judea to take possession of his new kingdom. On the assassination of Caligula, Agrippa, who was then at Rome, contributed much by his हilvice to maintain Claudius in possession of the imperial dignity, to which ho had been adranced by the army; and while he made a show of being in the interest of the senate, he secretly advised Claudius to maintain his position with firmness. The emperor, as an acknowledgment of his services, gave him the government of Judea; and the kingdom of Chalcis, at his request, was given to his brother Herod. Thus Agrippa became of a sudden one of the greatest princes of the East, the territory he possessed equalling in extent that held by Herod the Great, his grandfather. He returned to Judea, and governed it to the great satisfaction of the Jews. Bnt the desire of pleasing them, and a mistaken zeal for their religion, impelled him to acts of cruelty, the memory of which is preserved in Scripture (Acts xii. 1, 2, \&cc.) About the feast of the Passover, 44 A.D., James the elder, the son of Zebedee and brother of John the evangelist, was seized by his order and put to death. He proceeded also to lay hands on Peter, and imprisoned him, delaying his execution till the close of the festival. But God having miraculously delivered Peter from prison, the designs of Agrippa were frustrated. After the Passover, he went from Jerusalem to Cæsarea, where he had games performed in honour of Claudius, and the inhabitants of Tyre and Sidon waited on him to sue for peace. Agrippa haring come early in the morning to the theatre to give them audience, seated himself on his throne, dressed in a robe of silver tissue, which reffected the rays of the rising sun with such lustre as to dazzle the eyes of the spectators. When the king had delivered his address, the parasites around him shouted out that it was not the voice of a man but of a god. The vain Agrippa received the impions flattery with complacent satisfaction; but in the midet of his elation, looking upwards, he saw,
with superstitions alarm, an owl percnea over his head. During his confinement by Tiberius he had been startled by a like omen, which lasd been interpreted as portending his speedy release, with tho warning that whenever he should behold the samo sight again, his death was to follow within the space of five days. Scized with terror, he was immediately smitten with disease, and after a few days of excruciating torment, died, according to the Scripture expression, "eaten of worms," 44 A.D.

AGRIPPA, Herod, II., son of the preccding, born about 27 A.D., was mado king of Chalcis on the death of his uncle Herod, 48 A.D. ; but three or four years after he was deprived of that kingdom by Claudius, who gave him other provinces instead of it. In the war which Vespasisn carricd on against the Jerss Herod sent him a succour of 2000 mcn , by which it appears that, though a Jew in religion, he was yet entirely devoted to the Romans, whoso assistance indeed he required to secure the peace of his own kingdom. He died at Rome in the third year of Trajan, 100 A.D. He was the seventh and last king of the family of Herod the Great. It was before him and Berenice, his sister, that St Paul pleaded his cause at Cæsares (Acts Exvi.)

AGRIPPA, Marcus Vipsanius, according to Tacitus, was born of humble parents about 63 B.c. At the sge of eightcen he was the chosen companion of Octavius (afterwards Octavianus), the nephew and successor of Julius Cæsar, many of whose successes were mainly due to the courage and military talents of Agrippa. On the assassination of Cæsar, 44 B.o., Agrippa sccompanied his friend to Italy, and rendered cssential service in the conduct of the first war against M. Antonins, which terminated in the capture of Pcrusia in 40 B.c. Thres years after this Agrippa was made consul, and had the command in Gaul, when he defeated the Aquitani, snd led the Roman eagles beyond the Rhine to punish the aggressions of the Germams on his province. But Agrippa was soon summoned to Italy by the critical state of the affairs of Octavianus, the whole coast being commanded by the superior flects of Sex. Pompcius. His first care was the formation of a secure harbour for the ships of Octarianus, and this he accomplished by uniting the Lucrine lake with the sea. Ho made an inner haven also by joining the lake Avernus to the Lucrine. In these secure ports the fleet wrs equipped, and 20,000 manumitted slaves were sedulously traincd in rowing and naval mancurres until they were sble to cope with the scamen of Pompeius. Agrippa was thus enabled in the following year to defeat Pompcius in the naval action of Mylm; and soon after won a more signal rictory near Naulochus. These victories gave Octarianus the empire of the Mediterrancan, and secured to bim Sicily, the granary of Rome, after an casy triumph over his feoble colleague Lepidus; and they prepared the fray for the overthrow of the power of M. Antonius, the other triumrir. The merit of all these successes was very much due to the skill, resolution, and sagacity of Agrippa

Agrippa was chosen ædile 33 b.c., and signalised his tennre of office by great improvements in the city of Rome, in the repair and construction of aqueducts and fountains neglected or injured during the civil wars, and in the enlargement and repair of the sewers. IIe eupears also to have introduced on effectual mode of fiushing the sewers by conducting into them the united maters of several different streams. From theso useful labours Agrippa was again called sway in 31 B.c. to command the Roman fleet, which, by the victory at Actium, fixed the empire of the world on Octarianus. The services of Agrippa made him a special favourite with Octirinus, who gave him his niece Marcella in marriage,

27 в.c., when he was consul for the third time. In the following year the servila senate bestowed on Octariancs the imperial titlo of Augustus. Agrippa, in commemoration of tho naval victory of Actium, dedieated to Jupites and all the other gods the Pantheon, now called La Rotonda. The inscription on its portico still remains, M. Aomppa I. F. Cos. Tertium Fecit. In 25 b.o. We find this eminent man employed in Spain, where he reduced the insurgent Cantabri, the ancestors of the present Biscayans.

The friendship of Augustus and Agrippa seems to have been clouded by the jealousy of Marcellus, which was probably fomented by the intrigues or Livia, the second wife of Augustus, in dread of his influenco with her husband. The consequence was that Agrippa left Rome; sad though, to cloak his retirement, he was appointed proconsul of Syria, he went no farther than Dlytilezo. Marcellus dying within a ycar, Agrippa was recalled to Rome, and being divorced from Marcella, became the husband of the widowed Julia, who was no less distinguished by her beauty and abilities than afterwards by her shameless profligacy.
In 19 b.c. Agrippa again led an army into Spain, where he subdned the Cantabri, who had been for two years in insurrection against the Romans. While in Gaul, where he also pacificd the insurgent inhabitants, he constructec four great public roads, and the splendid aqueduct at Nemausus (now Nismes), the ruins of which even yet excite admiration. On his return to Rome, 18 b.c., he was invested with the tribunician power, along with the emperor, for five years. After that he was a second time made governor of Syria, 17 b.c., where, by his just ano wise administration, he obtained genoral commendation, especially from the Hebrew population of his provinco, ci which Judea formed a part. This resulted from his having, at the request of Herod the Great, gone up to Jerusalern, sud granted special privileges for their religious worsho to the Jewish subjects of the empire. In this journey, ton, he colonised Berytus (now Beyrout) as a military and commercial settlement.

The last military employment of Agrippa was in Pannonia, 13 в.c., where his character for equity was of itself sufficient to put down insurrection without bloodshed. Returning to Italy, he lived there in retirement, greatly honoured, and died at Campania, 12 b.c., two years before his imperial father-in-law. He was the greatest military commander of Rome since the days of Julius Cæsar, and the most honest of Roman governors in eny province.

Under the care of Agrippa, Julius Cæsar's design of laring a complete survey of the empire made was carried out. He had a chart of the entire empire drawn up, and projected a great work on the geography of its provinces. His matcrials were placed in tho public srchives, where Pliny consulted them (Nat. Hist., iii.) Agrippa also wrote an account, now lost, of the transactions in which he had taken part.

Agrippa left several children: by his first wife he had Pomponia Vipsania, whlo became the first wife of Tiberius, and was the mother of Drusus; and by Julia he was the father of Caius and Lucius Cæsar, who were adopted by Augustus: of Julia, married to Lepidus; of Agrippina the elder; and of Agrippa Posthumus. (See Dio Cassius; Appianus; Suctonius; Vellcius Patcrculus; Fergusson's Rom. Rep.; Merivale's Romans under the Empire.)

AGRipPA Henhy Connelius (von Nettesheim), knight, doctor, and by common reputation a magician, was born of a noble family at Cologne on the 14 th Sept. 1486. Educated at the university of Cologne, he entered when still very young into the service of the Emperor Maximilian, who sent him on a diplomatic mission to Paris in 1506.

During the uext three years he was engaged in a military txpedition to Catalonia, and then in the formation of a secret society of theosophists, the first of those alternations between the career of the knight and the career of the student in which his whole life was passed. In 1509 he sent by invitation to the university of Dôle in Burgundy, and read lectures on Reuchlin's De Verbo Mirifico, which gained for him the degree of doctor of divinity and a stipend. It was these lectures that first stirred against him that malignant hatred of the monks which embittered his lifo and blackened his memory. He was denounced as an impious and heretical cabalist by an obscure monk named Catilinet, in lectures delivered at Ghent (1510) before Margaret of Burgundy, and his hopes of securing the patronage of that princess were thus for the time disappointed. To win her favour, he had composed (1509) and dedicated to her a treatise, De Nobilitate et Procellentia Freminei Sexus, the publication of which was delayed from motives of prudence until 1532. For the same reason the same course was followed in regard to his treatise De Occulta Philasophia, which, though completed in the spring of 1510 , did not appear until 1531. In writing it he had the advice and assistance of the abbot Trithemius of Würzburg. Failing to receive encouragement as a man of leiters, Agrippa was forced again to enter the diplomatic service. In 1510 the emperor sent him on a mission to London, where he became the guest of Dean Colet at Stepney. Soon after his return home he was -summoned to follow his imperial master to the war in Italy, where he won his spurs-probably at the battle of Ravenna. In the autumn of 1511 , on the invitation of the Cardinal de Santa Croce, he attended the schismatic council of Pisa as theologian, and by so doing still further provoked the hostility of the papal party. After a period spent in the service of the Marquis of Montferrat, during which he visited Switzerland, Agrippa was invited in 1515 to the university of Pavia, where he delivered lectures on the Pimander of Hermes Trismegistus, the first of which is preserved among his published works, and received a doctor's degree in law and medicine. He was still doomed, however, to a harassed, unsettled life. Three years were spent in the service of the Marquis of Montferrat and the Duke of Savoy. In 1518 he became syndic at Metz, where he was involved in disputes with the monks, and especially with the inquisitor Nicolas Savin, before whom be boldly and persistently defended a woman accused of witchcraft. He was, chiefly in consequence of this, compelled to resign his office, and quitted Metz for Cologne in January 1520.. After two years spent in seclusion in bis native city; he went to Geneva, where he practised medicine for a short time. In 1523 he removed to Friburg, having been appointed town physician. In the following year he was indited to go to Lyons as court physician to the queen-mother, Louisa of Savoy, but the change did not better his condition, since, thongh he received several empty honours, his salary remained unpaid It was probably amid the privations of poverty that be composed, in 1526, his De Incertitudine et Vanitate Scientiarum et Artium atque Excellentia Verbi Dei Declamatio, which was first published in 1530. The work is remarkable for the keenness of its satire on the existing state of science and the pretersions of the learned, and when published furnished fresh oçcasion for the malicious mis. representation of his enemies. A quarrel with the queen compelled Agrippa to leave Lyons and betake himself to the Netherlands. In 1529 he was appointed historiographer to the Emperor Charles V., and in that capacity. wrote a history of the emperor's reign. The salary attached to the office was, however, left unpaid, and Agrippa was sonsequenily imprisoned at Brussels, and afterwards
banished from Cologne, for debt. He died at Grenoble in 1535.
The character of Agrippa has beer very rariously repre. sented. The earlier accounts are grossly disfigured by the calumnies of the Dominicans, whuse hatrod, following him even to the grave, placed over it an inscription that is probably unique in its spiteful malignity In later times full justice has been done to his memory. A Life of Agrippa by Henry Morley (London 1856) contains 8 detailed analysis of his more important works. A complete edition of his writings appeared in two volumes at Leyden in 1550 , and has been several times republished.
AGRIPPINA (THE ELDEr), the virtuous and heroic but unfortunate offspring of M. Agrippa by a very abandoned mother, and herself the parent of a still more profligato and guilty daughter of the same name. She was early married to Germanicus, the son of Drasus and Antonia; the niece of Augustus. On the death of Augustus she joined her husband in his German campaigns, where she had several opportunities of showing her intrepidity, sharing with Germanicus his toils and his triumphs. The love which the army showed for this leader was the cause of his recall from the Rhine by the suspicious Tiberius. He was soon afterwards sent into Syria, where he died at Antioch from the effects, as was believed, of poison ad, ministered to him by Piso, the governor of Syria.

On his deathbed Germanicus implored his wife, for the sake of their numerous children, to submit with resigna. tion to the evil times on which they were fallen, and not to provoke the wongeance of the tyrant Tiberius. But, unhappily, this prudent advice was not followed by the high-spirited woman, who; on landing at Brundusium, went straight to Rome, entered the city bearing the urn of her deceased husband in her arms, and was received amid the tears of the citizens and the soldiery, to whom Germanicus was dear. She boldly accused Piso of the murder of her husband; and he, to avoid public infany, committed suicide. She continued to reside at Rome, watched and suspected' by Tiberius, who for some time dreaded to glut his vengeance on the widow and family of so popular a prince as Germanicus. She soon had the temerity to upbraid the tyrant with his hypocrisy in pretending to worship at the tomb of Augustus. He began by putting to death both men and women who had shown attachment to the family of Germanicus; and finally he arrested Agrippina and her two eldest sons, Néro and Drusus, and transported them to the isle of Pandataria, where her mother Julia had perished; and there she was starved, or starved herself, to death in the 33d jear of ouera. Tiberius also ordered the execntion of her two eldest sons; yet it is remarkable that by his will the emperor left her youngest son Chius, better known by the name of Caligula, as one of the heirs of the empire.

AGRIPPINA, daughter of Germanicus and Agrippina the elder, sister of Caligula, and mother of Nero, was born about 15 s.D., at Oppidum Ubiorum, which was at that time the headquarters of her father's legions, and which. was after her named .Colonia Agrippina Ubiorum (now Cologne). - She wrote memoirs of her times, which Tacitus quotes and Pliny commends; bat her life is notorious for intrigue and perfidy. In 28 A.D. she became the wife of Cn. Dom. Ahenobarbus, who died 40 A.D. Hes next hasband wis Crispus Passienus, whom some years afterwards she was accused of poisoning. For flagitious conduct, Caligula banished her to the isle of Pontia; but on the accession of her uncle Claudius, 41 A.D., she was set free, and began to succeed in her ambitious schemes. After Messalina had been put to death, 48 s.D., Agrippina was mised by Claudius to her place as his imperial consort, 49 A.D. She prevailed upon him to discard Britanuicus
his own son, and to adopt her son Domitius in his stead. She removed from her path all whom she feared or envied, and in 54 A.D. poisoned Claudius at Sinuessa that she might reign as regent for her son. Nero in a short timo grew tired of her interference, and when she first intrigued against and then fromned upon him, he ordered her to be slain at her villa on the Lucrine lake. After having been slightly wounded by Anicetus, she nerished by the swerd of a centurion, 60 A.d.

AGROTERAS THUSIA, an annual festival at Atnens in honour of Artemis or Diana, in fulfilment of a vow made by the city before the battle of Marathen to offer in sacrifice a number of goats equal to that of the Persians slain in the conflict. The number was afterwards restricted to 500 .

AGTELEK, a village of Hungary, in the county of Goimör, near the road from Pesth to Kaschau. In the neighbourhood is the celebrated stalactite grotto of Baradla, one of the most remarkable in Europe. The entrance is istremely narrow, but the interior spreads out into a labyrinth of caverns, the largest of which, called the Flower Garden, is 96 fect high and 90 fect wide, and extends nearly 900 feet in a straight line. In theso caverns there are numerous stalactite structures, which, from their eurious and fantastic shapes, have received such names as the Image of the Virgin, the Mosaic Altar, \&c.
aGUA, Volcano de, a huge mountain in Central America, 25 miles S.W. of Guetemala. It is of a conical shape, and rises to a height of 15,000 feet above the level of the sea At the summit there is a crater, measuring about 140 yards by 120 , from which stoncs and terrents of boiling water are occasionally discharged. In close proxamity to Agua are the volcanocs of Pacaya, on the S.E., and Fucgo on the W., and the three present together a scene of great magnificence.
actiado, alexander Maria, one of the most famous bankers of modern times, was born of Jewish parentage at Seville in 1784. He commenced life as a soldier, fighting with distinction in the Spanish war of independence on the side of Joseph. After the battle of Baylen (1808) he entered the French army, in which he had risen to be coloncl and aide-de-camp to Marshal Soult, when he took his discharge in 1815. He immediately commenced business as a commission-agent in Paris, and chiefly through his connection with Spain and the Spanish colonies, acquired in a few years wealth enough to enable him to undertake banking. The Spanish government gave him full powers to negotiate the loans of $1823,1828,1830$, and 1831 ; and Ferdinand VII. rewarded him with the title or Marquis de las Marismas del Guadalquiver, and the decorations of several orders. Aguado also negotiated the Greek loan of 1834. In 1828, having become possessed of large estates in France, including the Chatean Margaux, famous for its wine, he was naturalised as a French citizen. He died in 1842, leaving a fortune computed at $60,000,000$ francs. The designs of the leading pictures in an extensive and admirable art collection which he had formed were published by Gavard under the title Galerie Aguado (1837-42).

AGUAS CALIENTES, a tôm in Mexico, capital of the state of the same name, situated 270 miles N.W. of the city of Mexico, in $22^{\circ} \mathrm{N}$. lat., and $101^{\circ} 45^{\prime} \mathrm{W}$. leng. It takes its name from the hot springs in its vicinity. The climate is fine, and the extensive and beautiful gardens surrounding the town produce an abundance of olives, figs, grapes, and pears. It has a large manufactory of woollen cloth, and the general trade is considerable. Population, 22,534.

AGUilar, Grace (1816-47), an admired English suthoress, was the daughter of a Jewish merchant in London. She was educated wholly be ber pareuts, and
commenced her literary career at an early age. Her works, written in a ploasing. elegant, and impressive style, consist chicely of religious fictions, such as The Murtyr and Hems Influence. She also wrote, in defence of her faith and its professors, The Spirit of Judaism, and other works. Her services in the latter direction were acknowledged gratefully by the "women of Israel," in a testimonial which they presented shortly before her death. In 1835 she had a severe attack of measles, from the effects of which her constitution never wholly recovered. After a long strnggle with inereasing bodily infirmitics, sho died at lrankfort, on her way to Schwalbach, in the autumn of 1847.
aguilar de la Frontera, a town of Spain, stañds near the river Cabra, 22 miley S.S.E. of Cordova. "The houses are well built, and distinguished by their cleauness and regularity. The town has threo handsome public squares, and the principal buildings are the parish church, the chapter-house, a new town-hall, the prison, and the markets. Near tho church are the ruins of a once magnificent Moorish castle. Tho district produces excellent wines, which go by the name of Montilla, and there is also some trade in corn and oil. Population, 12,000.
AGUillon, Francors d', an eminent mathematician, born at Brussels in 1566. Ho entered the Society of Jesus in 1586, and was successively profcssor of philosophy at Douay and rector of the Jesuit College at Antwerp. Eminent for his skill in mathematics, he was the first 10 introduce the study of that science among the Jesuits in the Low Countries. He wrote a treatise on Optics in six books (Antwerp, 1613), and was employed in finishing another on Catoptrics and Dioptrics when he died, in 1617.
AGUIRRA, Josef Saenz d', a distinguished Spanish ecclesiastic and theological writer, was bern at Logrogno on the 24 th March 1630. He belonged to the Benedictino order, and was abbot of St Vincent, professor of theology at the university of Salamanca, and afterwards secretary to the Spazish Inquisition. For a work (Defensio Cathedrce S. Petri adversus Declarationes Cleri Gallici, 1682), which he wrote in support of the papal authority against the four propositions of the Gallican Church, he was promoted to the rank of cardinal by Pope Innocent XI. in 1686. : Of his other works the chief are a Collection of the Councils of Spain (1693-4), and a Treatise on the Theology of Anselm, only threo volumes of which appeared, the fourth and last being still incomplete when the author died, August 19th, 1699. To judgo from a warm eulogium of Bossuet, his opponent in controversý, Aguirra had a very high reputation for piety.

AGULHAS, CAPE, the most southern point of Africa, 100 miles E.S.E of the Cape of Good Hope, in $34^{\circ} 51^{\prime} 30^{\prime \prime}$ S. lat., and $19^{\circ} 56^{\prime} 30^{\prime \prime} \mathrm{E}$. long. At a distance of a mile from the sea it rises to a height of 455 feet. In 1849 a lighthouse was opened on it nearer the shore, the light in which stands 128 feet above high-water mark An immense bank, the Agulhas Bank, extends from tho Cape of Good Hepe along the coast to the great Fish River, is distance of 560 miles, with a breadth, opposite to the Cape, of 200 miles. The great oceanic current from the Indian Ocean to the Atlantic sets along its outward edge, and has sharply defined it. This current has such velocity that ships aro often carried far to the westward, and round the Cape of Good Hope, even against a smart breeze. The bank abounds with fish; and the approach to it is denoted by the appeairance of many whales, sharks, and seals. and innumerable sea-birds.

AHAB, king of Israel, was the son and successor of Omri He ascended the throne in the 38 th year of Asa, king of Judah, i.e., 918 r.c., and reigned over Samaris 22 years. Maving married Jezebel, daughter of Eithbaal, king of the Sidunians, he was brought into closer colucs
tion with the neighbouring powers in the north, and strengthened himself considerably, so that he was able to consolidate the disunited kingdom, and render it powerful against Judah. Some notices out of Menander, preserved by Josephus, led to the conclusion that Ethbaal, father of Jezebel, was identical with Ithobal, priest of Astarte, who usurped the throne of Tyre after murdering Pheles the king. It is not improbable that Ahab's marriage with such a princess was the means of procuring him great riches, which brought pomp and luxury in their train, along with the material and social influence that gise a certain security to monarchy. We read of his building an ivory palace and founding new cities, the effect perhaps of a share in the flourishing commerce of Ploenicia. But his matrimonial connection with Tyre and Sidon, however fruitful in wealth, was in many respects detrimental. His wife was a strong-minded, passionate derotee of idolatry, who exercised an injurious influence over him. Led by her, he gave a great impulse to the worship of Baal and Astarte ia his kingdom. For the former he built a temple with an altar; of the latter he made the well-known image which existed long after. Uuder the patronage of Jezebel, the Phenician cultus assumed important dimensions, for Baal is said to have had 450 , Astarte 400 priests and prophets. The infatuated queen was especially hostile to the prophets and priests of Jelnovah, whom she tried to exterminate; but the former in particular, though sore pressed, were not entirely cut off. They still held their ground; and Elijah, the most conspicuous of them, came of victor in the contest with Baal's ministers. Jehorisn triumphed in the person of the intrepid Tishbite, whom the queen was unable to get into her power. Ahab was a publicspirited and courageous monarch. He defeated the Syrians twice, and concluded a peace with Benhadad on favourable terms. Nesha, king of Moab, paid him a large yearly tribute. In conjunction with Jehoshaphat, king of Judah, he went forth to battle a third time against the Syrians, and was slain at Ramoth-Gilead. It speaks farourably for his disposition that he repented of the cruel measures taken against Nahoth, and that he hombled himself before the Lord. Though he feared Elijah and Micaiah, he was not insensible to their utterances; nor conld he have suffered so many as 400 prophets to live in lis kingdom without some little regard for their office. The prophetic voice, held as it was in small esteem, must hare had some influence upon his administration, especially when political grounds coincided with it. His evil courses were due much more to the influence of Jezebel than to his orn vicious impulses.

As the accounts of Abab are fragmentary, it is not always easy to make out from them a clear or connected history of his rejgn. There is room for conjecture and misconception. Thus Ewald represents him as building a splendid temple with an oraclegrove of Astarte wear his favourite palace at Jeareel, on the basis of I Kings xvi. 32, xriii. 19; but this is imaginary. since the origiual does not speak of a grove but of 1 starte (xviii. 19), nor is it probable that a sccond structure of the kind meutioned existed elsewhere in addition to Baal's temple in Samaria. Neither can it be held as likely that a large statue of Bal was set up in front of his temple, aud small statucs of him in the iuterior,merely because we read in 2 Kings x. 26,27 , first of bringing forth the images of Bar, and then of breaking the image of the same suu-god. Rather were the smaller images in the porch and the chief one in the interior, so that the reading or punctuation of verse 26 should he slightly altered. Whether the 450 or 400 prophets were distinct from the priests is douhtful. Identilying them, we believe that the priesta acted as prophets, procuring for themselves greater renown among the ignorant people by their arts of necromancy and magic.
For the biography of this monarcly we are indebted almost exclusively to the books of Kings, where the writers consider him in a theocratic rather than a political aspect. Tiewing him from their Jater prophetic standpoint, their portrait is somewhat one-sjded. though correct in the main. It is observable that the portions of the Kings in which he is spoken of are somewhat different in character and expression, betrasing the use of different sources by the
compiler. 1 Kings xrt. 29-33, xxi1. 39, 2 Kings $x .25-23$, are more historical thau the rest, which contain almost all that is related of Ahab, and were derived from traditfon. It has been conjectured by Hitzig that the 45 th psalm owea its origin to Ahab, heing the josous poetical expressiou of a matrimonial connection with Tyre, which augured unusual prosperity for the distracted klngdom. But the assumption is improbable, because, as De Wette observes. an event belonging to Ephraim was bardly a fitting subject for a poem included in the canon.

Another Abab, a false prophet in the time of the Babylonian exile, is mentioned by Jeremiah (xxix. 21), and threatened with terrible punishment.
($=$. D.)
AHALA, a noble Foman family of the gens Servilia which prodnced many distinguished men. Of these the most celebrated is C. Servilius Structus Ahala, master of the horse to the dictator Cincimatus, B. C. 439. He sig. nalised himself by his boldness in slaying in the forum with his own hand the popular agitator Sp. Metlius, for refusing to appear before the dictator on a charge of conspiracy against the state. For this act Abala was brought to trial. He saved himself from condemnation by retiring into exile.

AHANTA, a territory on the Gold Coast of Africa, lying on the second parallel of WV^{-}long. It is one of the richest and most fertile districts in that part of the con tinent. Axim, the chief settlement, was founded by the Dutch, but now belongs to Britain.

AHASUERUS, the Latinised form of the Hebrew
 'Agónpos), occurs as a royal Persian or Median name in three of the books of the canonical Scriptures, and in one of the books of the Apocrypha. In every case the identification of the person thus named with those found in profane history is matter of controvers. The lypothesis of Fürst and others, that in all the passages one and the same person is meant, viz., the well-known Xicraes, may be set aside as quite inapplicable to the facts; and it becomes necessary to glance at the particular places.
In Dan. ix. 1, Ahasuerus appears as the tather of Darius the Mede, who "was made king over the realm of the Chaldeans" after the conquest of Babylon and death of Belshazzar. Who thia Darius was is oue of the most difficult aud disputed questions of aucient history. If, as is very generally supposed, he is Astyages, the grandfather of the great Cyrus, and the last independent king of Nedia, theu Ahasuerus is to be identified with Cyaxares, the father of Astrages. The passage in Tobit where the name occurs (xiv. 15) lenda confirmation to this view. It is there stated that Nineveh was captured and destroyed by "Nabuchodonosor and Assuerus." According to Herodotus (1. 106 cf . Rawliuson's Her. vol. 1. 412), It was the Medes under Cyaxares who took Ninereh.

In Ezra Iv. 6, Ahasuerus is mentioned as a king of Persia, to whom the enemies of the Jews sent representations opposing the rebuilding of the temple at Jerasalem. Here the sequence of the reigns in the sacred writer and in the protane historians-iu the one, Cyrus, Ahasnerus, Armaerxes, Darius; in the other. Cyrus. Cambsees, Smerdis. Darius-leads naturally to the identification of Ahasuerus with Cambses. Other circumstauces, especially the known policy of the usurper Smerdis, and its reversal by lariug (see Inscr. of Behistun. col. 1. \$14), corroborate this conclusion.

In the Book of Esther, Ahasuerus is the name borne ly that king of Persia, certain events of whose court and empirc (which will be noticed elsewhere, see Esther) form the subject of the whole nar. rative. (Throughout this book the LXX.'reader the aame by AprafÉp̧ワs.) The Lypothesis of certain writers, that this Ahasuerus is the Cyanares, king of Media, already referred to, may be at ouce dis. missed. That of others, Identifying him with Artaxerxes Longi manus, the son and successor of lerxes, thongh countenanced by Josephus, deserves scarcely more consideration. lieceut inqiifers are all but unisersally of opinion that he must be a monarch of the Achæmenian dynasty, earlicr than this Artaxerxes; aud opinion is divided between Darius Hystaspis and his son and successor Xerxes. In support oi the former thew it is alleged, among other thiugs (see Tyrwhitt's Esther and Ahasucrus, p. 110). that Darius was the first Persian king of whom it could he suid. as in Esther i. 1, that he "reigned from India even unto Ethiopia. over an hundred and seren and twenty provinces:" and that it was also the distinction of Darius that (Esther x.1) he "laid a tribute upon the land and upon the isles of the sea" (cf. Ilerod. iii.s?) In support of the latter view it is alleged-(1.) That the Hebrew

Ahashecrosh is the natumal equivalent of the old Persian Khshayarsha, the trua name of the monarch called by the Graeks Xerxes, as now read in his inscriptions; (2.) That there is a striking similarity of character between the Xerxes of IIerodotus and the Ahasuerus of Esther; (3.) That certain coincidences in dates and cvents corroborate this identity, as, e.g." "In the third year of his reign Ahasuerus geve a grand feast to his nobles, lasting one hundred and eighty days (Esther i. 3) ; and Xerzes in his third year also assembled his chief officers to deliberato on the invasion of Greece (Herod. vii. 8). Again, Ahasuerns married Esther at Shushan in the seventh year of his reign ; in tha sama year of his reign Xerses returned to Susa pith the mortification of his defeat, and sought to forget himself in pleasnre. Lastly, the tribute im. posed on the land and isles of tho sea also accords with the stato of his reveaue, cxhausted by his insane attempt against Greece" (Kitto'e Cyclopaedia, s.v. Abasucrus). To this it may be added that tha interval of four years between the divorce of Vashti and the mairiaga of Esther is well accounted for by tha interrention of BD important ecrics of events fully occupying the monarch'a thoughts, such as the invasion of Greece. It may be added that bs the adrocates of both ricws appeal is made, with more or less of confidence, to the names of the queens of the respectivo sovereigns; Atossa, wife of Darios, answering to Hedassah, and Amestris, wife of Xerxes, to Esther (Esther ii. 7) ; and also to the number of generations. indicated in the genealogy of Mordecai from the deportstion of the Jews into Babylon (Esther ii. 5; cf. Tyrwhitt, n. 95, with Rawlinson, Bampton Lect., p. 186). If, as seems probable, the name Ahasuerus is the transeription of the Persian Khshayarsha (written Hisiarsa in Babylonian) which, according to Sir H. Rawlinaon, means "vencrable king" (sco Rawlinson's Her. iii. 363), then this nama may be reasonably supposed to have been originally an appellativa, and its application, especially by foreigners like the Jews, to different rogal persons, is explained.

AHAZ (literally Possessor), son of Jotham, and the eleventh king of Judah, reigned 16 years, from 741 to 725 B.c. He was the most weak-minded and corrupt of all the kings that had hitherto reigned over Judah. About the time of his accossion, Pekah, king of Israel, and Rezin, king of Syria, had formed an alliance with the view of ecquiring the kingdom of Judah by conquest. They invaded the country, laid siege to Jerusalem, and carried sway an immense number of captives, though they failed to secure their ultimate object. At the same time incureions were made by the Edomites and Philistines, and Ahaz was fain to call in the aid of Tiglath-Pileser, king of Assyria, who destroyed the power of Syria, but took care to exact heavy tribute for the servico thus rendered. Ahaz was even compelled to appear as a rassal at Darnascus, and so to bring his kingdom to the lowest point of political degradation. In religion Δ haz was a heathen. He broke in picces the vessels of the temple of God, and at last ventured to close its gates altogether. Ho sacrificed to Syrian deities, erected altars on which incense was to be offered, and caused his son to pass through the fire to Moloch. He was succeeded by his son Hezeliah. In the inscriptions of Tiglath-Pileser II., king of Assyria, YahuThazi Jahudai, that is, Joahaz or Ahaz of Israel, appears among the names of those who acknowledged his sovereignty and paid tribute. (Schrader's Die Keilinschriften und das Alte Testament.)

AHAZIAII (lit, Whom the Lord sustains), son and successor of $\Delta \mathrm{haj}$, and eighth king of Israel, reigned scarcely two years, from 897 to 896 b.c. He continued in the idelatrous practices of his father, worshipping Baal and Astarte. Upon his accession the Moabites revolted, and refused any longer to pay the tribnte which had been exacted from them since the establishment of Israel as a separate kingdom. Before Ahaziah could take measures to subdue them, he was seriously injured by a fall from the lattice of an upper chamber in his palace. He immediately sent messengers to the oracle of the god Baalzebub at Ekron to inquire the issue of his illness. While on their Way they were met by Elijah the prophct, who bade them return and tell the king that he would surely die.

AHAZIAH, son of Jehoram and Athaliah, danghter of allab. and sixth king of Judah, reigned one year, 885 в.c.

Under the eril influence of his mother, 17 walked in the ways of Ahab's house, and was an idolatrous and wicked king. He was slain by Jehu, the son of Nimshi.

AHENOBARBUS, the name of a plebeian Roman famils of the gens Domitia, which rose in'the course of time to considerable distinction. The name was derived from the red beard and hair by which many of the family wero distinguished. The emperor Nero was of this family.

AHITHOPELEL (lit. Brother of Foolishness, i.c., foolish), the very singular name of one of the sagest politicians in Old Testament history. In regard to his family relationships it is almost beyond doubt that be was tho grandfather of Bathsheba, and it has been suggested as probable that he was first introduced at court through this connec tion. He was one of David's most irusted counsellors, and his dcfection to the cause of Absalom was a severe blow to the king, who prayed that God would bring his counsel to "foolishness," probably alluding to his name. David's grief at the desertion is expressed in Ps. xli. 9, 1v. 12-14. Ahithophel's advice was at first acceptable to Absalom's party, and probably laid down the policy which alone was tikely to be successful; but Hushai's counsel of delay, given in the secret interest of David, was ultimately sdopted. Ahithophel's political foresight enabled him tc see that this resolution would prove fatal to the rebel cause, and he at once returned to his home at Giloh, "pat his household in order, and hanged himself." This is the only case of deliberate suicide that is mentioned in the Old Testament.

AHMADABAD, a district and city of British India, in the province of Gujrat, within the jurisdiction of the governor of Bombay. The district lies between $21^{\circ} .4$ and $23^{\circ} 5^{\prime} \mathrm{N}$. lat., and between $71^{\circ} 2^{\prime}$ and $73^{\circ} 25^{\prime} \mathrm{E}$. long. It is bounded by the province of Kátiwár on the \mathbf{N}. and W., by the Mahi Kánta on the N. and E., by the Kaira collectorate ou the E. and S., and by the gulf of Cambay on the S. The area of the district is returned at 3844 square miles. The river Sabarmati and its tributaries, flowing from north-cast to south-west into the gulf of Cambay, are the principal streams that water the district. The north-eastern portion is slightly elevated, and dotted with low hills, which gradually sink into a vast plain, subject to inadation on its western extremity. With the exception of this latter portion, the soil is very fertile, and some parts of the district are beautifully wooded. The total population of Ahmadábád is returned at 829,637 souls, the average density, as compared with tho area, bcing 216 to the square mile, and the proportion of females 891 to erery 1000 males. About 86 per cent. of the population are retarned as Hindus, 10 per cent. as Mahometans, and 4 as Buddhists. The percentage of persons of other denominations is infinitesimal, their total number being only 1237 souls.
The hamlets for the most part consist. of eabstantial mouses of bricks and tiles, with only a small proportion of hats. Soma of the larger villages contain houses rith upper atories, and the gencral appearance of the inhabitants indicates prosperity. The principal agricultural products ara rice, wheat, bajrit and cotton, with a little sugar-cane, tobacco, and oil-seeds. Silk mazufacture forms an important industry of the city. Tha total revenua of the district in 1872 amounted to $£ 152,344$, of which $£ 147,283$ was derived from the land ; the total met expenditure on civil administration in the sams jear amounted to $£ 21,700$. The fiscal system consists for the most part of scttlements direct with the husbandman, technically known as rayatwári; but some rillages are "talukidart," in which tha "tílukdía" or landholder collects the revenue, and pays 70 per cent. of it to Government, retaining the remaining 30 per cent for himself. The excise revemaa is generally farmed out, bat s government distillery exists in the city. The land settlement i fixed for a period of thirty years, and expires in different parts o. tha district betwecn the years 1884 and 1838 . Sercaty-íive pes cont. of the total area of the district is cultivable, of which 55 per cont. is actaally under caltivation, the other 20 per cent. remaining fallow. The principal marts in Ahmadábád are Dhollerá, Gogo. Dholká, and Vínagaion. Dunicipalities hsve been establiahed is
the towns of Ahmadábád, Dholká, Mandú, Gogo, Dhandúka, Práutej, and Moráshá ; the rate of municipal taxation per head of population varies from 2s. $6 \frac{1}{2}$ d. in Ahmadabád to $4 \frac{1}{4}$ d. in. Morâshá, the averaze throughout the eight towns being 1s. 7 多d. per head. The municipal income is chielly derived from octroi duties, which in some of the towns are farmed. Thirteen towns are returmed as coutaining a population exceeding 5000 zouls, namely, Ahmadábád, population 116,873; Dholká, 20,854 ; Viramgáon, 19,661 ; Dhollerá, 12,468; Dhandúka, 9782 ; Gogo, 9571 ; Prántej, 8341 ; Moráshá T 436 ; Sanand, 7229 ; Mandú, 6774 ; Patrí, 6320 ; Barwálá, 5813 ; and Ranpur, 5796. The district contains 145 achools, in eight of which English is taught. The police force numbers 1189 men. The Kolis contribute most largely to the criminal population.

Ahmadabad City, the capital of the district, is situated on the east or left bank of the river Sabarmati, in 23° N. lat., and $72^{\circ} 36^{\prime} \mathrm{E}$. long. It was formerly one of the largest towns in India, celebrated for its commerce and mauufactures of gold and silver, silk and cotton fabrics, articles of gold, silrer, steel; enamel, mother of pearl, lacquered ware, and fine wood-work. Excellent paper was also manufactured, and a large trade carried on in indigo, cotton, and opium. With the rise of the Marhattá power, however, Ahmadábád became the scene of repeated struggles between the Marhattás and the Mussulmans, whose power was then on the wane, and from this period its prosperity declined. It was captured by the Marhattás in 1755 , and again by the British in 1780. The latter soon afterwards gave the town back to the Markattís, who held it till it finally came into the hands of the English in 1818. The present state of the city is flourishing. It contains a population of 116,873 souls, and is a large and important station on the Bombay, Baroda, and Central India Railray. It is the seat of important silk manufactures, and has two cotton-mill worked by steam-power.

The principal cbiects of architectural interest are the Jain temple of Seth Hathisirib and the Juma Masjid or Great Mosque. The Jain temple is a modern edifice, having been erected about twenty-five years ago by Hathi Sinh, a rich Jain merchart, who dedicated it to Dharmnáth. This modern style shows that the Jain style of architecture has hardly degenerated from its ancient excellence. The exterual porch, between two circular towers, is of great magnificence, most elaborately ornamented, and leads to an outer court, with sixteen cells on either side. . In the centre of this court is a domed porch of the usual form, with tweaty pillars. The court leads to an inner porch of twerty-two pillars, two stories in height, with a roof of a slape very fashionable in modern Jain temples, though ky no means remarkable for beauty. This inner porch ccriducts to a triple sanctuary. The exterior of the temple expresses the interior more completely than even a Gcthic design; and whether looked at from its courts or from the outside, it possesses rariety without confusion, and an appropriateness of every part to the purpose for which it was intended. The Juma Masjid or Great Mosque of Ahmadábád, although not remarkable for its size, is one of the most beautiful mosques in the East, the Jain style of architecture being plainly visible in its construction. Its external dimensions are 382 feet by 258 feet.

AHMADNAGAR, a district and city in British India, in the province of Gujrát, within the. jurisdiction of the Governor of the Presidency of Bombay. The collectorate extends from $18^{\circ} 6^{\prime}$ to $19^{\circ} 50^{\prime} \mathrm{N}$. lat., and from $73^{\circ} 40^{\prime}$ to $75^{\circ} 37^{\prime}$ E. long., and contains the following eleven tálukás or sub-districts: - Nagar, Jámkhair, Párnair, Jrfgonda, Karjat, Ncwasa, Kopargám, Sangamnair, Rahuri, Siogam, and Ankola. A natural boundary is formed on the west of the Ankolh táluká by the Western Ghats, and, further south, by the edge of the tablo-land of Parnair; on the S.W. the district is bounded by the Gor river; on the S. by the Bhimá and Sholápur collectorates; on the E. by the Nizim's dominions; on the N.E. by the

Godávarl river; and on the N. by the N゙asik district. The total area of the district is returned at $4,209,036$ acres, or 6576.62 square miles. Of the total area, $3,068,162$ acres, or $4794^{\circ} 00$ square miles, are cultivated; 121,474 acres, or 189.80 square miles, are cultivable, but not actually under tillage; and $1,019,400$ acres, or $1592 \cdot 81$ square miles, are uncultivable. The last portion includes (besides unarable lands) village sites, roads, tanks, rivers, dec. The population of the district, according to the census taken on the night of the 21st February 1872, numbered 773,938 souls, divided into the following five classes:Hindus, 716,820 , or 9262 per cent. of the total popnlation; Mahometans, 42,435 , or 5.49 per cent.; Buddhists, 12,547 , or 1.62 per cent.; Christians, 941 , or 0.12 per cent.; and other denominations, 1195 , or 0.15 per cent. The bulk of the population consists of Marhattás and Kunbis, the latter being the agriculturists. On the north the district is watered by the Godárari and its tributaries the Frawara and the Mula; on the north-east by the Dor, another tributary of the Godásar1; on the east by the Sephani, which flows through the valley below the Bald Ghát rauge ; and in the extreme south by the Bhimá and its tributary the Gor. The Siná river, another tributary of the Bhimá, fows through the Nazar and Karjat tálukás. The collectorate on the whole is fairly well watered, although in some villages among the hills and spurs of the Western Gháts the supply is insufficient. The district is intersected by the Bombay and Agra road; a second road connects Puná via Serur with the town of Ahmadnagar, and is continued thence towards Máligam; a third road leads from Puná to Náráyangám, besides varions cross-tracts and minor roads connecting the different towns of the district.
The only important industry is weaving. The principal agricultural products are wheat, gram, bajrá, joár, and tur dal. The early or spring crop is hajrá and tur dál ; Wheat, gram, and joeir being sown later in the season. Several other food grains are also raised; and augar-cane, betel leaves, a little cotton, and all descriptions of vegetables are sown on suitable soils. The staple food of the people is bajra and joár (coarse kinds of millet). The total revenue of the district is returned at nearly $£ 170,000$; about $\mathrm{fl}_{140,000}$ being derived from the land revenue. The total annual expenditure is returned at $£ 50,000$. The presert land settlement was introduced about 1844-45, and the thirty years' leases are now beginning to fall in. In a ferv villages which were transferred to Ahmadnagar from the Nasik collectorate the leases have already expired, and a revision of the settlement is in progress (1873). The ficlowing eight towns are returned as containing a population of u_{1} wards of 5600 souls:-Ahmadnagar, population 32,841; Sangamnair, 9978; Páthardi, 7117; Khurdá, 6889; Srigonda, 6175; Blingar, 5752; Karjat, 5535 ; and Sonai, 5254 . The municipal system has been introduced into the towns of Ahmadnagar, Sangamnair, and Bhingar. In the two first named, the municipal revenue is derived from a honse tax and octroi duties on goods and artic'es imported into the town for consumption. In Bhingar the municipal revenue is raised by the levy of a classified tax on professions and trades carried on within the town. The municipal revenue and expenditure in 1872, together with the incidence of municipal tax per head of the population in each of the threo towns, was as follorrs:- Ahmadnagar, municipal income, $£ 3611$, 18a.; municipal expenditure, $£ 35557$, $12 s$; incidence per head of population, 2s. 2 dd. Sangamnair, municipal income, $£ 275$, 4 s , , $6 \frac{1}{d}$. per head; expenditure, $£ 217$. Bhingar, municinal revenne, £259, 18s.-88d. per head; expenditure, £259, 18 s . Ahmadosgar district contains 1 high school, 1 first-grade Anglo-rernacular school, 3 middle-class schools, 164 lower-class schools, and 1 girls ${ }^{\circ}$ school. Education is making fair progress, and the number of schools is annually increasing as funds become available. For tho protection of person and property, a regular police force of 59.4 men of all grades is maintained, at a cost, during 1872-73, of £9559. A village police, numbering 2042 men, is also kept up, at a cost of $£ 1978$ per annum. There are no special criminal classe: in the district except a few Bhils, and they are now much less troublesome than formerly.
Ahmadragar City, the capital of the district of the same name, is situated in $19^{\circ} 6^{\prime} \mathrm{N}$. lat., and $74^{\circ} 46^{\prime} \mathrm{E}$ long. It is a torn of considerable antiquity, having been founded, in 1494, by Ahmad Nizám Sháh, on the site of
a more ancient city, Bhingar. This Ahmad established a new monaichy, which lasted until its overthrow by Sháh Jahin in 1636. in 1759 the Peshwa obtained possession of the place by bribing the Mahometan commander; and in 1797 it was ceded by the Peskw to the Marhattá chief Daulat Ráo Sindhíh. During our war mith the Marhattás in 1503 Ahmadnagar was invested by a British foree under General Wellesley, and captured. It was afterisards restored to the Marhattás, bnt again came into the possession of the British in 1817, aecording to the terms of the treaty of Puna. The town has apididy adranced in prosperity under British rule. It now contains a population of 32,841 souls, is an important station on the Great Indian Peninsular Railway, and has been created a munisipality, ns is mentioned above.

AHMED SHAH, founder of tho Durini dynasty in Afghanistan, born about 1724 , was the son of SammaunKhan, hereditary chief of the Abdali tribe. While still a boy Ahmed fell into the hands of the hostile tribe of Ghilzais, by whom he was kept prisoner at Kandahar. In March 1733 he was rescued by Nadir Shah, who soon afterwards gave him the command of a body of cavalry composed chiefly of Abdalis. On the assassination of Nadir in 1747, Alimed, having failed in an attempt to seize the Persian treasures, retreated to Afghanistan, where be easily persuaded the native tribes to assert their independence, and accept him as their sovereign. He was crowned at-Kandahar in October 1747, and about the same time he changed the name of his tribe to Duríni. Two things may be said to have contributed greatly to the consolidation of his power. He interfered as little as possible with the independence of the different tribes, demanding from each only its due proportion of tribute and military service; and he kept his army constantly engaged in brilliant schemes of foreign conquest. Being possessed of tho Koh-i-noor diamond, and being fortunate enough to intercept a treasure on its way to the Shah of Persia; he had all the advantages which great wealth_can give. He first crossed the Indus in 1748, when he took Lahore; and in 1751, after a fecble resistance on the part of tho Mahome\tan viceroy, he became master of the entire Panjab. In 1750 he had taken Nishapur, and in 1752 he subdued Kashmir. His great expedition to Delli was undertaken in 1756 in order to avenge himself on the Great Mogul for the recapture of Lahore. Ahmed entered Dehli with his 3 my in triumph, and for more than a month the city was given over to pillage. The Shah himself added to his wives a princess of the imperial family, and bestorred another upon his son Timur Shah, whom he made governor of the Panjáb and Sirhind. As bis viceroy in Dehli he left a Rohilla chief in whom he bad all confidence, but scarcely bad he crossed the Indus when the Mahometan vizier drove the chief from the city, killed the Great Mogul, and set another prince of the family, a tool of his own, upon the throne. The Malratta chiefs availed themselves of these circumstances to endearour to possess themselves of the whole country, and Ahmed was compelled more than once to cross the Indus in order to protect his territory from them and the Sikhs, who were constantly attacking his garrisons. In 1758 the Mahrattas obtained possession of the Panjab, but on the 6th January 1761 they were totally routed by Ahmed in the great battle of Dánipat. In a later expedition he inflieted a severe defeat upon the Sikhs, but had to hasten westwards immediately afterwards in ader to quell an insurrection in Afghanistan. Meanwhile the Sikłs again rose, and Ahmed was now forced to abandon all hope of retaining the command of the Panjab. After lingthened suffering from a terrible disease, said to have been cancer in the face, he diod in 1773, leaving to his anc Timur the kingdom he bad founded.

AHRIMAN or Arimanes (Angra-Mainyus, Hostile or Destroying Spirit), in the Zend-Avesta, the principle of eril, opposed to Ormuzd, the principle of good, the one being symbolised by darkness and the other by light. Both were visiblo manifestations of the Zerran-Aherene (Infinito Time), and existed from all eternity, according to the doctrine of the Magians. Zoroaster himself, however, seems to nave daught that Ormuzd alone was eternal, while Abriman was created. in the -ivesta this world is repre sented as the theatre of a fierce conflict between the two spirits, which is to last for 12,000 years. In the end Ahriman-is to acknowledge the supremacy of Ormuzd. (See Zoroastrr.)

AHWAZ, a town in Persia, on the left bank of tho river Karoon, about 100 miles N.E. of Bassorah. Though now an insignificant place, it occupies the site of what was once an extensive and important city. Of this ancient city rast remains are left, extending 12 miles along the bank of the river. Among the most remarkable are the ruins of a bridge and a palace, besides vestiges of canals and watermills, which tell of former commereial activity. There is also, in a ruined state, a bund or stone dyke of great strength thrown across the river for purposes of irrigation. It extends 100 feet in length, and many single blocks in it measure from 8 to 10 feet in thickness. Ahwaz reached the height of its prosperity in the time of tho carliest Mahometan ealiphs.

AI (Sept. 'A $\gamma \gamma a i$ i, 'A γ yaí, and Tat; Vulg. Mai), a royal sity of the Canaanites, east of BetheL. It existed in the time of Abraham, who pitched his tent between the two cities (Gen. xii. 8; xiii. 3); but it is chiefly noted for its capture and destruction by Joshua (vii. 2-5; viii. 1-29), who made it "a heap for ever, even a desolation." At a later period Ai was, however, rebuilt, and is mentioned by Isaiah (x.28), and also after the captivity? The site was known, and some scanty ruins still existed, in the time of Eusebius autd Jerome (Onomast., s.v. 'A γ rai). Dr Robinson was unable to discorer any certain traces of either. He remarks (Bib. Researches, ii. 313), however, that its situation with regard to Bethel may be well determined by the facts recorded in Scripture. That Ai lay to the east of Bethel is distinctly stated; and the two cities were not so far distant from each other but that the men of Bethel mingled in the pursuit of the Israelites as they feigncd to flee before the king of Ai . and thus both cities were left defenceless (Josh. viii. 17). A little to the south of a village called Deir Diwan, and one hour's journey from Bethel, the site of an ancient place is indicated by reservoira hewn in the rock, excarated tombs, and foundations of hewn stone. This, Dr Robinson thinks, may mark the site of Ai , as it agrees with all the intimations as to its position. In this view more recent authorities generally coincide. Kiepert's map gives it a place near these ancient ruins. Stanley places it at the head of the Wrady Harith.

AIDAN, a king of Scottish Dalriada, who reigned about the close of the 6th century. He usurped the succession from the son of Conall, and was crowned by Columba, who personally preferred another, and, it is said, was compelled to perform the ceremony by an interposition of divine power. During Aidan's reign the Scottish Dalriada was completely freed from subjection to the Irish monarchs. (See Adamnan, lib. iii., c. 5; and Bede.)

AIDAN, ST, first bishop of Lindisfarne or Holy Island, embraced a religious life in the monastery of Iona. Oswald, king of Northumbria, having requested a mission of monka from Iona to labour for the conversion of his subjects, Aidan was chosen by the abbot as leader of the expedition, and was consecrated a bishop about 634-5 A.D. Bede speaks of the holiness of his life, of the influence of his preaching as seen in the conversion of multitudes, and also
of numerous miracles which he performed. Aidan died on the 31st August 651.

AIDE-DE-CAMP, a confidential officer attached to the "personal" or private staff of a general. In the field he is the bearer of his chief's written or verbal orders, and when employed as the general's mouthpiece, must be implicitly obeyed. In garrison and quarters his duties are more of a social character-he auperintends the general's honsehold, writes and answers invitations, \&c. To increase their atate, colonial governors and the Lord-Lieutenant of Ireland have aides-de-camp with functions analogous to those of equerries to royalty. Officers above the rank of captain are seldom taken as aides, and none of less than two years' service. The sovereign, as head of the army, may have an indefinite number of aides-de-camp. In 1874 there were thirty-three military aides-de-camp; of these, twelve, taken from the militia, were honorary, the remainder, from the regular army and marines, werd chosen for distinguished war services. The appointment carries with it promotion to the army rank of "full" colonel. The Queen has also at present (1874) eleven naral aides-de-camp, in compliment to the sister service; but the appointment is more especially of a military character. An admiral's aide-de-camp is his flag-lieutenant.

AIDIN, or Guzel-Hissar, a town of Turkey in Asia, in the pashalic of Anatolia, about 70 miles S.E. of Smyrna. It is beautifully situated near the river Meander, and is the residence of a pasha. Since 1866 it has been connected with Smyrna and Ephesus by rail. On a neighbouring height are to be aeen the ruins of the ancient Tralles. Aidin is a place of very extensive trade, and is celebrated for is figs, which are grown in great abundance in the beautiful orchards between the town and the river, and form an important article of export. The atreets of the town, overshadowed by trees, and having numerous well-frequented bazaars, present a very picturesque appearance. Among the inhabitants are considerable numbers of Greeks, Armenians, and Jews; and there are several churches and aynagogues in addition to the fine Turkish mosques. Population, 30,000 .

AIDS (Auxilia), a pecuniary tribute under the feudal aystem, paid by a vassal to his lord on particular occasions; originally a voluntary grant which in process of time became exigible as a right. The aids of this kind were chiefly three, viz.: - 1 st, When the lord made his eldest son a knight; $2 d$, To provide a dower when he gave his eldest daughter in marriage; $3 d$, To ransom the person of the lord when taken prisoner. The amount of the first two was definitely fixed by $3 \mathrm{Ed.I}$, c. 36 , but that of the last was of course uncertain. The right of levying aids was abolished by 12 Car. II., c. 24.

AIKIN, JoHn, M.D. (1747-1822), was born at KibworthHarcourt, received his elementary education at the dissenting academy of Warrington, where his father was tutor, and prosecuted his medical studies in the university of Edinburgh, and in London under the celebrated Dr William Hunter. He commenced his professional career as a surgeon at Chester; but being unsuccessful, he removed to Warrington. Finally, he went to Leyden, took the degree of M.D. in that university (1780), and attempted to establish himeelf as a physician in London. His success in this new feld does not seem to have been considerable; chiefly, no doubt, because he concerned himself more with the advocacy of liberty of conscience than with his professional dnties. He therefore began at an early period to devote himself to literary pursuits. Dr Aikin's reputation chiefly rests on his endeavour to popularise scientific inquiries. In conjnnction with his sister, Mrs Barbauld, he commenced the publication of a series of volumes on this principle, entitled Evenings at Home (6 rols., 1792-5), 2
popular and interesting work, chiefly commendable for the purity of the principles it inculcates, and the pleasing views it gives of human nature. It has been translated into almost every European language. His love of nature, and his power in delineating its features, are well illustrated in The Natural History of the Year, as well as in his mis. cellaneons Essays. In 1798 Dr Aikin retired from professional life, and devoted himself with great industry to literary undertakings of numerous and varied kinds, among which his valuable Biographical Dictionary (10 vols. 1799-1815) holds a conspicuous place. Besides these, he published Biog. Memoirs of Medicine (1780); Lives of John Selden and Archbishop Usher; Memoirs of Huet, Bishop of Avranches; Geographical Delineations of All Nations, \&c. He edited the Monthly Magazine from 1796 to 1807, and started the Athenceum in 1807. The latter. was discontinued, however, in 1809.

ATKIN, LUCY, daughter of the preceding, a well-known historical writer, was born at Warrington on 6th Nov. 1781. After rendering valuable assistance to her father in several of his later works, she commenced her own career as an authoress by the publication of several books for the young, the most important of which were the Adventures of Rolando, a translation, and Lorimer, a tale. In 1818 she published her Memoirs of the Court of Queen Elizabeth, the first and best of the series of historical works on which her reputation rests. It was very popular, and passed through several editions. The Memoirs of the Court of King James I. (1822) was highly commended in the Edinburgh Reviers, which pronounced it "a work very nearly as entertaining as a novel, and far more instructive than most histories." Her Memoirs of the Court of Charles I. (1833) showed a falling off; and her latest work, the Life of Addison (1843), was declared disappointing by Macaulay in the Edinburgh Revier, vol lxxviii Miss Aikin died at Hampstead, where she had resided for forty years, on the 29th Jan. 1864. A Life by P. H. le Breton appeared in a volume entitled Memoirs, Miscellanies, and Letters of Lucy Aikin (Lond. 1864).

AIKMIAN, WILLIAM, a celebrated portrait-painter, born at Cairney, Forfarshire, on the 24th Oct. 1682. He was intended by his father for the bar, but followed his natural bent by becoming a pupil under Sir John Medina, the leading painter of the day in Scotland. In 1707 he went to Italy, resided in Rome for three years, afterwards travelled to Constantinople and Smyrna, and in 1712 returned home. In Edinburgh, where he practised as a portrait-painter for some years, he enjoyed the patronage of the Duke of Argyll; and on his remoral to London in 1723 he soon obtained many important commissions. Perhaps his most successful work was the portrait of the poet Gay. He also painted portraits of himself, Fletcher of Saltoun, William Carstaire, and Thomson the poet. The likenesses were generally truthful, and the style was modelled very closely upon that of Sir Codfrey Kneller. Aikman held a good position in literary society; and counted among his personal friends Swift, Pope, Thomson, Allan Ramasay, Somerville, and Mallet. He died in June 1731, leaving unfinished a large picture of the royal family.

AILRed, Ealred, Ethelredus, Aluredus, an English ecclesiastic and histerian, born at Hexham in 1109. He was educated at the Scotch court with Henry the son of King David. The king is said to have offered him a bishopric, which he refused, preferring to become a monk in the Cistercian abbey of Rievaulx, Yorkshire. In 1146 he was chosen abbot, and he held that position till his death in 1166 ,-the accounts which state that he was transferred to Peeresby in Lincolnshire being prubably fonaded on a confusion of names. Leland says that he had seen his tomb at Ricvauls adorned with gold and silver ornaments

Ailred wis the author of a large number of historical and theological works. The former are of little value, owing to his credulity, except for the occasional glimpses they give of coutemporary life and manners. His theological works, including a volume of homilies, a treatise on charity, and a treatise on fricndship, are somewhat in the stylc of St Beruart. (For a full account of the historical writings scc Sir T. D. Hardy's Descriptive Catalogue.)

AILSA CRAIG, a remarkable island-rock at the month of the Firth of Clyde, off the coast of Ayrshire, Scotland. It is of a conoidal form, with an irregular elliptic base, and rises abruptly from the sea to the height of 1139 feet. The only side from which the rock can be ascended is the east; the other sides being for the most part perpendicular, and gencrally presenting lofty columnar forms, though not so regular as those of Staffa. The rock is a grecnstone or syenite, with a basis of grayish compact fclspar traversed by numerons trap reins. A columnar cave exists towards the north side, and on the castern are the remains of a torer, with several vaulted roems. Two springs occur on the island, and some scanty grass affords subsistence to numerous rahhits. The precipitous parts of the rock are frequented by large flocks of solan gecse and other aquatic wild fowl. It is situated in $55^{\circ} 15^{\prime} \mathrm{N}$. lat., $5^{\circ} 7^{\prime} \mathrm{W}$. long.

AIN, a departnent on the eastern frontier of France, bounded on the N. by the departments of Jura and Saone-et-Loire, on the W. by Saone-ct-Loire and Rhônc, on the S. by Iserc, and on the E. by the departments of Savoie and Waute Savoie and the Swiss cantons Geneva and Vaud. It extends at the widest points 52 miles from N . to S., and about the same distance from E. to W., with an area of 2241 squaro miles. The east of the department is very mountainous, being traversed by the southern portion of the Jura range, but in the north-west the surface is comparatively level, and in the south-west flat and Marshy. i.A in is wholly within the basin of the Rhone, that river itself being the boundary on the east and south, while it receives the Ain, which passes scuthward through the centre, and the Saône, which forms the western boundary of the department. The climate is usually cold, but on the whole healthy, except in the damp marshy districts on the west. The soil in the ralleys and plains of the department is fertile, producing wheat, barley, maize, rye, and fruits of parious kinds, as well as wine of excellent quality; the tops of many of the mountains are covered with forests of fr and oak, and the lower slopes yield excellent pasture for sheep and cattle. The chief mineral product is asphalt, besides which potter's clay, iron, build-ing-stone, and the best lithographic stone in France, are produced in the department. There are many corn and balw mills on the mountain streams; and cotton, linen, and silk fabries, coarse woollen cloth, paper, and clocks, are manufactured to a limited extent. Ain, which formed a part of the ancient province of Burgundy, is divided into Give arrondissements-Bourg and Trevoux in the west, and Gex, Nantua, and Belley in the east; containing in all 36 cantons and 452 communcs. Bourg is the capital, and Belley is "1e seat of a bishop. Population of Ain in 1872, 363,290 , of whom 185,074 were males, and 178,216 rere females. Of the total population, 115,407 could neither read nor mrite, and 46,450 more could not write.

SINAD, a town of Arabia, in the province of Hadramaut, about 207 miles N.E. of Aden. Near it is the tomb of a Moslem prophet much frequented by pilgrims, at which a great annual fair is also held. The population is said to be abont 10,000 .
alnaluller, Maximiian Emanoei, founder of a new sehool of glass-painting, was born at Munich on the 14th February 1807. He was induced, by the sdvice of Gärtner, director of the roval porcelain manu-
factory, to devote himself to the study of glass-painting, both as a mechanical process and as an art, and he made such progress that in 1828 he was appointed director of the newly-founded royal painted-glass inanufactory at Munich. The method which he gradually perfeeted there was a devclopment of the enamel process adopted in the Rensissance, and consisted in aetually painting the design upon the glass, which was subjected, as each colour was laid on, to carefully-adjusted heating. The fault of this new style is its production of transparent pictures seen by transmitted and not by reffected light; but the popular verdict in its favour has been, notwithstanding, proved by the extent to which it has been adopted. The carliest specimens of Aininüller's work are to bo found in the cathedral of Ratisbon. With a few exceptions, all the windows in Glasgow cathedral are from his hand. Specimens msy also be seen in St Paul's cathedral and St P'cter's College, Cambridge. On the Continent it must suffice to mention Cologne cathedral as containing some of his finest productions. Ainmüller had considerable skill as an oilpainter, especially in interiors; and his pictures of the Chapel Royal at Windsor and of Westminster Abley have been much admired. He died 9th December $18 \pi 0$.

AlNOS, the name of a small but remarkable tribe in Japan, found ehicfly in the island of Yesso. They are different in race and character from the ordinary Japanese, and seem to have been the carliest inhabitants of the country. Since the invasion of the islands by the Japanese, however, the Ainos have been gradually supplanted by the invaders, and are now completely subject to them, although they still preserve the appearance of internal self-government, living in societies of from ten to twenty families, under a hereditary chief. Their language is quite distinct.from the Japancse, and intercourse between the two peoples is carried on by a sort of mongrel dialcct. The Ainos are not iaii, averaging a little over 5 fect; but they are wellproportioned and strongly-built, with a type of countenance European rather than Asiatic. They are distinguished by an exuberance of hair on the head and Lody, a circumstance which has given rise to their name of "Hairy Kuriles." The women are ugly, and are much addieted to tattooing. The dress of the Ainos consists of a robe of skin or cotton, reaching to the knecs and secured by a girdle; their huts are small and uncomfortable, with little or no furniture ; and their food is mostly the produce of fshing and hunting, together with rice got by barter from the Japanese. They are probably less than 50,000 in number.

AINSWORTH, Hemry, dirine aad scholar, was boro "about 1560° "at Pleasington, चear Blackburn, Lancashirc, having been second son of Lawrence Ainsworth of Pleasington Hall. Young Henry Ainsworth is believed to have received his education at Quecn Elizabeth's Grammar School in Blackburn, of which his father was an original founder. According to tradition, ho was a Roman Catholie, and a younger brother, John, a Protestant; and the two brothers, entering into a written controversy, mutnally conrerted each other-Heary having cmbraced Protestantism, and John, Popery. The subsequent carlier history of Ainsworth is still obscure. No record survives; but various authorities concur in stating that he passed from Blackburn to Cambridge. He associated with the Puritan party in the Church of England, and crentually adopted the platform of the Independents as reptesented by the Brownists. Ho was driven from his native country by the state proscription of the sectaries before the year 1593. He is found resident in "a blind lane at Amsterdam" about 1595-6. His exile must hare reduced him to extreme porerty. He is stated to have been a "porter" to a scholarly bookseller in Amsterdam, who, on discovering his skill in the Hebrew language, made him knorrn to his countrymen. Roges

Williams, in one of his fiery tractates, reproaches munsworth 2s "living upon ninepence a week and some boiled roots." When the Brownists erected a church in Amsterdam, Francis Johnson was chosen for their pastor, and Henry Ainsworth for their doctor or teacher. In 1596 these troo divines drew up a confession of their faith (in Latin), which was reprinted in 1598, and dedicated to the rarious universities of Europe (including St Andrems, Scotland). The separations and controversies which ersued at Amsterdam and at Leyden belong to church history. Of Ainsworth it may be said, that while he never put himself forward or sought notoriety, he was beyond comparison the most steadfast and most resolute and most cultured champiun of those principles of civil and religious freedom represented by the now large and influential body of Nonconformists in Britain and America called Independents or Congregationalists. The personal squabbles and temporary animosities have long passed away; and it is recognised that in Henry Ainsworth Nonconformity had a man of saintly worth, of intellectual power, and of uncompromising iatrepidity. Amid the strifes and clamours of controversy he pursued steardfastly his rabbinical studies. The combination was so unique that Moreri and Zedler, like others, made two Henry Ainsworths-one Dr Henry Ainsworth, a learned biblical commentator; the other H. Ainsworth, an arch-heretic, and "the ringleader of the Separatists at Amsterdam." Kindred mistakes are found regarding his writings in Hornbeck's Summa Controversiarum, and more recent bibliogràphical authorities. In 1608 our Ainsworth defended the Separation against Richard Bernard and William Crashaw (father of the poet). But his ablest and most arduons minor work in controversy was his crushing reply to the notorious Smyth, entitled A. Defence of the Holy Scriptures, Worship, and Ministry, used in the Christian Church 'separated from Antichrist, against the Challenges, Cavils, and Contradictions of M. Smyth (1609). Ifis memory abides through his rabbinical learning. The ripe fruit of many years' diligence appeared in his Notes on Genesis, 1616; Exodus, 1617; Leviticus, 1618 ; Numbers, 1619; Deuteronomy, 1619; Psalms, 1612, 2d edition 1617; Song of Solomon, 1623. These were collected in folio in 1627, and again in 1639, and later in various forms. From the outset the Annotations have taken a commanding place especially among Continenter scholars, as witness Clement, Dornius, Voght, Lilienthal, and Simon, the last urging Catholics to study and value them. Perhaps nothing more clearly shoms even his lome repute than the praiseworthy zeal with which Vice-Chancellos Dr John Worthington endeavoured to recover certain posthumous MSS. of Ainsworth. These, it is to be feared, have irrecoverably disappeared. Moreri mentions a current report that the famous Lightfoot " pillaged the best of his observations" from Ainsworth. A comparison of the Exercitations with the Annotations shoms, however, that the two scholars worked independently. Moreri's groundless remark has been transmuted into an imputation as ground-less-that Lightfoot had got into his possession the MSS. of Ainsworth. The character and learning of the great rabbinist ought to have silenced such an unworthy suspicion. There is nothing more striking in the carcer of Ainsworth than the reported manner of his death, which took place at Amsterdam in 1622-3. It is stated that, having found a diamond of great value, he advertised it; and when the owner, who was a Jew, came to demand it, he offered the finder any gratuity he sought. Ainsworth, though poor, reguested only of the Jerr that he would procure him a conference with some of his rabbis apon the prophecies of the Old Testament relating to the Meesiaj, which tha Jew promised; but not having interest to obtain such a conference, it is thouglit that he contrived to get Ainsworth
poisoned (Neal, Puritans, ii. 47). Another account says that he attended the conference, and so confounded the Jews that, from spite and malice, they in this manner pat a period to his life (Brook, Puritisns, ii. 302). There is an air of improbability about the narrative; but it is cer. tain he was dead in 1623, for in that year was published his Seasonable Discourse, or a Censure upon a Dialogue of the Anabaptists, in which the editor speaks of him as a departed worthy. For a pretty complete list of his writings, lesser and larger, see Chalmers, Brook, and Hanbury. Many are now extremely rare and high-priced. (See Worthington's Diary [Chetham Society], by Crossley, i 263-6; Hanbury's Memorials, s.v.; Works of Robinson, iii., Appendix, and supra.)
(A. B. G.)

AINSTWORTH, Robert (1660-1743), author of a wellknown Latin dictionary, was born at Woodvale, near Manchester. After teaching for some time in Bolton, he remored to London, where he conducted a boarding-school, first at Bethnal Green, and then at Hackncy. At a comparatively early period of his life he had realised a competeacy, and was able to retire. Proposals for the preparation of a Latin dictionary were made to him in 1714, but the work was not published till 1736. It was long extensively used in schools, and often reprinted, the later editions being revised and enlarged by other hands. Ainsworth's Dictionary mas, however, radically imperfect, containing a mere register of words, with no scientific classification or complete and exact definition of their various meanings, and necessarily wanting the results of modern philological research. Later works have now entirely superseded it.

AINTAB, a large garrison town on the northern frontier of Syria, 65 miles N.N.E. of Aleppo, in $36^{\circ} 58^{\prime}$ N. lat., $37^{\circ} 13^{\prime}$ E. long. It has a considerable trade, chiefly in hides and leather, and cotton of coarse quality is grown in the district. Population, about 20,000 .

AIR was the name formerly given to all gaseous substances. The gas now known as oxygen, for instance, was named by Priestley dephlogisticated air, in contradistivction to nitrogen or azote, which was phlogisticated air. So hydrogen gas was known to the carly chemists as inflammable air, carbonic acid gas as fixed air, dic. The name is now ordinarily restricted to what is more accurately called atmospheric air-the air me breathe-the invisible elastic fluid which surrounds the earth, extending to an unknown height. The properties of this fluid will be fally considered under such headings as Atmospaere, Barometer, Chemistry, Ventilations. \&c. Reference may be made here to the meclianical use of air as a moring power, or rather as a means for transferring power, just as it is transferred by a train of wheelwork. Compressed air can be employed in this way with great adrantage in mines, tunnels, and other confined situations, where the dischargo of steam mould be atteaded with inconrenience. The work is really done in these cases by a steam-engine or other prime mover in compressing the air. In the construction of the Mont Cenis tunnel the air was first coms pressed by water-power, and then carried through pipes into the heart of the mountain to work the boring machinesi: This use of compress air in such situstions is also of indirect adrantage in serving not only to ventilate the pace in which it is worked, but also to cool it; for it must , be remembered that air falls in temperature during expansica, and therefore, as its tcmperature in the machines was onig that of the atmosphere, it must, on being discharged from them, fall far below that temperature. This fall is so great that one of the most serious practical difficulties in working machines by compressed air has been found to be the formation of ice in the pipes by the freezing of the moisture io the air, which frequently chokes them entirely up.

AIR-ENGINE. Engines which have for their working fuid heated :air instead of steam are called "air-engines." The name "caleric engine" has also been applied to them, but is not to be commended, for they have no more right to that title than steam-engines-the useful effect of both machines being due to the transformation of heat into mechanical energy, the air in the oue case and the steam in the other being merely convenient media through which to effect that transformation.

The utilisation of the expansion of heated air for driving an engine has for many years been a subject which has exercised the ingenuity of inventors. The history of airengines has, however, been little more hitherto than a history of failurcs, and they are as far now from superseding stcam-engines as they wero fifty years ago. This is owing mostly to the fact that the inventors have too often worked empirically, without any real knowledge of the conditions under which, and under which only, the real advantages of the fluid could be attained, and have therefore continually violated these conditions. There are also certain constructive difficulties in the way of making a successful air-engine which have never been fully overcome. It should be distinctly understood that, regarded simply as a medium for transforming heat into work, air possesses no advantage over steam or any other fluid. Its advantage is, that it can be used with safety at much higher temperatures than stcam (and therefore a larger proportion of the heat given to it can be transformed into work), and that by employing the gases of combustion in the cylinder much heat can be utiiised which with steamengines is necessarily wasted.

Of the air-engines which have actually worked we have(1.) Those in which the changes of temperature take place at a pair of constant velumes; (2.) those in which the changes of temperature take place at a pair of constant pressures; and (3.) those in which heat is received and rejected at a pair of constant pressurcs. The first tro classes, fitted with "economisers," are in theory "perfect" engines; that is, they are theoretically capable of transforming into work the largest fraction the limits of temperature allow of the heat reccised from the fuel. The third class are not perfect engines, but possess certain practical adrantages which will be afterwards mentioned.

Tho well-known engine invented by the Rev. Dr Stirling in 1816, and sabsequently improved by him, in conjunction with his brother, Mr James Stirling, C.E., of Edinburgh, belongs to the first class. In this engine the same mass of air is used again and again, and is compressed at starting to a pressure of 7 to 10 atmospheres. A cylindrical air-receiver, in whinh a plunger can be moved up and dorm, is placed over the flue of the furnace. The annular epace between the plunger and the sides of this receiver is occupied by an immense number of thin sheets of metal, which form the "economiser." In the uppor part of the receiver, which communicates freely with one end of a Forking cylinder of the usual construction, is a "refrigerator," consisting of a coil of tubing through which cold water continually circulates. The plunger is alternately raised and lowered by snitable mechenism, and in its motion causes the great body of air in the machine to occuny alternetely the bottom or heating end and the top or cooling end of the receiver. It thns undergocs alternate expansion end contraction, and thereby gives motion to the piston of the working cylinner, and thence to a crank shaft in the osual way. The adrantages of this engine were, that the air in the cylinder was always cool, and that the great pressure which could be used rendered the size of the machine for a given power very moderate. It was ultimately abandoned becanse of the failure of the receiver to stand the destructive action of the heat.

The most familiar example of the second class of air-engines is that invented by Captain Ericsson. It differed from Stirling's in many respecta, and does not seem in any one particular to have been an improvement on it. Fresh air was drawn from the atmoephere at every stroke, and a very low pressure used, and what was the receiver in Stirling's engine became the working cylinder of Ericsson'日. It was thus excessively bulky in proportion to its. powcr, and all the working perts were exposed to the destractive ectios of intense heat. It in chielly interesting on account of the
enormous scale on which its constraction was actaally carried ont. The engines of the steamship "Ericsson" had four working cylinders, each 14 ft . in diameter, with other parts in proportion. The triels of this vessel were conducted in a manner which did not allow any confidence to be placed in the results said to be obtained, and steamengines replaced those of Ericsson within two years.

To the third class of air-engines belong those of Sir Ceorge Cayley and several of the older inventors. The best known modern ex. ample is, however, the engine of Mr Philander Shaw, which is shown in our engraving, and which was exhibited at the Paris Exhibition of 1867. The most important feature of this type of engine is the use of the products of combnstion themselves, instead of merely the air heated by them, to drive the piston. The construction of the engine is very simple : the working piston is fitted with a trank on its upper side, which, thus reduced in area, oerves as a compressing pump, and the products of combustion act directly upon its under side, which is protected by a large drum fillcd with non-conducting material from the heat. The furnace stands beside the cylinder, and is cntirely closed up, means being provided for fceding it with fuel without allowing ony air to enter. The air compressed by the pump is delivered into the furnace, where it com. bines rith the fuel to form the gases of combustion, and in this way receiving additional heat, expands, and raises the piston of the Working cylinder for a portion of its stroke. The admission-valve of the latter is then closed, and the gases expand, without addition of heat, until the piston bas completed its stroke, and are then dis* charged into the atmosphere. By the addition of an "economiscr," the efficiency of this type of engine may be very greatly increased : but its principal advantage is that, by actnally using the products of combustion inside the engine, much heat is saved which in other engines is unavoidably sent op the chimney and lost.
One of the principal features of all air-engines is the "economiser"" (sometimes erroneously called the "regenerator"), an invention of Mr Stirling' The object of this apparatus is to store up the heat rejected by the fluid when it falls in temperature, and subsequently to raise the temperature of the fluid by re-storing the same heat, so that the only heat which the furnace bas to supply is the latent heat of expansion, together with the amount of sensible heat which may be lost through the imperfection of the economiser.
(For a popular explanation of the theory of air-engines, see an admirable paper by the late Professor Rankine in the Edinburgh Philosophical Journal for January 1855; and for a complete account of the same, involving the use of the higher mathematics, see the same author's SteamEngine, pp. 345, et seq. See also Prof. Clerk Maxwell's Theory of Heat, end a series of papers on the subject in Engineering, 1874.)
(A. B. w. x.)

AIR-GUN, a weapon like a common gun in shape, in which the force employed to propel the bullet is the elasticity of condensed atmospheric air. It has attached to it, or constructed in it, a strong metal chamber, into which air is forced by a condensing syringe (8ee Pneumatics). In this way a pressure may be obtained of several hundred atmospheres. When a trigger is touched, the condensed air rushes into a space behind the bullet with such force as to propel it fram the barrel to a considerable distance. If only a little air be allowed to escape each time, a single charge will propel a number of bullets in succession, with
a constantly diminishing force. Sometimes the weapon is made in the form of a walking-stick, and is then called an air-cane. The air-gun is little else than a scientific toy, and has no practical value. The apparatus is costly, the process of condensation requires considerable labour, and the propulsive force of the air is, at its maximum, less than that of an ordinary charge of gunpowder. The only advantage it can be said to have in any way is the questionable one of its use being unattended by the explosive noise that accompanies the discharge of a common gun.
AIR-PUMP, an apparatus by means of which a closed vessel can have the air it contains removed from it. It consists essentially of two parts-a receiver, from which the air is to be exhausted; and a pump, to perform the work of exhaustion. The receiver is in general made of glass, in order that the condition of objects placed within it for the purpose of experiment may be readily seen by the operator. It is open at the bottom, and has its lower edge accurately ground; when in its place in the air-pump it stands upon a smooth brass plate. The pump itself is a brass cylinder, having a piston in it, which can be moved backwards and forwards by mezns of a rod, in the usual way. At the end of the cylinder nearest the receiver is placed a small valve, in the piston itself is another (or some mechanism which serves the purpose of a valve), and there is frequently a third in the outer end of the cylinder. sil these valves open outwards from the receiver. The action of the pump, when arranged in this way, is exactly similar to the action of an ordinary well-pump, with air as the fluid instesd of water: The air-pump was invented about 1654 by Otto von Guericke, a magistrate of Magdeburg, and a man who devoted great attention to various problems in pneumatics. ${ }^{2}$ The first description of his pump was published in 1657 in the Mechanica Hydraulicopmeumatica of Gaspar Schottus, professor of mathematics at Wurtemberg. He used a spherical glass receiver, with a pumping syringe attached, and kept the whole of the working parts under water to prevent leakage. His pump

was very imperfectly constructed, but he did eventually succeed in getting a very good vacuum with it.. The method of producing the Torricellian vacuum, by filling a ressel with liquid and then remoring the liquid without permitting ingress of air, was previously known; but a vacuum produced in this way was obviously useless for experiments with any objects but those which could previously be immersed in the liqnid used. Guericke was, however, the first to recognise that, by virtue of its perfect

[^69]elasticity, or tendency to expaud indefinitely, air could be pumped out of a closed space as well as water; and. this is the principle of his and all succeeding air-pumps. Although the invention of the air-pump is due to a German, almost all the improvements made in it from time to time have come from Englishmen. Dr Boyle contributed so much to its perfection that for a long time the state of the air in an exhausted receiver was called vacuum Boyleanum, and the air-pump itself machina Boyleana. Dr Hook, Hawkesbee, John Smeaton, and others brought the airpump externally to very much the same form as that in which it is commonly seen at present, and which is shown in the annexed woodcut. The pump here has two cylinders, which are worked by a winch handle, the pump rods hoving toothed racks on the upper part of their length. Professor Tate is the inventor of a double-action air-pump, now much used where a very perfect vacuum is required. It has two pistons in one barrel, the air being drawn from the receiver at the centre of the barrel, and discharged into the atroosphere at its extremities. Very complete airpumps have two or tbree barrels, arranged as shown in the woodcut, for rapid exhaustion, until the pressure in the receiver is equal to (say) half-an-inch of mercury; and in addition to these a horizontal Tate's barrel, which can then be put into action to bring the vacuum down to $\frac{1}{20}$ inch of mercury ($1-600$ th of the pressure of the atmosphere), or even less at low temperatures. See Pnevimatics.
Arr-Poser, in steam-engines, is the pump which draws the condensed steam, along with the air which is always mixed with it, and also the condensing water (except where a surface condenser is used), away from the condenser, and discharges it into the hot well See SteassEvgine.
(A. в. ㅍ. K.)

AIR, or Asben, a country of central Africa, lying between 15° and $19^{\circ} \mathrm{N}$. lat. and 6° and $10^{\circ} \mathrm{E}$. long. The northern and best known portion of this region is of a very diversified character. It has numerous mountain ranges, some of which rise to a height of 5000 feet, with richlywooded hollows and extensive plains interspersed. The mimosa, the dum-palm, and the date are abundant; and the valleys are covered with the exuberant vegetation of the tropics. Some of the plains afford good pasturge for camels, asses, goats, and cattle; others areedesert tsblelands. In the less frequented districts wild animals abound, notably the lion and the gazelle. . The country generally is of sandstone or granite formation, with occasional trachyte and basaltic ranges. There are no permanent rivers; but during the rainy season, from August to October, very heary floods convert the wafer-courses in the hollows of the mountains into broad and rapid streams. Numerous wells supply the wants of the people and their cattle. To the soouth of this variegated region lies is desert plateau, 2000 feet above the level of the sea, destitute of water, and tenanted only by the wild ox, the ostrich, and the giraffe. Still further south is the district of Damerghu, nominally tributary to Air, undulating and fertile, and yielding rich crops. Notwithstanding the fertility of the valleys in the northern portion of the country, there is little of the soil under cultivation except in the neighbourhood of the villages, where slaves are employed in tillage. Millet, dates, indigo, and senna are the principal productions. The great bulk of the food supplies is brought from Damerghu, and the thole materials for clothing are also imported. Were it not for the traffic in salt between Bilma and the Hansa states of Soudan, the country could searcely maintain its present limited number of inhabitants. A greast cararan annually passes through Air, consisting of several thousand camels, carrying salt from Bilma to Sokoto. Air was called Asben by the native tribes until they were conquered by the Berbers. The present inhabitants are for the must.
part of a mized race, combining the finer personal traits of tho Berbers with the characteristics of the negro. Tho king or sultan of Air occupies a very precarious position, being to a great extent dependent on the chiefs of the Tawarek tribes iuhabiting a vast tract of the Sihara to the north-west, who are continually at war among themselves. A largo part of the revenue of the king is derived from tribute exacted from the salt caravan. His authority does not seem to be great in the outlying parts of his dominions. The chief town of Air is Agades (q.v.) (See Dr Farth's Travels in Central Africa, zol. i.)

ITRAY, Herry, D.D. This celebrated Puritan president of Queen's Collego, Oxford, was born at Kentmero, nenr Windermero, but no record remains of the date of cither birth or baptism. Anthony a Wood names Westmoreland as his birthplace. In the mell-known Life of Bernard Gilpin it is told that when he was making preparations for martyrdom, he "received the acconnt with great composure ; and immediately after called up William Airay, a favonrito domestic, who had long served him as his almoner and stemard." From the great kindness shown to our Airay by Gilpin, and from the ricinity of Kentmere to the Rectory, it does not appear to be hazarding too much to assume that this William Airay was his father, and that the family traỉition is right in assigning Kentmere, not Barton or Wilford, as his birthplace. The truly npostotic man's bounty showed itself in sending Eenry and a (probable) brother Ewan or Eran to his own endored school, where they were fully educated "in grammatical learning," and were in attendanco at Oxford when Gilpin lay a-dying. From the Athence we glean the details of Airay's college attendance. He was "sent," says Wood, "to St Edmund's Hall in 1579, aged nineteen or thereabouts." "Soon after," he continues, "our author, Airay, mas translated to Qucen's College, where he became. pauper puer serviens; that is, a poor serving child that waits on the fellows in the common Lall at meals, nnd in their chambers, and do other servile work abort the college." His transference to Queen's College is explained by its having been Gilpin's mn college, and by his Westmoreland origin givug mom a claim on Eaglesfield's foundation. He proceeded B.A. on June 19, 1583. On June 15, 1586, he passed M.A.; B.D. in 1594; and D.D. on Jnne 17, 1600-all in Queen's College. "About the timo ho was master" (1586), "he entered holy orders, and became a frequent and zealons preacher in the uniressity" His Commentary on the Cpistle to the Philippians (1618), reprinted 1864, is a specimen of his preaching before his college, and of his Geiry denanciation of Popery, and his fearless entunciation of that Calvinism which Oxford, in common with all England, prized then. In 1598 he was chosen provost of his college, and in 1606 Tras rice-chancellor of the university. In the discharge of his vice-chancellor's duties, he came into conflict with Laud, who even thus early was betraying his Romish tendencies. Ho was also rector of Otmore (or Otmonr), near Oxford, a living which involved him in a trying litigation, whereof present incumbents reap tho bencfit. He died on 6th October 1616. His sharacter as a man, preacher, divino, and as an important culer in the miversity, will be found portrayed in the Epistle by Pottcr, prefixed to the Commentary. He must have been a fine specimen of the more cultured Puritanspossessed of a robust common-sense in admirable contrast with some of his contemporaries. (Lectures on the whole Epistle of Paul to the Philipprians, 1618, 1864; Wood's Athene, by Bliss, ii. 177, 178, sc. ; Laud's Works; Wills (Jurtees Society.)
(A. B. G.)

AIRDFIE, a parliamentary and mnnicipal burgh and market-town of Scotland, in the parish of New Monkdand,

Lanarkstire, 11 miles E. of Glasqow and 32 W . of Eun burgh. The high road beiveen these cities passes through Airdrie, forming its principal street, from which others diverge at right angles. It is well built, paved, and lighted with gas, but it contains little that is beautiful or attractive. It possesses a fine town-ball and a handsome edifice erected as the county buildings, as well as two places of worship belonging to the Church of Scotland, three to the Free Church, two to tho United Preshyterians, and one each to the Reformed Presbyterians, the Congregationalists, the Baptists, the Wesleyan Methodists, aud the Roman Catholics; fivo branch banks, with excellent places of basiness constructed or in course of construction; a mechanies' institute, and screral schools. Tho extensive coal and iron mines in the vicinity give employment to a large part of the population of Airdrie, and have been the means. of raising it, zince the commencement of the century, from the insignificanco of a village to its present prosperity. In the town itself there are manufactories of cotton geods and iron wares, besides foundries, engineering shops, 8aw-mill3, and other branches of industry. A branch of the North British Railway from Glasgow, passing through Airdrie to Edinburgh, connects it by a direct lino with both cities. It is also connected with Glasgow by the Monbland Canal, which comes within a mile of the town. By the Reform Act of 1832 Atirdrie was created a parliamentary bnrgh, uniting with Falkirk, Hamilton, Lanark, and Linlithgow in sending one mender to parliament. Its municipal corporation, which dates from 1821, consists of twelve comncillors, in. cluding a prorost and three bailies. Thero are wcekly courts held by the magistrates, and conrts are held twice a weck by the sharii-substitute and the justices of the peace respectively. The market-day is Tuesday, but the market is of little importance. By the census of 1871 the population of Airdrie was 13,488, the number of inhabited houses 1167, and the parliamentary constituency 1702, increased in 1873 to 1932. The annual value of real property in the burgh, not including rail rays, is $£ 26,145$; and tho corporation revenue for $1873, £ 3401$.

AIRE, an English river which rises in the West Riding of Yorkshire and pursucs a south-easterly course through tho populous "clothing district" of which Leeds is the capital At Castleford, below Leeds, it reccives a small tributary, the Calder, and it joins the Ouse shortly before that river's expansion into the estuary of the Humber above Hull. It is navigable to Leeds for small craft.

AIRE, a fortified town of France, on the river Lys, in the department of Pas-de-Calais, 10 miles S.E. of St Omer. Althrugh its situation is low end marshy, the town is neat and well built. It possesses extensive barracks; and the Church of St Paul is a handsome Gothic strneture. 1ts manufactures consist of hats, cotton and woollen goods, hardware, yarn, soap, and oil. Population, 8803.

ATRE, a town in the south of France, in the department of Landes, on the left bank of the Adour, 14 miles S.S.S. of St Sever. At one time it was the capital of the Visigoths, and since the fifth century it has been the seat of a bishopric. It has a college and cathedral ; and there are manufactories of leather and hats. Population, 5144.
AISLE sometimes written Isle, Yle, and Alley (Lat.' and Ital. Ala, a ming ; Fr. Aile, Bas coté; Ger. Seitenschiff, Seitenchor), in its primary sense, the wing of a house, but gencrally used to describe the alleys or passeges at the sidea of the naves and choirs of churches. In reckoning their number, the nave is usally count id . Thus a nave with an aisle on each side is generally called a threaisled chnrch; if with two aisles on each side, a fiveaisled church. In England there are many churches with one sidc-aisle only; bnt there is only one cathedral with five aisles, that at Chichester. There are, however, very
muny such on the Continent, the most celebrated of which are at Milan aud Amicus. Others have three aisles on cach side, or seven aisles in all, as the cathedrals at Antwerp aud Paris. The most extraordinary, hourcere, is that at Cordova, origiually erected for a mosque. It was first built with a uave and fire aioles on each side, and eight others afterswards were addcd, making ninetcen aisles in all. Old Euglish writers frequently call the trausepts "the cross isle, or cle," and the nave the "middle ile."

AISNE, a fronticr departucnt in the north-east of Frunce, bounded on the N. by the department of Nord and the kingdom of Belgium, on the E. by the department of Ardcuues, on the S.E. by that of Marne, on the S. by that of Seine-et-Marne, aud on the W. by those of Oise aud Somme; extending at the widest points 75 miles from N. to S., and 53 from E. to W., with an area of 2833 square miles. The surface of the department conststs of fine undulating plains, diversified in the north by hilly ground which forms a part of the mountain system of the Ardennes. The chief rivers are the Somme, the Escaut, and the Sambre in the north ; the Oise, traversing the north-west, with its tributaries the Serre aud the Aisne, the latter of which joins it beyond the limits of the departneent; aud the Marne aud the Ourcq in the south. The soil of disue is, as a whole, fertile, aud in some parts very rich, yielding wheat, barley, rye, oats, hops, flax, fruit, beetroot, and potatoes; there is good pasturage, and much attention is paid to the rearing of cattle, sheep, and horses. Wine is produced, but, except in the valley of the Marue, its quality is inferior. Large tracts of the department are under wood, the chief forests being those of Nourion and St Michel in the north, Coucy and St Gobain ir che centre, and Villers-Cotterets in the south. There are no minerals of importance in the department, but good building-stone and slates of a fair quality are found. Aisne is an im. portant manufacturing department ; its chief industrial products being shawls and muslin-as well as other cotton, linen, and woollen goods-glass, including the famous mirrors of St Gobain, iron wares, beetroot sugar, leather, and pottery. It has a good trade, which is much facilitated by railroads (the most important being those between Paris and Strasbourg, and Paris and Mons \rangle, canals, and the navigable portions of the rivers. Aisne, which is composcd of parts of the ancient provinces of Picardy and the Isle of France, is divided into five arrondissements-St Quentin and Verrins in the north, Laon in the centre, and Soissons and Chateau Thierry in the south. It contains in all 37 cantons and 837 communes. Lan is the capital, aud Soissons the seat of the bishop. The other towns of impórtance are Chauny, St Quentin, Vervins, Hirson, Suise, Villers-Cotterets, and Chateau Chierry. Population in 1872, 552,439 , of whom 183,104 could neither read nor write, ond 28,651 could read, but could not write.

AITON, William (1731-1793), an eminent botanist and gardener, svas born near Hamilton in Scotland. Having been regularly trained to the profession of a gardeuer, he travelled to England in the year 1754, where he became assistant to Philip Miller, then superintendent of the physic garden at Chelsea. In 1759 he was appointed director of the nerly-established botanical garden at Kew, in which office he continued till his death. The garden at Kew, under the auspices of King George III., was destined to be the grand repository of all the regetable riches which could be accumulated by regal munificence, from researches through every quarter of the globe. Aiton's care and skill in cultivation, and intelligence in arraugement, gained for him high reputation among the luvers of the science, and the particular estecm of his rojal matrons. "Under his superintendence many inuprovernents wouk olace in the plan and edifiees of Kew nardeus, whiob
rendered them the priucipal scenc of betanical culture in the kingdom. In 1783 his merit was rewariod with tho lucratire office of manaser of the pleasure and kitchen gardens of Kew, which he was allowed to hold along with the botanical direction. In 1789 he publisked his Iloturs Kewensis, a catalogue of the plants cultivated in the Royal Dotanical Garden at Kcw , in 3 vols. 8 vo, with 13 platesa work which had been the labour of many years. The Hortus, in which the Liunran system of arrangement, with some modification, was adopted, was very favourably received by students of science, and a sccond edition was issued (1810-3) by.W. T. Aiton, his eldest son and successor. He was for many jears honoured with the frieudship of Sir Joseph Bauks, the president of the Royal Society, and was aided by the Swedish naturalists, Solinder aud Dryander, in the preparation of his Hortus Rewensis.

AITZEMA, Leon van, Dutch historian and statesmau, was born at Doccum, in Friesland, on the 19th Nosenber 1600, and died at the Hague on the 23d February 1669! In his youth he published a volume of Latin poems under the title of Poemata Juvenilia. He subsequently devoted himself almost entirely to political life, and beld for a lengthened period the position of resident at the Haguo for the tomns of the Hanseatic League. His snost inportant work was the Historie oft Verhaal van Saüken van Staet in Oorlogh (14 vols 4to, 1657-71), embraciag the period from 1621 to 1668 . It contains a large wusber of state documents, and is an invaluable authority on one of the most erentful periods of Dutch history.
AIX, an ancient city of France, the chief tomn of the arrondissement of the same name, in the department of the Bouches du-Rhone. It was the Ayrue Sestice of the Romans, and between this and Arelate (Arles) is the field on which Marius gained his great victory over the Teutons." Under the counts of Provence, Aix became celebrated as a seat of learniug; and it still retains many relics of its former splendour, and is distingushed by the number and excellence of its literary institutions. It has a library of 100,000 volumes, an academy of law, science, and theo. logy, a museum, and a chamber of conmerce. The cathedral-the baptistry of which is said to have been constructed from the remains of a Roman temule-the "Palais," the tomn-hall, and the cluck-tower, are fine specimeus of ancient architecture. There are numerous public fountains, on one of which is sculptured a figure of King René by Darid. The hot springs, from which the city derives its name, are not now iu much repute. Aix is the seat of a court of justice and an archlishopric. The chief mauufactures are cotton, silk, thread, and hardware; and olives and almonds are cultivated on the surrounding hills. There is considerable commerce in corn, mine, and oil The naturalists Adanson and Tournefort, and the painter Vanloo, were born at Aix. Population (1872), 29,020.

AIX, or Aix-Lex-liAls - a town of France, in the department of Savoie, near Lake Bourget, 8 miles north of Chambéry. It was a colebrated bathing-place in the time of the Romans, and possesses numerous ancient remains: The hot springs, which are of sulphureous quality, and have a temperature of from 109° to 113° Faler., are still much frequeuted, attracting annually above 2000 visitors. They are used for drinking as woll as for bathing purposes. Population, 4430 .

AIX-LA-CHAPELLE, the German Aachen, the capital of a district of the same name in Rhenish Prussia, situated nowr tlic W'uran, a tributary of the Meuse, in a pleasant and ferile valley ahout 40 miles rest of Cologne, with which it is cumseted by railway. It is well built, and is enclosed by rumparts that have been converted into promenades, and its appearance is rather that of a prosperous sauderd town than of an ancient city full of historical
arsociations. Its town-huuse, built in 1353 on the ruins of Charlemagae's palace, contains the magnificent enronation hall of the German emperors, 162 feet long by 60 fect wirle. Near the town-house are two ancient torvers. one of which. called the Granusthurnt, is sometimes said to be of liuman origin; and a fountain, with a statue of Charlemague, which was erected in 1620 . The eathedral of Aix-la-Chapelle consists of two parts, distinct both as to the time of their erection and their style of architecture. The older portion may be said to date either from 796 A.D., when it was erected by Charlemagne as the palace chapel, or from 983 , when it was rebuilt on the old model by Otho III., after having been almost, entirely destroged by rle Normans. It consists of an octagon, planned after that of St Vitale at Ravenna, surrounded by a sixtecnsided gallery, and terminating in a cupola. It contains the $t u m b$ of Charlemagne, which was opened in the year 1000, when the body of the emperor was found seated on a marble throne which was afterwards used in the imperial coronation cercmonies. Tho Gothic choir, which forms the more modern portion of the cathedral, was added during the latter half of the 14 th and the berinning of the 15th centuries. The eathedral possesses many relics, the most sacred of which are exhibited only once every seven years, when they attract large crowds of worshippers. Besides these buildings, almost the only other of any antiquity is the corn exchange, probably of the 12 th century. Of modern edifices, Aix-la-Chapelle possesses a theatre, a public library, a gymnasium, and screral churches and hospitals. The chief manufactures of Aix-la-Chapelle are woollen cloths, stockings, shawls, silks, leather, glass, ncedles, pins, machines, general ironmongery, carriages, beer, brandy, tobacco, and chemicals. There is a good trade in these articles, not only with Germany and other continental countries, but also, in the case of cloth especially, with the United States of Anserica. The hot sulphur springs of Aix-la-Chapelle are another important source of revenue to the inhabitants. These springs were known to the Romans, and have long been celebrated for the cure of rleumatism and gout. There are six in all, of which the Kaiserquelle is the chief, with a temperature reaching as high as $136^{\circ} \mathrm{Fahr}$. There are also two cold chalybeate springs. Aix-la-Chapelle is the Aquisgranum, or Civitas Aquensis, of the Romans. Charlernagne, who perhaps was born and certainly died in the tewn, made it the second city of his cmpire and the capital of his dominions north of the Alps. He conferred numerous privileges upon its citizens, exempting them from military service and from all taxes, even when they were living in other parts of the empire. From 813 to 1531 the emperors of Germany were crowned at Aix-laChapclle, which during that period became one of the most important free imperial citics, although it was raraged by the Normans in 851, and again in S82. By the removal of the coronations to Frankfort, Aix-la-Chapelle lost its leading position in Germany, and its internal prosperity was much injured by a disastrous fire in 1656. During the revolution it for a time belonged to France, but in 1815 it was ceded to Prussia, and has now become one of the chief seats of commerce in that kingdom. Population of Aix-laChapelle (1871), 74,23S

Aid-la-Ciapelle, Congresses and Treaucs of. The first congress of Aix-la-Chapelle concerned the succession of Maria Theresa to the empire. It was held in 1748, and resulted in the treaty of Air-la-Chapelle, signed in the same year, by which Maria Theresa was left in possession of most of her hereditary dominions, the chief exception being Silesia, which was ceded to Prussia. The second congress, held in 1818, resulted in the convention of Aix-La-Chapelle. The object of this congress was the regulation of the affairs of Eurupe, especially of France, after the war.

A treaty of peace netween France and Spain wias also signed in this city in 1668. wherehy Louis XIV. gave up his claim to the Spanish Netherlands. but was left in possession of miuch that he had already cunquered.

AJACCIO, the chief town of Corsica. one of the departments of France. It is a seapurt, situated on the west coast of the island, in $41^{\circ} 54^{\prime} \mathrm{N}$. lat, and $8^{\circ} 44^{\prime} \mathrm{E}$ long. The harbour is commodious, and sheltered on all sides save the south-west. The torn is well built, and its principal buildings are the cathedral. the town-house, and the citadel. It is the seat of a bishop and a court of justice, and has a commercial college. a school of hydrography, a large hbrary, and a botanic garden. Wine, fruits, and olive oil are the chief articles of trade ; and anchovy and coral fisheries are extensively prosecuted along the cast. Ajaceio is celebrated as the birthplace of Napoleon Bonaparte. The house where he was born (15th August 1769) is still standing in good preservation. A marble statue was erected to his honour in 1850, and the people still retain strong Bonapartist sympathics. Population (1872), 16,545.

AJAN (the ancient Azania), a tract which forms the eastern horn of Africa, with a coast-line of about 10° of latitude, from Cape Gardafui nearly to the equator. It extends inland to the territory of the Gallas, but its limits cannot be strictly defined, as this part of Africa has been little explored. The coast towards the south is low and sandy, but northward, near Cape D'Orfui, it becomes high and mountainous, with some fertile valleys interspersed. Cape Gardafui, the most eastern point of Africa, is a bold promontory backed by lofty hills. There are no considerable rivers in Ajan, and the land for the most part is barren. The inhabitants, a tribe of the Somali, carry on a trade with the Arabs in ivory and gum, and the country possesses an excellent breed of horses.

AJAX (Aüas), the son of Telamon. In Greek legend Ajax represents throughout only physical qualities, like Hercules, with whom, indeed, a likeness must have been recognised, or there would have been no sufficient basis for the belief that the child Ajax was born at the prayer of Hercules in behalf of his friend Telamon (the-name Aias -or Aí- α with digamma-being an allusion to the eagle, aictos, which appeared to announce the success of the prayer); and again, that Hercules was present at the birth of the infant, and by wrapping it in his lion's skin made it invulneable, except in the armpit. In respect of being open to a wound in only one small spot Ajax resembles Achilles, with whom in the usual genealogy he claims to be related as cousin. But of this relationship there is no evidence in the Iliad, where Ajax appears of colossal frame
 and, as the simile implies, prepared for defence, not to lead assaults, unmoved by the shafts of enemies as is an-ass in a corn-field by the pelting of boys (Iliad, xi. 556-566), while Achilles is no less clearly drawn as sensitire to finer passions and tastes, if equally bold in war. Unwarranted as it was by the Iliad, the identification of Ajax with the family of Eacus was chiefly a matter wheld concerned the Athenians, and that not until Salamis had come into their possession, on which occasion Solon inserted a line in the Iliad (ii. 557) for the purpose of supporting the Athenian claim to the island. Ajax then became an Attic hero, his name being given to one ot the tribes. In this way his deeds came to be a favourite subject of the Attic drama, though they are not always represented in a creditable manner-as, forcexample, when, contrary to his steady cbaracter in the Iliad of being respectful to the gods, he is charged with insult to Athena, to account for her having influenced the decision against him in his competition with Ulysses for the armour of Achilles. It was Athena, also, who made him insane then, and led him to take his own life. From his blont
sprang a flower, as at the death of Hyacinthus, which bore the initial letter of his name. In later times the people of Navum Ilium believed him to have been wronged by the decision, and told how, when Ulysses had been shipwrecked, the armour of Achilles was wafted by the tide upon the shore near the tomb of A jax.
(A. S. M.)

AJAX OILEUS, or the Lesser Ajax, was a son of the King of Locri, whose subjects he led before Troy, contributing a contingent of forty ships. In boldness he was in the first rank among the Greeks there, equal to make a stand against Hector, and swift of foot next to Achilles. But, compared with the other leaders, he is impatient and overbearing. Like the Telamonian Ajax, he appears as an enemy of Ulysses, and as the victim of Athena's. rengeance. It was due to her influence that he, known for his speed, lost the rase with Ulysses at the games in honour of Patroclus (Iliad, xxiii. 754-784); and again it was through her that on his return homeward his ship was wrecked upon the mythical Gyrean rack (Odyssey, iv. 499). As it stands in later story, he had drawn down Athena's anger by his assault upon Cassandra at the image of the goddess. Ulysses charged him with this offence, and demanded that he should be stoned. But, according to another version of the legend, he had only carried her off to his tent without any harm, when Agamemnon took her from him, and spread a report that Athena would destroy the whole army unless Ajax were slain; upan which, thinking of the unjust verdict given against his namesake, he went to sea in a frail vessel and perished. The news was received in the camp with grief, a funeral pile was erected on the ship which had conveyed him to Troy, sacrifice was offered, and when the evening wind came on. the burning ship was cut adrift.
(A. s. m.)

AJEHO, or A-she-hoh, also called ALchuku, a considerable and rapidly increasing city of Manchuria, 30 miles south of the river Soongari, and about 120 north of Kirin. It is advantageously situated on the slopes of a gentle descent leading to the river. The country around is very fertile, producing in abundance various kinds of grain, besides pulse and opium. The population of the district consists entirely of Chinese immigrants, who are engaged in the reclamation and cultivation of the soil, which is given to thern at a nominal price. A large trade is done in the town; and although the shops are of mean appearance, quantities of porcelain and other ornamental articles exposed for sale indicate its growing wealth. The population is about 40,000 , and includes a considerable number of Mahometans.

AJMÍR, a district and town of British India, in Rájputáná. The district lies between $25^{\circ} 43^{\prime}$ and $26^{\circ} 42^{\prime} \mathrm{N}$. lat., and $74^{\circ} 22^{\prime}$ and $75^{\circ} 33^{\prime}$ E. long., measuring 80 miles in length from north to south, by 50 miles in breadth, and comprising an area of 2057 square miles. It is bounded on the E. by the states of Krishnagar and Jaipur, on the S. by Mewair, on the W. by the British district of Mairwárá, and on the N.W. by the state of Jodhpur. The population in 1865 was returned at 426,268 ; of whom 363,539 , or 85 per cent., were Hindus, and the remainder chiefly Mahometans. The eastern portion of the district is generally flat, broken only by gentle undulations, but the north and north-western parts are intersected by the great Aravalli range (q.r:) Many of the valleys in this region are mere sandy deserts, with an occasional oasis of cultivation, but there are also some very fertile tracts ; among these is the plain on which lies the town of Ajmir. This ralley, however, is not only fortunate in possessing a noble artificial lake, but is protected by the massive walls of the Nág-páthar range or Serpent rock, which forms a barrier against the sand. The only hills in the district are the Aravalli range and its offshoots. Ajmir is almost tutally devoid of rivers, the Banás being the only stream
which can be dignified with that name, and it only touches the south-eastern boundary of the district so as to irrigate the Parganá of Samur. Four small streams-the Sagarmati, Saraswati, Khari, and Dai-also intersect the district. In the dry weathèr they are little more than brooks. The Sagar-mati and Saraswati unite at Gobindgarh, the united waters flowing on under the name of the Lund (or salt water) river. There are two first-class roads in Ajmir, viz., one from Ajmir city to Gangrana, and thence through the Krishnagarh and Jaipur states to Agra; and another from the clty to the cantonment station of Násifabád, a distance of 14 miles. There is also a second-class road from Ajmir to Nayá Nagar, a distance of 36 miles, besides sixteen third-class tracks connecting the principal towns and villages with the city. The principal praducts of the district are wheat, barley, rice, sugar-cane, peas, bayrrá, maize, til (oil-seed), tobacco, and cotton. With the exception of woollen blankets, turbans, \&c., manufactures can be scarcely said to exist in Ajmir. Salt is made in a rude method at Ramsur, from the saline exudations of the soil, to the extent of 3000 cwt . per annum. After supplying local wants, the surplus is exported towards Málwa and Sagar. The principal trade is in wool, cotton, opium, printed cloths, and tobacco. A large quantity of cotton is exported to Nayá, Nagar, in Mairwárá district, whence it finds its way into the Bombay market. Oil is also a profitable article of trade. The domestic animals are sheep, horses, bullocks, camels, and goats. Cattle, and especially bullocks, are much valued, but are very scarce, owing partly to the want of sufficient pasturage and partly to frequent droughts. When these occur, the cattle are sent away to the neighhouring states, where better pasture can be procured, and very few find their way back. The imperial revenue obtained from the district in 1867 amounted to $£ 61,791,8$ s., exclusive of local funds raised by a road, tank, and postal cess.
The tenures of the agricultural village communities in Ajmír am of a very simple and uniform kind. They all belong to the type known as "imperfect patidadri", by which the better descriptiona of land are held in severalty by each member of the proprietary body. Each member is responsible for the amonnt of revenue allotted on his holding; but in event of the default of any shareholder, the whole community is collectively liable for the total sum. The inferior and waste lands remain the property of the whole village, and the income derived from them is credited to the common account. The cultivators are nearly all proprietors of the land they till. A large portion of Ajmir district is parcelled out into estates, varying in sizo from a single village to a large pargante (or fiscal division). These estates are held by Rajput chiefs, some of whom descend from the original ruling families, while others owe their position to force or to the favour of the reigning power. They have all been confirmed in their estates by the British on payment of a fized aunnal quit rent. Three toms are returned as containing a population of apwards of 5000 inhabitants in 1967-viz., Ajmir city (the capital and the ouly municipality in the district), population 34,763 ; Kekri, 6357; and Pisangun, 5055. There is also a military cantonment at Nasirabad, the garrison of which in 1867 consisted of a battery of European artillery, a European infantry regiment, a squadron of native cavalry, and a regiment of natire infantry. In 1867 there were eighteen government schools in the district, attended by 64^{\prime} pupils, and a government college at Ajmir city attended by 320 students. Besides these there were threc mission schools for boys and one for rirls in Ajmir city, and eight others in ita neighbourhood. The average attendance at the mission schools amounted to 347.
Asmer City, the capital of Ajmir district, is sitnated in a picturesque and fostive ralley surrounded by mountains, in $26^{\circ} 29^{\prime}$ N. lat. and $74^{\circ} 43^{\prime} \mathrm{E}$. long. The town is partly built on the lower siope of the Tarigarh hill, and is surrounded by a stone wail with five bandsome gates. To the north of the city is a large artificial lake called the Anasagar, whecce the water supply of the place is derived. The town is clean, and possesses several handsome streets, the dwellings of the better classes being large and well built. The population in 1867 numbered 34.763 , about
twrothirds being IFindus, and the remainder Mahometans. The city trade chicfly consists of salt and opium. Tho former is imported in large quantities from the Sambar lake and Rimsur. Oilmaking is also a protitalle branch of trade. Cotton cloths aro manufactured to some exteut, for the dycing of which the city has attaincd a high reputntion. A municipal income of about $£ 2000$ a-year is derived from octroi duties leried on articles consumed in the town. Out of this the police and conservancy arrangements are paid, the balance being spent on roads and in the support of charitable institutions. The Ajmir college, anfliated to the Calcutta university, nad 320 pupils in 1マ67. The college buildings being inadequate to this number of pupils, the foundation-stonc of a nerv structure was laid on the 17 th Fcbruary 1868. The agent to the gavernor-general for Rijputáná resides at Ajmir, which is also the Leadquarters of the commissionor of the Ajmir and Mairwara division. It is likewise a station of a Scotch Presbyterian mission.
The chief object of interest is the dargd, or tomb of a famons Mahometan saint named Mayud-uddodin. it is situated at the foot of the Tarigarh mountain, and consists of a block of white marble bnitdings, without much pretension to architectural beauty. To this place the emperor Akbar, with his empress, performed a pilgrimage on foot from A gra, in accordance with the terms of a vow he had made when praying for a son. The large pillars erected at intervals of two miles the whole way, to mark the daily halting-place of the imperial pilgrim, are still extant. Ao ancient Jain terople, now conrerted into a Mahometan mosque, is eituated on the lower slope of tha Tararararh hill. With the exception of that part used as a mosque, nearly tho whole of the ancient temple has fallen into ruins, but the relics are not excelled in beauty of architectura and sculpture by any remains of Hindu art. Forty columns sapport the roof, but no two are alike, and great fertility of invention is manifcsted in the execution of the ornaments. The summit of Tarigarb mountain, overhanging Ajmir, is crowned by a fort, the lofty thick battlements of which run along its brow and enclose the tahio-land. The walls are 2 miles in circumference, and the fort can only be approached by steep and very roughily-paved planes, commanded by the fort and the outworks, and by the hill to the west. On coming into the hands of the Englist, the fort was dismantled by order of Lord Willum Bentinck, and is now converted into a sinitarium for the troops at Nasirrbibd. Ajmir was founded about the year 145 A. L. by $\triangle j i$, a Chohand, who established the dynasty which continued to rule the country (with many yicissitudes of fortune) while the repeated waves of Mahomctan invasion awept over India, nutil it eventually becamo an apranage of the crown of Dehli in 1193. Its internal government, however, was handed over to its ancient rulers upon the payment of a beary tribute to the conquerors. It then remained feudatory to Dehli tilt 1365 , when it was captured by the rulcr of Mervir. In 1509 the place became a.sourco of contention between the cliiefs of Mewír and Marwir, and was ultimately conquered in 1532 by tho latter frince, who in his turn in 1559 had to give way hefore the empcror Akhar. It continued in the hands of the Mughuls, with occasioual revolts, till 1770 , when it was ceded to the Marbattís, from which time up to 1818 the unhappy district was the scene of a continual etruggle, being scized at different times by the Mowár and Márwár riijas, from whom it was as often retaken by the Marhatís. In 1818 the latter ceded it to the British in return for a payment of 50,000 rupeas. Since then the country has enjoged unbrokco peace and a stabla government.

AJURUOCA, a town of Brazil, in the province of Minas Gcraes, 117 miles N. of Rio de Janciro. It is situated on the Ajuruoca river, which is here crossed by a bridge. Gold was ouce found in the ricinity, but the soil has been long exhausted of the precious metals; and the poople aro chiefly engaged in agriculture, and in rearing animals for the markets of Rio. The land is fertile, and produces millet, mandioca, coffee, sugar-cane, and tobaeco. The population of the town and district is 12,000 .
akabali, Tre Gulp of, the Sinus Elanites' of antiquity, is the eastmost of the two divisions into which the lied Sea bifureates near its northern extremity. It penetrates intn Arbia Petrea in a N.N.E dircction, from 28° tn $29^{\circ} 32^{\prime} \mathrm{N}$. lat., a distance of 100 milcs, and its breadth varies from 12 to 17 miles. The entrance is contracted by Tiran aud other islands, so that the passage is
rendered somewhat difficult; and its navigation is danger ous on account of the numerous coral reefs, and the sudden squalls which bweep down from the adjacent mountains, nany of whicli riso perpendicularly to a height of 2000 fect. The only well-sheltered harbeur is that called the Golden Port, situated on its western shore about 33 miles from the entrance, and 29 miles E: of Mount Sinai. About $2 \frac{1}{2}$ miles from the head of the galf is the village of Akabair, with a fortified castle, garrisoned by a few soldiers for the protection of the Moslem pilgrims on their way to Mecca. In the vicinity of the village there are extensive dnte groves; and there is abundance of good watcr, fruit, and vegctables. Akabab, though now of small importance, is not devoid of historical interest. It is supposed to occupy the site of the Elath of Scripturc, which in remote ages carried on an extensive commerce; and some ruins in the sea a short distance southward are surmised to be the remains of Eziongeber.
akbar, Akibar, or Akber, Jellaladin Momamared, ons of the greatest and wiscst of the Moghul emperors, was born at Amerkote in Sindh on the 14th October 1542, his father, Humayun, having been driven from the throne a short time before by the usurper Sher Khan. After more than twelve ycars' exile, Humayun regained his sovercignty, which, however, he had held only for a few montlis when he died. Akbar succeedeï his father in 1556 under the regency of Bahram Khan, a Turkoman noble, whose energy in repelling pretenders to the throne, and scverity in maintaining the disciplinc of the army, tended greatly to the consolidation of the newly-recovered empirc. Bahram, however, was naturally despotic and cruel; and when order was somewhat restored, Akbar found it necessary to take the reins of government into his own hands, which he did by a proclamation issued in March 1560. The discarded regent lived for somo time in rebcllion, endeavouring to establish an independent principality in Malwah, but at last he was forced to cast himself on Akbar's mercy. The culperor not only freely pardoned him, but magnanimously offered him the choice of a high place in the ermy or a suitable escort for a pilgrimage to Meeca, and Bahram preferred the latter alternative. When Akbar asccuded the throne, only a small portion of what had formerly been comprised within tho Moghul empire owned his authority, and he devoted himself with great determination and mar: vellous success to the recovery of the revolted provinces. Over each of these, as it was restored, he placed a gorernor, whom he superintended with great vigilance and wisdom. He tricd by every means to devclop and encourage commerce; he had the land accurately measurcd for the purpose of rightly adjusting taxation; he gavo the strictest instruce tions to prevent extortion on the part of the tax-gatherers, and in many other respects displayed an enlightened and cquitable policy. Thus it happened that, in the fortieth year of Akbar's reign the empire had more than regained all that it had lost, the recorered provinces being reduced, not to eubjection only as before, but to a great degree of peace, order, and contentment. Akbar's method of dealing with what must always be the chicf difficulty of one who has to rule widely diverse races, affords perhaps the crowning evidence of his wisdom and moderation. In religion he was at first a Mussulman, but the intolerant exclusiveness of that creed was quite forcign to his character. Scepticism as to the divine origin of the Koran led him to scek the true religion in an eclectic system. He accordingly sct himsclf to obtain information about other religions, sent to Goa, requesting that the Portuguese missionaries there would risit him, and listened to them with intelligent attention when they came. As the result of these inquiries, he adopted the creed of pure deism and a ritual based upon the grvatom of Zorosster. The religion thus founded.

Lowever, having no vital force, never spread beyond the limits of the court, and died with Akbar himself. Bû though his eclectic system failed, the spirit of toleration which originated it produced in other ways many important results; and, indeed, may be said to have done more to establish Akbar's power on a secure basis than all his economic and social reforms. He conciliated the Hindoos by giving them freedom of worship; while at the same time he strictly prohibited certain barbarous Brahminical practices, such as trial by ordeal and the burning of widows against their will. He also abolished all taxes upon pilgrims as an interference with the liberty of worship, and the capitation tax upon Hindoos, probably upon similar grounds. Measures like these gained for him during his lifetime the title of "Guardian of Mankind," and caused him to be held up as a model to Indian princes of later times, who in the matter of religious toleration have only too seldom followed his example. Akbar was a munificent petron of literature. He established schools throughout his empire for the education of Hindoos as well as Moslems, and be gathered round him many men of literary talent, among whom may be mentioned the brothers Feizi and Abulfazl. The former was commissioned by Akbar to trans. late a number of Sanscrit scientific works into Persian; and the latter (aee Abelfazl) has left, in the Akbar-Nameh, an enduring record of the emperor's reign. It is also said that Akbar employed Jerome Xavier, a Jesuit missionary, to translate the four Gospels into Persian. The closing years of Akbar's reign were rendered very unhappy by the misconduct of his sons. Two of them died in youth, the victims of intemperance; and the third, Selim, afterwards the emperor Jehanghir, was frequently in rebellion against his father. These calamities were keenly felt by Akbar, and may even have tended to hasten his death, which occurred at Agra on the 13th October 1605. His body was deposited in a magnificent mausoleum at Sicandra, near Agra.

AKEN, or Acren, a town in Prussian Saxony, situated on the Elbe, 25 miles E.S.E. of Mardeburg, close to the frontiers of Anbalt. It has manufactures of cloth, leather, chemicals, and optical instruments; large quantities of beetroot sugar are produced in the neighbourhood; and there is a considerable transit trade on the Elbe. Popula. tion (1871), 5273.
akenside, Mark. Like young Heary Kirke White, the poet of the Pleasures of Imagination was the son of a butcher. He was born at Newcastle-on-Tyne on November 9th, 1721. His school was the free one founded by a former mayor of Newcastle, Thomas Horsley. Later, one of the ministers of the Presbyterians added to his schoolacquired knowledge in private. In his sixteenth year he sent to the Gentleman's Magazine a copy of verses entitled "The Virtuoso." Sylvanus Urban graciously printed the poem; but the old man was not difficult to please. Other verse contributions succeeded-imitative, yet not without gleams of a true faculty! Sonie written in the Lake country, while on visits with friends at Morpeth, have Wordsworthian touches. The memories of these visits transfigure the Pleasures of Imagination. In his nineteenth year, being intended for the clerical profession, he proceeded to the university of Edinburgh; but within one session, like many others, ha changed his purpose, and transferred his name from the theological to the medical classes-although, indeed, then, as still, the opening years were occupied with the same studies for either. On his change he honourably returned certain moneys which his fellow Presbyterians had advanced towards his theological education. He attended the university for on'y two years. While there, in 1740, a medical society, which combined with it a debating club, gave him a fine field for the exercise of his oratorical powers. Dugald Stewart
states that Robertson the historian, theu a student of divinity, used to attend the mectings in order to bear Akenside's speeches. Some of his minur poems belong to this period, such as his Ode "for the Winter Solstice," the elegy called "Love," and the verses "to Cordclia." He returned to his native town in 1741, and theu his friendship with Jeremiah Dysion had commenced, "a nume never to be mentioned by any lovel of genius or noble deeds without affection and reverence" (Willmott). Iu the jears 1741 to 1743 he must have been ardent in his wooing of the Muses. In the summer or autumn of 1743 Dodsley carried with him. to Pope at Twickenham a MS. for which the writer asked $£ 120$. The oracle of Twickeuham having read the poem, counselled the publisher to make no niggardly offer, because "this was no every-day writer." It was something for Pope to be thus prescient in the absence of rhyme-allveit Pope's insertions in The Seasons remain to attest that, supreme artist as he was in rhyme, he could also manage blank verse with exquisite cunningness. The MS. was the Pleasures of Imagination, which Dodsley published in 1744. In his twenty-third year the author, like Byron, awoke to find himself famous. The assaults of Warburton and Hurd were scarcely a deduction from the universal welcome. The poet's "Epistle" to Warburton was effective. He went to Leyden, and there pursued his medical studies with ardour. He obtained the degree of M.D., May 16th, 1744 ; his inaugural dissertation describing the, formation and growth of the human fœtus with original observation and acuteness. He now returned to England, advancing more and more in his friendship with the good and large-hearted Dyson. He chose Northampton as the place wherein he should commence practice. It was an unfortunate selection, as Sir James Stonehouse "possessed the confidence of the town," and it was deemed an intrusion. A not very creditable controversy arose; and we are at a loss whether most to admire the stinging rebuffs in honeyed courtesies or the mutual pretence of ultimate satisfaction and good-will. At Northampton Akenside was on friendly terms with Dr Doddridge. There, too, he wrote his "Epistle to Curio," which Lord Macaulay pronounced his best production, as "indicating powers of elevated satire, which, if diligently cultivated, might bave disputed the pre-eminence of Dryden." Willmott traces somo of the most nervous lines of the Pleasures of Hope to this "Epistle to Curio." Not succeeding in his profession at Northampton, he removed to Hampstead in 1747. The Odes had then been published. Dr Akenside came to Hampstead under the ægis of the generous Dyson. Somehow, in Hampstead as at Northampton, he manifested a vanity of self-display and hauteur of manner that made him many enemies, Within three years he had to leave Hampstead for London. He set up in Bloomsbury Square in a "fine house," and with an annuity of $£ 300$ from the still ungrudging Dyson. One is pleased to come on these words of a far greater poet a century later, "I am not unfrequently," mote Wordsworth in 1837, "a visitor on Hampstead Heath, and I seldom pass by the entrance of Mr Dygon's villa at Goulder's Hill, close by, without thinking of the pleasure which Akenside often had there." The generous clerk of the House of Commons and secretary of the Treasury nobly earned his imperishable place in the (revised) Pleasures of Imagination. Contemporaneous with his professional duties, the poet became an essayist and reviewer for Dodsley in the now forgoten Museum. Iv 1753 the university of Cambridge bestowed on him the degree of doctor of medicine. In 1754 he was elected a fellow of the College of Physicians. In 1755 be read before the college the Gulstonian Lectures; and in 1756 the Croonian Lecturas. In 1759 he was chosen assistant, and two months later chief.
physician of St Thomas＇s Hospital．In this year he had removed to Craven Street．In 1762 he changed once more to Burlington Street．In 1760 was published the Harveian Oration by order of the College of Physicians．In 1761， along with Dyson，he passed from a somewhat noisy Whiggery to the Tories，which added＂renegade＂to his name．In 1765－6 he was working upon the revised and enlarged copy of the Pleasures of Imagination．His fame was widening professionally and poetically，when a putrid fever carried him of sudd̃nly on June 23d，1770．He was buried at St James＇s Church on the 28th．As a man， the nearer one gets to Akenside the less is there lovable about him；there scem to hare been ineradicable mean－ nesses in his nature．Lavish in his expenditure while practically dependent on Dsson，and remaining dependent after his professional income ought to have released his patron，we cannot think of him as high－minded．His personal vanity was constantly bringing him sorenesses． The＂Doctor＂in Peregrine Pickle was painted from the life，not a mere creation of Smollett＇s genius．As a poet， the place of Akenside is secure，but it is not very lofty． His imagination is rhetorical rather than subtle，consisting moro of pomp of words than greatuess of thought．His chief defect is lack of emotion，and especially pathos．The enlarged Pleasures of Imagination，notwithstanding some roblo additions，was a bluader．Some of his minor pieces have a classical grace and charm of expression．（See the original editions of his writings；Bucke＇s Life，Writings， and Genius of Akenside，1832；Dyce and Willmott＇s cdition of his Poems；Cunningham＇s Johnson＇s Lives of the Poets， e．v．；Biog．Brit．；Medical Biog．，s．v．）
（A．B．©．）
AKERBLAD，Jan DAvid（1760－1819），a learned Swede，distinguished for his researches in Runic，Coptic， Phœenician，and ancient Egyptian literature．He entered the diplomatic service as secretary to the Swedish embassy at Constantinople，and utilised the leisure which the situa－ tion afforded by visiting Jerusalem（1792）and the Troad （1797）．After an interval spent at Göttingen，he was appointed ambassador to Paris．His last years were passed at Rome，where he enjoyed a pension from the Duchess of Devonshire．Akerblad was a diligent student of hiero－ glyphics；and though be failed to decipher the Rosetta stone，he arrived at certain conjectural conclusions with regard to the true method of interpretation，which were afterwards confirmed by Dr Young．His works include letters on the Coptish cursive writing and on the Rosetta inscription，both addressed to M．de Sacy ；and a number of pamphlets on the interpretation of varions Runic and Phæenician inscriptions．

AKERMAN（perhaps the ancient Tyras or Julia Alba）， a town of Russia in Europe，in the province of Pessarabia， on a tongue of land projecting into the estuary of the Dniester．Its harbour is too shallow to admit ressels of large size；but the trade of the town is，notwithstand－ ing，very considerable．Large quantities of salt are ob－ tained from the saline lakes in the neighbourhood；and corn，wine，wool，and leather are among the other cxports． The town，which is ill－built，contains sevcral mosques and Greek and Armenian churches；it is guarded by ramparts， and is commanded by a citadel placed on an eminence． Akerman derives some historical celebrity from the treaty concluded there in 1826 between Russia and the Porte， securing considerable adrantages to the former．It was the non－observance of this treaty by Turkey that led to the war of 1828．Population（1867），29，609．

AKERMAN，John Yonge，an antiquarian，distinguished chiefly in the department of numismatics，was born in Wiltshire on the 12 th June 1806．He became early known in connection with his favourite study，having initiated the Numismatic Journal in 1836．In the following year he
beame the secretary of the newly－established Xumismutic Society．In 1848 he was elected sccretary to the Society of Antiquaries，an office which he was compelled to resign in 1860 on account of failing health．He died on lsth November 1873．Akerman published a considerable num－ ber of morks on his special subject，the more important being a Catulogue of Rioman C＇oins（1839）；a Numismatic Manual（1840）；Roman Coins relating to Britain（1844）， for which he received the medal of the French Institute； Ancient Coins－IIispania，Gallia，Britannia（1846）；and Numismatic Illustrations of the New Testament（1816）．He wrote also a Glossary of TVords used in Wiltshire（1842）； Wiltshire Tales，illustrative of the Dialect（1853）；and Remains of Pagun Saxondom（1855）．

AKHALZIKH，a city of Georgia，in Asiatic Russia，on an aflluent of the Kur， 110 miles west of Tifis，in $41^{\circ} 40^{\circ}$ N．lat．， $43^{\circ} 1^{\prime} \mathrm{E}$ ．long．It contains a strong castle，a college and library，and a fine mosque，and has a considerable trade in silk，honey，and wax．P＇opulation（1807），15，977．

AKHISSAR，the ancient Thyatira，a town of Turkey in Acia，in Anatolia， 58 miles N．E．of Smyrna．The inha－ bitants are Greeks，Armenians，and Turks．The houses are built of earth or turf dried in the sun，and are very low and ill－constructed；but there are six or seven mosques， which are all of marble．Remarkable inscriptions are to be seen in several parts of the town on portions of the ruius of the ancient city．Cotton of excellent quality is grown in the neighbourhood，and the place is celebrated for its scarlet dyes．Population，about 6000 ．

AKHTYRKA，a town of Russia in Europe，in the Ukraine，situated on a river of the same name， 45 miles N．W．of Kharkov．It has eight churches，one of which， containing an image of the Virgin，is held in great venera－ tion．The town is enclosed by ditches；and the environs are fertile，the orchards producing excellent fruit．There are some manufactures of light woollen stuffs，and a great market is held annually in May．Population（1867），17，411．

AKIBA，Ben Joseph，a famous rabbi who flourished about the close of the first and the beginning of the second centuries．It is almost impossible to separate the true from the false in the numerous traditions respecting his life． He became the chief teacher in the rabbinical school of Jaffa，where，it is said，he had 24,000 scholars．What－ ever their number，it seems certain that among them was the celebrated Rabbi Meir，and that through him and others Akiba exerted a great influence on the development of the doctrines embodied in the Talmud．He sided with Barchochebas in his revolt，recognised him as the Messiah， and acted as his sword－bearer．Being taken prisoner by the Romans under Julius Severus，he was flayed alive with circums＇ances of great cruclty，and met his fate， according to tradition，with marvellous stoadfastness and composure．He is said to have been a hundred and twenty years old at the time of his death．The Jers were long accustomed to pay visits to his tomb，and he is one of the ten Jewish martyrs whose names occur in a penitential prayer still used once a year in the synagogue service．A nümber of works commonly attributed to Akiba are of
 of Rabbi Akiba）is probably genuine．
AKOLA，a district and city of British India，in the commissionership of West Berar，within the Haidarábad assigned districts．Akolí district lics between $20^{\circ} 23^{\prime}$ and $21^{\circ} 10^{\prime} \mathrm{N}$ ．lat．，and between $76^{\circ} 25^{\prime}$ and $77^{\circ} 19^{\prime} \mathrm{E}$ ． long．；jts greatest length from N．to S．being 72 miles，and its greatest breadth from E．to W． 63 milcs．It is bounded on the N．by the Sátpurà range；on the E．by Elichput disirict；on the S．by the Sátmál and Ajantâ hills；and on the W．by the Buldana and Khandesh districts．The total area of the district in 1869 was 2697 square miles．
or $1,726,625$ acres, of which $1,326,583$ acres, or $20.72 \cdot 78$ square miles were under cultivation; 127,003 acres, or 198.45 ṣquare miles, cultivable but not actually under tillage; 41,198 acres, or 64.37 square miles, alienated land held rent free; the remaining 231,842 acres, or $362 \cdot 25$ square miles, consisting chiefly of unarable land, but including river-beds,'tanks, village sites, pasturage land, or land occupied for public uses, dc. The population of the district in 1869 numbered 487,558-viz., Hindus, 433,238 ; Mahometans, 39,030; aborigines, 15,157; Christians, 78; Parsis, 45; Jews, 10. The district is square in shape and almost of a dead lerel, with the exception of two conical-shaped hills which stand out quite apart from any other eminences, and rise straight up from the plain. The principal river of Akolá, which, although not navigable, represents the main line of drainage, and into which the other streams discharge themselres, is the Purná, flowing east and west. The principal tributaries on its south bank are the Kátá Púrná, Murná, Núm, and Bordi; and on its north bank, the Sháhnúr, Idrúpá, and Wún. None of these streams are navigable, and some of them almost dry up after the rainy season.

The extension line of the Great Indian Peninsular Railway from Bhosáwal to Nagpur intersects the district, with stations at Jalam Shegaion, Páras, Akolá, and Borgáon. Of eight main roads, three have been metalled. The first runs from Akolá to Akot, a rising cotton mart, and is 28 miles in length, runnituz north-northeast. It is metalled, and all the smaller water-courses are bridged. The Púrná and Sháhnúr rivers, however, cross the line, and are not bridged, a circumstance which impairs the usefulness of the road during the raing season. The second road is known as the Basim road, and runs for 24 miles southwards through the district. The third road is 12 miles long, from Khámgáon to Nándurá railway station, and is metalled throughout. The other five lines of road are neither brilged nor metalled, but only marked out and levelled. The district imports piece goods from Bombay, and food grains from the adjoining districts. Its principal exports are cotton to Bombay, clarified butter, dyes (indigo and kusambá), and cattlo. Internal trade is chiefly carried on at weekly markets and by annual fairs. The principal manufacture of the district is the weaving of cotton. Carpets and coarse cloths are woven in almost every village, with turbans at Bálápur, and silk cloths for native women at Akolí and in the larger towns. The principal agricultural products are as follows :-The wet weather or kharif crop consists of joár (eighteen varieties) ; bajrá (two kinds); cotton (two kinds); tur, urid, and mug (three kinds of pulse); rice and kulkar (a smaller variety of rice); Indian corn ; rálá; ganjá ; ajwán ; indigo; and til (oil-seeds of two kinds). The cold weather or rabi crop consists of-wheat (three kinds) ; gram; linseed; lakh (a pulse) ; peas; 끄nsuri ; tobacco; and mustard. The principal articles of garden produce are the follow-ing:-Sugar-cane (two kinds); Indian corn (two kinds) ; ground uuts; onions; garlic; coriander; pán leaves; chillies; opium; sweet potatoes; grapes; plantains; saffron; and numcrous kinds of vegetables. A tenure peculiar to Akola is that known as metkari hold. ings. These consist of certain strips of land extending along the Whole breadth of the district at the foot of the frontier range. They are now of considerable value, and were originally beld as payment for the maintenance of a chain of outposts or watch-towers on elevated points in the ridge, with a viev to giving warning of the approach of the Bhil or Gond banditti, and warding off their attacks. Seven towns are returned as containing a population exceeding 5000 -viz., Akola (the capital of the district), population 12,236; Akot, one of the principal cotton marts of Berar, and also celebrated for its cotton manufacture, 14,$006 ;$ Khamgáon, now the largest cotton mart in the province, but which has only sprang into importance within recent times, 9432 ; Bálápur, one of the chief military stations in the Berars during the Mahometan rule, 12,631; Jalgaon, an important cotton market, 8763 ; Patur, 6011 ; Shegion, a station on the Great Indian Peninsular Railway, and a cotton market, 7450. In 1869 there were 1 bigher class, 10 midule class, and 63 lower schools for boys in Akol a district; besides 7 female schools and I normal school for training Hindustani and Marhati masters, making a total of 82 schools in sll. For the protection of person and property there were in 186913 police stations and 12 ontposts, with a regular police force of 536 officers and men, equal to one man to every five miles of the district area, or one man to every 909 of the population.

Akola ${ }^{\circ}$ Town, the headquarters of the district of the same name, and also of the west Berar division of the Haidaralbad assigned territory, is situated on the Nagpur
extension of the Great indian Peninsular Pailway, in 20° 6^{\prime} N. lat., and $76^{\circ} 2^{\prime}$ E. long. The town contains three or four wealthy merchants; and two markets are held each week-one on Sundays, the other on Wednesdays. The commissioner's and deputy-commissioner's court-houses, the central jail (capable of holding 500 prisoners), the postoffice, and barracks or rest-houses for European troops, close to the station, are the principal public buildings. Besides these, there are a civil hospital, a charitable dispensary, an English high school, a town-hall, and an English church. A detachment of infantry is stationed at the town. Population in 1869, 12,236.

AKRON, a town of the United States, capital of Summit county, Ohio, situated on the Atlantic and Great Western Railmay, and on the Ohio and Erie Canal, at its junction with the Pennsylvania and Ohio Canal, 36 miles S. of Cleveland. By means of the canal and the Little Cuyahoga river the town is amply supplied with waterpower, which is employed in a variety of manufactures; and its mercantile business is extensire. It has several flour mills, woollen factories, and manufactories of iron goods. Mineral fire-proof paint, immense beds of which are found in the vicinity, and wheat are important articles of export. Akron was founded in 1825, and was made the capital of the county in 1841. Population in 1870, 10,006.

AK-SU, a town of Chinese Turkestan, is situated in $41^{\circ} 7^{\prime}$ N. lat., 79° E. long., 250 miles N.E. of Farkand. It has a flourishing trade, and is resorted to for purposes of commerce by caravans from all parts of Central Asia. There are some cotton manufactures; and the place is celebrated for its richly-ornamented saddlery made from deer-skin. A Chinese garrison is stationed here, and copper and iron are wrought in the neighbourhood by exiled Chinese criminals: The district is well cultivated, and sheep and cattle are extensively reared. The population of the town is about 20,000 ; that of the tomn and district 100,000 .

AKYAB, a district and city within the Arákán division of British Burmah, and under the jurisdiction of the chief commissioner of that province. The district lies along the north-eastern shores of the Bay of Bengal, between 20° and $21 \frac{1}{2}^{\circ} \mathrm{N}$. lat., and $92^{\circ} 12^{\prime}$ and $94^{\circ} \mathrm{E}$ long. It forms the northernmost district of British Burmah, and the largest of the three districts of the Arakan division. It is boonded on the N. by the Chittagong district of Bengal; on the E. by the Sumadoung ranges, which separate it from Independent Burmah; on the S. by the Aralkan districts of Rámri and Sandoway; and on the W. by the Bay of Bengal. In 1871 the frontier or hill tracts of the district were placed under a special administration, with a view to the better government of the wild tribes which inhabit them. The present area is returued at 4858 square miles, of which 521 square miles are cultivated, 913 cultivable but not actually under tillage, and 3424 square miles uncultivable and waste. The population of the district in 1872 amounted to 263,152 , of whom 192,885 were Buddhists or Jains, 47,349 Sahometans, 8687 Hindus, 13,928 aborigines, and 303 Christians. The central part of the district consists of three fertile ralleys, watered by the Myu, Koladyne, and Lemsu. These rivers approach each other at their mouths, and form a rast network of tidal channels, creeks, and islands. Their alluvial valleys yield inexbaustible supplies of rice, which the abundant water carriage brings down to the port of Akyab at a very cheap rate. The four chief towns are Khómgchú in the extreme north-east of the district; Koladyne in the centre; Arákín, further.down the rivers; and AkJab on the coast, where their mouths converge. This district passed into the hands of the British, together with the rest of Arakin division. at the close of the first Burmese mar of 1825.

Asyab, Town and Port, situated at the point of convergence of the three large rives Myu, Koladyne, and Lemyu, $20^{\circ} 0^{\prime}$ N. lat., and $92^{\circ} 56^{\prime}$ E long., is the chief town of the district of the same name, and the most flourish. ing city of the Arakin division. The town is regularly built, with broad streets running at right angles to each other. The port is commodious, is the scat of a large export trade in rice, and possesses steam communication direct with Calcutta once a fortnight, except during the south-west monsoon. The population in 1871-72 numbered 15,381. Akyab monopolises almost the whole sea-borne trade of the province of Arakán, amounting in 1871-72 to $£ 1,345,417$; to which the export of rice contributed $£ 105,894$. During 1871-72, 256 vessels, of a total burden of 129,061 tons, entered the port; and 262 vessels, of a burden of 130,203 tons, cleared.

ALABAMA, one of the Southern States of the North American Union, lies bet treen $30^{\circ} 13^{\prime}$ and $35^{\circ} \mathrm{N}$. lat., and between 85° and $88^{\circ} 35^{\circ} \mathrm{W}$. long. It is bounded by Florida and the Gulf of Mexico on the S., Mississippi on the W., Tennessee on the N., and Georgia on the E

Its length is 330 miles, averago breadth 154, aud area 50,722 square miles. The Alleghany range stretches into the northern portion of the state, but the elevation is nowhere great ; the centre is also billy and broken ; on the south, homever, for nearly 60 miles inland, the country is very flat, and raised but little above the sea-level. The Alabama is the chict river of the stats. It is formed by the junction of the Coosz and the Talapoosa, which unite about 10 miles above the city of Montgomery. Forty-five miles above Mobile the Alabama is joined by the Tombigbee, and from that point is known as the Mobite Rirer. It is navigable from Mobile to Wetumpka, on the Coosa, seme 460° miles. The Tombigbee is namgable to Columbus, and the Black Warrior, one of its chief tributaries, to Tuscaloosa The Tennessee Aows through the northern prortion of the state, and the Chattahoochee forms part of its eastern boundary. The climate of Alabama is semi-tropical. The temperature ranges from 82° to 18° Fahr. in winter, and in summer
from 105° to 60°; the mean temperature for the year beng a little over 60°. The average severity of the winter months is considered to have increased-a result duc, it io said, mainly to the felling of the forests, which gives more unrestricted scope to the cold north-west winds from the Rocky Mountains. The aplands are healthy, but the inhabitants of the low-lying lands are subject to attacks of intermittent, bilious, and congestive fevers. The stratificd rocks of the state belong to the silurian, carboniferous, cretaceous, and tertiary systems. The silurian strata throw up numerous mineral springs along the line of the antlclinal axes, some of which, such as Blount Springs and the St Clair Springs, are much resorted to for their healthgiving properties. There are also several noted springs arising from the tertiary beds, such as those of Tallahatt3 and Bladon. Alabama possesses extensive coal deposits. Mr Tait, the state enmmissioner for the industrial resources of Alabama, considers that the area of the coal-lands in the state amounts to 5500 square miles, of which 5000 belong to the Warrior, and the remaining 500 to the Cahas ba and Coosa fields. Assuming that only one-half of this area can be worked to advantage, Mr Tait further estimates the aggregate possible gield at $52,250,000,000$ tous. At present, however, the annual output probably does not exceed 12,000 tons. In regard to iron, the natural wealth of Alabama is also very great. Mr Tait asserts that a ridgs of iron, of an averaze thickness of 15 feet, runs parallel to one of the principal railway lines for a distance of 100 miles; and in other parts of the country there are large deposits of ore, both red hematite and blackband. The ores of Alabama are said to yield from 10 to 20 per cent more iron than those of Britain. Grenite; marble, flagstones, roofing-slate, lime, and poreelain clay, are among the other mincral products A little gold bas also been found in the state.

The soil of Alabama varies greatly in character, but is for the most part productive to a greater or lesser extent, except in the south, where there are considerable tracts of sandy, barren, and almost worthless soil. The forests are mainly in the central and northern parts of the state, and embrace oaks, poplars, cedars, chestnuts, pincs, hickories, mulberries, elms, and cypresses. The following table exhibits the chief agricultural statistics of Alabama for 1870, as cempared with 1860 , the year before the war:-

		1870.	1860.
Land in Farms.	\{ lmproved, . . . acres	5,082, 204	6,395,724
	Unimproved, - "	$\begin{array}{r}\text { 9,898,974 } \\ 80,770 \\ \hline\end{array}$	$\begin{array}{r} 12,718,821 \\ 127,003 \end{array}$
$\begin{gathered} \text { Live Stock } \\ \text { on } \\ \text { Farma. } \end{gathered}$	$\left(\begin{array}{l}\text { Horses, } \\ \text { Mules and }{ }^{\text {A A O O }} \text {, }\end{array}\right.$	80,770 76,675	127,063 111,687
	Cattle, . . .	487, 163	773,396
	Sheop,	241,934	370,150
	Smine,	719,757	1,748,321
Chief Products.	Indian Corn, bashels	16,977,948	33,226,282
	Wheat, . . .	1,055,068	1,218, 444
	Rye,	18,977	72,457 889
	Oats, . . . "	770,866	682,179
	Potatoes,	2,033,872	5,931,563
	Pease and Beans,	156,574	1,482,036
	Batter, - . İ	3,213,753	6,022,478
	Corton, . . bales	429,4S2	989,955
	Wool,	381,253	775,117
	Rice, . -	222,945	493,405
	Tobacco,	152, 742	232,914
	Molasses, . - gallons	433,2S1	140,768

Alabama possesses comparatively few manufactures. It is estimated that in 1870 the capital invested amounted to $£ 1,140,806$, and the total products in the same year were valued at $£ 2,608,124$. There were in 1870 thirtees establishments for the manufacture of cotton goods, whose products amounted in all to $2,843,000 \mathrm{Jb}$, including 4,518,403 yards of sheetings and shirtings, and 1,039,32 i

yards of ginghams and checks. In the same year 613 flour mills operated on $3,298,848$ bushols of grain. There were 254 lumber mills, producing 1,115,000 latts, 97,192 feet of lumber, and $1,422,000$ shingles. In the iron manufaetures there bas been a marked advance, which is the more noticeablo because several other industries have experienced a serious deeline. Thus, in 1850 the quantity of ore used for making pig-iron was only 1138 tons, in 1860 it had risen to $3 i 20$ tons, and in 1870 to 11,350 ; the value of the products being respectively $£ 4500$, $£ 12,918$, and $£ 42,051$. Alabama has also manufactories of rolled and cast iron; but the rise in the valne of their products is not so marked. There are, besides, tanneries, carriage and waggon works, an 1 machinery factories, in addition to industries of a local nature. Mobile is the chief mercantile city of the state. In the years ending June 30,1871 and 1872, 688 and 369 vessels (gross burden, 558,525 and 272,853 tons) entered, and 711 and 369 (551,310 and 277,356 tons) cleared the port of Möbile. Cotton was the principal article of export-the amount in 1871 being 287,074 bales, and in 1872, 137,977; of which 240,660 and 123,522 bales went to Great Britain. Mobile is connected with the general network of railmays of the United States. A line runs from tie city through Montgomery and on to Atlanta in Georgia; another runs from Mobile to Meridian in Mississippi; a line crosses the state from Meridian through Cabarwa to Montgomery; a loop-line muns from Montgomery to Troy, and proceeding round by Columbus in Georgia, rejoins the main line at Opelika; from Selma a line proceeds north-easterly, following the valley of the Coosa, and passing through Georgia and Tennessee; and another traverses the ralley of the Tennessee, from which a branch strikes off to the norterto join the Tennessee group of railways at Nashville. A line also connects Mobile with Nem Orleans. The part of the line from Mobile to Montgomery between Mobile and Tensas was completed under considerable engineering difficulties. It crosses the Mobile river by a swing drambridge 1000 feet in length, with a draw of 260 feet; while the Tensas river bridge is built on cylindrical piers, each span measuring 152 feet, and its total length 2084 feet. There are at present 1602 miles of railraju and 2135 of telegraph lines in operation in Alabama.

Alabama returns 8 members to Congress. The state government is rested in a governor, Senate, and Honse of Representatives. The Senate consists of 33 members elected for four years, one half retiring overy two years. The House of Representatives consists of not more than 100 members, elected for two years, and apportioned among the counties according to population, each county, bowever, being ${ }^{3}$ entitled to at least one representative. The members of both bonses reccive 16 s . 8 d . each per diem, and the governor $£ 520,16 \mathrm{~s}$. 8 d per annum. The taxation in 1870 amounted to $\$ 2,982,932$, and the public debt to $\$ 13,277,154$. In 1860 the taxation was only $\$ 851,171$. The state is divided into 65 counties, and Montgomery is the capital The other principal towns are Mobile, Tuscaloosa (the former capital), Florence, Huntsville, Selma, and Wetumpke.
Alabarna was first penetrated by the Spaniards in quest of gold in 1541 , under the celebrated leader De Soto. The natives defended themselve's stubbornly, and in cheir defence inflirted and sustained very severe losses. The present site of Mobile was first oecupied by the French in 1711. Io 1763 the French possessions cast of the Mississippi, including Alabama. were ceded to England. Alabama was originally induded in Georgia, but in 1802 became part of the territory of Mississippi. In 1813 the Creek indians made a desperate effort to check the cneroachments of the Anglo-Sazons, but were erentually crushed io
the battle of Horse Shoe Bend by General Jackson, who compelled them to surrender three-fourths of their territory. In 1819 Alabama was admitted into the Union as an independent member of the confederation. It seeeded in the year 1861, but since the close of the war bas been again admitted into the Union.

The census of 1870 showed the following results:-Total population of Alabama, 996,992; colouired, 475,510; with 98 Indians. Of these, 987,030 were native born, and 9962 foreign. In 1860 the population was 964,201 , of whom 526,271 were whites and 437,770 (435,080 slaves) were coloured; in 1820 (the year after Alabama had been admitted into the Union) the numbers were-total, 127,901; whites, 85,451 ; coloured, 42,450 (41,879 slaves). Of the total population in 1870, 488,738 were males (255,023 whites, 233,677 coloured, 38 Indians) and 508,254 females (respectively, 266,361, 241,833, 60). In regard to education, there were in the state between 5 and 18 years of age, 173,273 males (91,989 whites, 81,274 coloured, and 10 Indians) and 169,703 females ($89,798,79,882$, and 23); of whom 7 Th,139 have attended school (viz., 31,098 white and 7502 coloured males, and 30,226 white and 8313 coloured females). The returns give 2969 schools, with 2372 male and 992 female teachers. Of persons 10 years and upwards, there were 349,771 returned as unable to read, and 383,012 as unable to write.

ALABASTER (said to be derived from the Arabic al batstraton, the whitish stone), a name properly restricted to the fine massive variety of gypsum, or sulphate of lime, which is used in the manufactnre of ornamental vases, statuettes, clock-frames, \&c. When pure, it is of a brilliant pearlywhite lustre, so very soft as to be easily scratched by the nail, and is soluble to a slight extent in water. It occurs in large and very pure masses at several lncalities in Tuscany, and is turned or chiselled into its various ornamental forms in Florence, which is the centre of the alabaster trade. At a time when the taste for alabaster work was more generel than now, it was quarried at Lagny, near Paris. In Eng. land considerable deposits are found in various localitie=, but chiefly in Derbyshire and Staffordshire, where it is worked to form the plaster of Paris moulds used by potter3; hence it is termed "potters' stone." Fine blocks found in quarrying the potters' stone are reserved for the aiabaster turners. A yellow variety of alabaster, found at Sienna, is termed "alabastra agatato." When it presents a fibrous structure, it is known as "satin spar," which when cut has the opalescent appearance of "eat's eyes." Oriental alabaster is the name applied to the stalagmitio variety of carbonate of lime formed on the floors of limestone caves by the percolation of water, an entirely different material from the abore. It is usually clonded or banded in an agate-like manner, and hence is sometimes known as onyz marble. The alabaster yielded by celebrated quarries, known to the ancients and now again worked, in the province of Oran. Algeria, is of this kind. It is this oriental alabaster that is referred to in the Bible, the adaßacrpínys of the Greeks. The stone was held in very bigh estimation among the civilised nations of antiquity, being then chiefly procured from quarries in the neighbourhood of Thebes, which to this day remain unesbausted. At the present time it is procured from Oran (Algerian onja), the Pyreaees. Chili. California. \&c. In the Soanean Museura there is an Egyptian sarcophagus in oriental alabaster, covered with hieroglyphics, which was purchased by Sir John Soane for 2000 guineas.

ALABASTER. Willias, D.D., poet and scholar. If to have been commemorated with golden words by Edmund Spenser in his Colin Clouts come Home Againe, 11 400 415. and by Herrick in his Hesperides; and to have been reclioned "foeman worthy of his steel" by Bishop

Bcdell ; and to bave had his portrait painted by Cornelius Jansen, and engraved by Payne; and to have been pronounced by Fillcr "a most rare poet as any our age or nation bath produced;" and to have dramn from Samuel Johnson unequivecal culogium, may be regarded as entitling to a claim on our interest at this later day, Dr William Alabaster unites in limself all these memerable tributes. Alabaster was his own spelling, as it was Pedel's and Fuller's; but it is found contemporaneously "Arblastier." The name is derived from arcubalista (in arms of the family, a cross-ber" bent in pale), and the same probably as Arblastier. He was berre at Hadleigh, Suffolk, about 1567, was educated at Westminster School, and went thence to Trinity College, Cambridge. He was also incorperated at Oxford in 1592. He became fellow of Trinity. Having been appointed chaplain to Robert, Earl of Essex, he attended him in that expodition, designed to aid Henry IV. against the League in 1591, celebrated by Dr Donne in "The Storm" and "The Calm." While in France (in his iwenty-fourth year), he was converted to Roman Catholicism, aud a quaint English sonnet, "Of his Conversion," survives, whercin he defies the "frowne and seorne and purblind pittie" of the world, as having a rision of perdition if he yielded thereto. He did not long remain a Roman Catholic. In the preface to his work entitled Ecce Sporsus Venit (1633), he relates that certain dectrines of his having become obrexious to the court of Rome, he was enticed to that city and imprisoned there by authority of the Inquisition; and that on his liberation he was confined within the city walls, but escaped at the peril of his life, and returned to Eagland., On his return he became prebendary of St Paul's and rector of Hatfield. Dr Alabaster was famous as a Hebraist; but his studies of Hebrew took a twist in the direction of the cabalistic learning, by which he luxuriated in discussions on the mystical meanings imagined to be hidden in the werds of the Old Testanent. The investigation and application of this supposed mystical meaning of Seripture was the main object of his Apparatus in Revelationem Jesu Christi (Antwerp, 1607); and, indeed, it runs through all his critical writings, as in his singular Spiraculum Tubarum, sive Fons Spiritualium Expositionem ex equivocis Pentaglotti Significationibus (n.d., folio), his Lexicon Pentaglotton (163i, folie), and the Commentarius de Bestia Apocalyptica (1621). It was of these books Herrick wrote as making Alabaster "the one, one onely glory of a million." A MS. of Alabaster's Eliscois is among Emanuel College MSS.; a better one, with additional poems, entitled "Inuenta Bellica"- recalling Herbert's "Triumphus Mortis," so headed-and "Inuenta Adespota," is in the Chetham Library, Manchester. The poem is unfinished, but has lines in it which account for Spenser's lofty praise and bopes. It has never been printed. His best knewn verse is a Latin tragedy called Roxana. This is praised by Fuller, stirred Anthony a Wood into enthusiasm, and is regarded by Dr Johnson as the only Latin'verse in Eagland worthy to be named previous to Milton. It was prepared for his college (Trinity), and never meant for publication. Having been surreptitiously published in 1632, the author thereupon reprinted it, with this on the title-page, "A plagiariis unguibus vindicata, aucta et agnita." It is a curious composition. The subject is an oriental tale which had previously been dramatised in the Dalida of Groto, an Italian. The scenes consist of conversations between real and allegorical personages. The first act is entirely carried on between the ghost of one of the characters and personifications of Death and Suspicion. Hallam charges Alabaster with plagiarism from Dalida, but he cannot have really read the two. Alabaster died shout 16ta
(A. B. G.)

ALACRANES, a group of coral reefs and islands in the Gulf of Mexico, 80 miles off the north coast of Yucatan, aud extending 14 miles from north to south, and 11 from enst to west. On the 12 th February 1847 the mail steamer Tweed was wrecked on the Alacrancs; and in January 1849 a similar disaster befell the Forth, belonging to the same company. On the south side, in $22^{\circ} 23^{\prime} 36^{\prime \prime} \mathrm{N}$. lat., and $89^{\circ} 42^{\prime} \mathrm{W}$. long., there is a secure barbour, well sheltered by dry reefs.

ALAGOAS, a maritime province of Brazil, formerly a district of Pernambuco, is situated between 9° and $10^{\circ} 30^{\circ}$ S. lat., and extends inland 150 miles. It is bounded on the N. and W. by Pernambuca, and is separated by the river San Francisco from the province of Sergipe on the S. It embraces an area of 12,000 square miles. The country, particularly in the north-west, is very mountainous, but at the same time richly wooded. On the eastern side of the mountains, hilly tracts, well suited for the cultivation of cotton, descend torards the coast, and nearer the sea there is a rich alluvial soil interspersed with swamps (lagoas), thence the province takes its name. The chief articles of produce and export are sugar-cane, rice, cotton, hides, and rosewood. Tropical fruits of all kinds are produced in abundance, and the forests, besides admirable timber, yield various dyes and drugs. The people are chiefly engaged in agriculture, and there are no manufactures of importance. The population of the province is 300,000 . The town of Alagoas, formerly the capital of the province, is situated on Lake Manguaba. It has decined considerably since the transfer of the local government to Maceie. Population, ineluding district, 12,000.
alain de lllle (Alanus ab Lssulis), theologian and ecclesiastic, born at Lille or Ryssel about the year 1114. The facts of his life are involved in uncertainty, owing to his baving been frequently confounded by biographers with others, nearly conte.mporary, who bore the same name. Some have identifed him with Alanus, bishop of Auxerres; others confound him with an elder Alanus, also born at Lillo. These, hewever, were probably three distinct persons. Of the theological writer known as the doctor universalis, all that can be said with certainty is that he was a Cistercian monk. It is probable that he passed a great part of his life in England, though he ended kis days in the abbey of Citeaux. His works are very numerous, the most important of them being entitled Anti-Claudianus, sive de Officio Viri Boni et Perfecti. The title denotes that the work takes for its model Claudian's satire against Rufinus, the minister of Theodesius. It is written in verse, and partakes somewhat of the character of an encyelopædia. Alain's De Arte Catholice Fidei is remarkable for its endearour to base dogmatic theology on the exact reasoning of mathematical demorstration, and for its admission that heresy was to be overcome by argument and not by mere autherity. His exposition of the prophecies of Merlin, in seven books, is of some importance in its bearing upon English histery. A Life of St Bernard and a treatise against beretics, usually ineluded among the works of this author, are, from internal evidence, to be attributed with mere probability to the bishop of Auserres. Alain died about 1202-3.

ALAIS, a flourishing town of France, in the department of the Gard, on the right bank of the Gardon, at the foot of the Cevennes, 25 miles north-north-west of Nimes, with which it is united by rail. In the 17th century it was a stronghold of the French Protestants, and was besieged and taken by Louis XIII. in 1629. It has a citadel, erected by Louis XIV., a fine Gothic church, and a mining school. The town itself has considerable manufactures of ribands, silk, earthenware, glass, and vitriel; but its prosncrity is cbiefly derived frora the adjacent mineral field,
which was opened up in 1819, and yields great quantities of coal and iron, as well as zinc, lead, and manganese. The numerons mines, blast furnaces, and iron foundries, afford employment to many workmen. There are cold mineral springs in the vicinity, which attract large numbers of visitors during the summer months. Population in $1872,19,230$.

ALAJUELA, a city in the state of Costa Rica, Central America, 23 miles W.N.W. from Cartago, and midway hetween it and the west coast. It is a place of considerable trade, and is connected by a mule road with the port of Puntas Arenas, the only good harbour possessed by Costa Rica on the Pacific Ocean. Some parts of the town are well built and beautifully situated; and the detached houses in the environs are embowered by trees and flowering ehrubs. The sugar-cane is cultivated in the neighbourhood. Population, 12,575.
alamanni, or Alemannt, Luigr, an Italian statesman and poet, was born at Florence in 1495. His father was a devoted adherent of the Medici party, but Luigi, amarting under a supposed injustice, joined with others in an unsuccessful conspiracy against Giulio de' Medici, afterwards Pope Clement VII. He was obliged in consequence to take refuge in Venice, and, on the accession of Clement, to flee to France. When Florence shook off the papal yoke, Alamanni returned, and took a prominent part in the management of the affairs of the republic. On the restoration of the Medici (1530), he had again to take refuge in France, where he composed the greater part of his works. He was a favourite with Francis I., who sent him as ambasuador to Charles V. after the peace of. Crespi in 1544. As an instance of his tact in this capacity, it is related that; when Charles interrupted a complimentary address by quoting from a satirical poem of Alamanni'e the words-

' l'aquila grifagna,

Che per piu devorar, duoi rostri porta:"
(Two crooked bills the ravenous eagle bears, The better to devour,)
the latter at once replied that he spoze then as a poet, who was permitted to use fictions, but that he spoke now as an ambassador, who was obliged to tell the truth. The ready reply pleased Charles, who added some complimentary words. After the death of Francis, Alamanni enjoyed the confidence of his successor Henry II., and in 1551 was sent by him as his ambassiador to Genos. He died at Amboise in 1556. He wrote a large number of poems, distinguished by the purity and excellence of their style. The best is a didactic poem, La Coltivazione (1533), written in imitation of Virgil's Gorgics. His Opere Toscane (1532) consists of satirical pieces written in blank verse. An unfinished poem, Arvarchide, in imitation of the Iliad, was the work of his old age, and has little merit. It has been aaid by some that Alamanni was the first to use blank verse in Italian poetry, but the distinction belongs rather to his contemporary Trissino.

ALAMOS, Los, a town of Mexico, in the state of Sinaloa, situated on a barren plain 140 miles N.N.W. of Sinaloa. The houses of the town are mostly of stone or brick covered with stucco, and several of the streets are well payed; provisions are dear and water scarce. The surrounding district contains many rich silver mines. Of the population, amounting to about 10,000, a large proportion are employed in the mines.
alamos de barrientos, Don Balthazar, a" Spanish philologist, born at Medina del Campo, in Castile, abcut 1550. He was on terms of intimate friendship with Antonio Perez, secretary to Philip. II.; and when the lattor fell into disgrace, Alamos was cast-into prison, where he remained nearly twelve years. During this period he prepared the translation of Tacitus, with a commentary, which
gave him his reputation as a classical scholar. Cn the death of Philip II. Alamos recovered his liberry, and afterwards received various important court appointments through the influence of the Duke de Lerma and the Count d'Olivarez. He died at the age of eighty-fivc.

ALAN, Allen, or Allyn, William (1532-94), cardinal, was born at Rossall in Lancashire. He studied at Oriel College, Oxford, and was appointed principal of St Mary's Hall in 1556. Two years later he was made a canon of York; but being opposed to the Reformation, was forced to flee to Louvain on the accession of Elizabeth. He returned to England after a time, and for some years resided chiefly at Oxford; but his proselytising zeal beíng discovered, necessitated a second flight. At Douay he received a doctor's degree from the recently-founded university, and he himself established a college there for English Catholics. In 1587 he was made cardinal of St Martin de Montibus, and in 1589 archbishop of Mechlin, The great aim of his life seems to have been to restore the papal supremacy in England. For this purpose he founded the college at Douay, and sent over the Jesuit priests trained there to his native land. He was, of course, a bitter enemy of Elizabeth, who expelled his emissaries, and even caused some of them to be put to death. One of his pamphlets, prepared for circulation among the English people, contained charges against the queen so foul and scurrilous that they can scarcely be repeated. It was only natural that he should be one of the chief intriguers in the Spanish plot which led to the fitting out of the Armada, especially as the pope had promised him the archbishopric of Canterbury in the event of the expedition being successful. His letters to Philip were full of encouragement, and the failure of the enterprise must have been a severe blow to him. When the fact became known, he lost favour at the papal court and was refused permission to return to his diocese.

ALAND lshaNLS, an arehipelago at the entrance to the Gulf of Bothnia, about 25 miles from the coast of Sweden, and 15 from that of Finland. The group consists of nearly 300 islands, of which about 80 are inhabited, the remainder being desolate rocks. These islands form a continnation of a dangerous granite reef extending along the south coast of Finland. They formerly belonged to Sweden; and in the neighbourhood the first victory of the Russian fleet over the Swedes was gained by Peter the Great in 1714. They finally passed into the possession of Russia in 1809. The inhabitants, amounting to about 16,000, are mostly of Swedish descent, and are hardy seamen and fishermen. The surface of the islands is generally eandy, the soil is thin, and the climate is keen; yet Scotch fir, spruce, and birch are grown; and rye, barley, flax, and vegetables are produced in sufficient quantity for the wants of the people. Great numbers of cattle are reared; and cheese, butter, and hides, as well as salted meat and fish, are exported. The largest island, which gives its name tc the group, is 18 miles long by 14 broad, and contains about two-thirds of the total population. There are sereral excellent harbours (notably that of Ytternæs), which are of great importance to Russia from the fact that they are frozen up for a mach briefer period than those on the coast of Finland. The fortress of Bomarsund, in one of these islands, was attacked and destroyed by an Anglo-French force in 1854.

ALANI, a number of nomadic tribes of eastern origin, who spread themselves over Europe during the decline of the Roman empire. The name was probably at first coafined to one tribe of Tatar race, whose original seat mas on the northern shores of the Caspian Sea, and was afterwards, as the power of that race extended, applied to other tribes. It is supposed that their first encounter mith the Romans was during the Mithridatic war, when Yompey led an expedition into the Caucasus. Isolated statements io
contemporary mriters show that the Mans were irequently in confliet with the lioman power. In March 276 A.D. they reccired a decisire check in an attempt to make their way eastward into Persia, being defeated by the emperor Tacitus, who forced them to recross the Phasis. The most complete aecount of the Alani is to be found in the pages of Ammianus Marcellinus (lib. xxxi.), who describes their manners and customs at considerable length. From him, too, we learn of the adrance of the Huns, who signally defeated the Alani in a battle fought on the banks of the Tanais in 375 . The race thereupon divided, some retiring to the east, while the great majority joined their conquerors in an invasion of the kingdom of tho Goths. Associated with the Vandals and Suevi, they left the settlements they had in Pannonia and entered Gaul in 406, whence three years later they crossed the Pyrences into Spain, and founded a settlement in Lusitania and Brtica, where they remained in pcace for some years: In 418, however, they were nttacked and defeated by Wallia, king of the Visigoths, with whom they had quarrelled. Their king, Ataces, was slain in the battle, and they became subject to Gunderie, king of the Vandals, their national independence being lost. Those of the Alani who had remained in Gaul when the others invaded Spain, settled near Valence and Orleans. Though serving under Theodoric, they sympathised with Attila and the Buns, and by deserting at Chalons (451), all but shanged the vietory of the Romans into a defeat. Soon afterwards their separate national existence in Gaul was merged in that of the Visigoths. The small portion of the Alani that had remained in their original seat in the Caucasus are frequently noticed in history down to the middle ages. In 572 they were allied with the Armenians under King Saroes. They seem to bave afterwards regained their independence. In 1221 they were defeated by Gengis Khan, and in 1237 they were so completely subjugated by Batu-Khan that their very name disappears in subsequent history.

ALARCON, Hervardo de, a Spanish navigator of the 16 th century, known culy in connection with the expedition to the coast of California, of which he was leader. He set sail on the 9th May 1540, with orders from the Spanish court to await at a certain-point on the coast the arrival of an expedition by land under the command of Vasquez do Coronado. The junction was not effected, though slareon reached the appointed place and left letters, which were afterwards found by Diaz, another explorer. Alarcon was the first to determine with certainty that California was a peninsula and not an island, as had been supposed. He made a careful and exact surrey of the coast, sailed a considerable distance up the Rio del Tizon (Colorado), and was thus able, on his return to New Spain in 1541 , to construet a map of California, which, according to 15. Duflot de 3 Iofras, scarcely differs from one of the present day.
alarcon Y Mendoza, Juan Ruiz de, one of the most distinguished Spanish dramatists, born at Tasco in Mexico abont the close of the 16 th century, was descended from a noble family belonging to Alarcon in Cuença Nothing is known with certainty of his early life, but it is probable that he was educated at one of the Spanish unirersities. In 1622 he had taken up his residence at Madrid, and in 1628 he was appointed to the office of relator (reporter) of the royal council of the Indies, which afforded him a competency. In the eame jear he published the first volume of his comedies, dedicating it to "the rabble" in a daringly contemptrous address. A second volume of comedies appeared at Barcelona in 1631, in which he brought charges against several poets of appropriating his productions. About the same time he was successful in an open competition for a dramatic libretto to be played at the fêtes in honour of Philip IV. These two facts, combined with his
haughty disdain both of the public and of his literary brethren, made Alarcon very unpopular; and he was seurrilously lampooned by most of the pocts and dramatists of the day, Caldcrou honourably distinguishing himself by his silence. A further injustiee was done him in the piracy of his morks by other and better known authors than himself. To such an extent was this carried that Alarcon's reputation as a dramatist was almost extinct ceen before tho close of his life, and it is only quite recently that it has been revired. The date of his death is giren, on doubtful authority, as 1639. Alarcon holds a foremost place among Spanish dramatists, being surpassed only, if at all, by Lopo do Tega and Caldcron. He is distinguished by the correctness of his language, the harmony of his rerse, and the eleration of his sentiment. His La Verdad Sospechosa (Suspicious Truth) scmplied Corneille with the materials for his Menteur, and called forth the highest praise from the great French dramatist. His Tejeder de Segovia (Wearer of Segovia) and Las Paredes Oycn (Walls hare Lars) are acted at the present day. A complete edition of his comedies was published by Hartzenbusch at Madrid (1848-52).

ALARIC (Al-ric, i.e., All rich), a chief, $n d$ aftervards king of the Tisigoths, was born of the nuble family of Balti (baltha, bold). He first appears in history (301 A.D.) as a commander in the army of subjugated Goths whom the Emperor Theodosius employed in his war with Eugenius. On the death of Thcodosius in 395 the Goths asserted their independence, and under the leadership of Alaric made an incursion from Thrace, where they had been located, into the Morea. Athens yielded to them without resistance, and Alaric enriehed himself with the movable treasures of the city, though he did not, as some have asserted, destroy buildings and works of art. Rufinus, the erafty minister of Arcadius, did nothing to check the advance of the barbarians, and it has even been said that he had a secret understanding with Alaric. Opposition came, however, from the Western Empire. Stilicho, the famous general, landed at Corinth, and drore the Goths to Mount Pholoe, on the frontiers of Elis, where he besieged their camp. With proper vigilanee, the siege could not have been raised; but the Romans were carcless, and Alaric with his army contrived to escape to Epirus. Stilicho was prevented from following him by an order from the Emperor Arcadius, who conferred upon Alaric the prefecture of eastern Illyricum. About the same time the Gothic chief was chosen king by his peoplc. It was natural that Liaric's desire of conquest should increase with the increase of his power, and accordingly about the year 400 A.D. he set out to invade the Empire of the West. His march was exccelingly-slor, and it was not until the spring of 403 that he appeared before Dfilan, from which the Emperor Honorius instantly fled to the fortress of Asta in Liguria. Being besieged there, he was on tho point of capitulating when he was reliered by Stilicho, who, in the battle of Pollentia, fought on Easterday, gained a sometrhat doubtful rictory over Alaric. Some timo after, the contest was renewed at Verona, and Alaric sustained a decisire defeat. He was obliged to accept termis of peace, and to retreat for the time ; but his attitude was always threatening, and Honorius found it expedient to buy him off by appointing him prefect of western Illyricum, with a large revenue. In this capacity Stilicho encouraged Alaric to lcad his army against Constantinople, probably more with the design of keeping him at a distance from Italy than with any hope of reuniting the divided empire. The final expedition to Constantinople was not undertaken; but for his services during three years in Epirus, Alaric claimed an extravagant reward, and Honorins, on the adrice of Stilicho, promised him 4000 pounds of gold. Shortly afterwards the weals.
minded emperor procured the assassination of his minister, the only Roman who had proved himself able to cope with the Gothic forces, and broke all the treaties which Stilicho had made with Alaric. Tho latter at once marched upon Rome (408) by the Via Flaminia, and laid siege to the city. On coming to treat with him, the Romans found bis demands so extravagant that they threatened a desperate resistance, to which Alaric mado the well-known reply, "The closer hay is pressed, the easier is it mown." At last the barbarian was induced to retire by the promise of 5000 pounds of gold and 30,000 pounds of silver, besides other treasure. The respite, however, was but for a time. Honorius, who had left Rome for Ravenna, refused to ratify by treaty certain conditions, moderate in themselves, on which Alario firmly insisted, and the capital was again at the mercy of the enemy. With commendable forbearsnce, Alaric contented himself at first with taking possession of Ostia, from which he summoned the city to surrender, threatening the immediate destruction of the food stores in case of refusal. The terrified people at once opened their gates, and agreed that the conqueror should appoint another emperor in place of Honorius. Alaric's choice fell upon Attalus, the prefect of the city, who, though well received at first, soon proved himself thoroughly incompetent, and Honorius had to be restored. While the conferences as to the restoration were still being carried on at Ravenna, the treachery of Honorius occasioned yet another and more disastrous siege of lome by the Goths. Sarus, a barbarian and a hereditary enemy of the house of Balti, was permitted by the emperor to attack the camp of the Goths and return in triumph to Ravenna. Alaric was naturally indignant, laid siege to Rome for the third time, and gained an entrance by the Salarian gate on the night of the 24th August 410. For six days the city was given over to the horrors of a pillage, which the humano orders of Alaric did but little to mitigate. On the 29th August Alaric withdrew his troops from Rome, and led them into southern Italy, which he ravaged for several months. Towards the close of the year, while engaged in the siege of Cosentia (Cosenza), he was seized with an illness which proved fatal after a very short duration. He was buried with his treasures in the bed of the river Busentiuus, which was direrted from its channel for that purpose, and all the prisoners who were engaged in the work were put to death in order that the place of his sepulture might remain unknown. The character of Alaric has been somewhat variously represented by historians. In forming an estimate of it many have been misled by the use of the term barbarian, which, as applied to him, it should be remembered, indicates a national and not a personal distinction. Many proofs may be found of his humanity and moderation in trying circumstances, while, on the other hand, the charges of cruelty brought agaiust him are not borne out by evidence. His marked respect for Christianity is explained by the fact that, if he was not himself a Christian, he had come early under Christian influence, having had frequent intercourse with Arian teachers.

ALARIC II., eighth king of the Goths in Spain, succeeded his father Euric or Evaric abont 484. His dominions not only included the greater part of Spain (Hispania Tarraconensis and Bætica), but extended into Gaul as far as the rivers Rhone and Loire. In religion Alaric was an Arian, but that he mas tolerant of the orthodox Catholics is shown by the decrees of the Council of Agde, summoned by him in 506. He displayed similar wisdom and liberality in political affairs by appointing a commission to prepare an abstract of the Roman laws and imperial decrees, which should form the authoritative code for his dominions. Thie is generally known as the Breciarium

Alaricianum It contains six books of the code of Theo dosius, and is therefore sometimes called the Corpus Theodosii. The full text has been given by Savigny. Nlaric was of a peaceful disposition, and endeavoured strictly io maintain the treaty which his father had concluded with the Franks. Clovis, however, desiring to obtain the Gothic province in Gaul, found a pretext for war in the Arignism of Alaric. The intervention of Theodoric, king of the Ostrogoths and father-in-law of Alaric, proved unavailing. The two armies met in 507 at Voglade (Fouillé), near Poitiers, where the Goths were defcated, and their king, who took to flight, was overtaken and slain by Clovis himself.

ALASCO, Jonn (in Polish, Lascki), a Polish nolleman, horn in 1499, who travelled extensively in his youth, and during a residence in Zurich imbibed the doctrines of thes Reformation from Zwingli. At Basel in 1525 he had frequent intercourse with Erasmus, who held him in great esteem, and bequeathed his library to him. On his return to his native country he was offered more than once ecclesiastical preferment, which the change in his religious opinions prevented nim from accepting. With the riew of securing more freedom, he quitted Poland, and after travel. ling for a time, hecame pastor of a Protestant congregation at Emhden, in East Friesland, in 1542. Foreseeing per. secution there, he went to London in 1551, on the invitation of Cranmer, and became superintendent of the congregation of foreign Protestants, most of whom reere driven into exile like himself in consequence of the Interim. The revenues of the church of Augustin Friars mere assigned to support him and four assistant ministers, who had to be approved by the king. On the accession of Mary in 1553, Alasco and all his congregation were banished. In 1556 he returned to Poland, where he died on the 13th January 1560. Alasco wrote a number of theological treatises, chiefly in defence of the doctrine of the sacraments as held by the Swiss Reformers, and he was one of the eighteen divines who prepared the Polish version of the Bible, which was published in 1563.

ALA-SHEHR, a city of Asiatic Turkey, in the pashalic of Anatolia, 83 miles E. of Smyrna. It is dirty and illbuilt ; but, standing on elerated ground, and commanding the prospect of the extensire and fertile plain of the Hermus, presents at a distance an imposing appearance. It is the seat of a Greek archbishop, and has five Christian churches and fifteen mosques. The city occupies the site of the ancient Plitadelphia, one of the "seven churches in Asia" of the Apocalypse. The ancient city, founded two centuries B.C., was subject to frequent earthquakes. In more modern times it was celebrated for its prolonged resistance to the Turks, who took it in 1390, after all the other cities of Asia Minor had surrendered. Ala-Shehr has an active trade, and the population is about 18,000 .

Alaska, or Aliaska, formerly Russian America, but now a territory of the United States, is a vast tract of country forming the north-west portion of North America, bounded on the N. by the Arctic Ocean, on the E. by British America, and on the S. and W. by the Pacific Ocean. The name was formerly confined to a long narrow peninsula stretching into the Pacific, but has been extended to the whole territory. Alaska comprises the whole of North America from $141^{\circ} \mathrm{W}$. long. to Behring Strait, and also numerous islands along the coast, notably Prince of Wales Islands, King George III. Archipelago, the Kodiak Islands, and tho Aleutian Islands, which stretch searrard from the extremity of the peninsula. From the main portion of the territory a narrow strip, with a breadth of ahout 50 miles, extends south-east along the Pacific coast, and terminates at the confines of British Calumbia, in $54^{\circ} 40^{\prime} \mathrm{N}$. lat. From north to south the extreme lenth of

Alaska is about 1100 miles, and the greatest breadth from east to west is 800 miles. Tho area of the wholo territory is estimated at 514,700 square miles.

The numerous islands, crecks, and inlets of Alaska lengthen out its coast-line to 7860 miles, an extent greater than that of the easteru coast-line of the United States. Beginaing at the south-east, the chief creeks and bays are Cook's Inlet, Bristol Bay, Norton Sound, and Kotzebue Sound; while, following the same order, the principal headlands, in addition to the extremity of the peninsula, are Cape Newenham and Cape Romanzoff in the Pacific, Capo Prince of Wales in Bebring Strait, and Cape Lisburue, Icy Cape, and Point Barrow in the Aretic Ocean. Point Barrow is in $71^{\circ} 23^{\prime} \mathrm{N}$. lat., and is the c.:-treme northern point of the country. The exploration of tha northern coast was chicfly the work of the British aavigators Cook, Beechy, and Franklin, and of the officers of the Hudson's Bay Company: The principal river of Alaska is the Yukon, or Kwichpuk, which rises in British America, and, receiving the Porcupine river at Fort Iukon, flows westrard across the territory, and falls into the Pacific Ocean to the south of Norton Sound. At a distance of 600 miles from the sea this magnificent river has a width of more than a mile. Its tributaries would in Europe be rechoned large rivers, and its volume is so great that 10 miles out from its principal mouth the water is fresh. Among the other rivers of Alaska are the Copper river, the Suschitna, the Nuschagak, and the Kuskokwim, falling into the Pacific, and the Colville, flowing northward into the Arctic Ocean. A great mountain range extends from British Columbia, in a north-west direction, along the coast of Alaska, the summit being covered with snow and glaciers. Mount St Elias, an active volcano, in $60^{\circ} 18^{\prime} \mathrm{N}$. lat., and $140^{\circ} 30^{\prime} \mathrm{W}$. long., rises to the height of 14,970 feet above the sea. The mountain chain runs out along the peninsula which las given its name to the country, and at the western extremity thero are several volcanic cones of great elevation; whils if the island of Uminak, separated from the mainland $\mathrm{b}_{\vec{y}}$ ooly a narrow strait, there are enormous volcanoes, one rising to more than 8000 feet in height. In the interior and to the north the country is also mountainous, with great intervening plains.

The north-west coast of this part of America was discovered and explored by a Russian expedition under Behring in 1741; and at subsequent periods settlements were raade by the Russians at various places, chiefly for the prosecution of the fur trade. In 1799 the territory was granted to a Russo-American fur company by the Emparor Paul VIIL., and in 1839 the charter of the company was renewed. New Archangel, in ths island of Sitka, was the principal esttlement, but the company had about forty stations. They exported annually 25,000 skins of the seal, sea-otter, beaver, \&e., besides about 20,000 sea-horse teeth. The privileges of the company expired in 1863 ; and in 1867 the whole Russian possessions in America were ceded to the United States for a money payment of $\$ 7,200,000$. The treaty was signed on 30 th Merch, and ratified on 20th June 1867 ; ard on 9 th October following, the possession of the country was formally made over to a military force of the United States at New Archangel. It still remains in tho military keeping of the United States, no steps having been taken co organise a territorial government. It has, however, been constituted a revenue district, with New Archangel, or Sitka, as the port of entry. Since Alaska was ceded to the United States considerable information has been collected as to the resources of the less sterile parts of the country; but the central and northern parts of this region are only known as the inhospitable home of some wander-
ing tribes of Indians and Eisquimaux. Dortions of Alarka have also licen recently explored by the cmployes of the Liuso- American Telegraph Company in survering a route for a line of telegraph which was designet] to cruss from Americal 10 Asia near Behring Strait-a project which was abandoned, after an expenditure of ettino, (oot, on communication with liurope being sceured lyy the Atlantic cable.
The climate of the somth-western coast of Alaska is tolerably mild, considering its high latitude. The groat warm current of the Pacilie, sweeping in a north-easterly cireuit from the East India Islands, and corresponding very muck in character and effects to the Gulf Stream of the Atlantic, washes its shores; and while it modifies the temperature, also causes an excessive rainfall. At Sitka the mean temperature is $42^{\circ} \cdot 0$, and the average rainfall about 80 inches. Alaska will never have any great agricultural value. From the great amount of rain and the want of heat, cereals grow, but will not ripen, and vegetables de not thrive. Native grasses and berries grow plentifully, but the chief wealth of the country is in its rast forests, in the furs of its wild animals, and in the fish with which its rivers and seas abound. The forests, rising from tho const and corering the mountains to a beight of 2000 feet, consist of a very durable yellow cedar, spruce, larch, and fir of great size, and also cypress s.nd hemlock. The wild animals include the elk, the deer, and varions species of bear, and also many fur-bearing animals, such as the wolf and fox, the beaver, ermine, marten, otter, and squirrel. Near the coast and islands there aro inuumerable furbearing seals, which are caught in great numbers by the settlers; but from tho rigour of the climate and the arduous nature of the work, the trapping of the animals of the interior is left to the Indians. The salmon abounds in the rivers, and there are great banks along the shores, the favourite haunt of cod and other fish. About cigity whalers prosecute their fishing off the coast of Alaska. Coal and iron are the most important minerals, but the value of the deposits remains to be ascertained.

The population is very limited, consisting of 8000 whites and 15,000 Indians, with some Esquimaux on the northern coast. The Indians are rapidly decreasing in number, and are described as treacherous and discontented. New Archangel, now called Sitka, in the island of Sitka, in $57^{\circ} 3^{\prime}$ N. lat., and $135^{\circ} 18^{\prime} \mathrm{W}$. long., was the seat of the Russian governor, and is the headquarters of the United States authorities. It contains about 1500 inhabitants, is the residence of a Greek bishop, and has fortifications, magazines, and a magnetic observatory. Of the other settlements, Fort Nicholas on Cook's Inlet, and Fort St Michael on Norton Sound, are the more important. The admirable harbours on the coast and the great navigable river-Yukon afford facilities for the formation of new settlements and the increase of trade by the Americans. At the junction of the Porcupine river and the Yukon a fort was established by the Hudson's Ray Company in 1847. (See Whymper, Travels in Alaska and on the Yukon, 1868; Dall, Alaska and its Resources, 1870.)

ALATRI, the ancient Alatrium, a town of Italy, 6 miles N. of Frosinone, in the province of that name, which until 1870 formed part of the papal territory. It is the see of a bishop, and has considerable remains of Pelasgian antiquity. Population of commune, 11,370.

ALAVA, one of the Provincias Vascongadas, or Basquo Provinces, in the north of Spain. It is of a triangular shape, and is bounded on the N. by Guipuzcoa and Biscay, on the E. by Navarre, on the S.W. by Logrono, and on the W. by Burgos; with an area of about 1200 square miles. The surface of Alava is very mountainous, especially on the north, where a part of the Pyrences forms its natural boundary. It is separated from Logrono by the

Ebro, and the other rivers are the Zadorra and the Ayuda. The soil in the valleys is fertile, yielding wheat, barley, maize, flax, hemp, and fruits. Oil, and a poor kind of wine called chacoli, are also produced. Many of the mountains are clothed with forests of oak, chestnuts, beeches, and other trees, and contain iron, copper, lead, and marble. Salt is also found in large quantities in the province. The manufactures of Alava are unimportant; coarse cloth, iron ware, earthenware, hats, and shoes being emong the chief. The capital of the-province is Vitoria. Population in 1870, 102,494.
alava, Don Miguel Ricardo d', a Spanish general and statesman, born at Vitoria in 1771. He served first in the navy, and had risen to be captain of a frigate when he exchanged into the army, receiving corresponding rank. In politics he followed a very devious course. At the assembly of Bayonne, in 18:38, he was one of the most prominent of those who accepted the new constitution from Joseph Bonaparte as king of Spain. In 1811, when Joseph's position was becoming insecure, Alava joined the national independent party, who were fighting in alliance with the English. The Spanish Cortes appointed him oommissary at the English headquarters, and Wellington, who seems to have regarded him with great favour, made him one of his aides-de-camp. Before the close of the campaign he had risen to the rank of brigadier-general. On the restoration of Ferdinand, Alava was cast into prison, but the influence of his uncle Ethenard, the inquisitor, and of Wellington, secured his speedy release. He soon contrived to gain the favour of the king, who appointed him in 1815 ambassador to the Hague. Four years later he was recalled, owing, it is said, to the marked kindness he had shown to his banished fellow-countrymen. On the breaking out of the revolution of 1820 he was chosen by the province of Alava to represent it in the Cortes, where he became conspicuous in the party of the Exaltados, and in 1822 was made president. In the latter year he fought with the militia under Ballasteros and Murillo to maintain the authority of the Cortes against the rebels. When the French invested Cadiz, Alava was commissioned by the Cortes to treat with the Duc d'Angoulême, and the negotiations resulted in the restoration of Ferdinand, who pledged himself to a liberal policy. No sooner had he regained power, however, than he ceased to hold himself bound by his promises, and Alava found it necessary to retire first to Gibraltar and then to England. On the death of Ferdinand, he returned to Spain, and, espousing the cause of Maria Christina against Don Carlos, was appointed ambassador to London in 1834, and to Paris in 1835. After the insurrection of La Granja, he refused to sign the constitution of 1812, declaring himself tired of taking new oaths, and was consequently obliged to retire to France, where he died at Bareges in 1843.

ALAY (lit. a triumphant procession), a 'Iurkish ceremony observed on the assembling of the forces at the outbreak of war. Its essential feature is the public display of the sacred standard of Mahomet, which may be seen only by Moslems and touched only by the emirs. On one occasion, when, owing to a long interval of peace, this rule lad been forgotten, the Christians, who had witnessed the spectacle in large numbers, were cruelly massacred. The procession-in which the standard is carried is headed by artisans bearing the implements of their respective trades.

AIB B, or ALbe, a vestment of white linen, hanging down to the feet, worn by priests at all the more solemn services of the church. It corresponds to the surplice of the English clergy, the difference being that the alb is closer in the sleeves, and bound at the waist by a girdle. In the ancient church it was customary for tho neophytes who
were baptized on Easter-day to wear an alb for the eight days following, and hence the Sunday after Easter was called Dominica in Albis.

ALBA, the ancient Alba Pompera, a town of Italy, in the province of Cuneo, situated on the Tanaro, 30 miles S.E. of Turin. It is the seat of a bishop, and contains a cathedral, founded in 1486, as well as other churches and religious establishments. It has a large trade in cattlc, and the surrounding district is very fertile, producing silk, wine, oil, grain, and fruits, and also marble and rock-salt. Population of the commune (1865), 9687.

ALBA LONGA, the most ancient town in Latium, was situated 15 miles S.E. from Rome, on a ridge be tween the mountain and the lake that were both called from it Albanus. It derived its name probably from its elevated or Alpine situation, the story of the white sow discovered by Eneas on landing (Virgil, Eineid, iii. 390392) being of course mythical. Little beyond the bare fact of its existence for a considerable period as the foremost town in Latium can be accepted as strictly historical. According to the legendary accounts, it was founded by Ascanius, the son of Eneas, 300, or, as a later version has it, 360 years before the foundation of Rome. Fourteen kings, whose names are all preserved, are said to have reigned over it in succession. The names, however, are evidently an invention, having probably this substratum of historic truth, that the ruling family belonged to the Silvian gens. The city was destroyed by the Romans under Tullus Hostilius, and its inhabitants removed to Rome. Several of the patrician families, such as the Julii, Curiatii, Servilii, Tullii, Quintii, ascribed their origin to these immigrants from Alba.

ALBACETE, one of the new provinces of Spain, was formed in 1833 out of districts taken from Murcia and New Castile. It is bounded on the N. by Cuenca, on the E. by Valencia and Alicant, on the S. by Murcia and on the W. by Ciudad Real and Jaen. The area is 5971 square miles. The province is generally hilly, some of the peaks of the sierras rising to a height of 5000 feet; but it contains rich plains and many fertile valleys. The principal rivers are the Mundo in the southern and tha Jucar in the northern part of the province; and there are numerous smaller streams. Some parts of the country have a bare appearance, being destitute of wood, but the neighoourhood of Alcarez is covered with fruit trees, and presents the aspect of a garden. Agriculture is in a tolerably prosperous state, more advanced than in the centre of Castile, but less so than in the rich districts of Murcia and Valencia. Cereals, pulse, and fruits of all kinds are produced, as well as wine of fair quality, and excellent honey. Saffron also is produced in large quantities, and some attention is given to the keeping of silk-womas. Many of the inhabitants devote themselves to the rearing of cattle, sheep, and goats. The bulls of Albacete are in request for bull-fights; there is a good breed of mules, and the horses of the province have long mounted the Spanish cavalry. Manufactures are confined to the spinning of hemp, and the making of cuarse cloths, porcelain, earthenware, and cutlery. There are several distilleries, and a considerable trade in wood. The district is rich in minerals, including silver, iron, copper, zinc, sulphur, gypsum, and coal; but, ex eepting stones and marble for building purposes, they are little wrought. In addition to agricultural produce, small quantities of zinc, iron, and sulphur are exported. There are numerous mineral springs, chiefly sulphureous, and hot as well as cold, at various places in the province. Among the chief towns are Albacete, Chinchilla, Bonillo, and Alcarez The railway from Madrid to Valencia traverses the province, and at Chinchilla a line branches southward to Marcia

The state of education thronghour the province is very low. In tho tom of Albacete, where it is best, little more than half tho population can read; while at Teste, whero it is worst, the propartion is only 1 in 15 . Tho graver crimes are of infrequent occurrence; but the inhabitants always wear arms, and offences against tho person are numerous. Population in 1867, 221,444.

Albacetre, a town of Spain, capital of the abovo pro vince, is situated about 140 miles S.E. of Madrid, and is a station on the railmay between Madrid and Valencia. It is surrouuded by a fertile plain, and has considerable trade in saffion and in the agricultural products of the district. A great market, chiclly for tho sale of cattle, is held amually in September, and extends over sereral days. The town is well built, and has several churches, two hospitals, and a normal school. At ono time it had an exteusire trade in cutlery, from which it receired the name of the Sheffield of Spain. This manufacture has been very much reduced by the importation of cutlery from England and Germauy, but Albacete is still famous for its daggers, which aro held in high repute and much worn by the Spaniards. They are formidable weapous, of coarse manufacture, but with richly-ornamented handles, and frequently bear proverbial inscriptions suitable to their murderous appearance. Population, $15,150$.

ALBAN, St, usually styled the protomartyr of Britain, was born at Vcrulamium, and flourished towards tho end of the third century. In his youth he took a journey to Rome in company with Amphibalus, a monk of Caerlcon, and served seven ycars as a soldier under the Emperor Diocletian. On his return home he settled at Verulamium, and, influenced by the example and instructions of Amphibalus, renounced tho errors of paganism, ir. Which he had been educated, and becamo a convert to tho Christian religion. It is generally agreed that Alban suffered martyrdom during the great persecution in the reign of Diocletian ; but authors differ as to tho preciso date. Bede, who gives a full account of the event, fixes it in 286 ; some refer it to the year 296; while Usher reckons it amongst the events of 303 . Between 400 and 500 years after St Alban's death, Offa, king of the Mercians, built a large and stately monastery near Verulamium to lis memory, and around it the present town of St Albans was gradually erected.

ALBANI, or Albano, Francesco (1578-1660), a celebrated Italian painter, was born at Bologna. His father was a silk merchant, and intended to bring up his son to the samo occupation; but Albani was already, at the age of twelve, filled with so strong an inclination for painting, that on the death of his father he devoted himself entirely to art. His first master was Denis Calvart, with whom Guido Reni was at the same time a pupil. He was soon left by Calvart entirely to the care of Guido, and contracted with him a close friendship. He followed Guido to the school of tho Caracci; but after this, owing to mutual rivalry, their friendslip began gradually to cool. They kept up for a long time a keen competition, and their mutual cmulation called forth some of their best productions. Notwithstanding this rivalry, they still spoke of each other with the highest esteesu. Albani, after having greatly improved himself in the school of the Caracci, went to Rome, where he open:d an academy and resided for many years. Here be painted, after the designs of Annibal Caracci, the thole of the frescoes in the chapel of St Diego in the church of San Giacomo degli Spagnuoli. His best frescoes are those on mythological subjects, of which there is a large number in the Verospi Palace, now Torlonia. On the death of his wife he returned to Bologna, where he married a second time, and resided till his death in the pajuyment of much domestic happmess and geueral
cstecm. His wifo and children wero rery beaziful, and served him for models. But whilo thus studying from nature, his lore of artificial refinement and conventional expressiou was so great, that even his best works are deficient in breadth and vigour, as well as in unaffected grace and natural fecling. The learning displayed in the composition of his pictures, and their minuto elaboration and exquisito finish, gave them great celebrity, and entitle them to a distinctive place among the prorlucts of the Bologncse school.
"In point of original invention." says Lanzi, "Albani is superior to Domenichino, perkaps to any other of the school ; and in lis representation of female forms, aceording to Mengs, he has no equal. By some be is denominated the Anacreon of painting. Like that poet. with his short odes, so Albani, from his small paintings, aequired great reputation; and as the one sings Venus and the Loves, and rasids and boys, so does the artist hold up to the eyo the samo delicate and graceful subjects. Nature, indeed, formed, the perusal of tho poets inclined, and fortune encouraged his gevius for this kind of painting; and rossessing a consort and twelve children, all of surprising beauty, he was at the same time blest with the finest models for the pursuit of his studies. Ile had a villa most delightfully situated, which further presented him with a variecs $\begin{gathered}i \\ \text { objeets. }\end{gathered}$ enabling lim to represent the beautiful rufal views ao farailiar to his eye.

A great number of his works are at Bologna. Among the most celobrated of his pictures are the "Four Scasons;" "Diana and Venus," in the Florentine gallery; the "Toilet of Venus," in the Louvre; "Venus landing at Cythera," in the Ghigi palace at Rome, \&c. Among the best of his sacred subjects are a "St Scbastian" and an "Assumption of tho Virgin," both in the church of St Sebastian at Rome He was among the first of the Italian painters to devote hinself to the painting of cabinet pictures.

ALBANIA, a country of considerable extent, whicb though frequently ruled by turbulent and nearly independ. ent chiefs, ranks as one of the provinces of the Turkisk empire. The tract of land to which this name is now applied extends from 39° to $43^{\circ} \mathrm{N}$. lat., and from $18^{\circ} 24^{\prime}$ to $21^{\circ} 4 \mathrm{~S}^{\prime} \mathrm{E}$. long. ; from the Gulf of Cattaro in the nortb to the Gulf of Arta in the south, and from the coast of the Adriatic Sca and Ionian Sea on the west to an irregular ill-defined line inland towards the east, roughly indicated in its northern part by the Tchar Dagh, the avcient Scardus, a part of the Hæmus or Balkan range, and southwards by the Pindus chain, or rather tho portions of it now called the mountains of Sagori, Metzovo, and Suli. Within these limits is included the ancient Epirus, corresponding to the southern part of tho country now comprchended under the general name of Albania, and divided from Albania, properly so called, by the river Voyutza or Viosa, which enters the Adriatic a few miles north of Avlona. Albania, therefore, is bounded on the N. by Dalmatia, Montonegro (from which it is separated by the river Moroka), and Bosnia; on the E. by Servia and the Turkish provinco of Rum-ili, in which Macedonia, or the greater part of it, is included; and on the S. by Hellas or Northern Grecee, which was the Turkish province of Livadia before Greece regained its independence, and from which it is separated by the river Garla or Suli. The superficial area of Albania is estimated at about 18,944 square milcs, and it has a coast-line of about 280 miles from north to south, without reckoning indentations, \&c. It nowhere exteads more than 100 miles from tho sea, and in the southern part not more than 30 miles.

According to the most recent division of the Turkish empire into eyalets, sanjaks, and livas, Albania is comprehended in three eyalets, namely, Uskub or Uskup in the north; Roumelia, which also includes part of Macedonia, in the centre; and Yania, corresponding pretty nearly to the ancient Epirus, in the sonth. The chief towns of these eyalets are respectively Scutari, Monastir,
and Joannina, sometimes written Janina or Yanina; and these divisions are therefore spoken of by some writers as the pashaliks of Scutari, Monastir, and Joannina. The divisions chiefly recognised by the Albanians themselves are those formed by the varieties of the native tribes. Colonel Leake, who is considered one of the best informed autherities on this head, divides them inte the Ngege or Ghegides, whose principal towns are Dulcigno, Scutari, and Durazze ; the Toske or Toskides, whe occupy Berat and Elbasan; the Liape, a poor and predatory race, who inhabit the mountains between the Toske and Delvino; and the Tsami, who inhabit the mest southerly district, and whose principal towns are Suli and Paramithia. The country is mountainous, the interior being traversed by a range which forms a prolongation of the Dinaric Alps, and which is continued southwards in the Pindus range. These mountains, from which numerous spurs are thrown out to the east and west, run in a direction from north to south, parallel to the course of the Tchar Dagh. Along the southern part of the coast-line, and parallel with it, run the Khimara mountains, known to the ancients as the Acroceraunian range, terminating northwards in the bold headland of Cape Glossa. There are three lakes of great size in Albania-Scutari in the north, Okhrida in the centre, and Joannina in the south. The rivers for the most part are short, and run, generally speaking, from east to west, or in a north-westerly direction. The Moroka and Zenta enter the lake of Scutari, which is connected with the sea by the Boyana, that flows inte the Adriatic near Dulcigno. The White Drin, flowing in a southerly direction, and the Black Drin, running northwards from Lako Okhrida, form the head streams of the Drin. The principal streams in addition to these are the Skombia, Voyutza, Calamas, Arta, and Gurla (the ancient Acheron), with its tributary the Vuvb (the ancient Cocytus). The climate is generally healthy, though cold and bleak in the highlands; the warmer regions along the coast are also frequently visited by cold northerly winds.

Albania includes not only the ancient Epirus, but also part of the ancient Macedonia, Illyria, and Chaonia. This country was in early times, as now, distinguished by the rude valour of its inhabitants. Its remete situation, and the want of union among its tribes, generally prevented it from acting any conspicuous part in Grecian politics. The only remarkable exception occurs in the reign of Pyrrhus, king of Epirus (296-272 в.c.), who was justly ranked among the greatest captains of antiquity. After his death the country was again split into a number of petty states, which were unabie to resist the united strength of Masedon ; and to that kingdom Epirus continued subject till both were alike subdued by the Roman arms (167 B.c.)

It was during the time of the Greek empire that the name of Albania was first given to this district. During the decline of the empire the Albanians gradually rose to distinction, and at last to independence. Their valour enabled them to maintain their ground against the Bulgarians, who had occupied all the neighbouring districts of Greece. Nor were they less successful against the Turks, a more formidable enemy. Under the command of the celebrated George Castriot, called by the Turks Scanderbeg, they bafled all the efforts of Mahomet IL, the conqueror of Constantinople. That porwerful monarch entered Albania only to experience a succession of defeats, and was at length compelled to acknowledge its independence by a fermal treaty. On the death of Scanderbeg, the Turks redoubled their efforts against Albania, which was at length reduced to a state of nominal subjection. The siege of Scutari, in 1478, formed the termination of this memorable struggle. The subjection, however, was always the imperfect; revolts were frequent, and the irhabitants of
mountainous districts still preserved their indepondence. It was the motives of pay and plunder, rather than compulsion, that brought these hardy soldiers into the Turkish ranks. In proportion as the Ottoman empire declined in vigour, its hold of Albania became less firm ; and the rigorous and enterprising genius of Ali Pasha again converted this dependency into what might almost be called a separate kingdom.

In the grand insurrection of Greece (1821-1829), the Albanians, accustomed to view with disdain the Ottoman yoke, showed a considerable disposition to make common cause with the Greeks, and their co-operation would have almost ensured success. But the Greeks, imprudently and unhappily, could not direst themselves of the feelings of enmity cherished during the long series of wars which Ali had waged against them. At the siege of Tripolizza (October 5, 1821) overtures were made to them by a corps of 3000 Albanians, who formed part of the garrison; but the Greeks, haring succeeded in entering the place, began a dreadful and indiscriminate massacre, in which the Albanians were not spared. At the siege of Arta, although the capture was much facilitated by the coming over of a corps of Albanians, the Greeks treated them extremely ill. The Albanian pation was thus forcibly thrown into the arms of the Porte, to which it has since centinued nominally subject. The allegiance of the Albanians, horwerer, to Turkey rests on a very precarious basis even at the present day, and, it will be remembered, in the Crimean war many Albanian chiefs fought under the Russian flag against the combined forces of England: France, and Turkey.
The inhabitants of Albania are estimated at $1,200,000$, of whom a considerable proportion are Turks and Greeks; but the basis of the population consists of the original race, called Arnauts. About half of the entire population are Mahometans; of the other moiety, about 520,000 belong to the Greek Church, and the remainder to the Latin Church. The conversion of those whe profess Mahometanism has been, however, very imperfect, and chiefly induced by political motives. In every family the males usually go to the mosque, the females to church; and some members of a family are seen in the most amicable manner eating from the same table, and eren from the same plate, meats forbidden to the others. With the Turks, accordingly, infidel and Albanian are terms nearly synonymous. The native Albanian is of middle stature; his face is oval, with high cheek-bones; his neck long; his chest full and broad. His air is erect and majestic to a degree which never fails to strike the traveller. He holds in utter contempt that dissimulation which is characteristic of the Greek, and, unlike the Turk, he is gay, lively, and active. Averse, however, to regular industry. his whole delight is in arms and plunder. He goes co stantly armed; and there are ferv Albanians whe have sot, in the prime of their life, belonged to some of the numerous bands of robbers who infest the mountains of their native country, of Thessaly, and of Macedonia This occupation carries with it no disgrace: it is commen for the Albanian to mention circumstances which occurred "when he was a robber." In proportion as the trade of robbing becomes overstocked, part of those engaged in it seck emplogment in the service of the sultan and the different pashas throughout the Turkish empire, by all of whom the Albs nians are regarded as the most valuable of their troops.'
This fierce and haughty race display a greater degree of contempt for the female sex than is usual even among the most barbarous nations. The females are literally regarded as inferior animals, and treated accordingly; but in the country districts they are not confined ar veiled, as is com tomary in Mahometan countries

The national costume of the Albanians is handsome in appearance, and bears some resemblance to tho Highland dress. It consists of a cotton shirt; a white woollen fustanella or kilt, which reaches to the knees; a jacket; a sash round the waist, in which pistols and a yataghan are commonly carried ; coloured leggings; sandals; and a red cap, round which some twist a shawl or starf. The chiefs and wealthy Albanians generally wear a jacket and rest of velvet, richly embroidered with gold, and metal greaves over their leggings, which are usually made of fine scarlet cloth. The poorer classes, though picturesque in appearance, are extremely dirty in their habits, and seldom change their clothes. As a protection from the weather, every Albanian has a capote, or rough shaggy mantle with a hood attached, and usually made of horse-hair stuff or coarse woollen cloth. The dress of tho females is more various, and often fantastical. A singular custom prevails among the girls of stringing together the pieces of money which they have collected for their portion, and wearing them upon their heads. Some of them have their hair hanging down in braids to a great length, loaded with this species of ornament.

Scutari, on the lako of that name, is now considered the chici town of Albania. It is the centre of a large inland trade, and contains about 40,000 inhabitants. Prisrend, in the north-east, is noted for its manufactures of fire-arms and cutlery, and has a population of 25,000 . Monastir, or Bitolia, although the capital of the eyalet of Roumelia, is not, strictly speaking, within the confines of Albania. It has a large transit trade between eastern and western Turkey. Joannina, with 36,000 inhabitants, situated on the south-west shore of a lake of the samo name, was the capital of Albania in the time of Ali Pasha, and was his stronghold as well as the seat of his government. The other important towns of the interior are Jacova, Tirana, Okhrida, Elbasan, Delvino, and Metzovo. The principal seaports and river-ports are Dulcigno, Durazzo, Parga, Prevesa, and Arta

The commerce of Albania is chiefly carried on through Arta and Prevesa, on the north side of the entrance to the Gulf of Arta. The principal merchants, however, are Greeks residing at Joannina, among whom a very active commercial spirit appears to prevail. The exports consist almost entirely of unmanufactured produce, live stock, and provisions, and comprise valonia (the cup of the acorn of the Valonia oak, used in tanning), raw silk, cheese, raw hides, drugs, dye-woods, sheep, horses, and salted meats. Notwithstanding its mountainous character, the fertility of its plains affords a surplus of grain, of which a considerable quantity is sent to Italy, the Ionian Isles, Malta, and other places. The vine, olive, pomegranato, orange, lemon, mulberry, and fig are also cultivated. Wool is exported, chiefly unmanufacturi l, but partly also wrought into coarse cloth. Other importa t articles of export are oil, tobacco of good quality, cotton, and cotton yarn. Some cargoes of wood for building and firewood are annually sent to Malta. The chief imports consist of woollen cloths, used for winter coverings. For this purpose the preference is given to a coarser and cheaper kind than any that is usually manufactured in Great Britain. This is supplied from Germany. Fire-arms, cutlery, gunpowder, bardware, coffee, and sugar are also imported. The manufactures of Albania are few and unimportant, being almost entirely confined to capotes, embroidery on cloth and velvet, fire-arms and cutlery to a limited extent, and gun and pistol atocks-all for home consumption.

Seo the Journey through Albania and Turkey of Mr J. Cam Hobhouse (Lord Broughton); Travels in the Ionian Isles, Albania, \&c., by Sir Henry Holland, who resided for some time in the capacity of physician et. thee court of Ali

Tasha; Rev. T. S. Hugnes's Travels in Siciiy, Greece, and Albania; Leake's Travels in Northern Greece; Mrs Mary A. Walker's Through Macedonia to the Albanian Lakes.

ALBANIA, in Ancient Geography, a country of Asia, bounded, according to Strabo, on the W. by Iberia, on the E. by the Caspian Sea, on the N. by Sarmatia, on the S. by Armenia and the river Cyrus (liour). The country formerly called Albania corresponds with the modern Daghistan, Schirvan, and Leghistan, and is extremely fertile, owing to the alluvial deposits mado by the river Cyrus. The ancient historians describe the Albaniaus as tall, strong-bodied, and, generally speaking, of a very graceful appearance. The Albanians were originally a nomad race, and never devoted themselves to agriculture or commerce. They becans known to the Romans during Pompey's expedition in pursuit of Mithridates (65 B.c.), against which they opposed a forco of 60,000 infantry and 22,000 cavalry. Though Pompes exacted from them a nominal submission, they continued practically independent.

ALBANO, a town and lake in the Campagna di Roma, Italy, about 14 miles S.E. of Rome. The town is much admired for the picturesquo scencry around it. It is well built, and the Roman aqueduct and orher monuments of antiquity are in tolerablo preservation. It contains a cathedral, and there are many handsomo villas of the Roman nobles in the vicinity. Population, 6400. The lake of Albano, lying to the N.E. of the town, occupies the crater of an extinct volcano, and is of a beautiful oval form, surrounded with high wooded banks, and about 7 miles in circumference. It has long been an object of attraction to the painter and tho traveller. In the fourth century of ancient Rome, during the siege of Veii, there was an extraordinary rise of the waters of this lake, and the oracle declared that thero was no hope of auccess against Veii whilo the Alban lake was allowed thus to swell. This prompted the Romans to drain it by a tunnel cut through the rock, a mile and a half in length, 4 feet wide, and 6 high, which is still perfect. This outlet keeps the surface of the lake at the height of 920 feet above the level of the sea. Monte Cavo, the ancient Albanus, rises on the eastern side of the lake to a height of 3000 feet, and commands a magnificent prospect. On its summit stood the famous temple of Jupiter Latialis.

ALBANY, a eity of the United States, capital of the state of New York and of the county of Albany, picturesquely situated in a beautiful and fertile country on the western bank of the Hudson, 145 miles from New York. It is, for an American city, irregularly laid out, and much of its architecture is poor, although it contains several very fine buildings, and many of its more recently made streets are broad and handsome. The Capitol, a brown stone edifice, 115 feet by 90 , built in 1807, faces a square called Capitol Park; and opposite it, on the eastern side of the squarc, are the State Hall and City Hall, both constructed of white marble. There aro several beautiful churches, including a large Roman Catholic cathedral. Among the literary and scientific institutions of Albany may bo mentioned tho university, incorporated in 1852, giving instruction in most branches of education, especially practical scienco and law; a medical college; an academy, and other schools of various grades; a large observatory; the state library, with about 90,000 volumes; and the Albany Institute for the collection and diffusion of scientific information. Albany is an important centre of trade, being situated at the point where the united Erie and Champlain canals join the Hudson, and possessing good railway communication with most cities of the United States. The chief articles of commerce are timber, wheat barley, wool, and tobacco, enormous quantities of which,
esprecially of the first-mentioned, pass through the city annually. Besides its transit trade, its numerous foundries, its breweries, carriage and hat manufactories, and tanneries are of importunce. In 1873, 536 vessels (83 sailing and 352 unrigged vessels and 101 steamers), of 68,682 tons, belonged to the port. Albany was founded by the Dutch in 1623, and is thus one of the oldest European settlements in the United States, dating sixteen years after that of Jamestown in Virginia. It was captured by the British in 1664, who chainged its name from Beaverwyck or Williamstadt in honour of the Duke of York and Albany. It received its charter in 1686, and became the capital of the state of New York in 1797. It is governed by a mayor and twenty aldermen, and is divided into ten wards. Population in $1870,69,422$; number of families, 14,105 ; and of dwellings, 8748 .
abbany, Louisa Maria Caroline, Countess of, daughter of Prince Gustavus Adolphus of Stolberg-Gedern, was born at Mons on the 27 th Sept. 1753, and assumed thetitle of Albany in 1772, when she married the Pretender, Charles Edward, grandson of James II. of England. Her husband was much older than herself, and their union proved very unhappy. There were no children, and the Pretender, who was a confirmed drunkard, treated his wife with such brutality that her health and even her life were endangered. In 1780 she obtained a legal separation, and entrusted herself to the care of her busband's brother, the Cardinal of York, who placed her in a convent, and afterwards removed her to his own house at Fome. Here she was frequently visited by the poet Alfieri, who made her the object of what seems to have been the only pure attachment of his life, and who, according to his own avowal, was indebted to her influence for all that was bestan his works. (See Alfieri.) In 1788 she was freed from her bonds by the death of the Pretender, and in the same year she is said to have been secretly married to Alferi. For the remainder of her life she resided at Florence, where she continued to be known as Countess of Albany, and distinguished berself as a patroness of literary men and artists. Alfieri died at her house in 1803, and in 1810 she caused a monument to his memory, by Canova, to be erected in the church of San Croce. With the death of the Cardinal of York in 1807 the Stuart line became estinct, and the countess, who died on the 29th January 1824, was the last who was known by the name of Albany. She was buried beside Alfieri in the church of San Croce.

ALBATEGNI, an Arabian astronomer, whose proper name is Mrohammed Ibn Jábir Ibn Senán Abú Abdillah, derived this appellation. from Batan in Mesopotamia, his native town, of which he is said to have been chief. His astronomical observations extended from 877 A.D. to his death in 929 , and were principally conducted at Rakkah or Aracta, on the Euphrates, and at Antioch in Syria. His principal work, Zidje Sabi, the original MS. of which is in the Vatican, was published in a Latin translation by Plato Tiburtinus at Nuremberg in 1537, under the title De Scientia Stellarum, and reprinted at Bologna in 1645. Among the unpublished works of Albategni are commentaries on the Almagest and Makalat of Ptolemy, and a Treatise on Astronomy and Geography. Instead of the tables of Ptolemy, which were imperfect, he computed new ones; these were adapted to the meridian of Rakkah, and were long used as the best among the Arabs. Albategni gives the motion of the sun's apogee since Ptolemy's time, as woll as the motion of the stars, which he estimated at 1° in 70 years. He makes the obliquity of the ecliptic $23^{\circ} 35^{\prime}$. His determination of the length of the tropical year is more exact than that of Ptolemy, being only 2 m . 26s. short. Upon his observations were founded the Alphousine tables of the moon's motion. He first substi-
tuted sines for chords, and also introauced into trigonometry the ase of tangents and versed simes. Ou accuunt of his discoveries, the chief of which is the motion of the sun's apogee, he has been called the Arabian Ptolemy, and las been placed by some at the head of Arabian astronomers.

ALBATROSS, a genus of aquatic birds (Diomedea), closely allied to the Petrels and Gulls, befonging to the family of Longipennate, or long-winged birds, in the ordes Natatores. In the name Diomedea, assigned to them by Linnæus, there is a rrierence to the mythical metamorphosis of the companicns of the Greek warrior Diomedes into birds. They have the beak large, strong, and sharpedged, the upper mandible terminativg in a large hooki the wings are narrow and very long; the feet have no hind toe, and the three anterior toes are completcly webbed Of the three species that the genus includes the best known is the Common or Wandering Albatross (D. exulans), which occurs in all. parts of the Southern Ocean, and in the seas that wash the coast of Asia to the south of Behring Strait. It is the largestand strongeot of all sea-birds. The length of the jody is stated at 4 feet, and the weight at from 15 to 25 ID. It sometimes measures as much as 17 feet between the
 tips of the extended wings, averaging probably from 10 to 12 feet. Its strength of wing is rery great. It often accompanies a ship for days-not merely following it, bnt wheeling in wide circles round it-without ever being observed to alight on the water, and continues its flight, apparently untired, in tempestuous as well as in moderate weather. It has even been said to sleep on the wing, and Moore alludes to this fanciful "cloud-rocked slumbering" in his Fire Worshippers. It feeds on small fish and on the animal refuse that floats on the sea, eating to such excess at times that it is unable to fly, and rests helplessly on the water. The colour of the bird is a dusky white, the back being streaked transversely with black or brown bands, and the wings darker than the rest of the body. The flesh, though hard, dry, and unsaroury, is eaten by the inhabitants of Kamtchatka, who also capture the bird for its entrails, which they inflate for net-floats, and its long wing-bones, which they manufacture into various articles, particularly tobacco-pipes. The albatross lays one egg; it is white, with a few spots, and is about 4 ipches long. In breeding-time the bird resorts to solitary island groups, like the Crozet Islands and the elevated I'ristan da Cunha, where it has its nest-a natural hullorr or a circle of earth roughly scraped together-on the open ground. The early explorers of the great Southera Ses cheered themselres with the companionship of the albse tross in its dreary solitudes; and the evil bap of him who shot with his cross-bow the bird of good omen is familiar to readers of Coleridge's Rime of the Ancient Mariner.

ALBAY, a town of Luzun, the chief of the Philippinc Islands, in $13^{\circ} 22^{\prime} \mathrm{N}$. lat. and $123^{\circ} 52^{\prime} \mathrm{E}$. long. It is the capital of the fertile prorince of the same name, and the residence of tha governor, and has an active trade. Close to the town is an active rolcano by which it lias been fre queutly derastated. Population, 13,115.

ALBERONI, Giolio, cardinal and statesman, was born near Piacenza, probably at the village of Fiorenzuola, on the 31st May 1664. His father was a gardener, snd he himself becamo first connected with tho church in the humble position of verger in the cathedral of Piacenza. Haring gained the favour of Bishop Barni, he took priest's orders, and afterwards accompanied the son of his patron to Rome. During the war of the Spanish succession Alberoni laid the foundation of his political suecess by the aervices he rendered to tho duke of Vendôme, commander of the French forces in Italy; and when these forces wero recalled in 1706, he accompanied the duke to Paris, where he was farourably received by Louis XIV. In 1711 he followed Vendôme into Spain as his secretary. Two years later, the duke having died in the interval, Alberoni was appointed consular agent for Parma at the court of Philip V. of Spain, being raised at the aame time to the dignity of count. On his arrival at Madrid he found the Princess des Ursins all but omnipotent with the king, and for a time he judged it expedient to use her influence in carrying out his plans. In concert with her he arranged the king'e marriage with Elizabeth Farnese of Parma, whom he represented to be of such a facile disposition that the princess's power over Philip would be in no degree impaired by the union. Alberoni was already in Parma to conclude the negotiation ere the Princess des Ursins discovered that he had entirely deceived her as to the character of Elizabeth. A messenger was at once despatched to prevent, if possible, the ratification of the engagement; but he arrived too late. On reaching Spain Elizabeth's first act, prompted doubtless by Alberoni, was to demand the instant dismissal of the outwitted favourite, who was compelled to leave the Spanish dominions. The influence of the new :queen being actively exerted on Alberoni's behalf, he speedily rose to high position. He was made a member of the king's council, bishop of Malaga, sand in 1715 prime minister, and was raised to the dignity of cardinal in 1717. His internal policy was exceedingly rigorous, and, though carried out altogether regardless of popular rights and liberties, might hare restored the lost greatness of Spain had it not been for his unscrupulous and audacious conduct of foreign affairs. The key to his daring and crafty schemes is probably to be found in the desire of Elizabeth to secure a throne for her son Don Carlos, born in 1716. Seizing the flimsiest pretext for making war apon Austria, he invaded the island of Sardinia, then Austrian territory, and took possession of Sicily In France ho pressed the claims of Philip V. to the regency in opposition to the Duke of Orleans; he sought to keep England employed at home.by encouraging the Pretender, and he pursued a similar policy towards Austria in connection with Ragotski of Transylvania and the Sultan. An alliance which ho formed with Russia and Sweden led to no practical results, and his other schemes similarly failed. England, France, Austria, and Holland united themselves in what is known as the Quadruple Alliance against the aggressions of Spain; and though their tirst proposals were rejected fearlessly by Alberoni, they were strong enough to succeed when, in a second negotiation, they required of thilip the dismissal of his minister as an indispensable condition of peace. On the 5th December 1719 be wes ordered to leave Spain, Elizabeth herself having taken an active part in procuring the decree of banishment. Ho went to Italy, and chere had to tako refuge among the Apennines, Pope Clement, who was his bitter enemy, having given strict orders for his arrest. On the death of Clement, Alberoni-boldly appeared at the Conclave, and took part in the election of Innocent XIII. (1721), after which he was for a short time imprisoned by the pontiff on the demand of Spain. At tho next election he
was himself proposed for tho papal chair, and secured ten rotes at the Conclave which elected Benedict XIII. Benedict's successor, Clement XilI., named lim legate of Ravenna, in which eapacity ho incurred tho pope's dis. pleasure by the strong and unwarrantable measures he adopted to reduce the littlo republic of San Marino to subjection to Rome. He was consequently replaced by another legate in 1740, and soon after ho retired to Pia. cenza, whero he founded a collego which still bears his name. He died on the 16 th June 1752 , leaving a sum of 600,000 ducats to endow tho seminary he had founded, and the residue of the immenso wealth he had acquired in Spain to his nephew. Alberoni left a large quantity of manuseripts; but the genuincness of the I'olitical Testa ment, published in his name at Lausanne in 1753, has been questioned.

ALBERT (Albrecht) I., Duke of Austria, and afterwards King of Germany, born in 1248, was the son of Rudolph of Habsburg, the founder of the imperial Austrian dynasty. Rudolph having acquired the duchy of Austria by conquest, vested it in his son, with consent of the electors, in 1282, and thus founded the dynasty which still reigns. He also endeavoured to secure for Albert the succession to the throne of Germany, but was unsuccessful. On the death of his father in 1291, Albert seized the insignia of sovereignty, and with characteristic presumption declared himself king of Germany, without regard to the decision of the electors. Their choice fell (1292) apon Adolphus of Nassau, and Albert, who was called to suppress a revolt among his subjects in Switzerland, found it necessary to acknowledge the superior claims of his risal. Tho government of Adolphus having become displeasing to the electors, they formally deposed him in 1298, and named Albert his successor. Λs, however, tho former refused to recognise their verdict, the matter had to be referred to the arbitrament of the sword. The forces of the rival kings met at Gölheim, near Worms, where tho army of Adolphus was defeated, and he himself slain by Albert's own hand. Upon this, Albert, wishing probably to show his moderation, resigned his claim to tho throne; but he was re-elected, and crowned at Aix-la-Chapelle on the 24th August 1298 Pope Boniface VIII, however, denied the right of the electors, and refused to confirm their choiee, alleging that the empire belonged to him alono to hold or bestow at his pleasure. In league with Philip the Fair of France, Albert at first openly resisted the pope: but soon finding it advisable to change his policy, he deserted his ally, admitted the papal jurisdiction, and was rewarded with the kingdom of the deposed Philip. It should be noted, however, that he never received from tho pope tho crown of the Roman empire, though his name is generally included in the list of emperors. His reign as king of Germany was one of continual warfare. With a rapacity which seems to have known no bounds, be endeavoured to subdue Holland, Zealand, Friesland, Hungary, and Bohemia; but was in each case unsuccessful. The attempt to bind his joke more firmly upon the Swiss cantons caused the revolt of Unterwalden, Schnyzz, and Uri, in January 1308, and thus laid the foundation of the Srriss Confederation. It was whilo eudeavouring to check this revolt that Albert met his death at the hand of his nephew, John of Habsburg, whose claim to his father's dominion of Swabia had been refused in the most insulting terms by the king. Incensed at tho denial of his rights, John formed a conspiracy with three noblemen of the king's suite. On the lst May 1308 the four crossed the river Reuss at Windisch with Albert, who was elain immediately on landing, and before the eyes of the other members of the suite, who had been left on the opposite side. Ho died in the arms of a beggar woman, who happened to be passing,

Albert was married to Elizabeth, daughter of the count of Tyrol, who bore him eleven children.
Four otber reigning dukes of Austria bore the name of Albert. Of these, Albert Π., surnamed the Wise, reigned from 1330 to 1358; Albert III. from 1365 to 1390; and Albert IV., surnamed the Piulis, from 1390 to 1402. Albert V., surnamed "The Mlugnanimous," horn in 1397, was clected king of Germany in April 1438, and is therefore sometimes styled Albert II., the higher dignity having been presiously borne only by the first of the name. Through his marriage in 1422 with Elizabeth, daughter of Sigismund, king of Bohemia and Hungary, he ultimately added the sarereignty of these dominions to his own, being clected king of Hungary on the death of Sigismund in 1437, and king of. Bohemia in May 1438. He died at Langendorf on the 27 th October 1439, while engaged in an expedition against the Turks.

ALBERT I., margrave of Brandenburg, surnamed "The Bear," from the heraldic emblem he assumed, born in 1106, was the son of Otto the Rich, count of Ballenstädt, by his marriage with Eilica, eldest daughter of the duke of Saxony. In 1121 he received from the Emperer Lothario the marquisate of Lusatia, to be held in fief, and he served the empire faithfully in the war with Bohemia in 1126. In the follorsing year, from some urknown motive, the emperor conferred the duchy of Saxony, to which Albert, as son of the eldest danghter of Magnus, had the best claim, upon Henry of Bararia, son of a younger daughter; and in 1131 Albert was deprised of Lusatia. He still remained, however, loyal to the empire, and received as a reward the margrarate of Brandenburg in 1134. In 1136-7 he made incursions into the territory of the Wends, his troublesome weighbours on the north, and succeeded in strengthening his position. In 1138 the Emperor Conrad III. conferred upon him the duchy of Saxony; but finding himself nnable to maintain his rights against Henry the Lion, he betook himself in 1142 to the emperor, who restored Saxony to his rival, and allotted Swabia to him in compensation. A few jears later Albert again attacked the Wends, and secured by conquest large accessions of territory, which he held as a ficf of the empire. On the extinction of the house-of Staden in 1150, Albert was raised to the dignity of an elector. - A third expedition against the Wends, undertalken in 1157, ended in their almost total extinction, and Allert caused the depopulated territory to be colonised by industrious agriculturists from the Rhine and the Netherlands, who greatly improved the face of the country. In 1158 Albert ment on a crusade to the Holy Land, in company with his wife, returning the following year. The close of his reign was' signalised by another war with IIenry of Saxony (1164-8), in which Albert was unsuccessful. Immediately on peace being concluded, he abdicated in favour of his eldest son; and after two years spent in retirement, he died at Ballenstädt on the 18th November 1170.

ALBERT, Margrave of Brandenburg and first Duke of Prussia, third son of the Margtave Friedrich of Anspach, was born on the 17th May 1490. Being intended for the church, be was educated by Archbishop Hermann of Cologne, and became a canon of Cologne cathedral. He scems, however, to have himself preferred a military life, as he accompanied his father in the train of the emperor on an expedition to Venice, and was present at the siege of Paria. On the 13th Feb. 1511 be joined the Teutonic order; and a few days after, though scarcely trenty-one years old, was chosen grand master, it being expected that, as nepnew of Sigismund of Poland, he would be able to secure the privileges and immunitics which the order were at the time claining from that monarch. The refusal of Albert to swear allegiance to Sigismund led, after pro-
tracted negotiations, which proved froitless, to a war withPoland in 1520. A four years' truce being concluded at' Thorn in 1521, Albert repaired to the diet at Nuremberg' to invoke the aid of his brother German princes on behalf ${ }^{5}$ of his order. The diet found itself unable to render him any assistance, and at the same time he received advice from Luther which altogether changed his purpose. Embracing the doctrines of the Reformation, he was declareci Duke of Prussia, consented to hold the duchy as a fief from Poland, and took the oath of allegiance at Cracow on the 9th April 1525. At the same time he resigned the grand mastership of the order. In 1527 he married Ame Dorothea, daughter of the king of Denmiark, His sabsequent reign was marked by zealous efforts, amid many difficulties, to promote the welfare of his duchy. He interested himself especially in the adrancement of learning, inviting men of letters to his court, and promoting the publication of their writings. In 1544 he founded the university of Königsberg, in spite of great opposition, chielly from the pope. Keen theological disputes betweenthe professors of this university were among the many troubles of his later years. He died of the plague on the 20th of March 1568. His second wife, the Princess Anna Maria of Brunswick, who had been attacked by the same disease, survived him only a single day.

ALBERT, Cardinal Archbishop of Magdeburg and Elector of Mentz, born 1489, was the youngest son of John, Elector of Bracdenburg. In 1513 he was consecrated archbishop of Magdeburg, and about the same time he was choser administrator of the diocese of Halberstadt. Next year he was raised to the still higher dignity of archbishop and elector of Mentz, and he continued to hold all three offices simultaneously. For the pallium in connection with the latter appointment the pope demanded the exorbitant sum of 30,000 ducats, but enabled the archbishop to recoup himself by granting him the privilege of selling indulgences throughout his diocese. It was his employment of the Dominican Tetzel in this service which, by calling forth Luther's famous ninety-five theses, had so important an influence on the coirse of the Reformation. In 1518 he was created a cardinal as a retvard for his services to the Romish church. His opposition to the doctrines of Lnther did not prevent many within his orn diocese from accepting the Reformation; and he found it necessary to grant religions liberty to his subjects in 1541, availing himself of the opportunity to extort from them in return for the boon the payment of his debts, which amounted to 500,000 florins. Albert was a patron of learning, and counted Erasmus among his friends. He died at Mentz on the 24th September 1545.
albert (PhtNCe), Frincis Charles Augustus Albert Eishavuel, Prince Consort of England, born at Rosenau on the 26 th Aug. 1819, was the secould son of the hereditary Duke of Saxe-Coburg-Gotha, by his first wife the Princess Louise of Saxe-Gotha-Altenburg. He thus belonged to the Ernestine or elder branch of the rogal famity of Sazony, which, on account of its adherence to the doctrines of the Reformation, had to surrender the kingdom to the Albertine or jounger branch, which is still in possession of it. The marriage of his pareuts proving an unhappy one, they separated in 1824, and the young prince never again saw his mother, who died in 1831. He was educated, along with his elder brother Ernest, under the care of Consistorial-Rath Florschütz, who, in a memorandum dramn up after the prince's death, speaks in the highest terms of his pupil's benerolent disposition and studious habits. At the proger age the brothers proceeded to the unirersity of Bonn, where Herr Florschütz still continued to exercise a general superintendence of their studies. Prince Albert deroted himself especially to tho
natural sciences, political economy, and philosophy, having for teachers men of such world-wide fame as Fichte, Schlegel, and Perthes. He also diligently cultivated at this period the sister arts of music and painting, and thus qualificd himself for some of the most valuable services ho was afterwards to render to the land of his adoption. His feeling for art in all its forms was very sensitive, and his exccutive skill, both as a musician and painter, very considerable. In gymnastic exercises he greatly excelled, carrying off the first prize for fencing in a competition with a large number of students.

In 1836 the prince visited England in company with his father, and met his future consort for the first time. The idea of a matrimonial alliance between the cousins bad occurred to various members of the family, and had been cherished especially by their grandmother the dowagerduchess of Coburg, and their uncle Leopold, the king of the Belgians. From the time of the queen's accession there seems to have been a family understanding on the subject, though, owing to the youth of the prince and his cousin, no formal engagement was entered into till tro years later. In the winter of 1838-9 the prince travelled in Italy, accompanied by Mr Seymour, a young English gentleman, who was selected doubtless out of regard to the probable future of his charge. A year later the hopes of many were realised when, on the 23d Nov. 1839, the queen announced to the Privy Couneil her intended marriage with her cousin. The circumstances of the engagement have been fully made known since the prince's death, and they show that the union was founded upon mutual choice, springing from mutual affection. On the loth Fcbruary 1840 the marriage was celebrated at the chapelroyal, St'James's, amid universal rejoicings. A few days before the erent two bills had been passed in parliament, one naturalising the prince as a British subject, and the other providing an annuity of $£ 30,000$ a year for the maintenance of his establishment. The ministry had proposed that the sum should be $£ 50,000$, following the precedent established in the case of Prince Leopold; but the reduction was made on the motion of Colonel Sibthorpe, who reccived the support of the radicals and the entire opposition. The result of the vote caused the prince considerable vexation and disappointment, which were enhanced when difficultics were raised in parhament as to tho precedence to be accorded to him. The latter question was only scttled by an exercise of the queen's prerogative. Letters patent were issucd on the 5 th March, giving the prince precedeace next to the quecn.

The position in which the prince was placed by his marriage, whilo it was one of distinguished honour, was also one of peculiar difficulty, and it was only the possession of a rare discretion that enabled him to fill it so irreproachably as he did. Published letters and memoranda show how thoroughly be appreciated the delicate nature of his duties, and how clearly ho perceived the limits within which his inflnence must be confined if it was to be legitimately and usefully exerted. A letter to the Duke of Wellington, declining, after mature consideration, to be designated to the office of commander-in-chief of the army, is especially noteworthy as containing an admirable description of the proper functions of a princecousort. Gencrally, his idea was that it was his duty to merge his personality as completely as possible in that of the sovereign, while giving her in all things real but unobtrusive advice and support; and that be acted during his wholo life in conformity with this idea those who had the best means of knowing were the readiest to testify. Once, indeed, st the commencement of the Crimean war, it was generally bolieved that he had overstepped the limits of his position by interfering unwarrantably with the foreign
policy of the country and the patrunage of the army. The charges were so definite and so widely circulated that it was deemed necessary to take notice of them in parliament. They were met by a complete and emphatic denial on the part of the ministry, and no one now believes that they had any real foundation. It was, of course, both natural and proper that the prince should interest himself deeply in the affairs of the country over which, by an Act passed on the 4th Aug. 1840, he bad been named regent in the event of the death of the queen before the heir to the crown had attained the age of cighteen years. He had also a right to interest himself in the administration of the army, as being himself a field-mashal and a colonel of hussars.

It was fortunate for the prince, shut out as he was by the circumstances of his station from any share in party politics, that he found other and more congenial work sufficient to engage all his energies. He was qualificd, as few of his rank are, to deal with those social and scientific problems in the solution of which men of all parties are equally interested. He engaged himself especially in endeavours to secure the more perfect application of science and art to manufacturing industry. The Great Exhibition of 1851 originated in a suggestion he threw out at a meeting of the Society of Arts, and owed the greatcr part of its success to his intelligent and unwearied efforts. Similar institutions, on a smaller scale but with a kindred aim, always found in him werm advocaey and substantial sup port. It was chiefly at meetings in connection with these that he found occasion for the delivery of addresses characterised by profound thought and comprehensiveness of view, a collection of which was published in 1857. One of the most favourable specimens of his powers as a speaker is the inaugaral address which be delivered as President of the British Association for the Advancement of Science when it met at Aberdeen in 1859, printed in an edition of his speeches which appeared in 1862 . The education of his family and the management of his domestic affairs furnished the prince with another very important sphere of action, in which be employed himself with conscientious devotedness. The training of the Prince of Wales was carried on under his own superintendence, in accordanco with a plan he himself had drawn up; and it may be questioned whether so much wisdom and care was ever bestowed on the upbringing of an heir to the British throne. The estates of the Duchy of Cornwall, the hereditary appanage of the Prince of Wales, were so greatly improved under his father's management that the rent-roll rose from $£ 11,000$ to $£ 50,000$ a year. Prince Albert, indeed, had a peculiar talent for the management of landed estates. His model farm at Windsor was in every way worthy of the name; and the grounds at Balmoral and Osborne, so universally admired, were laid out entirely in conformity with his designs.

A character so pure, and a life so useful and well-directed in all its aims, could scarcely fail to secure universal respect. As the prince became better known, the mistrust, of which the adverse votes in parliament were undoubtedly to some extent an expression, gave way, and the people vied with their queen in showering deserved honours upon him. After a keen contest with Earl Powis, he was elected chancellor of the university of Cambridge in 1847; and he was afterwards appointed master of the Trinity House. In 1857 the formal title of "Prince-Consort" was conferred upon him by lettera patent, in order to cettle certain difficulties as to precedence that had been raised at fcreiga courts. As he had previously possessed no distinctive title, the precedence he had received was only by courtesy.

It was in the prime of manhood and the full career of his nsefulness that the prinee-consort was removed by death. He had been greatly occupied during the autumn
of 1861 with the arraugements for the projected interna tional exhihition, and it was just after returning from one of the meetings in connection with it that he was seized with his last illness. He died of typhoid fever on the 14th of Dec. 1861. Few have ever been more sincerely or more universally mourned. The grief of the queen was deep and lasting, and the whole nation sympathised in the truest sense with her in her sorrow. Perhaps never before, except on the occasion of the death of the Princess Charlotte, had all classes of the people been so closely knit together in the feeling of a common bereavement and a common sorrow. A national memorial, to be erected partly by parliamentary vote and partly by public subscription, was at once resolved upon, and nearly every town of importance throughout the kingdom embedied in a statue or some other form its tribute to the memory of "The Good Prince." The magnificent mausoleum at Frogmore, in which his remains were finally deposited, was erected at the expense of the Queen and the royal family. (See Early Years of H.R.H. the Prince Consort, 1867 ; Principal Speeches and Addresses of Prince Albert, with an Introduction, 1862).
ALBERT NYANZA, a large lake in East Central Africa, extending from $2^{\circ} 45^{\prime}$ N. lat. at least as far as $2^{\circ} \mathrm{S}$. Its surface is 2720 feet above the level of the sèa : on its western coast are the Blue Mountains, rising 7000 feet higher; and on the east a ridge of steep cliffs, with elevations varying from 1500 to 5000 feet. The White Nile, flowing in a north-westerly direction from Lake Victoria Nyanza, enters Lake Albert Nyanza about 2° $15^{\prime} \mathrm{N}$. lat., and issues from it near its northern extremity. Messrs Speke and Grant were informed of the existence of this lake by the natives, but Sir Samuel (then Mr) Baker and his wife were the first Europeans who explored it in 1864. (See Africa and Nile, and also Sir S. W. Baker's The Albert Nyanza, the Great Basin of the Nile, and Explorations of the Nile Sources, 2 vols., London, 1866).
ALBERTI, Leon Battista, distinguished as a painter, poet, philosopher, musician, and especially as an architect, was descended from the noble family of the Alberti of Florence. The place and date of his birth are variously given, but it is most probable that he was born at Venice about the year 1404. He was so skilled in Latin verse that a comedy be wrote in his twentieth year, entitled Philodoxius, deceived the younger Aldus, who edited and published it as the genuine work of Lepidus. In music he was reputed one of the first organists of the age. He held the appointment of canon in the metropolitan church of Florence, and thus had leisure to devote himself to his favourite art. He is generally regarded as one of the restorers of the ancient style of architecture, and has been called by some writers the Florentine Vitruvius. At Rome he was employed by Pope Nicholas V. in the restoration of the papal palace and of the fountain of Acqua Vergine, and in the ornamentation of the fountain of the Piazza de Trevi At Rimini he designed the celebrated church of San Francesco, which is generally esteemed his finest work. On a commission from Rucellai, he designed the principal façade of the church of Santa Maria Novella in Florence, as well as the family palace in the Via della Scala, now known as the Palazzo Strozzi. In Mantua he was employed by the Marchese Ludovico Gonzaga to design several buildings, the most important boing the church of Sant' Andrea Alberti wrote works on sculpture, Della Statua, and on painting, De Pictura, which are highly esteen'ed; but his most celebrated treatise is that on architecture, De Re Edificatoria, which has been translated into Italian, French, Spanish, and English. A splendid edition of this work in English and Italian, by Leoni, was published at London in 1726, in 3 vols. folio. Auberti. being of an amiable and generous disposition, was
highly esteemed by his contemporarics. He died at Rome in 1472 , or, according to others, in 1484.
albertrandy, Jar Chrzcictel, or Johe.Christuar, historian, was born at Warsaw in 1731, his father being an Italian. Educated in the public school of the Jesuits, he joined their order in his fifteenth year, and gave such proof of his ability that, at the early age of nineteen, he was appointed professor at the college of Pultusk. After having successively filled similar positions in Plock, Nieswiez, and Wilna, he became,- in 1766, librarian to Bishop Zaluski, who designed to make his extensive collection of books available to the public. A detailed catalogue of the 200,000 volumes which it contained was accordingly prepared by Albertrandy. In 1764 he was chosen by the primate Lubienski tutor to his grandson, Count Felix Lubienski, afterwards minister of justice. In this capacity he visited Italy in 1770 with his pupil, residing first at Siena and then at Rome. The preference Lubienski showed for numismatics induced Albertrandy to devote himself while in Italy to the special study of that science, and he was soon recognised as an authority on the subject. When he returned to his native country, King Stanislaus Augustus appointed him, at the request of Lubienski, keeper of his medals, and afterwards his reader and librarian. The representations he made to the king as to the extent and value of the materials ior Polish history that were scattered throughout the libraries of Rome, induced Stanislaus to send him on a second visit to Italy, in order that he might collect these materials. He arrived at Rome in 1782, and devoted three years to the task. The Excerpta, all written with his own hand, filled 110 volumes of manuscript. To complete the collection, he subsequently visited Sweden, where the difficulty of the work was greatly increased by his being forbidden to copy any portions of the books or manuscripts he consulted. An excellent memory, however, enabled him in great measure to overcome the difficulty; and from the libraries of Stockholm and Upsala he made extracts which increased the entire collection to 200 volumes. In recognition of his merit the king bestowed on him the bishopric of Zenopolis. He was the first president of the Royal Society of the Friends of Science in Warsaw, and took a large share in its proceedings up to the time of his dcath, which occurred on the 10th August 1808.

ALBERTUS MAGNUS, a celebrated scholastic philosopher, was born of the noble family Von Bollstädt at Lauingen in Suabia. The date of his birth is most probably 1193. He was educated principally at Padua, where he received particular instruction in Aristotle's writings. In 1223 he became a member of the Dominican order, and studied theology under its rules at Bologna and elsewhere. Selected to fill the position of lecturer at Cologne, where the order had a house, he taught for several years there, at Regensburg, Freiburg, Strasburg, and Hildesheim. In 1245 he repaired to Paris and received his doctorate, teaching for some time, in accordance with the regulations, and with great success. In 1254 he was made provincial of his order, and fulfilled the arduous duties of the office with great care and effectiveness. During the time he held this office he publicly defended the Dominicans against the university of Paris, commented on St John, and answered the errors of the Arabian philosopher, Averroes. In 1259 the pope made him bishop of Regensburg, which office he resigned after three years. The remainder of his life he spent partly in preaching throughout Bararia and the adjoining districts, partly in retirement in the ratious houses of his order; almost the last of his labours was the defence of the orthodoxy of his former pupil, Thowas Aquinas. He died in 1280, aged 87. Albert's works, published in twenty-one folios by the Dominican Petes

A $L B-A L B$

Jammy in 1651, sufficiently attest his great activity. He was the most widely read ond most learned man of his time. The whole of Aristotle's works, presented in the Latin translations and notes of the Arabian commentators, were by him digested, interpreted, and systematised in accordance with church doctrine. Albert's activity, howover, is rather philosophical than theological, for while pressing philosophy in gencral, and Aristotle in particular, into the service of theolory, he exclndes from what belongs to the natural reason all that is specially biblical, as, e.g., miracles, the atoncment, and the Trinity; though be does not refuse to sce with Augustin excmplifications, shadowings, of the latter doctrine even in nature. The philosophical works occupying the first six and the last of the twentyone valumes are generally divided according to the Aristotclian scheme of the sciences; and consist of interpretations 'and condensations of Aristotle's relative works, with supplementary discussions depending on the questions then agitated, and occasionally divergences from the opinions of the master. In logic, he attempts to unite the three rival theories of universals, holding that universals exist in three mays-(1.) Ante res, as ideas in the mind of God, from which the class is modelled, and which therefore exist before individual things; (2.) In rebus, as the common basis in a class of individual objects; (3.) Past res, as the mental notion of the class. In the metaphysical and physical treatises he mainly repeats Aristotle, differing from him as regards the cternity of the world and the definition of the soul. His principal theological works are a commentary in three volumes on the Books of the Sentences of Peter Lombard (Magister Sententiarum), and the Summa Theologice, in two rolumes. This last is in substance a repetition of the first in a more didactic form. Albert's knowledge of physical science was considerable, and for the age accorate. His industry in every department was great, and though we find in his system many of those inner gaps from which no scholastic philosophy was ever free, yet the protracted study of Aristotle gare him a great power of systematic thought and exposition, and the results of that study, as left to us, by no means warrant the contemptuous title sometimes given him-the "Ape of Aristotle." They rather lead us to appreciate the motives which cansed his contemporaries to bestow on him the honourable surname "The Great," and the no less honourable title, "Doctor Universalis." For Albert's life the best anthorities are Sighart, Albertus Magnus, zein Leben und seine Wissenschaft, 1857; and D'Assailly, Albert le Grand, 1870. The most comprehensive surveys of his philosophy are those of Stöcki, Geschichte d. Scholastischen Philosophie, and, in smaller compass, Erdmann, Grundriss d. Ges. d. Phio., vol. i. Hauréan, Ritter, and Prantl may also be referred to.
ALBI, a city of France, capital of the department of the Tarn, is situated on the river Tarn, 41 miles N.E. of Toulouse. It is a place of great antiquity, and was a stronghold of the early French Protestants, giving its name to the Albigenses. It is the seat of an archbishop, and has a chamber of commerce and a public library of 12,000 rolumes. The cathedral, dedicated to St Cecilia, is a magnificent Gothic edifice, in the style of the 13th century, and has one of the finest choirs in France. Here there is a very valuable silver shrine, of exquisite mosaic work, containing the relics of St Clair, the first bishop of the see. The environs are charming, and the promenade of Ia Lice, without the city, is a beautiful terrace bordered with two rows of very fine trees. At one end is the conrent of the Dominicans. Albi has woollen and linen manufactures ; coal, iron, and copper are wronght in the rieinity; and the surrounding district is very fertile, prodnciug much grain and fruit. Population (1872), 17.469.

ALBIGENSES, a sect opposed to the Church of Rome, which derives its name from Albiga (the modera Albi, noticed above), either becausc its doctrines were expressly condemned at a council held there, or, more probably, because its adherents were to be found in grcat numbers in that town and its neighbourhood. The Albigenses were kindred in origin and more or less similar iu doctrine to the sects known in Italy as laterins, in Germany as Catharists, and in France as Bulgarians, but they are not to be entirely identified with any of these. Still less ought they to be confounded, as has frequently been the case, with, the Waldenses, who first appcar at a later period in history, and are materially different in their doctrinal views. The descent of the Albigenses may bo traced with tolerable distinctness from the Paulicians, a sect that sprang into existence in the Eastern Church during the 6th century. (See Paulichavs.) The Paulicians were Gnostics, and were acoused by their cnenies and persecutors of holding Manichrean doctrines, which, it is said, they vehemently disowned. Their creed, whateycr it was procisely, spread gradually westward through Éarope. In the 9th century it fonnd many adherents in Bulgaria, and 300 years later it was maintained and defended, though not without important modifications, by the Albigenses in the south of France. The attempt to discover the precise doctrinal opinions held by the Albigenses is attended with a double difficulty. No formal creed or definite doctrinal etatement framed by themselves exists, and in default of this it is impossible to depend on the representations of their views given by their opponents in the Church of Rome, who did not scruple to exaggerate and distort the opinions held by those whom they had branded as heretics. It is probably impossible now to determine accurately what is true and what is false in these representations. It seems almost certain, however, that the bond which united the Albigenses was not so much a positive fully-dereloped religions faith as a determined opposition to the Church of Rome. They inherited indeed, as has been already said, certain doctrines of eastern origin, such as the Manichæan dualism, docetism in relation to the person of Christ, and a theory of metempsychosis. They seem, like the Manichees, to have disowned the anthority of the Old Testament; and the division of their adherents into perfecti and credentes is similar to the Manichean distinction between clecti and auditores. The statement that they rejected marriage, often made by Romas Catholics, has probably no other foundation in fact thān that they denicd that marriage was a sacrament; and many other statements as to their doctrine and practice must be receired at least with suspicion as coming from prejudiced and implacable opponents. The history of the Albigenses may be said to be written in blood. At first the church was content to condernn their errors at various councils ($1165,1176,1178,1179$), but as their practical opposition to Rome became stronger, more decided measures were taken. Innocent III. had scarcely ascended the papal throne when he sentlegates to Toulouse (1198) to endeavour to suppress the sect. Two Cistercians, Guy and Regnier, were first commissioned, and in 1139 they wore joined by Pcter of Castelnau and others, who were known throughout tho district as inquisitors. Raymond VI., count of Toulouse, took the part of his Albigensian subjects, though not himself kelonging to the sect, and for this he was excommunicated in 1207. A year later the pope found a pretext for resorting to the most extreme measures in the assassination of his legate Peter of Castelnau, Jan. 15, 1208. A crusade against the Abigenses was at once ordered, and Rasmond, who had meanwhile submitted and done penance, was forced to take the field against his own enbjects. The bloody war of extermina tion which followed has ceercely a parallel in history. As
town after town was taken, the Inhabitan's were put to the swerd without distinction of age or sex, and the numerous ecclesiastics who were in the army especially distinguished themselves by a bloodthirsty ferocity. At the taking of Beziers (July 22, 1209), the Abbot Arnold, being asked how the heretics were to be distinguished from the faithful, made the infamous reply, "Slay all; God will know his own." The war was carried on under the command of Simen de Montfort with undiminished cruelty for a number of years. Raymond's nephew, Viscount Raymond Roger, who had espoused the cause of the Albigenses, was taken prisoner at Carcassone, and the sect became fewer in numbers year by year. The establishment of an Inquisition at Languedoc in 1229 accelerated the exterminating process, and a ferr years later the sect was all but extinct.

ALBINO. The name Albinism, or Leucopathia, is applied to a remarkable peculiarity in the physical constitution of certain individuals, which cousists in the skin and hair being perfectly white. The ealliest accounts we have of it refer to its being observed among the negroes of West Africa by the Portuguese, who called the persons so affected Albinees. They have also been called Leucathiopes, i.e., white nogroes. Albinism is most common and most marked in the negro and Indian races, but it occurs in all parts of the world and among all the varieties of the human race. The appearance arises frem the absence of the minute particles of colouring matter which ordiaarily occur in the lowest and last-deposited layers of the epidermis or outer skin, and to the presence of which the skin owes its colour. With very rare exceptions, it affects the entire body, and continues through life. The skin of the albino is of a dull milky or pearly colour, unrelieved by the slightest tint of red or brown, and is generally of rough texture. All the hair on the body is of the same dull hue, and is commonly soft and silky. Another peculiarity that invariably accompanies this whiteness of skin and bair is an affection of the eyes : the pupil is a bright red, and the iris (or white of the eye) that surrounds it is of a pale rose colour. This redness is attributable to the absence of a colouring matter, the pigmentum nigrum of the membrane of the cye, which serves to protect the retina. In consequence of this defect, the eye of an albino cannot bear a strong light. Albinism is hereditary in the same limited degree as blindness, deafness, \&cc. See on this Darwin's Variation of Animals and Plants under Domestication (chap. xii), where mention is made that "twe brothers married two sisters, their first cousins, none of the four nor any relation being an albino; but the seren children produced from this double marriage were all perfect albinoes." Apart from the peculiarities mentioned above, there is no distinction between albinoes and other men. Albinism is not to be regarded as a diseased condition of body; and the idea, once entertained, that it is accompanied with a want of physical and mental rigour is now completely exploded. Probably this notion arose frem some of the albinoes whose condition was first described being unbealthy or imbecile; and even still more (as the intercsting account of Saussure, Voyages dans les Alpes, 1787, suggests) from the temptation to which, as natural curiosities, they were expesed to live in indolence withont exerting their natural powers. In many species of animals albinism occurs, i.e., an abnormal whiteness of the skin, hair, feathers, \&c., due to similar causes as in the human albino, but not so uniformly permanent. Of this, white hares, mice, blackbirds, \&c., are instances. White elephants are regarded with particular veneration by some eastern nations.
aLbINUS (originally Weiss), Bervard Stegrried, a celebrated anatomist, born in 1697 at Frankfort-on-the-Oder, where his father was professor of the practice of
medicine. In 1702 the latter was transferred to a pro fessership at Leyden, and it was there that Bernare Siegfried commenced his studies, having for his teachers such men as Boërhaave, Bidloo, and Rau. His great ability, especially in surgery and anatomy, was early recognised, and Rau, 60 justly celebrated as a lithotomist, is said to have seldom performed an important operation without inviting him to be present. Haring finished his studies at Leyden, he went to Paris, where, under the instruction of Vaillant, Winslow, and others, he deroted himself especially to anatomy and botany. After a year's absence, he was, on the recommendation of Boërhaze, recalled in 1719 to Leyden to be a lecturer on anatomy and surgery. Two years later he succeeded his father in the professorship of these subjects, and delivered an address at his installation which was received with nniversal approbation. Albinus speedily became one of the most famous teachers of anatomy in Europe, his classroom being resorted to not only by students, but by many practising physicians. With little original genius, and no special talent for exposition, he possessed those habits of accurate observation and patient research which are the best qualification for his department of study. The engravings of bones and muscles executed by Wandelaar for the treatise of Albinus on these organs were far superior in clearness and exactness to anything that had proviously been produced. In 1745 Albinus stas appointed professor of the practice of medicine, being succeeded in the anatomical chair by his brother Frederick Bernard, who, as well as another brother, Christian Bernard, attained considerable distinction. Bernard Siegfried was twice rector of his university, and was an associate of the learned societies of Londen, St Petersburg, and Haarlem. He died on ${ }^{\text {the }}$ 9th September 1770.

albinus, Flaccus. See Alcuin.

ALBOIN, a king of the Lombards, who invaded Italy, 568 A.D. He was murdered at Verona on the 8th June 573. See Italy and Lombards.
albornoz, Gu alvarez Carien de, a cardinal of Spain, was born at Cuenca early in the 14th century, and was related to the royal families of Leon and Arragon. While still young he was appointel archbishop of Toledo by Alfonso XI of Castile. Uniting, as many in that age did, the exercise of the military with that of the clerical profession, he was able to show his gratitude to his patron by saving the kings life at the battle of Tarifa in 1340. He conducted the siege of Algeciras in 1343, when the king dubbed him a knight. Falling into disfarour with Pedro the Cruel, whose licentious life he had rebuked, he fled to Avignon, then the papal seat, and was soen afterwards made a cardinal by Pope Clement VI. In 1353 Innocent VI. sent him as a legate inte Italy, with a riew to the restoration of the papal autherity in the States of the Church. He was rccalled in 1357, but was sent again to Italy after a brief interval ; and in 1362 had pared the way for the return of Urban V. to Rome. As a mark of gratitude, the pope appointed him legate at Bologna in 1367, but he died at Viterbo the same year. According to his own desire, his remains were carried to Toledo, where Henry of Castile caused them to be entombed with almost royal honours. A werk by Albernoz on the constitution of the Church of Rome, first printed at Jes. in 1473, is new very rare. The college of St Cloment at Bologna was founded by Albornoz.

ALbrechtsberger, Johany Georg, a celebrated musician, born at Kloster-Neuburg, near Vienna, on the 3d February 1736. He studied musical composition under the court organist, Mann, and became one of the most learned and skilful contrapuntists of his age. After being employed as organist at Rasb and Maria-Taferl, he $w 28$
appointed in 1772 organist to the court of Vieuna, and in 1792 kapellmcister of St Stephen's cathedral. His fame as a theorist attracted to him in the Austrian capital a large number of pupils, some of whom aftermards became cminent musicians. Among tbese were Beethoven, Hummel, Moscheles, Scyfried, and Weigl. Albrechtsberger died in 1809. Ifis published compositions consist of preludes, iugues, and sonatas for tho piano and organ, string quartettes, de. ; but the greater proportion of his works, yocal and instrumental, exist only in manuscript, and are in the possession of Prince Esterhazy. Probably the most valuable scrvice he reudered to music was in his theoretical works, which to a great extent auperseded earlier treatises, and are still standard authorities. In 1790 he published at Leipsic a treatiso on composition, of which a third edition appeared in 1821. A collection of his writings on harmony, in three volnmes, was published under the care of his pupil Scyfried in 1826. The English translation of the latter is from a Fronch version, and not from the original.

ALBUERA, a small village of Spain, in the province of Badajoz, 13 milcs S.E. of the town of that name. It is celebrated on account of the victory gained there on the 16th of May 1811 by the English, Portuguese, and Spaniards, under Marshal Beresford, over the French army commanded by Marshal Soult.

ALBUFERA DE VALENCLA, a lagoon, 7 miles south of Valencia in Spain, about 12 miles in length and 4 in. breadth, 12 feet bcing its greatest depth. It communicates with the sea by a narrow outlet, which can be opened or closed at pleasure. The lake is crown property, and is of great ralue from the fish and wild fowl with which it abounds. In 1812 Marshal Suchet was created duke of Albufera by Napolcon for his conquest of Valencia, and invested with the domain; but the battle of Vitoria boon deprived him of his possession, though he still retained the title. Subsequently the revenues of Albufera were conferred upon the Duke of Wellington, in token of the gratitude of the Spanish nation.
ALBUM (albus, white), originally denoted a tablet on which decrees, edicts, and other public notices were inscribed in ancient Rome. It was so called probably because the tablet was made of white or whitened material, though some authorities say that the inscription was in white characters. The Pontifex Maximus wrote his annals (Annales Maximi) upon an album. In course of time the term came to be restricted almost exclusively to lists of official names. Such were the Album Judicum, Album Senatorum, Album Decurionum, Album Centuric. In modern times album denotes a book in. which verses, auto graphs, sketches, photographs, \&c., are collected. It is also applied to the official list of matriculated atudents in a university, and to the roll in which a bishop inscribes the named of his clergy.
albumazar (Abu-Manschar), a celebrated Arabian astronomer, born at Balkh, in Turkestan, in 805 A.D., died at Wasid in 885 . He had reached the age of fortyseven before he entcred on the studies to which he owes his fame. His principal works are An Introduction to Astronomy and the Book of Conjunction, both published in a Latin translation at Augsburg in 1489, and again at Venice in 1515. A work On the Revolution of the Years is also attributed to him, in which it is maintained that the world was created when the beven plancts were in conjunction in the first degree of Aries, and that it will come to an cnd at a like conjunction in the last degree of Pisces.

ALBUMEN, an organic substance of a very complicated structure. It is typical of a group of bodies that have the same chemical. composition but very different propertics. The principal varieties are named albumen,
fibrin, and cascin. They are sometimes called the histogenotic bodics, because they are cssential to the building up of the animal organissn. The vcgetable kingdom is the original source of the albumenoid group of substances. In plants the albumen is found in greatest quautity in the aced. The mean avcrage percentage composition of the albumenoids is as follows-

Carbon,	53.8
Hydrogen,	$7 \cdot 0$
Nitrogen, .	$15 \cdot 7$
Sulphur,	$1 \cdot 2$
Orygen,	$22 \cdot 3$
	$100 \cdot 0$

The true chemical formula of these bodics is unknown, but if we regard the sulphur as replacing oxygen, then the simplest empirical formula is $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{8}$.

All the albumenoid bodies are capable of existing in two forms-(a) soluble, (b) insoluble. They belong to the class of bodics called colloids, and easily pass from the one condition into the other. Whether in the soluble or insoluble condition, they are easily dissolved by caustic potash, and may be precipitated by the addition of acctic acid. The soluble varieties are coagulated by alcohol, and precipitated by salts of copper, lead, and mercury. Strong su'phuric acid dissolves them, with the production of leucino, tyrosine, and ammoniacal salts. Strong nitric acid produces in their solutions a coagulum of a bright orange colour, and then gradually dissolees it with effervescence. A solution of nitrate of mercury, when heated with the members of the group, produces a decp red colour, and this is one of the most delicate tests. Somo varietics of albumen coagulate when heated. All the albumenoid bodies are amorphous, and may be kept when dry for any length of time, but when moist they rapidly putrofy, and produce a sickening odour. Among the products of putrcfaction are found leucine and tyrosine, and carbonate, butyrate, valerate, and sulphide of ammonium. The readincss with which these bodies change in the moist condition produces the digestive and other ferments in the body, and the aynaptase, diastase, and emulsin which we find in plants. The special properties of albumen, fibrin, and cascin will be described in the article Cemenstex. From its property of coagulating when heatcd, albumen is employed in the arts to remove colouring matters from liquids.

ALBUQUERQUE, a town of Spain, in the province of Badajoz, 9 miles from the frontiers of Portugai. Situated on an eminence, it is defended by an almost impregnable fortress built on a high mountain. It was taken by the allics of Charles, at that time a competitor for the Spanish throne, in 1705, but was restored to the Spanish crown in 1715. It has woollon aud linen manufactures, and exports cattle and fruits. Population, 7000.

ALBUQUERQUE, ALPHonso D' (in Portuguese Afonso d'Alboquerque), surnamed "The Great," and "The Portuguese Mars," was born in 1453 at Alexandria, ncar Lisbon. Through his father, Gonzalvo, who held an importaut position at court, he was connected by illegitimate descent with the royal family of Portugal, and through his mother, Dona Leonora de Menczes, he could claim kindred with Zarco and other illustrious navigators. He was educated at the court of Alphonso V., and after the death of that monarch seems to have served for some time in Africa. On his return he was appointcd estribeiro-mor (chief equerry) to João II. In 1503 he set out on his first expedition to the East, which was to be the acene of his future triumphs. In company with his kinsuan Francisco be sailed round the Cape of Good Hope to India, and suc. ceeded in establishing the king of Cochin securely on his throne, obtaining in return for this service permisaion to build a Portuguese fort at Cochin, and tbur

Layng the foundation of his country's empire in the Jast. He returned home in July 1504, and was well received by King Emmanuel, who entrusted him with the command of a squadron of five ressels in the fleet of sixteeu which sailed for India in 1506 under Tristan da Cunha. After a scries of successful attacks on the Moorish cities on the cast coast of Africa, Albuquerque separated from Da Cunha, and sailed with his squadron against the island of Ormuz, in the Persian Gulf, which was then one of the chief centres of commerce in the East. He arrived on the 25th September 1507 , and soon obtained possession of the island, though he was unable long to maintain his position. With his squadron increased by three vessels, he reached the Malabar coast at the close of the year 1508, and immediately made known the commission he had received from the king empowering him to supersede the governor Almeida. The latter, however, refused to recognise Albuquerque's credentials, and cast him into prison, frorn which he was only released, after three months' confinement, on the arrival of the granid marshal of Portugal with a large fleet. Almeida having returved home, Albuquerque speedily showed the energy and determination of his character. An unsuccessful attack upon Calicut in January 1510 , in which the commander-in-chief received a severe wound, was immediately followed by the investment and capture of Goa. Albuquerque, finding himself unable to hold the town on lis first occupation, abandoned it in August, to return with reinforcements in November, when he obtained ondisputed possession. He next directed his forces against Malacca, which he subdued after a severe struggle. He remained in the town nearly a year in order to strengthen the position of the Portnguese power. In 1512 he sailed for the coast of Malabar. On the voyage a violent storm arose, Albnquerque's vessel, the "Flor de la Mar," which carried the treasure he had amassed in his conquests, was wrecked, and he himself barely escaped with his life. In September of the same year he arrived at Goa, where he quickly suppressed a serious revolt headed by Idalcan, and took such measures for the security and peace of the term that it became the most flourishing of the Portnguese settlements in India. Albuquerque had been for some time under orders from the home government to undertake an expedition to the Red Sea, in order to secure that channel. of communication exclusively to Pertugal. He accordincly laid siege to Aden in 1513, but was repulsed; and a voyage into the Red Sea, the first ever made by a European fleet, led to no substantial results. In order to destroy the power of Egypt, he is said to have entertained the idea of diverting the course of the Nile, and so rendering the whole country barren. His last warlike undertaking was a second attack upon Ormuz in 1515. The island yielded to him mithout resistance, and it remained in the possession of the Portuguese until 1622. Albuquerque's great career had a painful and ignominious close. He had several enemies at the Portugnese court who lost no opportunity of stirring up the jealousy of the king against him, and his own injudicious and arbitrary conduct on several occasions served their end only too well. On his return from Ormuz, at the entrance of the harbour of Goa, he met a ressel from Europe bearing despatches aninouncing that he was superseded by his personal enemy Soarez. The blow was toe much for him, and he died at sea on the 16 th December 1515. Before his death he wrote a letter to the king in dignified and affecting terms, vindicating his conduct and claiming for his son the honours and rewards that were justly due to himself. His body was buried at Goa in the Church of Our Lady, and it is perhaps the most convincing proof possible of the justice of his administration, that, many years after, Moors and

Mindous used to go to his tomb to invoke protcction against the injustice of his successnrs. The king of Pertugal was convinced too late of his Gdelity, and endeav. oured to atone fur the ingratitude with which he had treated him by heaping honours upon his natural son Affonso. The latter published a selcction from his father's papers, under the title Commertarios do Grande Affonso d'Alboquerque.

ALCEUS, oue of the great lyric poets of Greece, was a native of Mitylene in Lesbos, and flourished about the year 600 b.c. From the fragments of his pooms which have come down to us we learn that his life was greatly mixed up with the pelitical disputes and internal feuds of his native city. He sided with the nobles, and took an active part against the tyrants, who at that time set therselves up in Mitylene. He was obliged, in consequence, to quit his native country, and spend the rest of lis life in exile. The date of his death is unknown. IIis poems, which were composed in the Eolian dialect, were collected afterwards, and apparently divided into ten books. The subjects, as we can still see from the fragments, were of the most raricd kind: some of his poems were hymns to the gods; others were of a martial or political character; others again breathed an ardent love of liberty and hatred of the tyrants; and lastly, some were of an erotic kind, and appear to have been particularly remarkable for the ferrour of the passion they described. Horace looks upon Alcerus as his great model, and has, in one passage (Od. ii 13.26, et sqq.) given a fine picture of the poetical powers of the Æolian bard. The care which Alcæus bestowed upon the construction of his verses was probably the reason why one kind of metre, the Alcaic, was named after him. Not one of his compositions has come down to us entire, but a complete collection of all the extant fragments may be found in Bergk's Poetce Lyrici Graci, Lipsíx, 1852, 8vo.
ALCAICS, in Ancient Poetry, a name given to several kinds of verse, from Alcæus, their reputed inventor. The first kind consists of five feet, viz., a spondee or iambic. an iambic, a long syllable, and two dactyles; the secend of two dactyles and two trochees. Besides these, which are called dactylic Alcaics, there is another, simply styled Alcaïc, consisting of. an epitrite, two choriambi, and a bacchius; thus-

Cur timet fa|urum Tiberim | tangere, cur | otivum

The Alcaic ode is composed of several strophes, each consisting of four verses; the first two of which are always alcaics of the first kind; the third rerse is an iambic diameter hypercatalectic, consisting of four feet and a long syllable; and the fourth verse is an alcaic of the second kind. The following strophe is of this species, which Horace calls "Alccai minaces camence"-

> Non possidcrtem multa vocaveris
> Recte bealum; rectius occupat
> Nomen beali, qui dcorum Mfuncribus sapienter uti.

ALCA1DE, or Alcayde, a word of Moorish origin, being derived from the Arabic Káda, to head, which was applied by the Spanish, the Portnguese, and the Moors to the military officer appointed to tako clarge of a fortrest or prison. See Alcalde.

ALCALA DE GUADAIRA, a torn of Spain, in the province of Serille, Andalusia, situated on the Guadaira, 7 miles E. of Serille. It contains an old castle and other Moorish remains; but it is now chiefly remarkable for the excellent quality of its bread, whence the epithet de los Panaderas, sometimes applied to it. Nearly the whole of the bread required by the town of Serille is made here Population, 7000.
fiLCA」A DE IIFNARES, an ancient Spanisl city on the river 1 lenares, 17 miles E.N.E. of Madrid. It has becn identified with the Roman Complutum, which was destroyed about the yoar 1000, and was rebuilt by the Moors in l0s3. In later times it was renowned for its richly-endored unirersity, founded by Cardinal Ximenes in 1510 , which, at the height of its prosperity, numbered more than 10,000 students, and was secoud only to that of Salamanca. Here the famous edition of the Holy Bible known as the Complutensian Polyglot was prepared. The college of St Ildefonso contains a magnificent chapel, in which Ximenes is buried, and is distinguished by its splendid architecture, partly Moorish and partly Gothic. Alcala is further celebrated as the birthplace of the German emperor Ferdinand I., the pret Figueroa, the naturalist Bustamente de la Camera, the historian Solis, and last and greatest of all, Cervantes, who was born here in 1547. Since the remoral of the university to Madrid in 1836 the tom has rapidly declined. It contains a military academy and varions public institutions, but is of little commercial imnortance. Population, 8745.

ALCALA LA REAL, a town of the province of Jaen in Spain, 18 miles S.W. of the torm of that name. It stands on a declivity betwecn two mountain ridges, at an eleration of about 3000 feet above the sca. It possesses a fine abbey. Its distinctive name la Real, the Royal, is derived from its capture in 1310 by Alphonso XI. of Leon, in person. In 1810 the Spaniards were defeated here by the French under Sebastiani. Some trade is carried on at the place in wine and wool. Population, 11,521.

ALCALDE (from the Arabic al-cadi, the judge), an official title given in Spain to various classes of functionaries entrusted with judicial duties. Criminal judges, members of courts of appeal, magistrates, and even parish officers are all known by the name alcalde-secondary descriptive titles distinguishing their different positions and functions. It is to be observed that the word is entirely distinct from Alcaide, the latter being always employed to designate a military officer.
 tor, a pupil of Phidias, who is celebrated for his skill in art by Cicero, Pliny, Pausanias, Lucan, \&cc. He flourished from about 448 to 400 B.C., and appears as one of the great triumvirate of Greek eculptors, Phidias, Alcamenes, and Polycletus. He is said to have once competed with his master, the subject being a statue of Minerva. In this attempt the style of Alcamenes was exquisite in finish, but he had overlooked the consideration that the statue was to be placed on a high column, and there his work would rot bear comparison with that of his great master. His statue of Venus Uranis, in the temple of that deity at Athens, was reckoned his masterpiece.

ALCAMO, a city of Sicily, in the Italian province of Trapani, is situated 22 miles E. of Trapani, near the Gulf of Castellamare. It lies in a district of peculiar fertility, which produces some of the best wines in the island. The town is pleasantly situated on elevated ground, but its internal appearance is mean and dirty. It contains a very strong castle, and many churches and monasteries. Near it are tho ruins of the ancient Segcsta, including a Doric temple and a theatro in good preservation; and there are also on the aeighbouring hill Moorish towers and other remains, standing as memorials of the Saracen occupation of Sicily. Population (1865), 19,518.

ALCANTARA, the ancient Norba Ccesarea, a tomn of Spain, in the prorince of Caceres, on a rocky height on the left bank of the Tagus. Alcantara (in Arabic, the bridge) derived its name from the magnificent Roman bridge which spanned the Tagas at this point, and whica was erected, according to the inscription, A.D. 104, in
nonour of the emperor Trajan, who was a native of Spain. This remarkable structure is built entirely of blocks of granite without cement, and consisted, until its partial destruction, of six arches of various span, with a total length of 670 feet and a height of 210 feet. The second arch on the right bank was blown up by the English in 1809, and, although temporarily reconstructed, was again destroyed in 1836 to prevent the passage of the Carlist troopa. The bridge has never since been repaired; and it is a striking illustration of the want of public spirit in Spain that the river is crossed by means of a ferry-boat in the ncighbourhood of this grand engineering work, which it is a national duty to preserre. The population of the town is 4200 .

ALCANTARA, a seaport of Brazil, in the province of Maranhão, on the bay of San Marcos. It has a tolerablo harbour; and excellent cotton is grown in the vicinity, forming the ohief article of commerce. Rice and salt, obtained from the neighbouring lagoons, are also exported. Population, $10,000$.

ALCANTARA, Knigets of (la Calalleria de Alcantara), an order of knights of Spain, instituted about 1156 a. D. by the brothers Don Suarez and Don Gomez de Barricntos for protection against the Moors. In 1177 they were confirmed as a religious order of knighthood under Benedictine rule by Pope Alexander III. Until about 1213 they were known as the Knights of San Julian del Pereyro; but when the defence of Alcantara, newly wrested from the Moors by Alphonso IX. of Castile, was entrusted to them, they took their name from that city. For a considerable time they were in some degree subject to the grand master of the kindred order of Calatrava Ultimately, however, they asserted their independence by electing a grand master of thoir own, the first holder of the office being Don Diego Sanche. During the rule of thirty-seven successive grand masters, similarly chosen, the influence and wealth of the order gradually increased until the Knights of Alcantara were almost as powerful as the sovereign: In 1494-5 Juan de Zuñiga was prevailed upon to resign the grand mastership to Ferdinand, who thereupon vested it, as he had already done that of two other orders, in his own person as king; and this arrangement was ratified by a bull of Pope Alexander VI., and was declared permanent by Pope Adrian VI. in 1523. The yearly income of Zuñiga at the time of his resignation amounted to 150,000 ducats. In 1540 Pope Paul III. released the knights from the atrictness of Benedictine rule by giving them permission to marry, though second marriage was forbidden. The three pows were henceforth obedientia, castitas conjugalis, and conversio morum. In modern times the histury uif the order has bcen somewhat chequered. When Joseph Bonaparte became king of Spain in 1808, he deprived the knights of their revenues, which were only partially recovered on the restoration of Ferdinand VII. in 1814. The order ceased to exist as a spiritual body in 1835, though it is atill recognised in its civil capacity.

ALCARAZ, a small torm in Spain, in the province of Albacete, 34 miles W.S.W. of the tomn of that name. It stands on very hilly ground near the river Guadarmena, and has the remains of a once strong castle and of a mag. nificent Roman aqueduct. Wearing, iron-founding, and agriculture are the chief branches of industry. Copper and zinc are found in the vicinity. Population, 7325.

ALCAVALA, a duty formerly charged in Spain and its colonies on all transfers of property, whether public or private. It was originally imposed by Alphonso XI. to secure freedom from the Moors in 1341, as an ad valorem tax of 10 , increased afterwards to 14 per cent., on the aelling price of all commodities, whether raw or manufactured, Which was chargeable as often as they were sold or ex-
changed. It subjected every farmer, every manufacturer, every merchant and shopkeeper, to the continual visits and examination of the tax-gatherers, whose number was necessarily very great. This monstrous impost was permitted to ruin the industry and commerce of the greater part of the kingdom down to the invasion of Napoleon. Catalonia and Aragon purchased from Philip V. an exemption from the alcavala, and, though still burdened with other heavy taxes, were in a comparatively flourishing state, in consequence of their exemption from this oppressive duty. (See M'Culloch On Taxation.)

ALCAZAR DE SAN JUAN, a Spanish town, in the province of Ciudad Real, 45 miles N.E. of Ciudad Real, and on the railway between Alicante and Madrid. It is a well-built town, and has manufactures of soap, saltpetre, and gunpowder. This is the Alce of the Romans, taken by T'. Sempronius Gracchus 180 b.c. Population, 7800.

ALCAZAR KEBIR, a city of Marocco in Africa, 80 miles N.W. of Fez. It was formerly of great note as the magazine and place of rendezvous for the Moorish invasions of Spain. It is now greatly decayed, probably on account of its low and unhealthy situation. Not far from the city is the river Elmahassen, famous for the battle fought in 1578 between Sebastian, king of Portugal, and the Moors, in which the Portuguese were defeated and their king slain. Population, 6000 .

ALCESTER, pronounced Auster, a market town in the county of Warwick, situated at the junction of the Arrow and Alne, 14 miles W.S.W. of Warwick. Its position on the Roman way known as the Ickenild Street, and the discovery of numerous remains of ancient art, as well as urns and coins, make it sufficieptly evident that this was a Roman encampment. A monastery was founded here in 1140; but the building bas totally disappeared, though sufficient vestiges remain to indicate its site. The church is a fine building, and contains several interesting monuments, one of which, to the marquis of Hertford, is by Chantrey, and is in the best style of that sculptor. The town possesses a free grammar school and an elegant market-hall Employment is afforded to about 1200 of the inhabitants in the manufacture of needles, which is the chief branch of industry. Fish-hooks are also reanufactured. Population of parish, 2363.

ALCESTIS, or ALCEsTE, the daughter of Pelias and Anaxibia, and wife of Admetus, king of Pheræ in Thessaly. She consented to die in place of her husband, and was afterwards restored to life by Hercules. This beautiful instance of conjugal devotion forms the subject of one of the best plays of Euripides, the Alcestis, which furnishes the basis for Robert Browning's Balaustion's Adventure.
alchemy, Cheny, or Hermetics. Considering the present state of the science and the adrance of public opinion, the old definition of alchemy as the pretended art of making gold is no longer correct or adeqnate.

Modern science dates from three discoveries-that of Copernicus, the effect of which (to borrow St Simon's words) was to expel the astrologers from the society of astronomers; that of Torricelli and Pascal, of the weight of the atmosphere, a discovery which was the foundation of physics; lastly, that of Lavoisier, who, by discovering oxygen, destroyed the theory of Stahl, the last alchemist who can be excused for not being a chemist.

Before these three grand stages in the progress of science, the reign of astrology, magic, and alchemy was universal and almost uncontested. Even a genius liko Kepler, who by his three great laws laid the foundations for the Copernican eystem, was guided in his investigations by astrological and cabalistic considerations. Hence it follows that a philosophical history of modern science is certain to fall into the opposite superstition of idolising abstract
reason, if it does not do full justice to this long and energetic intellectual struggle which began in India, Greece, and Egypt, and, continuing through the dark ages down to the very dawn of modern enlightenment, preceded and paved the way for the three above-mentioned discoveries, which inaugurated a new era.

It was the alchemists who first stated, however confusedly, the problems which science is still engaged in solving; and to them, in conclusion, we owe the enormous service of removing the endless obstructions which a purely rationalistic method, born before its time and soon degenerating into verbal quibbles and scholastic jargon, had placed in the path of human progress.

Alchemy was, we may say, the sickly but imaginative infancy through which modern chemistry had to pass before it attained its majority, or, in other words, became a positive science. The search for gold was only one crisis in this infancy. This crisis is over, and alchemy is now a thing of the past. There is no longer any need to exhort adventurous spirits, who hope to find Golconda at tho bottom of their crucibles, to leave such visions and turn to the safer paths of science or industry. The battle has been fought and won, the problem of the unity of chemical elements or simple bodies belongs rather to the province of metaphysics than to that of experimental science. If here and there an honest student of the black art still survives, he is regarded as a mad but harmless enthusiast; and as for the pretended searchers for the philosopher's stone, they are, if possible, less interesting objects than the dupes they still continue to cheat. Thus the full time is come for applying to the occult sciences the same searching analysis to which the other myths of prehistoric times have been so rigorously subjected. To trace its earliest beginnings, to investigate its development by the aid of modern criticism, is the province of physical science, no less than of the sister science of morals. Nay, more, we shall find that both had a common origin. Those ancient cosmogonies, those poetical systems which the genius of each nation and race has struck out to solve the problem of the universe and of the destiny of mankind, were the germs of science no less than of literature, of philosophy as well as of religion. And as in the infancy of science its various branches were confused and confounded, so in a like stage of society we often find the same person uniting the parts of philosopher, savant, and priest. Besides this, it is evident that in the absence of all scientific apparatus or instruments, the ancients, if they had limited themselves to the exercise of their reason, must have remained observers and nothing more. It is true they did observe, and that widely and well; but obserration alone, even when aided by the strongest and subtlest reason, can lead to nothing but contradictory theories, irreconcilable, because they cannot be rerified. And it is not in human nature to remain a simple spectator. Curiosity was first excited by fancy (and the fancy of primitive man, we must remember, was far more active and vigorous than ours), and when it found itself baffled by a natural reaction, it had recourse to divination.

In a word, the ambition of these earliest philosophers was more intense, because its sphero was narrower. In the first stages of civilisation the magician was the man of science. The mysteries of this magic art being inseparable from those of religion and philosophy, were preserved, as it were, hermetically sealed in the sdyta of tho temple. Its philosophy was the cabala. We must consequently look on the various cabalas or oral traditions, transmitted from age to age as the oracles of various faiths and creeds, as coustituting the elements of that theory which the Jewish cabala promulgated some centaries later in a condensed and mutilated form. Astrologr and magic mere the efforts
made in various ways to verify and apply this theory; magic, indeed, or rather magical power, was at starting purely cosmogouic, i.e., regarded as an attribute of God or nature, before it was counterfeited by tho magicians of various countries. But, as St Simon has well observed, chemical phenomena are much mure complicated than astronomical-the latter requirin." only observation, the foruer experiment-and hence astrology preceded alcheny. But there was then no hard and fast line between the several branehes of seience, and hence the most opposite were nnited, not, as now, by a commou philosophical or philanthropical object, but by reason of their common theological origin. Thus alchemy was the daughter of astrology, and it was not till the end ef the 16 th centary A.D. that sho passed from a state of tutelage. Just in the same way medicine as_a magical or saicred art was prior to alchemy; for, as was natural, before thinking of forming new substances, men emplojed already existing berbs, stones, drugs, perfumes, and vapours. The medieal art was indissolubly bound up with astrology, but, judging from the natural inventiveness of the ancients, we should have expected beforehand that chemical preparations would bave played a more important part among the instruments of priestly thaumaturgy
As in the middle ages invention busied itself with instruments of tortare, and as in our days it is taken up almost as much with the destructive engines of war as with the productive arts of peace, so in those early ages it applied itself to the fabrication of. idols, to the inechanism and theatrical contrivances for mysterica and religious ceremonies. Thero was then no desire to communicate discoveries; science was a aort of freemasonry, and silence was effect ually secured by priestly anathemas; men of science were as jealous of ono another as they were of all other classes of society. If we wish to form a clear picture of this earliest atage of civilisation, an ago which represents at once the naivete of chiddood and the suspicions reticenco of senility, we must turn our eyes to the priest, on the ene hand, claiming as his own all art and science, and commanding respect by his contemptuous eilence; and, on the other Land, to the mechanic plying the loom, extracting the Tyrian dye, practising chemistry, though ignorant of its very narme, despised and oppressed, and only tolerated when he furnished Religion with her trappinn ${ }^{\circ}$ s or War with arms. Thus the growth of chemistry was slow, and by reason of its backwardnesa it was longer than any other art in ridding itsclf of the leading-strings of magic and astrology. Practical discoveries must have been made many times without science nequiriug thereby any new fact. For to prevent a new discovery from being lost there must be such a conbination of favourable circumstancea as was rare in that age and for many aucceeding ares. There must be publicity, and publicity is of quito recient growth; the application of the discovery must be not only possible but obrious, as satisfying some want. But wants are only felt as civilisation progresses. - . o or is this all; for a practical discovery to become a scientifio fact, it must serve to demonstrate the error of ono hypothesis, and to sugcest a new one, better fitted for the synthesis of existing facts. Int old belicfs are proverhially olstinate and virulent in their opposition to newer and truer theories which are destined to eject and replece them. To aum up, even in our own day chemistry rests on a less sound basis than either !hyaics, which hud the advaitage of originating as late as the 17th century, or astroiiumy, which dates from the time when the Chaldean shepherd had sufficiently provided for his daily wants to find lcisuro for gazing into the atarry heavens.
After this generai introduction we may now proceed to consider the subject in detail under the following heads:First, we will cast' a rapid glance at certain cosmologies and philosophical systems, in order to bring prominently before the reader those points which throw light on chemical theories. Secondly, we will consider alchemy at the moment when it ceased to be purely religions and began in independent existence; that is to say, during the 3 d and 4th centuries A.D., and in that city which was the battlefield on which the various philosophical and religious creeds of the East met. In the fierce struggles which ensued, in the strange alliances which they there made, we shall find them, by their mutual recriminations, involuntarily revealing to us their hidden secrets. As the darkness of the middlo ayes approaches, we shall follow our eeience in its journey to

Arabia; from Arabia we she!! trace it back to Europe, and hear it taught with stammering lips and feeble tonguo by subtile or solemn doctors. We shall attempt to analyse its ambitious aspirations and its barren performances. During tho Renaissance we shall seo it at its zenith, inspired by a mad enthusiasm which was near akin to gonius, an enthusiasm which gave birth to mediciue and modern chemistry. Lastly, in the 17 th and 18 th centuries we shall see it degenerate into pure charlatanism. In conclusion, ws shall attempt to recover the few grains of pure ore which may bo extriacted from its brokeu alembics.

I. Cosarogonies and Pullosopures.

In India, as is wen known, tho contempt in which the caste of ätizans was held was still farther increased by the tendency of religion to consider birth and life, and the actions and desires whick are part and pareel of man's life, as an unnixed evil Consequently, outside the workshop, practical chemistry can have made but little progress. Nevertheless, among the priests of India, as in later times in Europe, we find the ordeal of fire and of serpents commonly practised. It follows that the Brahmins muso have possessed some chemieal seerets to enable them to kill or save those they thought guilty or innocent. These secrets, too, must from time to time have been divalged by indiscretion or perfidy, and spread beyond the temple; for we read of accused persons escaping unharmed from the ordeal, even when their aecuser was a Brahmin. But the Mussulman traveller of the 9 th century, who has preserved this curious detail, allows that the trial was in his day becoming moro elaborato and complicated, and that it was next to impossible for an accused person to escape. However this may be, it is certain that the meditativo genius which distinguishes the race had, even before they conquered the yellow and black races, led theso first speculators to certain conceptions which have an important bearing on the present subject. Some had conceived ether as composed of distinct atoms, others imagined an ether decomposing itself into atoms by the free play of its own forees. These two theories, the one dualistic, the other unitarian, strangely foreshador the discoveries of modern dynamics. We find the speculators of another raco indulging tho singular fancy that they could observe in atoms what wo may call oscultations of the play of forees. This, at any rate, is the most natural explanation of the term nodes by which the Phenicians designated atoms. The Persians, who considered the first tree and the first bull as the two ancestors of man, discovered in physics generally two antagonistic principles, one male and ons female, primordial fire and primordial water, corrosponding to the good and bad principles of their religion. Over all creatures and all things there were presiding genii, Tzeds or Feroners. They had already formulated the paral. lelism between the Sephiroth, the empyrean, the primum mobile, the firmament, Saturn, Jupiter, Mars, Sun, Mercury, Moon, and the parts of the body, the brain, lungs, heat, \&c. In this correspondence between the heavenly bodies and the human frame which tho ancient Persians laid down, and the Hindu belief in the peregriuation of sinful, souls through the animal, vegetable, and even the mineral world, till, by these pilgrimages, they at last won absorption into the Deity, or Moncti, we have, in their original form, the two fundampntal beliefs of alchemy.

The Greeks, unrivalled as they were in poetry, art, and ethics, made little way in occult philosophy. The Greek intellect, precise and anthropomorphic, with no leaning to transcendentalism, was a protest against the beldness of oriental. netaphysics. Thus they contented themeelves with inventing a strange gamut of deities corresponding to different types of men. This gamut-Jupiter, Salum

Apollo, Mercury, Mars, aud Venus-was afterwards conlpleted in the cabala by the addition of the moon, typifying the phlegmatic character of northern races, and forms a connecting link betwcen astrology and alchemy, by establishing a double correspondence between planets of the same name and metals. The whole was systematised in the works of Paracelsus and Böhme, and called the theory of signatures. Whether the Greek philosophcrs taught that the principle of all things was water, like Thales, or air, like Anaximander, or air and water, as Xenophanes, or the four elements, earth, air, fire, and water, as the school of Hippocrates, the tendency of Greek speculation was to estabiish those profound distinctions which resulted later in the theory of the four elements, the four humours, \&c., which the disciples of Aristotle held. Hippocrates, for example, thought that if man was composed of a single element, he would never be ill; but as he is composed of many elements, complex remedies are required. Thus Hippocrates may be called an anti-alchenist ; and though the theory of the four elements reigned supreme throughout the middle ages, it easily lent itself to the search for the philosopher's stone and the universal panacea, because the oriental idea of the transmutation of elements, from the time when the various systems of the East were syncretised at Alexandria and received their final development in Arabia in the writings of Geber Rhasis and Ibn Sina (Avicenna), was a universal article of belief. But even in the palmiest days of Greek anthropomorphism there was a gradual infiltration of Asiatic ideas, partly through the mysteries of Eleusis, partly through the doctrines of certain philosophers, who were by nature susceptive of barbaric influences. For, besides Greece proper, there was a second Greece in Asia Minor and a third in Italy, not to mention the Pelasgic tribes.who adhered tenaciously to the primitive ideas of the race.

Among the Greek philosophers, then, who appreciably infuenced physics, chernistry, and physiology (the three sciences were then one), we may notics in particular-1. Heraclitus of Ephesus, surnamed the "Obscure." Maintaining that fire alone was the principle of all things, he regarded generation as an ascending road, i.e., a volatilisation; and decomposition as a descending road, i.e., a fixation. Here we have the first idea of Jacob's ladder or "Homer's Chain" of the alchemists. 2. Empedocles, who is indeed the first who mentions the four elements; but be subordinutes them as complex products to his primordial indestructible atouns, which were animated by love and hatred. 3. Democritus, who, investing these atoms with a movement of their own, proceeds to construct the universe by shocks and harmoniés of shocks or vortices. 4. Anaxagoras, who saw "the all-in-all" (Aristotle, Nct. 4, 5), the infinitely great universe in the infinitely emall atom, and ingeniously applied the principle of analogy to unravel the tangled skein of ancient science. 5. Aristotle, who added to the four elements a fifth, cther, eternal and unchangesble, itself the primum mobile (Arist., Ue Colo, 1, 2). In the 4th century A.D., Nemesius, bishop of Emesa (the modern Homs, on the east bank of the Orontes), is one of the most distinguished representatives of Alexandrian syncretism. A single quotation will suffice to show that the idea of the transmutation of metals, from the time when Platonism, magic, and nco-Christianity were combined in a species of eclsctic mysticism, was regarded as an article of orthodox bélicf :-"To prevent the destruction of elements, or things which are compounded of elements, the Creator has wiscly ordained that elements should be capable of transmutation one into the other, or into their componont parts, or that their component parts should he resolved sgain into their original elements. Thus the perpetuity of things is secured by the continual succession of these reciprocal generations." This statement of the pious bishop is all the moro weighty, inasmuch as the author of The Nature of Man was only treating of paychology and physiology. The study of gnosticism would carry us too far; and one more quotation from this work, which has long fallen into unmerited oblivion, will prore to what an extent the most scientific theories of this day wero tinged and vitiated by mysticism :- "Porphyry, in his treatise on seusation, tells as that vision is produced neither by a cone nor an image, nor any other object, but that the mind, being placed en rapmort with visible objects. only sces itaelf in these objects, which are nothing else than itself, seeing that the mind embraces everything, and that all that existy is nothing bur the miucu. which contains bodics of all binds."

Auother step, and we are laudud in realisu. It la not surprising, then, to find that the alcheutists, while working in the laboratory, aspired at the same time to find the moral quiutessence and verify the ductrines of revealed religion. For mysticisı in theory it nothing but a reaction against the positivism of reason and bcience the mystic, dissatisfied with these, seeks in uature a reflectiou of his inner feelings. 'And iu practice mysticisur rests on confusions or cxuggerations, like those of Porplyyry, or soule such dictun as the oue rrhich, Nemesius quotes with the following uncritical conmeat:- "Nou, since Porpliyry asserts that there is but one reasoniug soul for all things, he is right in saying that the soul secs iteelf in everything."

Such visionaries, though they may to a certain extent liave observed, were not likely to experiment. Thus, at Babylon, where similar theories prevailed, the college of philosophers was dividud into tliree classes, the "Hhartumin," or soothsayers; the "Asaphim," who were more agriculturists than zoologists, more zoolugists than physicists, more physicists thau chennists ; the "Meclary hiu," or doctors, who were cousulted by the great, as often to sid thom of their enemies as to cure their families and dependants; lastly, the "Chasedim" or Chaldeans, properly so called ; i.e., the astrouonury or astrologers. In this classification of sclences es pursued at Bahylon by á peculiar zaste, chemistry was little regarded. Scienco was the monopoly of a privileged class before it becarne the common property of the human race. A class is sure to cling to a monopoly; an individual is obliged by his feelleucss to inupart his knowledge to others.
Iu Egypt the doctrine of the Palingenesis was symboliscil "by the Scarabæus, which suggested to St Augnstine the followiug strange comparison:-"Jesus Christus bouus ille scaralæus meus, non ca tantum de causa quod unigenitus, quod ipsemet sui auctor mortalium speciem induaerit, sed quod in hac fæce nostra sese voluturit et ex ipsa nasci homo volucrit."
These ideas, which St Aogustiue borrowed from the religious beliefs of Egypt, were adopted hy certain alchemists; and Egyut, which saw in the Scarabæus "the Father, Man, a world of trial, a Iadder whereby fallen souls may rise," justly claimed to bs the birthplace of ancient chemistry, to which it assigned a peculiar rauk, calling it the "sacred art." But although certain EEyptian 1,ricsts may have spread the report that they owed their enormous fortunes to their knowledge of chemical sccrets, this veneration prodnced but few practical results, It was, however, this report which made the emperors Severus and Diocletian issuc an edict that all their magical books should be burned.

תI. The Sacred Art.

Paganism, at the tine when it rias engaged in its last struggle with Christianity, bad long ceased to be exclusively Greek or Roman. It had assimilated Mitluratic, Chaldean, and Egyptian mysteries, and eveu allied itsclf to a certain extent with the Helleno-IIebraisns of the Cabala. It was not likely, then, to reject what purer tines would have regarded as an utter prufanation. The narrow ground on which the battle was fought, the intellectual affinities between such men as St Basil and the emperor Jutian rendered the struggle as desperate and sanguinary as any struggle can be when the combatants are only rival creeds. The sacred and divine art (τ ' χ 〇 η Ocia
 mysteries which paganism derived from the dim religious light of the temple. But we may presume that the sacred art of the Alexandrians was no longer the same as that of the ancient Egyptians, that their Hermes was not the Hermes of Egypt, that the pseudo-Democritus is not the true Democritus, that Pythagoras, as rotouched by Iamblicus, is not the original Pythagoras. No epoch was so full of forgerics as the 3 d and 4 th centurics $\Delta . D$. ; and these forgeries were in one sense fabricated in good faith. An age of eclecticism is as eager for original ducuments as a parvenze is for a cuat of arms or a gellealogical trce. These forgerics were no obstacle to human progress; but in an age when the learning of Esplpt was the fashion, it was natural that Persian, Jewish, aud Platonic doctrincs should be tricked out in an Egyptiau dress. One of the masters of the sacred art, Alexander of Aplirodisias, invented the term chyics (χ viкúv, froru $\chi^{\epsilon} \dot{\omega}$, to pour, $\chi^{\mp \cdot \epsilon} \omega$, to fuse or melt), to describe the operatious of the laboratory: Hence the word chemics, a word unknown in the 4th century, and only popular some centuries later The reason is, that the
true etymology of tho word chemic is logical, and had therefore no charms for the psychological spirit of the age. Later on, when men began to reflect that the ancient namo for Esypt was Cham or Chemia, because, according to Plutarch, its soil was blaek like the pupil of the eye (Xquetia rov dod $\dot{0} \dot{\lambda} \mu \mathrm{ov}$), it flattered the chemists to call chemistry "the art of the ancient Chemi." Hence from a false derivation the art received a fresh impulso.
The discovery of the principal manuscripts of tho sacred art we owe to the labour of M. Ferdinand Hoefer. We can take no safer guide than the judicious and profound author of the History of Chemistry in investigating the delusions into which a master of the sacred. art was most likely to fall.
"Let us forget for an instant the advances which this science bas made aince the 5th century. Let ne fancy ourselves for a moment transported to the laborstory of one of the great masters of the aacred art, and watch es neophytes zome of his operations. 1st Experiment. - Some common water is heated in an open vessel. The water boils and changes to an acriform body (steam), leaving at the bottom of the vessel a whitc earth in the form of powder. Conclusion-water changes into air and earth. What objection could we make to this inference, if we were wholly ignorant of the aubstances which water holds in solution, and wnich are, after craporation, deposited st the bottom of the ressell $2 d$ Experiment.-A piece of red-hot iron is nut under a bell which rests in a basin fulf of water. The water diminishes in volume, and a candle being introduced into the bell sets fire at once to the gas inside. Conclusion-water changes into fire. Is not this the natural conclusion which would present itself to any one who was ignorant that water is a comppsite body, consisting of two gases, one of which, oxygen, is absorbed by the iron, while the other, hydrogen, is ignited by contact with the flame? $3 d \mathrm{Ex}$ periment. - A piece of lead, or any other metal except gold or ailver, is burned (calcined) in contact with the air. It immediately loses its primitive properties, and is transformed into a powder or apecies of ashes or lime. The ashes, which are the product of the death of the metal, ara sgain taken and heated in a crucible together with some grains of wheat, and the metal is seen rising from its ashea and reassuming its original form and properties. Conclusion-metals are destroyed by fire sud revivified by wheat and beat. No objection could be raiszd against this inference, for the reduction of oxides by means of carbon, auch as wheat, was as little known as the phenomenon of the oxidation of metals. It was from this power of resuscitating and reviving dead, i.e., calcined metais, that grains of wheat were mada the aymbol of the resurrection and life eternal 4th Experiment.-Arcentiferous lead is burned in cupels composed of ashes or pulverised bones, the lead disappears, and at the end of. the operation there remains in the cupel s nugget of pure ailver. Nothfug was more nstural than to conclude that the lead was trangformed into silver ; and to build on this and analogous facts, the theory of the transmutation of metals, a theory which, later on, led to the aearch for the philosopher's atone. 5th Experiment.-A strong acid is poured on coppier, the metal is acted upon, and in process of time disappears, or rather is transformed into a green transparent liquid. Then a thin plate of iron is plunged into this biquid, and the copper is seen to reappear in its ordinary aspect, while the iron in its turn is dissolved. What more natural than to conclude that iron ia transformed into copperi If instead of the solution of copper, a solution of lead, ailver, or gold had been employed, they would have held that iron was transformed into lead, ailver, or gold. 6th Expcri-ment.-Mercury is poured in a gentle shower on melted aulphur, and a aubstance is produced as black as a rsven'a wing. This substance, when warmed in a closed vessel, is volatilised without changing, and assumes a brilliant red colour. Must not this carious phenomenon, which even science in the present dsy is unable to explain, have atruck with amazement the worshippers of the sacred art, the more as in their cyea black and red were nothing less than the symbols of light and darkness, the good and eril principles, and that the union of these two principles represented in the moral order of things their God-uiniverse. 7th and last Experiment.-Organic substances are heated in a atill, and from the liquids which are removed by distillation and the essences which escape, thera remains a solid residuum. Was it not likely that results such as these would go far to establish tha theory which mada earth, air, fire, and water the four elements of the world?"
But neither M. F. Hoefer's explanation of the eppearances which the first master of the sacred art mistook for fact, nor the metaphysical theory of Nemesius, will enable us to understand how Zosimus the Theban, in the very infaney of the art, succeeded in discovering in sulphuric acid a solvent of metals: in assigoing to mercury (Wlich he
called "holy water") its proper function, a function which succeeding generations of alchemists so monstrously exaggerated; and fually in disengaging from tho red oxido of mercury oxygen gas, that Proteus which so often eladed the grasp of the alchemists, till at last it was held fast by the eubtlo analysis of Lavoisier. For wo must remember that solid metals wero considered as living bodies, and gases as souls which they allowed to eseape. Of all the ingenious inventions of tho Jewess Maria for regulating fusions and distillations, the only one that has survived is the Balneum Maric. The principle it depends on, viz, that the calcination of violent heat is less powerful as a solvent or component than the liquefaction produced by, gentlo heat, was afterwards reasserted by tho Arabian Geber, and adroeated by Francis Bacon. M. Hoefer imagines that Maria the Jewess discovered hydrochloric acid, the formidable rival of sulphuric acid. Sueceeding writers on the history of chemistry have remarked that the bandages of Egyptian mummies were not more numerous than the mysteries of the sacred art, and the injunctions not to dirulge its secrets, "under pain of the peach tree," or, to trauslate into modern English the language of an ancient papyrus, under pain of being poisoned by prussic acid. We should be wrong in thinking that all theso allegories had no meaning for the initiated, and that this mystical tendency of the sacred art arrested its growth at starting. Rather the truth is, that these myths, which at a later stage prevented the free development of alchemy, at first Eerved to stimulate its nascent powers.
Modern eritics have pronounced some traditional sayings of Hermes Trismegistus to be apocryphal, but they have not given sufficient weight to the remarkable circumstance that it is precisely because theso sayings are a medley of the cabalistic, gnostic, and Greek ideas with which Alezandria was then seething, that the seven golden chapters, the Emerald Table, and the Pimander obtained their authority-an authority they would never have possessed had they been only a translation of some obseure Egyptian treatise. No Egyptian priest could havo written a sentence like that we find so often quoted as an axiom by subsequent alchemists:-"Natura naturam superat; deinde rero natura nature congaudet; tandem natura naturam continet." Plato adds (not the disciplo of Socrates, but a pseudo-Plato in the famous collection called Turba Philosophorum)-"continens autem omnia terra est." For, translated into modern language, this means that thero may indeed be in this universo things which pass our intellectual ken; but that all that exists, all that is produced by the etrife and changes of the elements, all, in a word, that appears to us supernatural, is really natural. That this is his meaning we may gather from the singularly bold comment which Plato bimself adds, and which we may thus translate-" Everything, even heaven and hell, are of this earth." It is true that the alchernists failed to draw any very definito conclusions from this fundamental axiom. But if wo consider it carefully, we shall see that this earliest doctrine of the sacred art, which was now rapidly passing into alehemy, by thus excluding tho eupernatural, was making: a great advanco in the direction of pocitive science. This' early advance was, however, counterbalanced by an early error (which itself aroso from a noble ambition), viz., that art is as porerful as nature. The Emerald Tablo begins with a sentence po less celebrated than that quoted above:"This is true, and far distant from a lie; whatsoever is below is like that which is above, and that which is above is like that which is below. By this are acquired and perfected tho miracles of tho ono thing." To understarid the importance of this emphatic and categorical exordium, we must forget the sharp distinction we now draw betreen
art, science. and literature; we must think of that foolishness of which St Paul speaks, by which he sought to save those that believe, because of the insufficiency of human reason. The seckers for the philosopher's stone were in the same case. In the absence of clear facts and just notions, reason for them was not sufficient. Thus it was that they and the masters of the sacred art, and after them the Arabs, and in later times the alchemists, one and all listened eagerly to the "foolishness" of Trismegistus's doctrine, which, in a modern form, would run thus: "We go further than the Zohar-the sacred book of the cabala -which says that as soon as man appeared, the world above and the world beneath were consummated, sceing that man is the cromn of creation and unites all forms. We go further than the Zohar, which says in another place that the lower world was created after the similitude of the upper world. We perfect the doctrine of a microcosm and a macrocosm, and declare that there is no such.thing as high or low-as heaven or earth, for the earth is a planct, and the planets are earths; we affirm that the chemical processes of our alembics are similar to those of the sidereal laboratories. All is in all. Everywhere analogy infers the same larss." From analogy to identity was an easy step for the theorists; and in the full light of the 19th century we find Hegel a deroted admirer of the mystic Böhme falling into this pitfall If the spectrum analysis had been known, the Alezandrians, the Arabs, and the alchemists would have been able to verify and limit the sweeping gencralisation by which they established a vast system of correspondencies between the three worlds, the physical or material, the rational or intermediary, and the psychical or spiritual. Between the heavens and earth and man's nature they were ever seeking to discover affinities, and ignoring differences which would have been fatal to their system. I'hus, according to them, even heaven-the abode of spirits-was partly physical ; and even in the mineral world there was a spiritual elementviz, colour, brightness, or, in their language, tincture. Neither Linnæus, Berzelius, nor Cuvier lad yet classified living beings and things. The distinction between the animal, the vegetable, and the inorganic world was unknown, and indeed it was impossible that it should be known. The alchemists sought for physical conditions in the invisible and spiritual world, and for a spirit even in stocks and stones. This explains the magic which they found in nature,'and which they tried to imitate by their art. But to establish this harmony between heaven, man, and nature, they required some fixed standard or scale, for in their eclectic system they were bound to find room for Pythagoras. Where was this scale to be found In the heavens; for there must be the sphere of true music. Hence arose chemical, medical, and physionomical astrology. (See Astrologr.) Hence the sun, which vivifies all nature, the most active heavenly energy, or rather beingfor with them everythingadad life-in the oorrauia, or marriage between heaven and earth, represented the male principle, ita ut coolum agat et terra patiatur; and appearing in all terrestrial objects, since everything is penetrated by heat, fire, or sulphur, presided principally over the generation of gold-his image or antitype-in the bowels of the earth. Hence, too, the moon represented silver, Venus copper, Mercury (the planet and the god) the metal of the same name, Mars iron, Jupiter tin; while to Saturn, the most distant and coldest of the planets, lead, the most nnsightly of metals, was dedicated. It was an old belief that there was a time when gods and men dwelt together on earth; a belief, moreover, for which they could quote chapter and rerse. Was it not mritten râotv oupaviots konìv yaiav? Further, seeing that there were three worlds, it followed that there were three hearens.
three suns, and three golds. For spirits still engrossed with matter the philosopher's stone meant the search for riches-the gold of the third world. For other spirits which belonged to the first world it signified the healing art-the preservation of humanity by means of the universal panacea and a universal theory of morals. Hence two rival systems, the first of which culminated in the great doctor Paracelsus, the second in the great Illuminato Postel. Did not Dante, the bitter foe, not of the science of alchemy, but of that miserable search for gold-for the riches of this world-which, with keen irony, he calls Peltro (tin whitened by mercury)-dill not Daute himself write his great poem in order to briug back humanity to the right road from which it had strayed (suia), misled by those who should have been its true guides, the pope and the emperor? For the symbolism of those ancient masters included an alchemy of morals as well aswin alchemy of medicine and metallurgy, though the first was even less known and less appreciated.

Recurring to our former illustration, it was this "foolishness" of St Paul-this, divine madness-which inspired the Alexandrians, the Arabs, Roger Bacon, Albertus Magmus; and the host of anonymous alchemists of the middle ages: such was the madness which cast a ray of genius over the daring spirit of even a second-rate author like Raymond Lully, which sustained Robert Fludd, Paracelsus, and Postel, who tried to find the universal panacea in universal peace. The fundamental axiom, the stronghold from which these terribly logical madmen were never wholly dislodged, may perhaps be summarised in a single sentence. . The saying of Galen, in natura nihil planè sincerum, was adopted by his implacable adversaries:Nature, they said, is in appearance an illegible scrawl, but when deciphered there will be found a single element, a single force, to separate and reunite, to produce decay and growth-knowledge is power. To know the process of generation in this triple universe, wherein one world resembles another; to know by its signatures this universe, which is a living organism in the eyes of all alchemists (save indeed Jacob Böhme, who, anticipating Hegel, regarded it as a mighty tree); this is the first step towards counterfeiting nature. Monstrosities are the production of diseased metals (really alloys), which, if properly treated, may be cured, and will turn to gold, or at least silver. The second stage in this imitation of nature is to obtain by tincture or projection solid or liquid gold-the cure of all evils. Finally, to surpass material and rational nature, this is the crowning end. For God delegates his power to the sage.

Alchemy in Arabia.-How the sacred art passed into Moslem lands it is hard, from dearth of evidence, to say. Modern criticism now does more justice to the part which Arabia took in the accumulation of scientific facts, and in the scientific theories which we find in the books of Rhazes and Geber. It is certain that in their treaties with the European Greeks of Constantinople the Arabs always stipulated for the delivery of a fixed number of manuscripts. Their enthusiasm for Aristotle is equally notorious; but it would be unjust to imagine that, in adopting the Aristotelian method, together mith the astrology and alcherny of Persia, and of the Jcws of Mcsopotamitr and Arabia, they were wholly deroid of originality. On the other hand, we must not understand Arabia in the ethnological sense of the word, but as signifying an agglomeration of rarious races united by a commen religion. Thus Djafar (who lived in the middle of the 8th century), better knorn to us as Geber, was a Sabæan. Aricenna, born in 97S, was a native of Shiraz. The remarkable geographer and geologist Kazmyny (genlogy was then a part of alchemp), derived his name from his birthrlace، Casbin, in

I'visia. Mnhammet-ben-Kakurla; so colchated in medi. aval Europe under the name of Thazes, was also a Persian. In Spain the Jows of the famous school of Saadia and Juda Halery exercised considerablo induence over the neademy of Cordova. Lastly, European historians have systematically exaggerated the ignorance of tho Arabs beforo the time of Mahomet and their intoleranco after thn establishment of Moslemism, either from the zeal which prompted them to carry on a sort of literary crusade in honour of Christinnity, or because in the 18th century they directed against Mahomet attacks which were intended for Christianity itself.

Alchemy received from the Arabians many significant titles. It was the science of the key, because it opened all the mysteries of creation, physiology, and medicine ; it was the science of the letter M (misam is tho Arabic for balance), because by means of the balance the gain or loss of all bodies could be determined, even while undergoing chemical combinations. Later on, as is well known, it was by a rigorous and obstinato uso of the balance in the hands of Priestley, Cavendish, and Lavoisier, that positivo chomistry was founded. Lastly, Rhazès gave to the science of the philosopher's stone a name which plunges us again into the mythological ages of chemistry. He called it the astrology of the lower world.

The discoveries of Geber as a chemist do not form part of our oubject; but wo may mention, in passing, tho infernal stone, the corrosive sublimate, tho exact process of the cupallation of gold and silver, and three sorts of distillation by evaporation, condersation, snd simplo filtration. In another direction Geber, by reinventing aqua forlfs, and bj discovering ammoniscal salts for his aqua regalis, lain the foundation both of alchemy and chemistry. The salt of ammonia, so easy to volatilise, was the source of many baseless dreams, as is proved by its various names-anima sensibilis, aqua diworum fratrum ex sorore, cancer, lapis angeli conjungentis, \&c. . Geber believed in the parallelism between metals and planets; he thought that metals were all equally composed of mercury, arsenie, and sulphur, and that in the descending sesle from gold to lead, metcury;' arsenic, sud sulphur wero each present in a greater or less degree of purity in propartion to the colour and quality of each metal. Later ou, the addition of the four elementa-heat, cold, dryness, and moisture-compliested still more the reasonings by which the alchernists sought to prove that the transmutation of metals was in the power of sny man who imitsted nature-i.e., perfected the imperfect metal by correcting its excess of heat or moisture. Geber did not thrink that an operation of the laborstory could counterfeit the natural work of purification, which demanded a thousand years. But with him moisture played the same part as phlogistod in Stahl's system. In other words, the philosopher to whom sll succeeding searchers for tho philosopher's stone swore allegianco was contented to formulato his theory without considering the possibility of putting it in practice. Ile was an alchemist indeed, but no gold-sceker. This forcrunner of positive seience foressw the nart which the gases wonld be found to play in the composition of bodies; he called them spirits-a figuro which took atrong hold on the imagination of Geber, as well as of the masters of the sacred art, and which wos formalised by the alchemists of tho midute ages. Rhazes, who re-invented sulphuric scid and aquar vito, was par cxcillences doctor The same remark applies to Avicenna, whoso works aro a methodicyi, but not very prolound, systematisation of the current ideas and science of his day. Artephius was a cabalist, as his theory of tho spparent sud latent parts of man's naturo shows. Tho author of The K'cy of Wisdom sad A Secret Book on the Philosopher' . Stone was the reputed possessor of an elixir gitco. We do not know whether this was potable gold or s quintessence of all the active elements of the three kincdoms. However this may be, this mysterious alehemist, who lived about 1130, was the inventor of soap, snd, what is of more importance for our subject the promoter of a new interpretation of Jacob's ladder or 1Iomer's chain. Minerals, lre said, come from the prinitive elements, plants from minerals, animisls from plants, and as esch body is resolved into another bolly of the order immediately below it, animals become vegetalules sud vegetables minerals. We seo that in this view of the interdependeare of the three kingdoms there is as much truth as error. With Calid, tho author of the Book of the Threc 1 Words and of the Book of the Secrets of Alchemy, the parallelism between the metals and planets tikes a retrograde s:ep towards astrology. This Calid, a soi-disant king of Egypt, held that before engaging in any operation of slchemy the stars ought to ho consulted. 'This recommendation was literally followed by tine thsumaturgists of the middle ages and the Renaissance. The
cffect was fatar; 1f, wheta Calid or one of his sehool baw the metals obstinately reflnse to bo purificd in his crucille, he did not wait fur a Japply conjunction of constellations above in order to try his chance again witl tho operations of inforior astrology.
The East, when it accepted from Aristotle the theory of form sud matter, invested it with a signification of its own never dronmed of by tho Stagyrite, and invented, as it were, an Arabian Aristotlethat is, the Aristotle of the middle ages. Not only at Alexandria had tho students of the sacred art evolved the theory of the trans: mutation of the four elements (Cicero assigns the doctrine to the Stoics), but in the East the trabalators of Aristotle added to the theory \& corollary more important than the proposition itself, viz., that every body by its form and natursl motions indicates its sonl, its natural properties, \&e.; that the resemblanco between the externsl appearance of things and beings indicates their naturai likenesses, \&c. The idea of destiny, which all nations who sceeptod tho doctrine of the Logos expressed by some term or other analogous to tho Latio falum (what is spoken), Mahomet translated by hia famous phrase nectoub (it was written). We find a Turkish writer, the declared enenty of astrology snd elixirs, Nabi Eitend?, in his remsrkable book, Coutsels to my Son, Aboul Khair, ssying that hesven is covered with a writing that only God can read, and seeking what better tho eyes, the eyehrows, the mouth, \&c., form to find therein the secret of their better use. Like ene of the Tal. mudists, the obscure Kallir for instance, he decompacs tho aamie Mahomet in order the better to offer tho prophet, sq it wore, the quintessonce of praise, more worthy of God, who in that sacred name, as in sll terrestrial things, has written st lesst ons letter of tho Word which will servo as s koy to open sll their hidden vitues. By pursuing so saalogous direction, mediævslispa, and more appecially the Renaissance, introduced now subtleties into the astro. logical branch of alchemy - tetragrams, pentacles, and other mysterious characters and figures.

It is not surprising, then, to find thst Nabl Effendi, who tived in the second hall of the 17th century, can produce no other reasons for dissnading his son from joining the slehemists than the fact thast some were poor, others quacks, and, as the most importsat ground of all, that God had declared his wrath against those who dare to imitate his works. Indeed, the peculisr symbolism of the varions nations of the East hat becn broken up by revolutions and conquests, and the disjccta membra again reunited, so as to form a wonderfnl phantasmagoria of ideas and imsges-a sort of scientific Arsbion Nights.

III. Alchemy of the Mindle Aoes.

Tho caro wo have taken to note down at the moment of its birth each of the ideas which influenced alchemy, allows us to sketch more rapidly the history of its decline and fall. Albert . Groot, commonly krown as Albertus Magnus (1193-1280), revived the theory of Geber; and, in spite of the tendencies of the time, entertained the same doubts as his illustrious master on the pessibility of trans. mutation. He is the first to speak of the affinity of bodics, a term he uses in reference to the action of sulphur on metals. He gives the savans of the day the sage advice not to take service with prinees, who are sure to treat as thieves those who do not succeed. And, indirectly, he warns princes that philosopher's gold is only tinsel. Beginning with nitric acid, which be calls prime water, and so on, through a regular series of secondary, tertiary waters, \&c., he proposed a method for dissolving all metals. Roger Bacon, while opposing magic, calls oxygen aer cibus igris, and regards tho elixir as a substitute for time, that agent of which nature takes no account. Gold is perfeet, because nature has consummated her work. But Roger Bacon seems to have turned his genius principally to physics and mechanism. St Thomas Aquinas, in his theological writings, forbids the sale of alchemist's gold, and in his special treatise on the subject unmasks an imposture of the charlatans of the day, who pretended to make silver by projecting a sublimato of white arsenic on copper. Further, Aquinas, by reducing the primitive elements of metals to two, revives and corroborates the theory of Galen and Albertus Magnus. About the same time we find a pope, Join XXII., and a king, Alphonso \mathbf{X}. of Leon and Castile, occupying themselves with alchemy. But the pope in a well-known bull denounced all those searchers for gold "who promised more than they could perform;" another proof that alchemy and the search for gold, though distinguished by
the true alchemist, were.confounded by many adepts. It is evident that the science, as far as the seeker for gold was concerned, was appronching the times of king John and Philip the Fair, who found in unscrupulous charlatans abettors in their debasement of the currency, and that for disinterested alchemists those evil days were at hand when, disgusted at attaining no practical result, the most serious of them sought in the physiological mysteries of generation, in the Adam and Eve, the red man and the white woman, of the first clapters of Genesis, what they failed to find in Rhazes, in Geber, and the Arabian Aristotle. The science was still called chemy. It was as a compliment to the Arabian masters, who were still quoted side by side with Genesis, that they added to the word the Arabic article al. The popular etymology of the day was likewise Arabic, or, more correctly speaking, Senitic; the Hebrew chom or the Arabic cham signified heat. Hence their furnaces for heating, the alembics for modifying heat, and the BainsMarie for imitating the temperature of warm blood; for they could only proceed by analogy. Nevertheless, the great men of the day were the alchemists. The boldness of their actions, the eccentricity of their genius, prove it.

Few novels are as interesting as the story of Raymond Lully (1235-131.5). He began life as the passionate lover of the Lady Eleaner of Castello. He was cured of his passion by the lady herself, who discovered to him the ulcer which was eating away her breast. At her desire he consecrated himself to God, to the service of humanity in general. and especially to the conversion of Mussulmans. Christianity, in the mouths of the European disciples of Geber and Rhazes, was better adapted than it now is for converting infidels, whose knowledge it respected while deploring all the more their errors. In his eightieth year Raymond Lally died in sight of the island of Minorea, from the consequences of a stoning he bad received at Tunis a few days before while preaching the gospel. This was on his third mission, and he did not hide from his friends that he sought the crown of martyrdom. He had invited the support of all the princes of Eurepe, and in particular of the kings of France, England, and Castile. Alchemy; indeed; with him seems to have been mainly a means of recommending himself to these kings, and at the same time a search for the panacea But his trust was placed much more in his rheteric, which he borrowed from the cabala, in his oriental eloquence, and his Christian faith. By the number of conversions be made at Algiers, at Tunis, and at Bugia, where during bis second royage he was enatched from imminent martydem by his friends among the converted Mussul-raans-that is to say, in the very strongholds of Islamism-he succeeded in demonstrating that his idea of uniting all worshippers of the true God in a common faith was not chimerical. Lully'e principal success was with the disciples of Averroes; and no one who reflects will be eurprised at this. As the moral difficulties of missions were less than they are now, Bo the practical dangers were greater. This too peeds no explanation.

Raymond Lully's works on alchemy are hopelessly obscure, notwithstanding elucidations, compendiums, vade-mecums, and a certain dialogus demogorgon, which, if the title is to be believed, Lullianis scriptis mullam proclare lucem adfert. Nor need we wonder at this. Eirenzus Philalethee, the pseudonym under which some English adept, whose real name has not been discovered, wrote, states positively that he has learned nothing from Raymond Lully, adding at the same time a curious reason-"Some who are no adepts give more instruction to a beginner than one whom perfect knowledge makes cantious." Eirenæus is fond of quoting Bernard of Trevisa, who, he tells us, has given him, more especially in his letter to Thomas of Bologna, "the main light in the hidden aecret." But of all writers he gives the palm to Sir George Ripley. Ijernard of Trevisa, whom he mentions, spent a long life and a conaiderable fortune in romantic travels, in the purchase of books, and in the pursuit of chemical experiments. When depressed and weary with chasing shadows which were ever eluding bis grasp, he used, as a pastime and relaration, to read the Turba Philosophorum, or the Oreat Rosary, just as Don Quixote wenld read the romances of chivalry. At last, when sevents-five years old, the good Pernard, for so the adents called him, theught he had discovered the secret, -at least the joy of what he considered a real success served for a while to lull his restless energies. His letter to Thomas of Bologna shows no ordinary man. "Dissolutions of this sort," he writes, "by acids or aquafertis, are nol the true foundations of the art of transmuting metals; but rather the impostures of sophistical elchemists, who think that in them resides the secret of that sacred art. They affirm that they produce dissolutions (solutiones), but what they can'never do is to produce the various kinds of metals in
raetr perrector; decause motala wlicn dissolved by corrosives do not renain in the same proportion and original form as they do when dissolved by mercury, which may be truly called the water of metals. Bodies dissolved by mercury are not decomposed (separa. buntur); their nature remains bidden in mercury till they fill up its intervals (usque ad sui,rcinspissationem). Dlercury contaius iuteratices (latentia), and therefore metals can lie hidden in mercury." He then goes on to compare the part that mercury plays in amalgams to that of water (simplex aqua) in vegetahle and animal structures. He is well acquainted with what the French now call l'eau de composition; but, as usual, he pushes his analogies too far. -We may remark in passing that it was lis opponents the alchemists who, by the discovery of their aqua fortes, previded modera chemistry with one of its most powerful agents.

In speaking of Bernard, we incidentally hit apon a word which exactly characterises mediæval works on alchemy-they are romances, romances full of interminable allegories; they sometimes begin and always end with an invocation to Clurist and the Trinity. From time to time, amid the old abortive attempts to read the riddle of the universe, we fiud some new idea cropping op. The generation of plants and•auimals had failed to explain the genera. tion of metals; so they turned to digestion and fermentation for analogies, and though they never reached their goal, they picked ap much that was valuable on the way. The road itself was barred, and therefore to profit by their works we mast follow them into bypaths and digressions. Thas, for instance, we may study with advantage their dialectics. Whilst refuting tneir adversaries, they were gradually laying the foundations of the logic of acience. True alchemists were generally banghty and contemptuons; the mechanic often grew rich on the ecraps which the alchemist was too proud to touch. We cannot always make sure of understanding them, yet from the medley of their writings more fragments of real chemistry may be gathered than is generally supposed. There is rhythm and harmony, a ring of true genins abont the best of their works, which charms us if it does not send us to sleep with its sweet but monotonous mnsic. In reading laurent Ventura's book, De Ratione Conficiendi Lapidis Philosophici, we are tempted for a moment to endorse the strange fancy of the Dutch Rabbins. "that even if a man do not understand the language of the Zohar, he ought no less to read it; for this language, as the cabalists have written it, is a medicine for the soul."

Often what appeared a work of pure fiction (as the Roman de la Rose) concealed a treatise on alchemy; often, on the other hand, what purported to be a work of pure alchemy was a medium for heretical theology, sometimes for the ideas of Spinosa and Goethe. The times, moreover, were sad, and all could appreciate the advan. tage of a romance. It was not given to every ons to follow the terrible logic of Danstin, the contemporary of Raymond Lully, the anthor of a Rosarius, which has never been published, from which M. F. Höfer gives the following extract :-"All bodies may be divided into three classes-1. Sensible and intellectual beings (animals and men) ; 2. Vegetables; 3. Minerals. Like always tends to unite with like. Intellectual elements are homogeneous with the Supreme Intelligence; that is why the sonl yearns to be absorhed into the Deity. The elements of the body are of the same nature as the surrounding physical world; hence their tendency to unite the one mith the other. Death is then for all a moment to be desired." Dico Amen tibi, reverende mi Doctor, to borrow Bernard's favourite exptession.

After so mnch mist and fog we need a breath of fresh air. Let us pass at once, then, to the Lather of science, who repreached so bitterly the Lather of theology with only going half-way - to an epoch which witnessed the new birth of intellectual life, and to a man who was carried by the new movement into every sort of extravagance, though his errors were those of a generons and unselfish pature. Let us treat of the Renaissance and Paracelsus.

IV. Paracelsus and his Lafluexce.

Tempting as the subject is, we must not linger cither on the philosophical doctrine or the medical sjstem of this extraordinary man, for fear of eucroaching on the article Medictive or the article Paracelses. We only wish to show that he is the pioneer of modern chemists, and the prophet of a revolntion in general science. Those who only know Bacon in manuals of philosophy are nerer tired of repeating that the great English philosopher is the father of experimental science. This is true, indeed, in the sense that Bacon insisted with inexhaustible eloquence on the necessity of experimental scicnce, but it is false if t means that Bacon inaugurated modern science by personal experiments. It was this popular conception of Bacon which Liebig attacked, and he thus found no difficulty in draming up a long and crushing indictment. Bacon was
the prophet of osperimentation, and this title is sufficient to secure his fane against the abuse of modern dogmatists, who think that science increases little by little, with here a fact and there an idea, without a single pause, a single relapse or revolution. Few take the trouble to consider how far Bacou's philosophy belongs to the past; most are satisfied with cut and dried phrases about the part he played in modern seience Just in tho same way, Paracelsus, the great innovator, who thought himself even more enfranchised from the bondage of Aristotle and Galen than he really was, is dispatched with ready-made phrases, but, unlike Bacon, ho gets nothing but ridicule and abuse. Madman, charlatan, impostor-no name is too bad for him with the historians; and yet they are ioreed to confess that this impudent adventurer brought about a necessary revolution. Thomas Thomson is very severe; he goes so far as to reproach Paracelsus with declining the word tonitru. Hë would have wished, forsooth, the revolutionist of Basle to have delivered before his young and enthusiastic audience "the sober lectures of a professor in a university." Dryasdusts are fond of falling into such anachronisms ; a far truer estimato of Paracelsus has been given us by Mr Browning in the drama which bears his uame. Thers are self-deceived visionaries who are always thinking that the problem is solved, who compose elaborate romances with which enthusiasts are enchanted. Raymond Lully was one of this class. There are spirits of light who point out and trace the road along which humanity travels slowly in their wake. Bacon belongs to the first category, but has played the part of a genius of the second order. Thirdly, there are souls of fire always enveloped in clouds, from which ever and anon the lightnings of genius flash forth, who bear humanity towards a goal foreseen rather than seen by themselves, by a rough and rugged road with endless turns and windings. Such a naturo was Paracelsus. His pride was more towering than the mountains of his native Switzerland. He believed that through him a new race, tho Germans, were destined to succeed to science. The Greeks, the Arabians, and the Italians, their immediate diseiples, had had their day with him, and through him the German era was to begin. He etudied under Trithema, the abbot of Spanheim, and under his father, a distiuguished alchemist: Agrippa was his fellow-student. Afterwards he resorted to strange masters-old wives and workmen, his beloved miners, who confided to him their secrets. He was the greatest traveller in that age of scientific travellers. Lastly, he practised medicine as the doctor of the poor, and inaugurated lectures in the vulgar tongue. Van Helmont, his real successor, who inherited his goodness of nature, established clinical medicine, i.e., lessons at the bedside of the patient. Stahl, who inherited his arroganee and his love of aymbolism, developed from one of the ideas of his master the phlogistic theory, tho elaboration of which theury was for chemistry a prosperous period of incobation, while from the refutation of this theory the science may be truly said to date its birtin. Paracelsus's work, like his genius, oscillates perpetually between magic and science, but what has not been sufficiently observed is, that science invariably ends by carrying the day. If, for instance, he is giving us "the green lion," a recipe for making gold, he ends by brcalking a lance with the seekers for gold :"A wray with these false disciples who hold that this dimne science, which they dishonour and prostitute, has no other end but that of making gold and silver. True alchemy has out one aim and object, to extract the quintessence of things, and to prepare arcana, tinctures, and elixirs, which may restore to man the health and soundness he has lost." He beards the "white-gloved" disciples of Galen, and, in spite of their juleps and draugkts, asserts that alchemy is
indispensable, and that withont it there is no such thang as medical knowledge. He rejects the casy explanation of the universe by means of an entity, stigmatising it as paganity, meaning thereby a necessary consequence of paganism, which as a theosophist he holds in abhorrence. He rejects the farourite instrument of tho schoolmen, the syllogism. Nature, as he views it, is not a clear and inteligible sysiem of which the form declares the essence; no, it is mysterious. There is is spirit at work beneath the outsido shell. What is written on this shell no one can read but the initiated who have learned to separate the real and the apparent. "At the same time, everything is not aetive. To separate the active portion (the sjirit) of this outside shell from the passive, is the proper province of alchemy." Thus we see that with Paracelsus alchemy ceased to be the search for the first principles of bodies, and mado ono step in adrance towards chemistry. His inuate genius for medicine, as he boasted, but more truly his noble heart, urged him to learn a study which better satisfied his pride, but which had not the practical usefulness of medical chemistry to recommend it. The name iatrochemics marks this transition from alchemy to chemistry. A remarkable saying of Paracelsus shows us tho close eonnection between his alchemy and his medicine: "Vita ignis, corpus lignum." This nution of the importance of combustion was taken np again by Becker and his disciple Stall, the inventors of the term phlogiston, which they thought was of an earthy nature, because resin, phos. phorus, sulphur, and other combustible bodies are insoluble in water. Paracelsus was too well initiated in the cabalistic theory of astral light, which symbolised the universal agent of light and heat, to have accepted such a gross materialistic theory. A distinguished Frenchnan of tho present century, who prided himself on being a follower of the cabalists, has in one of his novels, called La Pcau de Chagrin, reprodueed the theory of Paracelsus, vita ign2s, corpus lignum. Each act, each wish of the possessor of the talisman, causes the skin to shrink; and Mr Huxley, in his remarkable lecture on The Physical Basis of Life, has not been ashamed to korrow this illustration from Balzac. What renders Paracelsus's saying so valuable is, that it is neither materialistic nor spiritualistic, but merely dynamical.
Another instance of Paracelsus's oscillating between the modern and the ancient world is seen in tho hesitation ho shows when discussing the influence of the planets over iho internal organs of the body: Sometimes he seems to take the symbol for the thing itself, but he ends by adinitting only the parallelism of the macrocosm and the microcosm. When he assigns the brain to the moon and the heart to the sun, he seems to say: "I do not think with Plato that the brain is all; it is but the reflector and guide-the heart is tho regulator of the organism. I place my archeus a littlo above the heart, as a connecting-link between the nervous and sanguine circulation, as Hippneratea has his enormon." If he had lived in calmer times, and known the true Aristotle, Paracelsus would have allowed that μ op ϕ n' does not represent the eiredefcia of the Stagyrite, that ivepréa is the tive meaning. But in those times of false Aristotelianism the Spagirism of Paracelsus was pitted against the Stagyrism of A'ristotle: •By making the viscera the seat of discases, Paracelsus claims to be the founder of the organicists; by his chemistry of the blood-mercury which evaporates, sulphur which burns, salt which is con. stant-he is answerable for the blunderings of Maitro Purgon; by his archens, the grand motor and regulator of the astrology of the body, he is the encestor in a direct line of animism, and collaterally of modern Hippocratism or vitalism of the Montpellier school. In short, it is hard to name anything that eannot be found in the works of this mad genius, who, in spite of the jars and jolts of his wild
carect, still manages to keep the road without upsetting either at Paris or Montpellier. What, we may ask, would modern therapeutics be without the opium and mereury of Paracelsus-without the laudanum of his disciple Quercetan, physician to Henry IV, de? When this charlatan had substituted for astrological influence a simple parallelism, it was casy for Van Helmont to rid modern science of this simplo parallelism. Besides all this, Paracelsus was a real doctor. The death of Erasmus's friend, whom he was attending, did him less harm tlam the cure of another patient, who was dining with him ninety-nine days after he had been pronounced in extremis; more fatal still was the case of Cornelius do Liechtenfels, who, when cured by him of the gout, refused to pay his benefactor the stipulated price. Paracelsus would not hold his tongue or submit to the magistrates, and in consequence had to resign his professorship at Basle. A double interest attaches to this story; it hastened Paracelsus's death, and it proves that he would never have accepted the vis medicatrix naturce of Stahl. We have seen that those strange bodies which escaped from the retorts of the masters of the sacred art were called: by them souls; their successors, on a closer acquaintance with them, called them spirits. Basil Valentin and Paracelsus, recognising their importance in the transmutation of bodies, gave to them the name of mereury. Van Helmont studied them more minutely, and invented the name gas. He was acquainted with carbonic acid under the namo of woody gas. But his ignorance of the action of the exygen of the atmosphere prevented him from making the fundamental distinctions between experiments performed in a closed vessel and in one open to the air. Priestley, Lavoisier, and Schcele by the use of tlie test-tube and the bolance (both Van Helmont and Stahl had also turned the balance to good account), weighed and tested the results of ancient alchemy. Hence modern chemistry was born. But we must in justice add that the work had already been begin by men of genius, such as Dernard Palissy; Boyle the eminent critic and experimentalist, Homberg, the two Geoffroys, Margrafi, Bergmann, Rouclle the master of Lavoisier, who may be called the Diderot of chemistry. Moreover, the most important discoyeries in chemistry have been made by men who combined with chemical experiments a marked taste for alehemic theories. We may instance Glauber, ablest of mystics; Kunkel, who thought he had found in. the "shinirig pills" of his phosphoras mirabilis as effeacious a remedy as the potable gold in which he also believed; Glaser the alchemist, master of Lemery, who has been called the father of chemistry; Robert Fludd, \&c.

It is curious to observe tliat soon after chemistry was estalbished as a science there was a regular deluge of scarchers for the philosopher's stoue. The limits of this articlo pievent us from giving a full list of their names. Suffice it to mention, among Frenelmen, De Lisle, who died in the Bastile of the wounds his guardians inflicted on him to extort his secret; among Englishmen, Dr Price, who committed suicide to escape from a public trial of. his pretended discovery. As to the theoretical possibility of making gold, the great French chemist Dumas considered that a solution might be found in the doctrine of isomerism; and the great English chemist Sir Humphrey Davy refused to pronounce that the alchemists must be mronc. Before concluding this short sketch of a wast subject, we must give a brief list of titles of the most important authorities on the subject, and enumerate the principal words which alchemy has bequeathed to scientife terminology, or which have passed into the language of common life:-

Aotroritics.-Roger Bacon, Thesaurus Chimicus, 8vo, Francofr, 1603; Francis Bacon Lord Terulam, History of Metals, fol., Ioondon; 1670 ; J. J. Becher, Opera Omnia, Francof, 1680 ; Chymia

Philosophica, 8vo, Nuromberg, 1639 ; John Espagact, Enchiridion PhilosophiæHermeticæ, Paris, 1638 ; Robert Fludd, Clavis Alchimiæ, 2 vols., Francof.; T. R: Glauber, Works, Chimistry, fol., London, 1089 ; Hermis Trismegisti, Traduction par J. Mesnard, 880, Paris (edited by Didier); J. Kunkel, Expcriments, 8vo,.London, 1705 ; Paracclsi Opera Omnia (with a remarkable preface by Fred. Litiski), ${ }_{2}^{2}$ vols. fol.; J. B. Perta, De deris Transmutationibus, 4 ro, Romx, 1610 ; Quercetan, Hermetical Physic 4 to, London, 1605 ; Georgii Kipley, Opera Omnia, 8vo, Cassel, 1649 ; J. Trithemius, De Lapide Philosophico, 8vo, Par. 1611; Basil Valentin, Last Will, \&c., 8 vo , Laudon, 1671. Of compilations wo may mentionArtis Aurifere quam Cheniara vocant Duo Volumina (this work includes the Turba Philosorhorunı), 13asilex, 1610, J. J. Mangetg Bibliofheca Chenica Curiosa, 2 vols, Eol ., 1702 ; Theatrum Chimicum, 6 vols. 8vo, Artent., 1662 ; The Lives of tbe Adepts in Alchemystical Philosophy, with a critical catalogue of the books in this science, and a selection of the most celebrated treatises, \&c., 8vo, London, 1814 ; Esaini sur la Conservation de la Vie par lo Vcte. Le Lapasse, 8ve, raris. Among the best historical and critical works with which we are acquainted we will mention-Petr. Gregor. Tholozanus Syntaxcōn Artis Mirabilis, 2 vols., Lugduni, 1576 ; 0. Borrichius de Ortu et Progicesu Cheniæ, 4to, 1663 ; The History of Chemistry, by Thomas Thomson, 2 vols. 8 vo, Lonlon, 1830 ; Eusobe-Salverte, Les Sciences Occultes, 8vo, Paris, 1829 ; Fcrd. Hoefer, Histoire dp la Chimie, 2 vols. 8vo, Paris, and an abridg. ment by the same author ; Itistoire dé la Physique et de la Chimic, 8vo, Paris, 1872; Louis Cruveithicr, Philosoplie des Sciences Médicales, Euivres Choisies; 8ro, Paris, 1862 ; Frcd. Morin, Genèse de la Science fan important work, which we only know from quote. tions in French reviers eud encycloprdias) ; Dumass, Philosophie Chimique. Lastly, if we wish to trace the transition of alchemy to chemistry we shall find valuable information in Le Dictionnaire de Physique, dedicated to Mons. le Due de Berry, 3 vols. 4to, Avignon, 1761, under the words Alkali, Alum, Chimie, Pierro Philosophale, Hombcrg.: Tho reader will observe that in: this encycloprdia, whiten with the express purpose of propagating the Newtonian thebry in 'France, the classical science could bring no real argaments amainst alchemy. He may also consult the remarkable work of La Metherie, which has been undeservedly forgottenEssai Analytique sur l'Air pur et les Differentes Espèece d’Air, 3 vols. Pais, 1785 ; and The Birth of Chemistry, by G. F. liodwcl, London, 1874.
Etymology.-The iden that nature must bo tortured to make her reval her secrets is prescrvel in the wod crucible: Fr. crousct, Ital. cruciolo, Span. crisol-all from the Latin crux, a cross. 'The word matrass, Fr. malras, is probably from the Celtic mutara, en arrow, through the old French verb matrasscr, to barass. Bain-Maris and amalgam ($\mu \dot{\alpha} \lambda \alpha \gamma_{\mu}$) are a legacy of the sacred art. We can trace the two principles, male and fomale, of the alchemists in tho word arsenic ($\alpha \rho \sigma \epsilon \nu \iota \kappa b \nu$, male). From the Arabs we get alcohol (al kohl), properly anything burnt, then a powder of antimony to darken the cyelids, and lastly, spirits of wiue ; allineli, ashes; borcer, the white substanco ; lacker, fromn lac, resin ; clixir, from et kesir, essence; alcmbic, Arab. alanbiq. Potash is obviously the nsll of tho not, Germ. potasclu; laudanum is a corruption of haudrndum. Tho derivation of turtar, Fir tatire, is stranfo. I'aricelsus considurid tartar to be the cause of the gout, and lworowed the name from the infernal regians (Thatarus)., The Spaniards have bornoved from the Arabs, azogue, mercury; azogar, to ovcrlay with quicksilser; azogucro, a worker in mercury ; azogatniento, agit:tion ; azugrula. mente, with agitation. The sume Ccltic roat which gave to Latin the word vertrogus, used by Martial for greyhound, and to Greek ovéfrayos, found in Elian, from which Dante took the word celtro, has alsn created a large family of words-tbe ltal. pollro; tin and mercury; Span. polirc, lcad-and tin; old Fr. pcautre = pciltu; Eng. pewter, poutcrer, \&e. The Placo Maubcrt at Peris derives its name from the fact thut Magister Albertus lived there (Maubert $=$ Ma' Alvert). From the alchemists wo get both the ideas and the words affinity (Albertus Magnuss, prccipitate (B. Yaleniin), raducc (l'aracelsus), saturation (Van IIclnont), distillation, calcinution, quintesscncc, aqua vita (brandy was originally only emplayed os a medicinc), aqua regalis, afua secuudia, gas, aubult, from Kobolds, the genii of mines, sc.
(. I A.)

ALCIATI, Andrea, an emment Italian jurist, born nt Alzano, near Milan, on the 12 th January 1492, died 1550. He displayed great litcrary skill in his exposition of the laws, ior which De Thou lighly praises him. He publisher] many legal works, and some annotations on Tacitus. His limblems, a collection of moral sayings in Latin verse, las been greatly admired, and translated into Froneh, Italian, and Spanish. Alciati's history. of Milan, under the title Rerum Patria, seu Mistoric Mcdinlanensis, libri IV., was published posthumously at Milan in 1625.

ALCIBIADES was born at Athens about 450 B.o. Through his father, Cleinias, he traced his descent from Eurysaces, the son of Ajax, and through his mother, Deinomache, from Mepacles, the bead of the Alcmeonidx. He was thus related to Pericles, who, after the death of Cleinias at the battle of Coronca (447 b.c.), became his guardian. A youth carly deprived of his father's control. possessed of great personal beauty, and the heir to great wealth - a youth eonsequently universally honoured, comrted, and caressed-was not in a position to aequire a knowledge of the virtue of self-restraint in any shape or form. Spoilt accordingly by flatteries and blandishments, the boy showed himself self-willed, capricious, nnd passionate, and indulged in the wildest freaks and most insolent, tyrannical behaviour. Nor did the instructors of his early manhood supply the corrective which his boyhood lacked. The collection of moral, political, and religious beliefs which the earlier Greeks. from custom, convenience, or the promptings of common sense, had acecpted as a standard by which to regulate their own conduct and judge that of others, had been exposed by the sophists to the keenest scrutiny and the widest scepticism. Negative criticism, accompanied with showy novel paradoxes. are. always attractive to a young man of intelleetual vigour; and thus Alcibiades learnt frem Protagoras, Prodicus, and others, 10 laugh at the common opinionsabout justice, temperance, holiness; patriotism, \&c. The long, patient, laborious thought, the self-sufficing and comparatively ascetic life of his master Socrates, he was able to admire, but not to imitate or practise. On the contrary, his ostentatious ranity, his amours his debaucheries, and his impious revels, became notorious throughout Athens. But great as were Alcibiades's moral vices, his intellectual abilitics were still more conspicuous. Ine proved his courage at the battle of Potidea (432 в.c.), where, wounded, he was rescucd by Socrates; at the battle of Delium (424 b.c.), where he protected his former deliverer; and on many subsequent occasions. Though he was not a very fluent speaker, he always kept to the point. His energy vas immense, his ambition unbounded but selfish, and provided he could gratify this passion, be never scrupled at the means or the price. He could read the character of others, and adapt bimself to it with a rersatility, adreitness, and flexibility mhich if any even of his shifty fellow-countrymen equalled they never surpassed. Nor were his personal qualities his only recommendation to popular farour. His ancestors and relatives had been fur gencrations the recognised leaders of the people; be had many admirers and followers emong the clubs of young nobles; he had numereus dependants who partook of his wealth; and he gratified the populace by the lavish expenditure with which he performed his rarious liturgieal dutics. On his first entering prominently into public life, he succeeded by a clever but unscrupulous trick in duping the Spartan ambassadors, and persuading the Athenians to conclude an alliance with Argos, Elis, and Mantinea (420 в.о.) Next year he was appointed general, and for threo years busily traversed the Peloponnesus, endeavouring to advance the objects of the alliance. But to be the first man in Athens was far too limited an object to satisfy the ambition of Alcibiades : all Greece must bo dazzled by his greatness. As the first step towards the accomplishment of this scheme he fixed upon the conquest of Sicily, which would necessarily be followed by that of the Peloponnesus and probably by that of Carthage. With this vies, he warmly adrocated the adoption of measures for the relicf of Segesta. The Sicilian expedition being resolred on with great enthusiasm, he, Nicias, and Lamachus, were appointed generals. But shortly before the day appointed for the armaments sctting sail there took placo a mysterious crime, which was destined to alter the
whole complexion of Alcibindes's future, and with it that of the Athenian state. In the course of one night (May, 415 в.c.) all the busts of Hermes in Athens ware sacrilegiously mutilated. The enemies of Alcibiades (many of thein probabiy the actual perpetrators) endeavourcil to connect him with the sacrilege; and his well-known impietics gave plausibility to a charge which could never have had any real foundation. liccalled to stand his trial almost as soon as he reacliced Sicily, he escaped, and made his way to Sparta. Where he revealed all the plans of the Athenians, and induced the Spartans to send Gylippus to Sicily and an army to fortify Decelea. Ilo then passed over to Asia Minor, and prevailed upon many of the Ionic allies of Athens to revolt. But in a few months be lad lost the cunfidence of the Spartans: and at the instigation of Agis II., whose personal hostility he had excited, an order was sent from Lacedremon for his exceution. Receiving timely information of this order, he crossed ever to Tissaphernes (412 B.c.), and quickly worming himsclf inte the satrap's confidence. he persuaded him to ccase. giving active assistance to Sparta, so that the twa Grecian partics. after wearing themselves out by their mutual struggles, might both be easily expelled from Λ sia But Alcibiades was now beut on returning to "Athens, and he used his sulposed influence with Tissapherncs to effect his purpose. In his negotiation with Peisander, though he failed in his immediate object, he succeeded in producing the impression that, whatever side he joincd, he could make Tissaphernes help. Under this impression, he was recalled by Thrasybulus and the arinament at Samos, and appointed one of the gencrals. His appointment was followed by the victories at Cynossema, Abydos, and Cyzicus, and by the recovery of Chalcedon and Byzantium. On his return to Athens after these suecesses he was welcomed with every demonstration of joy (407 B.c.) ; all the proccedings against him were cancellecl, and he was appointed general with full powers. Il is ill success, however, at Andros, and the defeat of his licutcnant at Notium, led the Λ thenians to dismiss him from his command. IIe thereupen retired to the Thracian Chersonesus; but after the battle of SEgosjetani, and the establishment of the Spartan supremacy throughout Grecce, he crossed the Hellespont, and took refuge with Pharnabazus in Phrygia. There an attack was made upon him, but by whom or for what cause historians are not agreed; his residence was sct on firc, and on rushing out on his corardly assassins, dagger in hand, he was killed by a shower of arrews, 404 b.c. By his wife Hipparete, Aleiluades left one son, who was named after himself.

ALCLNOUS, a Platenic philosop,her of uncertain date,
 which has been translated into English by Stanley in his Listory of Philosophy. The best edition of the Greck original is that by Fischer, Lips. 1783, 8vo.

ALCINOUS, a mythical king of the Phxaciaus, in tho island of Scheria, was son of Nausithous, and grandson of Neptune and Peribœa. Ife las been immortalised in the Odyssey, the description of his reception and catertainment of Ulysses, who when cast by a storm on the shore of the island was relieved by the king's daughter, Nausicaa, forming the main subject of books vi. to xiii. of that pocm. The subjects of Alcinous loved pleasure and good cheet, yet were skilful scamen; and he himself is described as a good prince.

ALCIPIIPUN, the most eninent of the Greck epistolary writers, was probably a contemporary of Lucian. Ilis letters, of which 116 lave been published, are written in the purest Attic dialect, and are considered models of stylc. The imaginary authors of them are sonnitry people, fisherromen, courtesans, and parasites, who express their
zentiments and opmions on familiar subjects in refined and elegant language, yet without any very apparent incon eistency. The new Attic comedy being the principal source from which Alciphron derived his information, these letters are raluable as delineating the private life of the Athenians at that perrod. The best editions are by Bergler, Lips. 1715, and Wagner, Lips. 179 S $^{\circ}$.
ALCIRA, probably the Setabicula of the Romans, a Spanish town, on an island in the river Xucar, 25 miles S.W. of Valencia, in the prorince of that name: It is surrounded by walls, and has two fine bridges, There is a remarkable stalactite grotto in the vicinity. The principal productions are silk, rice, and oranges, which are largely exported. Population, 15,400.
ALCMLAN, sometimes also called Accrisony, one of the most ancient, and, in the opinion of the Alexandrian critics, the most distinguished of the lyric poets of Greece. According to one account he was by bịth a Lydian, while others state that he was a native of Sparta, where, at any rate, he lived from a very early-age. The time at which ke flourished is uncertain, but it is generally assumed that it embraced the period between the years 670 and 630 b.c. Alcman may in some respects be regarded as the father of lyric poetry among the Greeks, and it was probably for this reason that the Alexandrian critics put him at the head of their lyric canion. His poems, which seem to have formed a collection of six books, are known to us onlyfrom a number of small fragments. Many of them were of an erotic character, but others were hymns and didactic pieces. All were written in the vigorous broad dialect of the Dorians. The best collection of these fragments was published by F. G. Welcker, Giesen, 1815, 4to ; they are also. contained in Bergh's Poeta Lyrici Graci, 185?, 8vo.

ALCMENE, the daughter of Electryon, king of Mycenæ, and wife of Amphitryon. She was the mother of Hercules by Japiter, who assumed the likeness of her husband during his absence, and of Iphicles by Amphitryor.

ALCOCK, Jons; doctor of laws, and bishop of Ely in the reign of Henry VIL, was born at. Beverley in Yorkshire before 1440, and educated at Cambridge. He was made dean of Westminster and master of the rolls in 1462 . In 1470 he was appointed ambassador to the court of Castile, and in 1471 was consecrated bishop of Rochester. In 1477 be was translated to the see of Worcester; and in 1486. to that of Ely. He was a prelate of great learning and piety, and so highly esteemed by King Heary that he appointed him lord president of Wales, and afterwards lord keeper of the Great Seal. Hock founded schools at Eingston-upon-Hull and Beverley, and. built the spacious hall belonging to the episcopal palace at Ely. He was also the founder of. Jesus College in Cambridge, for a master, six fellows, and as many scholars. This house was formerly a nunnery, dedicated to St Radigund; and Godwin says that the building being greatly decayed; and the revenues reduced almost to nothing, the nuns bad all forsaken it, except.two; whereupon Bishop Alcock procured a grant from the crown, and converted it into a college. But Camden and others tell us that the nuns of that house were so notorious for their incontinence, that King Henry VII and Pope Julius II. consented to its dissolution.. Bishop. Alcock 'wrote several pieces, amons. which are the following:-1. Mons Perfectionis; 2. In Psalneos Pcenitentiales; 3.' Homilice Vulgares; 4. Meritationes Pice. He died at: Wisbeach," October 1,1500 , and was buried in the chapel built by himself in Ely cathodral.

ALCOHOL, a volatilo organic body, constantly formed daring the fermentation of vegetable juices containing sugar in solution. It is extracted from spirituous liquors
of different kinds by successive distillatious or rectifica tions; the alcohol being more wolatile than water, gradually accumulates in the first portion of each distillate. After a few operations the spirit obtained is as strong as it can be made by this process, and further repetition docs not enable us to separsite more water from it. In commerce the strongest spirit is known as spirit of wine, and contains abort 90 per cent. of alcohol. The remaining 10 per cent. of water must be temoved by some chemical agent that will combine with water and retain it at the boiling-puinit of the spirit, and be without any epecific action on the alcohol. The dehydrating substances in general use are certain anhydrous salts, such as carbonate of potash, acetate of potash, or sulphate of copper. These rapidly absorb water at low temperature, and part with it at a red beat; so that they may be used over and over again. The most efficient dehydrating agent is caustic lime or caustic baryta. Line is generally used in making the absolute alcohol of commerce. For this purpose the caustic lime is broken into small pieces about the size of a waluut, and placed in a retort; spirits of wine is now poured into the ressel, just sufficient to coter the lime, alld the whole is left to digest for a night. During this time the lime gradually slakes from the absorption of water, and the anhydrous alcohol is left, ready to distill off at the temperature of the water-bath. Absolute alcohol is a very mobile colonrless. liquid, having a high refractive power, and possessing a feeble agreeable smell and an acid burning taste, which, however, diminishes as it is diluted with water. The caustic taste is in great part due to the rapidity with which it takes water from any living tissue with which it comes in contact, producing coasulation if the fluids are albuiminous. Alcohol has a specific gravity of 0.79 .4 at a temperature of 60° Fahr., and boils at $173^{\circ} .1$ Fahr., barometer being at 30 inches. It does not conduct electricity, and has never been obtained in the solid state, although at very low temperatures it becomes viscid. For this reason alcohol is always used to fill thermometers for registering low temperatures, as mercury freezes, and cannot be employed as an index of temperature below - 39° Fahr. Its high co-efficient of expansion makes alcohol a rery sensitive fluid for thermometric purposes:. Alcohol has a great tendency to absorb water from the atmosphere, and must be kep.t in thoroughly sound ressels. It mises with water in all proportions, and during the dilytion there is a considerable anount of heat evolved. When alcohol and water are mixed, a contraction of volume.occurs, which augments until 100 parts of alcohol are mixed with 116.23 parts of water; 103.775 rolumes of alcehol and water mixed in that ratio contracting to 100 . Addition of water beyond the proportion given above causes less and less contraction, and finally no diminution of rolume can be observed. As alcohol is diluted with water its volatility and its power of dilatation diminish, whereas the specific gravity increases, continually approaching. that of water. Next to water, alcolol is the substance most generally employed as a solvent. It dissolves many organic substances, and is especially used in the arts for the manufacture of rarnishes: In medicine it is invaluable as a solvent of the active principle of many substances that are insoluble in water, and would soon decompose in aqueous solution. These alcoholic solutions are generally called .tinctures.

Alcohol is an excellent antiseptic agent. As a preservative of animat atructures it is generally used in the impure state-known in commerce as methylated spirit. This is spinits of wine mixed with 10 per cent. of commercial wood spirits; which does not interfere with its preservative or solrent powers, although it renders it unfit for use as a beverage.

\section*{Alcohol has the following chemical composition :-
 | Carbon. | $52 \cdot 67$ per cent. | |
| :---: | :---: | :---: |
| lydrogen | 12.90 | , |
| Oxygen. | $34 \cdot 43$ | '' |
| | $100 \cdot 00$ | , |

Its formula in chernical symbols is $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$. During the fermentation of sugar the change that takes place is represcutcd as fullows:-

$$
\underset{\text { Orape sugar. }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{8}}=\underset{\text { Alchol. }}{2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}}+\underset{\text { Carbonic acle. }}{2 \mathrm{CO}_{2}}
$$

The complex body, grape-sugar, breaks up by the action of the ferment or yeast into alcohol or carbonic acid, without anything being addecl. This kind of chemical change is sometimes called an action of presence, or catalytic action, because the substance inducing it does not enter into the composition of the products of the reaction. The alcohol ferment or jeast is a minute cellular plant that grows rapidly in sugar solution, especially if albumenoid matter is also present, and during the contimance of its vital functions causes a rearrangement of the atoms of the sugar. In order that fermentation may proceed regularly, a temperature of about 60° Fahr. is required, and an amount of sugar in solution not excecding 10 per cent. The sugar is principally obtained from malt, which is barley that has been allowed to germinate for a certain time, and is then arrested in its growth by heating to a high temperature. During this process of germination there is a peculiar ferment produced called diastase; this has the remarkablo property of changing starch into grapo-sugar. When the malt is treated with water, the ferment causes all the starch originally present in the grain to appear in solution as grape-sugar. All kinds of starch may bo changed into grape-sugar by boiling with dilute sulphuric acid, which in this case acts somerithat like a ferment, because it is not decomposed during the action. The sulphuric acid is afterwards separated by treating with lime, which produces insoluble sulphate of lime (gypsum), and leaves tho sugar in solution. In this way sugar for the alcohol manufacture is now largcly made from the potato and other starchyielding plants. Cane-sugar is too expensive to bo employed in the distillery. Molasses, or the uncrystallisable portion of tho canc-sugar, is, however, largely used.

Alcohol, when acted on by other chemical substances, produces a great variety of new compounds. With acids a remarkable class of bodies are produced called ethers, of which ordinary ether is the type.. The majority of them are very volatile fluids, that in many cises have a very agreeable odour, and are not readily soluble in water. Many ethers aro obtained by simply beating a mixture of the acid and alcohol in a closed vessel to a temperaturo of 212° Fahr., and subsequently treating with water. The water dissolves the alcohol not acted upon, and leaves the ether floating on the surface.

When alcohol is treated with chlorine, absorption occurs, and hfdrochloric acid is continuously evolved for many hours, the temperature rising considerably during the action. Many substances are formed in succession, but the principal product, after long-continued action, is the substance chloral, now largely used, as an anæsthetic. Bromine produces a similar body called bromal. Iodine docs not act on alcohol at ordinary temperatures, further than to pass into solution. When treated with a solution of chloride of lime, alcohol is violently aztacked, and the result of the action is the well-known substance chloroform. Acted on by oxidising agents, alcohol gives 'wo new sub-stances-aldehydo and acetic acid. The ease rith which acetic acid is produced by leating with a misture of bichromate of potash and sulphuric acid gives a delicate methed of detecting and estimating very small quantuies
of alcohol. When tho vapour of alcohol is passed through a red-hot tubo filled with fragments of pumice-stone, com pleto decomposition takes place. Among the products are found naphithalin, benzol, hydrogen, marsh gas, ethylene, and other bodies.

The synthesis of alcohol has been effected by means of the hydro-carbon called olefiant gas, which may be made directly from carbon and hydrogen. When this gas is shaken with strong sulphuric acid it gradually combines with it ; and if it is afterwards diluted with water and distilled, alcohol passes over. As olefiant gas is one of the constituents of common coal-gas, this substance may be used to make alcohol by the above method. The action that takes placo is represented thus:-

$$
\underset{\text { Oluant Gas. }}{\mathrm{C}_{2} \mathrm{II}_{\text {Puct }}}+\underset{\text { Waccr. }}{\mathrm{H}_{2} \mathrm{O}}=\underset{\text { Acobol. }}{\mathrm{C}_{2} \mathrm{IH}_{0} \mathrm{O}}
$$

As the value of spirituous liquors dopends mainly on the quantity of alcohol thoy contain, it is essential to find some simplo and rapid means of ascertaining the percentago amount of the substance present. For this purpose threc methods may be employed, viz, specifio gravity determination, tomperature of cbullition, or rate of expansion. The easiest plan, and the most generally used, is the density method. Tery accurate tables are published of the specific gravity of mixtures of alonhol and water in all proportions, so that it is only necassary to refer to these tables to get tho percentage composition. In the caso of liquors, like wines or beers, that contain many other substances in solution in addition to alcohol, it is necessary to separate tho alcohol from the extractive matters-sugar, salts, dc.--3y - distillation, and to take the density of the volatile portion. As wines contain many volatile ethers that mould pass over with the alcohol in the above process, and interfere with accurate results being obtained, they are generally decomposed by heating with an alkali before the distillation commences.

The physiological action of alcohel is a subject to which considerablo'attention has been directed of late years, and many investigators havo attacked tho problem. The most important contribution to our knowledge of the subject is duo to Dr Parkes, who has mado a long scries of observations on soldiers living on a constant diet with and without the use of alcohol. In these experiments the weight of the body, the amount of nitrogen in the urine and freces, the amount of urea, the pulse, and the temperature of the body were all determined daily. The following are the principal conclusions deduced from tho investigation:-

Tha elimination of nitrogen during exerciss wss unsffected by brandy; and since a aimilar result occurred in a acrics of experiments made during rest, it aecms certain that in healthy men on uniform good diet alcohol does not interfere with the disintegration of nitrogenous tissues.
Tho heat of tho body, as judged of by tho axilla and rectum temperatura, was unaffected hy the amonnt given. The apparent hcat afcer alcolol must therefore he owing to auhjective feelings connected with tho quickensd circulation, rather than to an actual rise of temperature.

The pulso was increased In frequency by 4 onnces of brandy, and palpitation and breathlegeness were brought on by larger doses to such an extent as great!y to lessen the amount of work the man could do, sud to render quick movements impossible. As the effect of lahour alone is to augment tho strength and frequency of the heart's action, it would appear obviously improper to act on the beart still more by alcohol. Whether on a heart exhansted by excrtion alcohol would produce good or bad effects is not shown by these experiments.

Neither exercise nor alcoliol produoed any effect on the phasphorio acid of the urine, or tha free acidity, or the chlorine.

As the action of alcohol in dietctic doses on the elimination of nitregen and on the bodily temperature is so entirely negative, it seems reasonahlo to doubt if alcohol can have the depressing effect on tho excration of pulmonary carbon which is commouly attributed to it. It can hardly depress, one would think, tha metamorphosis of tissues or anbstances furnishing carbon, without affecting eithoy the changes of tho nitrogenous structuros or bodily heat.

The elimination of alcohol from the body has been a matter of dispute between different observers. Previous to the year 1860 it was the generally-received opinion that the greater portion of any alcohol taken was oxidised in the system, and only a small fraction eliminated unaltered. In that year Messrs Perrin and Lallemand published an elaborate memoir on the subject, in which they maintained that all, or at least nearly all, the alcohol taken is eliminated unaltered. This subject has been recently reinvestigated by Dr Austin, Dr Thudichnm, and especially by Dr A. Dupré. The main results of Dr Dupre's series of observations may be summed up as follows:-
Tho amount of alcohol eliminated per day does not increase with the continuance of the alcohol diet; and therefore all the aleohol consumed daily must of necessity bo disposed of daily; and as it certainly is not eliminated within that time, it must be destroved in the system.
The elimination of alcohol following the ingestion of a dose or doses of alcohol ceases in from nine to twenty-four hours after the last dose has been taken.

The amount of aleohol eliminated in both breath aud urine is a minnte fraction only of the amount of alcohol taken.

In the course of these experiments the author found that, after six weeks of total abstinence, and even in the case of a teetotaller, a substance is eliminated in the urine, and perhaps also in the breath, which, though apparently not alcohol, gives all the reactions ordinarily used for the detection of traces of alcohol. The quantity present in urine is, however, so small that the precise nature of the substance has not as yet been determined. The author points out an apparent connection between this substance and alcahol. It was found that, after the elimination due to the ingestion of alcohol had ceased, the amount of this substance eliminated in a given time at first remained helow the quantity normally exereted, and only gradnally rose again to the normal atandard. . A careful study of this connection may perbaps servo to throw some light upon the physiological action of alcohol.
ALCOY, one of the most thriving manufacturing cities of Spain, on the river Alcoy, in the province of Alicante, 24 miles N.N.W. of the town of that name. It is built on an elevated site at the foot of a gorge of the Sierra de Muriola, and presents a picturesque appearance. There are several handsome buildings and a number of public fountains, bnt the industry of the place is its chief characteristic. The principal employment is papermaking. About 200,000 reams are produced annually, the extraordinary quantity of 180,000 reams being a paper of light texture used for making cigarettes. Coarse woollen stuffs are also manafactured. A very curious festival is held annually in April in honour of St George, the patron saint of the tewn. Population, 27,000 .
alcudia, Manuel de Godoy, Duke of, "Prince of the Peace," Spanish statesman, was born of poor but noble parentage at Badajoz on the 12th. May 1767 (died 1851). In 1784 he came to Madrid to join the royal bodyguard, and by his handsome preserice and agreeable manners soon attracted notice. The queen regarded him with great favour, and the weak-minded Charles IV. raised him rapidly from dignity to dignity, until in 1792, on the disgrace of Aranda, he hecame prime minister. One of the first steps he took on his accession to power was to declare war against the French convention. Though success at first attended the Spanish arms, the position of matters was reversed in a second campaign, and the war was concluded by the treaty of Basle, signed on the 22d July 1795, for negotiating which Godoy received his title of Prince of the Peace and a large landed estate. He was also made at the same time a grandee of Spain of the first class. In 1796 he formed an offensive and defensive alliance with the French republic, which involved Spain in a war with England. Next year he was married to Maria Theresa de Bourbon, niece of the king by a morganatic marriage of his brother Luis. As it was understood that Godoy had already married Dona Josef a Tudo, this second alliance, though it brought him nearer
to the king, did much to inctease his unpopuarity with the nation. On the 28th March 1798 he found himself forced to resign his position in the ministry, but he never lost the farour of the king, who appointed him graud admiral in 1599. About tho same time lie was restored to power, and entered into an alliance with Napoleon, having for its object the partition of Portugal The war, in whick Godoy himself commanded, was of short duration, the treaty of Badajoz, signed on the 6th June 1801, securing from Portugal a subsidy to France and a cession of territory to Spain. Godoy was rewarded for his ecrvice with the title of Count of Evoramente, and an annual income of $\mathbf{1 0 0}, 000$ piastres. In 1804 he became generalissimo of the land and sea forces of Spain; but the honours thus heaped upon him by the king were accompanied by growing dislike on the part of the nobility and the people. The higher classes regarded him with jealousy as a parvenu, and he was necessarily unpopular with a nation that attributed to him the defeat of Trafalgar, and the stoppage of its commerce through the blockade of the ports. A change of policy, by which he endeavoured to break off his alliance with France and enter into friendly relations with Eugland, came too late to save his position. Napoleon determined to remove the Bourbons from the throne of Spain, and the invasion of the French troops gave Godoy's enemies the wished-for opportunity to secure his downfall. The prime minister had retired from Madrid, and was making arranyements for the removal of the king and queen to Mrexico, when the project was discovered by the Prince of Asturias, the leader of the party opposed to him. On the, 18 th March 1808 Gudoy was seized at Aranjuez by the mub, who were only restrained from executing summary vengeance upon him by the promise given them that he should ondergo a fair trial. Napoleon, however, wishing to avail himself of his influence over Charles, sent Prince Murat to effect his release. He was removed in April to Bayonne, Where on the 5th May he signed the decd by which Charles IV. abdicated in favour of the Prince of Asturias. Hc continued to enjoy the undiminishcd favour of Charles, whom he accompanied to Rome, his possessions in Spain having been confiscated. On the death of his royal master he removed to Paris, where he received a pension of 5000 francs from Louis Philippe. In 1836-8 he published memoirs of his life, in which he defends his policy. In 1847 his titles and the greater part of his estates were restored to him, and he received permission to return to Spain. He continued, however, to reside in Paris, where he died on the 4th October 1851.

ALCUIN, in Latin Albinus, surnamed Flaceus, na eminent ecclesiastic and a reviver of learning in the 8th century, was born in Yorkshire about 735 (died 804). He was edacated at York under the direction of Arclibishop Egbert, as we learn from his own letters, in which he frequently calls that prelate his beloved master, and the clergy of York the companions of his youthful studies He succeeded Elbert as director of the seminary, and in later life modelled after it his famous school at Tours. He survived Bede about seventy years; it is therefors hardly possible that he could have received any part of his education under him, as some writers of literary history have affirmed; and it is worthy of observation that he never calls. Bede his master, though he speaks of hiur with the highest veneration. It is not well knomn to what preferments he had attained in the church before he left England, though some say he was abbot of Canterbury. He was sent to Rome by Eanbald, the successor of Ethelbert, to procure the pallium, and, in returning, at Parma he met Charlemagne, who, as Alcuin had alrendy risited the French court, was no stranger to lis extraordinary merit. The emperor contracted so gecat ar
eaterm and friendllip for him that lre carnestly urged and at length induced lim to take up his residence at court and become his preceptor in the sciences. Alcuin accordingly instruetel Charlemagne and his family in rhetoric, logic, mathematics, and divinity: 11c particularly distinguished himself by his writings in defence of the orthodor faith against the adoptionists, Fclix,' bishop of Urgel, and Elipandus, archbishop of Toledo, convincing the former of his error after a six days' debate at Aix-laClapelle (999), and treating the latter in the most conciliatory manner; and on more than one occasion he was employed in innortant missions between Charlemagne and Offa, king of Mercil. "Franee," says one of our best writers of literary history, with some degree of truth, "is indelted to Alcuin for all the polite learning it boasted of in that and the following ages. The universities of Paris, Tours, Fulden, Soissons, and many others, owe to him their origin and increase, those of which lio was not the superior and founder being at least enlightened by his doctrine and example, and enriched by the benefits he procured for them from Charlemagne." Alcuin. it is alleged, however, forbade the reading of the elassieal poets. In 790 he went to England in the capacity of ambassador, and returned to France in 792, never again to visit his native land. After Alcuin had spent many years in the most intimate familiarity with the greatest prince of his age, he at length, in 801, with great difficulty, obtained leave to retire from court to the abbey of St Martin at Tours, of which he had been appointed the head by Charlemagne in 796. Here he remained and taught till his reath in 804.. In his retirement lie kept up a constant erfrespondence with Charlemagne, which displays, on the part of both, an ardent love of learning and religion, and great zeal and earnestness in contriving and executing noble designs for their ádvancement. Alcuin composcd many treatises on a great variety of sabjects, in a style much superior in purity and elegance to that of most writers of the age in which he floorished, His works were collected and published by Duchesne, in 1 vol. folio, Paris, 1617: a better edition is that of Froben, 2 vols. folio, Ratisbon, 1777. They consist of (1) Tracts upon Scriptare ; (2) Tracts upon doetrine, discipline, and morality; (3) Historieal treatises, letters, and poems. It is not improbable that Alcuin was the writer of the famous Caroline Books, issued under the name of Charlemagne, which denounced as idolatrous exery form of image-worship. A Life of Alcuin, by Lorenz, was published at Halle in 1829, and appeared in an English translation, by Slee, in 1837.

AlCyonius, or Alctonius, Petrus, a learned Italian, born at Venice in 1487 (dicd 1527). Distinguished as a classical scholar, he was employed for some time by Aldus Manutius as a corrector of the press, and in 1522 was appointed professor of Greek at Florence through the influence of Giulio do Medici. When the latter became pope, under the title of Clement VII., in 1523, Alcyonius fullowed him to Rome, and remained there until his death. Alcyonius published at Veniee, in 1521, a Latin translation of several of the works of Aristotle, which was ahown by the Spaniard Sepulveda to be very incorrect. Ife mrote a dialoguo entitled Medices Legatus, sive de Rixilio, in connection with which he was charged with plagiarism by his personal enemy, Paulus Manutius. The accusation, which Tiraboschi has shown to be groundless, bore that he had taken the finest passages in the work from Cicero's De Gloria, and that he had then destroyed the only existing copy of the original in order to escape detection. Two orations on the taking of Rome by Charles V., and another on the knights who perished at the siege of RLodes, are also nseribed to Alcyonius.

ALDAN. a river of Siberia, in the government of Yakutsk, which rises about $55^{\circ} \mathrm{N}$. lat., and $125^{\circ} \mathrm{E}$. lang., and after flowing more than 300 miles in a north-east direction, turns to the north-west, joining the Lena about 100 miles below l'akutsk. It has a tutal length of over 500 miles. for a considerable part of which it is narigable.

ALDAN MOUNTALNS, the name usually applied to a branch of the Stanovoi mountains, which strikes off from the main chain in the direction of the Aldan river, or to a part of this range. According to some geographers, howerer, the continuation of the Stanovoi range to Belring Strait, or even the whole mountain system of eastern Siberia, ought to receive the name.

ALDBOROUGH, a town of England, in the West! Riding of Yorkshire, 16 miles W.N.W. of York. It formerly returned two members to parliament, but was disfranehised by the Reform Act of 1832 . The place is remarkable only from its nuncerous ancient remains. It was the Isurium of the Romans, and here and in the neighbournood the remains of aqueducts, spacious huildings, and tesselated pavements hive been found, as well as numerous implements, coins, and urns. Population (1871) of the parish, which extends into the North Riding, 2165 ; of the town, 502.

ALDEBURGH, or Aldborovan, a market-town and watering-place in the county of Suffolk, 25 miles E.N.E. of Inswich. The borough was incorporated by a charter of King Edward VI., and in former times was a place of considerable extent; but the old town was gradnally submerged by the encroachments of the sea. Further destruction is now stayed by the accumulated sandbanks, and the place has become a favourite resort of summer visiters. Fishing affords employment to many of the inhabitants. The town is noted as the birthplace of the poet Crabbe, who was born here on 24th December 1754. A marblo bust of the poct las been placed in the parish charch. Aldeburgh was formerly a parliamentary borough, but was disfranchised by the Reform Act of _1832. .Population of the parish in 1871, 1990.

Aldegrever, or Aldegraf, Heinrici, a German painter and engraver, born in 1502 at Paderborn, from which be remored in early life to Soest. From the close resemblance of his style to that of his.master, Albert Dürer, he has sometimes been ealled the Albert of Westphalia. His numerous engravings, chiefly from his own designs, are delicate and minute, though somewhat bard in style, and entitle lim to a place in the front rank of the so-called "Little Masters." Specimens of his painting are exceedingly rare. The genuineness of the works in the Vienna and Munich collections attributed to him is at least donbtful, the only unchallenged cxample being a portrait in the gallery at Derlin. Aldegrever died abont the year 1562.

ALDER, n genus of plants (Alnus) belonging to the order Betulaceex, the best known of which is the common alder (A. glutinosa). This tree thrives best in moist soils, has a shrubby appearance, ond grows, under favourable circumstanees, to a height of 40 or 50 feet. Under water the wood is very durable, and it is therefore used for piles. The supports of the Rialto at Venice, and many buildings at Amsterdam, are of alder-wood. Furniture is ametimes made from the wood, and it supplies exeellent charcoal for gunpowder. The bark is astringent; it is used as a gargle, and also in tanning and dyeing.

ALDERMAN, a word derived from the Anglo-Saxon ealdorman, compounded of the comparative degres of the adjective eald (old) and man. The term implies the possession of an office of rank or dignity; and among the Anglo-Sasons, earls, governors of provinces, and other persons of distinction received this title. Thus wo read
of the alderminnus totius Anglia, who seems to have correoponded to the officer afterwards styled cupitalis justiciarius Anglice, or shief justice of England: the aldermannus regis, probably an oncasional magistrate, auswering to our justice of assize, or perhaps an oflicer whose duty it was to prosecute for the crown; and aldermannus comitatus, a magistrate with a middle rank betwcen what was aftervards called the earl and the sheriff, who sat at the trial of causes with the bishop, and declared the common law, while the bishop proceeded according to ecclesiastical law. Bcsides these, we meet with the titles of aldermannus sivitatis, burgi, castelli, hunirredi sive wapentachii, \&c. In modern times aldernen are office-beares in the muncipal corporations of England and Wales, and Ircland. Before the passing of the Municipal Corporation Act their functions varied according to the charters of the different burghs. By the statute 5th and 6th Will. IV. c. 76, and 3 d and 4 th Vict. c. 118, the aldermen are elected by the councillors from among themselves (in Ireland, by the burgesses), for six jears, one-half going out every three jears. The number of councillors in each borough varies from 12 to 48 , according to its magnitude. One-fourth of the municipal counell oonsists of aldermen, and three-fourths of councillors. In the municipal corporations of Scotland there is no such title as alderman, the office-bearers of corresponding rank there being termed bailies. The corporation of London was not included in the Burgh Reform Act, and the antiquated system remains there in full force. The Court of Aldermen consists of twenty-six, twenty-five of whom are elected for life by the freemen of the respective wards, who return two persons, one of whom the Court of Aldermen elect to supply the vacancy. The tity is divided into twenty-six wards; twenty-four of these send up one alderman each, the other two combine to choose a twenty-fifth. The twenty-sixth alderman serves fur the independent borough of Southwark, and is appointed by the other aldermen, who generally select, the senior fiom mong themselves when a vacancy occurs. The lord mayor is elected from such of the aldermen as. have serred the office of sheriff; of these the Common Hall, which consists of the freemen of the different wards, select two, and the aldermen elect one of these to the mayoralty. The Court of Aldermen act as magistrates for the city of London, and also possess authority of a judicial nature in the affairs of the corporation. The aldermen are members of the Court of Common Council, the legislative body of the corporation, which consists in all of 232 members, the remainder being elected annually by the freemen. In the United States aldermen form as a rule a legislative rather than a judicial body, although in some cities they hold courts and possess rery considerable magisterial powers.

ALDERNEY, one of the Channel Islands, and the most northerly of the four, lies between $49^{\circ} 41^{\prime}$ and $49^{\circ} 45^{\prime} \mathrm{N}$. lat., and $2^{\circ} 9^{\prime}$ and $2^{\circ} 14^{\prime} \mathrm{W}$. .long., 7 miles to the mestward

of Caje la Hogue, and is scparated from the French const by a narrow channel called the Race of Alderney. The passage through this strait is rendered very dangerous in
stormy weather by its conflicting currents; bat through it the scattered remnant of the French fleet under Tourville succeeded in escaping after the defeat of La Hogue in 1692. The harbour of Alderney is 20 miles distant from St Peter Port, Guernsey, 45 miles from St Helcn's, Jersey, and ti0 miles from Portland Bill, the nearest point of England. There is regular steam communication with Gucrusey The length of the isiand from N.E. to S.W. is $3 \frac{1}{2}$ miles; its width about 1 mile; its greatest elevation is 280 feet; and the area is about 4 square miles.

The greater part of Aldcrney is a level table-land, more or less cultivated. The land continnes flat to the edge of the south-eastern and southern cliffs, which present a mag. nificent succession of broken and perpendicular walls of rock. Towards the north-west, north, and east, the coast is less rocky, and is indented by several bays of tame and nakcd aspect, of which those of Crabby, Braye, and Longy are the most noticeable. Sandstone, glanite, and porphyry are the chief geological formaticns. From the importance of the island in a military sense, it has been fortified by a chain of defensive works, extending round the northern coast from the Clanque Fort on the west to Fort Essex on the east. The cliffs of the southern shore form a very strong natural bulwark. An extensive granite breakwater has been constructed, protecting the bay of Braye towards the west, intended to form an additional defence, and to convert the bay into a secure harbour of refuge. The works have cost upwards of a million and a quarter sterling; but the new harbour is not much resorted to, and the value of the brealswater as a means of defence has been questioned. Fort Touraille stands on the eastern side of the new harbour, and is a strong fortification, mounting 50 heary guns, with bomb-proof barracks and powder magazine.

The population of Alderney has increased rapidly of recent years, on account of the extensive public works. In 1841 it was only 1030 , in 1871 it was 2738 . The inhabitants are Protestants, and Alderney forms part of the diocese of Winchester. Though a French patois lingers in the island, English is generally spoken and universally nnderstood. The climate is healthy, and there is abundance of.good water. Corn is grown, but much of the sandy soil is in grass, affording exccllent pasture to the diminutive but pretty cows for which Alderney is famous. The only exports are cattle and early potatoes. St Anne's; the town of the island, is situated at some distance from the beach, overlooking the new harbour. It is plainly built, but has a fine new church in the early English style, erected as a memorial of the family of Lo Mesuricr, long the hercditary govemors of the island. The only other architectural feature worthy of notice is a Gothic arch built as a memorial of the late Prince Albert of England.

Alderncy seems to have been known to the Romans as Riduria, and Roman as well as Celtic remains have been discovered. It is subject to the British crown, and is a dependency of Guernsey. For its history and rolation to English legislation, see the article on the Channel Islands. The internal government is vested in a judge anpointed by the crown, and six jurats, chosen for life by the people; and these, with twelve douzainiers, who are popular representatives, but have not the power of voting, form the legislature. Justice is administered by the same judge and jurcts, and several other officers. In civil cases an appeal may be taken to the royal court of Guernsey, while all criminal cases are referred to Guernsey for decision. Two companies of infantry and a batterv of artillery cempose the local militia.

Off the western coast of Alderney there are many uninhabited rocky islands: and six miles to the westward lie
the Casquets, a group of rocks extremely dangerous to slips coming up the English Channel. On these rocks there are three lighthouses, with revolving lights 112 feet above the wate:
ALDERSIIOTT CAMP, a standing garrison for a large force, situated about 35 miles from London. on the confines of Hampshire and Surrey. It was estublished in May 1855, and was intended as a military training sclool, especially for officers of the higher grades. Its germ is to be found in the temporary camp on Chobham Ridges, formed in 1853 by Lord Hardinge, then commander-inchief, the success of which conrinced him of the necessity of giving our troops practical instruction in the field, and affording our generals opportunities of manœuvring large bodies of the three arms. He therefore advised the purchase of a tract of waste land whereon a permanent camp might be established. His choice fell on Aldershott, a spot also recommended by strategic reasons, being so placed that a force holding it covered the capital. Nothing came of Lord Hardinge's proposal till the experience of the Crimean campaign fully endorsed his opinion. The lands at Alder-shott-an extensive open heath country, sparsely dotted by fir woods and intersected by the Basingstoke canal-were then acquired by the Crown. The first oceupants of the camp were two battalions of the Guards and seven of embodied militia. On the return of the Crimean army, cavalry, artillery, and infantry of the line arrived and took possession of the lines of wooden huts and the permanent barracks, which had by this time been ereeted. Since then Aldershott has varied little in its principal features. It is scparated into two grand divisions, styled the north and south camps. Beyond the latter are the permanent cavalry and infantry barracks and the queen's pavilion. Farnham is the nearest town, being only 4 miles from the south camp; Guildford and Godalming are 10 and 12 respectively, Windsor $18 \frac{2}{2}$, and Reading 21 miles. The soil on which the camp stands is a light peat, and a fruitful source of discomfort to its inhabitants, \AA little wet turns it into tenacious mud, while a little sunshine produces a black dust, not soon forgotten by those who have campaigned in the "Long Valley." The force stationed at Aldershott at tho beginning of 1874 was, composed of 1 cavalry and 3 infantry brigades; in the former there were 3 full regiments, in the latter a total of 11 battalions, with several depots of regiments abroad. Besides these, there were 2 batteries of horse and 6 of field artillery, 2 companies of Royal Engineers, and 4 troops of Royal Engineers' train (with pontoon, dc.); 7 companies of the Army Service Corps and 2 of the Army Hospital Corps-to provide for transport, and the services of balkehouse and slaughterhouse and hospital-made up the total strength of all ranks, as shown in the returns dated lst January 1874, to 10,601 men, 2198 horses, and 48 guns. It is a lieutenant-general's command, and one highly prized, from its essentially military character and the practical experience it affords in handling a considerable force. Sir William Knollys (afterwards comptroller of the household to tho Prince of Wales) was its first chief. He was suceeded loy Sir John Pennefather; Sir James Scarlett followed; then Sir Hope Grant, who held the command in 1874. Naturally so large a military colony soon attracted other elements to Aldershott heath Within a few years a town of Nldershott sprang up close by, and incereased rapidly. Here the professions and all trades are well represented; there are respectable soliciors, surgeons, bankers, brewers, many schools, a steam printing press, a weekly military paper, and numerous shops. During the summer months or "drill season" the camp is a sceno of incessint activity; ficld-days and parades follow in rapid succession, and owing to the camp's accessibility from London, the troops are often turned out at a ferw
hours' notice to make a show for royalty or foreign visitors. . Yet there is much to begnile vacaut hours; many clubs-for cricket, croquet, racquets, and the drama-a gymnasium, and several excellent librarics. Admirablo charities also exist for the assistance and relief of the soldicrs' wives and cliddren.
(A. G.)

AldHELaI, or Adela, St, Bishop of Sherborne in the time of the Saxon heptarcly, was born about the middlo of the 7th century He is said to have been the son of Kenred, brother to Ina, king of the West Saxons; but, in the opinion of William of Nalmesbury, his futher was no more than a distant relation to the king. Having reccired the first part of his education in the school of Meildulf, a learned Irish monk, he travelled in France and Italy for his improvement. On his retura home he studied some time under Adrian, abbot of St Augustin's in Canterbury, the most learned professor of the sciences who had ever been in England. The fame of his learning soon spread, not only in England, but in foreign countries. Learned men sent him their writings for his criticism; among others, a son of the king of Scotland is said to have sent his compositions to Aldhelm, "entreating him to give them the last polish by rubbing off their Scotch rust." He was the first Englishman who wrote in the Latin language, both in proso and verse; and he composed a book fur the instruction of his countrymen on the prosody of that language. Bede says that Aldhelm "was a man of universal erudition, having an elegant style, and being wonderfully well acquainted with books both on philosophical and religious subjects." His Latin was in later times considered somewhat barbarous and corrupt. From one of his letters to Hedda, bishop of Winchester, concenning the nature of his studies whilst at Canterbury, he appears to have been indefatigable in his cndeavours to acquire every species of learning in his power. For a cory of this curious epistle see Henry's History, vol. ii. p. 320. King Alfred declared that Aldhelm was the best of all the Saxon poets; and a favourite song, which was universally sung in his time, nearly 200 jears after its author's death, was of his composition. He was a musician as well as a poet, and made his own songs the mediua of instruction and refinement to his barbarons countrymen. After baving governed the monastery of Malmesbury, of which he was the founder, about thirty years, he was made bishop of Sherborne, where be died in May 709.

He wrote-1. De oclo Viliois Principritius. This treatise is cxtant in the Bibliotheca Putrum of Causius. 2. Sinignalum Versus Ifile. This, with several other poems of his, was pullished by Dlartin Delrio at Mentz, 1701, 8 vo. 3. A Look adilressed to a certain king of Northumberland named Alfild, on various subjects. 4. De Vila Monachoruen. 5. De Laudc Sanclorum. 6. Dc Arithmetica. 7. De Astroloyia. 8. A book on the mistake of the Briton. concerning the celcbration of Easter; printed by Sonius, 1570°. 9. De Laude Virginitatis: published nmong Bede's Opuscatla. Besides these, he wroto many sonnets, epistles, and lomilics in the Saxon lansuage.

Aldine editions. See Manutius.

aldini, Giovannt, a distinguished physicist, born-at Bologna on the 10th April 1762 (died 1834), was the nephew of Galvani, and brother of the statesman Count Antonio Aldini. Devoted from his youth to the study of natural science, he was chosen in 1798 to suceced his forner teacher Canterzani in the chair of physics at Bologna His most important service consisted in the numerous experiments by which he sought to sccure the better appllication of science to practical purposes. The subjects of galvanism, the illumination of lighthouses by gas, and an asbestos or fireproof fabric engaged his speeial attention, and on all of them he published the results of his researches. He was master of the leading Eurojean languages; and most of lis works were pullished in Italan, French, and

English. Aldini was one of the founders of the National Institute of Italy, and among his scientific honours he counted the gold medal of the Royal Society of London, aind the prize of the Institute of France. In recognition of his merits, the emperor of Austria made him a knight of the Iron Crown and a councillor of state at Milan, where he died on the 17 th January 1834. He left by will a considerable sum to found a school of natural science for artisans at Bologna.
aldred, Ealdred, or Alrej, a prominent ecclesiastic in the llth century, was successively abbot of Tavistock, bishop of Worcester, and archbishop of York. He was promoted to the see of Worcester 'in 1046, and in 1050 was sent on a special mission to Rome by Edward the Confessor. In $105 \pm$ he went as ambassador to the court of the Emperor Henry III. with the object of negotiating for the return of Edward the Atheling from Hungary, and remained a year at Cologne. In 1058 he undertook and accomplished a journey to Jerusalem, a pilgrimage which no English bishop had ventured on before. He was appointed archbishop of York in 1060 , and procceded to Rome to obtain the pallium; but the pope at first refused to confirm the appointment. At length, howerer, Aldred was duly in rested mith the robe of office on condition of his resigning his former see, which he had continued to hold till that time. On the death of Edward (1066) Aldred sided with Harold, and officiated at his coronation; but after the battle of Hastings he made submission to William, and poured the sacred oil on the head of the Conqueror ere the year was completed in which he had crowned Harold. There are several traditions, which may be regarded as haying some foundation in fact, that represent Aldred as administering rebuke to William in the interesta of his countrymen or in defence of his church's rights. At the same time, he remained faithful to William, and when the English rose in the north against the Normans, he counselled submission. He died at York, Sept. 11, 1069, of grief, it is said, because of the threatened attack on his city by the combined forces of the English and Danes.
aldrich, Dr Hevry, theologian and philosopher, was born in 1647 at Westminster, and was educated at the collegiate school there, under Dr Busby. In 1662 he entered Christ Church College, Oxford, with which he continued to be intimately connected during his whole life. He took so conspicuous a part in the controversy with the Roman Catholics during the reign of James II., that at the Revolution the deanery of Chist Church was conferred upon him, Massey, the popish dean, haring fied to the continent. In 1702 he was appointed rector of Wem in Shropshire, but continued to reside at Oxford, where he died on the 14 th Dec. 1710. He was buried in the cathedral without any memorial, at his own desire. Aldrich was a man of unusually varied gifts. He is best known as the author of a Compendium Artis Logicce, a work of almost no value in itself, but historically important as being for upwards of a century the manual in exclusive use at Oxford. His claims to distinction as a musician and an architect, though not so midely recognised, are much better founded than his reputation as a logician. He composed a number of anthems and church services of very considerable merit, which are still frequently sung in cathedrals. He also adapted much of the music of Palestrina and Carissimi to English words with great skill and judgment. The catch "Hark, the bonny Christ Church bells" is one of his most admired compositions in the lighter style. Aldrich wrote a treatise on architecture; and practical evidence of his skill in the art may be seen in the church and campanile of All Saints, Osford, and in thrce sides of the socalled Peckwater Quadrangle of Christ Church College, which were erected after his designs.

In classical scholarship Di Aldrich had some repntation. The Mrusce Anglicanae contains two apecimens of his Latin verse, the subjects being the accession of King William and the death of the Duke of Gloucester. A lumorous Latin version by Aldrich of the popular ballad-

> "A soldier and a sanio., A tiuker and a tailor," \&c.,
has been preserved by Sir John Hawkins. Another sprecimen of his wit is furnished by the following epigram, entitled ."Causa Bikendi," which aome, however, have ascribed to Pere Sirnond :-

> Si bene quid memini, Causce sunt quinque tivendi;
> Mospitis Adventus, prosens, Sitis, alque futura,

Aut Vini Bonitas, aut quelibet allera Causa
The translation runs-

> If on my theme I rightly think,
> There are five reasons why men drink:-
> Good wise; a friend; because I'm dry;
> Or lest 1 should be by nd by;
> Or-any other reason why.

ALDROVANDI, Ulisse, a celebrated naturalist, born of noble parentage at Bologna on the 11th Sept. 1522 (died 1607). While a boy he was page in the family of a rich bishop, and afterwards apprentice to a merchant in Brescia. Commercial pursuits soon became distasteful to him, and he turned his attention to law and medicine, studying first in his native town and afterwards at Padua. In 1550, haring been accused of heresy; he was compelled to proceed to Rome in order to vindicate himself before the Inquisition, which gave him a conditional acquittal. In Rome he published his first work, a treatise on ancient statuary. Here he made the acquaintance of the eminent naturalist Rondelet, from whom it seems not unlikely that he derived the impulse towards what became from that time his exclusive study. On his return to Bologna he devoted himself specially to botany, under the teaching of Lucas Ghino, then professor of that science at the university. In 1553 he took his doctor's degree in medicine, and in the following year he was appointed professor of philosophy and also lecturer on botany at the university. In 1560 he was transferred to the chair of natural history, which he continued to occupy until rendered infirm by age At his instance the senate of Bologna established in 1568 a botanical garden, of which hewas appointed the first director. He was also instrumental in founding the still existing public museum of Bologna, which contains, especially in the natural history department, a large number of specimens collected by Aldrorandi. To procure these it is believed that he risited personally most of the countries of Europe, though the details of his journeys have not been preserved. Some idea of the extent of his labours may be gathered from the fact that his herbarium occupied sixty large folio volumes. To the other offices held by Aldrovandi was added that of inspector of drugs, in which capacity he published in 1574 a work entitled Antidotarii Bononiensis Epitome, deserving of notice as furnishing the model according to which nearly all subsequent pharmacopxias have been compilcd.

The results of Aldrovandi's varions researches mere embodied in his magnum opies, which was designed on the most complete scale, so as to include everything that was known about natural history. The first three volumes, comprising lifs ornithology, were published in 1599. Three moore, treating of insects and mollusca, appeared during the author's lifetime. The seven volumes which completed the work were compiled from Aldrovandi's manuscript materials, under the editorship of several of his pupils, to whom the task ${ }^{\text {Whas }}$ entrusted by the senate of Bologna. The worl was enriched by a large number of pictorial illustrations, prepared at great expense, the author having, it is said, cmployed severtl celebrated artists for thirty years. Among these were Lorenzo Heniui of Florence and Christopher Coriolanus of Ňuremberg. It has becu said, indeed, that the cost of the undertaking was so great as to exhaust its author's means, and that he died penniless and blind in the public hospital of Bologua. This, however, is probably incorrect, at least as regards the allegation of poverty. Published records of the senate of Rologna show that it liberally supported Aldrovandi is his ondertakiug, doubling his salary soon after his appointment as professon
and bestowing on lim from time to time oums amounting in all to 40,000 crowna. If, therefore, he died in tho public hospital, he probably went there for tho better treatment of his disease. His death occurred on the 10 th Nov. 1607.
Aldrovandi was chiclly remarkablo for laborious and patient research. He scems to hare becn totally destitute of the eritical faculty; and bardly any attempt is made in his great work to classify facts or to distuguish between the true and tho fabulous, the important and the trivial. Mluch is thus included that is of no scientific value, but it also contaius much information of very great interest to the naturalist.

ALDSTONE, or Alston Moor, a market-town of England, in the county of Cumberland, situated on an eminence near the South Tync, 19 miles E.S.E. from Carlisle, with which it is connected by railway. The surrounding country, which is bleak and desolate, contains lead mines, mostly belonging to Greenwich Hospital, formerly very valuable, but now almost exhausted. Thread, flannel, and shot are manufactured in the town. Population (1871) of parish, 5680 ; of town, 2627.

ALE, a fermented liquor obtained from an infusion of malt, and differing from beer chicfly in having a less proportion of hops. Before the introduction of hops into England from Flanders, about 1524, ale was the namo exclusively applied to malt liquor, the term beer being gradually introduced at a later period to deseribe liquor brewed with an infusion of hops. The two words, however, are now used with little distinction of meaning. Ale, the wine of barley, is said to have originally been made in Egypt. The natives alike of Spain, France, and Britain all use an infusion of barley for their ordinary liquor, which was called calia and ceria in the first country, cerevisia in the second, and curmi in the third-all literally importing the strong water.
"All the several nations," eays Mliny, " who inluabit the west of Europe have a liquor with which they intoxicate tbemselves, made of corn and water. The manner of making this liquur is sometimes different in Gaul, Spain, and other countries, and is called by many various names; but its nature and properties aro everywlece the anme. The people of Spain, in particular, brew the liquor so well that it will kecp good a long time. So exquisite is the cunning of mankind in gratifying their vicious appetites that they have thus invented a method to make water itself intoxicate."

The method in which the ancient Britons and other Celtic nations made their ale is thus deseribed by Isidorus and Orosius :-
"The grain is stceped in wnter, and made to germinate, by which its spirits are excited and set at liberty; it is then dried and ground; after which it is infused in a certain quantity of water, which, being fermented, hecornes a pleasant, warming, strengthening, and intoxicating liquor."

This ale was most commonly made of barley, but sometimes of wheat, oats, and millct. Alo was the favourite liquor of the Anglo-Saxons and Danes. Bcfore their conversion to Christianity, they believed that drinking large and frequent draughts of ale was one of the chief felicities which those herocs enjoyed who were admitted into the hall of Odin. Anciently the Welsh and Scots had two kinds of ale, called common ale and spiced ale, the relative values of which were thus appraised by law: "If a farmer had no mead, ho shall pay two casks of spiced ale, or four casks of common ale, for one cask of mead." By this law a cask of spiced ale, nino palms in height and eighteen palms in diarmeter, was valued at a sum of money equal in value to $£ \mathfrak{L}, 10$ s. of our present money; and a cask of common ale of the same dimensions at a sum equal to $£ 3,15 \mathrm{~s}$. This is a sufficient proof that even common ale at that period was 22 article of luxury among the Welsh, which could only be obtained by the great and opulent.

For details as to the process of manufacture, statistics, \&c.', see Drewing.

ALE-CONNER, an officer appuinted yearly at the courtleot of ancient manors for the assize of ale and ale-measures.

The ynstatorcs ccrvisiue-called in different Iocalities by tho different names, "alc-tasters," "ale-founders," and "ale-conners"-wero sworn to examine beer and ale, to take care that they were good and wholesome and were sold at proper prices. In London, four ale-conners are still chosen amually by tho liverymen in common hall assembled, on Midsumner Day. Since ale and beer have become excisablo commodities the custom of apponting ak-tasters has in most places fallen into disuse. (For the means now employed to test the quality of ales seo adulteration, p. 17\%.)
hleandio, Girolamo (Hieronimus), cardinal, commonly called " the Elder," to distinguish him from lis grand-nephew of the same name, was born at Motta, near Venice, on the 13th of February 1480 (died 1542). He studied at Venice, and while still a youth aequired great reputation for learning. In 1508 he went to Paris, on the invitation of Louis XII., as professor of belles lettres, and he held for a time the position of rector in the university. Entering the scrviee of the prince-bishop of Liege, he was sent by that prelate on a mission to liome, where Pope Leo X. retained him, giving him (1519) the office of lilurarian of the Vatienn. In the autumn of 1520 he went to Germany to be present as papal muncio at the coronation of Charles V., and in the following \&jring he appeared at the dict of Worms, where he headed tho opposition to Luther, advocating the most extreme measures to repress the doctrines of the Reformer. His conduct not merely called forth the fiereest denunciations of Luther, but estranged from him Erasmus, who had been his intimate friend at Venice. The edict against the leformer, which was finally adopted by the emperor and the dict. was drawn up and proposed by Aleandro. After the closo of the diet the panal nuncio went to the Netherlands, where he kindled the flames of persecution, two monks of Antwerp, the furst martyrs of the Reformation, being burnt to ashes in Brussels at his instigation. In 1523, Clement VII., having appointed him archbishop of Brindisi and Oria, sent him as nuncio to the court of Francis I. Ho was taken prisoner along with that monarch at the battlo of Pavia (1525), and was only released on the payment of a heavy rausom. He was subsequently enployed on various papal missions, especially to Germany, but was unsuccessful in preventing the German princes from making a truce with the Reformers, or in checking to any extent the progress of the new doctrines. In 1538 Paul III. conferred upon him the cardiral's hat, when he took the title of St Chrysogonus. He died at Rome on the 31st January or lst Feliruary 1542.

Alcandro compiled a Lexicon Graco-Latinum, and wrote Latin verse of considerabie merit. The Vatican library contains a volune of manuscript letters and other documents written by him in conHection with his various missions against Luther. Its historical value renders this the most important of his works.
aleman, Louis, Archbishop of Arles, and Cardinal of St Cecilia, was born at Bugey in 1390. He was one of the presidents of the Council of Basle in 1431, and led the party that maintainod the supremacy of councils over popes in opposition to the claims of Eugenius 1V. It was on his motion that tho latter was deposed by the council, and Felix V. clected in lis stead. Eugenius thereupon deposed the arch-pope, and deprived Alcman of all his ceclesiastical dignitics, but these were restored by Nicholas V. in 1447, Felix V. having previously resigned, on the advice of the cardinal. In 1527 Alcman was canonised by Popo Clement VIl.

ALEMANNI, a large German tribe on the Upper Rhine. They are first mentioned by Dion Cassius, who relates that the Emperor Caracalla gained, in 213 A.D., a victory over them on the banks of the Maine, and thence assuned
the surname Alemannicus. The origin of this tribe, and the country from which they came, are unknown; but we have a distinct statement, which is apparently confirmed by the rery name of the people, that they had flocked together from all parts, and were a mixed race. They proved most formidable encmies to the Romans as well as to the Gaul's, their western neighbours, who to this day apply the name Alemanni (Allemands) to all the Germans indiscriminately, though the Alemauni, properly so called, occupied only the country between the Maine and the Danube. In the reign of Aurclian, 270 A.D., they attempted to invade Italy, but were repulsed. After the death of that emperor, however, they renewed their attacks by invading Gaul, and ravaging the country at different times. Several undertakings against them were of little avail, until in 357 A.D. the Emperor Julian completely defeated them in the neighbourhood of Strasburg, where all their forces were assembled under seven chiefs. This and other defeats, however, did not break the power of the Alemanni, who, bcing pressed on hy other barberians in the north, were forced to advance southward and westward to conquer new countries for themselves. Hence, after the middle of the 5 th century, we find them established not only in the country now called Suabia, but also in a part of Switzerland and in Alsace. In these countries the Alemanni have maintained themselves ever since, and the greater part of the modern Suabians and the northern Swiss are descendants of that ancient race.

ALEMIBIC (Arab. alanbiq, cognate to the Greek ä $\mu \beta \iota \xi$), an apparatus for distillation, used chiefly by the alchemists, and now almost entirely superseded by the retort and the worm-still. It varied considerably in form and construction, but consisted essentially of three parts-a vessel containing the material to be distilled, and called, from its gourdlike shape, the crocurbit ; a vessel to receive and condense the vapour, called the head or capital; and a receiver for the spirit, connected by a pipe with the capital. The entire apparatus was sometimes constructed of glass, but as this rendered it very expensive and brittle, it was more usual to make the cucurbit of copper or earthenware, and the capital alone of glass.

ALEMTEJO (Spanish Alentejo), a province of Portugal, bounded on the N. by Beira, on the E.: by Spanish Estremadura and Andalusia, on the S. by Algarre, and on the W. by the Atlantie and Portuguese Estremadura. It lies between $37^{\circ} 20^{\prime}$ and $39^{\circ} 40^{\prime} \mathrm{N}$. lat., and $6^{\circ} 45^{\prime}$ and 8° 53^{\prime} W. long., and has an area of 10,225 square miles. Alemtejo is traversed by several mountain ranges, whose height does not generally rise much above 2000 feet, though one of the peaks of the Sierra de Monchique has an elevation of 4050 feet. The principal rivers are the Guadiana, which, crossing the Spanish frontier, flows southward through the province; and the Sado, which rises in the Sierra de Monchique, and flows to the north. Farther northward are the Soro and the Zatas, tributaries of the Tagus. All these rivers receive numerous affluents." There are several extensive plains, notably that of Alemtejo, the largest in Portugal, lying S.W. from the mountains of Portalegre ; and that of Onrique, in the southern part of the province. Some portions of these plains are fruitful, others marshy, while large traits are mere desolate wastes. The climate in the lower part: of the country is exceedingly hot, and is rendered unkealthy in summer by the stagnant marshes. Towards the Spanish frontier the soil is fertile, and in the south the country is corered by extensive forests of oak, pine, chestnut, cark, and holm, especially on the sides of the Sierrus de Monchique and Caldeiraon. In the more fertile par:a of the province, grapes, figs, citrons, pomegranates, aref other finuts are produced. Wheat, maize, and rice are givsul, and some atteution is siven to the rearing of mules.
asses, goats, cattle, and sheep. Agriculture is, howcver, is a backward state, the sparse population being mostly con centrated in the towns, leaving extensive districts uncultivated and almost uninhabited, Droves of swine are fed on the waste lands, growing to a great size, and affording excellent hams. Minerals are to be found in the mountains, but they are Iittle wrought. Manufactures scarcely exist, being confincd to the preparation of olive oil of particularly good quality, and the making of earthenware, woollen cloths, and leather. For administrative purposes Alemtejo is divided into three districts-Beja, Evora, and Portalegre; and it contains 50 communal divisions and 315 parishes. The chief towns are Evora, Portalegre, Elvas, Beja, Estamoz, and Moura. There are no seaports of importance in the province. Population in 1868, 332,237.

ALENCOON, the chief town of the French department of Orne, situated in a wide and fertile plain, on the Sarthe, close to its confluence with the Briante. It is a clean, regularly-built town, with broad handsome streets. It is the seat of a bishop; and the Gothic church of Notre Dame, called the cathedral, is a fine building of the 16 th century. The only remains of the ancient castle of Alençon are three towers that form part of the present town-hall The lace known as "point d'Alençon" is the most noted manufacture of the town, althongh of late years its importance has somewhat diminished. Among the other industries are tanning, spinning, bleaching, linen mamufacturing, and cider-making. The cutting of quartz crystals, often called Alençon diamonds, is also carried on. Alençon was a place of small impertance when it was handed over to the Normans by Charles the Simple in the beginning of the 10th century. In 1025 it becama, subject to the Do Belesmes, counts of Alençon, by whom it was enlarged and fortified. It was ceded to King Philip Angustus in 1221 by Alice, the heiress of the last count. The duchy of Alençon was created about the end of the 14 th century; and remained with the original family, a branch of the house of Valois, until the middle of the 16 th. The town was repeatedly taken and retaken in wars with Henry V. and Henry VI. of England, and also in the time of the League. In the war betrreen France and Germany, Alençon was taken by the Germans under the Grand Duke of Mecklenburg on' the 17 th of January 1871. The townspeople did not offer much resistance. The mayor and municipality were, indeed, in favour of yielding without a struggle; but the newly-appointed prefect, an ultra-republican, insisted on a more martial policy. A fceble skirmish took place outside the town on the evening of the 16 th of January, and the grand duke entered on the following morning without any further opposition. The Germans, as a punishment for the previous resistance, imposed on the citizens a fine of 300,000 francs, besides a large contribution of cattle, corn, and other prorisions. Population (1872), 16,037.

ALENIO, Givlio, a missionary of the Jesuit order, born at Brescia in 1582, died 1649. He became a member of the order in 1600 , and urrived at Nacno as a propagandist in 1610. For upwards of thirty years he laboured to spread Christianity in China, adopting, in accordance with the principles of his order, the dress and manners of the country. He was the first who planted the faith in the province of Kiang-Si, and he built several churches in the province of Fo-Kien. He cumposed a number of morks in thoChinese language, of which he was thoroughly master, the most important being a Lije of Christ and a Cosmography. - LLEPPO, or Haleb, a city of Syria, capital of the T'urkish vilayet of the same name, in $36^{\circ} 12^{\prime} \mathrm{N}^{\circ}$. lat., $37^{\circ} 12^{\prime}$ E. lung., 80 miles E. of the Mediterranean, near the N.W. cxiremity of the great Syrian desert It vccupies the site
of the ancient Bercea, and is a place of great antiquity. After the destruction of Palmyra it speedily became the great emporium of the trade between the Mediterranean and the countries of the East." "It was orerwhelmed by the Slood of Saracen invasion in 638; and in 1260, and again in 1401, it was plundered and laid maste by the Tartars It finally eame into the possession of the Turks in 1517. To the east of the modern eity extensive remains of its ancient grandeur have been discovered:

Aleppo is built on eight low hillockes, and is encircled by limestone hills of greater elevation, while beyond these stretches a fertile plain. The siver Kouik, the ancient Chaius, Hows through the town, and loses itself in a morass 18 miles distant. It is subjeet to floods in winter, when it overfors its banks, and inundates the neighbouring gardens. The city is surrounded by a stone wall, 40 feet high and $3 \frac{1}{2}$ miles in circuit, erected by the Saracens. This wall is fanked by frequent towers, but the diteh is partially choked up; and the city, being commanded by the adjacent heights, is entirely indefensible. The wall is pierced by seven gates, which are known by different names. Ontside the city there are large irregular suburbs, erected after the great earthquakes of 1822 and 1830 , and increasing the circuit of the place to 7 miles. The city suffered very severely by the earthquake of 1822 ; twothirds of the inhabitants were swallowed up, the citadel and many of the mosques were overthrown, and a great part of the town was laid in ruins. Before the oceurrence of these disasters Aleppo was the fairest and cleanest of Turkish cities; and although it has only partially recovered from their calamitous effects, it has still an attractive appearance, especially when the white minarets of its numerous mosques, and its houses, picturcsquely plaved on the terraces of the hills, are viewed from a distance. The houses are built of freestone, with flat roofs, and are generally of two or three storeys. One of the mosques, that of Zacharias, is held in peculiar veneration by the Moslem inhabitats. A new citadel has beer erected in the N.W. part of the town; and besides many mosiques, warehouses, and bazaars, there are several Clristian churches and schools, and also Turkish schools, libraries, and hospitals. Aleppo is the seat of a Greek and Armenian patriarch, and of a Maronite bishop. The Mahometan, the Christian, and the Jewish portions of the population dwell in separate quarters of the town. Water is brought to the city by an aqueduct from a distance of 8 miles, and supplies upwards of 200 fountains, massive structures standing in the streets. Among the chief attractions of Aleppo are its gardens, which extend continuously for about 12 miles S.E. of the eity. They are watered by the Kucik, and produce abundance of fruit and culinary vegetables; but their most celebrated production is the pistachio-nut, which is regularly cultivated.
Formerly Aleppo stood 'in the first rank among the eities of Asia Minor as a place of trade; and it is still the emporium of Northern Syria, and has extensive commercial relations with Diarbekir aud the upper parts of Anatolia, and also with Mosul and Baghdad. Large caravans resort to Aleppo from these and other eastern places, and the imported foreign goods are brought by earavans from the ports of Scanderoon or Alexandretta and Latakia The construction of a carriage-road between Aleppo and Alexandretta las been commenced, but no progress whatever was made with it during 1872. Trade is conducted in Alepno by more than 100 mereantile houses, several of them British; but no commercial bank has as jet been established in the province. The principal manufacture of the city consists of various kinds of cloth, of silk, cotton, ard wool, some flowered and striped, uthers woven with gold and silver thread. These cloths have long been famous
throughout the East, and the manufactare of them employe about 6400 looms.:-A large amount is invested in the manufacture of carpets, cloaks, and girdles. There are, besides, numerous soap, dyeing, and print works, and also rope-walks. In addition to cloths, the exports include wheat, sesame, wool, cotton, oil, scammony, galls, pistachioDuts, camels' hair, \&c.; while the imports chiefly consist of European manufactured goods and colonial preduce. The aggregate value of the trade of the province exceeded $£ 1,500,000$ in 1872

The air of Aleppo is dry and piercing, but not insalubrious. The city, however, as well as the environs, is subject to a singular epidemic disorder called the boil of Aleppo. It attacks the inhabitants chiefly in their childhood, and the ulcers, which last for a year, commonly break out on the face. This malady is scldom fatal, and docs not leave any hurtful effects except the scars, by which alrast all the inhabitants are disfigured. The causes of the disease have not been discovered, though some have supposed it due to the quality of the water. Aleppo is also subject to the ravages of the plague, the recurrence of which is anticipated by the inbabitants every ten years. Its effects are rendered the more deadly by the blind fatalism of the Turks, who cannot be persuaded to take any precautions against the progress of this dreadful disease. In the end of last century about 00,000 of the inhabitants were swept off by one visitation; and that of 1827 was also very severe.

By the visitations of the plague, the earthquakes, the cholera of 1832, and the oppression of the Egyptians while Syria was subject to Mehemet Ali, the population of Aleppo has been much reduced. In the earlier part of the century the inhabitants numbered over 200,000 ; but the population is now estimated at less than 100,000 , of whom 15,500 are Christians, 4000 Jews, and the remainder mostly Mahometans. Although the Christians enjoy toleration at the hands of the Turkish government, they have nevertheless been exposed to frequent persecution through the jealousy of the turbulent Mahometan population. The tumults of 1850 and 1862 occasioned some bloodshed, and eould only be suppressed by force of arms. In the former, property to the amount of a million sterling was destroyed.
Ales, or Aless (Alesius), Alexander, a celebrated divine of the school of Augsburg, was born at Edinburgh on the 23d April 1500 (died 1565). His dame was originally Alane, and that by which he is more generally known (derived from didcir ω) was assumed by him when he went into exile. He studied at St Andrews in the newlyfounded college of St Leonards, where he graduated in 1515. Some time afterwards he was appointed a canon of the collegiate church, and in this office he at first contended vigorously for the seholastic theology as against the doctrines of the Reformers. His riews were entirely clanged, however, on the occasion of the exccution of Patrick Hamilton in 1528. Ho had been chosen to meet Ilamiltoa in controversy, witl a riew to convincing him of his errors, bat the arguments of the Scottish proto-martyr, and above all the spectacle of his intrepid conduct at the stakc, impressed Alesius so powerfully that he was entirely won over to the cause of the Reformers, though for a time he did not make the fact known. A sermon which he preached against the dissoluteness of the clergy gave great offence to Prior Hepburn, who cast him into prison, and might have carried his resentrnent.to the extremest limit had not Alesius contrived to escape to the Continent in 1531. After travelling in rarious countries of northera Europe, be settled down at Wittenberg, where he made the acquaintance of Melanethon, and signed the Augsburg confession. Meanwhile, he was tried in Scotland for heresy, and condemned without a hcaring. In 153.3 m .
decree of the Scottish clergy; prohibiting the reacing of the New Testament by the laity, drew from Alesius an ably-argued defence of the right of the people, in the form of a letter to James V. A reply to this by John Cochleus, also addressed to the Scottish king, occasioned a second letter from Alesius, in which he not only•restates and aroplifies his argument with great force and beauty of style, but enters at some length into more general questions connected with the Reformation. In 1535, Henry V1II. hamng broken with the Churel of Rume, Alesius was induced to remove to England, where he was very cordially received by the king and his advisers Cranmer and Cromwell. After a short residence at Lambeth he was appointed, through the inflnence of Cromwell, then chancellor of the university, to lecture on theology at Cambridge; but when he had delivered a few expositions of the Hebrew psalms, he was compelled by the opposition of the papal party to desist. Refurning to London, he supported humself for some time by practising as a physician. In 1537 he attended a convocation of the clergy, and at the request of Cromwell, the president, conducted a controversy with Stokesley, bishop of London, on the nature of the sacraments. His argument, which was marked by great ability, was afterwards published at Leipsic. In 1539 Alesius was compelled to tlee for the second time to Germany, in consequence of the enactment of the persecuting statute known as the Six Articles. He was immediately chosen to fill a theological chair in the university of Frankfort-on-the-Oder, where he was the first professor who taught the Reformed dectrines. In 1543 he quitted Frankfort for a similar position at Leipsic, his contention that it was the duty of the civil magistrate to punish fornication having given offence to some of the authorities of the former university. At Leipsic Alesus remained until his death, which occurred on the 17 th March 1565. He enjoyed the intimate friendship of Melancthon, to whom he rendered valuable assistance in many of his disputations with the Catholic doctors.
Alesius was the inthor of a large number of exegetical, dogmatic, and polemical works. He displayed his warm interest in his native land by the publication (1544) of a Cohortatio ad Concordiam Pietatis, missa in Patram suam, which had the express approval of Luther. In 1 Eic appeared his treatise, De Necessitate ei Merito Bonomum Openum. a raluable contribution to the synergistic side in the coit:crerss on good works.
AíESSANDRI, Alessandro (Alexander ab Alexandro), a learned jurisconsult, born at Naples about the year 1461 (died 1523). He studied at Naples and Rome, and afterwards practised for a time as advocate in both cities. At Naples he is said to have been royal proto-notary in 1490. Dissatisfied, according to his own account, with the corrupt administration of justice, he at length quitted the bar, and devoted himself entirely to literary pursuits, especially to the study. of philology and antiquities. A sinecure appointment, which he owed to the favour of the pope, enabled lim to lead a life of learned leisure at Rome, where he died on the 2d Octeber 1523. What is known of his biography bas been gathered chiefly frorn detached statements in his work entitled Dies Geriales, which appeared at Rome in 1522, and is constructed after the model of the Noctes. Atticce of Aulus Gellius, and the Satarnalia of Macrobius. The work consists of a confused mass of heterogeneous materials relating to philology, antiquities, law, dreams, spectres, \&c., and shows great credulity and want of judgment on the part of its author.

ALESSANDRIA, a province of Italy, in the former duchy of Piedment, bounded on the N. by Novara, on tho E. by Pavia, on the S. by Genoa, and on the W. by Turin ; with an area of 1051 square miles. There are no hills of queh elevation in the prorince, aud the surface gencrally
is flat. . The chief rivers are the P_{0}, the Tenaro, the Belbo, the Orba, and the Bormida. The soil is fertile, the chief products being wheat, maize, wine, silk, madder, hemp, flax, and fruit. The capital is Alessandria; population of the province in 1871, 683,361.
Alessandria, a city of Italy, the capital of tie above province, is situated in a marshy district near the confluence of the Tanaro and the Bormida. It is a strongly fortified place, its citadel, on the left bank of the Tanaro, being one of the most important in Europe. The town itself, which lies chiefly on the right bank of the river, is the seat of a bishop, and contains a cathedral and more than a dozen other churches, besides monasteries and nunneries. The principal manufactures of Alessandria are silk, linen, and woollen goods, stockings, and hats. Large quantities of fruit and flowers are also produced in the neighbourhood. The trade of the city is extensive, and there are two important fairs held every year that are much resorted to by merchants from all parts of Italy. Alessandria was built in 1168 by the Lombard League as a bulwark against Frederick Barbarossa. It received its present name in honour of Pope Alexander III., but it was also called Cesarea for a time. In 1174 it was unsuccessfully besieged by Frederick Barbarossa, who nicknamed it in derision Della Paglia, i.e. " of straw." It was ceded to Savoy by the peace of Utrecht in 1713. after having belonged, at different perious, to the houses of Montferrat and Milan. Its fortifications were greatly enlarged and strengthened by Bonaparte during the French occupation, which lasted from 1800 to 1814 . The citadel of Alessandria was taken by the Austrians after the battle of Novara in 1849. Near Alessandria is Marengo, where Napoleon defeated the Austrians in 1800. In consequence of this defeat the Austrians concluded the armistice of Alessandria, ceding all Italy north of the Mincio to the French. Population (1862), 27,027; of commune, 56,545 .

ALESSI, Galeazzo (1500-72), a distinguished architect, born at Perugia, was a pupil of Caporali and a friend of Michael Angelo. He was an enthusiastic student of ancient architecture, and his style gaincd for him a European reputation. Genoa is indebted to him for a number of its most magnificent palaces, and specimens of his skill may be seen in the churches of San-Paolo and San-Yittoria at Milan, in certain parts of the Escurial, and in numerous churches and palaces throughout Sicily, Flanders, and Germany.

ALEUTIAN ISLANDS, so called from the Russian word aleut, signifying a bold rock, is the name given by the Russian discoverers to a chain of small islands situated in the Northern Pacific Ocean, and extending in an easterly direction from the peninsula of Kamtchatka, in Asiatic Fussia, to the promentory of Alaska, in North America This archipelago has been sometimes divided into three groups; the islands nearcst liamtchatka being properly called Aleutia, the central group the Andreanov or Andrenovian, and those nearest to the promontory the Fox Islands. They are all included between 52° and $55^{\circ} \mathrm{N}$. lat., and $172^{\circ} \mathrm{E}$ and $163^{\circ} \mathrm{W}$. long. The Aleutian Islands were discorercd by the Russian navigator Behring in 1728, and were carefully explored in 1760 by Captain Krenitzin, under a commission from the Empres3 Catherine. During his third and last voyage, in the ycar 1778, Captain Cook surveyed the eastern portion of the archip elago, accurately determined the positions of somo of the most remarkable islands, and corrected many errory of former navigators. Subsequent expeditions of tho Tussians, aided by the settlement of fur traders on tho islands, as well as on the neighbouring coasts of the Arceriean contineut, have afforded further information as to this reraurkable chain. The whule of the islands are
bare ard mountainous; and their coasts are rocky and ; into the adjaceut lays. These isiands bear evideat mariss surrounded by breakers, by which the alproach is renderd execedingly dangerous. The land rises immediately from the consts to steep bald mountains, giadually asecurding sato lofty ranges ruming from east to west. Springs take , heir rise at the bottom of the mountains, and cither flow in broad and rapid streams into the neighbouriug sea, or, collecting in the rocky vales and gleus, form ample lakes, which send off their supertluous waters by natural camals
ol volcanie formation, and serveral of then havo still active voleanoes, which continually ennit suoke and sometiones flames. The most important group of the chain is that called the Fox Islauds, of which the largest are Unimais and Uunalaska, Loth'near the western extremity of Alaska. The thin argillaceous soil of the Alcutian Islands produces little regetation, and agriculture is alnost maknown. The climate is sulijeet to sudden changes, and is very tula rour-

able to any attempts at cultivation. Few trees grow on the islands, but there are some stunted shrubs of birch, millow, and alder. The timber required for building purposes is obtained from the driftwood thrown on the coasts. The prineipal oecupations of the Aleutians are fishing and hunting; and the preparation of the inplements necessary for both. Since the end of last century the fur traders have had settlements here for the capture of the seal and the sea-otter, which are found in great numbers on the shores; and of the Aretic fox, which roams over the islands. Fish are abundant; and dogs and reindeer are common. The population of the wholo graup is abont 8000 , the natives heing a kindred race to the inhabitquts of Kaintclatka. They are described as rather lor
in stature, but plump and well-shaped, with sloort neeks. swarthy faces, black eyes, and lony straight black hair. They have mominally heen converted to Cluristianity by the missionaries of the Greek Church, but are said to be unchaste in their habits, and addicted to intemperanco Whenever they have the opportunity. Until 1867 these islauds helonger to Russia, but they were included in the transfer to the United States of the whole Ihnssian possessions in America made in that year. They how form part of the Juited States territory of Alaska. (See Alaska.) From the pasition of the Aleutian Islands, stretching like a broken bridge from Asia to Aurerica, some ethnolugists hase supposed that by weans of then America was first peopled.

ALEXANDERTHE GREAT

AJEXANDER IJI., commonly called "The Great," son of Plitip II., king of Macedunia. and of Olympias, danghter of the Iffinssian chief Neoptolemus, was born at Pella, 356 b.c. His father was a man of fearicss courage and the soundest judgment ; his mother was a woman of sarage energy and ferce superstition. Alexander inherited the qualities of both his parents, and the result was the conbination of a boundless ambition with the most sober practical wisdom. The ehild grew up with the conscionsness that he was the heir of a king whose power was sapidly growing; and the stories told of him attest at the least the carly awakening of a mind formed in the mould of the heroes of mythical Hellas. Nay, the blood of Achilles was flowing, as he believed, in his veins; and the tattery of his Acarnanian tutor Lysimachus, who addressed lim as the son of Pelens, may have strengthened his love of the immortal poems which told the story of that ficry warrior. By another tutor, the Molossian Leomilaz, his velemaent impulses were checked by a wholesome disciplinc. But the genius of Alexander, the greatcst of military conquerors, was moulded in a far greater degree by that of Aristotle, the greatest conqueror in the world of thought. At the age of thirteen be became for three years the pupil of a man who had examined the politienl constitutions of a crowd of states, and who had brought together a vast mass of facts and observations for
the systenatie cultivation of plysical science. nurn, these three years the boy aroke to the knowledge that a wonderful world lay before him, of which he had seen liftle, and threw himself eacomly, it is saill, into the task of gathering at any cost a collection for the study of natural history. While his nimd was thus urged in one direction, be listened to stories which told lim of the great quarrel still to be fonght out hetween the East and the West, and learnt to lonk upon himself as the clampion of Hellas against the barbarian despot of Susa.
The future conqueror was sixteen years of age when he was left at honie as refent while his father besieged Byzantium and Perinthus. Two years later the alliance of Thebes and Athens was wrecked on the fatal field of Chæronea, where Alexander, now eighteen years of age, encountered and overcame the Sacred Band which had been furemost in the victories of Leuctra and Mantinea (seo Epa. minondss); but the prospects of Alexander himself became now for a time dark and uncertain. Philip had diverced Olympias and married Cleopatra, the daughter of Attalus. This act roused the wrath not only of Olympias, but of her son, who with her took refuge in Epirus. Cleopatra becime the mother of a son. Her fatlier, Attalus, rose hiyher in the king's favour, and not a few of Alexander's friends were banished. But the fends in his ámily were subjects of serious thought for Philip, who sought to
counteract their ill effects by a marriage between his daughter and her uncle, the Epirot king Alexander, the brother of Olympias. The marriage feast was celebrated at Ega. Clothed in a white robe, and walking purposely apart from his guards, Philip was approaching the theatre when he was struck down by the dagger of Pausanias.

It is certain that Alexander, if he mourned his father's death at all, deplored it only as involving himself in political difficulties; but he took care to act as if he were grieved by it, and he revenged it, we are told, by putting out of the way some whose claims or designs might clash with his own. The Greeks of Thebes and Athens knew little what sort of man had taken the place of Philip. Demosthenes, who, although he was mourning for the death of his own daughter, appeared in festal attire to announce the death of the Nacedonian king, held up Alexander to ridicule as a bragging and senseless Margites. But they had to reckon with one who could swoop on his prey with the swiftness of the eagle. Barely two months had passed from the death of his father before the youth of twenty years stood with his army on the plains of Thessaly. The argument of the Macedonian phalanx was not to be resisted. The Thessalians recognised him as the Hegemon or leader of the Greeks; and the young king passed on to Thebes, the citadel of which had been held by a Macedonian garrison since the fight at Chreronca. Thence he took himself across the isthmus to Corinth. Here he was met by Athenian envoys, who brought him apologies more abject and honours more extravagant than any which had been paid to his father. He received them in an assembly, from which he demanded and obtained the title of supreme leader of the Hellenic armies, and to ,which he guaranteed, at the utmost with a feigned reluctance, the autonomy or independence of every Hellenic city. No one knerr better than Alexander that from the whole armoury of weapons which might be employed to reduce Greeks to slavery, none cenld more effectually do his work than a theory of freedom which meant dissension, and of self-government which meant endless feud, faction, and war.

Alexanaer was now eager to carry out his great design against Persia; but he conld not do so with safety until he had struck a wholesome terror of his power into the mountain tribes which hemmed in his dominions. His blows descended swiftiy and surely on the Thracians of Mount Hæmus (the Balkan), on the Triballians, and on some clans of Getæ, whom he crossed the Danube to attack. But these expeditions led him away from the world of the Greeks. Silence led to rumours of his defeat, and the rumours of defeat were followed by more confident assertions of his death. At Thebes and at Athers the tidings were received by some with eager befief. The covenant made with Alezander was made only with him personally. The Theban exiles at Athens were anxious to repeat the attempt which half a century carlier had been made against the Spartan garrison of the Cadmea by Pclopidas. With help in arms and money from Demosthenes and other Athenians, they entered Thebes, and summoned the Macedonian garrison to surrender. The answer was a blunt refusal, and a double line of circumvallation was drawn around the citadel, while envoys were seṇt to call forth aid from every quarter; but these efforts could not affect the issue. The belicf in Alcxander's death was to be dispelled, by no gradual reports of his escape from the barbarians, butt by his own sudden appearance at the Bcootian Onchestus. He had just defeated the Illyrians when he heard of the revolt, and he determined to smite the rebels without turning aside to taks even a day's rest at Fella. In little more than a fortuight his army was encamped on the southern side of

Thebes, thus cutting off all clances of uid from Athens It was his wish to avoid an assault, and be contented hinsself with demanding the surrender of two only of the anti-Macedonian Ieaders. The citizens generally were anxious to submit, but the exiles felt or feared themselves to be too deeply committed; and the answer took the form of a defiance, accompanied by a demand for the surrender of Antipater and Philotas. They had sealed their own doom. Personaf bravery was of no use aganst the discipline, the uumbers, and the engines of the cnemy. The defenders were driven back into the city; the invaders burst in with them; and the slaughter which followed was by no means inflicted by the Macedonians alone. The Platreans, Thespians, and Orchomenians feft that they had old scores to settle. To these and to the rest of his Greek allies Alexander subnitted the fate of the city. The sentence was promptly pronounced. The measure which the Thebans had dealt to llateæ, and would have dealt to Athens, should now be dealt out to themselves. Tho whole town was razed to tho ground, the house of the poet Pindar being alone sparcd from demolition, and his descendants alone allowed to retain their freedom. Alexander had gained his end. The spirit of the Greeks was crushed; a greai city was blotted out, and the morship of jits gods was ended with its ruin. These gods, it was believed, would in due time take vengeance on the conqueror; but for the present the only hindrance to his enterprise was remored from his path. Without tuming aside to Athens, he went on to Corintl to receive tho adulations of the independent Greeks, and to find, it is said, a less courtly speaker in the cynic Diogenes. From Corinth he returned to Maccdonia, having left Greece for the Inst time.

Six months later he sct off from Pella, crossed the Herrespont at Sestus, to appease at Ilium by a costly sacrifice the wratb of the luckless Priam; and then marched on, with not more perhaps than 30,000 infantry and 4000 cavalry, and with a treasure-chest almost empty, to destroy the monarchy of Cyrus. With him went men who were to be linked with the memory of his worst crimes and of his most astonishing triumphs-Clitus, Hephæstion, Eumenes, Seleucus, Ptor lemy the son of Lagos, and Parmenion, with his sons Philotas and Nicanor. The effects of Macedonian discipline were to be seen at once on the banks of the Granicus, a little stream flowing to the Propoutis from the slopes of Ida. Losing, it is said, only 60 of his cavalry and 30 of his infantry, he annihilated the Persian force, 2000 out of 20,000 forit soldiers being taken prisoners, and nearly all the rest slain. The terror of his name did his work as he marched southwards. The citadel of Sardis might with ease have been held against him : before he came within cight miles of the city, the governor hastened to surrender it with all its treasure. At Ephesus he found the city abandoned by its garrison. Miletus he carried by stonn. Before Ifalicarnassus he encountered a more obstinate resistance from the Atheninn Ephialtes; but the generalship of the fatter was of no avail. Alexander entercd Halicarnassus, ano the Rhodian Memnon remained shut up in the citadel.' Leaving Ptolemy with 1000 men to blockade it, he spent the winter in conquering Lycia, Pamphylia, and Pisidia. ending his campaign at Gordium, on the river Sangarius. Here was prescrved the ancient waggon of Gordius, tho mythical Phrygian king. Whoever could untie the knot, curiously twisted with fibres of the cornel tree, which fastened its pole to the yoke, nre, so the story ran, to bo lord of Asia. Alexander, as much at a loss as others to unlonse it, cut it with his sword; but the prophecy was none the less held to be fulfilied. If he was thus favoured by sentiment, he was still more faroured by the infatuation which led Darius to abandon the policy of defence by sca
for ofieasive warfare by land. From all parts of his vast empire was gathered a host, numbering, as some said, 600,000 nien; and the despot was as much elated at the eight as Serxes. when he looked down on his motley multitudes at Doriscus. Like Lerxes he had one (the Atbenian Charideunus) by his side to warn lim that Asiatic myriads were not to be trusted in an enenunter with the disciplined thousands of Alevender; but be lacked the generosity which made Jerxes dismiss Demaratus with a smile for his good-will. Darius scized the exile with his own hand, anul gave him orer to tho executioner: "My avenger," said Charidemus, " rill soon teach you that I have spoken the truth." Tho Persian acted as though he wished to bring about the specdicst fulfilment of the prediction. The Greek mercenaries were withdrawn from the fleet to be added to the land forces; but although a hundred of these could have effectually barred the passage of Alexander across the range of Taurus, and the passes of the Amanian, Cilician, and Assyrian gates, the inrader was suffered to cross these defiles without the loss of a man. Nay, so great was the contempt of Darius for the few thousands of the enemy, that he wished to give them a freo path until they reached the plain from which he would sweep them away. But he could not wait patiently for them in his position to the cast of the Amanian range. Alexander had been ill, and he had work to do in subjugating western Cilicia. When at length he set out on his march to the southern Amanian pass, Darius, with his unwieldy train, crossed the northern pass, and entered Issus tro days after Alexander had left it. He had placed limself in a trap. In a space barely more than a mile and a half in width, hemmed in by the mountains on the one side and the sea on the other, Darius, in his royal chariot, in the midst of multitudes who had scarcely room to more, awaited the attack of Alexander, who fell suddenly on his right wing. The first onset was enough. The Persians broke and fled. Darius, thinking himself in danger, fled among the foremost. The Persian centre behaved well ; bat it mattered little now what they might do. Even the Greek mercenarics were pushed back and seattered. Four thousand talents filled the treasure-chest of the conqueror, nad the wifo, mother, and son of Darius, appearing before him as prisoners, were told that they should retain thair royal titles, his enterprise being directed, not against Darius personally, but to the issue which was to determine whether he or Alesander should be lord of Asia.

The true value of armed Asiatic hordes was now as clear to all as the sun at noonday. Parmenion adranced to attack Damascus, but he necded not to strike a blow. The governor allowed the treasure in his charge to fall into his hands, and then surrendered the city. Alexander himself marched southmard to Phœenicia. At Marathus he replied to a letter in which Darius demanded the restoration of his family and roproached him for his wauton aggression. IIis answer repeated what he had alrealy said to his wife, adding that, if he wrote again, Darius must address him, not as his equal, but as his lord. "I am now master of Asia," he wrote, "and if you will not own me as such, I shall treat you as an evil-doer. If gou mish to dcbate the point, do so like a man on the battlefield. I shall take care to find you whercrer you roay be." The island city of Arados was surrendered on his approach. Sidon opened her gatcs. From the Tyrians he received a submission which demurred only to his entering their city. A siege of seven months ended in its fall ; and Alexauder hanged 2000 of the citizens, it is said, ou the sea-shore. The survirors, with the women and children, were sold as slaves. Before the catastrophe of the great Phocnician city he had received a second letter, in Thich Darius offered him his daughter in marriage, to-
gether with the cession of all lands to the west of tho Euphrates. "Wero I Alexander," said Parmenion (if we may believe the story), "I should take these terms, and run no further risk." "So should I," answered Alexander, " if I were Parmenion; but as I aus Alesander, I cannot." "lou offer mc," he wrote accordingly to Darius, "part of your possession, when I am lord of all. If I chorse to marry your daughter, I mill do so whether you like it or not." Darius sent no more letters. The issuc, he saw, must be determined by the sword. For the present he was left to himself. Alesander's face was turned tomards Egypt. Gaza dared to resist; but a siege of tro months was followed by a ruin as complete as that of Tyre. From Gaza a march of seren days brouglat him to Pelusium. The Persian governor opencd its gates to reccive him; and the Egsptians expressed their delight at exchanging a Persian for a Macedonian master. Marching in triumplh to Memphis, he offered solemn sacrifice to the calf-god Apis; and then, with the true instinct of the ruler and the statesman, he hastened to found for his new hingdom a new capital, which, after noro than two millenniums, remains a lighway for the commerce of three continicnts.

Success thus unparallcled was, it rould seem, already producing its effects upon him. Calmly reviewing tho course of his march from Sestus and Ilium to Mcmphis, ho could explain it only on the supposition that he was no child of a human father, and he determined to obtain from the oracle of Ammon, in the Libyan Oasis, a solution of this mystery. The response greeted him as the son, not of Philip, but of Zeus; and be returned, it is said, with the conviction that the divine honoars paid to Herculcs and Perseus were his own by indubitable right. Marching back through Phonicia, he hastened to Thapsacus, and then crossed the Euphrates. Thence turning northwards, he made a sweep which brought him to the Tigris below Nineveh (Mosul), and there, without opposition, crossed a strcam where the resistance of a few hundreds might have destroyed his army. After a few days' march to the south-east, he received the news that Darius, with all his host, was close at hand. Still convinced that mere numbers must, with ample space, decide the issuo of any fight, and attributing his defeat at Issos only to the cramped position of his troups, he had gathered a rast horde, which some represent as more than a million, on the broad plain stretching from Gaugamela eastwards to Arbcla. His hopes were further raised by changes made in the weapons of his troops, and more especially in the array of his warchariots. For the Maccdonions it is enough to say that they were led by a man whose consummate generalship had never shone more conspicuously than in the cautious arrangements which precedod the battle of Arbela, or rather of Gaugamela. All went as he had anticipated. As at Issus, Darius fled; and the bravery and even gallantry of the Persians opposed to Parmenion were of no avail when the main body had hurried awray after the king. So ended the last of the three great battles (if such they may be termed) which sufficed to destroy the Persian empire, or rather to make Alexander king of Persia; and so ended the first act in the great drama of his life.

The victory of Gaugamela opened for the conqueror the gates of Babylon and Susa. The treasures fonnd in the former furntshed an ample donation for all his men : thoso of Susa amounted, it is said, to nearly twelve millions of pounds sterling. The Persian king had rasted men on the battleficld; he had boarded coin which, freely spent in getting up a Greek army under Greek generals, might have rendered the enterprise of Alcxander impossible. From Susa the conqueror turned his face towards Persepolis, the encient capital of Cyrus. Before him lay the fortresses of the Uxii, to whom the Persian monarehs had
been accustomed to pay tribute when they went from be one capital of their kiugdom to the other. The same demand was now made of Alexander, who told them to some to the pass and take it, and then, follorring a new track which had been pointed out to lim, descended on their villages, and taught them that they had now to deal with a sovereign of another kind. With Persenolis, Pasargade, the city containing the tomb of Cyrus, opened its gates to receive the avenger of the iniquities of Xerxes. As buch, he determined to inflict on Darius a signal punishthest. Five thousand camcls and a crowd of mules bore away the treasure, amounting, it is said, to uearly thirty millions of pounds sterling, and then the citadel was set pn fire. The men in the city were billed, the women nade slaves.
"For a month Alezander allowed his main army to rest near Perscpolis; for himself there could be no repose. With his cavalry he overran, and, in spite of the rigours of winter, subdued, the whole region of Farsistan. Then returning to Persepolis, he set forth on his march to Media, where the fugitive king had hoped to be safe from bis pursuit. Darius had left Agbatana (Ecbatana) cight days before his pursuer could reach it. In this ancient fastness of the DLedian and Persian sovereigas Alexander deposited his treasures, exceeding, we are told, forty millions sterling in amount, under the charge of a strong Macedonian garrison headed by Parmenion. He then hastened on tomards the Caspian gates, and learnt, when he had passed them, that Darius had been dethroned, and was. now the prisoner of the Bactrian satrap Bessus. The tidings made 'Alexander still more eager to seize him. His efforts were so far buccessful that Bessus felt escape to be hopeless unless Darius could be made to leave his chariot and fly on horseback. He refused to obey, and was left behind, mortally wounded. Before Alexander could reach him, he was dead.

The conqueror now regarded, or professed to regard, himself as the legitimate heir and successor of Xerxes. His course of conquest was still unbroken; but successful forays against the Mardians on the northern slopes of Mount Elburz, against the Arians of the modern ITerat, and the Drangians of the present Seistan, were followed by an exploit of another sort. He had heard that a conspiracy against himself had been revealed to Philotas, who for two days had kept the secret to himsclf. "On being asked why he had done this, Philotas answered that the information came from a worthless source and deserved no notice. Alexander professed himself satisfied with the explanation; but Plilotas, it seems, had spoken freely to his mistress Antigone of the large share which he and his father had had in the conquests of Alczander, and Antigone had in her turn become an informer. Of real evidence against Philotas there was none; and a letter from Parmenion to his sons, found when Philotas was treacherously arrested, could tell against them only. in the cycs of one who was resolved that Philotas should die. But Alexander could not rest content with his death alone. There had been nothing yet, even in the may of shadowy slander, to criminate Parmenion, and he resolved that the needful charges should be drawn by tortures from his son. Hidden by a curtain, the conqueror of the world watched the agonics and scoffed at the screams of the fricnd who had fought by his side in a hundred fights. The issue was, or was said to be, What he desired. Philotas had confessed; and Alcxander sent off to Ecbatana a man bearing two despatches, one to cheat Parmenion into a false security, the other carrying to the officers next to him in command the real order for his assassimation. The old man was reading the lying letter of the despot when he received a mortal stab in his back. The soldiers, on hearing of what lind been dono furiously demanded the surreuder of the
murderers, and were with difficulty vithleld from taking summary vengeance on becing the written orders of Alerander. The command of Philotas, who had been at the head of the companion-cavalry, was shared between Clitus and Ieplestion; and Mexander turncd from private murder to public war. The autumn and winter were spent in overrunning parts of the moders Afghanistan and Cabul, in the formation of the Caucasian Alexaindria, and in the passage of the IIindu-Kush. He was now in the satrapy of Dessus. The surrender of Aornus and Bactra was followed by the passage of the Oxus and by the betrayal of Dessus, who was sent naked and in chains to the city which had been his capital. His next exploit (there is but slender ground for calling it into question) was the slaughter, in Sogdiana, of the descendants of the Milesian Branchide, who, having incurred the hatred of their fellow Grecks by surrendering to Xerxes the treasures of their temple, had fullowed the despot on lis retreat, and by him had been placed in these distant regions. Fire generations had passed away since that time, when Alexander gave the order that not one of them, man, woman, or child, should be left alive. From the ruined city, by way of Maracanda (Sainarkand), he reached the Jaxartes (which he beliered to be the Tanais or Don), and having laid on its banks the foundation of another Alexaudria, bo crossed the river to chase some Scythians who had shomu themselves on the further side. The end of this chase marked the northernmost point reached in his campaigns. The winter was spent in the Dactrian city of Zariaspa, 329.329 where Nlexander, summoning Bessus before him, had his 8.c. nose and ears cut off, and then sent him to be killed by his countrymen at Ecbatana.

In the following summer his army was gathered again at Maracanda. Repose from field-work left room for the display of the overbearing pride to be expected from one who had convinced himself that he was a god, and for the boundless flattery of those who found their interest in keeping up the delusion. But there were not wantin? others to whom this arrogance and servility were intensely disgusting, and whose anger was the more fierce from the necessity of avoiding all open expression of it ; and in the banquets of the divine son of Ammon there was always a risk that these pent-up feclings might burst forth like a winter torrent. The catastrophe was not long in coming. In a feast at Maracanda, Alcxander, boasting of all that he had done since the death of his father, took credit further for the victories of Philip in the later years of his reign. The patience of Clitus had long been severely taxed, and in the heat of the revel all thought of prudence was cast aside. He spoke his mind plainly, telling Alexander that all his exploits taken togother were not equal to those of the man who had found Macedonia a poor and distracted country, and had left it a mighty and coherent state; and that his own greatest victorics had been won through the aid of Plilip's old soldiers, some of whom he had murdered. Stung to the quick, Alexander gave utterance to his rage; but his retort only led Clitus to remind him of the battlefeld of the Granicus, where he had sared him from dcath by cutting off the arm of the Persian whose smord mas raised to smite him, and to warn him that, if he could not bear to listen to the words of trath, he should confine himself to the society of slaves. Alexander felt for his dagger: it had purposely been placed out of his reach. He called to his guards to sound an alarm: they hesitated to obey the orders of a raving drunkard. Some of the more sober and moderate of the party held him in their arms, praying him to do nothing hastily. By way of answer he reviled them for keeping him a prisoner as Bessus had kept Darius, and shaking himsclf free, snatched a pike from one of the guards, and thrust it through the body of,

Clitas, bidding him go to Philip and Parmenion. Tho rage of the tiger was followed by a furious remorse, in which, with coasiderable truth, he denounced himself as unfit to live. For three days he mould neither eat nor drink; nnd the army, alarmed at the threatened starvation of their king, roted that Clitus had been justly slain, and that his body shond not receive the rites of burial. Ey reversing this vote, Alezander secaled to feel that ha had gone a long way towards aequitting hirself; whatever might be yet lacking to restore his self-complacence was supllied by the prophets, who assured hins that the disaster hart been brought about wholly by the The'ou winc-god Dionysus. to whom ho lad cfieed no sactifice on tho day of the banquet.
A few wecks after this murder Alexander captured the Sozdian rock: a fastness from which common care would here sent him away bafled. Hating next reduced the rock of C"arienes, he retuined to Beetra to celebrato his marriage with Roxana, the daughter of Oxjartes. who had been anong the captives taken on the Sosdian rock. The feast was seized by Alexander as a.a opportunity for extracting Irom his Greek and Macedoni.n follomers a public acknowladgment of his diviuity. It was arranged that the sophist Anaxarehus (or, as some said, the Sicilian Cleon) should make a speech, advising all to worship at once the man whom they would certainly hare to mership after lis ceath. The speech was delivered. The silence of most of the Macedonian officers shorved their disgust: but none rentured to speak until the Olgnthian Callisthenes, the riephew of Aristotle. insisted on the inpiety of all attempts to confound the distinctions betreen gods and men. Conceding to the conqueror the highest place amongst military leaders and the first rank amongst statesmen, he rebuked Anaxarchus for making a suggestion which ought to bare come from any oue rather than from himself. The applause which his words drew from the Macedouians tauglit Alexender that open oppesition would be useless; but he mas none the more turned from his purpose, nor was it long before be fould a pretest for carrying it out. A conspiracy was discovered amengst his pagee. These un1.rtunate men were tertured (but without extracting from t'sem anything to impliente Callisthenes), and then stoned to death,-as Alexander would have it, not by his orders, liut by the leyal impuise of his army. Callisthenes he was rusolved, he said, to punish himself, together with those who had sent him,-an insinuation, manifestly, asainst his r:ncle Aristotle, possibly also against all other Greeks, for whom freedom of specch and action had not yet altogcther lost its value. The philosopher who had extolled Alexander as the greatest of earthly generals and statesmen was first tertured and then banged ; and the conqueror went calmly on to subdue the regiens between the HinduRush and the right bank of the Indus, and to storm the impregnable rock of Aornus.

The next river to be crossed was the Indus. The bridge raas constructed by Hephrstion and Perdiceas, probably near the present Attock. 'The surrender of Taxila left Alexander an open path until he reached the Hydaspes (Jhelum), where Porus was beaten only after a severe struygle. The Indian prince was taken prisoner, and treated wills the conrtesy which the fomily of Darius had received after the battle of Issus. Here died Alezander's horso Eoukephaios (Bueephalus), aud the loss was cemmemorated by the founding of Ducephalia. The passage of the Acesines (Chenab), running with a full and impetuons stream, was not accomplished without much danger; that of the Hydraotes (Ravee) presented less formidable difficulties, but he was encountered on the other side by Indians, whoentrenched themselves in their town of Sangala. Their resistanco ended. it is said, in the slaughter of 17,000
and the capture of 70,000 . About 40 milcs further to the south-cast flored the IIyphasis (Suttej). Alexander approached its bank, the limit of the Panjab, in the full confidence that a fow days moore would bring him to the mighty strean of the Ganges; but ho had reached the goal of his conquests. The order for crossing the rirci called forth murmurs and protests at once from his oficcrs and his soldiers, who expresscd plainly their refusal to marel they knew not whither. Alesander in vain laid before his officers his schemes of further conquest; and When he ofiered the sacrifice customary before crossing a river, the signs were pronounced to be unfavourable. The dic was east. Twelve huge altars remained to show that Aleanander had adranced thus far on his conquest of the world; and, in the midst of deluges of rain, the army set out on its westrard journey. The reinforcenients which he found on reaching the Hydaspes might, if they had advanced as far as the Hyphasis, have turned the scale in favour of progress to the east; they enabled Alexander to undertake with greater ease a voyage down the Hydaspes to its junction with the Iudus after receiving tho waters of the Acesines, HIydrootes, and Hyphasis, and thence onwards to the Indian Ocean. From the mouth of the Indus he ordered his admiral Nearchus to take the fleet along the shores of the ocean and the Porsian Gulf to tive month of the Tigris. The army marched by land through the Gedrosian desert, sufieing more from thirst and sickness than they had suffercd in all their battles and forced marches. At length be reached Pasargadx, to find the tomb of Cyrus broken open and plundered, and to avenge the insult offered to the man whom he now regarded as tho founder of his own dynasty. Early in the following year he entered Susa, and there, celebrating lis marriage with Statira, the daughter of Darius and of Parysatis the daughter of his predecessor Ochus; he offered to pay the debts of those soldiers who would follow his example by taking to themselves Persian wives-a strange mode of inviting sober and steady men who bad no debts, but an effectual argument for the spendthrits and rufians of his army. His new levies of Persian youthis, armed and disciplined after the Macedonian fashion, bad now made him independent of his veteran soldiers; and his declared intention of sending home the aged and wounded among them called ferth the angry remonstrances of their comrades, who bade him cemplete his sclemes of conquest with the aid of his fathur Ammon. Alezander rushed into the throng, seized some and had them executed, and then disbanded the whole force. For troo days he shut himself up in his palace; on the third he marshalled his Persian levies (Eyigoni, as he called them) into divisions bearing the Macedonian military titles, under Pcrsian officers. The spirit of the veterans was broken by this ignoring of their existence. They threvs down their arms at the palace gates, and begged forgiveness with cries and tears. Alexander accepted their contrition, and the restoration of harmony was celebrated by a sumptuous sacrifice.

But for Alezander past victories were only a stimulus to rurther exploits. Arabia still remained unsubdued, and for this conquest a large addition was needed to his fleet. Orders were sent to Phœnicia for the construction of ships, which were to be taken to pieces and sent overland to Thapsacus on ilhe Euphrates, while othens were to be kuilt at Babylon. His journey to Ecbatana ras marked by a violent quarrel between Eumenes and Hephestion. Their reconciliation was snon followed by the death of the latter from an attack of fever. The grief of the cunqueror was as fierce as that of Achilles, if we may not set it down as a manifest imitation of it. For two days he neither ate nor drank; he cut his hair ebort, and ordered that the hurses and mules in his army should have their canes
docked also. Humen blood could scarcely be shed with prudence on his pyre; but he was resolved that his friend should begin his life in the unscen world with unstinted realth, and the precious things destined to be consumed on his funeral pile represented, it is said, a sum of nearly two millions and a half pounds sterling. Messengers were sent to the Egyptian oracle to ask if the dead man might be worshipped as a god, and Eumenes, with many others, took care to anticipate its answer by offering him such bonours as might fall in with the humour of the divine mourner. His grief seemed only to render his bursts of passion more fearful. None dared to address him except in language of the most grovelling flattery; and, in the words of Plutarch, his only consolation was found in his old habit of man-hunting. The diversion was this time furnished by some mountain tribes between Media and Farsistan. His march to Babylon steeped him still more in the intoxication of success. As he advanced on his road he was met by ambassadors not ouly from Illyrians and Thracians, from Sicily and Sardinia, from Libya and Carthage, but from Lucanians and Etruscans, and, as some said, from Rome itself. The lord of all the earth could scarcely look for wider acknowledgment or more devout submission; but his self-gratulation may have been damped by the warning of the Chaldean priests that it would be safer for him not to enter the gates of Babylon. For a while lie hesitated, but he had more to do than to heed their words. The preparations for his Arabian campaign must be hurried on; all that might be needed must be done to improve the navigation of the Euphrates, and a new city must be built to rival, perhaps, the Alexandria which he had founded by the banks of the Nile. Morethan all, he had to celebrate the obsequies of Hephæstion, whose body had been brought to Babylon from Ecbatana. The feasting which everywhere accompanied the funeral rites of the ancient world was exaggerated by the Macedonians, as by other half rude or savage tribes, into prolonged revelry. Alexander spent the whole night drinking in the house of his friend Medius, and the whole of the next day in sleeping off his drunkenness. Throughout the following night the same orgies were repeated. When he next awoke he was unable to rise. Fever had laid its grasp upon him, and each day its hold became tighter, while he busied himself incessantly with giving orders about his army, his fleet, his generals, until at length the powers of speech began to fail. When asked to name his successor, he said that he left his kingdom to the strongest. His signet-ring he took from his finger and gave to Perdiccas. Throughout the army the tidings of his illness spread consternation; old grudges were all forgotten ; his reterans forced themselves into his presence, and with tears bade farewell to their general, who showed by signs that he still knew them. A few hours later Alexander died, after a reign of less than thirteen years, and before he had reached the age of thirty-three.

That the schemes of conquest with which almost to the sast moment he had been absorbingly busied would, if he had lived, have been in great part realised, can scarcely be doubted, unless we suppose that causes were at work which at no distant period would have disturbed and upset the balance of Lis military judgment, and deprived him of that marvellous power of combination and of shaping means to circumstances in which Hannibal and Napoleon are perhaps his only peers. It would be rash to say that such a datacning of his splendid powers might not have been
brought about, even before he could reach middle age, hy habits which, if we may judge from the history of his later years, were fast becoming confirined. In truth, except as a general, he had lost the balance of his mind already. The ruling despot who fancied himself a god, who could thrust a pike through the body of one friend and sneer at the cries drawn forth from another by the agonies of torture, was already far removed from the far-sighted prudence of the politic statesman and ruler. His conquests serred great ends; and bcfure he set out on his career of victory he may have had a distinct vision of theso ends. Desire for knowledg3; the wish to :'e new forms of human and animal life; the curiosity of traversing unknown lands, of laying open their resources, of bringing them all within the limits and the influence of the Macedonian, or, as he preferred to put it, the Greek world ; the eagerness to establish over all known, possibly over all unknown, regions a mighty centralised empire, which should avail itself of all their forces, and throw down the barriers which rendered the interchange of. their wealth impossible,-may Lave mingled with his alleged or his real purpose of avenging on the Persian king the misdoings of Xerzes, Darius, and Cyrus. But there is little evidence or none that these motives retained their power undiminished as he advanced further on his path of victory, while there seems to be evidence, only too abundant, that all other motives were gradually and even fast losing strength as the lust of conquest grew with his belief or his fancy of his superhuman porer and origin. During his sojourn with Aristotle he must have learnt that real knowledge can be reached and good government insured only where there is freedom of thought and speech, and where the people obey their own laws. A few jears latcr he had come to look on Aristotle as an enemy to be punished with scarcely less severity than Callisthenes. But at the least it must be remembered that his work was left anfinished; possibly he may hare regarded it as little more than begun. Looking at it from this point of view, we can neither shut our eyes to the solid benefits accruing from his conquests both for the East and the West, nor, in spite of his awful crimes, can we place him in the rank of those scourges of mankind among whom Aiaric and Attila, Genghiz, Timour, and Napoleon stand pre-eminent. Of the several accounts of his career which have como down to us, not one, unhappily, is strictly contemporary; and mere fairness calls upon us to give hirn the benefit of a doubt, when doubt can be justly entertained, in reference even to deeds which carry with them an unutterable horror and shame. It is impossible to deny that with a higher sense of duty Alexander would better have deserved the title of Great; but the judgment which may be passed on some of his actions cannot affect his transcendent glory as the most consummate general of ancient times, and perhaps even of all ages.

For an examination of the sources of the history of Alexander the Great, see Freeman, Historicul Essays, seconi series, essay v. The history itself is presented in various aspects by Thirlwall, History of Grecce, chaps. xlvii.-lv. ; Grote, History of Grece, part ii., chaps. xci-xciv. ; Niebuhr's Lectures on Antiont History, lectures xxiv.-lxxx.; Williams, Life of Alexander the Great; St Croix, Examen Crilique des Ancicns Hisloricus d'Alcxandre le Grand; Droysen, Geschichte Alexanders der Grossen. Sce also Finlay, Grecee under the Romans, cbap. i. ; Arnold, Hislory of Rome, chap. xxx. For the geography of Alexander's Indian campaigns, see Cunningham's Ancient Ceography of India; and for the scientific results of his couquesto, Humboldt'a Kosmos, vol. ii., part ii., section 2
(a. W. C.)

ALEEANDER of AParodisias, tho most celebrated of the Greek commentators ou tho writings of Aristotle, and styled, by way of pre-cminence, o $i \xi i \neq M r i j$, the Exposilor. He was a native of Aphrodisias in Caria, and taught the Peripatetic philosophy at Athens in the cnd of tho 2 d and the beginning of tho 3 d centuries of the Christian era. Commentaries by Alexander on the following works of Aristotlo are still extant:-The Analytica Priora, I.; the Topica; the Meeteorologica; the DeSensu; and the Metaphysica, I-V., together with an abridgment of what he wrote on the remaining books of the Metaphysica. His commentaries wero greatly esteemed among the Arabians, who translated many of them. There aro also sereral original writing by Alcxander still extant. The most important of these are a work On Fute, in which ho argues against the Stoie doctrine of necessity; and one On the Soul, in which he contends that the undeveloped reason in man is material (voîs ìtcoós), and inseparable from the body. He identified the active intellect (voûs nothtuós), through whose ageney the potential intellect in man becomes actual, with God. Several of Alesandcr's works were published in the Aldine edition of Aristotle, Venice, 1495-98; his De Fato and De Anima wero printed along with the works of Themistius at Yenice, 1534; the former rork, which has been translated into Latin by Grotius and also by Schulthess, was edited by Orelli, Zurich, 1824; and his commentaries on the Metaphysica by Bonitz, Berlin, 1847. Nourisson has treated of Lis doctrine of fate, Paris, 1870.

Alexander of Hales (Alexander Halensis), surnamed Doctor Irrefragabilis and Fons Fitce, a eelebrated English theologian of tho 13 th century. Born in Gloucestershire, and trained in the monastery of Hales, from which he takes his name, he was carly raised to an archdeaconry. Relinquishing this position, however, he went, like most of the scholars of his day, to study at the university of Paris, where he took tho degree of doctor, and became celebrated as a teacher of philosophy and theology. Among his pupils was Bonaventura; but it is evident from a comparison of dates that ho did not teach Duns Scotus and Thomas Aquinas, as has been frequently asserted. In 1222, when at the height of his fame, Alexander entered the order of Minorite Friars, and thenceforward lived in strict seelusion. He refused, however, to renounce his degree of doctor, and wias the first of his order who continned to bear that title after initiation. He died in 1245, and was buried in the conrout of the Cordeliers at Paris, where he had spent the last twent-three years of his life. The most celebrated work of Alexander was his Summa Theologice (Nuremberg, 1452; Venice, 1576), undertaken by the orders of Pope Iunocent IV., and approved by Aloxander IV., after he had submitted it to the examination of seventy learned theologians as a system of instruction for all the schools in Christendom. Based on the Sentences of Peter Lombard, it is divided into four parts; the first treating of the nature and attributes of the Deity; the second of the creation and of the various orders of creatures; the third of the scheme of redemption, the incarnation of Christ, the lawy, and graee; and the fourth of the sacraments. Tho form is that of question and answer, ond the method is rigidly scholastic.
alexavder of Trailes (Alexander Tralifasts), a medical writer, was a native of Tralles, a city of Lydia, and lived probably about the middlo of the 6th century. He is the author of a work, livided into trelve books, in Which he treats of bodily distcmpers. He was the first to open the jugular rein, and to use cantharides as a blister for the gont. Dr Freind, in his History of Physic, styles him one of the most valuablo authors since the time of Eippocrates.
Soo also Dr Milmard's Traliianus Reviriticers; or, An Account
of Alexander Trallian, one of tho Greed Writers that fourished after Galen, being a Supplement to Dr Freind's IIistory of Physic, London, 1731, 8vo. The freck text of his principal work was first published by Jac. Goupylus, Lutet. 1519, fol. It was reprinted; and was then accompanied with a Latin persion by Jo. Guinterius, Basil, 1550,8 ro. He is likewise the author of an epistle on worms De Lumbricis, which was published, in Greek and Latin, by Mercurialis, in his Varia Leetiones, Venct 1570, 4 to.

ALEXAXDER BALAS' (a surnamo that probably means "lord"), a man of low birth who professed to bo the son of Antiochus Epiphanes, and crentually became king of Syria. His claims were recognised by the Romans, who desired to resenge themselves on Deinetrius Suter; and their example was followed by tho king of Eyypt and other monarchs. Demetrius was at first vietorious, but in 150 B.c. was slain in battle, and Balas obtained possession of the kingdom. The new king soon made himself hateful to his subjects by his roluptuousness and debanchery, and this cncouraged Demetrius Nicator, the eldest son of Demetrius Soter, to claim his father's crown. Alexander took the field against him, but was defeatcd in a pitched battle, and fled to Abre in Arabia, where he was murdered by the emir, with whom he had sought refuge, 145 B.C.

ALEXANDER JANYIEUS, king of tho Jews, succeeded his brother Aristobulus in 104 B.c., and died in 79 B.c. His reign, which he commenced by putting to death one of his brothers who claimed the throne, was disgraced by the cruelties that he perpetrated in order to keep himself in power.

ALEXANDER SEVERUS, Roman emperor. Sce Sererts

ALETANDER was the name of eight Popes:-
Alexander I., bishop of Rome, succeeded Evaristus in 108 or 109 A.D., and, according to Eusebius, suffered martydom under Hadrian in the year 119. Catholic writers ascribe to him the introduction of boly water, and of the custom of mixing sacramental wine with water.

Alexander Ш., whose family name was Anselmo Baggio, was born at Milan, and occupied the papal ehair frora 1061 to 1073. He had previously, as bishop of Lucca, been an energetie coadjutor with Hildebrand in endeavouring to suppress simony, and to enforeo tho celibacy of the elergy; and his efforts to augment the influence of the Rorman see prepared the way for the complete ascendancy which was established by his celebrated successor. The imperial sanction being witheld from Alexander's election, a council at Basle chose as anti-pope Cadolaus, bishop of Parma, who assumed the name of Honorius II., and marched to Rome. He was deposed, however, by a council held at Mantua, and Alesander's position remained unchallenged. Alexander was succeeded by his associate Hildebrand, who took the title of Gregory VII.
Auexamer III. (Rolando Ranuci of Siena), cardinal and chancellor of the Roman church, was elected to the popedom in 1159, and reigned until 1181. His career is of great historical importance on account of the vigour and ultimate success with which he carricd out the ideas and poliey of Ilildebrand in opposition to Frederick Barbarossa and Henry II. of England. Three anti-popes (Victor IV., 1159 ; lascal III., 1164; Calistus III., 1168) were confirmed by the German emperor in succession. Alexander. however, steadfastly maintained his rights, though compclled to take refuge in France betreen the years 1162 and 1165. The contest betreen pope and emperor was continued with rarring fortune until, on tho 29th May 1176, Frederick was decisively defeated at Legnano, when he at once withdrew his support from the anti-pope and submitted to Alexander. On tho 1st August 1177 the emperor yiolded tho customary homage to the prpe at Vanice by kissing his foot, and was freed from the ban of
excommunicatton under which he had beeu placed ten years previously. There seems to be no historical authority for the common story that during the ceremony Alexander placed his foot upon the emperor's neck.
In England the papal supreroacy was strenuously maintaiucd agaiust Herry 11. by Thomas a Beciect. Here, as in the case of Germany, the struegle was protracted and severe, but in the end the victory lay with the pope. A Becket tras canonised soon after lis assassination, and Henry II. was compelled to submit to a humiliating penance. A contest with William the Lion of Scotland, who insisted on instituting his chaplain Hugo, and not the papal nominee, into the see of St Andrens, euded in the excummunication of the king in 1181.

Nlexander introduced several important changes in the organisation and administration of the church. Chief among these were the restriction of the right of canonisation to the pope alone, the still-existing law requiring the rotes of two-thirds of the cardinals for a ralid papal election, and the excmption of the clergy from civil control and of church lands from ciril burdens. Sereral of these measures were ratified by the third general council of the Lateran, summoned by Alexander in 1179.

- Alexander IV., Count Rinaldo de Segni, cardỉnalbishop of Ostia, occupied the papal chair from December 1254 till his acath in Jay 1261. He seems to have been of a weak character. and in the struggle against the house of Hohenstaufen, which he inherited from his predecessors, he did little to strengthen the position of the papacy. The opposition which he offered to Manfred, natural son of Frederick II., prored unarailing, although he obtained the aid of England by promising the disputed sovereignty of the Two Sicilies to the Euglish Prince Edward. Manfred was cromed king at Palermo in 1258, and in 1260 he inraded the Stotes of the Church, and compelled the pope to recognise him as legitimate sovereign. The ecclesiastical aoministration of Alcxander was signalised by his efforts to unite the Greck and Latin churches. by the establishment of the Inquisition in France (1255), and by the s:1pport he gave to the orders of Mendicant friars. The iast jears of his pontificate were passed at Viterbo, where Le was compelled to take refuge on accuunt of the riolent struggles at Rome between the factions of the Guelphs and the Giabellines.
Alevander V. (Pietro Philargi), a native of Candia, enjoyed the dignity of Pope for only ten months, from the 26 th June 1409 to the 3d May 1410. Born of poor pareatage, be owed his admission to a religious house to a Franciscan monk, who nuticed him begging. He studied at Paris and Oxford, where he acquired such reputation for scholarship, that on his return to Italy he was rapidly promoted from dignity to dignity. In 1402 be was appointed, through the influence of Galeazzo Visconti, to the archbishopric of Milan, and in 1405 he was made a cardinal by Innocent VL. The council of Pisa, after deposing Denedict XIII. and Gregory XII., elected hin pope on the understanding that he would set himself to reform the abuses of the clurch. The reakness of his character and the shortuess of his pontificate, howerer, prevented anything effectual being done. He died, as was gencrally believed, of poison administered by Ealthasar Cossa, mho became his successor under the title of John XXIII.

ALexander TI. (Rodrigo Borgia), memorable as the most characteristic inearnation of the secular spirit of the papacy of the 15 th century, was born at Xativa in Valencia, Jst January 1431. His ljographers all but unanimously assert his patronymic to hare bcen Lenzuoli (in its original Valencian form. Llanģol), and the rame of Borgia (or mure properly Borja) to have been assumed on
his adoption by lus maternal uncle. Francisco Escolano, howeser, a compatriot, positirely affirms (Cronica, lib. Fi. cap. 33), that Llançal was his mother's name, aud that kis father was Ginfé Borja. It is also disputed whether he originally followed the legal or the military profession; the former appears more probablc. In chther case, lis carecr was detcrmined by his uncie's eleration to the papacy as Calixtus IU., Sth April 1455, and his orn immediate summons to Rome, where le was reserved in petto as cardinal in the ensuing Felruary, publicly promoted in Septeraber, and by an unparalleled act of eepotism elevated to the Jucratire and dignified office of vicechancellor in the following Jukg. He also succeeded his uncle as archbishop of Valencia. An elder brother, Pedro Luis, mas made generalissimo of the papal forces by land and sea. The animosity created by so invidious an caalta. tinn prepared Rodrigo's subsequent feud with the Roman patriciate. For the moment he was all-potrerful, and the letters of that desterous courtier Eneas Sylvius attest the importance attached to his good word. We must here notice the ridiculous fiction concerning tho parentage of Borgia's natural children, which owes its currency to the uncritical credulity of Gordon, his first formal biographer. An anonymous MS. romance, professing to record the secret history of the Borgia family, exists in many Italian libraries; a copy is in the British Museum. Sordon fell in with this fiction, and whether frow lack of judgment or love of marvel, adopted it into his carrative. According to this rersion, Rodrigo, एhen summoned to Rome, was living with a beautiful Valencian courtesan, Rosa Tanozza, by whum he had aireads had several children. Despatshing his family to Venice under the care of a major-domos he entered upon a course of austere hypocrisy, designed to secure his exaltation to the papacy, thus remaining apart from his mistress and children for a period of nearly forty years! This legend, originally circulated as a prime piese of scandal, has been accepted as a rindication by Rodrigo's apologists. Vanozza, they contend, was not his concubics but his wife, and her decease must have preceded his ordination: Cæsar and Lucretia were consequently legitimate. The Abbe Ollivier goes a step further still, and disposes of tro scandals at a stroke by identifying Varozza with Giulia Farnese, whose charms, during Alexander's pontif. cate forty jears aftermards, nutoriously procured her brother's elevation to the cardinalate. It is sufficient to reply that in this case the beautiful Lucretia must hare espoused the Duke of Ferrara at forty, and have borne him children at sisty The date of Cæsar's birth, moreorer is knoms to an hour, being fixed by tho horoscope preserved in Junctinus (tom, i. p. 171) at 18th September 1475. Nor is the history of Vanozza any longer a secret. It is s.nown that her family came was De' Cattanei ; tnat after bearing fire children to Alezander she ras trice marned, on each occasion to a pettry official about the papal court; that she possessed houses and other property in Rome; that she survired Alesander many years, ond made use of the name of Borgia (Reumont, Bd.3, pp. 202, 203).

The fertune of the Borgia brothers secmed menaced with eclipse on the death of their uncle, Sth August 1458. Pedro Luis, who had incurred the bitter ermity of the Orsini family, escaped under the escort of Cardinal Barbo to Cirits Vecchia, There a ferer soon carricd him off. Rodrigo remained for the conclare. No papal election is more dramatically narrated in that edifying collection, Conclavi de' Pontefici Romani, than the one which resulted in the choice of Eneas Sylvius (Pius II.) Lorgia's share in it had earned Pius's gratitude; he mas, nerertheless, compelled to submit to some diminution of the authority and emoluments of the rice-chancelloship ; and a subsequent indiscretion in the too public indulgence of his
taste for female socicty while discharging a legation at Siena procured him one of the severest reprimands ever addressed to a eardinal by a pope. Pius's reproof is preserved in Raynaldus (Append. ad ann. 1460, num. 31), and alone refutes the fiction of Borgia's religious hypocrisy. Cardinal Barbo, however, who suceceded as Paul II., was the same spirited patrician who had befriended the Borgias in their hour of need, and his ostentatious pontificate ushered in the era of Rodrigo's unbroken prosperity. "He is," writes at this time Gaspar Veronensis (Muratori, tom. iii. yt. 2, p. 1037), "a comely man of cleerful countenance and honeyed discourse, who gains the affections of all the women he admires, and attracts them as the loadstone does iron ; it is indeed supposed that he proceeds no further." Λ supposition rather pious than probable.

On the death of the jorial Paul (1471), Borgia is mentioned, along with Cardinais Orsino and Gonzaga, as one of tho throe who chiefly contributed to place the tiara on the brows of the then famous preacher and exemplary ascetic Sixtus IV., who iminediately (per fuggire l'ingratitudine) bestowed on him the opulent abbey of Subiaco, and raised him to the dignity of cardinal-bishop. About the same time must have commenced his intimacy with Vanozza. In 1473 he undertook a legation to Spain, arowedly with the purpose of visiting his diocese and of composing differences between the kings of Castilo and Portugal, but in reality to display his magnificence to his countrymen. His demeanour on this oceasion is represented in the inost unfavourable licht by the cardinal of Pavia, who had previously cumposed for him that elegant oration to his Valencian flock which the Abbe Ollivier has the simplicity to attribute to Borgia himself. The cerdinal, however, is too much of a time-server and a rhetorician for his account-to be altorether trustworthy. More certain is the occurrence of a tremendous tempest on Borgia's return, in which part of lis retinue perished, whilo he himself narrowly escaped. Innoeent VIII., the suecessor of Sixtus, owed his election to Borgia's coalition with the late pope's nephew, and the fortuncs of the former remained unimpaired throughout his tranquil pontifieate. The long malady which terminated it afforded scope for the intrigues of aspirants to the succession ; and when the cardinals entered into conclave (August 1492), already the rumour ran that a Spaniard would ho pope. The simoniacal character of the election is indisputable. TVe need not beliere that the opulent and high-spirited Cardinal Aseanio Sforza was tempted with four mule-loads of silver, but his instant elevation to the viece-chancellorship speaks for itself. Cardinal Orsino was bought with Borgia's palace in Pome; Cardinal Colonna with the abbey of Subiaco ; money gained the minor members of the Sacred College; five cardinals alone are recorded as incorruptible. Borgia's uneasiness was betrayed by his hasty assumption of the pontifical vestments, and premature announcement of the election to the expectant crowd. He assumed the name of Alexander VI. His allocution to the eardinals breathed spirit and dignity: an admonitory discourse to his son Cresar, which may be read in Gordon, is an invention of the anonymous romancer. The pomp of his coronation far surpassed preceding examples, and the compliments of foreign ambassadors on the majesty of his mien and the maturity of his wisdom were cehoed by a public secustomed to simony, relieved at their deliverance from a period of anarechy, and sensible of their nced of a firmer liand. This hope Alexander justified and surpassed. Ere long he had divided Rome into judieial districts, placed a magistrate at the head of each, and himself' established a weekly audience, at which, by the admission of the malcontent Infessura, "he admiuistered justice after a marvellunis sort."

Alesander's pontificate might have beer less eventfal but for a circumstance beyond his control. The political system of Italy was on the eve of dissolution. Ludorico the Moor, anxious to confirm himself in his ill-gotten duchy of Milan, was already iempting the French monarch across tho Alps by the bait of the kingdom of Naples. As of old in Grecee, so now dissensions and political corruption were about to cast down the eivilisation of Italy at the fect of the stranger. The passion for family aggrandisement on this oceasion impelled Alexander to a patriotic course! His third son Ciofró had cspoused the illegitimate daughter of the king of Naples, and received as dower the princinality of Squillace. When, therefore, the French enroys demanded the investiture of Naples, they met with a flat refusal. This encouraged Alexander's enemies. Cardinal della Rovere (Julius II.) withdrew from the papal court, seized upon Ostia, and from thenee addressed urgent appeals to the French king to marels upon Rome, convene a council, and purge Christendorn of the simoniacal pope. On this side Alexander felt himself indeed vulnerable. Casting about for alliances, he despatched an enroy to the Sultan; the ambassador was arrested as he returned with a favourable reply ; and the publication of his instructions created a fresh seandal. Others still, had Roman manners been less lax, might have arisen from the marriage of the pope's acknowledged daughter Lucretia to the Lord of Pesaro, under the auspices of the whole Sacred College, tiud from the eleration of his second son Cresar to the cardinalate at tho age of eighteen, unblushing perjury being employed to conceal his illegitimate birth. Yct, at the samo period, the successor of Peter appeared for the last time in history as the undisputed bestower of Lingdoms and the ultimate tribunal of appeal for Christian nations. Spain and Portugal resorted to him for the adjustment of their clains to the New World; and by tracing a line upon a map he disposed of three-fourths of the human race. Never, according to medireval ideas, had a pope exerted his prerogative with equal grandeur ; but the medieval conception of the papacy was passing away, and no one's faith in it was feebler than the pope's.

Charles VIII. passed the Alps in the autumn of 1494; city after city fell before him, and by the end of the year Rome was added to the number. Alexander had retired into the eastle of St Angelo. His deposition was universally expected, most of all by himself. But Charlcs's minister, Briçonnet, had been gained by the promise of a cardinal's hat. On 16th January the reconciliation of king and pontiff was officially celebrated: they rode together through tho city; but distrust still prevailed between them. With really surprising firmness Alcxander continued to refuse the investiture of Naples, with which Charles may have thought himself able to dispense. Nothing, indeed, could have been more rapid than lis conquest, except his loss of that kingdom. By Marel tho triumph of the French seemed complete: on 6th July their retreating army cut its way through the Italian hosts at Taro in Upper Italy; on 7th July the King of Naples re-entered his capital. Nothing remained of the French incursion except a fatal contagion, and the more fatal revelation of the weakness of Italy.

The retreat of the French left Alexander at liherty to pursue what must have been the main object of any pope of intelligence and spirit in his place-the extirpation of the petty feudal vassals of the chureh, and the establishment of the temporal independence of the papacy. This was in truth but a phase of the great struggle of tho crown and the people against the aristocracy, universally a characteristic of that age; but the pope's principal motive was unquestionably the insatiable appetite of family
gggrandisernent. The incurable nice, nowever, of his policy was imposed upon him by the lack of men and money to carry it into effect. To obtain the former, he was compelled to incline alternately to France and Spain, degrading the majesty of the Holy See, and forfeiting his liberty of action as a member of the Italian body politic. The finances had to be recruited by the sale of offices and spiritual privileges of every kind. Such practices had long been prevalent at Rome, but never had they attained the enormity, the effrontery, or the method imparted to them by Alexander.
His enterprise was at first unfortunate. After some petty successes the papal forces were routed by the Orsini, Jaunary 1497. Spanish, aid was invoked; the Great Captain checked the Orsini and recovered Ostia. Alexander's spirits rose ; on 7th June he alienated Benevento in favour of his eldest son, the Duke of Gandia. That day week the duke disappeared; his body, pierced with wounds, was soon found in the Tiber. The public voice attributed the murder to the pope's second son, the Cardinal Cæsar Borgia, but on no other grounds than his capability of any atrocity, and the gain that accrued to him by this. Some historians know what he said to the pope in confessing his fratricide, and can report the pope's rejoinder; so is history written. Alexander seclucled himself in a passion of grief. - He talked of abdication, and actually appointed a commission to inquire into the abuses of the Church. While it ineffectually deliberated on reforms, the stake was preparing for a real reformer. The history of Savonarola must be related elsewhere; it can only be said here that Alexander appears to have been most unvilling to proceed against him, and only to have consented to do so when the Dominican's hostile attitude rendered further forbearance impossible.

Cæsar Borgia, meanwhile, was bent on improving the opportunity which he had found or made. Three months after Savonarola's death he propounded to the assembled cardinals his desire to renounce ecclesiastical orders for his soul's health, and was soon at liberty to contract a royal alliance. After encountering a refusal from the daughter of the King of Naples he repaired to France, and there (May 1499) espoused a princess of the house of Navarre, receiving the title of Duke of Valentinois from the French king. Lucretia also benefited by her family's enlarged views; her alliance with the lord of Pesaro was dissolved on a pretext of nullity, and she married the Duke of Bisceglia, a natural son of the King of Naples. This had occurred a year previously, when Alexander still attached weight to the Neapolitan alliance; but the political horizon was now changed. In October 1499 a French army crossed the Alps and conquered Lombardy, almost without resistance. The watchword was thus given for the papal campaign in the Romagua. Caterina Sforza, regent of Imola and Forli, received a summons to discharge certain arrears long owing to her suzerain. Cæsar Borgia fullowed with an army on the heels of the messenger, and although the intrepid princess defended herself stoutly by sword and poison, she was compelled to succumb to the "Gonfalonier of the Church." The Borgias' enterprise coincided fortunately with the commencement (according to the then method of reckoning) of the new century and the mighty concourse of pilgrims to Rome for the jubilee, each representing some substantial contribution to the papal exchequer. France and Spain, meanwhile, had concerted their secret arrangement for the dispossession of the King of Naples; and Cæsar Borgia prepared to remove the only obstacle to his own participation in it. In July 1500 the Duke of Bisceglia, Lucretia's Neapolitan husband, was attacked by assassins in broad day, and left desperately wounded. The pope placed guards over the prince;

Lucretia and her sister-in-law prepared his food to avoid poison ; but uoue the less "quum ex vulneribus sihi datis mori noluisset"-Alphonso of Bisceglia was strangled by men in masks. "All Rome," writes the Venetiar, ambassador, "trembles before the duke." The worst times of the empire seemed returned, even to the amustments of the amphitheatre, where Cæsar, whose tastes were those of a Spaniard, despatched six bulls successively, severing the head of one from the shoulders at a stroke. The pope looked on helplessly at the Frankenstein of his own creation; "he loves and hugely fears his son," reports the Venetian, who adds that Cæsar had pursued his father's favourite secretary to his arms, and there butchered him, the pope's robe being saturated with the gushing blood. Alexander's easy temper stood him in good stead. "The pope," according to the same authority, "grows younger every day, and is extremely cheerful; his cares and troubles endure only for a night; he thinks continually of aggrandising his children-ne d'altro ha cura." In his conversations with foreign envoys he excused his son's violence as the error of youth. "The duke," he said, "is really a good fellow; it is only a pity that he cannot endure to be offended." Lucretia is extolled by all as "lovely, discreet, and bountiful." Rumour, indeed, imputed to her an incestuous connection with her brother; but this aspersion, like all others upon her, is to this day utterly destitute of proof.
"These devils cannot be cast out by holy water," Cardinal Juan Borgia had formerIy reported of the turbulent occupants of the Romagna. The experiment of casting out Satan by Beelzebub remained to be tried. In April 1501 Cæsar entered upon his second campaign, and by perfidy or force quickly added Pesaro, Rimini, and Faenza to his former possessions. Attentive to the maxims of sagacious tyranny, he governed with substantial justice. If his coffers had to be tuled by opyression, the odium would be cast on some subordinate agent, whose body, his mission fulfilled, would be found dismembered in the market-place. France and Spain, meanwhile, proceeded to the spoliation of the defenceless king of Naples, and Cæsar (July 1501) shared in the conquest and the booty. In September Alexander himself undertook a campaign against the Colonnas, and humbled those hanghty patricians by the capture of all their castles. Lueretia, to the general scandal, represented him in his absence. Worse scandals were in store, could we implicitly credit the contemporary diarist's account of the scenes enacted in the apostolic palace after Alezander's return, but the passage is probably interpolated. At this period the papal court was engrossed with preparations for Lucretia's marriage to Alphonso, son of the Duke of Ferrara, whicl was celebrated by proxy in December. The pope's daughter, cardinals and prelates in her train, undertook a stately progress through Italy to Ferrara, where she was received with extraordinary splendour. Piombino was reduced at this time, and in July Cessar treachcrously rendered hinself master of Urbino. Immediately afterwards his power received a severe shock from the defection of his principal condottieri. Cæsar temporised until, to the adriration of Machiavelli, then Florentine enroy at his camp, his adversaries were decoyed into his hands, seized, and esecuted (31 st December 1502). The uers gave the signal at Rome for the arrest of the Orsini and the occupation of their castles; thus was the humiliation of the Roman aristocracy completed. Cardinal Orsino was committed to Saint Angelo, where the-services of the papal master of the ceremonies were soon required for his interment. "But I," remarks Burcardus with quaint naiveté, "turned the business over to my assistant, for I did not want to know more than was good for me." It must be owned that in
that age it would hare been impossibie to bring a cardinal publicly to the block. This apology does not apply to tho charges of secret poisoning which have mainly given the Borgias their sinister celebrity, and which became fearfully rife in Alexander's latter years. They are unproved as yet, but are certainly countenanced by the opulence of the supposed victims, and the avidity with which the pope pounced upon their cffects, especially in the case of his rapacious datary, Cardinal Ferrari.

By May 1503 Spain had disposscssed France of her share of ill-gatten Naples. A general war seemed imminent; Alexander ard Cxsar leaned to the side of Spain. The Sacred College was already full of Spanish cardinals, docile instruments of their countryman, and Alexander might well deem that he had fettered the Church to the fortune of his housc. Men looked for the proclamation of Cæsar as king of Romagna, and tho division of the temporal and the spiritual power. The ancient mutual relations of pepe and emperor would have been revived, but on the narr iw area of Central Italy. But this was not to be. On the morning of 12 th August " Pupe Alcxander felt ill;" so did Ciesar loorgia. Every one knows the story of the supper given to the ten cardinals in the villa, and the fatal exchange of the poisoned flask. This picturesque tale is almost certainly a fiction. An attempt to destroy ten cardinals at once is inconceivable; it would be easier to believe Cardinal Castellesi's assertion that he was to have been the victim, as his sickness at the time is confirmed from an independent source. But his character does not stand high, and the symptoms of his disorder, as described by himself, differ totally from Alexander's, which were those of an ordinary Roman fever. The progress of the pope's malady may be minutely traced in the diary of Burcardus and the despatches of the Ferrarese enroy. He expired on the evening of 18th August, duly provided with all the needful sacraments of the Church. From his own point of view his life probably appeared fortunate and glorious; but the vicissitude of human affairs is ever dramatically illustrated by the death of a pope. Ere the corpse was cold the pontifical apartments were pillaged by the satellites of Cæsar Borgia; at the funeral a brawl between priests and soldicrs left it exposed in the body of the church; when placed before the altar, its shocking decomposition confrmed the surmise of poison; finally, stripped of its cerements and wrapped in an old carpet, it was forced, with blows and jeers, into a narrow coffin, and flung into an obscure vault. The remains were subsequently transferred to the Spanish cluurch of St Mary of Montserrat, where they repose at this day.

Alexander has become a myth, and his "acts" are in some respects alnost as legendary as those of the primitive saints and martyrs. The peculiar odium attached to his memory rests partly on the charge of incest, of which he must be acquitted; partly on that of secret poisoning, which is at least not established; partly on the confusion between his actions and Cæsar Borgia's. Nearly everything actually criminal in his pontificate is subsequent to the preponderance of the latter. Profligate alike in public and private life, he was no malignant tyrant,-affable, familiar, easy, he justly took credit for his moderation tuwards notorious malcontents, and his indificrence to personal injuries. These virtues, however, as well as his family affection, were merely constitutional with him,-as the many beneficial acts of his administration were rather prompted by a sense or policy than a sense of duty. His ability as a ruler is evinced by the tranquillity be maintained in Rome, his effectual provision against dearth, the regular discharge of financial obligations, the energetic prosecution of useful public works. As a statesman he ranks high in the second class. In was too destitute of
morality to have the least insight into the tendencies of his times; but from the point of vier of political expediency, his policy was cminent! sagacious and adroit. He cannot be accused of preparing the misfortuncs of Italy, but be did not disdain to profit by them. His licertiousness and contempt of ecelesiastical decorum are partly palliated by the circumstances of his initiation into the Church. He was untrained to the ecclesiastical profession, never felt himself a priest, and was wholly regardless of the Church's interest as such. In this respect he is almost unique among the successors of St Pcter. Were controversies regulated by reason rather than by convenience, the parties to this would change sides,- Mexander's accuscrs would becomo his advocatcs, and his advocates his accusers. The Church in her secret heart must rate him the lowest of her chicfs; the world must fcel that he deserves much better of it thau many much better popes.

The principal contemporary autbority for the reign of Alemander is the diary of the papal master of the ceremonica, Joannes Burcardus, a record replete with trivialities and not exempt from interpolations, but containing indisputable cridenee of perfect candour. An excellent edition, commenced in 1855 by the Abbe Gennarclli, was diseontinucd after the publication of a few parts. The uncritical historics of Gordon and Tomasi are indebted to Burcarlus for any ralue they possess. The paltry productions of modern Roman Catholic apologists (Jorry, Favé, Cerri, \&e.) are beneath contempt. The Abbd OHivier (Alexandre VI. al les Borgia, tom. i., Paris, 1870) excites respect by his good faith and amusement by his strange allianze of perverse ingenuity with infantire unsuspio ciousness. Of late jears the archives of the Italian courts bave become accessible, and the transactions of Alexander's reigu have been sagaciously iuvestigated from this source by two German acholars, Von Reamont (Dic Stadt Rom, Bd. 3, Abll. 1, Berlin, 1868) and Gregorovius (Rom in Mittclaller, Bd. 7, Stuttgart, 1870). The latter is the more copious, but his general estimate of Alexander is much too low. By far tho ablest English coutribution to the history of Alexander is a notice of Gregorovins in the North British Review, vol. lii., entitled The Borgias and their Latest Bistorian.
(R. G.)

Alexander VII. (Fabio Chigi), was born at Siena on the 13 th February 1599, and occupied the papal chair from the 7 th April 1655 to the 22 d May 1667. Bcfore his elevation he had filled successively the offices of inquisitor at Malta, vice-legate at Ferrara, and nuncio to Germany at the conference of Munster. Tho conclave elected him in tho belief that he was strongly opposed to the nepotism and other abuses that had characterised the reign of his immediate predecessor, Innocent X., and at the beginning of his pontificate he went so far in this direction as to forbid his relatives eren to visit Rome. In a year, however, all was changed, and nepotism prerailed to as great an extent as under any lormer pontiff. Alcxander was a patron of learning, and himself wrote a volume of Latin poems which appeared at l'aris in 1656 under the title Philomathi Labores Juveniles. He also encouraged architecture, and in particular constructed the beautiful colonnade in the piazza of St Peter's. The most noteworthy events of his pontificate were the reception of the ex-queen Christina of Sweden into the Catholic Church, the promulgation of a bull against the Jansenists, and a protracted dispute with Louis XIV. of l'rance, during which the papal sce lost possession of Avignon (1662). Alexander canonised Francis of Sales in 1665.

Alexander VIII. (Pietro Ottoloni), born at Venice in 1610, was raised to the pontificate in October 1689 in succession to Imocent XI. He assisted his native state in its wars with the Turks. Although an enemy of the Jansenists, he condemned certain doctrinal errors of the Jesuits as adranced by Professor Bougot of Dijon. He carried nepotism to such an extent that the salarics and gifts bestowed on his relatives during his reign, short though it wias, cahausted the papal treasury. He added
by purchase the books and manuscripts of Queen Christina to the Vatican library. He died in Feb. 1691.

ALEXANDER I., King of Scotland, son of Malcolm Canmore, succeeded his brother Edgar in 1107, and died in 1124. He was better educated than any of his predecessors, owing to the care of his mother, the amiable Margaret of England. All the qualities of his nature, both good and bad, were strongly marked; from the terror he inspired, he was styled by his subjects the Fierce. His reign is distinguished by the determined opposition be offered to any interference on the part of English bishops in the affairs of the Scottish Church. He contrived by energy and valour to subdue the turbulence of his kingdom; specially noticeable are the promptness and vigour be displayed in suppressing the insurrection of Angus, grandson of Lulach, a son of Macheth's queen. He died at Stirling, and, being childless, was succeeded by his brother David I.
Alexander II., King of Scotland, was horn at Haddington in 1198 (died 1249), and succeeded his father, William the Lion, in 1214. Though still young, he exhibited the same prudence and firmness which marked his whole conduct in life. He was excommunicated in 1216 for associating with the English barons in their opposition to King John; but his prudence enabled him to recover the good opinion of the pope, and placed him on the best footing with the English king, Henry III., John's successor. His fidelity to Henry was shown by the assistance be rendered him in protecting, during Henry's absence in France, the northern borders of England, and the friendliness of the kings was strengthened by the marriage of Alexander to Henry's sister Joan (1221). Joan died in 1238, and in May 1239 Alexander married Mary de Coucy. In 1244 Henry marched against Scotland to force from Alexander the homage due to him for the lands he held in the north of England, but in August a peace was concluded at Neweastle. Like Alexander I., he was zealous in defence of the privileges of the Scottish Church; and in 1222 he put to death 400 persons who had been implicated in the murder of the bishop of Caithness. While engaged in quelling an insurrection in Argyleshire, he died of fever in the island of Kerrera in 1249.

Alexander III., King of Scotland, son of Alexander IL. by his second wife, Mary de Coucy, was born at Roxburgh on the 4th September 1241 (died 1286), and succeded to the throne on the death of his father in 1249. The fact that in this case the succession of a minor was unopposed is noteworthy, as showing that the hereditary principle had now established itself. By a provision of the treaty of Nerwastle Alexander had been betrothed in infancy to the daughter of the king of England, and it suited Henry's policy to insist on an carly fulfilment of the coutract. Notwithstanding the extrome youth of the rarties, the marriage was celebrated at York on the 25th Hesember 1251. On this occasion Alexander is said by Matthew Paris to have done homage for his estates in England, and to have refused homage for his kingdom of Scotland, on the ground that he had not consulted on the matter with his proper advisers. The story, however, seems inconsistent with Henry's policy at the time, and is therefore questionable. With a king so young, in times so unsettled, the hopes and efforts of contending factions were naturally stimulated. At the commencement of his reign Alexander was under the power of the Comyns, the most influential family among the Scottish nobility. A rival party, under the leadorship of Durward the justiciar, was supported by England, and in 1254 succeeded in seizing Edinhurgh castle, and freeing the ling and queen from the
domunation of the Comyns. Sicanwhile Henry had hiraself marched to Scotland with an army, and in September he met Alexander at Roxburgh. There a regency was arranged, from which the Comyns were entirely excluded. In 1257, however, the latter regained their ascendarcy, and ohtained possession of the person of the king, whom they kept prisoner at Kinross and Stirling. In the following year a now regency was formed, in which both the opposing parties were reprosented, and the king was liberated. In 1260 he and his queen paid a visit to the court of England. While at Windsor the queen gave birth to a daughter, Margaret, afterwards married to Eric of Norway. An account of the invasion of Scotland in 1263 by Haco, king of Norway, and of the disastrous defeat at Largs, helongs rather to the listory of the country than to the personal biography of the king. Three years after the invasion, Magnus, king of Norway, ceded to Alezander the Isle of Man and the Western Isles, receiving in return a ransom of a thousand marks and an annual rent of a hundred marks. The Orkney and Shetland islands still remained under the dominion of Norway. Alexander was involved in a protracted and on the whole successful struggle with the papal power for the independence of the Scottish Church. The chief matter in dispute was the proper valuation of church lands for the purpose of taxation. In connection with this, Boiamund or Bagimond came from Rome in 1275 with a commission to draw up the valation known as Bagimond's roll, which remained the basig for the taxation of church lands down to the time of the Reformation. The internal condition of the country seems to have improved greatly during the latter years of Alexander's reign. A wise and vigorous administration ensured peace and consequent prosperity. The prospect of Scotland was perhaps never brighter in all her early history than towards the close of his reign, but it was suddenly overcast. A series of calamities, following each other in quick succession, left the nation at the mercy of its foes within and without. In 1275 Alexander's wife died, and a few jears later he lost both his children. The succession in the direct line was thus left to the precarious chance of the single life of the infant princess known in history as the "Maid of Norway." In 1285 Alexander married Joletta, daughter of the Count of Dreux. Any hope of strengthening the succession by this union was, however, destroyed by the calamitous event of the following year. On the 12th March 1286 the king was killed by a fall from his horse while riding on the coast of Fife opposite Edinburgh. A spot near Kinghorn, known as the King's Wud End, is pointed out as the scene of the tragical event. The death of Alexander was a turning-point in Scottish history. The national independence, which he maiutained so steadfastly against the insidious claims of England, while avoiding an open rupture, was once more placed in joopardy. The popular estimate of the calamity is well expressed in the following lines, believed to be the earliest specimen of Scotch poctry extant:-
"Quken Alysander our kyng mas dele,
'lhat Scotland led in luve and le, Awaye tras sons of ale and brede, Of wyne and wax, of gamyn and gle. Our gold was changyd into lede. Cryst, boru into virgynyte, Succour Scatland and remede, That stad is in perplexste."

ALEEANDER, Paulovict, Emperor of Russia-born on 28th December 1777, died 1825-was the son of Paul. afterwards emperor, by Maria, daughter of Prince Eugene of Würtemberg. His carly education was conducted under his excellont mother, and afterwards was carefully directed by his grandmother, the Empress Catheriue II., who con-
fided its general superintendence to Frederick Cresar. de La Harpe. On the assassination of his father Paul in 1801, Alezander succeeded to the Russian throne. He had been married in 1793 to the Princess Louisa Maria of Baden, but the union proved an unhappy one, and had no issuo.

The policy of the young emperor was indicated by his conclnding a peace with Britain, against which his father had declared war. In 1805 he joined Austria and Sweden in a coalition with Great Britain against the pretensions of France. The war that followed was disastrous to the allies. The armies of Austria were totally defeated in a succession of battles between the 6th and 13th October of that year; and the combined Austrian and Russian armies, under the two emperors, were defeated by Napoleon in the great battle of Austerlitz on the 2 d December. Austria concluded a separate treaty of peace, and Alexander led the remains of his army into his omn dominions. Prussia, which had injudiciously stood nentral while France was humbling Austria and Russia, rashly engaged in hostilities with Napoleon in 1806, while her allies, the Russians, were still beyond the Vistula; but the defeats at Auerstadt and Jena laid Prussia prostrate ; and in the succeeding year the battles of Eylau and Friedland, in which the Russians were fairly beaten, led to the dismemberment of Prussia, and the treaty of Tilsit with Russia. A fer days after the last battle, Alexander and Wapoleon met on a raft anchored in the river Niemen, and agreed to the treaty, which was signed at Tilsit on July 7 . By a secret article of this treaty Alexander was not only to withdraw from his connection with Britain, but to become her enemy; and he declared war against her on the 26 th October.
For nearly five years Alexander appeared ${ }^{\text {attached }}$ to the alliance of France; but the privations of his subjects by the interruption of the commerce with England, and the intolerable load of Napoleon's "Continental System," at length induced him to return to his old alliance, and to declare war against France on March 19, 1812. On the 24th April he left St Petersburg to join his armies on the . west frontier of Lithnania. Napoleon assembled the most numerous and magnificent army that had ever been brought together in modern times, augmented by the unwilling levies of Prussia and Anstria, and entered Russia on the 25th June 1812. The first encounter was at Borodino, where there was a well-contested action, in which each army suffered the loss of 25,000 men. The burning of Moscow, and the snbsequent retreat of Napoleon, during which his army was all but annihilated, are among the best known events of modern history.

In 1813 the advancing Russians were successively joined by the forces of Prussia, Anstria, and Sweden. Alexander continued with the allied armies, and in particular was present at the battles of Dresden and Leipsic. Napoleon had made wonderful exertions to repair his losses in the early part of 1814 ; but the victeries of Wellington in Spain, and his advance into the heart of France, favoured the progress of the allies; and on March 30, 1814, 150,000 men of the allied armies took possession of Paris, which was entered next day by Alexander and the king of Prussia

After the deposition of Napoleon the allied sovereigns visited Encland. By the treaty of Vienna, Alexander was acknowledged king of Peland; but before the congress of Vienna broko up, Napoleon had escaped from Elba, and was enthusiastically received at Paris. The two eastern emperors and the king of Prussia remained together until the battle of Waterloo gave peace to Europe. On the advance of the British and Prussians to Paris, the three allied sovereigns again made their entry into that
capital, where they concluded, on September 26 , the treaty which has been designated che IIoly Alliance.

Alexander was henceforward chiefly occupied in the internal administration of his vast dominions, which certainly improved nore during the twenty-five years of his reign than under any of his predecessors from the time of Peter I. The gradual abolition of the feudal servitude of the peasantry, begun by the most enlightened of his prodecessors, was continued under Alexander. Education, agriculture, manufactures, cumnerce, were also greatly extended; while literature and the fine arts were liberally encouraged. His disposition has been represented by lis subjects as mild and merciful; yet his infuence in the affairs of Europe was not exerted in the cause of public liberty. But this could hardly be expected from the autocrat of an unmitigated despotism in his own territories. He will, howcver, bear very favourable comparison with any Russian sovereign, or even with any contemporary monarch.
Early in the winter of 1825 he left St Pctersburg for the last time on a tour of inspection of his southern provinces. About the middle of November he was attacked by a violent intermittent fever, which proved fatal at Taganrog on December 1, 1825. In foreign ceuntries his death has been attributed to poison; but this is refuted by the history of his disease, and is very improbable, from his great popularity with his countrymen. He was succeeded, in accordance with a family compact, by his second brother Nicholas.
aLEXANDER JAROSLAWITZ NEVSKI, Sannt, Grand Duke of Wladimir, second son of the Grand Duke Jaroslaw II., was born at Wladimir in 1219, and died 14th November 1263. He beeame prince of Novgerod on the resignation of his father in 1239, his elder brother having died. While Batu Khan was sweeping with his Tatars over the sonth, the Swedes, Danes, and Livenian knights took advantage of this to oppress the north of Russia; Alexander accordingly directed his arms against them, and gained a brilliant vic.ory with his small army on the 15th July 1240. His surname of Nershi was derived from this event, which took place near the Neva, and in the vicinity of the modern St Petersburg. In a second campaign in 1241 he was no less successful, and drove his enemies ont of Pleskow in Kiew. In a third campaign he defeated them near lake Peipus (1242), and forced the Livonian knights to sue for peace and retire from the district of Pskow, which they had conquered a short time before. On his father's death in 1247, a younger brother (Andrew) opposed Alexander, and seized the duchy of Wladimir; but in 1251 the latter was established in his rights by the klan of Kaptchak, the district which the Mongolian Batu had taken under his immediate anthority. He firmly opposed the proposal of Pope Imocent IV. to unite the Greek with the Roman church. He died at Gorodetz, 14th November 1263, on his return from a visit to Kassimcow. Towards the close of his life he is said to have taken holy orders, but the tradition rests on no sure bacis. At his death the people universally spoke of him as their father and protector, and afterwards recorded his deeds in their songs, and honoured him as a saint. Peter the Great, when founding St Petersburg, erected a-magnificent monastery to the east of the city in henour of the victory won there by his great predecessor, and created in 1722 one of the cight Russian orders, that of Alexander Nerski. The monastery is now one of the wealthiest in Russia, and has, according to Eckhardt, a yearly revenue of half a million silver roubles.

ALEXANDER, Archibald, D.D., a Presbyterian divine of America, was born of a family, originally Scotch, in Rockbridge countr, Virginia, on the 17 th April 1772 (died
1801). After completing his prelminary education at Timber Ridge, he came under the influence of the religious moveneut known as the "great revival," aud devoted Liusself to the study of theology. Licensed to preach in 1791, he was engaged for seven years as an itinerant missionary in lis native state, and acquired during this period the facility of extemporaneous speaking for which le was remarkable. For a time president of Hampden Siduey College, he resigned that position in 1807 to become pastor of Pine Street church, Philadelphia. In 1810 the degrce of doctor of divinity was conferred upon hin by the college of New Jersey, and in the following year he was appointed first professor in the nerly-established Prosbyterian theological seminary at Princeton. He filled the chair until his death in 1851. Dr Alexander wrote a considerable number of works in theology, which have had a large circulation. Among these may be mentioned his Outlines of the Evidences of Christianity (1823), which has passed through several editions, and been translated into rarious languages; and his Treatise on the Canon of the Oll and Nero Testament (1826). He was also a frequent coutributor to the Biblical Repertory, edited by Professor Hodge.

ALEXANDER, Josepir Addison, D.D., third son of the preceding, one of the most eminent biblical scholars of America, was born in Philadelphia in 1809 (died 1860). He studied at Ner Jersey, devoting himself specially to Hebrew and other Oriental languages. He graduated in 1826, and from 1830 to 1833 was adjunct professor of ancient languages and literature in his alma mater. In 1838 he was appointed professor of biblical criticism and ecclesiastical history in the theological seminary at Princeton. He was transferred in 1852 to the chair of biblical and ecclesiastical history, which he occupied till his death in January 1860. Dr Alexander wrote several valuable works in his own department, the most important being a Translation of and Commentary on the Psalms, a Critical Commentary on the Prophecies of Isaiah, and a treatise on primitive church government. He also contributed numerous articles to the Biblical Repertory and the Princeton Review. At the time of his death he was engaged along with Dr JIodge in the preparation of a commentary on the New Testarnent.

ALESANDER, Sir Wrlitam, earl of Stirling, poet. The family of Alexander of Menstrie-i.e., of the poetis of ancient lineage, "tracing its descent from Somerled, lord of the Isles, in the reign of Malcolm IV., through a misty Highland genealogy, to John, lord of the Isles, who married the Princess Margaret, daughter of King Robert II. Their son, Alexander, was father of Angus, who founded the family of Macalister of Loup, and of Alexander, who obtained from the Argyle family a grant of the lands of Menstrie in Stirlingshire, and settled therehis descendants assuming his christian name of Alexander as their surname. The fifth in descent from this personage was Alexander Alcxander, whose successor was his son, William Alcxander, the poet" (Works: Introductory Memoir, vol. i. p. ix., 1870). From his (rare) engraved portrait, William was, it appears, aged 57 in 1637 ; so that he must have been born (at Menstrie House, where afterwards was born Sir Ralph Abercromby) in 1580. The grammar school of neighbouring Stirling probably furnished his early education; of his later, it is simply known that he attended the university of Glasgow. On leaving it he proceeded on his travels with Archibald, seventh earl of Argyle. It is supposed that it was during his sojourn on the Continent he composed his scrics of sonnets, ufterwards published under the title of Avrora (1604). Ile was tutor to the young earl. Upon his return he proceeded to court, and won for himself speedily a name as
a gentleman of parts and learnioy. The first of his Monarchicke Tragedies had been published at Edinburgh in 1603, viz., The Trugedie of Darivs, which, like his Parenesis to the Prince (1604), bore on the title-page simply, "By William Alezander of Menstrie." In 1604 he reprinted Darivs along with a new tragedy of Cosar, giving the two the afterwards more celebrated title of Monarchicke Tragedies - ultimately increased by The Alexandraen and Julius Casar (1607). In 1607 he describes himself as "William Alexander, gentleman of the prince's privy chamber." King James was much taken with him. He held his office with the prince of Wales until lis lamented death in 1612, on which be published his Elegie on the Death of Prince Henrie (Edinburgh, 1612). In 1612 he was made master of bequests, and knighted; his title-page of the Elegie bearing to be by "Sir William Alexander of Menstrie." In 1614 appeared his Doomesday; or, the Great Day of the Lord's Ivdgement (Edinburgh). Iu 1621 (September 21) he received the most prodigious "gift" ever bestowed on a Bubject, viz., "a gift and grant" of Canada, inclusive of Nova Scotia, or Acadie, and Newfoundland-a fact declarative of royal ignorance of what the gift really was. Yet was it subsequently confirmed by Charles I. In 1624, Alexander, in relation to his grant, published An Encouragement to Coloniestwice at least reprinted (1625 and 1630). The gift ard grant belong to history rather than biography, and the: r later results to the romance of the peerage and of lap:. In 1626 he was appointed Secretary of State for Scotlanci, and in 1630 created a peer, as Lord Alexander of Tullibody, and Viscount Stirling. In 1631 he was made an extraordinary judge in the Court of Session. In 1632 he built Argyle House, a quaint building, which remains one of the "lions" of Stirling. In 1633 he was advarced a step in the peerage, being created Earl of Stirling and Viscount Canada; and in 1639 Earl of Dovan. In 1637 he collected his poetical works, and issued them as Recrea. tions with the Muses, "by William, Earle of Sterline," with his portrait engraved by Marshall. This folio did not include either Avrora or the Psalms of King David (Oxford, 1631), although there seems little doubt that he, rather than King James, was the main author of the latter. It, however, first gave his second sacred poem (incomplete) of Jonathan. He died in London on 12th February 1640, and later his remains were transferred to Stirling. Lauded by Sir Robert Ayton and William Drummond of Hawthornden, the Earl of Stirling, nevertheless, soon fell out of men's memories. The recent careful and beautiful edition of his Poetical Works (3 vols.) ought to revive his fame ; for while there is too often a wearying wordiness, the student-reader is rewarded with "full many a gem of purest ray serene." His Doomesday has some grand things; his Avrora suggests comparison with Sidney'e Astrophel and Stclla. (Works as above; Laing's Baillie's Letters and Journals, iii. 529; Drummond MSS., by Laing; Munter's MSS., in Brit. Museum.)
(A. B. G.)

alexandretta. Soe Scavderoon.

ALEXANDRIA, a city of Lower Egypt, and for a long time its capital, was situated on the Mediterranean, 12 miles west of the Canopic mouth of the Nile, in $31^{\circ} 11^{\circ}$ N. lat., and $29^{\circ} 52^{\prime}$ E. long. The ancient city was oblong in form, with a length from east to west of 3 to 4 , a breadth from north to south of 1 , and, according to Pliny, a circumference of 15 miles. Lake Mareotis bathed its walls on the south, and the Mediterranean on the north; on the west was the Necropolis, and on the east the Hippodrome. The city was laid out in straight parallel streets, one of which, about 200 feet widc, ran westward from the Canopic gate to the Necropolis. This street was decorated with magnificent houses, temples, and public buildings, and
was intersected by another of the same breadth and magnificence, running from south to north. Ancient Alexandria was divided into three regions: (1.) The Regio Judcorum, or tho Jews' quarter, furming the north-east portion of the city. (2.) Rhacotis on the west, occupied chiefly by Egyptinns. Its principal building was the Serapeum, or temple of Serapis, coutaining an image of the god, brought probably from Pontus. A large part of the famous library of Alexandria was placed in the Serapeum. (3.) Brucheum, the Rojal or Greek quarter, forming the remaining and most magnifcent portion of the city In the Brucheum were the clief publ: buildings of Alexandria, the most notel of which was the splendid palace of the Ptolemies, on a peniasula called the Lochias, whieh stretched out into tho Dediterranean towards the east of the city ; the library proper, and the museun, a sort of college, with a dining-hall and lecture-rooms for the professors (see Library); the Cusarium, of templo of the Cæsars, where divino honours were paid to the emperors; and the Dicasterium, or court of justice. Au artificial mole, called the Ileptastadium, nearly a mile in length, stretched from the continent to the isle of Pharos. Between this mole and the peninsula of Lochias was the greater harbour ; on the other side of the mole was the harbour called Eunostos, or Safe Return. The two were connected with each other by two breaks in the mole, crossed by tro bridges, which could be raised at pleasure. Within the harbour of Eunostos was an artificial basin called Kibiotos, i.e., the Chest, communicating with lake Mareotis by a canal, from which a separate arms stretched eastward to the Canopic mouth of the Nile. On the eastern point of the island of Pharos was the famous lighthouse, said to have been 400 feet high. It was begun by Ptolemy Soter, and finished by his successor, Philadelphus. It cost 800 talents, which, if Alexandrian, is equivalent to $£ 218,000$. In the time of Diodorus Siculus (50 ह.c.), the population of Alezandria was estimated at 300,000 freemen, with probably at least as many slaves.
The city was founded by Alexander the Great 332 s.0.; but the island of Pharos was from an early period a refnge of Greek and Phœenician sea-rovers, a fact commemorated in the name "Pirates" Bay," given to a deep indentation on the north side of the island; and on the mainland was the little town of Rhacotis, subsequently incorporated in the quarter of that name. The architect employed by Alexander was the celebrated Dinocrates, who had acquired a high reputation by rebuilding the temple of Diana at Ephesus. The uew city prospered greatly as a centre both of commerce and of learning, rarticularly during the reigns of the earlier I'tolemies, to whose enlightened liberality, indeed, its literary importance was largely due. But the later monarchs of the house of Lagus were mostly weak and ricious men, under whom the city declined in influence. In 80 b.c. Ptolemy Alezander bequeathed his city to the Romans; but the bequest did not immediately take effect orving to the ciril convulsions in Italy, into which Alexandria itself was eventually drawn, and it was not until 30 в.c. that the city submitted to Augustus. It was by him made an imperial city, governed by a prefeet appointed by the emperor, while the functions of the Alexandrian senate mere suspended, a state of matters which continued until 106 A.D., when Severus restored its municipality.

Alezandria seems from this time to have regained its old prosperity, becoming an important granary of Rome, which, doubtless, was one of the chief reasons that induced Augustus to place it directly under the imperial power. In 215 AD . the emperor Caracalla risited the city; and, in order to repay some insulting satires that the inhabitants had mado npon him, he commanded his troops to put to death all youths capable of bearing arms This brutal
vider seems to have been carried out even beyond the letter, for a general massacre was the result. Notwithstanding this terrible disaster, Alexandria soon recorered its former splenduur, and for a time was esteemed tho first city in the world after Rome. As the power of the Casars decreased, however, their hold over Alexandria was weakened, and the city itself suffered frum internal com motions and insurrections, which gradually destroyed its importauce. In 616 it was taken by Chusrocs, king of Persia; and in 540 by the Arabians, under Amru, after a siege that lasted fourteen months, during which HeracLius, the emperor of Constantinople, did not sead a single ship to its assistance. Notwithstanding the losses that the city had sustained, Amru was able to write to his master, tho caliph Omar, that he had taken a city containing " 4000 palaces, 4000 beths, 12,000 dealer3 in fresh cill, 12,000 gardeners, 40,000 Jews who pay tribute, 400 theatres or phaces of amusement." The following story, relating to the destruction of the library, is told Ly Abulfaragius :-John the Grammarian, a famous Peripatetic plulosopher, being in Alexandria at the time of its capture, and in high favour with Amru, begged that be would give him the royal library. Amru told him that it was not in his power to grant such a request, but promised to write to the caliph for his consent. Onar, on hearing the request of his general, is said to bave replica that if those books contained the same doctrine witn the Koran, they could be of no use, since the Koran contained all necessary truths; but if they contained anything contrary to that book, they onght to be destroyed; and therefore, whatever their contents were, he ordered them to bo burnt. Pursuant to this order, they mero distributed among the public baths, of which there was a large number in the city, where, for six months, they served to supply the fires. Shortly after its capture, Alexandria again fell into the hands of the Greeks, who took adrautage of Amru's absence with the greater portion of his army. On hearing what had happened, homerer, Amru returned, and quickly regained possession of tho city. About the year 646 Amru was deprived of his government by the caliph Othman. The Egyptians, by wlom Amru was greatly beloved, were so mach dissatisfied by this act, and even showed such a tendency to rerolt, that Constantine, the Greek emperor, determined to make an effort to reduce Alex. andria. The attempt proved perfectly successful, Manuel, Constantine's general, capturing the city with inconsiderable loss. The caliph, perceiring his mistake, immediately restored Amru, who, on lis arrival in Egypt, drore the Greeks within the walls of Alexandria, but was only able to capture the city after a most obstinate resistance by the defenders. This so exasperated him that ho completely demolished its fortifications, although the seems to have spared the lives of the inhabitants as far as lay in his power. Alezandria now rapidly declined in importance. It was captured by Andalusian adventurers in 823 ; by the Moglrebins in 924 , and agnin in 928 . The building of Cairo in 969 , and, abore all, the discovery of the routi to the East by the Cape of Good Hope in 1497, nearly ruined its commerce; and after this we hear little of the city until the beginning of the present century.

Alexindria, the modern city, stands partly on what was the island of Pharos, now a peninsula, but mostly on the istlumus by which it is connected with the mainland. This was originally an artificial dyke connecting the sland with the land opposite; but, through the constant accumulation of soil and runs, it has actained its present dimensions. The principal public and gorernment buildings are on the peuinsula. The ancient city was situated on the mainland, adjucent to the, riodern town, and the extent of tho rims that still cexist rufficiontly esacsts itu
greatness. The general appearance of Alexandria is by no means striking; and from its situation its environs are sandy, flat, and sterile. It was formerly surrounded by strong turreted walls, with extensive outworks, but in various parts the walls have lately been destroyed to make way for improvements. In the Turkish quarter the streets are narrow, irregular, and filthy, and the houses mean and ill-built. The Frank quarter, on the other haud, presents the appearance of a European town, having handsome streets and squares, and excellent shops. The streets have been much improved lately by being nearly all paved. The principal hotels, shops, and offices are situated in the Great Square, the centre of which forms a very agreeable promenade, being planted with trees, and well provided with seats. It has also a fountain at each end. In the suburbs are numerous handsome villas, with pleasant gardens. Among the principal public buildings are the palace of the pasha, the naval arsenal, the naval and military hospitals, custom-house, bourse, two theatres, several mosques, clurches, convents, \&c. There is an impertant naral school, and a number of other educational

institutions. Among the charities worthy of mention is the hospital of the Deaconcsses of Kaisersworth. Formerly the town was supplied with water by means of the ancient reservoirs formed under the old city, which are in many cases as perfect now as when first made, 2000 years ago These were annually filled with water by means of the canal from the Nile, at the time of inundation; but a system of water-works has beeu formed by a public company, and a constant supply of water is now obtained from the canas at some distance from the town. The principal streets, squares, and railway stations, are lighted with gas.
Few of the remains of the ancient city are now risible Most of those that were to be seen a fow years ago hare since disappeared, but frequently in making excavations portions of ancient masonry, broken columins, and frag. ments of statuas are discovered. Among the best known of the ancient relics are the two obelisks commonly called "Cleopatra's Needles." They were originally brought from Heliopolis to Alexandria in the reign of Tiberius, and were set up in front of the temple of Cæsar. They are of red granite, and corered with hicroglyphics. One is still standing, and is $\uparrow 1$ feet high and 7 feet 7 inches in diameter ot the base. The other, which is fallen
and corered with debris, is in a less perfect state, and not quite so leng as the former. It was offered to the English government by Mehemet Ali, but after some consideration was declined. Near the obelisks are the ruins of an old round tower, commonly called the "Roman Tower.", Ant the most striking of the ancient monuments is the column styled "Pompey's Pillar." It stands on a mound of earth about 40 feet high, and has a height of 98 feet 9 inches. The shaft consists of a single piece of red granite, and is 73 feet long and 29 feet 8 inches in circumference. The capital is Corinthian, 9 fect high, and the base is a square of about 15 feet on each side. From an inscription it appears to have been erected in honour of the emperor Diocletian, and it was formerly surmounted by a statue of that monarch. To the S.W. of the city are the catacombs, which served for the burial of the dead, and are formed by_{y} excarations in the calcareous rock of which the shore is composed. They are of great extent, and one of the chambers is remarkable for its elegance. The climate of Alexandria is mild and salubrious. The heats of summer are modified by the N.W. minds from the sea, which prevail during nine months of the year, the thermometer seldom rising above 85° Fahr. In winter a good dcal of rain falls, and throughout the jear the atmosphere is generally moist, being saturated with a saline vapour from the sea.

Alexandria has been mainly indebted for its prosperits to the advantages of its position for trade. It was this that first attracted the attention of its far-seeing founder to the site, and its subsequent history in no way belied his penetration. It soon rose to be the most important commercial city in the world, and the great emporium of trade between Europe and the East. Subsequently its fortunes fluctuated with those of its possessors, but the great blow to its prosperity was the discovery of the ronte to India by the Cape of Good Hope, and under the Turks it sank into insignificance, numbering only about 6000 inhabitants Soon after Mehemet Ali became ruler of Egypt he turned his attention to the restoration of Alexandria One of the most important works that he effected with this view was the opening of the Mahmoudieh Canal in I820. This was accomplished at a cost of about $£ 300,000$, and, for want of proper management, at a melancholy loss of human life. It is about 50 miles in length, with an arerage width of about 100 feet, and communicates with the Rosetta branch of the Nile at the village of Atfeh. Since Alexandris became the centre of the steam communication between Europe and Indib, and the principal station on the Overland Route, its progress has bcen rapid. It has now regular communication with England, Marseilles, Erindisi, Constantinopie, \&c. In 1851 Mr Stephenson was instructed to form a railway between Alexandria and Cairo, which was accomplished, and the line opened for traffic, in 1856. This was shortly afterwards extended to Suez, and several extensions have since been made to the cotton districts of the Delta A short line of railray (nct belonging to the government) connects the town with Ramlch, a sea-bathing village about \uparrow miles distant.

Alexandria has two ports, an eastern and a western. The latter, called also the Old Pott, is by far the larger and better of the two. It extends from the tomn westward to Marabout, nearly 6 miles, and is about a mile and a-half in midth. It has three principal entrances. The first, or that nearest the city, has about 17 feet of water, but is narrow and difficult of access, and only used by small ressels and boats. Tho second or middle, which is also the principal entrance, is about a quarter of a mile wide, and has, where shallowest, 27 feet of water. The eastern side of this entrance is marked by buoys, and there are landmarks for guiding to the channel. The third or western entrance kas its western boundary about three.
olghthe of a mile from Marabout Island, is about half a mile wide, and has from 25 to 27 feet of water where shallowest. Within the harbour ships may anchor closo tc the town in from 22 to 40 feet of water. Further improvements, in course of construction by a firm of English contractors (at a cost to the Egyptian government of hittle short of two millions sterling), will eventually render this one of the finest and most capacious harbours on the Mediterrancan. Among these are tho formation of a breakwater, extending in a south-westerly direction parallel to the shore for 2550 yards south-west of the lighthouse on Cape Eunostos; a mole, springing from the shore, and extending in a northerly direction for 1100 yards, and having a width of about 100 fcet; and the construction of nearly 3 miles of quays and wharves, for ressels of the largest size, and with railway connection. The foundation-stone of the breakwater was laid by tho viceroy on 15th May 1871. The area of deep water, 30 feet and upwards, enclosed within the outer breakwater, is 1400 acres; the area of 28 feet of water, enclosed by the harboul mole, will be 137- acres. The workshops of the company are at the quarries of Mex, about 3 miles west of the torm. In the harbour is a magnificent floating dock, nearly 500 feet long and 100 feet broad. Tho old lighthouse, on tho site of tho ancient Pharos, having been found insufficient, a new lighthouse has been erected on Ras-el-teen (1842), bearing a one-minute revolving light, visible at a distance of 20 miles. The castern or new port, formerly the only port open to Christians, is now little used, being exposed to the northerly gales, and having very limited spaco for anchorage.

In 1561 the total value of the exports was $£ 2,638,822$; and in 1871 this hed risen to $£ 10,251,608$, of which $£ 7,706,442$ was to England. The value of the imports for the latter ycar was $£ 5,753,020$, of which $£ 2,469,026$ was from England. The principal articles of export were cotton $(£ 6,402,756)$, cotton seed ($£ 1,008,278$), beans ($£ 753,462$), corn ($£ 573,766$), sugar ($£ 379,456$), gums ($£ 307,932$), coffee ($£ 122,110$), ivory, rool, linseed, sema, and other drugs. The princinal articles of import were manufactared goods ($£ 1,695,870$), wool ($£ 307,495$), oils ($£ 251,158$), wines and liqueurs (f289,944), rsw silk, fruits. During that year there entered 1841 sailing vessels and 883 steam vessels with cargoes, and 143 sailing vessels and 54 steam vessels in ballast; and there left 1085 sailing vessels and 843 steam vessels with cargoes, and 797 sailing vessels and 62 steam vessels in ballast. The total tonnage of the ressels that entered was $1,262,602$; and that left, $1,267,381$. The opening of the Suez Canal will no doubt serve to withdrew a portion of the traffic from Alexandris, bat the improve. ments that are now being made on its harbour, and its direct railway communication with Suez, must still give it certain advantages over the other route, while it must continue to be the great emporium for the rapidly extending trade of Egypt itself.

The population of Alexandria is of a very mixed character, consisting, besides the native Turks and Arabs, of Armenians, Greeks, Syrians, Italians, French, English, Germans, \&c. At one time the ancient city is believed to havo contained 600,000 inhabitants; but at the beginning of this century the number probably did not exceed 6000 . In 1825 this had increased to 16,000 , in 1840 to 60,000 , and in 1871 to 219,602 , of whom 53,829 were foreigners.

ILEXANDRIA, a town of Scotland, in the parish of Bonhill, Dumbartonshire, pleasantly situated on the west bank of the river Leven, about 3 miles from Dumbarton, with which it is connected by a branch railway: It is a place of comparatively recent growth, owing its origin almost entirely to the cotton print and bleaching works of the vicinity, for whicb there is an abundant supply of excellent water. Population (1871), 4650.

ALEMANDRIA, a town and port of entry of the United States, capital of Alczs.ndria county, Virginia, is beautifully situated on the right bank of the Potomac, 7 miles below Washington. It is weat and well-built, with a good har-
bour, and exports considerable quantities of graun and four; but its foreign trado has decrcased. The Chesapeake and Ohio canal begins here, and the town is connected with Washington by railway. Population (1870), 13,570.

ALEXANDRIAN MS. (Codex Alexandrinus), the name given to a Greek manuscript of the Old and New Testaments, now in the British Museum. This celebrated MS. is known to biblical scholars as Codex A. This ahbreviation of Alexandrinus was first employed by Bishop Walton to indicato the various readings of this MS., anpended to the text of the Septuagint and of the New Testament in his great Polyglott Bible, and was adopted by Wetstein in conformity with an arrangement, since followed by all editons of the Scptuagint and Greck Testiment, by which the capital letters of the alphabet aro applied to designate the uncial MSS. of the Greek Bible. The MS. was presented in the year 1628 to King Charles I. through his ambassador at the Porte, Sir Thomas Rowe, by Cyrillus Lucaris, patriarch of Constantinople. There seems no good reason to doubt that Cyrillus had brought the document from Alexandria, where ho had beld the office of patriarch, although Wetstein is of opinion, upon What seems inadequate evidence, that he procured it from the monastery of Mount Athos, where he had resided prior to his coming to Alexandria. It was transferred in 1753 from the king's private library to that of our national museam, whero the volume containing the text of the New Testament is now, or was lately, open to public inspection under a glass case. The entire MS. consists of four smal] folio volumes, three of which contain the text of the Old, and one that of the New Testament. The portion, however, containing the Old Tesfament is moro complete than that which contains the New, the lacunce in the former occurring chiefly in the book of Psalms; while in the New Testament the following portions are wanting-viz., the whole of Matthew's Gospel up to chap. xxv. 6, from Jolin vi. 50 to viii. 52 , and from 2 Cor. iv. 13 to xii. 6. Occasionally, also, single letters, as well as the titles of certain divisions, have been destroyed by the operations of the bookbinder. The material of which tho MS. is composed is very thin vellum, the page being about 13 inches high by 10 broad, containing from 50 to 52 lines in each page, each line consisting of about 20 letters. The number of pages is 773 , of which 640 are occupied with the text of the Old Testament, and 133 with that of the New. The characters are uncial, but larger than in the Vatican MS. B. There are no accents or breathings, no spaces between the letters or words save at the end of a paragraph; and the contractions, which are not numerous, are only such as are found in the oldest MSS., and are indicated by a line drawn over the word which is abbreviated, as ©® for Ocós. "The punctuation consísts of a point placed at the end of a sentence, usually on a lerel with the top of the preceding letter. As regards the date of the MS. very opposite opinions have been held. One critic placed it as low down as the l0th century, bnt this supposition has been justly characterised by Tregelles as so opposed to all that is known of palæography as not to deserve a serious refutation. From the circumstance that the MS. does not exhibit any traces of stichometry-a mode of arranging the toxt in lines consisting of a larger or smaller number of words, at the end of which the reader was to pause, which was applied to the Pauline epistles by Euthalius of Alezandria in the year 458, and which soon came into general nse-it has been inferred that the MS. is not of Later date tinan the middle of the 5th century. Again, the presence, in the text of the Gospels of the Ammonian sectione and Eusebian canons, and of the epistle of Atharasius (who died in 373) to Marcellinus, which is prefixed to the Psalms, shows that it could not be olde:
than the end of the 4 th century．In addition to this extcrual testimony，paloographic rcasons，such as the general style of the writing，and the formation of certain letters，would scem to refer the MS．to about the middle of the 5 th century，and this date is now generally acquiesced in by scholars．There is an Arabic inscription，indeed， mritten on the page which contains the list of the various books of the Oid and New Testament，which states that the MS．was written by the hand of the martyr Thecla， while a Latin inscription by Cyril himself gives the tradi－ tion that the＇Thecla who wrote the MS．was a noble Egyptian lady who lived shortly after the Council of Nice． No rcliance，however，can be placed on these statements， for，according to Scrivener，
＂Trcgelles explains the origin of the Armbic inscription on which Cyril＇s statement appears to rest，by remakiog that the New Testament io our MS．at present commences with Matt．xxv．6， this lesson（Jatt．xxv．1－13）being that appointed by the Grech Church for the festival of St Thecta．The Egyptian，thercfore，who mrote this Arabic note，observing the nano of Thecla in tbe now nimilated upper nargin of tho codex，where such rubrical notes are commonify placed by later hands，hastily concluded that she wrote the book，and thus has perpicxed our biblcal critics．It is hardly too mouch to say that Tregelles＇s shrewd coujecture seems to be cer－ tain，almost to demonstration．＂

This MS．contains the last twelve verses of St Mark＇s Gospel．It is defective in that part of St John＇s Gospel where the pericope adulterce occurs in the ordinary text， but Scrivener shows by an enumeration of the letters in each page that the two missing leaves did not contain the suspected passage．It is almost unnecessary to say that 1 John v． 7 is not found in this or in any uncial Ms． of the New Testament．The reading of the MS．in 1．Tim．iii． 16 has given rise to a good deal of discussion． Woide in his fac－simile edition gare the reading $\overline{\Theta \Sigma}$ for OEOS．The element of uncertainty was whether the cross bar of the theta had not been added by a later hand，so that the original reading may have been OS．Bishop Ellicott arrefully examined the passage with the aid of a strong lens，and the result of his investigation，as given in a note appended to his Critical Commentary on First Timothy，in his edition of the Pastoral Epistles，was to satisfy him that the original reading was of，the cross bar of the theta having arisen from the central line of ϵ in the word evigeßcia，which is directly opposite，shining through the leaf，and being mistaken by a scribe for part of the theta， and being touched up accordingly，－a view which was maintained by Wetstein．On the other hand，both Tregelles and Scrivener，who made the same investigation，are of opinion that the stroke of the epsilon cuts the theta much too high to be mistaken by any ordinary scribe for the cross bar of the theta．When critics of such distinguished reputation differ，the question of the original reading will probably remain for ever uncertain．

The first use that was made of the MS．for critical purposes was by Bishop Walton，who had the various read－ ings which it prescnts inserted in lis great Polyglott Bible， under the texts of the Septuagint and New Testament respectively．It was collated by both Mill and Wetstein for their editions of the Greek Testament．In 1786 the New Testament was published in a fac－sinnile edition by Dr Woide，at that time librarian to the British Museum； the types of this edition were cut so as to represent the general appearance of the letters；and the edition exhibits the MS．page for page，line for line，and letter for letter． The work was accompanied by valuable prolegomena on the history，age，\＆c．，of the MS．；and is allowed to have been executed with remarkable accuracy．In 1828 the liev．H．II．Baber completed the publication of the Old Testament portion in three large folio volumes（1816－1828） also in fac－simule，with uscful prolegomena and notes．

Tischendorf considers the editorial accuracy of Baber as inferior to that of Woide，and cnumerates a number of instances where the readings of the original have been incorrectly given by Baber（Prolegomena to Tischendorf＇s 4th ed．of the Scptuagint，p．69，sq．）In 1860 the text of the New Testament was published in common type by B．H．Corver，the defective portions being supplicd from Küster＇s edition of Dill＇s Greek Testament，and some inaccuracies in Woide＇s edition corrected from the original． In 1864 there was published at Oxford，under the editor－ ship of Mr Hansell，the text of the Codex Alexandrinus， along with that of three of the most ancient MSS．，viz．， Codd．B，C，D，with the Dublin Cod．Z，and a collation of the Cod．Sinairicus．The work is arranged in parallel columns，and thus presents，at one view，the readings of four of our earliest authorities for the text of the New Testament．
（F．c．）
For more minnte information regarding this MS．wo refer to the prolcgomena of Woide and Baher；to Scrivener＇s Introduction to the Criticism of the Nivo Testament，Cambridge，1861；to the fourth volume of Horpe＇s Iutroduction to the New Tcstament by Tregelles， London， 1866 ；and to Davidson＇s Eiblical Crilicism，vol．ii．，Ediu－ burgh，1852．We subjoin a list of the books of the Old and New Testament in the order in which they are found in the MS．：－

Tом． 1.

ov．．．．．Gcnesis．	，
	Kings 1．）
Ieviticu	เ入єtwข β^{\prime}. Samuel II．（or
	Kings II．）
eutepavauiov ．．．．．．Deuteronomy．	Ragtietwy γ^{\prime} ．．．Kings I．（or III．）
Ifбous Nauᄁ．．．．．．．．Joslina，son of	
Nus．	Паралєเтанеу ${ }^{\text {a }}$ a＇C＇hroniclcs
，	Паралєเтоиєעшу β^{\prime} Chronicles I！

Tos．II．

TOM．IIf．
 the Psalms．
Fute Biou Trafiofis（sic）．．．Hypothesis of Etisebias on the Psalms．
Waлtтрiay $\mu \in \tau^{\prime}$ ת $\delta \omega \nu$. Psalms 151，Hymas 15.
Iw3．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Job．

F．ккえทбィабт \ddagger ．．．．．．．．．．．．．．．．．．．Ecclesiastes
А $\sigma \mu a$ А $\sigma \mu a \tau \omega \nu$. ．Canticles．

 of Sirach．

Tom．IV．

Euarүє入ор ката Mapкоу．．．Mark．

Evaryeגiov кata laavyny John．

2 of Peter， 3 of John，and 1 of Judc．
Eпиのто入a！Mau入ou δ^{\prime} ．．．．．．．．Fourteen Epistles of Paul．
Aroкa入uy／s la ayvov．．．．．．．．．Rcvelation of John．
 K入 $\eta \mu \in \nu \tau a s$ Eractnin $\beta^{\prime} \ldots .2 d$ Epistle of Clement to the Corinthinns． ษa入us इoגoucutos η^{\prime} ．．．．．．Eight Psalms of Solomon．

ALEXANDRIAN SCIOOL. © Under this title aro geuorally included certain strongly-marked tendencies in literaturo and scienco which took their rise in the city of Alcxandria. That city, founded by Alexander the Great about the time when Greece, in losing her natiooal indepondence, lost also her intellectual supremacy, was in every way arlmirably adapted for becoming the new centre of tho world's activity and thought. Its situation brought it into commercial relations with all the nations lying around the Meditermacan, and at the same time rendered it the ono communicating link with tho wealth and civilisation of the East. The great natural adrantages it thus enjoyed were artificially increased to an enormous extent by the care of the sovereigns of Egypt. Ptolemy Soter (reigned 306-285 в.C.), to whom, in the genersl distribution of Alexander's conquests, this kingdom liad fallen, began to drav around him from various parts of Grecee a circlo of men eminent in literature and philosophy. To these ho gave overy facility for tho prosccution of their learacd researches. Under the inspiration of his friend Demetrius Phalereus, tho Athenian orstor, this Ptolemy laid tho foundations of the great library, and originated the keen searcl for all written works, which resulted in the formation of a eollection such as the rorld has seldom secu. He also built, for the convenieace of his men of letters, tho Museum, in which, maintained by the royal hounty, they resided, studied, and taught. This Muscum or academy of science was in many respects not unlike a modern university. The mork thus begun by Ptolemy Soter was carricd on rigorously by his descendants, in particular by kis tro immediate successors, Ptolemy Philadelphus and Ptolemy Euergetes. Philadelphus (285-247 B.c.), whose librarian was the celebrated Callimachns, boucht up all Aristotle's collection of books, and also introduced a number of Jewish and Egyptian works. Among these appears to have been a portion of the Septuagint. Eucrgetes (247-222 B.c.) largely increased the library by scizing on the original editions of the dramatists laid up in the Athenian archives, and by compelling all travellers who arrived in Alexandria to leare a copy of any work they possessed.

Tho intellectual morement so originated extended over a. long period of years. If we date its rise from the 4th century b.c., at the time of the fall of Greece and the foundation of the Graco-Macedonian empire, we must look for its final dissolution in the 7 th century of the Christian era, at the time of the fall of Alexandria and the rise of the Mahometan power. But this very long period falls into tro divisions. The first, extending from about 306 b.c. to about 30 b.C., includes the time from the foundation of the Ptolemaic dynasty to its final subjugation by tho Romans; the second extends from 30 B.c. to 640 A.D. The characteristic features of these divisions are very clearly marked, and their diference affords an explanation of tho variety and vagueness of meaning attaching to the term Alexandrian School. In the first of the two periods the iutellectual activity was of a purely literary and scientific oature. It mas an attempt to continue and develop, under new cenditions, the old Hellenic culture. This direction of effort was norticularly noticeable under the carly Ptolenies, Alexandria being lien almost the only home in the world for puro literature. During the last century and a half before the Cbristian era, the school, as it might be called, began to hrak up and to lose its individuality. This was Jue partly to the state of govemment nader some. of the later Ptulemies, partly to the formation of new literary circles in Rhodes, Syria, \&c., whoso supporters, though retaining the Alexandrian peculiarities, could scarcely be included in the Alessindrian school. The loss of active life, consequent on this gradual dissolution, was much incurased when Alexandria fell under Roman sway. Then
the influence of the school was extended over the whole knowy world, but men of letters began to concentrate at Rome rather than at Alexandria. In that eity, however, there were new forces in nperation which produced a second grand outburst of intellectual life. The new morement was not in the old direction-had, indeed, nothing in common with it. With its character largely determined by Jerrish elements, and even more by contact with tho dogmas of Christianity, this second Alexandrian school resulted in the speculative philosnphy of the Neo-Platonists and tho religious philosoplty of tho Gnostics and carly chureh fathers.

There appear, thercfore, to bo at lcast two definite significations of tho title Alexandrian School; or rather, there are two Alexaudriaa schools, distinct both chronologically and in substance. The one is the Alcxandrian school of poetry and science, the other the Alexandrian school of philosophy. As regards tho use of the mord "school" to denote these movements, it must be observed that the term is mislcading. It has not the samo meaning as when applicd to the Academics or Peripatetics, the Stoics or Epicureans. These consisted of a company nnited by holdiag in common certain speculative principles, by having the same theory of things. There was nothiog at all corresponding to this among the Alcxandrians. In literature their activities were directed to the most diverse objects; they have only in common a certain spirit or form. There was among them no definito system of philosophy. Eren in the later schools of philosophy proper there is found a community rather of tendency than of definite result or of fixed priaciples.
Alexandrian School of Literature.-The general character of the literature of the school appears as the necessary consequence of tho state of affairs brought about by the fall of Greek nationality and indenendence. The great works of the Greek mind had formerly been the products of a fresh life of mature and perfect freedom of thought. All their hymns, enics, and histories were bound up with their individuality as a free people. But the Macedonian conquest at Cbæronea brought about a complete dissolution of this Greek life in all its relations, prirato and politicel. The full, genial spirit of Greek thought ranished when freedom was lost, with which it was insenarably united. A substitute for this originality was found at Alexandria in learned rescarch, extended and multifarious knowledge. Amply provided with means for acquiring information, and under the watchful care of a great monarch, the Alexandrians readily took this new direction in literature. With all the great objects removed which could excite a true spirit of poetry, they devoted themselves to minuto researches in all sciences subordinato to literature proper. They studied criticism, grammar, prosody and metre, antiquities and mytholory. The results of this sturly constantly appear in their productions. Their works are nerer national, never addressed to a people, but to a circlo of learned men. Moreover, the very fact of being under the protection, and, as it were, in the pay of an absoluto monareh, was damaging to tho character of their literature. There was introduced into it a courtly clement, clear traces of which, with all its accompaniments, are found in the extant works of the school. One other fact, not to be forgotten in forming a general estimate of the literary value of their productions, is, that the same writer was frequently or almost always distinguished in several special sciences. The most renowned poets were at the samo time men of culture and science, critics, archæologists, astronomers, or physicians. To such writers the poetical form was mercly a convenient vehicle for the exposition of science.
The forms of poetical composition chiefly cultivated by the Alezazdrians were cpic and lyric ur elegiac. Grea
epics are wauting; but in their place, as might almost have been expected, are found the historical and the didactic or expusitory epics. The subjects of the historical epics were gencrally soine of the well-known inyths, in the exposition of which the writer could exhibit the full extent of his learuing and his perfect command of verse. These poems are in a scuse valuable as repertories of antiquities; but their style is out the whole bad, and infinite patience is required to clear ap their numervus and obscure allusious. Thie best extaut specincen is the Aryonautica of Apollonius Thodius; the most claracteristic is the Alexandra or Cassandica of Lycophron, the obscority of which is almost proverlial.
The subjcets of didactic epics were very numerous; they su:n to lave dopended on the special kuowledge possessed by the writers, who used rerse as a form for unfolding their iufurmation. Some, e.g., the lost poem of Callineashus, walled Aita, were on the origin of myths and religious ubservances; others were on special sciences. Thus we have two poems of Aratus, who, though not resident at Alezandria, was so thoroughly imbued with the Alexandrian spinit as to be with reason incladed in the school ; the oue is au essay ou astronomy, the other an account of the signs of the weather. Nicander of Colophon has also left us two epics, one on remcdies for poisons, the other on the bites of venomous beasts. Of many other epic poets only the names are knorm, as Dicæarchus, Euphorion, Rhianus, Dimysius, Oppianus. The spirit of all their productions is the same, that of learned research. They are distinguished by artistic form, purity of expression, and strict attention to the laws of metre and prosody, qualities which, however good in themselves, do not compeusate for want of originality, freshness, and power.

In their lyric and elegiac poetry there is much worthy of admiration. The specimens we possess are not devoid of talent or of a certain happy art of expression. Yet, for the most part they either relate to objects thoroughly iucapable of poetic treatment, where the writer's endeavour is rather to expound the watter fully than to render it poetically beantiful, or else expend themselves on short isolated subjects, generally myths, and are erotic in char racter. The earliest of the elegiac poets mas Philetas, the sweet singer of Cos. But the most distinguished was Callimachus, undocbtedly the greatest of the Alezandrian poets. Of his numerous works there remain to us only a few hymns, epigrams, and fragments of elegies. Other lyric poets were Phanocles, Hermesianax, Alexander of Etolia, and Lycophron.

Sume of the best pruductions of the school were their epigrams. Of these we have several specimens, and the art of composing them seems to have been assiduously cultivated, as might uaturally be expected from the court life of the poets, and their constant endeavours after terseHess and neatness of expression. Of kindred character were the parodies and satirical poems, of which the best c.xamplics were the Sidlot of Timon.

Dramatic poetry appears to have flourished to some extent. There are still extant three or four varying lists of the seven grcat dramatists who composed the Pleisd of Alerandria. Their works, perhaps not unfortunately, have perished. A ruder kind of drama, the amobeen rerse, or bucolic mime, developed into the only pure stream of genial poetry found in the Alexandrian School, the Idylls of Theocritus. The name of these pooms preserves their original idea; they were prictures of fresh country life.

The most interesting fact connected with this Alexandrian poetry is the powerful influence it exercised on Roman literatnre. That literature, especially in the Augustan age, is not to be thoroughly understood without due appreciation of the character of the Alc.andrien School

Bcfore the Alexandrians Lad begun to produce original works, their researches were directed towards the masterpieces of ancient Greck literature. If that literature was to be a porter in the world, it nust be handed down to yosterity in a form capable of being nuderstcod. This was the task begun and carried out by the Alexandrian critics. These men did not merely collect worls, but sought to arrauge them, to sulject the texts to criticisn?, and to explain any allusion or reference in then which at a later date might become obscure. The complete jhilo-: logical examinatiou of any work consisted, accurding to them, of the following processes:- δ oto ρ 月ots, arrangement of the text; áváyvoots, settlement of accults; réx $\begin{aligned} & \text { n, theory }\end{aligned}$ of forms, syntax; "Érrmots, explanation either of words or things ; and finally, kpiots, judgment on the author and his work, including all questions as to authenticity aud inter. rity. To perform their task adeguately required frow the critics a wide circle of knowledge ; and frum this requiremeut sprang the sciences of granmar, prosudy. lexicography, mythology, and archreology. The service rendered by these critics is invaluable. To thenn we owe not merely the possession of the greatest works of Greck intellect, but the possession of them in a readiuble state. The most celebrated critics were Zenodotus; Aristophanc: of Byzantium, to whom we owe the theory of Grect accents; and Aristarchus of Samothrace, coufessedly the Coryphæus of criticism. Others were Alezander of Etolia, Lycophron, Callimachus, Eratosthenes, and many of a later age, for the critical school long survived the literary. These philological labours were of great indirect iniportance, for they led immediately to the study of the natural sciences, and in particular to a more accurate knowledge of geography and history. Considerable attention beraus to be paid to the ancient history of Greece, and to all the myths relating to che foundation of states and cities. A large collection of such curious information is contained in the Bibliotheca of Apollodorus, a pupil of Aristarchus, Who flourished in the 2 d century B.c. Eratosthenes was the first to write on mathematical and physical geography; he also first attempted to draw up a chronological table of the Egyptian kings, and of the historical events of Greece. His Egyptian chronology, along with that of Manetho, is still of great interest to scholars ; and Bunsen speaks with the highest admiration of his researches in Greek history. The sciences of matheratics, astronomy, and medicine were also cultivated with assiduity and success at Alexandria, but they can scarcely be said to have their origin there, or in any strict sense to form a part of the peculiarly Alesandrian literature. The founder of the mathematical school was the celebrated Euclid: among its scholars were Archimedes; Apollonius of Perga, author of a treatise on Conic Sections; Eratosthenes, to whou We owe the first measnremeat of the earth; and Hipparchus, the founder of the epicyclical theory of the hearens, afterwards called the Ptolemaic system, from its most famous expositor, Claudius P'tolemaus. Alexandria coutinued long after the Christian era to be celebrated as a school of mathematics and science

Alexandrian School of Philosophy.-Dthough it is not possible to diride literatures with absolute rigidity by centuries, and although the intellectual life of Alexandria, particularly as applied to science, long survived the Roman conquest, yet at that period the school, which for some tine had been gradually breaking up, seems finally to have succumbed. The later productions in the field of pure literature bear the stamp of Rome rather than of Alexandria. But in that city, for some time past, there had been various frrces secretly working, and these coming in contact with great spiritual clanges occurring in the world around, produced a second outburst of intellectual activity.

Ameng the matives of foreign countries transplanted to Alexandria by iss founder liad been a few Jews. Theso gradually increased in number, until, about the time of the Christian era, they formed an influential part of the populace of Egypt, inhabited two of the five quarters of the capital, and held high offices in the state. They had been well treated by the Ptolemies, and for some time experienced similar treatment from the Romans. The new movement of thought was in great measure due to the preseace of this Jewish element. The cuntact of free Greck spreculation with the peculiar Jewish ideas of the transeendence of God, of a special revelation, and of a singular subjective ecstasy, the prophetic state, could not fail to have a strong effect on the mode of thought of the most highly cultured Jews. From many causes they were more than erdinarily open to receive foreign ideas. Their isolated position had been broken in upon by their long residence as a small minority in the midst of an atmosphere of Greek custem aud thought, and in the most highly cultivated city in the world. Their separation from their native country had tended to broaden their views by weakening the strong pelitical convictions which united their desting and their sacred writings with a definite land. It was a necessary consequence that they should endeavour so far as possible to assimilato their principles to Greek ideas The two systems were not, they found, in total contradiction ; they had several points in common. This was specially the case with the Platonic writings. There thus arese among the Jews a constantly mereasing tendency to modify or widen their doctrines so as to admit of Greek conceptions, and then, with the aid of these conceptions, to systematise their own somewhat vague religious. views. In this way philosophy and religion would be united or identified. There is truth in all philosophy, for philosophy is but a mangled reproduction of the sacrea record in which all truth is contained. The Scriptures contain all philosophy, but not explicitly; they require to be interpreted. The system thus developed has a philosophical aspect, yet never ceases to be essentially Jewish, for the ultimate resort is always to a body of dectrine expressly revealed. Progress in this direction was possible in two ways. First, the pure Greck metaphysieal thought rejected a body of truth said to have been revealed to a special people, but retained the idea of revelation to the individual thinker. A doctrine was thus evolved which contained most of the oriental or Jewish theosophical ideas, but in logical sequenco and based for the most part on the earlier works of Greek thinkers. Religion was retained, but was explained or had a meaning given by philosophy. To this powerful movement of thought the name Neo-Platonism is given; its chief representatives were Ammonius Saccas, Plotinus, Porphyry, Jamblichus, and Proclus. Sccond, the introduction of the peculiar Christian dogmas could not fail to produce a lively effect on the Alezandrian thinkers. These dogmas had to be reconciled with philosophy, or the one must yield to and be absorbed by the other. The attempt to solve the problem of their mutual relation gave rise to Gnosticism in all its phases, and was the cause of the speculative element in the works of such fathers as Clement of Alexandria and Origen.

To the whole of this great movement the title Alesandrian philosophy must be given, although that term is sometimes identified with Neo-Platonism. Of the exact historical origin of it we have no certain notice. Some, thinkers are of opinion that even in the Septuagint traces of rationalism can be discovered. (See Frankel, Mistorisch kritische Studien zur Septuaginta, 1841.) In Aristobulus (160 B.C.) is found a thoroughagoing attempt to show that early Greek speculations werc in harmony with the divine
record, because they had been borrowed from it. Traces of allegorical interpretation are also found in hin, but no conception of a theosophical system. In the peculiar tenets of the Therapeuta, so far as these can be known, may perhaps be traced another stream of influence, the NeoPythagurean. The complete representative of the Jewish religious philosophy was Philo, surnamed Judæus, who lived at Alexandria during the Christian era. In him are found a complete and elaborato theosophy fusing together religious and metaphysical ideas, a firm conviction that all truth is to be found in the sacred writings, and a constant application to these writiugs of the prineiple of allegorical interpretation. Ilis system is a syncretism of Oriental mysticism and Greek metaphysics, and the effort at such a combination from the Jewish side could go no further. After I'liilo Judxus there remained as possible courses either Neo-Platonism or Gnosticism.

Of Alexandrian literature there are notices in histories or Greek literature, as Müller and Donaldson, or Bernhardy; of Alexandrian philosophy, in general histories of philosophy and of early Christianity. Special works, which, however, derote most attention to the Neo-Platonists, are-

Matter, llistoire de l'Ecole d'Alexandrie, 2d ed." 3 vols. 1840-44; Simon, Histoire de l'Ecole d'Alexandrie, 2 vols. 1844-45; Vacherot, IIistoire critique de l'Ecole d'Alex. andrie, 3 vols. 1846-51; Kingsley, Alexandria and her Schools, 1854; Gfrörer, Philo und die Alexandrinische Theosophie, 1835; Dachne, Geschicht - Darstellung der Jüdisch-Alexandrinischen Religionsphilosophie, 2 vols. 1834.

ALEXANDRINE VERSE, a name given to the leading measuro in French poetry. It is the heroic French yerse, used in epic narrative, in tragedy, and in the higher comedy. Thero is some doubt as to the origin of the name; but most probably it is derived from a collcetion of romances, published early in the 13th eentury, of which Alexander of Macedon was the hero, and in which he was represented, somewhat like our own Arthur, as the pride and crown of chivalry. Before the publication of this work most of the trouvere romances appeared in octo-syllabic verse. \& The new work, which was henceforth to set the fashion to French literature, was written in lines of twelve syllables, but with a freedom of pause which was afterwards greatly curtailed. The new fashion, however, was not adopted all at once. The metre fell into disuse until the reign of Francis I., when it was revited by Jean Antoine de bœuf, one of the seven poets known as the Plciades. "It was not he, however, but Ronsard, who made the verso popular, and gave it vogue in France. From his time it became tho recognised vehicle for all great poetry, and the regulation of its pauses became more and more strict. The following is an example of the verse as used by Racine-

$$
\begin{aligned}
& \text { " OÀ suis-je ? qu'ai-je fait? |l que dois-je faire encore ! } \\
& \text { Quel transport me saisit t || quel chagrin me dévore ?" }
\end{aligned}
$$

Two inexorable laws eame to be established with regard to the pauses. IThe first is, that each lino should be divided into two equal parts, the sizth syllablo always ending with a word. . In the earlier use of this metre, on the contrary; it frequently happenea that the sixth and serenth syllables belonged to the samo word. The other is, that, except under'the most.stringent conditions, there should be none of what the French eritics call cojambement, that is, the overlapping of the sense from one line on to the next. Ronsard completely ignored this rule, which was after his time settled by the authority of Malherbe. Such verses as the following by Ronsard werld be intolerable in modern Freach poetry-

[^70]
Je raux, s'il est possible, atteindre la lonague

 De celle. . . .Sichael Drayton, who was twenty-two years of age when Runsard died, seemed to think that the Alexandrine might be qs pleasing to English as it was to French ears, and in this metre he wrote a long poem in twenty-four books called the Polyolbion. The metre, however, failed to catch the Euglish ear. Our principal measure is a line of ten syllables, and we use the Alexandrine only occasionally to give it variety and weight. In our ordinary heroic verse it is but rarely introduced; but in the favourite narrative metre, known as the Spenserian, it comes in regularly as the concluding line oi each stanza. In English usage, moreover, it is to be observed that there is no fixed rule as to the position of the pause, though it is true that most commonly the pause occurs at the end of the sixth syllable. Spenser is very free in shifting the pause about; and though the later poets who have used this stanza are not so free, yet, with the exception of Shenstone and of Byron, they do not scruple to obliterate all pause betweeu the sixth and sereuth syllables. Thus Thomson (Castle of Indolence, i. 42):-

> "And music lent new glaciness to the morning air:"

Tho danger in the use of the Alexandrine is that, in attempting to give dignity to his line, the poet may only produce heaviness, incurring the sneer of Pope-

[^71](E. S. D.)

ALEXIS, an ancient comic goet, born about 394 B.c. at Thurii in Magna Grecia, the nncle and instructor of Menander. Plutarch says that he lived to the age of 106 years, and according to Suidas he wrote 245 plays, of which the titles of 113 are known. The fragments that have been preserved by Athenæus and Stobæus attest the wit and elegance of the author. The plays were frequently translated by the Latin comic writers. (See Meineke, Tragm. Com. Grace. vol. i.)

ALEXIUS I., the nephew of Isaac Comneaus, and the most distinguished member of the Comnenus family, was born in 1048, ayd died in 1118. In early life he signalised himself in the wars against theenemies of hiscountry; but the mean jealousies of the ministers of the emperor Nicephorus (surnamed Betaniates) drove him to take up arms against a sovereign whose cause he had thrice gallantly defended against powerful insurgent leaders; and he ascended the throne of Constantinople in 1081. His character has beeu too partially drawn by his favourite daughter, Anna Comnena, who has, however, justly remarked that the disorders of the times were both the misfortune and glory of Alezius, and that he paid the penalty for the vices of his predecessors. In his reign the Turks extended their conquests from Persia to the Hellespent; on the north the empire was assailed by bordes of barbarians from the Danube, and on the west by the Normans; while Europe pressed on Asia by way of Constantinople, in the excitement of the first crusade. Amid these disturbances Alexius managed the affairs of the state with a dexterous and courageous hand, though his policy was ascribed by the Latins to cowardice or treachery. He was politic enough to derive solid adpantages from the romantic valour of the crusaders. Alexius outlived the love of his subjects, and their patience was all but exhausted in the latter part of his long reign. The nobility were irritated by the extravagance of his relations; the people by his screrity and exactions; and the clergy murmured at his appropria. tion of the church funds to the defence of the state.

ALFANI, Domenico, an Italian painter, born at Perugia towards the close of the fifteeuth century. The precise
date is uncertain, but he was a contemporary of Raphael, with whom he studied in the school of Perugino. The two artists lived on terms of intimate friendslip, and the influence of the more distinguished of the two is so clearly traccable in the works of the other, that these lave frequently been attributed to Raphael. Towards the close of his life Alfani gradually changed his style, aud approximated to that of the later Florentine school. The date of his death, according to some, was 1540 , while others say he was alive in I553. Pictures by Alfani may be seen in collections at Florence, and in several churches in Perugia.

AL-FARABI, Abu Nasr Muhamiad Iby Tarkhan, one of the earliest Arabian philosophers, flourished during the former half of the loth century. Philosophy, among the Arabs, was originally an extension of the related sciences of astronomy and medicine, and the first philosophers were physicians. The more eminent of them were coupt physicians, and to this they doubtless owed their protection against the jealous suspicions of the Mahometan sects. Al-Farabi is supposed (for the detailed accounts of his life are legendary) to have coucerued himself more with the theory than the practice of mediciue; but he is known to have been a physician at the court of Seif-Eddaula, and died when it was at Damascus in 950. Unlike some of his successors, notably Avicenna, he was an ascetic, and his philosophy, which has a slight Platonic infusion, bears traces of the contrast. He was unsystematic, and the sketches and aphorisms of his which have come down to us (many of his treatises ara still in MS.) only partially euable us to reconstruct his philosophy. In his opusculum De Scientiis he enumerates six orders of sciences:-(1.) Lauguage, by which he means little more than grammar. (2.) Logic, which he names as an art, conceives generally as a science, and confounds in its details with the corresponding art, with rhetoric, and with criticism. (3.) The mathematical sciences, embracing geometry, arithmetic, optics, the science of the stars, music, and the sciences of weights and of capacities (ingenia). Arithwetir is abstract and concrete; geometry is active, passive, and speculative; and the science of the stars includes astronomy, astrology, the science of climates, and of dreams and auguries. (4.) The natural sciences, ten in number. (5.) Civil science, including judicial science and rhetoric. (6.) Divine science, or nretaphysics. This hierarchy has striking approximations to the most modern classifications. Logic and mathematics, the most abstract scieuces, are near the beginning, if not quite first; what stands for social science fullows the physical concrete sciences; and the distinction Uctreen abstract and concrete, which Coute made one of the bases of his classification, and which has been more accurately discriminated by Spencer, is on the whele clearly seized. But art is throughout confounded with science; superstitions are mixed up with facts; physical and mental phenomena are not always separated; the subjective and the objective (learning and science) are confused, as they afterwards were by Bacon; and there is no science of man-man was not yet conceived, metaphysically, as an individual. This agrees with Al-Farabi's science of politics as expounded in another work, in which he follows his master, Aristotle, in denying the permanence of the individual soul, and anticipatcs the Averrhoistic doctrine of the unity of souls. For his metaphysics is Peripatetic, as Peripateticism was interpreted by the Neo-Platonist commentators on Aristotle. Starting with the distinction between the possible and the necessary, be assumes that there must be some supreme nccessary existence which accounts for all actual existence. This supreme existence has infinite life, wisdom, power, beauty, goodness, dc., but it is an absolute unity, and is withont distinguishable attributes. How does tho world, with its iufnite
multiplicity and diversity, issue from this absolutely one and identical being? Here Al-Farabi neo-platonises. It proceeds by emanation. The absolute Being knows itself, and in virtue of this knowledge tho first intelligence exists. He does not explain how self-consciousness comes to be insoparable from necessary existence, but his dynamic, at this and all the lower stages, is eelf-knowledge; and indeed the act of knowing and the resultant existence appear at this leight of abstraction to bo all butidentical. The first intelligence, intriusically a unity, contains multiplicity, becanse it is no lunger devoid of attributes. In so far as it neccssarily crists, it evolves the second intelligenco; in so far as it is merely potential being, and knows itself, it evolves the world-soul and the uppermost world-cirele, which is moved by that soul. Similarly descending intelligences, ever-wider world-circles and the corresponding suuls, are evolved by the eamo process of emanation, down to tho active reason, which is most nearly related to tho eartlily clements and human souls. The active reason, by its contact with luatter, impresses on it forms, of which the human soul is one, with greater or less permanence according to tho degree in which it is immersed in, or rises above, matter. The forms decline in permanence the further wo descend below the active reason, and the matter which has least form is the limit of emanation. There is here nothing like what is now called evolution: the conception of the universe is, as in all theories of emanation, really statical, not dynamical, for the ideas of cause and perpetual causation do not yet exist; and of course the process is the reverse of that implied in the modern development theory. (For information on Al-Farabi, eee Munk, Mclanges, Mp. 341-52; and Steinsclncider, Memoires de l'Académie de St Petersbourg, vii. série, tom. xiii. Two of his opuscula have been iranslated by Schmölders, Documenta Philosoplice Aralum, and two are contained in Alpharatii Opera Omnia, Parisiis, 1638.)

ALFIERI, Vitrorio, chiefly celebrated as the author who raised the Italian tragic drama from its previons state of degradation, was born on the 17th January 1749, at the town of Asti, in Piedmont. Ho lost his father in early infancy; but he continued to reside with his mother, who married a sccond time, till lus tenth year, when be was placed at the academy of Turin. After he had passed 3. twelvemontle at the academy, be went on a short risit to a relation wlio dwelt at Coni ; and during his stay there bo made his first poetical attempt, in a sonnet chiefly borrowed from lines in Ariosto and Metastasio, the only poets he had at that time read. When thirteen years of age he was induced to commence the study of civil and canonical lair ; but the attempt only scrved to disgust him with every species of application, and to increase his relish for the pernsal of French romances. By the death of his nncle, who had hitherto taken some charge of his education and conduct, he was left, at the age of fourteen, to enjoy without control his vast paternal inheritance, augmented by the recent accession of his uncle's fortunc. He now began to attend the riding-school, where he acquired that rage for horses and equestrian exercise which continued to bo one of his strongest passions till the closo of his existence.

After some tine spent in alternate fits of extravagant dissipation mud ill-directed study, ho was seized with a desire of trarclling; and having obtained permission from the king, he departed in 1766, under the care of an English precepto:. Restless and unquiot, he posted with the utmost rapidity through the towns of Italy; and his improvement was sucb as was to be erpected from his modo of travelling and his previous habits. Hoping to find in fureiga countries some relief from the tedium and ennui with which he was nppressed, and being anrious to become accuainted with the French theatre. he proceeded to Paris

But he appears to have been completely dissatisfied with everything ho mitnessed in France, and contracted a dislike to its people, which his intercourse in future yuars rather contributed to augment than diminish. In liolland be became deejly enamoured of a married lady, whu returned his attachment, but who was soon obliged to accompany her husband to Switzerland. Alferi, whose feelings were of the most impetuous description, was in despair at this separation, and returned to his own country in the utmost anguish and despondency of mind. While under this depression of spirits he was induced to scek alleviation from works of literature; and the perusal of Plutarcb's Lives, which ho read with prufound emotion, inspired hira with nu enthusiastic passion for freedom and indenendence. Under the influence of this rage for liberty he recommenced his travels; and his only gratification, in the absence of freedom among the Continental states, appears to have been derived from contemplating the wid and sterile regions of the nortis of Sweden, where glounty forests, lakes, and precipices conspired to excito thuse sublime and melancholy ideas which were congenial to lis disposition. Everywhere his soul felt as if confined ly the bonds of sociely; he panted for something moro free in government, nore clevated in sentiment, more devoted in love, and more perfect in friendship. In search of this idual world he posted through various countries, more with the rapidity of a courier than of one who travels for amusement or instruction. During a journey to Loudon, he engaged in an intrigue with a married lady of ligh rank; and having been detected, the publicity of a rencuunter with the injured husband, and of a divorce which fullowed, rendered it expedient and desirable for him to quit Englaud. Ho then visited Spain and Portugal, where he became acquainted with the Abbe Caluso, who remained through life the most attached and estimable friend ho ever possessed. In 1722 Alfieri returned to Turin, where he again becamo enamoured of a lady, whom he loved with his usunl ardour, and who seems to have been as undeserv. ing of a sincere attachment as those. he had hitherto adored. In the course of a long attendance on his mistress, during a malady with which she was afflicted, ho one day wrote a dialogue or scene of a drama, which ho left at her house. On a difference taking place between them, the piece was returned to him, and being retouched and extended to five acts, it was performed at Turin in 1775, under tho title of Cleopatra.

From this moment Alfieri was sewed with an insatiable thirst for theatrical fane, and the remaiuder of his life was deroted to its attainment. His first two tragedies, Filippo and Polinice, were originally written in I'xcucl prose; and when he came to versify them in Italian, hu found that, from his Lombard origin, and long intercoursu with foreigners, he expressed himself with feebleness and inaccuracy. Accordingly, with the vicw of improvingt his Italian style, he went to Tuscany, and, during an alternate residence at Florence and Siena, he completed his Filippo and Polinice, and conccived the plan of various other dramas. Whilo thus employed, he became acquainted with the Countess of Albany, who then resided with her husband at Florence. For ler be formed an attachment which, if less violent than his former loves, appears to have been more pormanent. With this motivo to remain at Florence, he could not endure the chains by which his vast possessions bound him to Piedmont. He therefore resigncl Lis whole property to his sister, the Countess Cumiana, reserv. ing an annuity which scarcely amounted to a half of his original revenmes. At this period the Countess of Alicer. urged by the ill-treatment she received from hor husband, sought refuge in Rome, where she at length received permission from the pope to live apart from her tormentor.

Alfier followed the countess to that capital, where he completed fourteen tragedies, four of which were now for the first time printed at Sienna.

At length, however, it was thought proper that, by leaving , Rome, he should remove the aspersions which had been thrown on the object of his affections. During the year 1783 he therefore travelled through different states of Italy, and published six additional tragedies. The interests of his love and literary glory hat not diminished his rage for horses, which seems to have been at least the third passion of his soul. He came to England solely for the purpose of purchasing a number of these animals, which he carried with him to Italy. On his return he learned that the Countess of Albany had gone to Colmar in Alsace, chere he joined her, and. resided with her under the same roof during the rest of his life. They chiefly passed their time between Alsace and Paris, but at length took up their abode entirely in that metropolis. While here, Alferi made arrangements with Didot for an edition of his tragedies; but was soon after forced to quit Paris by the storms of the Revolution. He recrossed the Alps with the countess, and finally settled at Florence. The last ten years of his life, which he spent in that city, scem to have been the happiest of his existence. During that long perind his tranquillity was only interrupted by the entrance of the Revalutionary armies into Florence in 1799. Though an enemy of kings, the aristocratic feelings of Alfieri rendered him also a decided foe to the principles and leaders of the French Revolution; and he rejected with the utmost contempt those advances which were made with a view to bring him over to their cause. The concluding jears of his life were laudably employed in the study of the Greek literature, and in perfecting a series of comedies. His assiduous labour on this subject, which he pursued with his characteristic impetuosity, exhausted his strength, and brought on a malady for which he would not adopt the prescriptions of his physicians, but obstinately persisted in employing remedies of his own. His disorder rapidly increased, and at length terminated his life on the 8 th October 1803, in the fifty-fifth year of his age.
The character of Alfieri may be best appreciated from the portrait which he has drawn of himself in his own Memoirs of his Iife. He was evidently of an irritable, impetuous, and almost ungovernable temper. Pride, which seems to havs been a ruling sentiment, may account for many apparent inconsistencies of his character. But his less amiable qualities were greatly softened by the cultivation of literature. His application to study gradually tranquillised his temper and softened his manners, leaving him at the same time in perfuct possession of those good qualities which he had inherited from nature,-a warm and disinterested attachment to his family and friends, united to a generosity, vigour, and elevation of charactor, which rendered him not unworthy to embody in his dramas the actions and sentiments of Grecian herocs.
It is to his dramas that Alfieri is chiefly indebted for the high raputation he has attained. Before his time the ltalian language, so harmonious in the Sonnets of Petrarch, and so energetic in the Commertia of Dante, had becn invariably languid and prosaic in Iramatic dialogue. The pedantic and inanimate tragedies of the 36th century were followed, during the iron age of Italinn literature, hy drumas of which extravagance in the sentiments and improbahility in the action were the clief characteristics. The prodigious auccess of the Mcrope of 31 affei, which appeared in the commencement of the last century, may be attributed more to a comparison with such productions than to intrinsic merit. In this degradation of tragic taste the appearanco of the tragedies of Alfieri was perbaps the most important literary event that had occurred in Italy duriag the 18th century. On these tragedies it is difficult to pronounce a juderment, as the taste and system of the author underwent considerable cbange and modification during the intervals which elapsed between the three periods of their puhlication. An exressive harshness of style, an asperity of sentiment, and total
want of paetical ornament, are the characteristics of his first fonr tragediea, Filippo, Folinice, Antigone, and Virginia. There fanlts where in eome measure corrected in the six tragedies which he mive to the world some years after, and in thase which he published along with Saul, the dram : which enjoyed the greatest success of all his productions ; a popularity which may be partly attribnted to the aevere and unadorned manner of Alfieri being well adapted to the patriarchal aimplicity of the age in which the scene of the tragedy is placed. But theugh there be a considerable difference in his dramas, there are certain observations applicable to them all. None of the plots are of his own invention. They are founded either on mythological fable or history; most of them had been previously treated by the Greek dramatists, or by Seneca. Rosmanda, the only ono which could be supposed of his own contrivance, and which is certainly the least Lappy effusion of his genius, is partly founded on the eighteenth novel of the third part of Bandello, and partly on Prevost'e Mémoires d"un Hornme de Qualite. But whatever subject he choosee, hia dramas are always formed on the Greci:nn model, and breathe a freedom and independence worthy of an Athenian poet. Indeed, his Agide and Bruto may rather be considered opatorical declamations and dialogues on liberty than tragedies. The unitics of time and place are not so scrupulously observed in his as in the ancient dramas; but he has rigidly adhered to a unity of action and interest. He occupies his scene with one great action and one ruling passion, and removes from it every accessary event or feeling. In this excessive zeal for the observance of unity he seems to have forgotten that its charm consists in producing a common relation between multiplied feelings, and not in the hare exhibition of one, diveeted of those various accompaniments which give harmnuy to the whole. Consistently with that austere and simple mauncr which he considered the chief excellence of dramatic coraposition, he excluded from his scene all coups de theatre, all philosophical reflections, and that highly ornamented versification which had heen so assiduously cultivated by his predecessors. In his anxiety, however, to avoid all superfluous ornament, he has stripped his dramas of the embellishments of imagivation; and for the harroony and flow of poetical langrage he has substituted, even in his lest performances, a styl) which, though correct and pure, is geucrally harah, elaborate, and sbrupt; often strained into unnatural energy, or condeased into factitions conciseness. The chief excellence of Alfieri consists in porrerful delineation of dramatic character. In his Filippo he has a presented, almost with the masterly touches of Tacitus, the sombre character, the dark mysterious counsels, the suspensa semper et olscure verba, of the modera Tiberius. In Polinice, the characters of the rival brothers are beautifully contrasted; in Maria Stuarda, that unfortunate queen is representel unsuspicious, impatient of contradiction, and violent in her attach ments. In Mirra, the character of Ciniro is perfect as a father am? king , and Cecri is a model of a wife and mother. In the representation of that species of mental alienation where the judgment her perished, but traces of character still remain, he is peculiarly happy. The insanity of Saul is skilfully managed ; and the horrid joy of Orestes in killing \&gisthus rises finely and naturally to madness, in finding that, at the some time, he had inadvertently slain his mother.
Whatever may be the merits or defects of Alfieri, he may be considered as the founder of a new school in the Italian drama. His country hailed him as her sole tragic poct; and his successors in the same path of literature have regarded his bold, austere, and rapid manner, as the genuine model of tragic composition.
Besides his tragedies, Alfieri published during his life many aonnets, five odes on Arnerican iadependence, and the poem if Etruria, founded on the assassination of Alexander 1., duke of Florence. Of his prose morks the most distinguished for animation and eloquence is the Pancgyric on Trajan, composed in a transport of indignation at the supposed feebleness of Pliny"s eulogium. The two books entitled La Tirannide and the L'ssays on Literature and Government, are remarkable for clegance and vigour of stjle, but are too evidently imitations of the manncr of Machiavel. Ilis Antigallican, which was nTitten at the same time with his Defence of Louis XVI., comprehends an historical and satirical vick of the French lievolution. Tho posthumons works of Alfieri consist of satires, six political comedies, and the :Iemoirs of his Life-a work which will always bo read with interest, in spitc of the cold and languid gravity with which le delineates the most interesting adventures \& 7 d the strongest passions of his aritated life. See Mem. di. Tit. Alficri ; Sismondi De la. Lit. du Midi de l'Europe Walker's Momoir on Italian Tragedy; Giorn. de Pisa, tom. 1'iii. Life of Alferi, by Centofanti (Florence, 1842) ; and Vita, Giornuli, Lettcro di A7ficri, by Teza (Florence, 1861).

ALFO?D, Henry, D.D., Dcan of Canterbury, one of the mest ruriously-accomplished churchmen of his daypoet, preacher, painter, musician, bihlical scholar, critic, and philologist- Tas born at 25 Alfred Place, Bedfurd Row, London, October 7th, 1810 (died 1871) IIe mame
of a Somersetsmue faunly, firo generations of which, in direct auccession, contributed clergymen of some distinction to the English Chorch. The earliest of these, his great-great-grandfather, Thomas Alford, who died in 1708, was for many. years the vicar of Curry Rivell, near Taunton-a living that passed from one to another of his descendanta. The father of Dean Alford studied for the bar, but after practising for a short time, followed the course of his predecessors by taking holy orders ; and, until his death at a vencrable age in 1852, had long been familiarly known and revered in his part of the country as the rector of Aston Sandford in Buckinghamshire. His first wife, the dean's mother, whose ma'den namo was Sarah Eliza Paget, was the younger daughter of a well-to-do banker of Tamworth in Staffordshire. A twelvemonth after their marriage, her husband, then practising as a special pleader, was by her premature death in childbed left a widower. The newly-born infant, who remained to the last the bereaved parent's only child, was confided in the first instance to the affectionate care of the home-circle in the house of his maternal grandfather. Towards the elose of 1813 he was taken back to the lonely bearth of his father, who had now entered upon his clerical duties as curate of Stceple Ashton, near Trowbridge in Wiltshire. Being the only son of a secluded scholar, the boy's education was from an unusually early period sedulously cared for; his father being his first instructor, and at the outset his constant companion. So exceptional was his precocity that at aix he had already written a little MS. volume entitled (in round hand) the Travels of St Paul. Before he was eight he harl penned a collection of Latin odes in miniature. When be was scarcely nine be had compiled, in the straggling characters of a schoolboy, a compendious History of the Jeus; besides drawing out a chronological scheme in which were tabulated the events of the Old Testament. Prior to the completion of his tenth year he actually produced a series of terse sermons or laconically outlined homilies, the significant title of which was Looking unto Jesus. During the absence of his father, who bad gone abroad as the travelling chaplain of Lord Calthorpe, Henry, at seven years of age, began the round of three academies, at Charmouth and Hanmeremith ; the happiest time of all for him as a schoolboy being three years and npwards passed in the grammarschool at Ilminster. His character was already displaying a marked individuality. He could repeat not only reacily but appreciatively an astonishing number of lines in Greek, Latin, and English, selected from what wero then and always afterwards his favourite classic authors. He indulged, too, in those early days, in the luxury of original versification. Then it was also that he first began to manifest that singular capacity for ingenious contrivance and that surprising neatness and dexterity of manipulation for which he was afterwards remarkable. It was said of him later in life, that he could construct an organ and then play upon it ; and when his reputation for profound scholarship had been long established, his construetiveness was curiously manifested by his adaptation to the purposes of utility of the seemingly ordinary walking-stick he carried when travelling on the Continent. In its upper joint ho secreted his surplus money and his drawing materials; in its lower joint, pens, ink, wax, and pencils. Strangely contrasting. with this ineradicable passion for nicety and precision was his delight at all times in giving himself up to the most diversified occupations, and in yielding, often at an instant's notice, as he sometimes notes with regret. to the temptation of mere discursiveness.
It was in the October of 1827 that the university life of Alford commenced. At seventeen he went up to Cambridge, having won his scholarship, and had his name entered at Trinity College. During the midsummer of his
fourth year at Cambridge, in the June of 1831, he hat obtained the second prize essay. As the autumn decpened into winter ho was nervously preparing to go in for honours at the examinatiens. In the possibility of his success he had not the slightest confidence, yet on the 21st January 1832 he appears as thirty-fourth wrangler; while on the 25 th February his name comes out eighth on the first-class list of the classical tripos. He now began to take pupils, and within the interval which elapsed between his taking his degrree and giving humself up more conpletely to the great work of his life-the elaboration of his edition of the Greck New Testament-it is believed that he had under his charge at least sixty. These included barristers, clergymen, peers, and members of parliament; many of whom afterwards attained positions of emincnce, all of them having their charactcrs moulded more or less under the inspiring influence of his. In his twenty-sixth year he was united in marriage to his cousin Fanny, a daughter of his uncle, the Rev. Samuel Alford, who was then, as his father and his great-grandfather had been before him, vicar of Curry Rivell. Surviving her lusband after nearly thirtyfive years of wedded life, during which she had seen the development of his intellectual powers and the realisation of some portions at least of his many-sided ambition, she bronght out in 1872 his journals and correspondence, carefully edited by hersolf. Λ curiously characteristic side-light is thrown upon Alford's inner nature, beth moral and intellectual, by the circumstance there recorded-that, with a riew to enable his future wife to read the Nerv Testament in Groek, he wrote with his own hand, in the interral between betrothal and marriage, an elementary Greek grammar of sixty folio pages. The incident is all the more interesting as affording the earliest glimpse of what soor proved to be his dominant aspiratien. His researches in secular scholarship were at this time becoming every year more and more adventurous. He shrank not from proclaiming even then that he regarded Niebubr as "one of the greatest men in this ignorant and obstinate world.". MeanWhile, in the midst of his excursive inquiries as a atudent in the most opposite directions, he was indulging at every available opportunity in the lotos-delight of his own daydreamings ; and in February 1833, he published his maiden work as a lyrist, Poems and Poetical Fragments. Simply as an instructor lie was working steadily seven hours a-day; but the time came when, in furtherance of his favourite rescarches, he was known to toil at the desk sumetimea trelve or fourten.

Resolved from childhood to tread the path of life in the footsteps of his forefathers, Alford was ordained deacon on the 26th October 1833, and at once began active professional work as curate of Ampton. So modest was his own estimate of his intellectual capabilities, thiat it was with unaffected surprise be found his name second on the list of the six Fellows of Trinity who were elected on the lst of the following October. On the 6th November he was admitted to priest's orders, and four months afterwards, upon the 4 th March 1835-scarcely a week before his marriage-entered upon his parochial labours of eighteen years' duration as ricar of Wymeswold in Leicestershire. Twice during the interval of his scholarly seclusion in that quiet vicarago he was vainly tempted with the offer of a colenial bishopric, first in 1841 as bishop of New Zealand, and again in 1844 as bishop of New Brunswiek. He contentedly drudged on for years together in comparative obscurity among his pupils and parishioners. Although a ripe scholar, and remarkable for his splendid versatility, it was less by the brilliancy of his achievements than by the sheer force of the most diligent perseverance that he pushed his way eventually into the front rank, and commanded at last the recognition of his contemporarics.

Whatever he put his hand to he carried out with a zeal that at times looked almost like dogged detcrmination. Thrown from his horse in the February of 1847 when going to deliver his first lecture, although very seriously shaken and disfigured, he nevertheless punctually appeared before his audience with his face and head covered with surgical bandages and-resolutely lectured. His reputation as a lecturer of exceptional power was within a few years from that time theroughly established. Several of his discourses, notably one on Saul of Tarsus, with others on themes as varied as astronomy, music, scenery, and Christianity, acquired in the end a certain amount of celebrity. For two years together, in 1841 and 1842, he held the chair at Cambridge of Hulsean lecturer. As the result of his labours in that capacity, two substantial volumes afterwards made their appearance. Meanwhile, in the midst of his more serious avocations, he was at uncertain intervals making good his claim to be regarded as one of the more subtle and tender of the minor religious poets of England. Adopting an old forgotten title of Quarles's, he brought out, on his arrival at Wymeswold (1835), in two volumes, his School of the Heart, coupled with a reissuc of his minor poems and sonnets. In 1838, he edited, in six vols., the works of Donne, prefixing a luminous preface, at once critical and biographical. Throughout the year 1839 and part of 1840 he edited a monthly magazine called Dearden's Miscellany. In 1841 he published, with other new poems, his Albot of Muchelnaye. A collection of Psalms and Hymns appeared from his hand in the spring of 1844. A couple of years before that, in 1842, he had first entered upon his duties at Somerset House, where he acted for many years as examiner in logic and moral and intellectual philosophy in the university of London. So youthful was his appearance at the date of his first receiving this appointment, that on his entering the apartment where he was arwaited by the candidates, he was mistaken for one of themselves.
What eventually proved to be the noblest of all his literary undertakings, his new edition, with running commentary, of the Greek Testament, engrossed his attention for fully twenty years together, from 1841 to 1861. Originally designed for the use of students in the universities, the work, from its modest first projection, grew in his hands to enormous proportions. He fancied at starting that a single year might witness its, completion, and that a couple of thin octavos might embrace both text and commentary. By the time the expanding scheme was actually realised trenty years had elapsed, aud the "work had swollen into four ponderous tomes, the contents of which were as weighty as they were comprehensive. The idea of the work was suggested to Alford's mind as he listened one day to a sermon at Cambridge. What he proposed to himself at the outset was simpiy to adont the main text, and to combine with it the greater part of the readings of Philipp Buttmann and Karl Lachmann. This, however, led to a more extended plan of critical labour and research, including a comprehensive digest of the various readings founded on the latest collations of the principal manuscripts, the Codex Vaticanus, the Coder Sinaiticus, the Codex Alexandrinus, and others. With a riew to illustrate more clearly than ever the rerbal and idiomatic or constructional usages of the sacred text, an entirely new collection of marginal references was compiled. Added to this there was a copious abundance of English notes, both exegetical and philological. Conscious of the vast stores of learning that had been accumulating in Germany, Alford from an early dato determined to render himself as thoroughly as pussible a master of the German language and at home in German literature. This intention was fairly carried out at Bono before the close of the summer
of 1847. Then, but hardly till then, he felt himseif at last duly qualified to edit the Greek Testament. Froun that time he prepared in earnest to open up systematically to the contemplation of English readers the wealth of German criticism, actually made plain for the first time in our language through his Prolegomena and subsequent incidental commentary. In Norember 1849 (the month the author took his B.D. degree at Camoridge), vol. i. of the Greek Testament was published, containing the four Gogpels. Through it theological students in this country had placed within their reach in an epitomised form the latest resulta of the labours of continental critics on the Greek text, including portions even of those of Constantine Tischendorf. Issued from the press volume by volume, the work, as already remarked, was not completed till long afterrards. In January 1861 the fourth or final volume, beginning with the Epistle to the Hebrews and ending with the Book of Revelation, mado its appearance. What is chiefly noticeable in regard to the work is its strictly critical character. It is the proda-tion of a philologist rather than of a theologian. Abbreriations, punctuations, elisions of orthography, systcmatic ellipses, the merest turns of the pen in this or that manuscript, are weighed against microscopic scruples in the balance of his judgment. There can be little question that the work appreciably increased the aggregato amount of the billical knowledge of Alford's immediate contemporaries. So carefully matured were his rescarches in the regions of exegesis, already crossed and recrossed by the footprints of countless commentators, that the work is regarded as in many respects authoritative even among those who differ from him widely on many important questions.

Early in 1853 Alford first preached in Quebec chapel, Eondon, the building in which his father had been ordained deacon forty years before. Before the year was out, on the 26 th September, he had removed from his picturesque church in the wolds of Leicestershire to the plain conventicle in Tyburnia. There he remained for zearly four years, toiling assiduously, preaching twice every Surday to a-large and cultured congregation. Seven volumes, issued from the press at intervals, have, under the title of The Quebec Chapel Sermons, preserved 153 of the more remarkable of these discourses-those preached by him in the morning-all of which were carefully prepared bèforehand. As a preacher his style was severe and earnest rather than eloquent or impassioned. Perhaps the finest discourse he ever delivered was the oue on the text, "A great multitude which no man could number." It was preached from the cathedral pulpit shortly after his advancement by Lord Palmerston, in March 1857, to the deanery of Canterbury. Throughout his hife, but especially towards its close, his chief delight intellectually appears to have been the rapid alternation of his pursuits. While he was yct in the midst of his biblical researches he was, simultaneously, at the beginning of 1851, translating the Odyssey, arrar ging his poems, with additions for their American republication, and preparing an article for the Edinburgh Revien on the $S t$ Paul of Conjbeare and Howson. A series of ingenious lectures, delivered by him in his capacity of plilologist, on being compacted into a manual of idiom and usarje, entitled The Queen's English, attained a high degree of popularity. Nevertheless, in spite of their wholly unpretentious and essentially humorous character, these mere casual notes on spelling and speaking drew down upon their author one of the sharpest criticisms he ever provoked, sarcastically entitled The Dean's English. The Contemporary. Revieno was inaugurated under his editorship; and from January 1866 to August 1870 mas conducted by him as a sort of nentral ground for religious criticism. Under the titlo of The Year of Prayer, Alford in 1866 published o

Look of family devotion; and in 1867, a collection of orizinal hymus called The Year of Praise, works of little fretension, but by which his s.ame was widely popularised. His latest poctic effusion of any considerable length was The Clitdren of the Lord's Prayer, which appeared in 1800 as the letterpress accompaniment to designs by F. li. Pickersgill, I.A. The miscellaneous papers he lad contributed to periodicals were, the same year, collected under the namo of Essays and Addresses. He bronglit out, in 1SC5, his Letters from Abroad, eminently characteristic recurds of travel, mainly descriptive of Italian citics and scenery; and in 1870, a collection of spirited pen and pencil sketches of The Rivicra, the latter being reproduced from lis mater-colour dramings by the aid of chromo-lithograply. The artist faculty, it has been observed, and not extravagantly, "would have mado lim a great landseape painter had he not, either from preference or necessity, become a great Greck seholar and a dean." Such wers the pliancy and the resilience of his nature that he would turn with zest, after hours of severo study given to the collation of a Hebrew manuscript or to the examination of the exegetical subtleties of a German commentator on the Greek Testament, to doctoring the hall elock and making it strike the half-hours, to tuning the piano in the drawing-room, or to playing games with his children in tho nursery. The wooden front of the organ (which instrument he could play with the hand of a master) was carved according to his own ingenious design and by his orn dexterous chiselling. A Masque of the Seasons, performed as a holiday pastime on Now Year's Day 1861, in the deanery, owed to lim both the words and the musieBe limself, besides, enacting in it the part of "Father Christmas." A conple of years before his death he appeared as a novelist, conjointly with his nicee producing the story of \boldsymbol{N} cherton on Sea. The last work of any magaitude upon whicl be adventured as a biblical scholar was his Commentary on the Old Testament. In the diversity of his avocations, and the thoroughness with which they were, one and all, carried to a successful issue, he was lus own severest taskmaster. Throughout life, until he was stretehed upon bis deathbed, ho never seemed to indulge in the luxury of inaction. The end came at length to him ealaly, on the 12th January 1871, and fire days afterwards his remains were interred under a jew tree in St Martin's churchyard, within vies of the towers of Canterbury Cathedral. It is signinicant of the terder poetical quaintness of his whole character, that there is inscribed abore his tomb, in obedienco to his own directions, "Diversorium Viatoris Hicrosolymam Proficiscentis." A statue of the dean, by Piyfers, was unveiled, before the jear of his demise had run out, in a niche on the west front of the most ancient of our cathedrals. Dean Alford was a man as variously accomplished as any of his generation; and he would unquestionably have risen to far greater eminence than he ever achicred in pectry, in oratory, in music, in painting, in theology, or in general literature, if he had aimed at excelling in one or tro alono of those arts or sciences, instead of endearouring to shine in all of them alike.

ALfRED, or Fefred, the Great, the youngest son of Athelwulf, king of the West Saxons, was borm at Wantage in Perlshire in 849 A.D. At an early age ho was summoned to the assistance of his brother Eethelred egainst the Danes. These formidable enemies, whose ouject hitherto lad been mere plunder, were now aiming at a permanent-settlement in the country, and after ravaging and subduing Northumbria, East Anglia, and the greater part of Mercin, they fell with their united forces on Wessex itself. A series of encounters took place, in which Alfred greatly distinguished himself, especially at Asbdown, whore the Danes were rovied with great sianghter, and
left sereral of their most famons leaders dead on the field of battle. Ethelred dying in the midst of the struggle, Alfred was unanimously clected king (871), in the twenty. sccond year of his agc. About a month after his accession he met the enemy at Wilton, where, after a long and doubtful struggle, he was defeated. Both parties were now becoming tired of the war. Immense loss had been suffered on both sides, and although the Danes on the Whole had been victorious, their victories lad brought them no sibstantial results. A treaty of peace was coneluded, and the Danes withdrevy to London.

On the cessation of bostilities, Alfred was enabled to turn his attention to naral alfairs. The sea was swarming with pirates, and their descents on the coast kept the country in a state of perpetual alarm. To cope with them successfully Alfred resolved to meet them on their orn clement, and a naval rictory which ho gained over seven Denish rovers in 875 is the frst on record mon by Eaghishmen. In the following year the peace of 871 mas broken. An army of Danes from East Luglia, under their king, Guthrum, sailing along the south coast, landed in Wessex, seized upon Wareham, and aftermarùs upon Exeter, then the centre of a disaffected Celtic population, and it was not till 877 that the country was once more free from the invader.

The year 878 was the most eventful in the courso of Alfred's reign. At mid-winter, without any warning, the Danes came pouring into Wessex from the north, seized Chippenham, and making it the centre of their operations, quickly overran the country. Many of the inhabitants, in despair, fled into foreign lands, and Alfred, totally unprepared to mect the storm, retired to tho marshes of Somerset. Never at any other period, either before or after, were his fortunes so low, and the national existence itself was at stake. Had Alfred, like his kinsman Burhed of Mercia, left his people in their hour of need, the beathen Dano in all probability would have acted like the heathen Englishmen before him-a new race would have possessed the land, and the names of England and Englishmen would have disappeared from the page of history. Alfred's misfortunes only roused him to fresh exertions, and his military skill and ralour enabled him to carry his people in safety through this momentous crisis. Fortifying himself at Athelney about Easter, he secretly matured his plans for meeting the enemy, and seven weeks after, having collected his forces at Brixton near Selwood, he rapidly advanced in a north-easterly direction, and ras close upon the Dancs before they had any intelligence of his approach. A fierco conflict ensued at Ethandun, now Edirgton, in which the Dines were entircly defeated; and about fourtcen days after this they were compelled to sue for peace. By the treaty of Wedmore, Watling Strect (the old road running across the island from London to Chester and the Irish Channel) was to be the boundary between Alfred and the Danes, the latter were to bo vassals to the laings of Wesser, and their chiefs to receire baptism. This treaty was observed loy tho Danes with much greater fidelity than those of an easlier date had been. Guthrum their king and about thirty of their chiefs were baptised at Wedmore, and Alfred, wlio stood sponsor for Guthrum, gave him the namo of Ethelstan. The Danish army efter this slonly withdrew, and eventually settled dorn peaceably in Fast Anglia The acceptance of Christianity by their chiefs seems indeed to have broken for a time the fierce crusading energy which gave a special animus to the piratical expeditions of the lieathen Danes.

As soon as peace had been concluded Alfred turned his attention to tho internal affairs of lis kingdom. He vigorously set to work to put the country in a complete. state of defence. Old fortifications were repaired and new
ances raised in suitaole localities. The fleet was brought into a state of greater efficieucy, and it was Alfred indeed that laid the foundation of England's natral greatness. He cleared the land of the bands of robbers that infested it, and took care that justice was impartially administered to all his subjects, esverely punishing any wilful perversion of it on the part of the judges. In his code of laws, which is a compilation from those of his predecessors, he wisely abstained from introducing much of his own, giving as his reason that he was afraid it might not be accepted by posterity. He greatly encouraged commerce, and took a lively interest in geographical discovery. We have from his pen a minute account of two voyages of Ohthere, especially of the one round the North Cape into the White Sea, and also of a voyage of Wulfstan to the Baltic. And it is to Alfred that we are indebted for the best account that has reached us of the Germany of the 9 th century.

Alfred's devotion to learning, and his exertions in the cause of education are among the most remarkable features of his reiga. So deep was the popular ignorance when Alfred ascended the throne that, according to his own testimony, hardly any one south of the Thames could understand the ritual of the church or translate a Latin letter. It was one of the strongest and most cherished of his purposes that this state of matters should be entirely changed, and that every free-born English youth who had the means should qualify himself to read English correctly. In order to accomplish this, he rebuilt the monasteries which had been cast down in the late wars, and which were the great-centres of education in those days, invited learned men from all quarters to his court, and by their assistance completed a number of works for the diffusion of knowledge throughout his dominiuns. These were not original compositions but free translations of Latin authors that were held in much esteem at the time, and the fact that Orosius and Bede are two of the works he selected, shorrs the high value he set upou an acquaintance with history and geography. A copy of his versior of Gregory's Pastoral Care was sent to every diocese for the benefit of the clersy. It is in the preface to that work that Alfred gives his touching account of the decay of learning, and expresses his desire for its revival. But the work which seems to have had the greatest attraction for him was The Consolations of Philosophy, by Boethius. In his translation of this work Alfred gives us more of his own original composition, aud a deeper insight into his thoughts and feelings, than in any other of his works. His Manual or Handbook, which is known to have been in existenco in the 12th century, is lost, and this is the more to be regretted since, besides the extracts from Latin authors which it contained, it is believed that he had insertea in it not a few compositions of his own.
In occupations such as these fifteen years of comparative tranquility, disturbed now and theu by troubles whth the Danes, passed away. A fresh swarm froun abroad had landed in Kent in 885 and besieged Rochester, but on the king's approach they raised the siege and returned to their ships. The next eight years were years of unintertupted peace; but the Danes, suffering a severe defeat at the hands of Arnulf, king of the East Franke, sailed for Eugland in two divisions in 893. One of these divisions was under the command of the terrible Hastings. Their arrival was a signal to the Davies of Norlhumbria and East Anglia, who rose in great numbers to aid their kinsmen. Alfred, however, was better prepared to meet the danger than he had formerly been. His towns were so strong that the Danes seem studiously to have avoided them. A body of the enemy was routed by Alfred at Farnham in Surrey. Another great host, moving to the west in the line of the Thames, was followed by three of Alfred's alder-
men to Buttington in Montgomeryshire and completely defeated. Thosa who escaped mace their way to Essex. Leaving their wives-and children there, and receiving considerable additions to their numbers, they crossed the country once more and established themselves within the fortifications of the old Roman town of Chester, which was then uninhabited. There they remained for the winter, when, provisions failing them, they removed to Wales, and with the harvest of plunder they gathered there they retreatcd into Essex by way of the friendly districts of Northumbria and East Anglia. So rapid had their movements been that Alfrech's axmy was unablo to kecp up with them. The same year (895), before winter set in, the Danes sailed up the Thames into the Lea, and selecting an adrantageous position on the banks of the latter stream, constructed a fortress abont 20 miles above London. As this proved a considerable annoyanco to the citizens, they attacked it the following summer, but were repulsed with great loss. During harvest the ling was obliged to encamp in the neighbourhood of the city to protect the reapers while gathering in their crops. He afterwards raised two forts on each side of the Lea, and so effectually Llocked up the passage of the river that the enemy abandoned their vessels and proceeded to Bridgenorth on the Severn. In the summer of 897 the great Danish host broke ap, and part of them returned to the continent. The rest dispersed through Northumbria and East Anclia, and for some time gave Alfred no little trouble by their piratical excursions. By means of vessels formed after a model of his own, of unusual length and speed, he succeeded at last in curbing his Danish foes, but not till after a desperate encounter with them on the sonth coast, in which the advanage was not all on his side. The war was, as usual, accompanied by pestilence, and great numbers perished, many being persons of the lighest rank in the state. The rest of Alfred's reign, about which we know almost nothing, seems to have been passed in peace. He died in the year 901, at the age of fifty-two, and was buried at Winchester.
The memory of Alfred has ever been gratefully cherished by his countrymen. There never perlaps was a monarch so highly esteemed ; and traditional stories of the most fascinating description cluster around his name, in which he appears almost to as much adrantage as in real history. Institutions that existed long before his time, but whoso origin it is impossiole to trace, lare erroneously been attributed to him; and in the times of Norman opprtssion, when the people were groaning under the burden of slavery, they fondly called to mind the "Darling of the English," to whom they ascribed all those rights and privileges which they 50 lighly ralued, and of which they had been unjustly deprived. Time but adds to Alfred's praises. With one consent our historians agree in characterising him as the misest, best, and greatest king that ever reigned in England.
The following is a list of Alfred's works:-

1. Branual or Hanabook, of whieh no copy is knomn to oxist 2. Lawes (see Willin's Leges Anglo-Sazonica, 1721, and Thorpe's Ancient Lazos and Institutes of England, London, 1840). Translations into Old English (Anglo-Saxon) of the followiug:-3. Bede? Eccicsiastical IIisiory, edited by Wheloc, Cambridge, 1643-4, and by Smith, Cambridge, 1722. 4. The Universal Hisiory of Orosius, edited by Thorpe, London, 1857. 5. The Corsolations of Philoscophy, by Boethius, edited by Fox, London, 1864. 6. Gregory's Pastoral Care, edited by Swcet for the Early English Test Society, Londion, 1871-2.
For further information abont Alfred see Pauli's Life of Alfred and Freeman's old English History and History of ho Norman Cong ucst

ALGE;' or Hydrophyta, a large order of cellular, fowerless, cryptogamic plants, found in the sea (senwceds), in rivers, 「akes, narshes, hot. springs, and unoist places, ali over the world. They cunsist of a brown, red, of graen.
flattened, cellular, leaf-luke expansion, called a thallus, sometimes stalked, which bears the organs of reproduction. Some have root-like processes by which they are attached to rocks. These do not act like the nourishing roots of flowering plants; they simply fix the plants and enable them to sway about in the water. This is markedly the case with the Laminarias, or large tangles of our coasts. The leafy appendages of scaweeds are called fronds. They vary in size, colour, and consistence. Some of the red and green delicate fronds form beautiful objects when carefully dried and laid out on drawing-paper. In order to dry seameeds they must he first washed carefully in fresh water to separate saline matters, and then placed mithin dryingpaper and subjected to pressure. Very delicate seaweeds should be floated out in water, drawing-paper being placed under them, and their fronds being carefully arranged on the paper before they are raised out of the water. They must then be dried partially in the air, and afterwards under pressure betreen sheets of drying-paper.

Seaweeds are composed entirely of cells, which in some instances become elongated so as to have the appearanco of tubes. Some Algr are uni-cellular, that is, are composed of a single cell, as occurs in some Desmidiex, as Closterinm. At other times they are composed of numerous cells, which are kept together by a gelatinous matter, but separating easily from each other so as to have an independent existence. This is observed in the red snow plant (Prolococcus or Palmellanivalis). The cells of seaweeds are sometimes joined together so as to form a linear series, and to give them a thread-like appearance ; and in such a case, when the divisions between the cells are marked, the whole appears like a beaded necklace of cells. When the cells are united both lengthrise and laterally they then form an expanded flat frond. In some instances the frond is gelatinous.

The germinating bodies or spores of seaweeds are cells ofteu contained in cavities (Fig. 2). They vary in colour, and the fronds hẹve frequently the same colour as the spores. In reference to their colour, Algæ. have been divided into three sub-orders: 1. Melanospermex, brown coloured searreeds (Fig. 1), with olive-brown spores; 2. Rhodospermex, rose-coloured seaveeds, with red spores; 3. Chlorospermeæ, green-coloured seaweeds, with green tpores.

Fig. 1.

Fig. 2.

rig. 3.

Fr. 1 -Thallus, df, of Fucus resicutosus, the common Bladder Searreed, with airovericia, r_{1} and masses of conceptacles constituilng the fructification, ft, fri which acmetmes called klebs. Fig. 2.-Fractification of a Seaweed, containang apores which are uleimately discharged at an openlag, o. Fig. 8.-
Tatrapore of ome of the rose-coloured Seameeds.
Algæ are multiplicd by the division of cells and by epores. By cell-division there is a multiplieation of cells, and by separation from the parent plant these cells may
bear buids. True fertilisation fs effected by means of union of cells, or what is called conjugation. In this process two kinds of cells unite by means of a tube, and the contents of the one passcs into the other, thus giving rise to germinating spores. This is seen in Confervæ, such as the green matter often seen in ponds, and called cilk-wced. There are also observed in Algæ two kinds of fertilising bodies, one set called Antheridia, containing moving filaments or spermatozoids; and the other called Archegonia, containing a rudimentary cell, which, aftur contact with the spermatozoids, becomes a spore forming a new plant. The spores produced by some Algæ movo about in water, and have been called Zoospores. Their spontaneous movements are effected by means of vibratile slender threads called cilia These zoospores are contained in a cell, which ultimately bursts and seatters them. The process is well seen in a green Alga called Vaucheria. The zoospores move about for a certain time, and ultimately the spores get fixed to a rock or the wood of a pier, and then the cilia disappear. Cilia sometimes occur in pairs at ono end of a spore, numbering two or three; at cther times they are placed round the whole circumference of the spore.

Spores have a tendency to divide into four; such compound spores are called tetraspores (Fig. 3). They are common in the sub-order Rhodospermex. They seem to differ from ordinary spores, and to be more of the nature of buds. In some Algæ, such as Corallines, there is a coating of calcareous matter which conceals their tissue. This can be removed by means of hydrochloric acid. Diatoms, a subdivision of Algæ, are so called from two Greek words signifying to cut through, in allusion to the mode of division into two valves. They are microscopic one-celled bodies, covered externally by a siliceous or flinty coat. They are on the confines of the animal and vegetable king. doms, and have been referred sometimes to the one and sometimes to the other. Their modo of reproduction by conjugation and spores seems to indicate their alliance with Algæ, although some still place them among infusorial animalcules. The siliceous markings of Diatoms are very beautiful microscopic objects. After exposure to the action of fere or nitric acid, the silez remains unaltered, and in that state the streaks of the covering are casily observed.

Many of the Algæ supply nutritious food. Rhodymenia palmata, one of the red seaweeds, is the dulse of the Scotch, the dillesk of the Irish. Chondrus (Spherococcus) crispus and C. mammillosus, two Rhodosperms, receive the name of carrageen or Irish moss. Their fronds consist in part of a substance allied to starch, which is extracted by putting them in water, and on cooling it forms a jelly. Species of Ulva, one of the Chlorosperms, supply the green laver. Species of Caulerpa furnish food to turtles. Laminaria digitata, and Laminaria saccharina, under the name of tangle, are eaten in the north of Europe. Dulse and tangle was formerly a common cry in the streets of Edinburgh. D'Urvillaca utilis is used as food in Chili Alaria esculenta, a British species, is also edible. Gigartina speciosa is used for jelly in the Swan River settlement. Gracilaria lichenoides, under the namo of Ceylon moss, is used for soups and. jellies. Gracilaria spinosa supplies the Agar-Agar in China. Nostoc edule is a Chinese article of diet. The edible nests of China are supposed to be formed from scaweeds. Plocaria tenax is used in China to furnish glue. Iridaa edulis is edible. Laurencia pinnalifida is called pepper-dulse on account of baving pungent qualities. Seaweeds form an excellent manure. They are used on many farms situated near the sea-shore. Seaveeds after burning yield barilla, an impure carbonate of soda. Kelp was for many years prepared from seaweeds in Scotland, more especially in the Western and Northern Islands.

As regards the distribution of scaweeds, some are cosmopolitau or pelagie, as species of Ulva and Enteromorpha, which are equally abnudant in hegl northern and southern latitudes, as they are under the equator and in temperate regions. Mfany Diatomaceæ are distributed frum pole to pole. In general, kowever, seaweeds are more or less limited in their distribution, so that different marine floras exist in various parts of the ocean. The marine speeies have been estimated at about 6000 , and they are distributed in various regions. The Northern Oeean, from the pole to the 40th degree, the sea of the Antilles, the eastern coasts of South America, those of New Holland, the Indian Archipclago, the Nediterranean, the Red Sea, the Chinese and Japanese seas, all present very large marine regions, each of which possesses a peculiar vegetation. The degree of exposure to light, and the greater or less motion of the waves, are important in the distribution of Algx. The intervention of great depths of the ocean has an influence on sea plants similar to that of high mountains on land plants. Mclanospermexe increase as we approach the tropies, where the maximum of the species is found. Rhodospermere chiefly abound in the temperate zone; while Chlorospermee form the chief marine vegetation of the polar zone, and abound in the colder temperate zone. The green colour is characteristic of those Alge which grow either in fresh water or in the shallower parts of the sea; the olive-coloured Alge are abundant between the tide-marks; while the red.coloured species occur cliefly in the deeper and the darker parts of the sea.
Some seaweeds are worthy of note on account of the mode of their growth and distribution. Chorda Filum, a long cord-like seaweed, lies in beds of 15 to 20 miles in length, and only about 600 feet in breadth, in the North Sea and the British Channel. Sargassum bacciferum constitutes the Gulf-weed, which has been noticed by all who have crossed the Atlantie. The Gulf-weed has never been seen attached, but always floating. From the abundance of this seaweed its loeality is called the Sargasso Sea. The most remarkable of the seaweeds, as regards size and the extent of range, are Macrocystis pyrifera and Laminuria radiata. Masses of Macrocystis, like green meadows, are found in every latitude. Many specimens have been seen about 300 feet long; some even extend to 700 feet or upwards. A tree seaweed, Lessonia fuscescens, with a stem 10 feet long, 12 inches in cireumference, and its fronds $2-3$ feet long and 3 inches broad, is found in immeuse masses off the Patagonian regions. D'Urvilldea wuilis is another large Antarctic seaweed, which, along with Lessonia, occurs at the Falkland Islands, formed by the surf into enormous vegetable cables, several hundred feet long, and thicker than the human body. In Britain we have a marked distribution of seaweeds as regards depth. There is a littoral zone lying between high and low water marks, divided into sub-regions characterised by the following seawceds:-1. Fucus canaliculatus; 2. Fucus vesiculosus; 3. Fucus nodosus ; 4. Fucus serratus. Secondly, there is a laminarian zone, commencing at low-water mark, and extending for a depth of 7 to 15 fathoms. Hcre we meet with the great tangle seaweeds, such as Laminaria digitata and \bar{L}. saccharina, along with deepwater Fuei.

> (Ј. н. в.)

ALGARDI, Alessandro, one of the most celebrated sculptors of Italy, was born at Bologna in 1602, and died in 1654. While he was attending the school of the Caracci his preference for the plastic art beeame evident, and ho placed himself under the instruction of the seulptor Conpenti. At the age of twenty he was brought under the notice of Duke Ferdinand of Mantua, who gave him several commissions. He was also much employed about
the same pcriod by jewellers and others in modelling in gold, silver, and ivory. After a short residence in Venice, he went to Rome in 1625 with an introduction from the Duke of Mantua to the pope's uephew, Cardinal Ludovisi, who employed him for a time in the restoration of ancient statues. The death of the Duke of Mautua left him to his own resources, and for sereral years he earned a precarious maintenance from these restorations and the commissions of goldsmiths and jerrellers. In 1640 he executed for Pietro Buoncompagni his first work in marble, a colossal statue of San Filippo Neri, with knceling angels. Immediately after, he produccd a similar group, representing the execution of St Paul, for the church of the Barnabite Fathers in Bologna. These works, displaying great technieal skill, though with considerable exaggeration of expression and attitude, at once estallishicd Algardi's reputation, and other commissions followed in rapid suc. cession. The turning-point in Álgardi's fortnne was the accession of Innocent X., of the Bologuese house of Panfili, to the papal throue in 1644. Ho was employed by Camillo Panfili, nephew of the pontiff, to design the Villa Doria Panfli ontside the San Paucrazio gate. The most important of Algardi's otber works were the monument of Leo XI., a bronze statue of Innocent X. for the Capitol, and, above all, La Fuega d'Attila, the largcst alto-riliero in the world, the two principal figures being about 10 feet high. The great techuical excellence of these works is considerably marred by an exaggeration of expression resulting from the vain endeavour to produce in marble cffects which cau only be legitimately brought out on canvas. From an artistic point of view, he is most successful in his portrait-statues and groups of chiddren, where he is obliged to follow nature most elosely. In his later years he became very araricious, and amassed a great fortune.
algarotti, Francesco, Count, was born at Venice on the 11th Deeember 1712. He went abroad in his youth, and in 1733 risited Paris, where he issued his Newtonian Philosophy for the Laclies, in the work entitled The Plurality of 1Forlds. He was nuch honoured by Frederick the Great, who, when crowned at Künigsberg in 1740, created him a count of Prussia. He died at Pisa on the 23d of May 1764, and, by his own direction, the follow: ing inscription was placed upon his tomb:-IIic jace Algarottus, sed non onmis. He is allowed to have been a great connoisseur in painting, sculpture, and arehitecture; and he contributed much to the reformation of the Italian opera. His works (6 vols., Leghorn, 1764; 17 vols., Venice, 1791-4) are numerous, and on a variety of subjects, abounding with rivacity, elegance, and wit.

ALGARVE, the most southerly province of Portugal, is bounded on the E. by the Spanish province of Seville, from which it is separated by the river Guadiana; on the N. by Alemtejo ; and on the W. and S. by the Atlantic Ocean. Its length from east to west is 85 miles, the average width is 22 miles, and the area, according to the most recent measurement, 1865 square miles. In 1868 the population was 177,342 , giving tho small proportion of 95 to the square mile.

The Sierra de Caldeiraon and the Sierra de Monchique cxtend across the northern part of the prorince, and, sweeping to the south-west, terminate in the lofty promontory of Cape St Vincent, the south-west extremity of Europe. Between the mountainous tracts in the north and the southern coast stretches a narrow plain, watered by numerous ricers flowing southward from the hills. In the hilly districts the roads are bad, the soil unsuited for cultivation, and the inhabitants fem. Floeks of goats are reared on tho mountain sides. The level country along the southeru coast is more fertile, and produces in abun.
dance grapes, figs, oranges, lemons, olives, almonds, and aloes, and even the plantain and the date. The land is, however, not well suited for the production of.cereals; little wheat or other corn is grown in the province, and its grain supplies are chiefly derived from Spain. . On the coast the people derive their subsistence in great measure from the fisheries, tunny and sardines heing caught in considerable quantities. Salt is also made from sea-water. There is no manufacturing or mining industry of any importance. The harbours are bad, and the whole foreign trado is carried on by ships of other nations, although the inhabitants of Algarve are reputed to be the best seamen and fishermen of Portugal. The ehief exports are dried fruit, wine, salt, tunny, sardines, and anchovies.

The name of Algarve is derived from the Arabie, and signifies a land lying to the west. The province was taken from the Moors in 1253 by Alphonso III., king of Portugal, whe then assumed the additional title of king of Algarve. It is sometimes designated the distriet of Faro, and is subdivided into fifteen communes and sixty-two parishes. The chief town is Faro, and among the other towns are Castro Marino, Tavira, Pertimao, Lagos, and Sagres, all on the coast or on the estuaries of the rivers, and Silves, on the river Portimao, the aneient Moorish eapital of Algarve.

AlGaU, or Allgat, the name now given to a comparatively small.district forming the south-western corner of Bararia, and belonging to the province of Swabia and Neuburg, but formerly applied to a much larger territory, which extended as far as the Danube on the north, the Inn on the south, and the Lech on the west. The Algau Alps contain several lofty peaks, the highest of which is MädeleGabel, 8611 feet above the sea. The distriet is celebrated for the cattle, milk, butter, and cheese that it produces.
al-GaZali, Abe Hamed Mubannad, usually described as an Arabian philosopher, was really a Moslem theologian who met the heretical philosophers on their own ground He was born in 105 S , and belonged to the seet of the Ascharites, or extreme right of the Motecallemin, who (and not the philosophers) were the real Arabian schoolmen. At thirty-three be beeame the head of a theological college at Baghdad, where his professor's chair was surrounded by eager crowds, including all the imams of the country. It was a time of keen speculation, when philosophie seepticism was encouraged in high places; and the premature convictions of Al-Gazali gave way under a violent reaetion against the orthodox creed. Driren by mental inquietude, he escaped from Baghdad on the plea of making a piigrimage to Mecca, but went to Syria, and (after visiting, though a Mahometan, the Holy Sepulehre at Jerusalem) settled at Damascus, where he spent ten years in seclusion and meditation. 'Recalled by his private affairs as he was on his way to Egypt, he returned to Baghdad, reluctantly resumed teaching (which he continued for fifteen years), then retired to Tous, his native town, and devoted lis remaining years to the contemplative life of the Sufis, who had been his earliest instructors. He died in 1111. His outer life, so restless and nnquiet, was the reflex of a mental history disturbed by prolonged agitation. Revolting, in the height of his success, against the current creed, he began to examine the foundations of knowlodge. Where could certainty be found? In the perecptions of the senses? But these are contradicted by one another, and disproved by reason. In the notions of reason? Reason, indeed, professes to furnish us with necessary truths ; but what assurance have we that the verdicts of reasun may not be reversed by some higher anthority? Al-Gazali then interrogated all the sects in suceession to learn their criterion of truth. He first applied to the the tological sehoolmen, who grounded their religion
on reason; but their aim was only to preserve the taitle from heresy. He turned to the philosophers, and examined the accepted Aristotelianism in a treatise which has come down to us-The Destruction of the Philosophers. Ho assails them on twenty points of their mixed plysical and metaphysical peripateticism, from the statement of which, in spite of his pretended scepticism, we can deduce some very positive metaphysical opinions of his own. He elaims to have shown that the dogmas of the eternity of matter and the permanence of the world are false; that their deseription of the Deity as the demiurgos is unspiritual; that they fail to prove the existence, the unity, the simplieity, the incorporeality, or the knowledge (both of species and accidents) of God; that their ascription of souls to the celestial spheres is unproved ; that their theory of eausation, which attributes effects to the very natures of the causes; is false, for' that all actions and events are to be ascribed to the Deity; and, finally, that they cannot establish the spirituality of the soul, nor prove its mortality. These criticisms disclose nothing like a sceptical state of mind, but rather a reversion from the metaphysical to the theological stage of thought. He denies the intrinsic tendeueies, or souls, by which the Aristotelians explained the motion of the spheres, because he ascribes their motion to God. The sceptie would have denied both. Mr Lewes rightly censures MS. Renan for asserting of Al-Gazali's theory of causation-" Hume n'a rien dit phus." It is true that Al-Gazali maintains that the natural law according to which effeets proceed inevitably from their causes is only custom, and that there is no necessary connection between them. So far the Eastern and the European sceptic are on the same ground. But while Hume absolutely denies the necessity, Al-Gazali merely removes it one stage further back, and plants it in the mind of the Deity. This, of course, is not metaphysies, but theology. Having, as he believed, refuted the opinions of the philosophers, he next investigated the pretenisions of the Allegorists, whe derived their doctrines from an imam. These Arabian ultramontancs had no word for the doubter. Did he ask for the proof of their doctrine, they could only answer that "thus it was written." They could not, he says, even understand the problems they sought to resolvo by the assumption of infallibility, and he turngd again, in his despair, to the instructors of his youth-the Sufis. In their mystical intuition of the laws of life, and absorption in the immanent Deity, he at last found peace. This pathetic close of his stormy eareer negatives the idea that he ever wrote the philosophical work he onee contemplated on The Dases of Belief, and at the same time shows the true charaeter of the treatise rhich, alike in medixval and modern times, has been quoted as containing an exposition of his opinions. The work called The Tendencies of the Philosophers, and which was translated in 1506, with the title Logica et Philosophia Algazelis Arabis, contains neither the logic nor the philosophy of Al-Gazali. It is a mere abstract or statement of the Peripatetic 'systems, and was made preliminary to that Destruction of which we have already spoken. With this worl Arabian philosophy in the East came to an end; but it revived in the new Arabia which had been planted in the Westin Mahometan Spain. If, therefore, Al-Gazali was the Oriental Descartes in being the first destruetive sceptic of the old, he was its Descartes no less in heing the initiator of the new philosophy.

For direct knowledge of Al-Gazali, see his Destructio, \&c., in the ninth vol. of Averrboës's works, but especially his spiritual auto biogtaphy, trasslated by Schmolders in his Essai sur les Eirs! Philosophiques chez les Arabes. See also Von Hamuser, introductim to O Kind; Munk, Melanqes ; and Fosche in Abhandlrongen ino König. Alikrta bler Wisscrsctueflen an Berliu, 1858.

A L GEBRA

ALGEBRA is that branch of the mathematical sciences which has for its object the carrying on of operations either in an order different from that which exists in arithmetic, or of a nature not contemplated in fixing the boundarics of that science. The circumstance that algebra has its origin in arithmetic, homever widely it may in the end differ from that science, led Sir Isaac Newton to designate it "Universal Arithmetic," a des1gnation which, vague as it is, indicates its character better than any other by which it has been attempted to express its functions-better certainly, to ordinary minds, than the designation which has been applied to it by Sir William Foowan Hamilton, one of the greatest mathematicians the world has seen since the days of Newton-"the Science of Pure Time;" or even than the title by which De Morgan would paraphrase Hamilton's words-" "the Calculus of Succession."

To express in few words what it is which effects the transition from the science of arithmetic into a new field is not easy. It will serve, probably, to convey some notion of the position of the boundary line, when it is stated that the operations of arithmetic are all capable of direct interpretation per se, whilst those of algebra are in many cases interpretable only by comparison with the assumptions on which they are based. For example, multiplication of fractions-which the older writers on arithmetic, Lucas de Burgo in Italy, and Robert Recorde in England, clearly perceived to be a new application of the term multiplication, scarcely at first sight reconcilable with its original defnition as the exponent of equal additions,-multiplication of fractions becomes interpretable by the introduction of the idea of multiplication into the definition of the fraction itself. On the other hand, the independent use of the sign minus, on which Diophantus, in the 4th century, laid the foundation of the science of algebra in the West, by placing in the forefront of his treatise, as one of his earliest definitions, the rule of the sign minus, "that minus multiplied by minus produces plus"-this independent use of the sign has no originating operation of the same character as itself, and might, if assumed in all its generality as existing side by side with the laws of arithmetic, more especially with the commutative law, have led to erroneous conclusions. As it is, the unlimited applicability of this definition, in connection with all the laws of arithmetic standing in their integrity, pushes the dominion of algebra into a field on which the oldest of the Greek arithmeticians, Euclid, in his unbending march, could never have advanced a step without doing violence to his convictions.

In asserting that the independent existence of the sign minus, side by side with the laws of arithmetic, might have led to anomalous results, bad not the operations been subject to some limitation, we are introducing no imaginary hypotiesis, but are referring to a fact actually existing. The most recent advance beyond the boundaries of algebra, as it existod fifty years ago, is that beautiful extension to , which Sir W. R. Hamilton has given the designation of Quaternions, the very foundation of which requires the removal of one of the ancient axioms of arithmetic, "that operations may be performed in any order."

HSTORY.

At what period and in what country algebra was invented? is a questinn that has been much discussed. Who were the earliest writers on the subject \& What was the ricgress of its improvement? And lastly, by what means and at what period was the science diffused over Europe? It was a commori opinion in the 17th century that the ancient Greek
mathematicians must have possessed an analysis of the nature of modern algebra, by which they discovered the theorems and solutions of the problems which we so much admire in their writings; but that they carefully concealed their instruments of investigation, and gave only the results, with synthetic demonstrations.

This opinion is, however, now exploded. A more intimate acquaintance with the writings of the ancient geometers has shown that they had an analysis, but that it was purely geometrical, and esseutially different from our algebra.

Although there is no reason to suppose that the great geometers of antiquity derived any aid in their discoveries from the algebraic analysis, yet we find that at a considerably later period it was known to a certain extent among the Greeks.

About the middle of the 4th century of the Christian era, a period when the mathematical sciences were on the decline, and their cultivators, instead of producing original morks of genius, contented themselves with commentaries on the works of their more illustrious predecessors, there was a valuable addition made to the fabric of ancient learning.

This was the treatise of Diophantus on arithmetic, con- Diophrs sisting originally of thirteen books, of which only the tus. first six, and an incomplete book on polygonal numbers, supposed to bo the thirteenth, have descended to our times.
This precious fragment does not exhibit anything like a complete treatise on algebra. It lays, horrever, an excellent foundation of the science, and the author, after applying his method to the solution of simple and quadratic equations, such as to "find two numbers of which the sum and the sum or difference of the squares are given," proceeds to a peculiar class of arithmetical questions, which belong to what is now called the indeterminate analysis.
Diophantus may hare been the inventor of the Greek algebra, but it is more likely that its principles were not unknown before his time; and that, taking the science in, the state in which he found it as the basis of his labours, he enriched it with new applications. The elegant solutions of Diophantus show tha: he possessed great address in the particular branch of which lie treated, and that he was able to resolve determinat: equations of the second degree. Probably this was the greatest extent to which the science had been carried amorg the Greeks. Indeed, in no country did it pass this limit, until it had been transplanted into Italy on the revival of learning.
The celebrated Hypatia, the daughter of Theon, composed a commentary' on the work of Diophantus. This, however, is now list, as well as a similar treatise, on the Conics of Apollonius, by this illustrious and illfated lady, who, a's is commonly known, fell a sacrifice to the fury of a fonatical mob about the beginning of the 5th century.

About the raiddle of the 16 th century, the work of Diophantus above referred to, written in the Greek language, was discovered at Rome in the Vatican library, having probably been brought there from Greece when the Turls possessed themselves of Constantinoplc. A Latin translation, without the original text, was given to the world by Xylander in 1575 ; and a more complete translation, by Bachet de Mezeriac (one of the earliest members of the French Academy), accompanied by a commentary, appeared in 1621. Bachet was eminently skilful in the indeterminate analysis, and therefore well qualified for the work he had .undertaken ; bat the text of Diophantus was so much in-
jured, that ho was frequently obliged to gness the meaning of the author, or supply the deficiency. At a later period, the celebrated Freuch mathematician Fermat supplemented the commentary of Bachet by notes of his own on tho writings of the Greek algebraist. . These are extremely valuable, on account of Fermat's profound knowledgo of this particular branch of analysis. This edition, the best which exists, appeared in 1670.

Although the revival of tho writings of Diophantus was an important event in the history of mathematics, yet it was not from them that algebra became first known in Europe. This important invention, as well as tho numeral characters and decimal arithmetic, was reccived from tho Arabians. That ingenious peoplo fully appreciated tho value of the sciences; for at a period when all Europe was enveloped in the darkness of ignorance, they preserved from extinction tho lamp of knowledge. They carefully collected tho writings of tho Greck mathematicians; they translated them into their language, and illustrated them with commentarice. It was through the medium of the Arabic tongue that the elements of Euclid were first introduced into Europo; and a part of tho writings of Apollonius are only known at the present day by a translation from tho Arabic, the Greek original being lost.
The Arabians ascribe the invention of their algebra to one of their mathematicians, Mahommed-ben-Musa, or Moses, called also Mahommed of Buziana, who flourished about the middle of the 9 th century, in the reign of the Caliph Almamoun.
It is certain that this person composed a treatise on this subject, because an Italian translation was known at one time to have oxisted in Europe, although it is now lost. Fortunately, however, a copy of the Arabic original is preserved in the Bodleian Library at Oxford, bearing a date of transcription corresponding to the year 1342. The titlepage identifies its author with the ancient Arabian. A marginal note concurs in this testimony, and further declares the work to be the first treatise composed on algebra among the faithful; and the preface, besides indicating the author, intimates that he was encouraged by Almamoun, commander of the faithful, to compilo a compendious treatise of calculation by algebra.
The circumstance of this treatiso professing to be only a compilation, and, moreover, the first Arabian work of the kind, has led to an opinion that it was collected from books in some other language. As the anthor was intimately acquainted with the astronomy and computations of the Hindoos, he may hare derived his knowledge of algebre from the same quarter. The Hindons, as we shall presently see, had a science of Algebra, and knew how to solve inceterminate problems. Hence we may conelude, with some probability, that the Arabian algebra was originally derived Erom India.

The algebraic analysis, having been once introduced among the Arabians, was cultivated by their own writers. One of these, Mahommed Abulwafa, who flourished in the last forty years of the 10th century, composed commentaries on the writers who had preceded him. He also translated the writings of Diophantus.

It is renarkable, that although the mathematical sciences were received with avidity, and sedulously cultivated during 3 long period by the Arabians, yet in their hands they received hardly any improrement. It might have been expected that an acquaintance with the writings of Diophantus would have produced some change in their algebra. This, however, did not happen:, their algebra continued aearly in the same state, from their earliest writer on the subject, to one of their latest, Behaudin, who lived between the years 953 and 1031.

Writers on the history of algebra were long ander :
mistake as to the time and manner of its Introduction into Europe. It has now, however, been asecrtained that the science wis brought into Italy by Leonardo, a merchant of Pisa. This ingenious man resided in his youth in Barbary, and there learned the Indian method of counting by the nine numeral claracters. Commercial affairs led him to travel into Egypt, Syria, Grecce, and Sicily, where wo may suppose he mado himself acquainted with everything known respecting numbers. Tho Indian mode of computation appeared to him to be by far the best. IIe accordingly studied it carefully; and, with this knowledge, and sone additions of his own, and also taking some things from Euclid's Geometry, be composed a treatiso on arithmetic. At that period algebra was regarded ouly as a part of arithmetic. It was indeed the sublime doctrine of that science; and under this riew the two branches were hand!ed in Leonardo's treatise, which was originally written in 1202, and again brouglit forward under a revised form in 1228. When it is considered that this work was composed two centuries before the invention of printing, and that the subject was not such as generally to interest mankind, we need not wonder that it was but little known; heneo it has always remained in manuseript, as well as some other works by the same author. Indeed it was not known to exist from an early period until the middle of the last century, when it was discovered in the Magliabcechian Library at Florence.
The extent of Leonardo's knowledge was pretty nuch the same as that of the preceding Arabian writers. He could resolve equations of the first and second degrees, and he was particularly skilful in the Diophantine analysis. He was well acquainted with geometry, and ho employed its doctrines in demonstrating his algebraic rules. Like the Arabian writers, his reasoning was expressed in words at length; a mode highly unfavourable to the progress of the art. The use of symbols, and the method of combining them so as to convey to the mind at a singlo. glance a long process of reasoning, was a much later invention.

Considerable attention was given to the cultivation of algebra between the time of Leonardo and the invention of printing. It was publicly taught by professors. Treatiscs were composed on the subject; and two works of the oriental algebraists were translated from the Arabian languago into Italian. 'One was entitled the Rule of Algebra, and the other was the oldest of all the Arabian treatises, that of Mahommed-ben-Musa of Corasan.
The earliest printed book on algebra was composed by' Lucas Paciolus, or Lucas do Burgo, a minorito friar. It was first printed in 1494, and again in 1523. The title is Summa de Arithmetica, Geomelria, Propontioni, et Pro portionalita.

This is a very complete treatise on arithmetic, algebra, and geometry, for the time in which it appeared. The author followed close on the steps of Leonardo; and, in. deed, it is from this work that one of his lost treatises has been restored.

Lueas de Burgo's work is interesting, inasmuch as it shows the state of algebra in Europe about the year 1500: probably the state of the science was nearly the same in Arabia and Africa, from which it had been received.
J The power of algebra as an instrument of research is in a very great degree derived from jts notation, by which all the quantities under consideration are kept constantly in view; but in respect of convenience and brevity of expression, the algebraic analysis in the days of Lucas de Burgo was rery imperfect : the only symbols employed were a few abbreviations of the words or names which occurred in the precesses of calculation, a kind of short-hand, which formed a sery imperfect substituto for that compactness of expression which has been attained by the modern notation

The application of algebra was also at this period very limited; it was confined almost entirely to the resolution of certain questions of no great interest about numbers. No idea was then entertained of that extensive application which it has received in modern times.

The knowledge which the early algebraists had of their sicience was also circumscribed: it extended only to the resolution of equations of the first and second degrees ; and they divided the last into cases, each of which was resolved by its own particular rule. The important analytical fact, that the resolution of all the cases of a problem may be comprehended in a single formula, which may be obtained from the solution of one of its cases, merely by a change of the signs, was not then known: indeed, it was long before this principle ras fully comprehended. Dr Halley expresses surprise, that a formula. in optics which he had found, should by a mere change of the signs give the focus of both converging and diverging rays, whether reflected or refracted by convex or concave specula or lenses; and Molyneux speaks of the universality of Halley's formula as something that resembled magic.

The rules of algebra may be investigated by its own principles, without any aid from geometry; and although in some cases the tro sciences may serve to illustrate each other, there is not now the least necessity in the more elementary parts to call in the aid of the latter in expounding the former. It was otherwise in former times. Lucas de Burgo found it to be conrenient, after the example of Leonardo, to employ geometrical constructions to prove the truth of his rules for resolving quadratic equations, the nature of which he did not completely comprebend ; and he was induced by the imperfect nature of his notation to express his rules in Latin verses, which will not now be read with the kind of satisfaction we receive from the perusal of the well-known poem, "the Loves of the Triangles."

As Italy was the first European country where algebra became known, it was there that it received its earliest improvements. The science had been nearly stationary from the days of Leonardo to the time of Paciolus, a period of three centuries; but the invention of printing soon excited a spirit of improvement in all the mathematical sciences. Hitherto an imperfect theory of quadratic equations was the limit to which it had been carried. At last this boundary was passed, and about the year 1505 a particular case of equations of the third degree was resolved by Scipio Ferreus, a professor of mathematies in Bononia. This was an important step, because it showed that the difficulty of resolving equations of the higher orders, at least in the case of the third degree, was not insurmountable, and a new field was opened for discovery. It was then the practice among the cultivators of algebra, when they advanced a step, to conceal it carefully from their contemporaries, and to challenge them to resolve arithmetical questions, so framed as to require for their solution a knowledge of their own new-found rules. In this spirit did Ferreus make a secret of his discovery : he communicated it, however, to a favourite scholar, a Venetian named Florido. About the ycar 1535 this person, having taken up his residence at Venice, challenged Tartalea of Brescia, a man of great ingenuity, to a trial of skill in the resolution of problems by algcbra. Florido framed lis questions so as to require for their solution a knowledge of the rule which he had learned from his preceptor Ferreus; but Tartalea had, five years before this time, advanced further than Ferreus, and was more than a match for Florido. He therefore accepted the challenge, and a day was appointed when each was to propose to the other thirty questions. Before the time came, Trartalea had resumed the study of cubic equations, and had discovered the solution of tro cases in addition to two which
he knew before. Florido's questions were such as could be resolved by the single rule of Ferreus; while, on the contrary, those of Tartalea could only be resolved by one or other of three rules, which he himself had found, but which could not be resolved by the remaining rule, which was also that known to Florido. The issue of the contest is easily anticipated; Tartalea resolved all his adversary's questions in two hours, without receiving one answer from him in return.
The celebrated Cardan was a contemporary of Tartalea This remarkable person was a professor of mathematics at Milan, and a physician. He had studied algebra with great assiduity, and had nearly finished the printing of a book on arithmetic, algebra, and geometry; but heing desirous of enriching his work with the discoveries of Tartalea, which at that period must have been the object of considerable attention among literary men in Italy, he endeavoured to draw from him a disclosure of his rules. Tartalea resisted for a time Cardan's èntreaties. At last, overcome by his importuoity, and his offer to swear on the holy Erangelists, and by the honour of a gentleman, never to publish them, and on his promising on the faith of a Christian to commit them to cypher, so that even after his death they would not be intelligible to any one, he ventured with mach hesitation to reveal to him his practical rules, which were expressed by some very bad Italian verses, themselves in no small degree enigmatical. He reserved, however, the demonstran tions. Cardan was not long in discovering the reason of the rules, and he even greatly iraproved them, so as to make them in a manner his own. From the imperfect essays of Tartalea he deduced an ingenious and systematio method of resolving all cubic equations whatsoever; but with a remarkable disregard for the principles of honour, and the oath he had taken, he published in 1545 Tartalea's discoveries, combined with his own, as a supplement to a treatise on arithmetic and algebra, Thich he had published six years before. This work is remarl:able for being the second printed book on algebra known to have existed.
In the following year Tartalea also published a work on algebra, which he dedicated to Henry VIIL, king of England.
It is to be regretted that in many instances the authors of important discoveries have been overlooked, while the honours due to them have been transferred to others havo ing only secondary pretensions. The formulx for the resolution of cubic equations are now called Cardan's rules, notwithstanding the prior claim of Tartalea. It must be confessed, however, that he erinced considerable selfishness in concealing his discovery ; and although Cardan cannot be absolved from the charge of bad faith, yet it must be recollected that by his improvements in what Tartales communicated to him, he made the discovery in some measure his own ; and he had moreover the high merit of being the first to publish this important improvement in algebra to the world.
The next step in the progress of algebra was the discorery of a method of resolving equations of the fourth order. An Italias algebraist had proposed a question which could not be resolved by the newly invented rules, becauss it produced a biquadratic equation. Some supposed that it could not be resolved at all; but Cardan was of a different opinion. He had a pupil named Levis Ferrari, a young man of great genius, and an ardent student in the algebraic analysis: to him Cardan committed the solution of this dificult question, and he was not disappointed. Ferrari not only resolved the question, but he also found a general method of resolving equations of the fourth degree, by making them depend on the solution of equations of the third degree.

This was anuther great improvement; and although the proeise nature of an equation was not then fully understood, nor was it indeed until half a century later, yet, in the general resolution of equations, a point of progress was then reached which the utmost efforts of modern analysis have never been able to pass.

There was another Italian mathematician of that period who did something for the improvement of algebra. This was Bormbelli. He published a valuable work on the subject in 1572 , in which he brought into one view what Lad been done by his predecessors. He, explained the nature of the irreducible case of cubic equations, which had greatly perplesed Cardan, who could not resolve it by bis rule; he showed that the rule would apply sometimes to particular examples, and that all equations of this case admitted of a real solution; and he made the important renark, that the algebraic problem to be resolved in this case corresponds to the ancient problem of the triscction of an angle.

There were two German mathematicians contemporary with Cardan and Tartalea, viz, Stifelius and Scheubelius. Their writings appeared about the middle of the 16 th century, before they lnew what had been done by the Italians. Their improvements were chicfly in the notation. Stifelius, in particular, introduced for the first time the charicters which indicate addition and subtraction, and the symbol for the squaro root.

The first treatise on algebra in the English language was written by Robert Recorde, teacher of mathematics and practitioner in physic at Cambridge. At this period it was common for physicians to unite with the bealing art the studies of mathematics, astrology, alchemy, and chemistry. This custom was derived from the Moors, who were equally celebrated for their skill in medicine and calculation. In Spain, where algebra was early known, the title of physician and algebraist were nearly synonymous. Accordingly, in the romance of Don Quixote, when the bachelor Samson Carasco was grievously wounded in his rencounter with the knight, an algebrista was called in to heal his bruises.
Recorde published a treatise on arithmetic, which was dedicated to Edward VI. ; and another on algebra, with the title, The Whetstone of Wit, \&c. Here, for the first time, the modern sign for equality was introduced.
By such gradual steps did algebra adrance in improvement from its first introduction by Leonardo, each succeeding writer making some change for the better; but with the exception of Tartalea, Cardan, and Ferrari, hardly ant one rose to the rank of an inventor. At length came Vieta, to whom this branch of mathematieal learning, as well as others, is highly indebted. His improvements in algebra were very considerable; and some of his inventions, although not then fully dercloped, have yet been the germs of later discoveries. He was the first that employed general charactors to represent known as well as unknown quantities. Simple as this step may appear, it has yet led to important consequences. He must also be regarded as the first that applied algebra to the improvemient of geometry. The older algebraists had indecd resolved geometrical problems, but each solution was particular; whereas Vieta, by introducing gencral symbols, produced general formulx, which were applicable to all problems of the same kind, Without the trouble of going over the same_process of analysis for cach.

This happy application of algebra'to geometry produced great improvements : it led Vieta to the doctrine of angular sections, one of the most-important of his discoverics, which is now expanded into the arithmetic of sipes or analytical trigonometry. He also improved the theory of algebraic equations, and be was the first that gave a
general method of resolving them by approximation. As he lived between the years 1540 and 1603, his writings belong to the latter half of the 16 th century. He printed them at his own expense, and libcrally bestowed them on men of science.

The Flemish mathematician Albert Girard was one of Girar. the improvers of algebra. He extended the theory of equations somewhat further than Vieta, but he did not completely unfold their composition; he was the first that showed the use of the negative sign in the resolution of geometrical problems, and the first to speak of imaginary quantities. He also inferred by induction that every equation has precisely as many roots as there are units in the number that expresses its degree. His algebra appeared in 1629.

The next great improver of algebra was Thomas Harriot, an Englishman. As an inventor he has been the boast of this country. The French mathematicians have accused the British of giving discoveries to him which were really due to Vieta. It is probable that some of these may be justly claimed for both, because each may have made the discovery for himself, withont knowing what had becn done by the other. Harriet's principal discovery, and indeed the most important ever made in algebra, was, that every equation may be regarded as formed by the product of as many simple equations as there are units in the number expressing its order. This important doctrine, now familiar to every student of algebra, developed itself slowly. It was quite within the reach of Vieta, who unfolded it in part, but left its complete discovery to Harriot.

We have seen the very inartificial form in which algebra first appeared in Europe. The improvements of almost 400 years had not given its notation that compactness and elegance of which it is susceptible. Harriot made several changes in the notation, and added some new signs: he thus gave to algebra greater symmetry of form. Indeed, as it came from his hands, it differcd but little from its state at the present time.

Oughtreed, another early English algebraist, was a con- Oughtree temporary with Harriot, but lived long after him. He wrote a treatise on the subject, which was long taught in the universities.

In tracing the history of algebra, we have seen, that in the form under which it was received from the Arabs, it was hardly distinguishable as a peculiar mode of reasoning, because of the want of a suitable notation; and that, poor in its resources, its applicability was limited to the resolution of a small number of uninteresting numeral questions. We have followed it through different stages of improvement, and we are now arrived at a period when it was to acquire additional power as \cdot an instrument of analysis, and to admit of new and more extended applications. Vieta saw the great adrantage that might be derived from the applieation of algebra to geometry. The essay te made in his theory of angular sections, and the rich mine of discovery thus opened, proved the importance of his labours. He did not fully explore it, but it has seldom happened that one man began and completed a discovery. He had, however, an able and illustrious successor in Descartes, who, employing in the study of algebra that high power of intellect with which he was endowed; not only improved it as an abstract science, bat, more especially by its application to geometry, laid tho foundation of the great discoveries which have since so much engaged mathe maticians, and have made the last two centuries ever, memorable in the history of the progress of the humar mind.

Descartes' grand improvement was the application of algebra to the doctrine of curve lines. As in geography we refer every place on the carth's surface to the equator, and
to a determinate meridian, so he referred every point of a curve to some line given by position. For example, in a circle, every point in the circumference might be referred to the diameter. The perpendicular from any point in the carye, and the distance of that perpendicular from the centre or from the extremity of a diameter, were lines which, aithough varying with every clrange of position in the point from which the perpendicular was drawn, yet had a determinate relation to each other, which was the same for all points in the curve depending on its nature, and which, therefore, served as a characteristic to distinguish it from all other curves.
The relations of lines drawn in this way could be readily oxpressed in algebraic symbols; and the expression of this relation in general terms constituted what is called the equation of the curve:

This might serve as its definition; and from the equation by the processes of algebra, all the properties of the curve could be investigated.

Descartes' Geometry (or; as it might have been named, the application of algebra to geometry) appeared first in 1637. This was six years after the publication of Harriot's discoveries, which was a posthumous work. Descartes availed himself of some of Harriot's views, particularly the manner of generatingan equation, without acknowledgment; and on this account Dr Wallis, in his algebra, has reftected with considerable severity on the French algebraist. This spirit has engendered a corresponding eagerness in the French mathematicians to defend him. Montucla, in his history of the mathematics, has evinced a strong national projudice in his favour ; and, as usually happens, in order to exalt him, he hardly does justice to Harriot, the idul of his adversaries.

The new views which the labours of Vieta, Harriot, and Descartes opened in geometry and algebra were seized with avidity by the powerful minds of men eager in the pursuit of real knowledge. Accordingly, we find in the 17th century a whole host of writers on algebra, or algebra combined with geometry.

Our limits will not allow us to enter minutely into the claims which each has on the gratitude of posterity. Indeed, in pure algebra the new inventions were not so conspicuous as the discoveries made by its applications to geometry, and the new theories which were suggested by thelr union. The curious speculations of Kepler concerning the solids formed by the revolutions of curvilinear figures, the Gcometry of Indivisibles by Cavalerius, thie Arithmetic of Infuites of Wallis, and, above all, the Method of Fluxions of Newton, and the Differential and Integral Calculus of Leibnitz, are fruits of the happy union. All these were agitated incessautly by their inventors and contemporaries; by such men as Barrow, James Gregory, Wren, Cotes, Taylor, Halley, De Moivre, Maclaurin, Stirling; and others, in this country; and abroad by Roberval, Fermat. Huyghens, the two Bernoullis, Pascal, and many others.
The first half of the 18th century produced little in the way of addition either to pure algebra or to its applications. Men were employed rather in elaborating and working out what Newton, Leibnitz, and Descartes had originated, than in exercising themselves in independent investigations. There are, indeed, to be found some names of cminence associated with the science of algebra, such as Maclaurin, but their eminence will be found to depend on their connection with the extensions of the science, rather than with the science itself. It was reserved for Lagrange, in the latter part of the century, to give a new impulse to extension in pure algebra, in a direction which has led to most important results. Not only did he, in his Traite de la Resolution des Equations Numériques, lay the foundation on which Budan, Fonrier, Sturm, and others, have built a goodly fabric after
the pattern of the Universal Arthmetic of Newton, but in his Théoriedes fonctions analytiques, and Calcul des fonctions. he endeavoured, and with a large amount of success, to reduce the higher analysis (the Eluxions of Newton), to the domain of pure algebra Nor must the labours of a fellow-workman, Euler, be forgotten. In his voluminous and somewhat ponderous writings will be found a perfect storehouse of investigations on every branch of algebraical and mechanical science. Especially pertinent to our present subject is his demonstration of the Binomial Theorem in the Novi Commentarii, vol ziz, which is probably the original of the development that Lagrange makes the basis of his analysis (Calcul des fonctions, legon seconde), and which for simplicity and generality leares nothing to be desired.
This brings the history down to the close of the last century. We have been as copious as our limits would permit on the early history, because it presents the interesting spectacle of the progress of a science from an almost imperceptible beginning, until it has attained a mag. nitude too great to be fully grasped by the human mind.
It will be seen from what precedes, that we have not limited "algebra" to the pure science, but have retained the name when it has encroached on the territories of geometry, trigonometry, and the higher analysis. To continue to trace its course through all these branches during the present century, when it has extended into new directions within its own borders, would far exceed the limits of an introductory sketch like the present. We must, therefore, necessarily limit ourselves to what has been done in the Theory of Equations (which may be termed algebra proper), and in Determinants.
Theory of Equations.-That every numerical equation Theory of has a root-that is, some quantity in a numerical form, real Equatione or imaginary, which, when substituted for the unknown quantity in the equation, shall render the equation a numerical identity-appears to have been taken for granted by all writers down to the time of Lagrange. It is by no means self-evident, nor is it easy to afford evidence for it which shall be at the same time convincing and free from limitations. The demonstrations of Lagrange, Gauss, and Ivory, have for simplicity and completeness given way to that of Cauchy, published first in the Journal de l'Ecole Polytechnique, and subsequently in his Cours d'Analyse Algébrique.
The demonstration of Cauchy (which had previous? -auchy been given by Argand, though in an imperfect form, ii Gergonne's Annales des lFathématiques, vol. v.) consiştz in showing that the quantity which it is wished to prove capable of being reduced to zero, can be exhibited as the product of two facturs, one of which is incapable of assuming a minimum value, or, in other words, that a less valuo than one assigned can always be found, and therefore that it is capable of acquiring the value zero. This argument, if not absolutely free from objection, is less objectiouable than any of the others. The reader may consult papers by Airy and Do Morgan, in the tenth volume of the Transactions of the Cambridge Philosophical Society.

Admitting, then, that every equation has a root, it becomes a question to what extent are we in possession of an analysis by whlch the root can be ascertained. If the question be put absolutely, we fear the answer must be, that, in this matter we are in tho same position that we have held for the last three centuries. Cubic and biquadratic equations can be solved, whatever they may be; but equations of higher orders, in which there cxists no relation amongst the several coefficients, and no known or assumed connection between the different roots, hare bamed all
attempts at their solution. Much skill and ingenuity have been displayed by writers of nore or less eminence in the attempt to elaborate a method of solution applicable to equations of the fifth degree, but they have failed; whether it be that, like the ancient problems of the quadrature of the circle, and the duplication of the cube, an absolute solution is an impossibility, or whether it is reserved for future mathematicians to start in the research in some new path, and reach the goal by avoiding the old tracks which appear to have been thoroughly traversed in vain.

It is scarcely necessary to refer to such writers as Hoene do Wronski, who, in 1811, announced a general method of solving all equations, giving formula withont demonstration. In 1817, the Academy of Sciences of Lisbon proposed as the subject of a prize, the demonstration of Wronski's formulæ. The prize was in the following year awarded to M. Torriani for the refntation of them.

The reader will find in the fifth volume of the Reports of the British Association, an elaborate report by Sir W. R. Hamilton on a Method of Decomposition, proposed by Mr G. B. Jerrard in his Mathematical Researches, published at Bristol in a work of great beauty and originality, but which Hamilton is compelled to conclude fails to effect the desired object. In fact, the method which is valid when the proposed equation is itself of a sufficiently elevated degree, fails to reduce the solution of the equation of the fifth degree to that of the fourth.

But although the absolute solution of equations of higher orders than the fourth remains amongst the things uneffected, and rather to be hoped for than expected, a very great deal has been done towards preparing the way for approximate, if not for absolute solutions.

In the first place, equations of the higher orders, when they assume certain forms, have been shown to be capable of solution. An equation of this kind, to all appearance of a very general and comprehensive form, had been solved by De Moivre in the Philosophical Transactions for 1737. Binomial equations had advanced under the skilful bands of Gauss, who, in his Disquisitiones Arithmeticae, which eppeared in 1801, added largely to what had been done by Vandermonde in the classification and solution of such equations; and subscquently, Abel, a mathematician of Norwegian birth, who died too early for science, completed and cxtendsd what Gauss had left inperfect. The collected writings of Abel published at Christiania in 1839, contain original and valuable contributions to this and many other branches of mathematics.

But it is not in tho solution of equations of certain forms that the greatest advance has been made during tho present century. The basis of all methods of solution must evidently bo found in the previaus separation of the roots, and the efforts of mathematicians have been directed to the discovery of methods of effecting this. The object is not so much to classify the roots into positive and negative, real and imaginary, as to determine the situation and number of the real roots of the equation. The first writer on tho subject whose methods appeared in print is Budan, whose treatise, entitled Nouvelle méthorls pour la rosolution des équations numériques, appeared in 1807. But there is evidence that Fourier had delivered lectures va the subject prior to the publication of Budan's work, and consequently, without detriment to the claims of Budan, we may admit that the most valuable and original contribution to the science is to be found in Fourier's porthumous work, published by Navier in 1831, entitled Analyse des équations déterminées. The theorem which Fourier gave for the discovery of the position, within narrow limits, of a root of an equation, is one of two theorems, sach of which is known by mathematicians as "Fourier's Thenrem." The other is a theorem of integration, and occurs
in the author's magnificent work Thiéric de la Chaleur. During the interval between the publication of Budan's work and that of Fourier, there appeared a paper in the Philosoplical Transactions of the Royal Society for 1819, by W. G. Horner, upon a new method of solving arithmetical equations. From its being somewhat obscurely expressed, the great originality of the memoir did not at once appar. Gradually, however, Mr Horner's method came to he appreciated, and it now ranks as ono of the best processes, approaching, in somo points, to Fourier's. In tho Mémoires des savans étrangers for $18 \% 5$, appears a memoir, which, if it does not absolutely superscde all that had been previously done in assigning the positions of the real roots of equations, yet in simplicity, completeness, and uni- ${ }^{-}$ versality of application, surpasses them all. The author, M. Sturm, of French extraction, but born at Geneva, has Sturm. in this memoir linked his name to a theorem which is likely to retain its placo amongst the permanent extensions of the domain of analysis as long as the study of algebra shall last. It was presented to the Academy in 1829.

Determinants. -The solution of simultaneous equations Determin of the first degree may be presented under the form of a ants. set of tractions, the numerators and denominators of which are symmetric products of the coefficients of the unknown quantities in the equations. These products were originally known as resultants, a name applied to them by Laplacc, and retained as late as 1841 by Cauchy in his Exercices d'analyse et de physique mathématique, vol. ii. p. 161, but now replaced by the title determinants, a name first applied to certain forms of them by Gauss. In his Cours d'analyse algébrique, Cauchy terms them alternate functions. The germ of the theory of determinants is to be found in the writings of Leibnitz, who, indeed, was far- Leibus seeing enough to anticipate for it some of the power which, about a century aiter his time, it began to attain. More than half that period had indced elapsed before any trace of its existence can be found in the writings of the mathematicians who succecded Leibnitz. Tho revival of the method is due to Cramer, who, in a note to his Cramer. Analyse des lignes courbes algébriques, published at Geneva in 1750, gave the rule which establishes the sign of a product as plus or minus, according as the number of displacements from the typical form has been even or odd. Cramer was followed in the last century by Bézout, Laplace, Lagrange, and Vandermonde. In 1801 appeared the Disquisitiones Arithmeticae of Gauss, of which a French Gaess translation by M. Poullet-Delisle was given in 1807. Notwithstanding the somewhat obscure form in which this work was presented, its originality gave a new impetns to investigations on this and kindred subjects. I'o Gauss is due the establishment of the important theoren, that the product of two determinants both of the second and third orders is a determinant. Binet, Canchy, and others followed, and applied the results to geometrical problems. In 1826, Jacobi commenced a scries of papers on tho subject in Crolle's Journal. In these papers, which extended over a space of nearly twenty years, the subject was recast and made available for ordinary readers; and at the same time it was enriched by new and important theorems, through which the name of Jacobi is indissolubly associated with this branch of science. Following the steps of Jacobi, a nnmber of mathematicians of no mean power have entered the field. Pre-eminent above all others aro two British names, those of Sylvester and Cayley. By their originality, by their fccundity, by their grasp of all the resources of analysis, these two powerful mathematicians have enriched the Transactions of the Royal Society, Crelle's Journal, the Cambridge and Dublin Mathematical Journal, and the Quarterly Journal of Mathemalics, with papers on this and on kindred branches of acience of sucli valuen an
to have placed their aathors at the head of living mathe-maticians. The reader will find the subject admirably trcated in Baltzer's Theorie und Anwendung der Determinenten; and more briefly in Salmon's Higher Algebra. Elcmentary treatises have also bcen published by Spottiswoode in 1851, by Brioschi in 1854, by Todhunter in his Theory of Equations in 1861, and by Dodgson in 1867.

The attention of the learned has, during the present century, been called to a branch of the history of algebra, in no small degree interesting; we mean the cultivation of the science to a considerable extent, and at a remote period, in India.

* We are indebted, we believe, to Mr Reuben Burrow for some of the earliest notices which reached Europe on this very curious subject. His eagerness to illustrate the history of the mathematical sciences led him to collect oriental manuscripts, some of which, in the Persian language, with partial translations, were bequeathed to his friend Mr Dalby of the Royal Military College, who communicated them to such as took an interest in the subject, about the year 1800.

In the year 1813, Mr Edward Strachey published in this country a translation from the Persian of the Bija Ganita (or Vija Ganita), a Hindoo treatise on algebra; and in 1816 Dr John Taylor published at Bombay a translation of Lelawati (or Lilavati), from the Sanscrit original. This last is a treatise on arithmetic and geometry, and both are the production of an oriental algebraist, Bhascara Acharya. Lastly, in 1817, there came out a work entitled Algebra, Arithmetic, and Mensuration, from the Sanscrit of Brahmegupta and Bhascara, translated by Henry Thomas Colebrooke, Esq. This contains four different treatises, originally written in Sanscrit verse, viz., the Vija Ganita and Lilavati of Bhascara Acharya, and the Garitad'haya and Cuttaoad'hyaya of Brahmegupta. The first two form the preliminary portion of Bhascara's Course of Astronomy, ontitled Sidd'hanta Siromani, and the last two are the twelfth and eighteenth chapters of a similar course of astronomy, entitled Brahma-sidd'hanta.

The time when Bhascara wrote is fixed with great precision, by his own testimony and other circumstances, to a date that answers to about the year 1150 of the Christian era. The werks of Brahmegupta are extremely rare, and the age in which he lived is less certain. Mr Davis, an oriental scholar, who first gave the public a correct view of the astronomical computations of the Hindoos, is of opinion that he lived in the 7 th century; and Dr_{r} William Hunter, another diligent inquirer into Indian science, assigns the year 628 of the Christian era as about the time he flourished. From various arguments, Mr Colebreoke concludes that the age of Brahmegupta was antecedent to the earliest dawn of the culture of the sciences among the Arabians, so that the Hindoos must have pessessed algebra before it was known to that uation.

Brahmegupta's treatise is not, however, the earliest work knewn to have been written on this subject. Ganessa, 1^{0} distinguished astronomer and mathematician, and the must eminent scholiast of Bhascara, quetes a passage from a much older writer, Arya-Bhatta, specifying algebra under the designation of Vija, and making separate mention of Outtaca, a problem subservient to the resolution of indeterminate problems of the first degree. He is understood by another of Bhascara's commentators to be at the head of the older writers. They appear to have been able to resolve quadratic equations by the process of completing the square; and hence Mr Colebrooke presumes that the treatise of Arya-Bhatta then extant extended to quadratic quations in the detcrminate analvsis. and to indeterminate
equations of the first degree, and probably to those of the second.

The exact period when Arya-Bhatta lived cannot bo determined with certainty; but Mr Colebrooke thinks it probable that this earliest of known Hindoo algebraists wrote as far back as the fifth century of the Christian era, and perhaps earlier. He lived therefore nearly as early as the Grecian algebraist Diophantus, who is reckoned to lave flourished in the time of the emperor Julian, or about A.D. 360.

Mr Colebrooke has instituted a comparison between the Indian algebraist avd Diophantus, and found reason to conclude that in the whole science the latter is very far behind the former. He says the points in which the Hindoo algebra appears particularly distinguished from the Greek are, besides a better and more convénient algorithm, 1 st, the management of equations of more than one unknown quantity; $2 d$, the resolution of equations of a higher order, in which, if they achieved little, they had at least the merit of the attempt, and anticipated a modern discovery in the resolution of biquadratics; $3 d$, general methods for the resolution of indeterminate problems of the first and second degrees, in which they weni far indeed beyond Diophantus, and anticipated discoveries of modern algebraists; and 4th, the application of algebra to astronomical investigations and geometrical demonstration, in which also they hit upon some matters which have been re-invented in modern times.

When we consider that algebra made little or no progress among the Arabians, a most ingenious people, and particularly devoted to the study of the sciences, and that centuries elapsed from its first introduction into Europe until it reached any considerable degree of perfection, we may reasonably conjecture that it may have existed in one shape or other in India long before the time of Arya Bhatta; indeed, from its close connection with. their doetrines of astronomy, it may be supposed to have descended from a very remote period along with that science. Professor Playfair, adopting the opinion of Bailly, the eloquent author of the Astronomic Indienne, with great ingenuity attempted to prove, in a Memoir on the Astronomy of the Brahmins, that the observations on which the Indian astronomy is founded were of great antiquity, indeed more than 3000 jears before the Christian era. The very remote origir of the Indian astronomy had been strongly questioned by wany in this country, and also on the Continent; particularly by Laplace, and by Delambre in his Histoire de l'Astronomie Ancienne, tome i. p. 400, \&c., and again in Histoire de l'Astronomie du Moyen Age, Discours Prélimi. naire, p. 18, \&c., where he speaks slightingly of their algebra; and in this country, Professor Leslie, in his Philosop.3y of Arithmetic, pp. 225 and 226, calls the Lilavati " a very poor performance, containing merely a few scanty precepts couched in obscure memerial verses." We are disposed to agree with Professor Leslie as to the valne, and with Professor Playfair as to the antiquity of this Hindoo algebra. That it should have remained in a state of infancy for so many centuries is accounted for by the latter author in the following passage:-" In India everything [as well as algebra] seems equally insurmountable, and truth and error are equally assured of permanence in the stations they have once occupied. The politics, the laws, the religion, the science, and the manners, seem all nearly the saine as at the remotest period to which history extends. Is is because the power which brought about a certain degree of civilisation, and advanced science to a certain height, has either ceased to act, or has met with such a resistance as it is barely able to overcome? or is it becadse the discoveries which the Hipdoes are in possession of aro an inheritance from some more inventive and mere ansion
people, of whom no memorial remains but some of their attuinments in science?"

Triters on Algebra.

Diophantus, Arilhmeticorum Libri scx, about A.D. 360 (First edition of his writiugs, 1575 ; the best, 1670.)

Leonardo Bonacci (hisworks described in Cossali) 1202 Lucas I'acio'us, or Je Burgo, Summa de Arithmetica, \&
Endolf, Alacbra
Stifelius, Arilhmetica Integra, sc. edan,
Cardan, Ars Magna quant rulgo Cossam vocant 1545
Ferreus
Ferrari (first resolved biquadratic equations) 1545
Tartalea, Quesili ed Inventioni diverse 1
Scheubelius, Algcura Compendiosa . 51
Recorde, Whetstone of Wi. it 1657
Peletarins, De Occultc parte
Numerorum.
.1568
Buteo, Do Logistica
Ratnus, Arilhmeticae Libri duo et totidem Algabrae... 1560
「edro Nugnez or Nomoius, Libro de Algebra, \&c. ... 1567
Jossalin, De Occulta parte Mathematicorum 1576
Bombelli. \qquad .1578
Clavius ... 1580
Bernard Solignac, Arith. Libri ii. et Algebrae totidem
Stevinus, A rithmetique, dec. aussi l'Algebre
. ${ }^{1} 585$
Fieta, Opera Mathematica, 1600
Folinns, Algebra, sive Liber
de Rebus Occultis
.1619
Van Ceulen 161
Bachet, Diophantus cum Commentariis................ 1621
Albert Girard, Invention Nourelle en Algebre 1629
Ghetaldus, De Resolutione el Compasitione Mathemalica
Harriot, Artis Analyticae Praxis 1631
Oughtreed, Clatis Mathematica 1631
Herigonius, Cursus Mathematicus 183
Cavalerius, Geometria In. divisibilibus Continuo. rum, dc. Descartes, Geomelria.......... 1637
Franciscus \& Schooten, Florimond de Beaune, Erasmus Bertholinus, Joh. Hudde, F. Rabuel, Jamcs Bernoulli, John de Witt, \&c.-Commentators on Descartes.
Roberval, De Recognitione Aequationum, se.16i0 De Billy, Nova Geometricae Clavis Algebra 16 Renaldinus, Opus Algebraicum.

Wallis, Arithmelica InfiniLoram, 1655 ; Algebra, 1685 Slusius, Misolabum 1659 Whouius Algebra (trans. lated into English)......... Eincth hausen, used as a text bonk by Sir I. Nienton ... 1631.

Sir Isaac Nerton, The Bi. nomial Theorem............. 1666 Freniclo, Various papers in Mem. of French Acad. ... 1666 Fell (translated and improved Rhonius' Algebra) 1668 James Gregory, Exercila.
tiones Gcometricae 1668
Mercator, Logarithmolech.
nia 1688
Barrow, in Lectiones Gbo-
metricae 1669
Kersey, Elements of Algcbra 1673
Prescot, Nouveaux Elemens
de Dfallitmatiques 1675
Leibuitz, in Leipsic Acts,
\&c. 1677
Fermat, in Varia Opera
Mathematica 1679 Bulbald, Opus Novum ad Arithmeticam Infinito.
тит 1682
Tschirnhausen, in the Leipsic Acts....................... 1683
Baker, Geometrical Key, \&c. 1684 Dr Jlalley, in Philosophical Transactions ... 1687 and 1694 Rolle, Une Mithode pour la Resolution des Equations Indetcrminées.
.. 1620
Raphson, Analysis Aequa. tionum Universalis 1690 Dechales, Cursus seu Mundus Mathematicus 1690
De Lagny, various pieces on Equations 1692 Alexander, Synopsis Alge braica 1693 Ward, Compendium of Algebra, 1695; Young
. Mathematician's Guide 1700 De Moivre, various Memoirs iu Phil. Trans ...1697-1730 Sault, New Frcatise of Algcbra Christopher, De Construc: tione Aequationum.. Ozanam, Nouvcaux Eltenens d'Algébre...................... 1702
Harris, Lexicont Technicum 1704
Guisnée, Application de l'Algébre à la atométric.. 1705 Joncs, Synopsis Palmariorum Mathescos 1706
Newton, Arithmetica Universalis 1707
L'Hopital, Traite Analytique des Sections Coniques 1707 Regucau, Analyse Démontrict 1708 1rooke Taylor, Methodus Incrementomim 171
Stirling, Lineal Tertii Ordinis, 1717 ; Mcthodus Diffrentialis

```
                    . }173
```

Nicole, On Cubic Equations, in Mem. Acud.des Sciences 1717 S'Gravesande, Algebra 1727 Wolfus, Algebra: Cursus Mathematicus................ 1732
Kirby, Arithmetic and Algebra 1736
James Gregory 173
Simpson, Algcbra, and various works1740, 1742 Saunderson, Algebra, 2 vols. 4 to
.1740
La Caille, Algebra is Leqons de Mathentatiques 1741
De Gua, On the Roots of Equations, is Mén. Acred. dss Sciencus.

Clairaut, Elemens diAl.
gibre 1746
Maclaurin, Algebra 1747
Fontaine, L'Arl de Rssoudre
les Equations
Gaetana Ag
Donna Maria Gaetana Ag nesi, Instituzioni Anali.
tichi 17
Boscovich, in Elementa Universae Matheseos 1754
Segner, Berlin Mem. 1756
Castillon, Arithmetica Unitersalis Newtoni cum Commentario 1761
Emerson, Algebra, de. 1763
Landen, Iiesidual Analysis, \&c. 17
Lagrange, Traile de la Resotution des Equations Numériques, Recucil des Nem. de l'Acad. de Berlin 176

Do. republished with
Notes, Paris 1797
Eulcr, Algebra
... 1727
Wariog, Jeditationes Algebraicae, \&c.1770, 1776
Soladini, Comperdio d' Anla. lisi
Paoli, Elcmenti d Algabra. 1793
Ruliui, Tcoria delle Equa.
zione Algeb.

Budan, Nouvelle Methods pour la Resolution des Equations Numeriques ... 1807
Gompertz, Principles and Application of Imaginary Quantities 1817 and 1818 Biot, Qergonne's Annales, vol vi. Horner, Philos. Trans......: 1818
Dandelin, Min. de l'Acad.
lioy. de Eruacelles 1826
Swiuburne and Tylecote,
on the Binomial Theorem 1827
Warren, on the Gcometric Representation of the
Square Roots of Neyative Quanzities 1828
Abel, Nemoire sur les Equations Algloriques, Christiania 1829 and in Crelle, vol. i. 4.
Fourier, Avalyse des Equations Dttermintes (posthumous), with preface by Navier......................
Malfatti, Nem. della Soc.
Ital., ₹ul, xi.
Davies Gilbert, Philos. Trans......................... 1881
Sturm, Hem. presentes par
les Surans Etrangcrs...... 1895
Lockbart, Resolution of Equations 1837

To the preceding list of writers, which contains almost ull of an early date, the following are to be added:-

Arbogast, Calcul des Dtrivations.
The Bernoullis, Begnalt, Bertrand, Bezout (Cours des M athé matiques), Bossuet, Burja, Brunacci, Babbage, Bridges, Bland, Budan, Bonnycastle, Bourdon, Baflow (on the Theory of Numbers), Baltzer (on Determinants).
Cousid, Cauchy, Coignet, Carnot, Cayley, Cockle.
Degraave, Ditton, Dodgson (on Determinants).
Frisiss, Franceeur, Frend.
Gauss, Disquisitiones Arithmeticae, 1801.
Hemischius, Hales, Hirsch, Hutton, Huldred, Horner, Ilargreaves.
Kuhnius, Kramp, Kaestner.
Laloubre, Lorgna, Le Blonde, Lee, Lacrois, Ludlam, Le-
gendre (on the Theory of Niumbers), L'Huillier, Leroy. Mescher, Malebrauche, Maufredi, Maseres, Murphy.
Nicholson, Nieuwentijdt, (Analysis Ininitorum).
Polleti, Yoignard (on Mayir Squares), Playfair.
Rowning, Reiner.
Suremain-Missery (on Impossible Quartities), Sehonerus, Salig. nut, Sturm, Serret, Salmon Sylvester.
Trail, Tedenat, Thacker.
Vilent, Vabdernionde.
Warren, Wells, Wilson, Wood, Woodhouse.
Young.
Elemeniary Trealises of Bryce, Colenso, De Morgan, Hind, Kelland, Peacock, Todhunter

Writers on the History of Algebra.

Wallis, in his Algebra; Maseres, Seriptores Logarithnici, 1791, Montucla, in Histoire dcs Mathematigurs; Possuet, Histoire des Mathematiques; Cossali, Origine, Trasporio in Clalia, e Primi Frogressi in Essa dell' Algcbra, 2 vols. printed in 1797; Hutton, in
his Dictionary, and moro diffusely in lis Tracts, vol. ii.; Libri Ifistoire des Sciences Mathematiques en Italie, Paris 1839.

Terquem, Bullelin de Bibliographze.
Peacock, Report of British Association, 1833.

For the titles of works on Algebra, consult Murhard, Bibliotheca Mrathenatica; and for Memoirs on Algebra, in Academical Collections, see Reuss, Repertorium Commentationum, tom. vii.; Smith (on the Theory of Numbers), Brit. Assoc. 1859-60, 1862-63.

NOTATION AND FLRST PRINCIPLES.

1. In arithmetic there are ten characters, which being variuusly combined, according to certain rules, serve to denote all numerical magnitudes whatever. But this mo thod of expressing quanilities (a phrase used to desiguate
something more than mere numbers), is found to be inadequate, taken by itself, to the more difficult cases of mathematical investigation; and it is therefore necessary, in many inquiries concerning the relations of magnitude, to have recourse to that more general mode of notation, and more extensive system of operations, which constitute the science of algebra.
In algebra quantities of every kind may be denoted by any characters whatever, but those commonly used are the letters of the alphabet; and as in the simplest mathematical problems there are certain magnitudes given, in order to determine other magnitudes which are unknown, the first letters of the alphabet, $a, b, c, \& c$., are used to denote known quantities, while those to be found are represented by v, x, y, \&c., the last letters of the alphabet.
2. The sign + (plus) denotes, in arithmetic, that the quantity before which it is placed is to be added to some other quantity. Thus, $a+b$ denotes the sum of a and b; $3+5$ denotes the sum of 3 and 5 , or 8 .
The sign - (minus) signifies that the quantity before which it is placed is to be subtracted. Thus, $a-b$ denotes the excess of a above $b ; 6-2$ is the excess of 6 abore 2 , or 4 .

Quantities which have the sign + prefixed to them are called positive, and such as have the sign - are called negative.

When no sign is prefixed to a quantity, + is always naderstood, or the quantity is to be considered as positive.
Quantities which have the same sign, either + or -, are said to have like signs. Thus, $+a$ and $+b$ have like signs, but $+a$ and $-c$ have unlike signs.
3. A quantity which consists of one term is said to be simple; Lut if it consist of several terms, connected by the signs $+_{0}$ or - , it is then said to be compound. Thus, $+a$ and $-\dot{c}$ are simple quantities; and $b+c$, and $a+b-d$, are compound quantities.
4. To denote the product arising from the multiplication of quantities, they are either joined together, as if intended to form a word, or else they are connected together, with the sign x or . interposed between every two of them. Thus, $a b$, or $a \times b$, or $a . b$, denotes the product of a and b; also $a b c$, or $a \times b \times c$, or $a . b . c$, denotes the product of a, b, and c. If some of the quantities to be multiplied be compound, each of these has a line drawn over it called a vinculum, and the sign x is interposed, as before. Thus, $a \times \overline{c+d} \times \overline{e-f}$ denotes that a is to be considered as one quantity, the sum of c and d as a second, and the difference letween e and f as a third; and that these three quantities are to be multiplied into one another. Instead of placing a line over such compound quantities as enter a product, we may enclose each of them between two parentheses, so that the last product may be otherwise expressed thus, $a(c+d)(e-f)$; or thus, $a \times(c+d) \times(e-f)$,

A number prefixed to a letter is called a numerical coefficient, and denotes how often that quantity is to be taken. Thus, $3 a$ signifies that a is to be taken three times. When no number is prefixed, the coefficient is anderstood to be unity.
5. The quotient arising from the division of one quantity by another is often expressed by placing the dividend. above a linc, and the divisor below it. Thus, $\frac{12}{3}$ denotes the quotient arising from the division of 12 by 3 , or $4 ; \frac{b}{a}$ denotes the quotient arising from the division of b by a.
6. The equality of two quantities is expressed by putting the sign $=$ between them. Thus $a+b=c-d$ denotes that the sum of a and b is equal to the excess of c above d.
7. Simple quantities, or the terms of compound quantities, are said to be like, which consist of the same letter or letters taken together in the same way. Thus, $+a b$ and $-5 a b$ are like quantities, but $+a b$ and $+a b b$ are unlike.

There are some other characters, such as $>$ for greater than, $<$ for less than, \therefore for therefore, which will bo explained when we have occasion to use them; and in what follows we shall suppose that the operations and notatiun of common arithmetic are sufficiently understood.
8. As the science extends itself beyond its original boundaries, it begins gradually to appear that the limits imposed by these definitions have been transgressed, so that almost insensibly the symbols have acquired for themselves significations much more comprehensive than those originally attached to them. Thus, were $+a$ to signify a gain of $£ a,-a$ would signify a loss of the same sum; were $+a$ to signify motion forvards through a feet, -a would signify motion backwards through the same space. The extended definitions of + and - may now be such as the following: + and - are collective symbols of operations the reverse of each other. From similar considerations to those by which the signification of + and - has been extended, $w e$ extend that of x and \div to something like the following: x and \div are cumulative symbols of operations the inverse of each other. We may now exhibit the most general definition of the four symbols in the following form: + and - are symbols of operations prefixed to algebraical symbols of quantity, and are such that $+a-a=+0$ or -0 , where +0 means simply or very nearly increased by $0 ;-0$, diminished by 0 . x and \div are symbols of operations prefixed to algebraical symbols of quantity, and are such that $\times a \div a=$ $\times 1$ or $\div 1$, where $\times 1$ means simply or very nearly multio plied by $1 ; \div 1$, divided by 1 .
9. The laws ty which the symbols are combined are the Laws \propto same as in arithmetic. It is desirable, however, to exhibit combine them. They are three,-

Law I. Quantities affected by the signs + and - are in no way influenced by the quantities to which they are united by these signs.

Law II. The Distributive Law.-Additions and subtrac. tions may be performed in any order.

Law III. The Commutative Law.-Multiplications and divisions may be performed in any order.

We may remark that these laws are assumed for algebra, so that the science is limited by their applicability. Algebra has been extended into the scicnce of quaternions by freeing it from part of the limitation imposed by the third of these laws. In this new science $a b$ is not the same thing as $b a$.

We add a ferw examples of the substitution of numbers Examplo for letters. (Ex. 3 and 4 involre processes that will be explained later.)
$E x$. 1. If $a=1, b=2, c=3$, find the value of $(a+b+c)$. $(a+2 b-c) \cdot(b+2 c-a)$.

It is $(1+2+3) \cdot(1+4-3) \cdot(2+6-1)=84$.
Ex. 2. If $a=\frac{1}{2}, b=\frac{1}{3}, c=\frac{1}{4}, x=0$ find the valne of $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+x^{2}$

It is $\frac{3}{2}+\frac{4}{3}+\frac{1}{2}+0=3 \frac{1}{3}$
Ex. 3. With the same data as in example 2, find the value of $\frac{a^{2}-b^{2}}{x}-\frac{b^{2}-c^{2}}{x^{2}}$

The first term is infinite, and the second is infinitely greater than the first, because $x^{2}=x \times x \therefore$ the answer is $-\infty$.

Ex. 4. If $x=\frac{1}{y}=\frac{1}{4}=0$; find tho value of

$$
2 x y-\frac{x}{2 x}+\frac{x}{z}+\frac{2 y}{z}-\frac{3}{2}\left(\frac{x}{z}+y\right)\left(\frac{x}{y}+z\right)
$$

Write down the expression in x by putting $\frac{1}{m}$ for $y, d c$. It becomes

$$
\begin{aligned}
& 2-\frac{1}{2 x^{2}}+x^{2}+\frac{2}{x^{2}}-\frac{3}{2}\left(x^{2}+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x}\right) \\
= & 2+\frac{3}{2} \frac{1}{x^{2}}+x^{2}-\frac{3}{2} \frac{1}{x^{2}}+\& \mathrm{c} \\
= & 2 \cdot \text { because } x=0 .
\end{aligned}
$$

Sect. I.--Fundamental Operations.

The primary operations in algebra are the same as in common arithmetic-namely, addition, subtraction, multiplication, and division ; and from the various combinations of these four, all the others are derived.

I. Addition.

10. In addition there may be three cases: the quantities to be added may be like, and have like signs; or they may be like, and have unlike signs; or, lastly, they mav be unlike.
Case 1. To add quantities which are like, and have like signs.
Rule. Add together the coefficients of the quantities, prefix the common sign to the sum, and annex the letter or letters common to each term.

Examples.

Add together $\left\{\begin{array}{l}+7 a \\ +3 a \\ +\quad a \\ +2 a\end{array}\right.$ Add together $\left\{\begin{array}{l}-2 a x \\ -\quad a x \\ -12 a x \\ -13 a\end{array}\right.$
Gase 2. To add quantities which are like, but have unlike signs.
Rule. Add the positive coefficients into one sum, and the negative ones into another; then subtract the less of these sums from the greater, prefix the sign of the greater to the remainder and annex the common letter or letters as before

Exampies.

> Case 3. To add unlike quantities.

Rulc. Put down the quantities, one after another, in any ordar, with their signs and coefficients prefired.

Examples.

$2 a$	$a x+2 a y$
$3 b$	
$-4 c$	Sum, $a x+2 a y+b b-3 b z$

Sam, $2 a+3 b-4 c$

II. Subtraction.

1. General Rule.-Change the signs of the gnantities to le subtracted, or suppose them changed, and then add them to the other quantitiee, agreeahb to the rules of ddition.

Examples

$$
\begin{array}{llll}
\text { From } & 5 a-12 b & \text { From } & 6 x-8 y+3 \\
\text { Subtract } & 2 a-5 b & \text { Subtract } 2 x+9 y-2 \\
\text { Remainder } & 2 a-7 b & \text { Remainder } & 4 x-17 y+5 \\
5 x y-2+8 x-y & a a-a x-y y \\
3 x y-8-8 x-3 y & \frac{b b-b y+z z}{a a-a x-y y-b b+b y-z z} \\
\frac{2 x y+6+16 x+2 y}{a y} &
\end{array}
$$

The reason of the rule for subtraction may be explained thus. Let it be required to subtract $2 p-3 q$ from $m+n$. If we subtract $2 p$ from $m+n$, there will remain $m+n-2 p$, but if we are to snbtract $2 p-3 q$, which is less than $2 p$, it is evident that the remainder will be greater by a quantity equal to $3 q$; that is, the remainder will be $m+n-2 v+3 q$, bence the reason of the rule is evident.

II. Afultiplication.

12. General Rule for the Signs.-If the quantities to be Rule of multiplied bave like signs, the sign of the product is + ; signs. but if they have unlike signs, the sign of the product is - .
This rulo, which is given by Diophantus ${ }^{1}$ as the definition of + and -, may be said to constitute the basis of algebra as distinct from arithmetic.
If we admit the definitions given above, the rule may be demonstrated in the following way :-
(1.) $+a x+b=+a b$ is assumed.
(2.) $+a \times-b$ will have the same value, whatever $-b$ may be connected with, as it has when $-b$ is connected with $+b$ (Law 1).

Now $+a \times(+b-b)=+a x+0=0$ (Def.)
But $+a \times(+b-b)=+a \times+b$, and $+a x-t$
(Law 2).
$\therefore+a \times+b$ and $+a \times-b$ make up 0
i.e. $+a b$ and $+a \times-b$ make up 0 .
Now $+a b-a b=0, \therefore+a \times-b=-a b$.
(3.) Similarly $-a \times-b=+a b$.

The examples of multiplication may be referred to two cases ; the first is when both the quantities are simple, and the second when one or both of them are compound.

Case 1. To multiply simple quantities

Rule. Find the sign of the product by the geneml rule, and annex to it the product of the numeral coefficients; then set down all the letters, one after another, as in one word.

Examples.

1. $\begin{cases}\text { Multiply } & +a \\ \text { By } & +c \\ \text { Product } & +a c\end{cases}$
2. $\left\{\begin{array}{l}+5 b \\ -4 a \\ -20 a b\end{array}\right.$
3. $\left\{\begin{array}{l}-3 a x \\ +7 a b \\ -21 a a b x\end{array}\right.$

Case 2. To multiply compound quantities.
Rule. Multiply every term of the multiplicand by all the terms of the multiplier, one after another, according to the preceding rule, and collect their products into ono sum, which will be the product required.

Examples.

$$
\begin{aligned}
& \text { 1. Mult. } 2 x+y \\
& \text { By } x-2 y \\
& \text { 2. } a-b+c \\
& \text { Prod. } 2 x x+x y
\end{aligned}
$$

 Dof. 9.

When eeveral quantities are multipieu together so as to constitute a product, each of them is called a factor of that product: thus a, b, and a are factors of the product $a b c$; also, $a+x$ and $b-z$ are factors of the product $(a+x)$. ($b-x$).

The products arising from the continual multiplication of the same quantity are called powers of that quantity, which is called the root. Thus $a a$, aaa, aaaa, \&c., are powers of the root a. These powers are commonly expressed by placing above the root, towards the right hand, a figure, denoting how often the root is repeated. This tigure serves to denominate the power, and is called its index or exponent. Thus, the quantity a being considered as the root, or as the first power of a, we have a or or a^{2} for its second power, aaa or a^{3} for its third power, aaaa or a^{4} for its fourth power, and so on.

The second and third powers of a quantity are generally called its square and cube.

By considering the notation of powers, and the rules for multiplication, it appears that powers of the same root are multiplied by adding their exponents. Thus $a \times a^{3}=a^{4}$, 'also $x^{3} \times x^{4}=x^{7}$; and in general $a^{m} \times a^{n}=a^{m+n}$.

When the quantities to be multiplied appear under a symmetrical form, the operation of multiplying them may sometimes be shortened by detacheaं coefficients, by symmetry, and by general considerations suggested by the particular examples under consideration.

13. Detached Coefficients.

Ex. 1. Multiply $x^{4}-3 x^{3}+2 x^{2}-7 x+3$ by $x^{2}-5 x+4$. Here the powers of x occur in regular order, so that we need only write down the coefficients of the several terms during the operation, having it in our power to aupply the a's whenever we require them; we write, therefore,-

$$
\begin{aligned}
& 1-3+2-7+3 \\
& 1-5+4 \\
& 1-3+2-7+3 \\
& -5+15-10+35-15 \\
& \quad+4-12+8-28+12 \\
& \hline 1-8+21-29+46-43+12
\end{aligned}
$$

The last line (for which the result might have been written down in full at once) is equivalent to

$$
x^{6}-8 x^{5}+21 x^{4}-29 x^{3}+46 x^{2}-43 x+12
$$

When any torme are wanting, they may be supplied by zeros; thus,

Ex. 2. Multinly $x^{4}-7 x^{3}+x-1$ by $x^{3}-x+2$.
We write

$$
\begin{aligned}
& 1-7+0+1-1 \\
& 1+0-1+2 \\
& 1-7+0+1-1 \\
& -1+7-0-1+1 \\
& +2-14+0+2-2
\end{aligned}
$$

the product required.

14. Symmetry.

We may take advantage of symmetry by two considerafions either separately or combined.

(1.) Symmetry of a Symbol.

Ex. Find the sum of $(a+b-2 c)^{2}+(a+c-2 b)^{2}+$ $(b+c-2 a)^{2}$.

Here a^{2} occurs with 1 as a multiplier in the first square, with 1 as a multiplier in the second square, and with 4 as multiplier in the third square,
$\therefore 6 a^{2}$ is part of the result :
$a b$ occurs with 2 as a multiplier in the first square with -4 in the second. and with -4 in the third

$$
\therefore \quad-6 a b \text { is part of the result. }
$$

But a^{2}, b^{2}, c^{2}, are similarly circumstanced, as also à ' $a c$, $b c$; hence the whole result must be $6\left(a^{2}+b^{2}+c^{2}-a b-a c\right.$ -bc).
(2.) Symmetry of an Expression.

Ex. Find the sum of $(a+b+c)(x+y+z)+(a+b-c)$ $(x+y-z)+(a-b+c)(x-y+z)+(-a+b+c)(-x+y+z)$. First, the product of $(a+b+c)$ by $x+y+z$ is to be found by multiplying out term by terin.

It is $a x+a y+a z+b x+b y+b z+c x+c y+c z$.
The product of $(a+b-c)(x+y-z)$ is now simply written dour from the above, by changing the sign of every term which contains one only of the two ouantities affected with a -/sign, i.e., in this case c and z.

Lastly, the four products may be arranged below each other, the signs alone being written down; thus,
and the sum required is therefore $4 a x+4 l y+4 c z$

15. General Considerations:

Ex. Find $(a+b+c)^{3}$.
By mnltiplying out we get

$$
(a+b)^{3}=a^{3}+3 a^{2} b+\ldots .
$$

Now a, b, c are similarly involved in $(u+b+c)^{3} ; \therefore b^{4}$ and c^{3} must appear along with $a^{3}, 3 a^{2} c, 3 b^{2} a$, \&.c., along with $3 a^{2} b$, and hence we can at once write down all the terms except that which contains abc. To obtain the coefficient of $a b c$, we observe that if a, b, and c, are each equal to $1,(a+b+c)$ is reduced to 3^{3} or 27 . In other words, there are 27 terms, if we consider $3 a^{2} b$ and every similar expression as thiee terms; and as the terms preceding ahc are in this way found to be 21 in number. we requice $6 a b c$ to make up the full number 27;

$$
\begin{gathered}
\therefore(a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3 a^{2} b+3 a^{2} c+3 b^{2} a+3 b^{2} c+ \\
3 c^{2} a+3 c^{2} b+6 a b c .
\end{gathered}
$$

It is desirable to introduce here some examples of the application of the process of the substitution of a letter for any number or fraction to the properties of numbers. inequalities, \&c.

16. Properties of Numbers.

Ex. 1. If unity is divided into any two parfs, the dif. ference of their squares is equal to the difference of the parts themselves.

Let x stand for one part; $1-x$ for the otner.
Now $(1-x)^{2}-x^{2}=1-2 x+x^{2}-x^{2}=1-2 x=(1-x)=x$. i.e., the difference of the squares of the parts is equal to the difference of the parts.

Ex. 2. The product of three consecutive even numbers is divisible by 48 .

Let $2 n, 2 n+2,2 n+4$, be the three numbers \therefore their product is $8 n(n+1)(n+2)$. Now, of three consecutive numbers, $n, n+1, n+2$, one must be divisible by 2 , and one by $3, \therefore z(n+1)(n+2)$ is divisible by 6 , whence the proposition.

Ex. 3. The sum of the squares of three consecutive odd numbers, when increased by 1 . is divisible by 12 , but never by 24 .

Let $2 n-1,2 n+1,2 n+3$, be the three odd numbers

The sum of their squares when increased by 1 is $12 n^{2}+12 n+12=12\left(n^{2}+n+1\right)=12(n \cdot n+1+1)$.
Now, either n or $n+1$ is oven, $\therefore n(n+1)+1$ is odd ; hence the sum under consideration is 12 times an odd number, whence the proposition.

Additional Examples in Symmetry, dec.

Ex. 1. $(a+b+c)^{2}+(a+b-c)^{2}+(a+c-b)^{2}+(b+c-a)^{2}$ $-4\left(a^{3}+b^{2}+c^{2}\right)$.
This is written down at once, from observing that a^{2} occurs in each of the four expressions, and that $2 a b$ oceurs with $a+$ sign in two, and with a - sign in the other two. There is no other form.

Ex. 2. $(a+b+c)^{3}+(a+b-c)^{3}+(a+c-b)^{3}+(b+c-a)^{3}$ $=2\left(a^{3}+b^{3}+c^{3}\right)+6\left(a^{2} b+a^{2} c+b^{2} a+b^{3} c+c^{2} a+c^{2} b\right)-12 a b c$.
$1 s t, a^{3}$ accurs + in three, and - in one term.
$2 d, 3 a^{2} b$ occurs + in three, and - in one term.
$3 d$, When a, b, c are all units, the number resulting is 30 ; \therefore there are 30 terms, and as (1 st) and ($2 d$) make up 42 , there fall to be subtracted 12 , i.e., the coefficient of $a b c$ is -12 .

Ex. 3. $(a x+b y+c z)^{2}+(a x+c y+b z)^{2}+(b x+a y+c z)^{2}+$ $(b x+c y+a z)^{2}+(c x+a y+b z)^{2}+(c x+b y+a z)^{2}-2\left(a^{2}+b^{2}\right.$ $\left.+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)+4(a b+a c+b c)(x y+x z+y z)$.
E.r. 4. The difference of the squares of two consecutive numbers is equal to the sum of the numbers.

Ex. 5. The sum of the cubes of three consccutiro numbers is divisible by the sum of the numbers.
$E x$. 6. If x is an odd number, $x^{5}-x$ is divisible by 24 , and $\left(x^{2}+3\right)\left(x^{2}+7\right)$ by 32 .

Ex. 7. If $(p q-r)^{2}+4\left(p^{2}-q\right)(p r-q)^{2}=0$, then will
$4\left(p^{2}-q\right)^{3}=\left(2 p^{3}-3 p q+r\right)^{2}$,
and $\quad 4\left(q^{2}-p r\right)^{3}=\left(2 q^{3}-3 p q r+r^{2}\right)^{2}$.
F.x. 8. Given $x+y+z=0, \mathrm{X}+\mathrm{Y}+\mathrm{Z}=0$, to prove that $\left(x^{2}+\mathrm{X}^{2}\right) y z+\left(y^{2}+\mathrm{Y}^{2}\right) z x+\left(z^{2}+\mathrm{Z}^{2}\right) x y=\left(x^{2}+\mathrm{X}^{2}\right) \mathrm{YZ}+$ $\left(y^{2}+Y^{2}\right) Z X+\left(z^{2}+Z^{2}\right) X Y$.
Let the left hand side equal the right $+u$; then maltiplying out,

$$
\begin{gathered}
x y z(x+y+z)+\mathrm{X}^{2} y z+\mathrm{Y}^{2} z x+\mathrm{Z}^{2} x y= \\
\mathrm{XYZ}(\mathrm{X}+\mathrm{Y}+\mathrm{Z})+x^{2} \mathrm{YZ}+y^{2} \mathrm{ZX}+z^{2} \mathrm{XY}+u, \\
\mathrm{X}^{2} y z+\mathrm{Y}^{2} z x+(\mathrm{X}+\mathrm{Y})^{2} x y= \\
\text { i.e., } \\
x^{2} Y \mathrm{Y}+y^{2} \mathrm{ZX}+(x+y)^{2} \mathrm{XY}+u, \\
\text { or, } \quad \mathrm{X}^{2} y(z+x)+\mathrm{Y}^{2} x(z+y)= \\
\text { or, } \quad \therefore \quad x^{2} \mathrm{Y}(\mathrm{Z}+\mathrm{X})+y^{2} \mathrm{X}(Z+\mathrm{Y})+u, \\
-\mathrm{X}^{2} y^{2}-\mathrm{Y}^{2} x^{2}=-x^{2} \mathrm{Y}^{2}-y^{2} \mathrm{X}^{2}+u \\
\therefore u=0 .
\end{gathered}
$$

i.e.,
or,

Ex. 9. If $4 a^{2} b^{2} c^{2}\left(x^{2}+y^{2}+z^{2}\right)\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right)=$ $\left.\left\{\left(b^{2}+c^{2}\right) a^{2} x^{2}+\left(c^{2}+a^{2}\right) b^{2} y^{2}+\left(a^{2}+b^{2}\right) c^{2} z\right)\right\}^{2}$,
when ${ }^{-} a$ is greater than b, and b greater than c; then is y $=0$. As the argument concerns y, multiply out, and arrange in order of powers of y. After reduction this results in

$$
\begin{aligned}
\left(a^{2}-c^{2}\right) b^{2} y^{4} & +2\left\{\left(a^{2}-c^{2}\right)\left(b^{2}-c^{2}\right) a^{2} x^{2}+\left(a^{2}-c^{2}\right)\left(a^{2}-b^{2}\right) c^{2} a^{2}\right\} b^{2} y^{2} \\
& +\left\{\left(b^{2}-c^{2}\right) a^{2} x^{2}-\left(a^{2}-b^{2}\right) c^{2} z^{2}\right\}^{2}=0 .
\end{aligned}
$$

Nuw each of these three terms is a positive quantity, if it bo not zero, and as the sum of three positive quantities cannot be equal to zero, it follows that each term must be separately equal to zero,

$$
i, e, y=0, \text { and }\left(b^{2}-c^{2}\right) a^{2} x^{2}=\left(a^{2}-b^{2}\right) c^{2} z^{2}
$$

17. Inequalities.

The demonstrations of inequalities are of so simple and instructive a character, that a somewhat lengthened exhibition of them forms a valuable introduction to the higher processes of the science. In all that follows under this head, the symbols x, y, z stand for positive numbers or fractions, asually unequai.
E.e. 1. $x^{2}+y^{2}>2 x y$.

Beause $(x-y)^{2}$ is + , whether x be greater or less than y, it follows that $x^{2}-2 x y+y^{2}$ is + , i.e., is some positive number or fraction,

$$
\therefore x^{2}+y^{2}>2 x y .
$$

It will be remarked that when x and y are equal, the inequality rises into an equality, and this is common to all inequalities of the character under discussion.

Cor. $\frac{x}{y}+\frac{y}{x}>2$; i.e., the sum of a fraction and its reciprocal is greater than 2.

Ex. 2. $x^{2}+y^{2}+z^{2}>x y+x z+y z$.
For $x^{2}+y^{2}>2 x y, x^{2}+z^{2}>2 x z, \quad y^{2}+z^{2}>2 y z$; which being added and divided by 2, gives the result required.

Ex. 3. $x^{m+\infty}+y^{n+n}>x^{m} y^{n}+x^{n} y^{m}$.
For $\left(x^{m}-y^{m}\right)\left(x^{n}-y^{n}\right)$ is + , whether x be greater or less than ϑ.

As a particular case $x^{3}+y^{3}>x^{2} y+x y^{2}$.
Ex. 4. $x^{2 \pi}+1>x^{2 \pi-2 r}+x^{2 r}$.
For $\left(x^{2 n-2 r}-1\right)\left(x^{2 r}-1\right)$ is positive.
Cor. 1. $x^{n}+\frac{1}{x^{n}}>x^{n-2 r}+\frac{1}{x^{n-3}}$.
Cor. 2. Similarly, $x^{n}+\frac{1}{x^{*}}>x^{n-1}+\frac{1}{x^{n-1}}$,
i.e., as π increases $x^{n}+\frac{1}{x^{n}}$ increases, \therefore as a particular case

$$
x^{4}+\frac{1}{x^{n}}>x+\frac{1}{x}
$$

Ex. 5. If a, b, c are the sides of a trangle, $a^{2}+b^{2}+c^{2}$ $>a b+a c+b c<2(a b+a c+b c)$. The former inequality is proved in example 2. For the latter we have
(Euclid, I. 20), $a<b+c \therefore a^{2}<a b+a c$.
Similarly, $b^{2}<a b+b c, c^{2}<a c+b c$.
$\therefore a^{2}+b^{2}+c^{2}<2(a b+a c+b c)$.
$E x .6$. The arithmetic mean of any number of quantities (all positive) is greater than the geometric. ${ }^{\text {. }}$
(The arithmetic mean is the sum of the quantities divided by their number; the geometric is that root of their product which is represented by their number.) Let the quantitics be denoted by $x_{1}, x_{2}, x_{3}, \ldots x_{n}$, the numbers 1, 2, 3, placed under the x, indicating order only, so that x_{1}, may be read the first x, x_{2} the second x, \&c. Example 1 gives $\frac{x_{3}+x_{2}}{2}>\sqrt{x_{1} x_{2}}$, if we suppose tho x and y of that example to be $\sqrt{ } x_{1}, \sqrt{x_{2}}$ of the present.

$$
\text { It also gives } \begin{aligned}
\frac{\frac{x_{1}+x_{2}}{2}+\frac{x_{3}+x_{4}}{2}}{2} & >\sqrt{\frac{x_{1}+x_{3}}{2} \frac{x_{3}+x_{4}}{2}} \\
& >\sqrt{\sqrt{x_{x_{2}} x_{3}} \sqrt{x_{3} x_{4}}} \\
& >\sqrt[4]{x_{1} x_{2} x_{3} x_{4}}
\end{aligned}
$$

In the same way we prove the proposition for 8,16 , or any number of quantities which is a power of 2.

For any other number, such, for instance, as 5 , the following process is employed:-The number is made up to 8 by the insertion of three quantities, each equal to the arithmetic mean of the other five, viz., $\frac{x_{1}+x_{2}+x_{3}+x_{1}+x_{6}}{5}$. Call this quantity y; then

$$
\begin{gathered}
\frac{x_{1}+x_{2}+\ldots x_{5}+3 y}{.8}>\sqrt[8]{x_{1} x_{2} \ldots x_{3} y y y} \\
\text { i.e., } \frac{8 y}{8}>\sqrt[8]{x_{1} x_{2} \ldots x_{3} y^{3}} \\
\text { or, } y^{8}>x x_{2} \ldots x_{2} y^{3}
\end{gathered}
$$

$$
\begin{gathered}
\therefore y^{\bullet}>x_{1} x_{1} \ldots x_{5} \\
\therefore y \text { or } \frac{x_{1}+x_{2}+\ldots x_{5}}{5}>\sqrt[8]{x_{1} x_{2} x_{3} x_{4} x_{3}}
\end{gathered}
$$

Cor. As a particular case, $x^{3}+y^{3}+z^{3}>3 x y z$.
Ex. 7. Given $x_{1} x_{2} \ldots x_{n}=y^{n}$, to prove that $\left(1+x_{1}\right)$ $\left(1+x_{2}\right) \ldots\left(1+x_{n}\right)>(1+y)^{n}$.

The demonstration will be perfectly general in fact, though limited in form, if we suppose the number of quantities to be 5 ; in which case,

$$
x_{1} x_{2} \ldots x_{5}=y^{5} .
$$

Make the number up to 8 by introducing three y 's; then

$$
\begin{aligned}
& \left(1+x_{1}\right)\left(1+x_{2}\right)>\left(1+\sqrt{x_{1} x_{2}}\right)^{2} \text { by example } 1 . \\
& \left(1+x_{3}\right)\left(1+x_{1}\right)>\left(1+\sqrt{x_{3} x_{4}}\right)^{2} \\
& \left(1+x_{5}\right)(1+y)>\left(1+\sqrt{x_{5} y}\right)^{2} \\
& (1+y)(1+y)=(1+\sqrt{y y})^{2}
\end{aligned}
$$

\therefore Multiplying these products together, and combining the right hand factors two and two,

$$
\begin{gathered}
\left(1+x_{1}\right)\left(1+x_{2}\right) \ldots\left(1+x_{5}\right)(1+y)^{3} \\
>\left\{\left(1+\sqrt{x_{1} x_{2}}\right)\left(1+\sqrt{x_{3} x_{4}}\right)\left(1+\sqrt{x_{6} y}\right)(1+y)\right\}^{2} \\
>\left\{\left(1+\sqrt[4]{x_{1} x_{2} x_{3} x_{4}}\right)\left(1+\sqrt[y]{x_{6} y^{3}}\right)\right\}^{4} \\
>\left(1+\sqrt[3]{x_{1} x_{2} x_{3} x_{4} x_{0} y^{3}}\right)^{8} \\
>(1+y)^{8} \\
\therefore\left(1+x_{1}\right)\left(1+x_{2}\right) \ldots\left(1+x_{5}\right)>(1+y)^{3} .
\end{gathered}
$$

Ex. 8. If the sum of n fractions makes up 1 , the sum of their reciprocals is greater than the square of their aumber.

Let $x_{1}+x_{2}+\ldots x_{n}=1$,
then, $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}>n \sqrt[n]{x_{1} x_{2} \ldots x_{n}}$ (example 6).
But $\sqrt[n]{x_{1} x_{2} \ldots x_{n}}<\frac{x_{1}+x_{2}+\ldots x_{n}}{n}$ (example 6) $<\frac{1}{n}$

$$
\therefore \sqrt[n]{\frac{1}{x_{1} x_{2} \ldots x_{n}}}>n
$$

whence

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}>n^{2} .
$$

Ex. 9. $\frac{1+x^{2}+x^{4}+\ldots x^{2 n}}{x+x^{3}+\ldots x^{2 n-1}}<\frac{n+1}{2 n}\left(x^{n}+\frac{1}{x^{n}}\right)>\frac{n+1}{2 n}\left(x+\frac{1}{x}\right)$.
Let the numerator and denominator of this fraction be designated by N and D . N may be divided into pairs of terms, at the same distance from either end, viz., $1+x^{2 n}$, $x^{2}+x^{2 n-2}, \& c$., with or without a middle term, each of which (after $1+x^{2 n}$) is, by example 4, less than that quantity; the middle term, if there be one, being less than

$$
\begin{equation*}
\frac{1}{2}\left(1+x^{2 n}\right), \tag{1.}
\end{equation*}
$$

\therefore in either case $\mathrm{N}<\frac{n+1}{2}\left(1+x^{2 n}\right)$.
Again (example 6), $\mathrm{D}>n \sqrt[n]{x x^{3} \ldots x^{2 n-1}}>n x^{n}$.
\therefore the fraction $\frac{\mathrm{N}}{\mathrm{D}}<\frac{n+1}{2 n}\left(x^{n}+\frac{1}{x^{n}}\right)$.
To prove the second proposition, that the fraction is greater than $\frac{n+1}{2 n}\left(x+\frac{1}{x}\right)$, it is only necessary to multiply np and reduce the result; thus,

$$
\begin{aligned}
& \frac{n+1}{2 n}\left(x+\frac{1}{x}\right)\left(x+x^{3}+\ldots x^{2 n-}\right)^{1} \\
& =\frac{n+1}{2 n}\left(2 N-1-x^{2 n}\right) \\
& <\frac{n+1}{n} N-\frac{N}{n}(\text { by } 1) \\
& <N .
\end{aligned}
$$

Whence the proposition.

Addational Examples.

E.x. 1. $(x+y+z)^{2}<3\left(x^{2}+y^{2}+z^{2}\right)$, and generally, $(x+y+z)^{n}=3^{n-1}\left(x^{n}+y^{n}+z^{n}\right)$. (See Induction.)
Ex. 2. $(x+y)(y+z)(z+x)>8 x y z<\frac{8}{3}\left(x^{3}+y^{3}+z^{3}\right)$.
ELx. 3. $\left(z^{3}+y^{4}+z^{4}\right)>x y z(x+y+z)$.
Ex. 4. $\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)>(a x+b y+c z)^{2}$.
Ex. 5. The arithmetic mean of the p th powers of n positive quantities is greater than the p th power of their mean, and also greater than the mean of their combinations p together.
$E x .6 .(a x+b y+c z)^{2}+(a x+c y+b z)^{2}+(b x+a y+c z)^{2}$
$+(b x+c y+a z)^{2}+(c x+a y+b z)^{2}+(c x+b y+a z)^{2}$
$>6(a b+a c+b c)(x y+x z+y z$,
$<6\left(a^{2}+b^{2}+z^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)$.

18. Induction.

It will be noted that the numerical multiplier of the second term of the powers of $a+x$ already obtained is the same as the index. It is easy to see that this law is general. To demonstrate the fact formally we employ the method of induction.

The argument may be divided into four distinct steps1. Inference; 2. Hypotbesis; 3. Comparison; 4. Conclusion.

The first step, inference, is the discovery of the probable existence of a law.

The second step, hypothesis, is the assumption that that law holds to a certain point, up to which the opponent to the argument may be presumed to admit it.

The third step consists in basing on this assumption the demonstration of the law to a stage beyond what the opponent was prepared to admit.

The fourth step argues that as the law starts fair, and advances beyond a point at which any opponent is prepared to admit its existence, it is necessarily true.

Ex. 1. To prove that $(a+x)^{n}=a^{n}+n a^{n-1} x+$, dec.
I. By multiplication we get

$$
(a+x)^{4}=a^{4}+4 a^{3} x+, d c
$$

II. Let it be granted that $(a+x)^{m}=a^{m}+m a^{n-1} x+$, dec., where m is the extreme limit to which the opponent will admit of its truth.
III. By multiplying the equals by $a+x$, we get

$$
\begin{aligned}
(a+x)^{m+1}= & a^{m+1}+m a^{m} x+, \& c c . \\
& +a^{m} x+, \& c ., \\
=a^{m+1} & +(m+1) a^{m} x+, \& c .,
\end{aligned}
$$

i.e., if the law be admitted true for m it is proved true for $m+1$; in other words, at whatever point the opponent compels us to limit our assumption, we can advance one step higher by argument.
IV. Now, the law is true for $4, \therefore$ it is proved true for 5 ; and being true for 5 , it is proved true for 6 , and so on, ad infinitum.
$E x .2$. The sum of the cubes of the natural numbers is the square of the sum of the numbers,

$$
1^{3}+2^{3}=9=(1+2)^{2}=\left(\frac{2.3}{2}\right)^{2}
$$

${ }^{-}$I. Let us assume that

$$
1^{3}+2^{3}+, \& \mathrm{c} .,+x^{3}=\left(\frac{x(z+1)}{2}\right)^{2}
$$

II. If this be so, then by adding $(x+1)^{3}$ we get

$$
\begin{aligned}
1^{3}+2^{3}+\ldots+(x+1)^{3} & =\left(\frac{x(x+1)}{2}\right)^{2}+(x+1)^{3} \\
& =\left(\frac{(x+1)(x+2)}{2}\right)^{2}
\end{aligned}
$$

III. Hence, if the law be true for any one number is, it is also true for $x+1$.
IV. But it is true for $2, \therefore$ for $3, \therefore$ for 4 , \&c.

Ex. 3. To prove the inequality,

$$
(x+\ddot{y}+z)^{n}<3^{n-1}\left(x^{n}+y^{n}+z^{n}\right) .
$$

zom the second example of incqualities we get at once $(x+y+z)^{2}<3\left(x^{2}+y^{2}+z^{2}\right)$.

Let us assume that. $(x+y+z)^{m}<3^{m-1}\left(x^{m}+y_{0}^{m}+z^{m}\right)$, then by multiplication we get

$$
\begin{aligned}
(x+y+z)^{-+3}< & 3^{m-1}\left(x^{m+1}+y^{m+1}+z^{m+1}+x^{m} y+y^{m} x+\right. \\
& \left.x^{m} z+z^{m} x+y^{m} z+z^{m} y\right) .
\end{aligned}
$$

Now, inequality, example 3, gives

$$
\begin{gathered}
x^{m} y+y^{m} x<x^{m+1}+y^{m+1}, \text { \&e. } \\
\therefore x^{m} y+y^{n} x+x^{m} z+z^{m} x+y^{m} z+z^{m} y<2\left(x^{m+1}+y^{m+1}+z^{m+1}\right), \\
(x+y+z)^{m+1}<3^{m}\left(x^{m+1}+y^{m+1}+z^{m+1}\right),
\end{gathered}
$$

i.e., the law is true for $n+1$, if true for m; but it is true for $2, \therefore$ it is always true.

IV. Division.

19. General Rule for the Signs.- If the signs of the divisur and dividend be like, the sign of the quotient is + ; but if they be unlike, the sign of the quotient is

This rule is derived from the general rule for the signs in multiplication, by considering that the quotient must be such a quantity as, when multiplied by the divisor, shall produce the dividend, with its proper sign.

This defuntion of division is the same as that of a fraction; hence the quotient arising from the division of one quantity by another may be expressed by placing the dividend above a line, and the divisor below it ; but it may also be uften reduced to a more simple form by the following rules.

Case 1. When the divisor is simple, and a factor of every term of the dividend.
Rule. Divide the coefficient of each term of the dividend by the caefficient of the divisor, and expunge out of each term the letter or letters in the divisor: the result is the quotient.
$E x$. Divide $16 a^{3} x y-28 a^{2} x z^{2}+4 a^{2} x^{3}$ by $4 a^{2} x$.
The process requires no explanation. It is founded on Jaws II. and III., together with the rule of aigns.

The quotient is $4 a y-7 x^{2}+x^{2}$.
If the diviser and dividend bo powers of the same quantity, the division will evidently be performed by subtracting the exponent of the divisor from that of the dividend. Thus a^{6}, divided by a^{3}, has for a quotient $a^{5-3}=a^{2}$.
Cuse 2. When the divisor is simple, but not a factor of the dividend.
Rule. The quotient is expressed by a fraction, of which the numerator is the dividend, and the denominator the divisor.
Thus the quotient of $3 a b^{2}$, divided by $2 m b c$, is the fraction $\frac{3 a b^{2}}{2 m b c}$.

It will sometimee happen that the quotient found thus. may be reduced to a more simple form, as shall be explained when we come to treat of fractions.

Case 3. When the divisor is compound.
Rule. The terms of the dividend are to be arranged in the order of the powers of some one of its letters, and those of the divisor aceording to the powers of the same letter. The operation is then carried un precisely as for division of numbers.
To illustrate this rule, let it be required to divide $8 a^{2}+$ $2 u b-15 b^{6}$ by $2 u+36$, the uperation will stand thus:

$$
\begin{gathered}
2 a+3 b) 8 a^{2}+2 a b-15 b^{2}(4 a-5 b \\
8 a^{2}+12 a b \\
\frac{-10 a b-15 b^{2}}{} \\
-10 a b-15 b^{2}
\end{gathered}
$$

Here the terms of the divisor and dividend are arranged according to the powers of the quantity a. We now divide $8 a^{2}$, the first term of the dividend, by $2 a$, the first term of the divisor; and thus get $4 a$ for the first term of the quotient. We next multiply the divisor by $4 a$, an. subtract the product $8 a^{2}+12 a b$ from the dividend; we get $-10 a b-15 b^{2}$ for a new dividend.

By proceeding in all respects as before, we find $-5 b$ for the second term of the quotient, and no remainder: the operation is therefore finished, and the whole quotient is $4 a-5 b$.

The following examples will also serve to illustrate the manner of applying the rule.

Ex. 1.

$$
\begin{aligned}
& 3 a-b) 3 a^{3}-12 a^{2}-a^{2} b+10 a b-2 b^{2}\left(a^{2}-4 a+2 b\right. \\
& \frac{3 a^{3}-a^{2} b}{-12 a^{2}+10 a b} \\
& -12 a^{2}+4 a b \\
& +6 a b-2 b^{2} \\
& +6 a b-2 b^{2} \\
& 1-x) 1 \quad \stackrel{E x .2 .}{\left(1+x+x^{2}+\mathbb{C} .\right.} \\
& \frac{1-x}{+x} \\
& \frac{+x-x}{+x^{2}} \\
& \frac{+x^{2}-x^{3}}{+x^{3}}
\end{aligned}
$$

Sometimes, as in this last example, the quotient will never terminate ; in such a case it may either be considered as an infinite series, the law according to which the terms are formed being in general sufficiently obvious; or the quotient may be completed as in arithmetical division, by annexing to it a fraction (with its proper sign), the numerator of which is the remainder, and denominator the divisor Thus the completed quotient, in last example, is-

$$
1+x+x^{2}+\frac{x^{3}}{1-x}
$$

If x be emall compared with unity, the remainders, as wo advance, continually become smaller and smaller. If, on the other hand, x be large compared with unity, the remainders continually become larger and larger. In this case the quotient is worthless. To obtain a quotient which shall be of any practical value, we must reverse the order of arrangement, putting $-x+1$ in place of $1-x$. The divissun then becomes

$$
\begin{aligned}
& -x+1) 1 \quad\left(-\frac{1}{x}-\frac{1}{x^{3}}-d c .\right. \\
& \frac{1-\frac{1}{x}}{}+\frac{1}{x} \\
& +\frac{1-\frac{1}{x}-\frac{1}{x^{3}}}{+\frac{1}{x^{2}}}
\end{aligned}
$$

As it is generally the largest of the quantities that we desire to divide out, we observe that, in order to effect this, wo have had to begin with that quantity. Hence the Rule-
The terms of the divisor and dividend are to be arranged according to the powers of that letter which it is wished (if pessible) to divide out.

Er. 3. Divide $a^{4}+b^{4}+b(a+b)^{3}$ by $a^{2}+b^{2}-a b$, where a is large compared with b.
We must arrange according to powers of a.

$$
\begin{gathered}
\left.a^{2}-a b+b^{2}\right) u^{4}+a^{3} b+3 a^{2} b^{2}+3 a b^{3}+2 b^{4}\left(a^{2}+2 a b+4 b^{2}\right. \\
\begin{array}{c}
a^{4}-a^{3} b+a^{2} b^{2} \\
+2 a^{3} b+2 a^{2} b^{2}+3 a b^{3} \\
+2 a^{3} b-2 a^{2} b^{2}+2 a b^{3} \\
+4 a^{2} b^{2}+a b^{3}+2 b^{4} \\
+4 a^{2} b^{2}-4 a b^{3}+4 b^{4} \\
+5 a b^{3}-2 b^{4}
\end{array}
\end{gathered}
$$

We have spoken as if magnitude alone was the circlum|stance which should determine the precedence of the letters in a division. In the more advanced processes of algebra there are other circumstances which give precedence to certain letters, such, for example, as the fact that x may and often does stand for the phrase "quantity," whilst a stands for some determinate numerical quantity. This leads us to exhibit a proposition in division of the greatest value and most extensive application. It is as follows :-
20. Proposition.-If any function of x, consisting of powers of that letter with numerical multipliers, is divided by $x-a$, the remainder, when all the x 's are divided out, is the same function of a that the dividend is of x; in other words, the remainder is the dividend altered by writing a in place of x.

To prove this proposition we shall employ the following
Axiom:-If two expressions in x are identical in form and value, but one maltiplied out farther than the other, we may write any numerical quantity we please in place of x in both, and the results will be equal.

For example, $(x-1)^{2}+(x-1)-3$ is identical with $x^{2}-2(x+1)+x-1$; and it is evident that if we write anv number (say 1) for x, the results are the same in both.

We now proceed to prove the proposition.
Let the dividend be $x^{n}+p x^{n-1}+q x^{n-2}$, \&c., where n is a whole number, and p, q, \&c., positive or negative numerical quantities.

Let the quotient, when this is divided by $x-a, b \dot{e} \mathrm{Q}$, the remainder, which does not contain x, R; then

$$
x^{4}+p x^{n-1}+q x^{n-2}+, \& c .=Q(x-a)+R
$$

b) the definition of Division.

Now this equality is in reality an identity in terms of the axiom. If then we write a in place of x, the results will be equal ; this gives

$$
\begin{aligned}
a^{n}+p a^{n-1}+q a^{n-8}+\& \mathrm{c} . & =\mathrm{Q} \cdot 0+\mathrm{R} \\
& =\mathrm{R},
\end{aligned}
$$

which is the proposition to be proved.

Examples.

$E x$. 1. If n be any whole number, $x^{n}-a^{n}$ is divisible by $x-a$ without remainder.

For the remainder, by the proposition, is $a^{n}-a^{n}=0$.
$E x$. 2. If n be an even number, $x^{n}-a^{n}$ is divisible by $x+a$ without remainder.

For the remainder is $(-a)^{n}-a^{n}=0$, since n is even.
Observe that the divisor here has to be changed to $x-(-a)$, so that $-a$ stands in place of the a of the proposition.
$E x$. 3. If n be an odd number, $x^{n}+a^{n}$ is divisible by $x+a$ without remainder.

For the remainder is $(-a)^{n}+a^{n}=0$, becanse n is odd.
$E x$. 4. To prove that $4 b^{2} c^{3}-\left(b^{2}+c^{3}-a^{2}\right)^{2}$ is dirisible by $-a+b+c$; and hence to resolve it into simple factors. Here the $x-a$ of the proposition is replaced by $a-(b+c)$ (the negative sign of the whole divisor being of no consequence).

To determine the remainder, therefure, we write $b+c$ in
place of a in the dividend, or thing to be divided; the result is,

$$
4 b^{2} c^{2}-\left(b^{2}+c^{2}-\overline{b+c}\right)^{2}=0
$$

hence $4 b^{2} c^{-}-\left(b^{2}+c^{2}-a^{2}\right)^{2}$ is divisible by $-a+b+c$.
Now, since the dividend contains only squares of a, and b, and c, any change in the sign of a, or b, or c, produces no change in the dividend. What we have just pruved then becomes (putting - a for a) the following:-

$$
4 b^{2} c^{2}-\left(b^{2}+c^{2}-a^{2}\right)^{2} \text { is divisible by } a+b+c .
$$

This la:t becomes (putting - b for b, and then $-c$ for c): $4 b^{2} c^{2}-\left(\because+c^{2}-a^{2}\right)$ is divisible by $a-b+c$, and by $a+b-c$.

Hence 'nally, $\quad 4 b^{2} c^{2}-\left(b^{2}+c^{2}-u^{2}\right)^{2}=\{a+b+c\rangle$

$$
(-a+b+c)(a-b+c)(a+b-c)
$$

The above example is a good exercise for the student. The result may be more simply arrived at by employing a proposition of very great value and frequent use-that the difference of the squares of two quantities is the product of the sum and difference of the quantities.

Ex. 5. To prove that $\left(1-a^{2}\right)\left(1-b^{2}\right)\left(1-c^{2}\right)-(c+a b)$ $(b+a c)(a+b c)$ is divisible by $-1+a b c$.

It is eimpler bere to write a single letter x for alc, whereby the given quantity becomes

$$
\left(1-a^{2}\right)\left(1-b^{2}\right)\left(1-c^{2}\right)-\frac{1}{x}\left(x+a^{2}\right)\left(x+b^{2}\right)\left(x+c^{2}\right)
$$

which is obviously under the form $p-p$, when -1 is written for x, and \therefore is divisible by $1+x$.
Ex. 6. Prove that $\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)\left(x^{3}-x^{4}+1\right)$ $\left(x^{16}-x^{8}+1\right) \ldots\left(x^{2 n}-x^{n}+1\right)$ is the quotient of $x^{60}+x^{60}+1$ by $x^{2}+x+1 ; n$ being ally power of 2 .

The divisor $\left(x^{2}+x+1\right)$ being multiplied by $x^{2}-x+1$ gives $x^{4}+x^{2}+1$; which, being again multiplied by $x^{4}-x^{2}+1$, gives $x^{8}+x^{4}+1$; and so on to the end.

Additional Examples in Division.

Ex. 1. Divide $1-10 x^{3}+15 x^{4}-6 x^{5}$ by $(1-x)^{3}$.
We must first multiply out $(1-x)^{3}$, and then divide the given expression by the product, $1-3 x+3 x^{2}-x^{3}$. The quotient is $1+3 x+6 x^{2}$.

Ex. 2. Divide $65 x^{2} y^{2}-\left(x^{4}+64 y^{4}\right)$ by $x^{2}-7 x y-8 y^{2}$.
We must arrange dividend and dirisor in terms of powers of une of the letters. say x : the division will then assume the form

$$
\begin{gathered}
\left.x^{2}-7 x y-8 y^{2}\right)-x^{4}+65 x^{2} y^{2}-64 y^{4}(\\
\text { giving }-x^{2}-7 x y+8 y^{2} .
\end{gathered}
$$

Ex. 3. Divide $x^{3}+y^{3}+z^{3}-3 x y z$ by $x+y+z$.
We must give exclusive attention to some one letter, say x, in dividing out ; thus

$$
\begin{aligned}
x+y+z) & x^{3}+y^{3}+z^{3}-3 x y z\left(x^{2}-x(y+z)+\left(y^{2}+z^{2}-y z\right)\right. \\
& \frac{x^{3}+x^{2}(y+z)}{-x^{2}(y+z)} \\
& \frac{-x^{2}(y+2)-x(y+2)^{2}}{x\left(y^{2}-y z+z^{2}\right)+y^{3}+z^{3}}
\end{aligned}
$$

the quotient being $x^{2}+y^{2}+z^{2}-x y-x z-y z$.
Ex. 4. Divide the product of

$$
x^{2}+3 x+2, x^{2}-5 x+4, x^{4}+5 x^{2}-14
$$

by the product.of $x^{2}-1, x^{2}-2$. Here we obserre thati $x^{2}-1$ is the product of $x+1, x-1$.

Now (Art. 20), $x^{2}+3 x+2$ is divisible by $x+1$, and $x^{2}-5 x+4$ by $x-1$. Hence, if the product is divisible by $x^{2}-1, x^{2}-2$, without remainder, the third factor, $x^{4}+5 x^{2}$ -14 must be divisible by $x^{2}-2$, which is found to be the rase. The quotient required is therefore the product of

$$
\left(x+2,(x--4)\left(x^{2}+7\right)=x^{4}-2 x^{3}-x^{2}-14 x-56\right.
$$

Ex. 5. Divide $12 x^{4}-10 x^{3} y-3 x^{2} y^{2}+30 x y^{3}-25 y^{4}$ by $3 x^{2}-4 x y+5 y^{2}$.

We will employ this cxamplo to indicate_Horner's method of synthetic division.
Let the dividend be represented by

$$
\mathrm{A} x^{-1}+\mathrm{B} x^{3}+\mathrm{C} x^{3}+\mathrm{D} x+\mathrm{E}
$$

the divisor by $a x^{2}+b x+c$,
and the quotient by $a x^{2}+\beta x+\gamma+d c$.
Then, multiplying the quotient by the divisor, wo produce the dividend, which, exhibited ly the method of detached coeflicients, stands thus-

$$
\begin{aligned}
a a & +a \beta
\end{aligned}+a \gamma+\& c .
$$

The last line being the sum column by column of the three preceding lines. Now, as the upper of these three lines contains term by term the quantitics required, we convert this addition into subtraction; thus,

$$
\begin{array}{r|r}
-b & \begin{array}{r}
\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E} \\
-b a-b \beta-b \gamma-\& \mathrm{c} \\
-c
\end{array} \\
a \mid a \alpha+a \beta+a \gamma+a \delta+d \mathrm{c} \\
-c a-c \beta-\delta \mathrm{c}
\end{array}
$$

The first vertical column gives a; tho second β, and so ou.

In the example before us we write, -

$$
+\begin{gathered}
4 \\
-5
\end{gathered} \frac{\begin{array}{r}
12-10-3+30-25 \\
+4 a+4 \beta+4 \gamma+8 c . \\
-5 a-5 \beta-d c .
\end{array}}{3 a+3 \beta+3 \gamma+8 c .,}
$$

whence $3 a=12$ gives $a=4 ; 9 \beta=-10+4 \mathrm{a}$ gives $\beta=2$; $3 \gamma=-3+4 \beta-5 a$ gives $\gamma=-5$.
Therefore the quotient required is $4 x^{2}+2 x-5$.

Sect. II.-Involution and Evolution.

21. In treating of multiplication, we have observed, that when a quantity is multiplied by itself any number of times, the product is called a power of that quantity, whilo the quantity itself, from which the powers are formed, is called the root. Thus, a, a^{2}, and a^{3} are the first, second, and third powers of the root α; and in like manner $\frac{1}{a^{3}} \frac{1}{a^{2}}$, and $\frac{1}{a^{3}}$ denote the same powers of the $\operatorname{root} \frac{1}{a}$.

But before considering more particularly what relates to powers and roots, it will be proper to observe, that the quantitics $\frac{1}{a}, \frac{1}{a^{2}}, \frac{1}{a^{3}}, \& c$., adinit of being expressed under a different form ; for, just as the quantities a, a^{2}, a^{3}, \&c., ore expressed as positive powers of the root a, so the quautities $\frac{1}{a^{2}}, \frac{1}{a^{2}}, \frac{1}{a^{3}}$, dec., may be respectively expressed thus $a^{-1}, a^{-2}, a^{-3}, \& c$., and considered as negative powers of the root a.
This method of expressing the fractions $\frac{1}{a^{\prime}}, \frac{1}{a^{2}}, \frac{1}{a^{3}}$, as powers of the root a, but with negative indices, is a consequence of the rule which has been given for the division of powers; for we consider $\frac{1}{a}$ as the quotient arising from the division of any power of a by the next higher power; for example, from the division of the 2 d by the 3 d , and so we luve $\frac{1}{a}=\frac{u^{2}}{a^{3}}$; but since powers of the same quantity are
divided by subtracting the exponent of the divisor from that of the dividend (Art. 19), it follows that $\frac{a^{2}}{a^{3}}=a^{2-s}$ $=a^{-1}$; therefore the fraction $\frac{1}{a}$ may alsc bo expressed thus, a^{-1}. By considering $\frac{1}{a^{2}}$ as equal to $\frac{a^{2}}{a^{4}}$, it will appear in the samo manner that $\frac{1}{a^{2}}=\frac{a^{2}}{a^{4}}=a^{-2}$; and proceoding in this way, wo get $\frac{1}{a^{3}}=\frac{a^{2}}{a^{6}}=a^{-3}, \frac{1}{a^{4}}=\frac{a^{2}}{a^{6}}=a^{-4}, \& c$., and soon, as far as we please. It also appears that unity or 1 may be representcd by a^{0}, where the exponent is a cypher, for $1=\frac{a^{2}}{a^{2}}=a^{2-2}=a^{0}$.

The rules which have been given for the multiplication Detorition and division of powers with positive integral exponents of indes will apply in every case, whether the exponents be positive or negative, integral or fractional, provided we assume às the defintion of the index in such cases, the lam of combination $a^{m} \times a^{n}=a^{m+n}$.

Involution.

22. Involution is the method of finding any power of any assigred quantity, whether it be simple or compound: bence its rules are easily derived from tho operation of multiplication.

Case 1. When the quantity is simple.

Rule. Multiply the exponents of the letters by the index of the power required, and raise the coefficient to the same power.
Note. If the sign of the quantity be + , all its powers will be positive; but if it be -, then all its powers whese exponents are even nambers are positive, and all its powers whose exponents are odd numbers are nega: tive.
Ex. 1. Required the cube, or third powwr, of $2 a^{2} x_{0}$ $\left(2 a^{2} x\right)^{3}=2 \times 2 \times 2 a^{2 \times 3} x^{1 \times 3}=8 a^{6} x^{3}$, the answer.

Ex. 2. Required the fifth power of $-3 a^{2} x^{3}$.
$\left(-3 a^{2} x^{3}\right)^{5}=-243 a^{10} x^{15}$, the answer.
Ex. 3. Required the fourth power of $-\frac{2 a x^{2}}{3 b^{2} y}$,

$$
\left(\frac{-2 a x^{2}}{3 b^{2} y}\right)^{4}=\frac{16 a^{4} x^{8}}{81 b^{8} y^{4}}, \text { the answer. }
$$

Case 2. When the quantity is compound.

Rule. The powers must be found by a continual multipllcation of the quantity by itself.
Ex, 4. Required the first four puwers of the bincmind quantity $a+x$.
$a+x$ the root, or first power.
$\frac{a+x}{a^{2}+a x}$
$+a x+x^{2}$
$a^{2}+2 a x+x^{2}$ the square, or second power.
$a+x$
$\overline{a^{3}+2 a^{2} x+a x^{2}}$
$+a^{2} x+2 a x^{2}+x^{3}$
$\frac{\overline{a^{3}+3 a^{2} x+3 a x^{2}+x^{3} \text { the }}}{a^{4}+3 a^{3} x+3 a^{2} x^{2}+a x^{3}}$ cube, or third power.
$+a^{3} x+3 a^{2} x^{2}+3 a x^{3}+$
$\overline{a^{4}+4 a^{3} x+6 a^{2} x^{2}+4 a x^{3}+x^{4}}$ the fourth power.
If it be required to find the samo powers of $a-x$, it will be found, writing $-x$ for x, that
$a-x$ being the root, or first power; then
$a^{2}-2 a x+x^{2}$ is the square, or second power;
$a^{3}-3 a^{2} x+3 a x^{2}-x^{3}$, the cube, or third power ;
$a^{4}-4 a^{3} x+6 a^{2} x^{2}-4 a x^{3}+x^{4}$, the fourth power.

Hence it appears that the powers of $a+x$ differ from the powers of $a-x$ only in this respect, that in the former the signs of the terms are all positive, but in the latter they are positive and negative alternately.

Besides the metbod of finding the powers of a compound quantity by multiplication, which we have just now explained, there is another more general, as well as more expeditious, by which a quantity may be raised to any Ipower whatever without the trouble of finding any of the inferior powers, namely, by means of what is commonly called the binomial theorem, to be proved hereafter. This theorem may be expressed as follows:-Let $a+x$ be a binomial quantity, which is to be raised to any power denoted by the number n, then $(a+x)^{n}=$

$$
\begin{aligned}
a^{n} & +\frac{n}{1} a^{n-1} x+\frac{n(n-1)}{1 \cdot 2} a^{n-2} x^{2}+\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} a^{n-3} x^{3} \\
& +\frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4} a^{n-1} x^{4} \\
& +\frac{n(n-1)(n-2)(n-3)(n-4)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} a^{n-5} x^{5}+8 c
\end{aligned}
$$

This series will almays terminate when n is any whole positive number, by reason of some one of the factors $n-1, n-2$, \&c., becoming $=0$; but if n be either a negative or fractional number, the series will consist of an infinite number of terms. As, however, we mean to treat in this section only of the powers of quantities when their exponents are whole positive numbers, we shall make no further remarks upon any other. The nth power of $a-x$ will not differ from the same power of $a+x$, except in the signs of the terms which compose it, for it will stand thus: $(a-x)^{n}=$
$a^{n}-\frac{n}{1} a^{n-1} x+\frac{n(n-1)}{1 \cdot 2} a^{n-2} x^{2}-\frac{n(n-1)(n-2)}{2} a^{n-3} x^{3}$
$+\frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4} a^{n-4} x^{4}-\&$ c., where the signs are + and - alternately.

Let it be required, for instance, to raise $a+x$ to the fifth power.

Here n, the exponent of the power, being 5, the first term a^{*} of the general theorem will be equal to a^{5}, the second $n a^{n-1} x=5 a^{4} x$, the third $\frac{n(n-1)}{1.2} a^{n-2} x^{2}=\frac{5 \times 4}{1 \times 2} a^{3} x^{2}=$ $10 a^{3} x^{2}$ the fourth $\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} a^{n-} x^{3}=\frac{5 \times 4 \times 3}{1 \times 2 \times 3} a^{2} x^{3}=$ $10 a^{2} x^{3}$, the fifth $\frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot \frac{4}{2}} a^{-4} x^{4}=\frac{5 \times 4 \times 3 \times 2}{1 \times 2 \times 3 \times 4} a x^{4}$ $=5 a x^{4}$, and the sixth and last $\frac{n(n-1)(n-2)(n-3)(n-4)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} a^{n} x^{5}=\frac{5 \times 4 \times 3 \times 2 \times 1}{1 \times 2 \times 3 \times 4 \times 5} a^{0} x^{3}=x^{5}$; the remaining terms of the general theorem all vanish, by reason of the factor $n-5=0$ by which each of them is multiplied, so that we get $(a+x)^{5}=a^{5}+5 a^{4} x+10 a^{3} x^{2}+$ $10 a^{2} x^{3}+5 a x^{4}+x^{5}$.

If the quantity to be involved consists of more than two terms, as, if $p+q-r$ were to be raised to the second power, put $p=a$ and $q-r=b$, then $(p+q-r)^{2}=(a+b)^{2}$ $=a^{2}+2 a b+b^{2}=p^{2}+2 p(q-r)+(q-r)^{3}$, but $2 p(q-r)=$ $2 p q-2 p r$, and by the general theorem $(q-r)^{2}=q^{3}-2 q r$ $+r^{2}$, therefore we get $(p+q-r)^{2}=p^{2}+2 p q-2 p r+q^{2}-$ $2 q r+r^{2}$; and by a similar method of proceeding a quantity consisting of four or more terms may be raised to any power.

Additional Examples.

$E x .1$ Erom the value of $(a+x)^{4}$ found in example 4, to find that of $(a+b+c)^{4}$. From example 4 we write at once, by symmetry,

$$
\begin{aligned}
(a+b+c)^{4}= & a^{4}+4 a^{3} b+6 a^{2} b^{2}+\mathrm{R} \\
& +b^{4}+4 a^{3} c+6 a^{2} c^{2} \\
& +c^{4}+4 b^{3} a+6 b^{2} c^{2} \\
& +4 b^{3} c \\
& +4 c^{3} a \\
& +4 c^{3} b
\end{aligned}
$$

where R is the series of remaining terms denoting the thrce following forms, $a^{2} b c, b^{2} a c, c^{2} a b$. Now when a, b, c are each unity, there are 81 terms (viz. 3^{4}). But the number of terms already written down ($4 a^{3} b$ being considered as 4 terms, \&c.) is 45 . The quantity R must consequently make up the other 36 terms, \therefore it can be nothing else than $12 a^{2} b c+12 b^{2} a c+12 c^{2} a b$.

Ex. 2. $(p+q+r)^{2}=p^{2}+q^{2}+r^{2}+2(p q+q r+r p)$.
Cor. If $p+q+r=0$; then $p^{2}+q^{2}+r^{2}+2(p q+q r+r p)=0$,
Case 1. $\overline{a-b}+\overline{b-c}+\overline{c-a}=0$, gives
$(a-b)^{2}+(b-c)^{2}+(c-a)^{2}+2\{(a-b)(b-c)+(b-c)(c-a)$

$$
+(c-a)(a-b)\}=0
$$

Case 2. $a(b-c)+b(c-a)+c(a-b)=0$, gi.es

$$
\begin{gathered}
a^{2}(b-c)^{2}+b^{2}(c-a)^{2}+c^{2}(a-b)^{2}+2\{a b(b-c)(c-a)+ \\
b c(c-a)(a-b)+c a(a-b)(b-c)\}=0
\end{gathered}
$$

Ex. 3. Prove that $\left(x^{2}-y z\right)^{3}+\left(y^{2}-x z\right)^{3}+\left(z^{2}-x y\right)^{3}-$ $3\left(x^{2}-y z\right)\left(y^{2}-x z\right)\left(z^{2}-x y\right)$ is a complete square.

The expression will assume symmetry if $\left(x^{2}-y z\right)\left(y^{2}-x z\right)$ ($z^{2}-x y$), instead of being multiplied by 3 , be repeated three times, each being connected with one of the cubes in turn; this gives-

$$
\begin{aligned}
& \left(x^{2}-y z\right)\left\{\left(x^{2}-y z\right)^{2}-\left(y^{2}-x z\right)\left(z^{2}-x y\right)\right\} \\
+ & \left(y^{2}-x z\right)\left\{\left(y^{2}-x z\right)^{2}-\left(x^{2}-y z\right)\left(z^{2}-x y\right)\right\} \\
+ & \left(z^{2}-x y\right)\left\{\left(z^{2}-x y\right)^{2}-\left(x^{2}-y z\right)\left(y^{2}-x z\right)\right\} \\
= & \left\{x^{2}-y z\right) x\left\{x^{3}+y^{3}+z^{3}-3 x y z\right\} \\
& +\& c ., \& c . \\
= & \left(x^{3}+y^{3}+z^{3}-3 x y z\right)\left(x^{3}+y^{3}+z^{3}-3 x y z\right) .
\end{aligned}
$$

Ex. 4. Prove that $\left(a^{2}+b^{2}+c^{2}\right)^{3}+2(a b+b c+c a)^{3}$

$$
-3\left(a^{2}+b^{2}+c^{3}\right)(a b+b c+c a)^{2}=\left(a^{3}+b^{3}+c^{3}-3 a b c\right)^{2}
$$

Combine each of the cubes with each of the prodncts in succession, and reduce, as in the last example.
$E x .5$. To find the condition that $p x^{2}+2 q x y+r y^{2}$ may be incapable of changing its sign through any change of sign or value of x and y. It is evident that p and r must have the same sign. Suppose it positive. By multiplying by p, the quantity may be thrown into the form $(p x+q y)^{2}+\left(p r-q^{2}\right) y^{2}$, which is the sum of two positive quantities provided $p r>q^{2}$. The condition required is, therefore, $p r>q^{2}$; or as a particular case $p r=q^{3}$.
$E x$. 6. To find the condition that $a x^{2}+b y^{2}+c z^{2}+$ $2 \mathrm{P} y z+2 \mathrm{Q} x+2 \mathrm{R} x y$ may be incapable of changing its siga through any change of sign or value of x, y, z.

We will suppose a, b, c to be all positive, in which case the whole result is also positive.

If we multiply the whole by a, we may write it under the form of a square and a supplement,

$$
\text { viz., }\left(\begin{array}{l}
a x+\mathrm{Q} z+\mathrm{R} y)^{2}+\left(a c-\mathrm{Q}^{2}\right) z^{2}+ \\
\left.a b-\mathrm{R}^{2}\right) y^{2}+2(a \mathrm{P}-\mathrm{QR}) y z .
\end{array}\right.
$$

Now as the first term of this expression is a square, it is essentially positive. Hence the required condition can be satisfied only by rendering the remainder positive.

It follows that $a c>\mathrm{Q}^{2}, a b>\mathrm{R}^{2}$, and
(Example 5) $\quad\left(a c-\mathrm{Q}^{2}\right)\left(a b-\mathrm{R}^{2}\right)>(a \mathrm{P}-\mathrm{QR})^{2}$, i.e., $a b c+2 P Q R>a P^{2}+b Q^{2}+c R^{2}$.

If we had begin by throwing the expression into the form of $\left(b y+P_{z}+\mathrm{P} x\right)^{3}+$ dc., s resulting condition would have been be>P2 The four conditions nre conequently

$$
\begin{aligned}
& a b>\mathrm{R}^{2}, a c>\mathrm{Q}^{2}, b c>\mathrm{P}^{2} \\
& a b c+2 \mathrm{PQR}>a \mathrm{P}^{2}+b \mathrm{Q}^{2}+c \mathbf{R}^{2} .
\end{aligned}
$$

Results of this kind are of the utmost value in the higber analysis.

Evolution.

23. Tvolution is the reverse of involution, or it is the method of finding the root of any quantity, whether simple or compound, which is considered as a power of that root: hence it follows that its operations, generally speaking, must be the reverse of those of involution.

To denote thst the root of any quantity is to be taken, the sign $\sqrt{ }$ (called the radical sign) is placed before it, and a small number placed over the sign to express the denomination of the root. Thus $\sqrt[2]{a}$ denotes the square root of $a, \sqrt[3]{a}$ its cube root, $\sqrt[4]{a}$ its fourth root, and in general, \sqrt{a} its nth root. The number placed over the radical sign is called the index or exponent of the root, and is usuaily omitted in expressing the square root: thus, either $\sqrt[2]{a}$ or $\sqrt{\bar{a}}$ denotes the square root of a.
Case 1. When roots of simple quantities are to be found.
Rule. Divide the exponents of the letters by the index of the root required, and prefix the root of the numeral coefficient; the result will be the root required.
Note 1. The root of any positive quantity may be either positive or negative, if the index of the root be an even number; but if it be an odd number, the root can be positive only.
2. The root of a negative quantity is also negative when the index of the root is an odd number.
3. But if the quantity be negative, and the index of the root even, then no root can be assigned.
Ex. Required the cube root of $125 a^{6} x^{9}$.
Here the index of the root is 3 , and the root of the coefficient 5, therefore $\sqrt[3]{125 a^{6} x^{9}}=5 a^{2} x^{3}$, the root required; and in like manner the cube root of $-125 a^{6} x^{9}$ is found to be - $5 a^{2} x^{3}$.

The root of a fraction is found by extracting the root of both numerator and denominator. Thus the equare root of $\frac{4 a^{2} x^{4}}{0 b^{2} y^{8}}$ is $\cdot \frac{2 a x^{2}}{3 b y^{3}}$.

Case 2. When the quantity of which the root is to be extracted is compound.

I. To extract the square root.

Range the terms of the quantity according to the powers of one of the letters, as in division.

Find the square root of the first term for the first part of the root sought, subtract its square from the given quantity, and divide the remainder by double the part alrearly found, and the quotient is the second term of the root.

Add the second part to double the first, and multiply their sun by the second part; subtract the product from the remainder, snd if nothing remain, the square root is obtained. But if there is a remainder, it must be divided by the donble of the parts already found, and the quotient will give the third term of the root, and so on.

Exs. Required the square root of $x^{4}-2 x^{3}+{ }_{2} x^{2}-\frac{x}{2}+\frac{1}{16}$.

$$
\begin{aligned}
& x^{4}-2 x^{3}+\frac{3}{2} x^{2}-\frac{x}{2}+\frac{1}{10}\left(x^{2}-x+\frac{1}{1}\right. \\
& \left.2 x^{2}-x\right)-2 x^{3}+\frac{3}{2} x^{2} \\
& \times-x)-2 x^{3}+x^{2} \\
& \left.2 x^{2}-2 x+\frac{1}{4}\right) \frac{x^{2}}{2}-\frac{x}{2}+\frac{1}{16} \\
& \times \frac{x^{2}}{4}-\frac{x}{2}+\frac{1}{16}
\end{aligned}
$$

To understand the reason of the rule for findigg the square root of a compound quantity, it is only necessary to involve any quantity, as $a+b+c$, to the second power, and observo the composition of its square; for we have $(a+b+c)^{2}=a^{2}+2 a b+b^{2}+2 a c+2 b c+c^{2} ;$ but $2 a b+b^{2}=$ $(2 a+b) b$ and $2 a c+2 b c+c^{2}=(2 a+2 b+c) c$, thereforo,

$$
(a+b+c)^{2}=a^{2}+(2 a+b) b+(2 a+2 b+c) c
$$

and from this expression the manner of deriving the rulo is obvious.

As an illustration of the common rule for extracting the square root of any proposed number, we shall suppose that the root of 59049 is required.

Accordingly we have $(a+b+c)^{2}=59049$, and from hence we are to find the values of a, b, and c.

II. To extract the cube root.

Range the terms of the quantity according to the powere of some one of the letters.

Find the root of the first term, for the first part of the root sought ; bratract its cube from the whole quantity, and divide the remainder by three times the square of the part already found, and the quotient is the second part of the root.

Add together three times the square of the part of the root already found, three times the product of that part and the second part of the root, and the square of the second part; multiply the sum by the second part, and subtract the product from the first remainder, and if nothing remain, the root is ohtained; but if there is a remainder, it must be divided by three times the square of the sung of the parts already found, and the quotient is a third term of the root, and so on, till the whole root is obtained.
Ex. Required the cube root of $a^{3}+3 a^{2} x+3 a x^{2}+y^{3}$

$$
a^{3}+3 a^{2} x+3 a x^{2}+x^{3}(a+x, \text { the rosi required. }
$$

$$
\begin{gathered}
\left.3 a^{2}+3 a x+x^{2}\right) 3 a^{2} x+3 a x^{2}+x^{3} \\
\frac{3 a^{2} x+3 a x^{2}+x^{3}}{}
\end{gathered}
$$

The reason of the preceding rule is endent from the composition of a cube; for if any quantity, as $a+b+c$, be raised to the third power, we have $(a+b+c)^{3}=a^{3}+\left(3 a^{2}\right.$ $\left.+3 a b+b^{2}\right) b+\left\{3(a+b)^{2}+3(a+b) c+c^{2}\right\} c$, and by consider-
ing in what manner the terms a, b, and c are deduced from this expression for the cube of their sum, we also see the reason for the common rule for extracting the cube root in numbers. Let it be required to find the cube root
of 13312053 , where the root will evidently consist of three figures; let us suppose it to be represented by $a+b+c$, and the operation for finding the numerical values of these quantities may stand as fullows :-

$$
\begin{aligned}
& x^{3}=\begin{array}{r}
13312053(200=a \\
300000 \\
30 \\
7
\end{array}=b=b, ~ 237 \text { is the root required } \\
& 3 a^{2}=1200005312053
\end{aligned}
$$

$$
\begin{aligned}
& 3(a+b)^{2}+3(a+b) c+c^{2}=\overline{163579}, 1145053=\left[3(a+b)^{2}+3(a+b) c+c^{2}\right] c
\end{aligned}
$$

III. To extract any other root.

Range the quantity of which the root is to be found, according to the powers of one of its letters, and extract the root of the first term; that will be the first member of the root required.
Tivolve the first member of the root to a power less by inity than the number that denominates the root required, and multiply the power that arises by the number itself; divide the second term of the given quantity by the product, and the quotient shall give the sccond member of the root required.
Find the remaining members of the root in the same manner by considering those already found as making one term.
24. In the preceding exarnples, the quantities whose roots were to be found have been all such as could have their roots expressed by a finite number of terms; but it will frequently happen that the root cannot be otherwise assigned than by a series consisting of an infinite number of terms. The preceding rules, however, will serve to determine any number of terms of the series. Thus, the equare root of $a^{2}+x^{2}$ will be found to be $a+\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}+$ $\frac{x^{6}}{16 a^{6}}-\frac{5 x^{8}}{128 a^{7}}+\& c$., and the cube root of $a^{3}+x^{3}$ will stand thus, $a+\frac{x^{3}}{3 a^{2}}-\frac{x^{8}}{9 a^{6}}+\frac{5 x^{9}}{81 a^{8}}-\frac{10 x^{12}}{243 a^{12}}+\&$ c. But as the extraction of roots in the form of series can be more easily performed by the aid of the binomial theorem, we shall refer the reader to the section where this subject is resumed.

Additional Examples.

Ex. 1. Write down the square root of $x^{4}-2 x^{3}+\frac{3}{2} x^{2}-$ $\frac{1}{2} x+\frac{1}{16}$, which is given as a perfect square.

Since the square contains 5 terms, the root must contain 3. Of these the first is x^{2} on account of x^{4}, the second $-x$ on account of $2 x^{3}$, and the third $\pm \frac{1}{4}$ on account of $\frac{1}{16}$. But as the last term but one of the square is - , and the last term but one of the root also-, the last term of the root must be + .

$$
\therefore x^{2}-x+\frac{1}{4} \text { is the root required. }
$$

Ex. 2. Extract the square root of $25 x^{4}+16 y^{4}-6 x y\left(5 x^{2}\right.$ $\left.+4 y^{2}\right)+49 x^{2} y^{2}$. We must first arrange the square in terms of some one quantity (say x).
The first term of the square is $25 x^{4}$, which gives $5 x^{2}$ as the first term of the root. The second term of the square,
$-30 x^{3} y$ gives $-3 x y$ as the second term of the rout. The last term $16 y^{4}$ gives $\pm 4 y^{2}$; which, since the last term but one is - , leads to the root $5 x^{2}-3 x y+4 y^{2}$.

Ex.3. Extract the cube root of

$$
8 x^{6}-36 x^{5}+66 x^{4}-63 x^{3}+33 x^{2}-9 x+1
$$

Since there are seven terms in the cube, there must be three serms in the root. The first is $2 x^{2}$, the second $-3 x$, the third 1 , as will be seen at once by examining the cube of $p-q+1$, viz., $p^{3}-3 p^{2} q+\ldots-3 q+1$.

These examples have been solved by the assumption that the root is capable of extraction without leaving a remainder. When this is not the case, or when there is no certainty that it is 80 , the only resource is to work the example through, abbreviating the process by the aid of detached coefficients.

Ex. 4. Extract the square root of $4 x^{6}+12 x^{5} y+5 x^{4} y^{2}-$ $2 x^{3} y^{3}+7 x^{2} y^{4}-2 x y^{3}+y^{0}$. The work is written thus:

$$
\begin{aligned}
& 4+12+5-2+7-2+1\left(2 x^{3}+3 x^{-0^{2}}-x y^{2}+y^{3}\right. \\
& 4+3) 12+5 \\
& 4+\frac{12+9}{4-2}-7 \\
& 4+6-1)-4-6+1 \\
& 4+6-2+1) 4+6-2+1
\end{aligned}
$$

Ex. 5. Extract the cube root of

$$
27 x^{6}-27 x^{5} y-45 x^{4} y^{2}+35 x^{3} y^{3}+30 x^{2} y^{4}-12 x y^{5}-8 y^{6}
$$

We have

$$
\begin{aligned}
& \quad \begin{array}{l}
\frac{27-27-45+35+30-12-8\left(3 x^{2}-x y-2 y^{2}\right.}{\frac{27}{57}-45+35} \\
\frac{-27+9-1}{} \\
27-18+3)-54+36+30-12-8 \\
{\left[\begin{array}{r}
-54+36-6 \\
+36-12
\end{array}\right]}
\end{array}
\end{aligned}
$$

\dot{S} ect. III:-Fractions.

25. In the operation of division, the divisor may be sometimes greater than the dividend, or may not be contained in it an exact number of times: in cither case the quotient is expressed by means of a fraction. There can be no difficulty, however, in estimating the magnitude of such a quotient ; if, for example, it were tho fraction for, may consider it as denoting either that some unit is divideả into 7 equal parts, and that 5 of these are taken, or that

5 times the eamo nnit is dividet into 7 equal parts, and one of them taken.

In any fraction the upper number, or, the dividend, is ealled the numerator, and the lower number or divisor is called the denominator. Thus, in the fraction $\frac{a}{b}, a$ is the numerator, and b the denominator.

If the numerator be less than the denominator, such a fraction is called a proper fraction; but if the numerator bo either cqual to or greater than the denominator, it is called an improper fraction; and if a quantity be made up of an integer and a fraction, it is called a mixed quantity. Thus, $\frac{a}{a+x}$ is a proper fraction; $\frac{a}{a}$ and $\frac{a+x}{a}$ are both improper fractions ; and $\delta+\frac{x}{a}$ is a mixed quantity.

The reciprocal of a fraction is another fraction, having its numerator and denominator respectively equal to the denominator and numerator of the former.

Thus, $\frac{b}{a}$ is the reciprocal of the fraetion $\frac{a}{b}$.
26. The following proposition is the foundation of the operations relating to fractions.

If the numerator and denominator of a fraction be either both multiplied or both divided by the same quantity, the value of the resulting fraction is the same as before.

To demonstrate this proposition we shall throw the definition of a fraction into a categorical form. We shall accordingly define the fraction $\frac{a}{b}$ as such a magnitude, that when it is multiplied by b, the product is a.

$$
\begin{aligned}
& \text { Then since } \begin{aligned}
& \frac{a}{b} \\
& n \times b=a \\
& \times \frac{a}{b} \times b=n a
\end{aligned} \\
& \text { i.e. (Art. 9, Law 3), } \quad \frac{a}{b} \times n b=n a \\
& \text { But } \quad \begin{aligned}
\frac{n a}{n b} \times n b & =n a \text { (Def.) } \\
\therefore & \therefore \frac{a}{b}=\frac{n a}{n b} .
\end{aligned}
\end{aligned}
$$

From this proposition, it is obvious that a fraction may be very differently expressed without changing its value, and that any integer may bo reduced to the form of a fraction, by placing the product arising from its maltiplication by any assumed quantity as the numerator, and the assumed quantity as the denominator of the fraction. It also appears that a fraction very complex in its form may often be reduced to another of the same value, but more simple, by finding a quantity which will divide both the numerator and denominator, without learing a remainder. Such a common divisor, or common measure, may bo etther simple or compound; if it be simple, it is readily found by inspection, but if it be compound, it may be found as in the following problem.
27. Prob. I.-To find the greatest common Measure of two Quantities.
Rule 1. Range the quantities according to the power of some one of the letters, as in division, dearing out the simple divisors of each quantity.
2. Divide that quantity which is of most dimensions by the other one, and if there be a remainder, divide it by its greatest simple divisor; and then divide the last compound divisor by the resulting quantity, and if anything yet remain, divide it also by its greatest simple divisor, and the last compound divisor by the resulting guantity. Proceed in this way till nothing remain,
and the last divisor shall bo the common measure m quired.
Nole.-1t will sometimes be necessary to multiply the dividends by simple quantities in order to make the divisions succeed.
The demonstration of this proposition depends on the Axion, that whatever divides a number divides any multiple of the number; and whatever divides two numbers divides their sum or difference. It was given by Euclid in Prop. 2, Book vii., very ruuch as follows:-

- Let a, b be tho quantities, the smaller of which is b.

Let a be divided by i, with a remainder c,

$$
\begin{aligned}
& b \text { by } c \text {, with a remainder } d \text {, } \\
& c \text { by } d \text {, with no remainder, }
\end{aligned}
$$

d is the greatest common measure of α and b.
We have $\quad a-p b=c, b-q c=d, c=r d$.
Now, (1.) d is a common measure of a and b; for d divides $c \therefore q c \therefore q c+d \therefore b \therefore p b \therefore p b+c \therefore a$; i.e., d divides a and b.
(2.) It is the greatest common divisor. For if not, lat e bo the greatest; then, since e divides a and b, it divides a and $p b, \therefore a-p b \therefore c \therefore q c \therefore b-q c \therefore d$; i.e., t is lnss than d, aud not greater.

Cor. Every other divisor of a and l divides their greatest common measure.

Observe that no fraction is in a form to be interpreted until it is reduced to its lowest terms.

Ex. 1. Required the greatest common measure of the quantitics $a^{2} x-x^{3}$ and $a^{3}-2 a^{2} x+a x^{2}$. The simple divisor x being taken out of the former of these quantities, and a out of the latter, they are reduced to $a^{2}-x^{2}$ and $a^{2}-2 a x+x^{2}$; and as the quantity a rises to the same dimensions in both, we may tako either of them as tho first divisor: let us take that which consists of fewest terms, and the operation will stand thus:

$$
\begin{aligned}
&\left.a^{2}-x^{2}\right) a^{2}-2 a x+x^{2}(1 \\
& \frac{a^{2}-x^{2}}{-2 a x+2 x^{2}} \text { remainder }
\end{aligned}
$$

which, divided by $-2 x$, is $a-x) a^{2}-x^{2}(a+x$

$$
\begin{aligned}
& \frac{a^{2}-a x}{+a x-x^{3}} \\
& \frac{+a x-x^{2}}{*}
\end{aligned}
$$

Hence it appears that $a-x$ is the greatest common measure required.

Ex. 2. Required the greatest common measure of $8 a^{2} b^{2}-10 a b^{3}+2 b^{4}$, and $9 a^{4} b-9 a^{3} b^{2}+3 a^{2} b^{3}-3 a b^{4}$.

It is cvident, from inspection, that b is a simplo divisor of both quantities; it will therefore be a factor of the common measure required. Let the simple divisors be now left out of both quantities, and they are reduced to $4 a^{2}$ $5 a b+b^{2}$, and $3 a^{3}-3 a^{2} b+a b^{2}-b^{3}$; but as the second of these is to be divided by the first, it must be multiplied by 4 to make the division succeed, and the operation will stand thus:

$$
\begin{gathered}
\left.4 a^{2}-5 a b+b^{2}\right) 12 a^{3}-12 a^{2} b+4 a b^{2}-4 b^{3}(3 a \\
\frac{12 a^{3}-15 a^{2} b+3 a b^{2}}{+3 a^{2} b+a b^{2}-4 b^{3}}
\end{gathered}
$$

This remainder is to be divided by b, and the new divi. dend multiplied by 3 , to make the division again succeed, and the work will stand thus:

$$
\begin{array}{r}
\left.3 a^{2}+a b-4 b^{2}\right) 12 a^{2}-15 a b+3 b^{2}(4 \\
\frac{12 a^{2}+4 a b-16 b^{2}}{-19 a b+19 L^{2}}
\end{array}
$$

This remainher is in bo dwided by -196 , which being cune, and the last divisor taken as a dividend as before, the rest of tiee (1) cration will be as follows:-

$$
\begin{gathered}
a-b) 3 a^{2}+a b-4 b^{2}(3 a+4 b \\
\frac{3 a^{2}-3 a b}{+4 a b-4 b^{2}} \\
+\frac{+4 a b-4 b^{2}}{*}
\end{gathered}
$$

from which it appears that the common divisor sought is $a-b$, and remarking that the quanrities proposed have also a simple divisor b, the greatest common measure which is required will be $l(a-b)$.

It will be scen that the examples we have given are jut on numbers, but on algebraic quantities. In fact, the axiom and the demonstration founded on it apply, with sume restrictions aud modifications, to such quantities. The most important of the modifications is this: that the divisor, instead of being a whole number, is an expression of the form $x+m$, where m is of the nature of a numerical quantity, and does not depend on x.

The application of this modified form of the axiom has a wide range in the higher analysis. We offer two additional examples for advanced students.
$E x$. 1. If $a x^{2}+b x+c, a^{\prime} x^{2}+b^{\prime} x+c^{\prime}$ have a common divisor of the form $x+m$, prove that

$$
\left(a^{\prime} b-a b^{\prime}\right)\left(b^{\prime} c-b c^{\prime}\right)=\left(a^{\prime} c-a c^{\prime}\right)^{2}
$$

Multiply the first expression by a^{\prime}, and the second by a, aud subtract the products, the difference $\left(a^{\prime} b-a b^{\prime}\right) x+a^{\prime} c$ - ac', is by the axiom divisible by $x+m$,

$$
\therefore x+\frac{a^{\prime} c-a c^{\prime}}{a^{\prime} b-a b^{\prime}} \text { is } x+m \text {. }
$$

Again. multiply the first expression by c^{\prime}, and the secoud by c, and subtract them; the difference $\left(a^{\prime} c-a c^{\prime}\right) x^{2}$ $+\left(b^{\prime} c-u c^{\prime}\right) x$ is divisible by $x+m, \therefore x+\frac{b^{\prime} c-b c^{\prime}}{a^{\prime} c-a c^{\prime}}$ is $x+m$.

$$
\text { Consequently, } \quad \frac{b^{\prime} t-b c^{\prime}}{a^{\prime} c-a c^{\prime}}=\frac{a^{\prime} c-a c^{\prime}}{a^{\prime} b-a b^{\prime}},
$$

the condition required.
$E x$. 2. If $a x^{3}+3 b x^{2}+d, b x^{3}+3 d x+e$, Lave a common divisor; theu

$$
(4 b d-a c)^{3}+27\left(a d^{2}+b^{2} c\right)^{2}=0
$$

Treating this question exactly as the last, viz., multiplying first by b and a, and then by e and d, and subtracting, it appears (if u be written instead of $l d-a e$ for brevity) that the two following expressions have a common divisor,

$$
3 b^{2} x^{2}-3 a d x+u \text { and } u x^{2}-3 b e x+3 d^{2}
$$

whence, by the last example, the condition is

$$
\left(3 b e u-9 a d^{3}\right)\left(3 a d u-9 b^{3} e\right)=\left(u^{2}-9 b^{2} d^{2}\right)^{2},
$$

from which u divides out as a common factor, and the result reduces to that enunciated.
28. Prob. П.-To Reduce a Fraction to its Lowest, Terms.

Rule. Divide both numerator and denominator by their greatest common measure, which may be found by Prob. I.
Exx. 1. Reduce $\frac{a^{2} x-x^{3}}{a^{3}-2 a^{2} x+a x^{2}}$ to its lowest terms.
We lave already found in the first example of Prob. I. that the greatest common measure of the numerator and denominator is $a-x$; and dividing both by this quantity,
We Lave $\quad \frac{a^{2} x-x^{3}}{a^{3}-2 a^{2} x+a x^{2}}=\frac{a x+x^{2}}{a^{2}-a x}$.

$$
\frac{a^{2} x-x^{3}}{a^{3}-2 a^{2} x+a x^{2}}=\frac{a x+x^{2}}{a^{2}-a x} .
$$

In like manner we find

$$
\frac{9 a^{4} b-9 a^{3} b^{2}+3 a^{2} b^{3}-3 a b^{4}}{8 a^{2} b^{2}-10 a b^{3}+2 b^{4}}=\frac{9 a^{3}+3 a b^{3}}{8 a b-2 b^{2}},
$$

the common measure being $b(a-b)$, as was shown in Ex. ample 2, Problem I.
$E x$. 2. Reduce $\frac{a^{2}-b^{2}-c^{2}+2 b c}{a^{2}+b^{2}-c^{2}+2 a b}$ to its lowest terms.
$\frac{a^{2}-b^{2}-c^{2}+2 b c}{a^{2}+b^{2}-c^{2}+2 a b}=\frac{a^{2}-(b-c)^{2}}{(a+b)^{2}-c^{2}}=\frac{(a+b-c)}{(a+b+c)(a+b-c)}=\frac{a-b+c}{a+b+c}$.
Ex. 3. To find the value of $\frac{(x+1)^{2}-3 x-3}{x^{2}-2 x}$ when $x=2$. Here the substitution of 2 in place of x renders the numerator and denominator separately‘equal to 0 . This shows (Art. 20) that $x-2$ is a divisur of each of thenl. We get, therefore,

$$
\frac{(x+1)^{2}-3 x-3}{x^{2}-2 x}=\frac{x+1}{x}, \text { which when } x=2 \text { becomes } \frac{3}{2} .
$$

Ex. 4. Find the value of $\frac{x^{3}-4 x^{2}+2 x+1}{x^{4}-4 x^{3}+6 x^{2}-4 x+1}$ whell $x=1$.
Dividing numerator and denominatur by $x-1$, the result is $\frac{x^{2}-3 x-1}{x^{3}-3 x^{2}+3 x-1}$, which, when 1 is written in place of x, becomes $\frac{3}{0}$, or infinity.

29. Рrob. II.-To Reduce a Mixed Quantity to an Improper Fraction.

Rule. Multiply the integer by the devominator of the fraction, aud to the product add the numerator; and the denominator being placed under this sum, the result will be the improper fraction required.
$E x .1$. Reduce $a-x+\frac{x^{2}}{a+x}$ to an improper fraction.

$$
a-x+\frac{x^{2}}{a+x}=\frac{(a+x)(a-x)+x^{2}}{a+x}=\frac{a^{2}}{a+x}, \text { Ans. }
$$

30. Рrob. IV.-To Reduce an Improper Fraction to a Whote or Mixed Number.

Rule. Divide the numerator by the denominator for the integral part, and place the remainder, if any, over the denominator; it will be the mixed quantity required.
Ex. 1. Reduce $\frac{a x+2 x^{3}}{a+x}$ and $\frac{x^{2}-y^{2}}{x-y}$ to whole or mixed quantities.

First $\frac{a x+2 x^{2}}{a+x}=x+\frac{x^{2}}{a+x}$, the auswer.
And $\frac{x^{2}-y^{2}}{x-y}=x+y$ a whole quantity, which is the answer.
31. Prob. V.-To Reduce Fractions having different Denominutors to others of the same value vohich shall have a common Denominator.
Rute. Multiply each numerator separately into all the denominators except its own for the new numerators, and all the denominators together for the common denominator.
Ex. 1. Reduce $\frac{a x}{a-x}$ and $\frac{a^{3}-x^{2}}{a+x}$ to tractions of equal value having a common denominator.
$\left.\begin{array}{l}a x(a+x)=a^{2} x+a x^{2} \\ \left(a^{2}-x^{2}\right)(a-x)=a^{3}-a^{2} x-a x^{2}+x^{3}\end{array}\right\}$ the new numeratora.
$(a-x)(a+x)=a^{2}-x^{2}$, the common denominator.
Hence $\frac{a x}{a-a}=\frac{a^{2} x+\pi x^{2}}{a^{2}-x^{2}}$ and $\frac{a^{2}-x^{2}}{a+x}=\frac{a^{3}-a^{2} x-a x^{2}+x^{3}}{u^{2}-x^{2}}$.
32. Рrob. VI.-To Add or Subtract Fractions.

Rule. Reduce the fractions to a common denominator, and add or subtract their numerators; and the sum.or difference placed over the common denominator is the sum or remainder required.
In practico, however, it is generally better to separate the process into two or more parts analogous to the addition or subtraction of sums of money, where the pousds are added to the pounds, the shillings to the shillings, dc., and the result afterwards combined.

Ex. 1. Add together $\frac{a}{a-b}$ and $\frac{b}{b-a}$.
(The latter fraction is $-\frac{b}{a-b}$.
\therefore the sum required is $\frac{a}{a-b}-\frac{b}{a-b}=\frac{a-b}{a-b}=1$.
Similarly, $\frac{1}{a^{n}-1}+\frac{1}{a^{-n}-1}=\frac{1}{a^{n}-1}+\frac{a^{n}}{1-a^{n}}=\frac{i-a^{n}}{a^{n}-1}=-1$.
Ex. 2. Collect into a single fraction

$$
\begin{gathered}
\frac{1}{a-b}-\frac{1}{a+b}+\frac{2 a}{a^{2}-b^{9}} \\
\text { Sinob } \quad \frac{1}{a-b}-\frac{1}{a+b}=\frac{2 b}{a^{2}-b^{2}} \\
\therefore \frac{1}{a-b}-\frac{1}{a+b}+\frac{2 a}{a^{2}-b^{3}}=\frac{2(b+a)}{a^{2}-b^{2}}=\frac{8}{a-b}
\end{gathered}
$$

E.5. 3. Collect $\frac{1}{4 x-8}+\frac{1}{3 x-6}+\frac{7}{24-12 x}$.

We observe that $x-2$ is common to all the aenominators; the question may therefore bo written,

$$
\frac{\frac{1}{4}}{x-2}+\frac{\frac{1}{3}}{x-2}-\frac{\frac{7}{12}}{x-2}=0
$$

Ex. 4. Collect $\frac{1}{3 x+2 y}+\frac{1}{x-4 y}+\frac{1}{3 x-2 y}-\frac{25 x+4 y}{x^{2}-16 y^{2}}$.
Here commence by adding the lst and 3d together, and the 2 d and 4th together; which results in $/$

$$
\begin{aligned}
& \frac{6 x}{9 x^{2}-4 y^{3}}-\frac{24 x}{x^{2}-16 y^{2}} \\
& =6 x\left(\frac{1}{0 x^{2}-4 y^{3}}-\frac{4}{x^{2}-16 y^{2}}\right)=6 x \frac{-35 x^{2}}{\left(9 x^{2}-4 y^{2}\right)\left(x^{2}-16 y^{2}\right)} \\
& =-\frac{210 x^{3}}{\left(9 x^{2}-4 y^{2}\right)\left(x^{3}-16 y^{2}\right)}
\end{aligned}
$$

Six. 5. Find the sum of $\frac{1+x+x^{2}+x^{3}}{1-x+x^{2}-x^{3}}+\frac{1-x+x^{2}-x^{3}}{1+x+x^{2}+x^{3}}$.
The numerator will consist of the sum of two products, the one containing $+x$, exactly in the same way that the other contains $-x$ If, then, wo writo down ono of these products, and double the even powers of x in it, omitting the odd powers, we shall obtain the required result. The product of the denominators again may be readily obtained by regarding it as that of the difference and sum of $1+x^{2}$ aud $x+x^{3}$. As such processes are of constant occurrence, wo will indicato tho work in full.

Numerator,

$$
\begin{aligned}
& \begin{array}{l}
1+1+1+1 \\
1+1+1+1
\end{array} \\
& \begin{array}{r}
1+1+1+1 \\
+1
\end{array}+1+1+1 \\
& +1+1+1+1 \\
& \quad+1+1+1+1
\end{aligned} \frac{+3 x^{2}+3 x^{4}+1}{1}
$$

Double of
Denommator, $\left\{1+x^{2}-\left(x+x^{3}\right)\right\}\left\{1+x^{2}+\left(x+x^{3}\right)\right\}=$ $\left(1+x^{2}\right)^{2}-\left(x+x^{3}\right)^{2}=1+2 \dot{x}^{2}+x^{4}-x^{2}-2 x^{4}-x^{8}=1+x^{2}$

And the rcsult is $\frac{2+6 x^{2}+6 x^{4}+2 x^{4}}{1+x^{3}-x--x^{6}}$.
Ex. 6. Collect into onc fraction $\frac{1}{1+x^{-m}+x \div}+$ $\frac{1}{1+x^{n-n}+x^{n-p}}+\frac{1}{1+x^{p-n}+x^{p-1}}$.

Multiply numerator and denominator of the first fraotion by $x^{-\pi}$, dec, and the given quantity becomes

$$
\frac{x^{-\infty}}{x^{-\infty}+x^{-\infty}+x^{-p}}+\frac{x^{-\infty}}{x^{-\infty}+x^{-\infty}+x^{-p}}+\frac{x^{-\infty}}{x^{-\infty}+x^{-\infty}+x^{-p}}=1
$$

Ex. 7. If $\frac{1}{1+\frac{1}{l+l n}}+\frac{m}{1+m+m l}+\frac{n m}{1+n+n m}=1$, and

$$
\frac{l}{1+l+l n}+\frac{m l}{1+m+m l}+\frac{1}{1+n+n m}=1,
$$

none of the denominators being zero, then $l=m=n$.
Multiply the first quantity by l, and subtract, there results $l=\frac{1+m}{1+n} n$, which, when substituted. in the first quantity, gives $m=n$, whence the proposition.
33. The converse problem to collecting many fractions 1 into one is frequently as important as the direct-the pro- 1 blem, namely, of resolving a compound fraction into its components or partial fractions. For a first example, if it be required to find what simple fractions make up the compound fraction $\frac{2 x}{x^{2}-a^{2}}$, we commence by observing that the denominator $x^{2}-a^{2}$ is the product of $x+a$ and $x-a$. Hence, $\frac{2 x}{x^{2}-a^{2}}$ is the sum of the fractions whose denomina tors aro $x+a$ and $x-a$.

Let $\frac{2 x}{x^{2}-a^{2}}=\frac{A}{x+a}+\frac{B}{x-a}$, where A and B are quantities which involve a only, not x, since x^{2} does not appear in the numerator of the sum.

By addition, $\frac{2 x}{x^{2}-a^{2}}=\frac{A(x-a)+\mathrm{B}(x+a)}{x^{2}-a^{2}}$.

$$
\therefore 2 x=\mathrm{A}(x-a)+\mathrm{B}(x+a) .
$$

To obtain A and B from this equality, we remark that the equality is an identity, as in Art. 20. We may, therefore; deal with it in either of two ways: 1. Make the x 's on the left hand side to coincide with the x 's on the right, and the a's in like manner. 2. As in Art. 20, write 3nything we please in place of x on both sides. We will in this example take the first method, and illustrate the second method by the subseoucnt examples. We get $2=A+B, 0=A-B ; \therefore A=B=1$, and the result is

$$
\frac{2 x}{x^{2}-a^{2}}=\frac{1}{x-a}+\frac{1}{x-a}
$$

Ex. 2. $\frac{1}{(x-a)(x-b)}=\frac{A}{x-a}+\frac{3}{x-b}$.

$$
\therefore 1=A(x-b)+B(x-a)
$$

Write a for x, then $1-A(a-b) \therefore A=\frac{1}{a-b}$.
Write bfor x, then $1=\mathrm{B}(b-a)=-(a-b) \therefore \mathrm{B}=-\frac{1}{u-b}$;
bence, $\frac{1}{(x-a)(x-b)}=\frac{1}{a-b}\left(\frac{1}{x-a}-\frac{1}{x-b}\right)$.
The reader will observe that wo have treated $\frac{1}{a-b}$ as if it were not itself a fraction. In fact, in the application of the subject beforo us, the letters a and b stand for arithmetical quantitics, and the fraction $\frac{1}{a-b}$ is simply an arithmetical fraction, as contradistinguished from an algebraica fraction like $\frac{1}{x-a}$.
rractions.]
A L G E B R A
Ex. 3. $\frac{p x+q}{(x-a)(x-b)(x-c)}=\frac{A}{x-a}+\frac{B}{x-b}+\frac{\mathbf{C}}{x-c}$
gives $\quad p x+q=A(x-b)(x-c)+\mathrm{B}(x-a)(x-$

$$
+C(x-a)(x-b)
$$

$$
\therefore p a+q=\mathrm{A}(a-b)(a-c), \text { \&c. }
$$

and

$$
\begin{aligned}
& \frac{p x+q}{(x-a)(x-b)} \overline{(x-c)}=\frac{p a+q}{(a-b)(a-c)} \cdot \frac{1}{x-a}+ \\
& \frac{p b+q}{(b-a)(b-c)} \cdot \frac{1}{x-b}+\frac{p c+q}{(c-a)(c-b)} \cdot \frac{1}{x-c}
\end{aligned}
$$

Ex. 4. Find the sim of $\frac{a+b}{(b-c)(c-a)}+\frac{b+c}{(c-a)(a-b)}+$ $\frac{c+a}{(\tau-b)(b-c)}$

Let $a+b+c=s$. and write in alplabetical order; it gires

$$
\frac{a-s}{(a-b)(a-c)}+\frac{v-s}{(b-a)}(b-c)+\frac{c-s}{(c-a)(a-b)}
$$

i.e. (Ex. 3), the A, B, C of the resolved fraction,

$$
\frac{x-s}{(x-a)(x-b)(x-c)}=\frac{A}{x-a}+\frac{B}{x-b}+\frac{C}{x-c},
$$

and since $x-s=\mathrm{A}(x-b)(x-c)+\mathrm{B}(x-a)(x-c)+$ $C(x-())(x-b)$, the sum reauired. being the coefficient of x^{3}, is equal to 0 .

The reader will easily extend this pmcess to other cases, as, for instauce, to prove

$$
\text { Fx. 5. } \begin{aligned}
& \frac{b c d}{(a-b)(a-c)(a-d)}+\frac{c d a}{(b-c)(b-d)(b-a)}+ \\
& \frac{d a b}{(c-d)(c-a)(c-b)}+\frac{a b c}{(d-a)(d-b)(c-c)}=1
\end{aligned}
$$

34. Рrob. VII.-To Afultiply Fractions.

Rule. Multiply the numerators of the fractions for the numerator of the product, and the denominators for the denominator of the product.
The demonstration follows at once from the definition of a fraction given in Art. 26; thus since $\frac{a}{b} \times b=a, \frac{c}{d} \times d=c$, we have $\frac{a}{b} \times b \times \frac{c}{d} \times d=c c c$, i.e., by the comantative law $\frac{1}{b} \times \frac{c}{d} \times b d=a c$.
$\begin{array}{rr}\text { but } & \frac{a c}{b d} \times b d=a c \\ \therefore \quad \frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d} .\end{array}$

35. Prod. VIII.-To Divide Fiactions.

Rule. Multiply the dividend by the reciprocal of the divisor, the product will be the quutient required.
This rule requires no demonstration.
Examples in Mrultiplication and Division of Fructions.
Ex. 1. Multiply $\frac{a}{b}-\frac{b}{a}$ by $\frac{a^{2}}{a^{2}-b^{2}}$.. Since $\frac{a}{b}-\frac{b}{a}=\frac{a^{2}-b^{3}}{a \dot{0}}$, \therefore tho product is

$$
\frac{a^{2}-b^{2}}{a b} \times \frac{a^{2}}{a^{3}-b^{2}}=\frac{a^{2}}{a b}=\frac{a}{b}
$$

Ex. 2. Multiply $\frac{x^{3}-3 x+2}{x^{3}+2 x^{2}+2 x+1}$ by $\frac{x^{3}+2 x+1}{x^{2}-5 x+4}$.
Because the numerator of the first fraction, and the denominator of the second bath become 0 , when 1 is written for x, cach is divisible by $x-1$ (Art. 20). In the mame way the denominator of the first fraction, and the
numerator of the second are both divisible by $x+1$. Hence,

$$
\begin{gathered}
\frac{x^{3}-3 x+2}{x^{3}+2 x^{2}+2 x+1} \times \frac{x^{3}+2 x+1}{x^{3}-5 x+4}=\frac{x^{3}-3 x+2}{x^{2}-5 x+4} \times \frac{x^{2}+2 x+1}{x^{3}+2 x^{2}+2 x+1} \\
=\frac{x^{2}+x-2}{x-4} \times \frac{x+1}{x^{2}+x+1}=\frac{x^{3}+2 x^{2}-x-2}{x^{3}-3 x^{2}-3 x-4}
\end{gathered}
$$

Ex. 3. Divido $\frac{a}{z}-\frac{b}{a}$ by $\frac{a^{2}}{b^{2}}-\frac{b^{2}}{a^{2}}$.
The quotient is $\frac{a^{2}-b^{2}}{a b} \times \frac{a^{2} b^{2}}{a^{4}-b^{4}}=\frac{a b}{a^{2}+b^{2}}$.
Ex. 4. Reduce, $\dot{i}-\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)^{2}$ to factorials.

$$
\begin{gathered}
1-\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)^{2}=\left(1+\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)\left(1-\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right) \\
=\frac{(b+c)^{2}-a^{2}}{2 b c} \times \frac{a^{2}-(b-c)^{2}}{2 b c} \\
=\frac{(b+c+a)(b+c-a)(a+b-c)(a-b+c)}{4 b^{2} c^{2}}
\end{gathered}
$$

Ex. 5. Reduce $1-\left(\frac{a^{2}+b^{2}-c^{2}-d^{2}}{2(a b+c d)}\right)^{2}$ to factorials.
$1-\left(\frac{a^{2}+b^{2}-c^{2}-d^{2}}{2(a b+c d)}\right)^{2}=\left\{1+\frac{a^{2}+b^{2}-c^{2}-d^{2}}{2(a b+c d)}\right\} \times$

$$
\begin{aligned}
& \left.1-\frac{a^{2}+b^{2}-c^{2}-d^{2}}{2(a b+c d)}\right\}=\frac{(a+b)^{2}-(c-d)^{2}}{2(c b+c d)} \times \frac{(c+d)^{2}-(a-b)^{2}}{2(a b+c d)} \\
& =\frac{(a+b+c-d)(a+b-c+d)(c+d+a-b)(c+d-a+b)}{4(a b+c d)^{2}}
\end{aligned}
$$

Misccllaneous Exannples in Fractions.

Ex. 1. Find the value of $\frac{1}{a b-a x}-\frac{1}{b x-a b}+\frac{x}{(x-a)(b c-c x)^{\prime}}$, when $x=\frac{2 a b c}{a b+a c+b c}$. Writing down every term with x first, there results-$-\frac{1}{a(x-b)}-\frac{1}{b(x-a)}-\frac{x}{c(x-a)(x-b)}=-\frac{\frac{x}{a}+\frac{x}{b}+\frac{x}{c}-2}{(x-a)(x-b)}=0$.

Ex. 2. Find the value of $\frac{1}{x-3 a}+\frac{1}{x-3 b}+\frac{1}{x+2 c}$, when $\frac{1}{a}+\frac{1}{b}=\frac{1}{c}$ and $x=2(a+b-c)$.

Restore symmetry by writing $-c$ for c; the numerator of the sum is $(x-3 b)(x-3 c)+(x-3 a)(x-3 c)+(x-3 a)$ $(x-3 b)=3\left\{x^{2}-2(a+b+c) x+3(a b+a c+b c)\right\}$. But $x=2(a+b+c)$, whence the first and second terms make up 0 ; and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$, is the third term divided by abc, \therefore the sum required is 0 .

Ex. 3. Given that $\left(a^{2}+b c\right)\left(b^{2}+a c\right)\left(c^{2}+a b\right)+\left(a^{2}-b c\right)$ $\left(b^{2}-a c\right)\left(c^{2}-a b\right)=0$, when multiplied ont and reduced, may be written $a^{3}+b^{3}+c^{3}+a b c=0$, prove that $\left(a^{2}+b c\right)$ $\left(b^{2}+a c\right)\left(c^{2}+a b\right)-\left(a^{2}-b c\right)\left(b^{2}-a c\right)\left(c^{2}-a b\right)=0$, may be reduced to $\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}+\frac{1}{a b c}=0$. The lattcr given equality, by dividing it by $a^{2} b c \times b^{2} a c \times c^{2} a b$, becomes

$$
\begin{aligned}
& \left(\frac{1}{b c}+\frac{1}{a^{2}}\right)\left(\frac{1}{a c}+\frac{1}{b^{2}}\right)\left(\frac{1}{a b}+\frac{1}{c^{2}}\right)- \\
& \left(\frac{1}{b c}-\frac{1}{a^{2}}\right)\left(\frac{1}{a c}-\frac{1}{b^{2}}\right)\left(\frac{1}{a b}-\frac{1}{b^{2}}\right)=0 \\
& \text { i.e. }\left(\frac{1}{b c}+\frac{1}{a^{2}}\right)\left(\frac{1}{a c}+\frac{1}{b^{2}}\right)\left(\frac{1}{a b}+\frac{1}{c^{2}}\right)+ \\
& \left(\frac{1}{a^{2}}-\frac{1}{b c}\right)\left(\frac{1}{b^{2}}-\frac{1}{a c}\right)\left(\frac{1}{c^{2}}-\frac{1}{a b}\right)=0,
\end{aligned}
$$

which is identical with the first given equality, but with $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$, written in place of a, b, c. The result therefure of
reducing the second equality will be identical with that of reducing the first, when $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$, are writteu in place of a, b, c Now the former result is $a^{3}+b^{3}+c^{3}+a b c=0, \therefore$ the Aatter is $\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}+\frac{1}{a b c}=0$.
K.x. 4. Prove tbat $\frac{a_{1}-1}{\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \ldots\left(a_{1}-a_{n}\right)}+$
$\frac{a_{3}^{n-1}}{\left(a_{1}-a_{1}\right)\left(a_{2}-a_{3}\right) \ldots\left(a_{2}-a_{n}\right)}+\& c$., is equal to 0 if $m>n$, and equal to 1 if $m=n$. This is easily proved by resolving $\frac{x^{-1}}{\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)}$ into partial fractions (Art. 33). We have

$$
\begin{aligned}
& \frac{x^{n-1}}{\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)}=\frac{A_{2}}{x-a_{1}}+\frac{\Lambda_{2}}{x-a_{2}}+\& c ., \\
& \therefore x^{n \rightarrow 1}=A_{1}\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)+\& c . .(1),
\end{aligned}
$$

whence, writing $a_{1}, a_{2}, \& c_{1}$, successively for x, we get A_{1}, A_{2} \&c.

The given quantity is $A_{1}+A_{9}+\ldots+A_{m}$, and the equation marked (1), gives, by equating coefficients of like powers of x, the result required.

Ex. 5. If $\frac{p}{q}=\frac{r}{8}$, then $\frac{p+q}{p-q}=\frac{r+s}{r-s}$.
For $\frac{p}{q}+1=\frac{\tau}{8}+1$ gives $\frac{p+q}{q}=\frac{\tau+s}{s}$, and $\frac{p}{q}-1=\frac{r}{s}-1$ gives $\frac{p-q}{q}=\frac{r-s}{8}$. Divide the former by the latter.
$E x$. 6. If $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$, then $a^{2}=b^{2}=c^{2}$
For $\frac{a+b}{a b}=\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}=-\frac{a+b}{c(a+b+c)}$,

$$
\therefore \text { either } a+b=0 \text {, or } \frac{1}{a b}=-\frac{1}{a c}-\frac{1}{b c}-\frac{1}{c^{2}} \text {. }
$$

In the latter case, $\frac{1}{c^{2}}=\frac{1}{a b}+\frac{1}{a c}+\frac{1}{b c}$,
which is not changed by interchanging c and b or c and a,

$$
\therefore \quad \frac{1}{c^{2}}=\frac{1}{b^{2}}=\frac{1}{a^{2}},
$$

so that on either alternative the proposition is true.
Ex. 7. Given that $\frac{a d-b c}{a-b-c+d}=\frac{a c-b d}{a-b+c-d}$, and a not equal to b, nor c equal to d; to prove that $a+b=c+d$; and that either of the fractions equals $\frac{a+b+c+d}{4}$

Write the equality thus,-

$$
\frac{a c-b d}{a d-b c}=\frac{a-b+(c-d)}{a-b-(c-d)}
$$

Apply Example 5, and there results,

$$
\frac{a c-b d+a d-b c}{a c-b d-a d+b c}=\frac{a-b}{c-d},
$$

ie.

$$
\frac{(a-b)(c+d)}{(c-d)(a+b)}=\frac{a-b}{c-d}, \text { whence } a+b=c+d
$$

If now $a-c$ or $d-b$ be written by a single symbol x, the first fraction becomes

$$
\frac{(c+x)(b+x)-c b}{2 x}=\frac{b+c+x}{2}=\frac{a+b}{2}=\frac{a+b+c+d}{4} .
$$

$E_{x_{0}}$ 8. If $x=\frac{1}{\sqrt{b+\sqrt{c}-\sqrt{ } a_{b}}}, y=\frac{1}{\sqrt{c}+\sqrt{a-\sqrt{b}}}$,

$$
z=\begin{gathered}
\quad \\
\sqrt{a} a+\sqrt{b}-\sqrt{c}, u= \\
\sqrt{1}+\sqrt{b}+\sqrt{c}
\end{gathered}
$$

prove that

$$
\begin{gathered}
\frac{(y+z-x+u)(z+x-y+u)(x+y-z+u)}{(x+y+z-u)^{3}} \\
\frac{(b+c-a)(c+a-b)(a+b-c)}{8 a b c}
\end{gathered}
$$

Deal with the reciprocals of x, y, z, u; thus,

$$
\begin{aligned}
& y+z-x+u=y+z-(x-u u) \\
= & y z\left(\frac{1}{z}+\frac{1}{y}\right)-x u\left(\frac{1}{u}-\frac{1}{x}\right)=2 \sqrt{a}(y z-x u \\
= & \because \sqrt{\prime \prime} y z r u\left(\frac{1}{x u}-\frac{1}{y z}\right) \\
= & 4 \sqrt{r u y=u u(c+b-a) .}
\end{aligned}
$$

Hence, by symmetry, the numerator of the left hand truotion becomes

$$
\begin{gathered}
.61 \sqrt{u b c} y^{3} z^{3} x^{3} u^{3}(b+c-u)(c+u-u)(u+b-c) . \\
\begin{array}{c}
\text { Also. } x+y+z-u=x y\left(\frac{1}{y}+\frac{1}{x}\right)+z u\left(\frac{1}{u}-\frac{1}{z}\right) \\
=2 \sqrt{c}(x y+z u)=2 \sqrt{c} x y z u\left(\frac{1}{z u}+\frac{1}{x y},\right. \\
=8 \sqrt{a b c} x y z u,
\end{array}
\end{gathered}
$$

Heuce the result.

Sect. IV.-Surds.

36. It has been already observed (Art. 28), that the root of any proposed quantity is found by dividing the exponent of the quantity by the index of the root; and the rule has been illustrated by examples, in all of which, however, the quotient expressing the exponent of the result is a whole number; but there may be cases in which the quotient is a fraction. Thus, if the cube root of a^{2} were required, it might be expressed, agreeably to the method of notation already explained, either thus, $\sqrt[3]{a^{2}}$, or tbus, $a^{\frac{9}{3}}$.

Quantities which bave fractional expunents are called surds, or imperfect powers, and are said to be irrationul, in opposition to others with integral exponents, which are called rational.

Surds may be denoted by means of the radical siga, but it will be often more convenient to use the notation of fractional exponents. The following examples will show bow they may be expressed either way.

$$
\begin{aligned}
& \sqrt[3]{a}=a^{\frac{1}{3}}, \quad \sqrt{4 a b^{2}}=2 b u^{\frac{1}{2}}, \quad \sqrt[4]{a^{3} b^{2}}=u^{3} b^{\frac{3}{3}} \\
& \sqrt{a^{2}+b^{2}}=\left\{a^{2}+b^{2}\right)^{\frac{1}{2}}, \quad \sqrt[3]{(a-b)^{2}}=(a-b)^{\frac{3}{3}} \\
& \frac{\sqrt{a+b}}{\sqrt{a b}}=(a+b\rangle^{\frac{1}{2}} a^{-\frac{1}{2}} b^{-\frac{1}{2}} .
\end{aligned}
$$

The operations concerning surds depend on the following principles:-

1. If the numerator and denominator of a fractional exponent be eitber both multiplied or both divided by the same quantity, the value of the power is the same Thus, $\div \frac{5 .}{c}$
$a=a$.
2. The product of like powers (integral or fractional) is the same bower of the product. Thas. $a^{\frac{1}{2}} l^{\frac{1}{2}}=(a b)^{\frac{1}{2}}$.
3. I.-Reduction of a Rational Quantity to the form of a Surl of any given denomination.
Rule. Reduce the exponent of the quantity to the form of a fraction of the same denomination as the given surd.
Ex. Reduce π^{2} to the form of the cule ront.
Here the exponent 2 must be reduced to the form of a
fraction having 3 for a denuminator, which will be the fraction $\frac{6}{3} ;$ therefore $a^{2}=a^{\frac{6}{3}}=\sqrt[3]{a^{6}}$.
4. II.-Reduction of Surds of different denominations to others of the same vulue and of the same denomination.
Rule. Reduce the fractional exponents to others of the same value, and having the same common denominator.
Ex. Reduce $\sqrt{ } a$ and $\sqrt[3]{t^{2}}$, or $a^{\frac{1}{2}}$ and $b^{\frac{2}{3}}$ to other equivaleut surds of the same denomination.

The exponents $\frac{1}{2}, \frac{3}{3}$, when reduced to a common denominator, are $\frac{3}{6}$ and $\frac{5}{6}$; therefore the surds required are $u^{\frac{3}{6}}$ and $b^{\frac{6}{b}}$, or $\sqrt[6]{a^{3}}$ and $\sqrt[6]{b^{4}}$.
39. IIL.-Reduction of Surds to their most simple terms.

Rule. Reduce the surd into two factors, so that one of them may be a complete power, having its exponent divisible by the index of the surd. Extract the root of that power, and place it before the remaining quantities, with the proper radical sign between them.
Ex. 1. Reduce $\sqrt{ } 48$ to its most simple terms.
The number 48 may be resolved into the two factors 16
and 3 , of which the first is a complete square ; therefore
$\sqrt{48}=\left(4^{2} \times 3\right)^{\frac{1}{2}}=4 \times 3^{\frac{1}{2}}=4 \sqrt{3}$.
Ex. 2. Reduce $\sqrt{98 a^{4} x}$, and $\sqrt[3]{24 a^{3} x+40 a^{3} x^{2}}$, each to its most simple terms.
First, $\sqrt{98 a^{4} x}=\left(7^{2} a^{4} \times 2 x\right)^{\frac{1}{3}}=7 a^{2} \times(2 x)^{\frac{1}{2}}=7 a^{2} \sqrt{2 x}$.
Also $\sqrt[3]{24 a^{3} x+40 a^{3} x^{2}}=\left(2^{3} a^{3}\left(3 x+5 x^{2}\right)\right)^{\frac{1}{3}}=2 a \sqrt[3]{\sqrt{3 x+5 x^{2}}}$.

40. IV.-Addition and Subtraction of Surds.

n'ule. If the surds are of different denominations, reduce them to others of the same denomination, by prob. 2, and then reduce them to their simplest terms by last problem. Then, if the surd part be the same in them all, annex it to the sum or difference of the rational parts, with the sign of multiplication, and it will give the sum or difference required. But if the surd part be not the same in all the quantities, they can only be added or subtracted by placing the signs + or - between them.
Ex. 1. Required the sum of $\sqrt{27}$ and $\sqrt{48}$.
By prob. 3 we find $\sqrt{27}=3 \sqrt{3}$ and $\sqrt{48}=4 \sqrt{3}$, therefore $\sqrt{27}+\sqrt{48}=3 \sqrt{3}+4 \sqrt{3}=7 \sqrt{3}$.

Ex. 2. Required the sum of $3 \sqrt[3]{\frac{1}{4}}$ and $5 \sqrt[3]{\frac{1}{3}}$.

$$
3 \sqrt[3]{\frac{1}{4}}=3 \sqrt[3]{\frac{2}{8}}=\frac{3}{2} \sqrt{2} \text { and } 5 \sqrt[3]{\frac{1}{32}}=5 \sqrt[3]{\frac{2}{64}}=\frac{8}{3} \sqrt[3]{2}
$$

$$
\text { therefore } 3 \sqrt[3]{\frac{1}{4}}+5 \sqrt[3]{\frac{1}{3}}=\frac{3}{2} \sqrt[3]{2}+\frac{\sqrt[3]{4}}{\sqrt{2}}=\frac{11}{3}_{\sqrt[3]{2}}^{2}
$$

Ex. 3. Required the difference between $\sqrt{80 a^{4} x}$ and $\sqrt{20 a^{2} x^{3}}$.

$$
\begin{gathered}
\sqrt{80 a^{4} x}=\left(4^{2} a^{4} \times 5 x\right)^{\frac{3}{2}}=4 a^{2} \sqrt{5 x}, \text { and } \sqrt{20 a^{2} x^{3}}= \\
\left(2^{2} a^{2} x^{2} \times 5 x\right)^{\frac{1}{2}}=2 a x \sqrt{5 x} ; \text { therefore } \sqrt{80 a^{4} x}- \\
\sqrt{20 a^{2} x^{3}}=\left(4 a^{2}-2 a x\right) \sqrt{5 x}
\end{gathered}
$$

41. V.-Multiplication and Division of Surds.

Rule. If they are surds of the same rational quantity, add or subtract their exponents.
But if they are surds of different rational quantities, let them be brought to others of the same denomination, by prob. 2. Then, by multiplying or dividing these rational quantities, their product or quotient may be set under the common radical sign.
Note. If the surds have any rational coefficients, their product or quotient must be prefixed.

Ex. 1. Required the product of $\sqrt[3]{a^{2}}$ and $\sqrt[5]{a^{3}}$. $\sqrt[3]{u^{2}} \times \sqrt[6]{u^{3}}=u^{\frac{2}{3}} \times a^{\frac{3}{8}}=u^{\frac{1}{3}+\frac{3}{6}}=a^{\frac{1}{1} \frac{9}{6}}=\sqrt[18]{a^{10}}$, Ans.
Ex. 2. Divide $\sqrt{u^{2}-b^{2}}$ by $\sqrt[3]{a+b}$.
These surds, when reduced to the same denomination, are $\left(a^{2}-b^{2}\right)^{\frac{3}{6}}$ and $(a+b)^{\frac{2}{6}}$. Hence $\frac{\sqrt{a^{2}-b^{2}}}{\sqrt[3]{a+b}} \doteq\left(\frac{\left(a^{2}-b^{2}\right)^{3}}{(a+b)^{2}}\right)^{\frac{1}{8}}$ $=\left(\frac{(a+b)^{3}(a-b)^{3}}{(a+b)^{2}}\right)^{\frac{1}{6}}=\left((a+b)(a-b)^{3}\right)^{\frac{1}{6}}=\sqrt[8]{(a+b)(a-b)^{3}}$.

42. VI.-Involution and Evolution of Surds.

The powers and roots of surds are found in the same manner as any other quantities, namely, by multiplyiug or dividing their exponents by the index of the puwer or rout required. Thus, the square of $3 \sqrt[3]{3}$ is $3 \times 3 \times(3)^{\frac{2}{3}}=$
 $\frac{1}{8}, ~ \sqrt{2}$ is $\frac{1}{2}(2)^{\frac{1}{6}}=\frac{1}{2} \frac{6}{\sqrt{2}}$, and the nth root of $x^{\frac{1}{m}}$ is $x^{\frac{1}{m^{n}}}$.
43. The reduction of quadratic surds is facilitated by the following considerations, which appear hardly to require demonstration:

1. $\sqrt{ } a$ cannot $=b+\sqrt{ } c$, when $\sqrt{ } c$ is a surd.
2. $a+\sqrt{ } b$ cannot $=c+\sqrt{ } d$ when $\sqrt{ } b, \sqrt{d}$ are unequal surds.
3. a cannot $=\sqrt{ } b \sqrt{ } c$ when $\sqrt{ } b, \sqrt{ } c$ are surds not involving the same irrational part, $\sqrt{ } 2$ and $\sqrt{ } 3$ for example.
4. $\sqrt{ } a$ cannot equal $\sqrt{ } b+\sqrt{c}$ when all are surds not involving the same irrational part.
Note. The irrational part of $\sqrt{ } 8$, for instance, $\therefore \sqrt{ } 2$, for $\sqrt{ } 8$ $=2 \sqrt{ } 2$.
5. For example, we extract the square root of a binomial surd such as $28+10 \sqrt{ } 3$ in the following way:

Let $\sqrt{28+10} \sqrt{3}=x+y$, where one or both of x and y must be a surd.

$$
\begin{array}{cl}
\text { Then } & 28+10 \sqrt{ } 3=x^{2}+y^{2}+2 x y \\
\therefore & 28=x^{2}+y^{2} \\
& 10 \sqrt{ } 3=2 x y
\end{array}
$$

or No. 2 abcve would be violated.
$\begin{array}{lc}\text { Hence } & \sqrt{28-10 \sqrt{3}}=\sqrt{x^{2}+y^{2}-2} x y=x-y \text {, } \\ \text { And } & \sqrt{784-300}=x^{2}-y^{2}, \\ \text { or } & x^{2}+y^{2}=28 \\ & x^{2}-y^{2}=22 \\ & x=5, y=\sqrt{3}\end{array}$
and $5+\sqrt{ } 3$ is the root required.

Additional Examples in Surds.

Ex. 1. Add together $\frac{1}{1+\sqrt{2}}, \frac{1}{1-\sqrt{2}}, \frac{1}{\sqrt{3}+1}$, and $-\frac{1}{\sqrt{3}-1}$,

$$
\begin{aligned}
& \frac{1}{1+\sqrt{ } 2}+\frac{1}{1-\sqrt{ } 2}=\frac{2}{1-2}=-2 \\
& \frac{1}{\sqrt{ } 3+1}+\frac{1}{\sqrt{ } 3-1}=\frac{2 \sqrt{ } 3}{3-1}=\sqrt{ } 3
\end{aligned}
$$

$\therefore \quad \sqrt{3}-2$ is the sum required.
Ex. 2. Finl the difference between

$$
\frac{a+x+v^{\prime}(a+x)}{(a+x)+\sqrt{ }(a+x)^{3}} \text { and } \sqrt{ }\left(\frac{(a+x)-\sqrt{ }(a+x)}{(a+x)^{2}-\sqrt{ }(a+x)^{3}}\right)
$$

The former is $\frac{1}{\sqrt{(a+x)}} \cdot \frac{\sqrt{ }(a+x)+1}{1+\sqrt{ }(a+x)}=\frac{1}{\sqrt{(a+x)}}$.
The latter is the square root of

$$
\frac{1}{a+x} \cdot \frac{\sqrt{ }(a+x)-1}{\sqrt{(a+x)-1}, \text { i.e., of } \frac{1}{a+x},}
$$

\therefore the difference reauired is 0 .

Ex. 3. Find the value of $\frac{f^{\prime}\left(a^{2}+x^{2}\right)+x}{\sqrt{\left(a^{2}+x^{2}\right)-x}}$
when

$$
x=\frac{(b-c) a}{2 \sqrt{l c}} .
$$

At the first reduction a divides out, and the fraction is reduced to

Ex. 4. Find the value of $\frac{x+\sqrt{ }(2 a-x)}{x-\sqrt{(2 a-x)}}$,
When

$$
x=\sqrt{ }\left(b^{2}+4 a b\right)-b
$$

By the process explained in this article.

$$
\sqrt{2 a-x}=\sqrt{ }\left(2 a+b-\sqrt{b^{2}+4 a b}\right)=\sqrt{\frac{4 a+b}{2}}-\sqrt{\frac{b}{2}},
$$

W. benco the fraction reduces to $\frac{\sqrt{ } \overline{2 b}+1}{\sqrt{2 b}-1}$.
45. In arithmetic the square root of a number is another number, which, when multiplied by itself, shall produce the first number. In algebra, where quantity takes the place of number, the definition leads to a less limited result than in arithmetic. In the latter science there cannot be two square roots of the same thing; in the former, there will necessarily be two. For both $+2 x+2$ gives 4 , and -2×-2 gives 4 ; hence the square root of 4 is -2 as well as +2 .

And, further, as in algebra, -2 is a quantity subject to all the operations and defintions of the science, it is clearly competent to express, in some form or other, the result of extracting its square root. That form must of necessity be something very different in character from $\sqrt{ } 2$, whether $\sqrt{2} \mathrm{be}+$ or -. For the definition requires that the square root of -2 shall be such a quantity as when multiplied by itself shall produce-2. It is then clearly no arithmetical quantity either + or - , but some quantity conneeted with numerical quantities by its properties, but not. by its noture. It is terned an impossible or imaginary quantity, and may be written $\sqrt{-2}$ or $\sqrt{2} \sqrt{-1}$, and the same notation applies to the square roots of all negative quantities.

The properties of imaginary quantities are almost identical with those of surds, and we need not stop to consider them. One example of their application will suffice. It affords strong confirmation oi the safety of assuming the commutative law to exist in every branch of pure algebra.

Ex. The product of the sum of two squares by the sum of two squares can always be represented under the form of tho sum of two squares.

$$
\begin{aligned}
& \text { For } \begin{aligned}
&\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a+b \sqrt{-1})(a-b \sqrt{-1}) \\
& \times(c+d \sqrt{-1})(c-d \sqrt{-1}) \\
&=(a+b \sqrt{-1})(c+d \sqrt{-1}) \times(a-b \sqrt{-1})(c-d \sqrt{-1}) \\
&=(\overline{a c-b d}+\overline{a d+b c} \sqrt{-1})(\overline{a c-b d}-\overline{a d+b c} \sqrt{-1}) \\
&=\left(a_{3}-b d\right)^{2}+(a d+b c)^{2} .
\end{aligned}
\end{aligned}
$$

Cor. $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c+b d)^{2}+(a d-b c)^{2}$, or the product may be represented in two different ways, under the form of the sum of two squares.

Sect. V.-Proportion and Progression.

46. In comparing together any two quantities of the same kind in respect of magnitude, we may consider how much the one is greater than the other, or else how many times the one contains either the whole or some part of the cther; or, which is the same thing, we may consider either
what is the difference betreen the quantities, or what is the quotient arising from the division of the one quantity hy the other: the former of thesoois called their arithmetical ratio, and the latter their geometrical ratio. These denominations, however, have been assumed arbitrarily, and havo little or no connection with the relations they are intended to express.

I. Arithmetical Proportion and Progression.

47. When of four quantities the difference betreen the first and second is equal to the difference between the third and fourth, the quantities ato called arithmetical proportionals. Such, for example, are tho numbers $2,5,9,12$; and, in general, the quantities $a, a+d, b, b+d$.
48. The principal property of four arithmetical propore tionals is this:- If four quantities be arithmetically proportional, the sum of the extreme terms is equal to the sum of the means. Let the quantities be $a, a+d, b, b+d$; where d is the difference between the first and second, and also between the third and fourth, the sum of the extremes is $a+b+d$, and that of the means $a+d+b$; so that the truth of the proposition is evident.
49. If a series of quantities be such, that the difference between any two adjacent terms is always the same, these terms form an arithmetical progression. Thus, the numbers 2, 4, 6, 8, 10, \&e., form a series in arithmetical progression, and, in general, such a series may be represented thus:
$a, a+d, a+2 d, a+3 d, a+4 d, a+5 d, a+6 d, d c$., where a denotes the first term, and d the common difference.
By a little attention to this series, we readily discover that it has the following properties:
50. The last term of the series is equal to the first term, together with the common difference taken as often as there are terms after the first. Thus, when the number of terms is 7, the last term is $a+6 d$; and so on. Hence if z denots the last term, n the number of terms, and a and d express tho first term and common difference, we have $z=a+(n-1) d$.
51. The sum of the first and last term is equal to the sum of any two terms at the same distance from them. Thus, suppose the number of terms to be 7 , then the last term is $a+6 d$, and the sum of the first and last $2 a+6 d$; but the same is also the sum of the second and last but one, of the third and last but two, and so on till we crme to the middle term, which, because it is equally distant from the extremes, must be added to itself.
52. To find the sum of the series, it is only necessary to observe that, if the progression is Fritten domn twice, 1° from the beginning, 2° from the end, the terms of the former increase by the same amount as that by which the terms of the latter diminish; 80 that the sum of any two terms which stand under each other is always the same, viz., the same as the sum of the first and last terms; bence the double series converts addition into multiplication; so that if s denote the sum of the series, we have $2 s=n(a+2)$, and $s=\frac{n}{2}(a+z)$.

Ex. The sum of the odd numbers 1, 3, 5, 7, 9, de., continued to n terms, is equal to the square of the number of terms. For in this case $a=1, d=2, z=1+(n-1) d=2 n$ -1 , therefore $\delta=\frac{n}{2} \times 2 n=n^{2}$.

II. Geometrical Proportion aind Progression.

50. When, of four quantities, the quotient arising from the division of the first by the second is equal to that arising from the division of the third byithe fourth, these quantities are said to be in geometrical pmportick, cr aro
called sunply proportimuts. Thus, $12,4,15,5$, are four numbers in geometrical proportion; and, in gencral, $n a, a$, $n b, b$, may express any four proportionals, for $\frac{n a}{a}=n$, and also $\frac{n b}{b}=n$.

To denete that any four quantitics a, b, c, d, are proportionals, it is common to place them thus, $a: b:: c: d$; or thus, $a: b=c: d$; which notation, when expressed in words, is read thus, a is to b as c to d, or the ratio of a to b is equal to the ratio of c to d.

The first and third terms of a proportion are called the antecedents, and the second and fourth the consequents.

When the two middle terms of a proportion are the same, the remaining terms, and that quantity, constitute three geometrical propartionals; such as $4,6,9$, and in general $n a, a, \frac{a}{n}$. In this case the middle quantity is called a mean proportional between the other two.
51. The principaI properties of four proportionals are the following:

1. If four quantitios be proportionals, the product of the extremes is equal to the product of the means. Let a, b, c, d, be four quantities, such that $a: b:: c: d$; then, from the nature of proportionals, $\frac{a}{b}=\frac{c}{d}$: let these equal quotients be multiplied by $b d$, and we have $a d=b c$. It follows, that if any three of four proportionals be given, the remaining one may be found. Thus, let a, b, c, the first three, bo given, and let it be required to find x, the fourth term; because $a: b:: c: x, a x=b c$, and dividing by $c, x=\frac{b c}{a}$.

The conversc is obviously true, viz., if four quantities be such that the product of two of them is cqual to the product of the other two, these quantities are proportionals.
2. If four quantities are proportional, that is, if $a: b::$ $c: d$, then will each of the following combinations or arrangements of the quantities be also four proportionals.
$1 s t$, By inversion, $b: a:: d: c$.
2d, By alternation, $a: c:: b: d$.
Note.-The quantities in the second case must be all of the same kind.

3d, By composition, $a+b: a:: c+d: c$,

$$
\text { or, } a \div b: b:: c+d: d \text {. }
$$

4th, By division, $\quad a-b: a:: c-d: c$,

$$
\text { or, } a-b: b:: c-d: d
$$

$5 t h$, By mixing, $\quad a+b: a-b:: c+d: c-d$.
$6 t h$, By taking any equimultiples of the antecedents, and also any equimultiples of the consequents,

$$
n a: p b:: n c: p d
$$

7th, Or, by taking any parts of the antccedents and consequents, $\frac{a}{n}: \frac{b}{p}:: \frac{c}{n}: \frac{d}{p}$.

That the preceding combinations of the quantities a, b, c, d, are proportionals, may be readily proved, by taking the products of the extremes and means; for from each of them we derive this conclusion, that $a d=b c$, which is known to be true, from the original assumption of the quantitics.

8th, If four quantities be proportional, and also other four. the product of the corresponding terms will be proportional.

$$
\begin{aligned}
& \text { Let } a: b:: c: d, \\
& \text { And } e: f:: g: h ; \\
& \text { Then } a e: b f:: c g: d h .
\end{aligned}
$$

For $a d=b c$, and $e h=f g$, as bcfore, therefore, multiplying together these equal quantities, $a d e h=b c f g$, or $a e \times d h=b f$ \times og; therefore, by the converse of the first property, ac: lf::cg:dh.

Hence it follows, that if there le any momber of proportions whatever, the producis of tho contusponding terms will still be proportional.
52. If a series of quantitics be so related to each other, that the quotient arising from the division of :my temm by that which precedes it is always the sane quantity, theso are said to be in geonetrical progression; such are tho numbers $2,4,8,16,32, \& c$., also $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \& c$. , and in general, a series of such quantities may be represented thus, $a, a r, a r^{2}, a r^{3}, a r^{4}, a r^{3}$, sc. Here a is the first terin, and r the quotient of any two adjoining terms, which is also called the common ratio.

By inspecting this series, we find that it has the following properties:

1. The last term is equal to the first, multiplied by the common ratio raised to a puwer, the index of which is one less than the number of terras. Therefore, if z deuote the last term, and n the number of terms, $z=a r^{n-1}$.
2. The product of the first and last term is equal to the product of any two temns equally distant from them: thus, supposing $a r^{5}$ the last torn, it is evident that $a \times a r^{5}=a r \times a r^{4}=a r^{2} \times a r^{3}, \& c$.

The sum of n terms of a geometrical series may be found thus:

$$
\begin{array}{ll}
\text { Let } & s=a+\left(\imath r^{2}+a r^{2}+a r^{3} \ldots+(r)^{n-1}\right. \\
\text { Then } & r s=a r^{r}+a r^{2}+\left(t r^{3} \ldots+u r^{n-1}+i s,\right. \\
\text { Subtract, } & r s-s=a r^{n}-a \\
\text { That is, } & (r-1) s=a\left(r^{n}-1\right) . \\
\text { Hence } & \delta=\frac{r^{n}-1}{r-1} \pi, \text { or } \frac{1-r^{n}}{1-r} \pi
\end{array}
$$

Cor. The sum to infinity $=\frac{\pi}{1-r}$.

Additional Examples in Prmortion and Progression.

Ex. 1. How many strobes dous a clock strike in twolve hours?

If s denote the uumber

$$
\begin{aligned}
s & =1+2+\ldots 12 \\
s & =12+11+\ldots 1 \\
\therefore 2 s & =13+13+. .13=13 \times 12 ; s=78 .
\end{aligned}
$$

Ex. 2. Find the number of shot lying close tugether in the shape of an equilateral triangle.

Let n be the number of shot in a* side of the triangle. Counting from one angle, and taking in successive rows parallel to the opposite side. we get as the numbor rew quired

$$
1+2+\ldots n=\frac{n(n+1)}{2}
$$

Ex. 3. To find the number of shot in a pile of the form of a triangular pyramid.

As each shot lies in the hollow farmed by thuse heluw it, the number of shot in the successive sides frow the bise upwards will evidently be

$$
n-1, n-2, \ldots 1
$$

Hence tho number of shot in the pile will be

$$
\frac{n(n+1)}{2}+\frac{(n-1) n}{2}+\frac{(n-2)(n-1)}{2}+\cdots \frac{1.2}{2}
$$

To sum this series induction may be employea. Tho result is

$$
\frac{n(n+1)(n+2)}{6}
$$

Ex. 4. A matio of grcater ineguality is diminishorl, and of less inequality increased, by adding tho same guantity to each of its terms.

Let $a>b$; then $\frac{a+x}{b+x}<\frac{a}{b}$.
By multillying out, this js evident

Fix. 5. Find the vulgne fraction which is cquisalent to the recurring decimal.

	-3i4
Let	$x=3149$,
then	$10 x=3 \cdot 142$
	$10,000 x=3142 \cdot 143$
\therefore subtracting	$9990 . \tau \equiv 3139$
	$x=0139$

Lx. 6. A st.m of money doubles itself in fifteen years at a rate a littlo below 5 per cent. A noble Scotch family have retained in their possession gold coins of the ralue of f.500 since the days of Mary Stuart (300 years); what Lave they lost by not allowing the money to accumulate at the above rate?

Prery pound would have amounted to $£ 220 ; \because$ £500 $\left(2^{20}-1\right)$ is the loss. It amonnts to upwards of $£ 524,000,000$.

Fix. 7. The sum of the mixed series

$$
\begin{aligned}
& a+(a+l \cdot) r+(a+23) r^{2}+\ldots \\
& i s \frac{a}{1-r}+\frac{\operatorname{lr}\left(1-r^{n-1}\right)}{(1-r)^{3}}-\frac{(a+n-1 b) r^{3}}{1-r}
\end{aligned}
$$

Sect, Fl.-Resolutiois of Equations intolvtang one UnkNown Quhtmey.

53. The primary object of algebraic investimation is to discover certain unknown quantities, by comparing them with other quantities which are given, or snpposed to be known. The relation between the krown and nnknown quantitics is either that of equality, or else such as may be reduced to cquality; and a proposition which affirms that certain combinations of quat.tities are equal to one anotber 23 calied an equation. Such are the following:--

$$
\begin{aligned}
\frac{x}{2}+\frac{x}{3} & =\frac{24}{x}, \\
2 x+3 y & =x y .
\end{aligned}
$$

The first of these equations expresses the relation betreen an unknown quantity x and certain known numbers; and the second expresses the relation which the two indefinite quantities x and y have to each other.

The conditions of a prollem may be sucn as to require several equations and symiols of unknown quantities for their complete expression. These, Jowever, by rules Jereafter to be explained, may be reduced to one equatiou, incolving only one unknown quantity and its powers, besides the known quantities; and the method of expressing that quantity by means of the known quantities constitutes the theory of equations, one of tho most important as well as most intricate branches of algebraic analysis.

An equation is said to be resolied when the miknown quantity is made to stand alone on one side, and only known quantities on the other side; and the value of the unknown quantity is called a root of the equation. The general definition of a root of an equation is, that it is a munerical quantity (i.e., some combination of numbers) which, when written in place of the unknown quantity, renders the cquation a numerical ideality; thus 1 is the root of the equation $x=1,1$ and -1 are both roots of the equation $x^{2}=1 ; 1, \sqrt{-1},-\sqrt{-1}$ and -1 are all roots of the equation $x^{4}=1$.
5.1. Equations containing only one unlonown quantity and its porers, are divided into different orders, according to the lighest power of that quantity contained in any one of its terms. The equation, however, is supposed to be reduced to such a form that the unknorm quantity is found only in tho numerators of the terms, and that the exponents of its powers are expressed by positive integers,

If an equation contans outy the first power of the uuknown quantity, it is called a simple equation, or an cquation of tho first order. Such is $a x+b=c$, where x denotes an unknown, and α, b, c, known quantities.

If the equation contains the second power of the unknown quantity, it is said to be of tho second degree, or is called a quadratic cquation; such is $4 x^{2}+3 x=12$, and in general $a x^{2}+b x=c$. If it contains the third power of the unknown quantity, it is of the third degree, or is a cubic equation ; such are $x^{3}+2 x^{2}+4 x=10$, and $a x^{3}+b x^{2}+c x=d$; and so ou with respect to equations of the higher orders. A simple equation is sometimes said to be linear; or of ono dimension. In like manner, quadratic equations aro said to bo of two dimensions, and cubic equations of three dimensions.

When in the course of an algebraic investigation wr arrive at an equation involving only one unknown quantity, that quantity will often be sc cutangled in the different terms as to render several previons reductions necessary before the equation can bo expressed under its characteristie form, so as to bo resolved by the rules which belong to that form.

These reductions depend upon the operations which have been explained in the former part of this treatien, and the application of a few self-evident principles, namely, that if equal quantities be added to or subtracted from equal quantities, tho sums or remainders will be equal ; if equal quantities bo multiplied or divided by the same quantity, the products or quotients will be equal, ans, lastly, if equal quautities be raised to the same power, or havo the samo root extracted ont of each, the results will stili be equal.

From these considerations aro derived the following rules, which apply alike to cquations of all orders, and are alone sufficient for the resolution of simple equations.
55. Iude 1. Any quantity may be transposed from one side of an equation to the other, by changing its sign.

Thus,	if $3 x-10=2 x+5$,
Then	$-3 x-2 x=5+10$,
Or	$x=15$.
Again,	if $a x+b=c x-\alpha x+e ;$
Then	$a x-c x+d x=e-b$,
Or	$(a-c+d) x=e-b$,

The reason of this rule is evident, for the transposing of a quantity from one side of an equation to the other is nothing more than adding the same quantity to each side of the equation, if the sign of the quantity transposed was - - ; or subtracting it, if the sign was +.

From this rule we may infer, that if any quantity be found on each side of the equation with tho same sign, it may be left out of both. Also, that the signs of all the terms of an equation nay be clanged into the contrary, without affecting the truth of the equation.

Thus, if

$$
a+x=b+a+c,
$$

Then
And if
'I'hen

$$
x=b+c
$$

$$
a-x=b-d
$$

56. Pule 2. If the unknown quantity in an equation be multiplied by any quantity, that quantity may be taken away, by dividing all the other terms of the equatios by it.
If

$$
: 3 x=24,
$$

Then

$$
x=\frac{24}{3}=8
$$

If

$$
a x=z-c
$$

Then

$$
x=\frac{b-c}{a}=\frac{0}{a}-\frac{c}{a} 4
$$

Here equal quantities are divided by the same quantity, and therefore the quotients are equal.
57. Rule 3. If any term of an equation be a fraction, its denominator may be taken away, by multiplying all the other terms of the equation by that denominator.

If	$\frac{x}{5}=7$,
Ther	$x=35$.
If	$\frac{x}{x}=b-c+d$,
Then	$x=a b-a c+a d$.
If	$a-\frac{b}{x}=c$
We have	$a x-b=c x$ and $x=\frac{b}{a-c}$.

In these examples, equal quantities are multiplied by the same quantity, and therefore the products are equal.
58. Rule 4. If the unknown quantity is found in any term which is a surd, let that surd be made to stand alone on one side of the equation, and the remaining terms on the opposite side; then involve each side to a power denoted by the index of the surd, and thas the unknomn quantity shall be freed from the surd expression.
If $\sqrt{x}+6=10$,
Then, by transposition, $\sqrt{x}=10-6=4$;
And, squaring both sides, $\sqrt{x} \times \sqrt{x}=4 \times 4$,

Or

$x=16$ 。
Also, if
By trans.

$$
\begin{aligned}
& \sqrt{a^{2}+x^{2}}-b=x \\
& \sqrt{a^{2}+x^{2}}=b+x
\end{aligned}
$$

And, squaring,
$a^{2}+x^{2}=(b+x)^{2}=$
Hence

$$
a^{2}=b^{2}+2 b x, x=\frac{a^{2}-b^{2}}{2 b}
$$

59. Rule 5. If the side of the equation which contains the unknown quantity be a perfect power, the eqnation may be reduced to another of a lower order, by extrecting the root of that power out of each side of the equation.
Thus, if

$$
x^{3}=64 a^{3}
$$

Then, by extracting the cune root, $x=4 a$;
And if
$(a+x)^{2}=b^{2}-a^{2}$,
Then

$$
a+x=\sqrt{b^{2}-a^{2}}
$$

60. In these examples we have been able to determine the value of the unknown quantity by the rules already delivered, because in every case the first, or at most the second power of that quantity, has been made to stand alone on one side of the equation, while the other consisted only of known quantities; but the same methods of reduction serve to bring equations of all degrees to a proper form for solution. Thus, if $\frac{1-p+q+r}{x+1}=1-p-x+$ $\frac{r}{x}$; by proper reduction, we have $x^{3}+p x^{2}+q x=r$, a cubic equation which may be resolved by rules to be afterwards explained.

Sect. VII-Reduction of Equations luvolvina more than one Unevown Quantity.
61. Having shown in the last section in what manner on equation involving one unknown quantity may be resolved, or at least fitted for a final solution, we are next to explain the methods by which two or more equations, involving as many unknown quantities, may at last be reduced to one equation and one unknown quantity.

As the unknown quantities may be combined together in rery different ways, so as to constitute an equation, the methods most proper for their elimination must therefore be various. The three following, however, are of general spplication, and the last of them mav be used with
advantage, not ouly when the unknown quantity to be eliminated rises to the same puwer in all the equations, but also when the equations contain different powers of that quantity.
62. Method 1. Observe which of the unknown quantities is the least involved, and let its ralue be found from each equation, by the rules of last section.

Let the values thas found be put equal to each other, and hence new equations will arise, from which that quantity is wholly excluded. Let this operation be now re peated with these equations, thus eliminating the unknown quantities one by one, till at last au equation be found which contains only one unknown quantity.
$E x$. Let it be reauired to determine x and y from these tro equations.

$$
\begin{aligned}
& 2 x+3 y=23 \\
& 5 x-2 y=10
\end{aligned}
$$

From the first equation, $\quad x=\frac{23-3 y}{2}$.
From the second equatiou, $x=\frac{10+2 y}{5}$.
Let these values of x be now put equal to each other,

And we hare
Or

$$
\frac{10+2 y}{5}=\frac{23-3 y}{2}
$$

\therefore

$$
20+4 y=115-15 y
$$

And $19 y=95$,

And since $x=\frac{23-3 y}{2}$, or $x=\frac{10+2 y}{5}$, from either of these values we find $x=4$.
63. Method 2. Let the value of the unknown quantity which is to be eliminated be found from that equation wherein it is least involved. Let this ralue and its powers be substituted for that quantity, and its respective powers in the other equations; and with the new equations thus arising, let the operation be repeated till there remain only one equation and one unknown quantity.
$E x$. Let the given equations, as in last method, be

$$
\begin{aligned}
& 2 x+3 y=23, \\
& 5 x-2 y=10 .
\end{aligned}
$$

From the first equation, $x=\frac{23-3 y}{2}$;
And this value of x being substituted in the second equation, we have $5 \times \frac{23-3 y}{2}-2 y=10$
Or

$$
115-15 y-4 y=20
$$

\therefore

$$
95=19 y
$$

And

$$
x=\frac{23-3 y}{2}=4, \text { as before }
$$

64. Method 3. Let the given equations be multiplied or divided by such numbers or quantities, whether known or unknown, that the term which involves the highest power of the unknown quantity may be the same in each equation.
Then, by adding or subtracting the equations, as occasion may require, that term will vanish, and a new equation emerge, wherein the number of dimensions of the unknown quantity in some cases, and in others the number of unknown quantities will be diminished; and by a repetition of the same or similar operations, a final equation may be at last obtaiued, involving only one unknowa quantity.

Ex. Let the same example be taken, as in the illustrar tion of the former methods, namely,

$$
\begin{aligned}
& 2 x+3 y=23 \\
& 5 x-2 y=10
\end{aligned}
$$

To eliminate x, let the first equation be multiplisd by 5 , and the second by 2 : thus we have

$$
\begin{aligned}
& 10 x+15 y=115 \\
& 10 x-4 y=20 .
\end{aligned}
$$

Hore the term involving x is the same in both equations; and it is obvious, that by subtracting the one from the other, the resulting equation will contain only y, and known numbers; for by such subtraction wo find $19 y=95$, and therefore $y=5$.

Haring got the value of y, it is easy to see how x may be found from cither of the given equations; but it may also be found in the same manner as we found y. For let the first of the given equations be multiplied by 2 , and the eecond by 3 , we have

$$
\begin{array}{r}
4 x+6 y=46 \\
15 x-6 y=30 .
\end{array}
$$

By adding these equations, we find

$$
19 x=76, \text { and } x=4
$$

65. The following examples will serve further to illustrate these different methods of eliminating the unknown quantities from equations

Ex. 1. Given. $\left\{\begin{array}{l}a x+b y=c \\ d x+f y=g\end{array}\right\}$ to determine x and y.
To eliminate y, let the first equation be multiplied 'by f, and the second by b, and we have

$$
\begin{aligned}
& a f x+b f y=c f, \\
& b d x+b f y=b g .
\end{aligned}
$$

Taking now the difference between these equations,

$$
a f x-b d x=c f-b g,
$$

Or $\quad(a f-b d) x=c f-b g$,
And thereforo $\quad x=\frac{c f-b g}{a f-b d}$.
In the same manner may y be determined, by multiplying the first of the given equations by d, and the second by $^{\prime}$; for we find

$$
\begin{aligned}
& a d x+b d y=c d, \\
& a d x+a f y=a g .
\end{aligned}
$$

And taking the difference as before, we get

And therefore

$$
b d y-a f y=c d-a g,
$$

66. This example may be considered as a general solution of the following problem. Two equations expressing the relation between the first powers of two unknown quantities being given, to determine those quantities; for whatever be the number of terms in each equation, it will readily appear, as in Art. 55, that by proper reduction they may be brought to the same form as those given in the above example.
67. Let us next consider such equations as involve three unknown quantities.

Ex. 2. Given $\left\{\begin{array}{l}\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=62 \\ \frac{x}{3}+\frac{y}{4}+\frac{z}{5}=47 \\ \frac{x}{4}+\frac{y}{5}+\frac{z}{6}=38\end{array}\right\}$ to find $\boldsymbol{c}, \boldsymbol{y}$, and z
Here the given equations, when aleared from fractions. become

$$
\begin{aligned}
& 12 x+8 y+6 z=1488 \\
& 20 x+15 y+12 z=2820, \\
& 30 x+24 y+20 z=4560 .
\end{aligned}
$$

To elininate $z \mathrm{~b}_{j}$ the third method, let the first equa-
tion be multipliod by 10 , the second $b v 5$, and the third by 3 , the results will be these :

$$
\begin{aligned}
120 x+80 y+60 z & =14880, \\
100 x+75 y+60 z & =14100 \\
90 x+72 y+60 z & =13680 .
\end{aligned}
$$

Lat the second equation be now subtracted from the first, and the third from the second, and we have

$$
\begin{aligned}
& 20 x+5 y=780 \\
& 10 x+3 y=420 .
\end{aligned}
$$

Next, to climinate y, let the first of these squations be multiplied by 3 , and the second by 5 ; hence,

$$
\begin{aligned}
60 x+15 y & =2340 \\
50 x+15 y & =2100 .
\end{aligned}
$$

Subtracting now the latter equation from the forme

$$
\begin{array}{ll}
& 10 x=240 \text { and } x=24, \\
\therefore & y=\frac{420-10 x}{3}=60, \\
\text { And } & \dot{z}=\frac{1448-12 x-8 y}{6}=120 .
\end{array}
$$

$E x$. 3. Glven $x^{2}-y z=a^{2}, y^{2}-x z=b^{2}, z^{2}-x y=c^{2}$, fo find x, y, and 2 .

By subtraction, we have

$$
\begin{aligned}
& (x-y)(x+y+z)=a^{2}-b^{2}(1), \\
& (z-x)(x+y+z)=c^{2}-a^{2}(2) . \\
& (y-z)(x+y+z)=b^{2}-c^{2}
\end{aligned}
$$

Squaring, adding, and dividing by 2 , we get

$$
\begin{gathered}
\left(x^{2}+y^{2}+z^{2}-x y-x z-y z\right)(x+y+z)^{2}= \\
a^{4}+b^{4}+c^{4}-a^{2} b^{2}-a^{2} c^{2}-b^{2} c^{2}
\end{gathered}
$$

But $x^{2}+y^{2}+z^{2}-x y-x z-y z$ is the sum of the three given expressions, and \therefore equal to $a^{2}+b^{2}+c^{2}$.

Hence $\left(a^{2}+b^{2}+c^{2}\right)(x+y+z)^{2}=a^{4}+b^{4}+c^{4}$

$$
-a^{2} b^{2}-a^{2} c^{2}-b^{2} c^{2}, \text { which gives } x+y+z
$$

Equations (1) and (2) are now two simple equations, which, combined with the value of $x+y+z$ as deternined, give x, y, and z.
Ex. 4. Given $\sqrt{x}=\sqrt{y z}\left(-\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)$

$$
\begin{aligned}
& \sqrt{y}=\sqrt{x} z\left(\begin{array}{l}
\left.\frac{a}{x}-\frac{b}{y}+\frac{c}{z}\right) \\
\dot{\sqrt{2}}=\sqrt{x y}\left(\frac{a}{x}+\frac{b}{y}-\frac{c}{z}\right)
\end{array},=\frac{1}{2}\right)
\end{aligned}
$$

Multiply the first by $\sqrt{ } x$, the second by $\sqrt{ } y$, and the third by $\sqrt{ }$, and add two and two. There results

$$
\begin{aligned}
& x+y=\sqrt{x y z} \frac{2 c}{z} \\
& x+z=\sqrt{x y z} \frac{2 b}{y} \\
& y+z=\sqrt{x y z} \frac{2 a}{x} \\
& \text { i.e. } \quad x z+y z=\sqrt{x y z} 2 c \\
& x \dot{y}+y z=\sqrt{x y z} 2 b \\
& x y+x z=\sqrt{x y z} 2 a \\
& \therefore \quad y z=\sqrt{x y z}(b+c-a) \text {. } \\
& x z \doteq \sqrt{x y z}(a+c-b) \\
& x y=\sqrt{x y z}(a+b-c)
\end{aligned}
$$

Multiplying eny two of these we get one of the unknowe quantities:
$\therefore \quad x=(a+c-b)(a+b-c)$, sc.
Sect. VIII-Questions produclna Smplb Equations.
68. When the conditions of a problem have been ex.
pressed by equations, or translated from the common language into that of algebra, we must consider whether the problem be properly limited; for in some cases the conditions may be such as to admit of innumerable solutions, and in others they may involve an absurdity, and thus render the problem altogether impossible.

Now, by considcring the examples of last section, it will appear, that to determine any number of unknown quantities, there must be given as many equations as there are unknown quantities. These, however, must be such as cannot be derived from each other, and they must not involve any contradiction; for in the one case the problem would admit of an unlimited number of answers, and in the other case it would be impossible. For example, if it were required to determine x and y from these two equations, $2 x-3 y=13,4 x-6 y=26$; as the latter equation is a consequence of the former (for each term of the one is the half of the corresponding term of the other), it is crident that innumerable values of x and y might be found to satisfy both equations. Again, if x and y were to be determined from these equations, $x+2 y=8,3 x+6 y=26$, it is easy to see that it is impossible to find such ralues of x and y as will satisfy both; for, from the first, we find $3 x=24-6 y$; and from the second, $3 x=26-6 y$; and therefore $24-6 y=26-6 y$, or $24=26$, which is absurd; and so also must have been the conditions from which this conclusion is drawn.
69. But there is yet another case in which a problem may be impossible; and that is, when there are more equations than unknown quantities; for it appears, that in this case, by the rules of last section, we should at last find two equations, each involving the same unknown quantity. Now, unless these happened to agree, the problem would admit of no solution. On the whole, therefore, it appears that a problem is limited when the conditions furnish just as many independent equations as there are unknown quantities to be determined: if there be fewer, the problem is indeterminate ; but if there $b ;$ more, the problem in geveral admits of no solution whatever.
70. We shall now apply the preceding observations to some examples, which are so chosen as to admit of being, resolved by simple equations.
$E x .1$. What is that number, to which if there be added its half, its third, and its fourth parts, the sum will be 50 ?

Let x denote the number sought; then its half will be $\frac{x}{2}$, its third $\frac{x}{3}$, and its fourth $\frac{x}{4}$;

$$
\begin{array}{ll}
\therefore & x+\frac{x}{2}+\frac{x}{3}+\frac{x}{4}=50 . \\
\text { Hence } & 24 x+12 x+8 x+6 x=1200, \\
\text { Or } & 50 x=1200 ; \\
\therefore & x=24 .
\end{array}
$$

Thus it appears that the numoer sought is 24 , which upon trial will be found to answer the conditions of the question.

Ex. 2. A post is $\frac{f}{6}$ of length in the mud, $\frac{1}{3}$ in the water, and 10 feet above the water; what is its whole length ?

Let its length be x feet, then the part in the mud is $\frac{x}{4}$, and that in the water $\frac{x}{3}$; therefore. from the nature of the question,

$$
\frac{x}{4}+\frac{x}{3}+10=x
$$

From this equation we find $7 \omega+120=12 x$, and $x=24$.
Ex. 3. A marketwoman bought a certain number of, egos at 2 a penny, and as many at 3 a penny, and sold them all out again at 5 for 2 d .; but. instead of getting her own
money for them, as sne expected, she lost 4 d . : whiut uumber of eggs did she buy?

Let x be the number of eggs of each sort;
Then.will $\frac{x}{2}$ be the price of the first sort;
And $\frac{x}{3}=$ the price of the second sort.
Now, the whole number being $2 x$, we haver
$5: 2 x:: 2: \frac{4 x}{5}=$ price of both sorts at 5 for $2 d$.
$\therefore \quad \frac{x}{2}+\frac{x}{3}-\frac{4 x}{5}=4$, by the question.
Hence $15 x+10 x-24 x=120$,
And $x=120$, the number of each sort.
Ex. 4. A person at play lost $\frac{1}{4}$ of his money, and then won 3s.; after which he lost $\frac{1}{3}$ of what he thea had, and then won 2 s . ; lastly he lost $\frac{1}{4}$ of what he then had, and, this done, found he had only 12s. left: what had he at firsti

Suppose he began to play with x shillings.
He lost $\frac{1}{4}$ of his money, or $\frac{x}{4}$, and had left $x-\frac{x}{4}=\frac{3 x}{4}$.
He won $3 s .{ }^{\circ}$ and had theu $\frac{3 x}{4}+3=\frac{3 x+12}{4}$.
He lost $\frac{1}{3}$ of $\frac{3 x+12}{4}$, or $\frac{x+4}{4}$, and had left $\frac{3 x+12}{4}-\frac{x+4}{4}=\frac{2 x+8}{4}$.

He won 2s. and had theu $\frac{2 x+8}{4}+2=\frac{2 x+1}{4}$
He lost $\frac{1}{7}$ of $\frac{2 x+16}{4}$, or $\frac{2 x+16}{28}$, and had left $\frac{2 x+16}{4}-\frac{2 x+16}{28}=\frac{12 x+96}{28}$.

And because he had now 12 s . left, we have this equation,

$$
\frac{12 x+96}{28}=12
$$

Hence $12 x=240$, and $x=20$.
Ex. 5. To divide the number 90 into 4 such parts, that if the first be increased by 2, the second diminished by 2 , the third multiplied by 2, and the fourth divided by 2 , the sum, difference, product and quotient shall be all equal to each other.

In this question there are four quantities to be determined; but instead of introducing several letters, having put x to denote the first of them, we may find an expres sion for each of the remaining ones, as follows

Because $x+2=$ second quantity -2 ,
$\therefore \quad x+4=$ the second quantity;
And because $x+2=$ third $\times 2$;

$$
\therefore \quad \frac{x+2}{2}=\text { the third quantity. }
$$

And in like manner $2(x+2)=$ the fourth quantity.
Now by the question, the sum of all the four $=90$;
$\therefore \quad x+x+4+\frac{x+2}{2}+2(x+2)=90$
Hence $\quad 9 x=162$, and $x=18$;
Therefore the numbers. required are $18,22,10$, and 40 .
Ex. 6. A and B together can perform a picce of wors in 12 hours, A and C in 20, and B and C in 15 hours; in what time will each be able to oerform it when working separately?

That we may have a general solution, let us suppose A and B can perform the work in a hours, A and C in b hours, and \mathbf{B} and \mathbf{C} in c hours. . Let x, y, and z, denote the times in which A, B, and C, could perform it respeotively, if each worked alone; and let the whole work bo represented by 1. The question gires at once-

$$
\frac{1}{x}+\frac{1}{y}=\frac{1}{a}, \frac{1}{x}+\frac{1}{z}=\frac{1}{b}, \frac{1}{y}+\frac{1}{z}=\frac{1}{c} .
$$

If these be added. and their sum divided by 2, we find

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2 a}+\frac{1}{2 b}+\frac{1}{2 c} .
$$

From this equation let each of the three preceding be subtracted in its turn: thus we get

$$
\begin{gathered}
\frac{1}{z}=-\frac{1}{2 a}+\frac{1}{2 b}+\frac{1}{2 c}=\frac{+a b+a c-b c}{2 a b c}, \\
\frac{1}{y}=\frac{1}{2 c}-\frac{1}{2 b}+\frac{1}{2 c}=\frac{+a b-a c+b c}{2 a b c}, \\
\frac{1}{x}=\frac{1}{2 a}+\frac{1}{2 b}-\frac{1}{2 c}=\frac{-a b+a c+b c}{2 a b c}, \\
z=\frac{2 a b c}{+a b+a c-b c}=\frac{7200}{120}=60 \\
y=\frac{2 a b c}{+a b-a c+b c}=\frac{7200}{300}=20 \\
x=\frac{2 a b c}{-a b+a c+b c}=\frac{7200}{240}=30
\end{gathered}
$$

Hence

Sect. IX. - Solution of Quadratic Equations.

71. We are next to explain the resolution of equations of the second degree, or quadratic equations. These involre the second porser of the unknown quantity, and may be divided into two kinds, pure and adfected.
I. Pure quadratic equations are such as after proper reduction have the square of the unknowu quantity in one term, while tho remaining terms contain only known quantities. Thus, $x^{2}=6 \cdot 4$, and $a x^{2}+b=c$, are examples of pure quadratics.
II. Adfected quadratic equations contain the square of the unknorra quantity in one term, and its first or simple power in another; the remaining terms consisting entirely of known quantities. Such are the following, $x^{2}+3 x$ $=28,2 x^{2}=33-5 x, a x^{2}+b x-c=d$.
The manner of resolving a pure quadratic equation is sufficiently evident. If the uuknown quantity be made to stand alone on one side, with unity as a coefficient, while the other side consists entirely of known quantaties, and the squore root of eaclu side be takeu, we immediately obtain the value of the simple power of the unknown guantity as directed by rule 5th of Sect. VI.

In extracting the square root of any quantity, it is necessary to observe, that the sign of the root may be cither + or - , and that consequently a quadratic must always have two solutions.
72. When an adfected quadratic equation is to be resolved, it may always, by proper reduction, be brought to the following form:

$$
x^{2}+p x=q ;
$$

where p and q are numerical quantities, + or - .
Let us compare tho sido of it which involves tho unknown quantity x with the square of a binomial $x+a$; that is, let us compare $x^{2}+p x$ with $x^{2}+2 a x+a^{2}=(x+a)^{2}$, and it will presently appear, that if we suppose $p=2 a$, or $\frac{p}{2}=a$, the quantities $x^{2}+p x$ and $x^{2}+2 a x$ will be equal ; and as $x^{2}+2 a x$ is rendered a complete square, by adding to it a^{2}, so also may $x^{2}+p x$ be completed into a square by adding to it $\frac{p^{2}}{4}$, which is equal to a^{2}; thercfore, let $\frac{p^{2}}{4}$ be added to both sides of the equation $x^{2}+p x=q$, and we hare

$$
x^{2}+p x+\frac{p^{2}}{4}=\frac{p^{2}}{4}+q, \text { or }\left(x+\frac{p}{2}\right)^{2}=\frac{p^{2}}{4}+q ;
$$

and, extracting the square root of each side;

$$
x+\frac{p}{2}= \pm \sqrt{\frac{p^{2}}{4}+q} ; \text { heuce } x=-\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4}+q}
$$

73. From these observations we derive the following general rules for resolving adfected quadratic equations.
74. Bring all the terms involving the unknown quantity to one side, and the known quantities to the other side, and so that the term involving the square of the unknowu quantity may be positive.
75. If the square of the unknown quautity be multiplied by a coefficient, let the other terms be divided by-it, so that the coefficient of the square of the uuknown quantity may be 1 .
76. Add to both sides the square of half the coefficient of tho unknown quantity itself, and the side of the equation involving the unknown quantity will new be a consplete square.
77. Extract the square root of bath sides of the equation, by which it becomes simple with respect to the unknown quantity; and, by transposition, that quantity may be made to stand alone on one side of the equation, while the other side consists of known quautities; and therefore the equa tion is resoired.
$E x$. l. Given $x^{2}+2 x=35$, to determine x.
Here the coefficient of the second term is 2 ; therefore, adding the square of its half to each side, we have

$$
x^{2}+2 x+1=35+1=36,
$$

And, extracting the syuare root, $x+1=\sqrt{36}= \pm 6$.
Hence $x= \pm 6-1$, that is, $x=+5$, or $x=-7$, and either of these numbers will be found to satisfy the equation, for $5 \times 5+2 \times 5=35$, also $-7 \times-7+2 \times-7=35$.

Ex. 2. Given $\frac{x^{2}}{6}-12=x$, to find x.
This equation, when reduced, becomes $x^{2}-6 x=72$,
And, by completing the square, $x^{2}-6 x+9=72+9=81$.
Hence, by extracting the square root, $x-3= \pm 9$, and $x= \pm 9+3$;
Therefore $x=+12$, or $x=-6$; and upon trial we find that each of these ralues satisfies the original equation, for

$$
\frac{12 \times 12}{6}-12=12, \text { also } \frac{-6 \times-6}{6}-12=-6 .
$$

Ex. 3. Given $x^{2}+28=11 x$, to find x.
Then.

$$
x^{2}-11 x=-28
$$

And, by completing the equare,

$$
x^{2}-11 x+\frac{121}{4}=\frac{121}{4}-.28=\frac{9}{4} .
$$

Therefore, by extracting the root, $x-\frac{11}{2}= \pm \frac{3}{2}$.
Hence $x=\frac{11}{2} \pm \frac{3}{2}$; that is, $x=+7$, or $x=+4$,
In the first two examples, we found one positive value for x in each, and also one negative value; but in this example bath tho valucs of x are positive, and, upon trial, each of them is found to satisfy the equation; for $7 \times 7+28=11 \times 7$, also $4 \times 4+28=11 \times 4$.
74. As at first sight it appears remarkable, that in every quadratic equation the unknown quantity admits alrays of two distinet values or roots, it will be proper to consicier a little further the circumstances upon which this peculiarity depends.

To do this, let us re-examine the equation $x^{2}+2 x=35$. By bringing all the terms to one side, the equation may be expressed thus, $x^{2}+2 x-35=0$; so that we shall have determined x, when we have found such a number as, wher substituted for it in the quantity $x^{2}+2 x-35$, will render the resilt equal to 0 . Eut $x^{2}+2 x-35$ is the product of these two factors $x-5$ and $x+7$, as may be proved by actual multiplication; therefore, to find x, we have $(x-5)$ $(x+7)=0$; and as a preduct can only become $=0$ when one of its factors is reduced to 0 , it folloms that either of the "two factors $x-5$ and $\tilde{c}+7$ may' be assumed $=0$. If
$x-5=0$, then $x=5$; but if $x+7=0$, then $x=-7$; so that the two values of x, or two roots of the equation $x^{2}+2 x=35$, are +5 and -7 , as we hare already found in a different manner.
75. What has been shown in a particular case is true of any quadratic equation whatever; that is, if $x^{2}+p x=q$, or, by bringing all the terms to one side, $x^{2}+p x-q=0$, it is always possible to find two factors $x-a$, and $x+b$, such, that

$$
x^{2}+p x-q=(x-a)(x+b),
$$

Where a and b are known quantities, which depend ouly upon p and q, the given numbers in the equation; and since that to have $(x-a)(x+b)=0$, we may either assume $x-a=0$ or $x+b=0$, it evidently follows that the conditions of the equation $x^{2}+p x-q=0$, or $x^{2}+p x=q$, are alike satisficd by taking $x=+a$ or $x=-b$.

From these considerations it follows, that x can have only two values in a quadratic equation; for if it could be supposed to have three or more values, then it would be possible to resolve $x^{2}+p x-q$ into as many factors, $x-c, x-d, \& c$. ; but the product of more than two factors must necessarily contain the third or higher powers of r, and as $x^{2}+p x-q$ contains no higher power than the second, therefore no such resolution can take place.

76. Solution of Questions which produce Quadratic Equations.

Ex. 1. It is required to divide the number 10 into two such parts that the sum of their squares may be 58 .

Let x be the one part;
Then, since their sum is 10 , the other is $10-x$;
\therefore by the question, $x^{2}+(10-x)^{2}=58$;
That is,

$$
x^{2}+100-20 x+x^{2}=58
$$

Or

$$
2 x^{2}-20 x=58-100 \equiv-42
$$

Hence
$x^{2}-10 x=-21$.
And completing the square, $x^{2}-10 x+25=25-21=4$;
Hence, by extracting the root, $x-5= \pm \sqrt{4}= \pm 2$
And
$x=5 \pm 2$,
That is,

$$
x=7, \text { or } x=3 .
$$

If we take the greater value of x, viz. 7 , the other number $10-x$ will be 3 ; and if we take the less value of x, viz. 3 , then the other number is 7 . Thus it appears, that the greater value of the one number corresponds to the less value of the other; and indeed this must necessarily be the case, sceing that both are alike concerned in the question. Hence, the only numbers that will answer the conditions of the question are 7 and 3.

Ex. 2. A grazier bought as many sheep as cost him $£ 60$, out of which he reserved 15 , and sold the remainder for £54, gaining 2s. each upon them. How many sheep did he buy, and what did each cost him?

Suppose that he bought x sheep.
Then each would cost him $\frac{1200}{x^{\circ}}$ shillings.
Therefore, since after reserving 15, he sold each of the remaining $x-15$ for $\frac{1200}{x}+2$ shillings, he would receive for them $(x-15)\left(\frac{1200}{x}+2\right)$ shillings. And, because $£ 54$ $=1080$ shillings, we have by the question.

$$
(x-15)\left(\frac{1200}{x}+2\right)=1080
$$

which, by proper reduction, becomes $x^{2}+45 x=9000$; Whence $x= \pm \frac{195}{2}-\frac{45}{2}$. And, taking the positire root, $x=75$, the number of sheep; and consequently $\frac{1200}{75}=16$ slillings, the price of each.

E:x.3. It is required to find two numbers, of which the product shall be 6 , and the sum of their cubes 35 .

Let x be the one number; then $\frac{6}{x}$ will be the other.
Thercfore, by the question, $x^{3}+\frac{216}{x^{3}}=3.5$;

$$
\begin{array}{ll}
\text { Hence } & x^{6}+216=35 x^{3}, \\
\text { Or } & x^{6}-85 x^{3}=-216 .
\end{array}
$$

This equation, by putting $x^{2}=y$, becomes

$$
\begin{aligned}
& y^{2}-35 y=-216 ; \\
& \text { Hence we find } \quad y=27, \text { or } y=8
\end{aligned}
$$

And since $x^{3}=y, \therefore x=3$, or $x=2$.
If $x=3$, then the other number is 2 , and if $x=2$, the other number is 3 ; so that 2 and 3 are the numbers required.

In general, if it be required to find two numbers which are exactly alike concerned in a question that produces a quadratic equation, they will be the roots of that equation. A similar observation applies to any number of quantities Which require for their determination the resolution of an equation of any degree whatever.

77. On some Anomalies in the Solution of a Problem which

 results in an Equation.From what has preceded, it will be evident that a root of an equation may be a very different thing from the solution of the problem on which the equation is based. It will bo proper to give a few illustrations of this difference before passing on to consider equations in gencral.
(1.) Λ solution may be insapplicable to the problem as a problem of arithmetic, applying only to the algebraic problem.

Ex. Find a number such that if it be first increased by 10 , and then diminished by 10 , the difference of the squaro roots of the results shall be equal to 10 .

Let x be the number; then the problem requires that

$$
\sqrt{x+10}-\sqrt{x-10}=10
$$

Transposing and squaring, we get

$$
x+10=100+20 \sqrt{x-10}+x-10
$$

Transposing and squaring again, there results $x-10=$ $16, x=26$.

Now, it is obrious that 26 does not satisfy the conditions of the problem, but that it is the solution of another problem, riz., that which substitutes "sum" for "difference" in the enunciation. Gencrally we may remarl that an algebraic statement is not definite like an arithmetical one. The algebraic square root of a quantity being + or - , algebra caunot, as arithmetic does, distinguish between the two. The equaion $\sqrt{x+10}-\sqrt{x-10}=10$ is algebraically the same as $\sqrt{x+10}+\sqrt{x-10}=10$, $d \mathrm{c}$.
(2.) A solution may be inverted, or raticer may invert the statement.

Ex. Divide 15 into two such parts that the greater shall exceed three times the less liy as much as half the less exceeds 3.

Let x be the greater, and $\therefore 15-x$ the leis. The state ment produces the equation,

$$
x-3(15-x)=\frac{1}{2}(15-x)-3,
$$

which gires at once $x=11$, so that 11 is the greater, 4 the less part. But, on trying the solution, ne find it is not that of the problem given, but of another problem, in which "exceeds" is replaccd by "falls short of." Algebra cannot, in crery case, as arithmetic does, distinguish the order of subtraction in stating a difference.

Ex. 2. Find a number such that the square root of the difference between its fourth power and its square being
found and inereased by 1, tho square root of the sum shall be equal to the given number diminished by 1 .

Iet x bo the number, then

$$
\begin{gathered}
\sqrt{ }\left(1+\sqrt{x^{4}-x^{2}}\right)=x-1, \\
\therefore \quad \sqrt{x^{4}-x^{2}}=x^{2}-2 x, \text { whence } x=0, x=\frac{5}{4},
\end{gathered}
$$

neither of which solves the problem as stated.
(3.) A solution may bo illusory-that is, it may assume the form $\frac{0}{0}$.

Ex. 1. There are two pieces of eloth of a and a^{\prime} yards respectively. The owner sells tho same number of yards of each at b and b^{\prime} shillings per yard respectively, he then sells the remainder at c and c^{\prime} shillings a yard, and finds that tho prices reccived for both picces are the same. Required the number of yards first sold.

Tho number is

$$
\frac{a c-a^{\prime} c^{\prime}}{b^{\prime}-b+c-c^{\prime}} .
$$

As a particular case, if a and a^{\prime} are 60 and $80 ; b$ and b^{\prime} 10 shillings and 9 shillings; and c and c ' 4 shillings and 3 shillings, the answer assumes the form $\frac{0}{0}$.

The answer is in this case indeterminate; in other words, the conditions of tho problem are satisfied independently of the number of yards first sold; any number will do.

It is not, however, a necessary interpretation of tho form $\frac{0}{0}$, that it may bo replaced by any number whatever. Most frequently this forn results from the fact that some fraction is not in its lowest terms. Solutions of this kind frequently occur-in ordinary equations they may be avoided; and we offer an example simply to show the method applicable to cases in which they cannot be avoided.

Ex. 2. Find two numbers such that the sum of their products by a and b respectively is c, and the differenco of their squares d.

$$
\begin{array}{cc}
\text { We have } & a x+b y=c \\
x^{2}-y^{2}=d \\
\text { i.e. } & x^{2}-\left(\frac{c-a x}{b}\right)^{2}=d \\
\therefore \quad & \left(a^{2}-b^{2}\right) x^{2}-2 a c x=-\left(c^{2}+b^{2} d\right) \\
& x=\frac{a c \pm \sqrt{a^{2} c^{2}-\left(a^{2}-b^{2}\right)\left(c^{2}+b^{2} d\right)}}{a^{2}-b^{2}} .
\end{array}
$$

To find the solution when $a=b$, we observo that (taking tho negative sign of the squaro root) $x=\frac{0}{0}$.

This arises from the fact that some power or root of $a-b$ is common to the numerator and denominator of the fraction.

To divide this out, we may put $a^{2}-b^{2}=p a^{2}$, and we shall get

$$
\begin{aligned}
x & =\frac{a c-a c \sqrt{1-p \frac{c^{2}+b^{2} d}{c^{2}}}}{p a^{2}} \\
& =\frac{a c-a c+\frac{1}{2} p a c \frac{c^{2}+b^{2} d}{c^{2}}}{p a^{2}}+b c \\
& =\frac{1}{2} \frac{c^{2}+b^{2} d}{a c}=\frac{1}{2} \frac{c^{2}+a^{2} d}{a c}
\end{aligned}
$$

when a is written for b, and 0 for p.
(4.) A solution may be introduccd by the operation.

In the examplo last given, the positive sign presents us with a solution introdueed by the operation, which, when $a=b$, is not a solution of the problem at all.

For in that caso tho two equations become $x+y=\frac{c}{a}$, $x^{2}-y^{2}=d$; the latter of which is at once reduced to the
simple equation $x-y=\frac{\pi \pi}{c}$ by means of the former. Accord ingly, both equations are in this ease simplo equations, and can almit of only one solution.
(5.) As a solution may bo introduced by the operation, so may it be dropped out, even when the operation is a perfectly legitimato one.

Ex. $\quad \sqrt{ }(2 x+1)-\sqrt{ }(x+4)=\sqrt{ }(1 x+4)-\sqrt{ }(3 x+7)$. Taking reciprocals, we have

$$
\begin{aligned}
& \frac{1}{\sqrt{(2 x+1)-\sqrt{(x+4)}}=\frac{1}{\sqrt{(4 x+4)}-\sqrt{(3 x+7)}}} \\
& \frac{\sqrt{ }(2 x+1)+\sqrt{(x+4)}}{x-3}=\frac{\sqrt{ }(4 x+4)+\sqrt{(3 x+7)}}{x-3}
\end{aligned}
$$

or $\quad \sqrt{ }(2 x+1)+\sqrt{ }(x+4)=\sqrt{ }(4 x+4)+\sqrt{ }(3 x+7)$,
which either added to the original equation, or subtracted from it, produces $x=-\frac{3}{2}$.

But $x=3$ is a solution of the equation which has been dropped out by the omission of the common denominator $x-3$.

It is not necessary to point out that a solution may appear under the form $\sqrt{-a}$ or ∞.

In neither ease can the problem be solved arithmetically.

Sect. X.-Equations in general.

78. Before we proceed to the resolution of eubie and the higher orders of equations, it will bo proper to explain some general properties which belong to equations of every degrce, and also certain transformations which must frequently ho performed upon equations in order to preparo them for solution.

In treating of equations in general, we shall suppose all the terms brought to one side, and put equal to 0 ; so that an equation of the fourth degreo will stand thus:

$$
x^{4}+p x^{3}+q x^{2}+\jmath x+s=0,
$$

Where x denotes an unknown quantity, and p, q, r, s, numbers or fractions, cither positive or negativo. Hero tho coefficient of the highest power of x is unity, but had it been any other quantity, that quantity might havo been taken away, and the equation reduced to the above form by rules already explained (Seet. VI).

Tho terms being thus arranged, if such a quantity be found as, when substitnted for x, will render both sides $=0$, and therefore satisfy the equation, that quantity, whether it be positive or negative, or even innginary, is defined to be a root of the equation. But we have seen that every quadratic equation has always two roots, real or imaginary; we may thercfore assume that a similar diversity will take place in all equations of a bigher degree; and this assumption appears to be well founded, by the folluwing proposition, which is of great importance in tho theory of equas tions.

If a root of any equation, as $x^{4}+p x^{3}+q x^{2}+r x+s=0$, be represented by a, the first side of that equation is divi sible by $x-a$;

$$
\begin{array}{ll}
\text { For siuco } & x^{4}+p x^{3}+q x^{2}+r x+s=0 \\
\text { And also } & a^{4}+p u^{3}+q a^{2}+r a+s=0
\end{array}
$$

Therefore, by subtraction,

$$
x^{4}-a^{4}+p\left(x^{3}-a^{3}\right) \div y\left(x^{2}-a^{2}\right)+r(x-a)=0
$$

But any quantity of this form $x^{n}-a^{n}$, where n denotes a whole positive number, is divisible by $x-a$ (Art. 20 , E.c. 1).

İence, since every term contains a factor of this form, the equation may be written under the form

$$
(x-a)\left(x^{3}+p^{\prime} x^{2}+g^{\prime} x+r^{\prime}\right)=0 .
$$

i.e., the expression $x^{4}+\mu x^{3}+y^{2}+r x+8$ is divisilble by
$x-a$; and since the same mods of reasoning will apply to any equation whatever, the truth of the proposition is evident.

We have found that $(x-a)\left(x^{3}+p^{\prime} x^{2}+q x+r^{\prime}\right)=0$; and as a product becomes $=0$ when any one of its factors $=0$, therefore the equation will have its conditions fulfilled, not only when $x-a=0$, but also when $x^{3}+p^{\prime} x^{2}+q^{\prime} x+r^{\prime}=0$.

Let us now suppose that b is a root of this equation; then, by reasoning exactly as before,

$$
x^{3}+p^{\prime} x^{2}+q^{\prime} x+r^{\prime}=(x-b)\left(x^{5} \div r^{\prime \prime}-x+\eta^{\prime \prime}\right)
$$

By proceeding in the same manner with the quadratic equation $x^{2}+p^{\prime \prime} x+q^{\prime \prime}=0$, we shall find that if c denote one of its roots, then

$$
x^{2}+p^{\prime \prime} x+q^{\prime \prime}=(x-c)\left(x+c+p^{\prime \prime}\right)
$$

So that if we put $d=-\left(c+p^{\prime \prime}\right)$, we at last find $x^{4}+p x^{3}+$ $q x^{2}+r x+s=(x-a)(x-b)(x-c)(x-d) ; a, b, c, d$, being the roots of the equation, $x^{4}+p x^{3}+q x^{2}+r x+s=0$.

The mode of reasoning which has been just now employed in a particular case, may be applied to an equation of any order whatever; we may therefore conclude, that every equation may be considered as the product of as many simple factors as the number denoting its order contains unity, and therefore, that the number of roots in any equation is precisely equal to the exponent of the highest power of the unknown quantity contained in that equation.
79. By considering equations of all degrees as formed from the products of factors $x-a, x-b, x-c$, $\& c$., we discover certain relations subsisting between the roots of any equation and its coefficients. Thus, if we limit the number of factors to four, and suppose that a, b, c, d, are the roots of this equation of the fourth degrec,

$$
x^{4}+p x^{3}+q x^{2}+r x+s=0
$$

we shall also have $(x-a)(x-b)(x-c)(x-d)=0$; and therefore, by actual multiplication.

$$
\left.\left.\left.\begin{array}{r}
2^{-a} \\
-b \\
-c \\
-d
\end{array}\right\} \begin{array}{r}
+a b \\
+a c \\
x^{3}+a d \\
+b c \\
+b d \\
+c d
\end{array}\right\} \begin{array}{r}
-a b c \\
x^{2}-a b d \\
-a c d \\
-b c d
\end{array}\right\} x+a b c d=0
$$

If we compare together the coefficients of the same powers of x, we find the following series of equations:

$$
\begin{aligned}
& a+b+c+d=-p \\
& a b+a c+a d+b c+b d+c d=+q \\
& a b c+a b d+a c d+b c d=-r \\
& a b c d=+s
\end{aligned}
$$

and as similar results will be obtained for equations of all degrees, we hence derive the following propositions, which are of great importance in the theory of equations.

1. The coefficient of the second term of any equation, taken with a contrary sign, is equal to the sum of all the roots.
2. The coefficient of the third term is equal to the sum of the products of the roots multiplied together two and two.
3. The coefficient of the fourth term, taken with a contrary sign, is equal to the sum of the roots multiplied together three and three; and so on for the remaining coefficients, till we come to the last term of the equation, which is equal to the product of all the roots having their signs changed.

Instead of supposing an equation to be produced by multiplying together simple equations, we may consider it as furmed by the product of equations of any degree, provided that the sum of their dimensions be equal to that of the proposed equation. Thus, an equation of the fourth degree may be formed cither from a simple and cubic equation, or from two quadratic equations
80. When the roots of an equation are all positive, ite simple factors will have this form, $x-a, x-b, x-c$, \&c., and if, for the sake of brevity, we take only these three, the cubic equation which results from their product will have this form,

$$
\begin{gathered}
\quad x^{3}-p x^{2}+q x-r=0 \\
\text { where } p=a+b+c, q=a b+a c+b c, r=a b c ;
\end{gathered}
$$

and here it appears that the signs of the terms are + and - alternately.

Hence we infer, that when the roots of an equation are all positive, the signs of its terms are positive and negative alternately.

If again the roots of the equation be all negative, and therefore its factors $x+a, x+b, x+c$, then γ, q, and r being as before, the resulting equation will staud thus:

$$
x^{3}+p x^{2}+q x+r=0
$$

And hence we conclude, that when the roots are all negar tive, there is no change whatever in the signs.

In general, if the roots of an equation be all real, that equation will have as many positive roots as there are changes of the signs from + to - , or from - to + ; and the remaining roots are negative. This rule, however, does not apply when the equation has impossible roots, unless such roots be considered as either positive or negative.

The connection between the signs of the roots and the signs of the terms of an equation can be doduced from the proposition, that the introduction of a new positive roct introduces a new change of signs amongst the terms of the equation.

The demonstration of this proposition depends on the Rule a fact already established, that an equation may be resolved signa into the product of simple factors, so that, for example, every equation of the fifth degree may be derived from some equation of the fourth, by multiplying the latter by $x-a$ where a is the additional root. We shall show that the introduction of a new positive root produces an equation with at least one more change of signs than the original, and the introduction of a new negative root produces an equation with at least one more continuation of the same sign. To save epace, it will suffice if we write the signs without the letters; thus, $x^{2}+p x-q$ may bo written ++- . Let, then, any equation be written down (of the sixth degree, for instance), $++--+\cdots+$; multiply by $x-a$, and write the multiplication in the usual form,

$$
\begin{array}{r}
++--+-+ \\
\frac{-++-+-}{+1-1+-+-}
\end{array}
$$

The signs of the product are all determinate except two, which we have marked with a (?). Now the changes of sign in the original equation are three-one between the 1st and 3d terms, one between the 3d and 5th, and one between the 5th and 6th; and it is evident that whatever be the signs marked (7), the produced equation has as many changes of sign as the original between the same limits, and one change beyond those limits, viz, between the 7th and 8th terms. This proposition is perfectly general, that the introduction of a positive root causes the introduction of at least all the original changes of sign within their limits, and one more change beyond those limits. In the same manner we may prove that the introduction of a negative root introduces at least one more continuation of the same sign. Hence the conclusion, that an equation cannot have more positive roots than it hat changes of sign, nor more negative roots than it has cons tinuations of the same sign. This proposition is kown at Descartes' Rule of Signs.
81. Surd and impossible roots enter equations by purs.

Let $a+\sqrt{ } b$ be a mot, where b is a positive or negative number or fraction; then $a-\sqrt{ }$, is also a root.

If $a+\sqrt{b}$ be written for x un the gnaatity $x^{*}+p x^{n-1}+$ \&c., tho result is composed of a series of powers of a and $\sqrt{ }$ b. Of these all but the odil powers of $\sqrt{ } 6$ are numerical, whilst odd powers of $\sqrt{ } b$ may be written as numerical products of $\sqrt{ } b$ itself. The result of the substitution is therefore of the form $A+B \sqrt{ } b$. But since $a+\sqrt{b}$ is a root of the equation $x^{n}+p x^{n-1}+\& c,=0$. we must have $A+B, \sqrt{ }=0$, and $\therefore \Lambda=0, B=0$.

Now if $a-\sqrt{b}$ be substituted for x, the result will be $\mathrm{A}-\mathrm{B} \sqrt{ } b$, because even powers of $-\sqrt{ } b$ are the samo as those of $+\sqrt{ }$ b. But $A=0, B=0 . \therefore \Lambda-B, ~ \sqrt{ } b=0$; consequently $a-\sqrt{ } b$ is a root of the equation.

From this proposition it appears that every equation whose degree is denoted by an odd number, mast have at least one real root.
82. We shall now explain some transformations which are frequently necessary to prepare the higher orders of equations for solution.

Any equation may have its positivo roots changed into negative roots of the same value, and its negative roots into such as arc positive, by changing the signs of the terms alternately, beginning with the second. The truth of this remark will be evident if we take the equation

$$
(x-a)(x-b)(x+c)=x^{3}+p x^{2}+q x+r=0,
$$

and write $-x$ in place of x, producing

$$
-(x+a) \cdot-(x+b) \cdot(-x+c)=-x^{3}+p x^{2}-q x+r=0,
$$

$$
\text { ie., } \quad(x+a)(x+b)(x-c)=x^{3}-p x^{2}+q x-r=0,
$$

where it appears that the signs of the first and third terms are the same as in the original equation, but the signs of the second and fourtly are the opposite. And this will be found to hold true of all equations, to whatever order they belong.
83. It will sometimes be useful to transform an equation into another that shall have each of its roots greater or less than the corresponding roots of the other equation, by some given quantity.

Let $(x-a)(x-b)(x+x)=0$ be any proposed equation which is to be transformed into another, having its roots ereater or less than those of the proposed equation by the riven quantity n; then, because the roots of the transformed equation are to $b e+a \pm n,+b \pm n$, and $-c \neq n$, the equation itself will be

$$
(y \mp n-a)(y \mp n-b)(y \mp n+c)=0 .
$$

Hence the reason of the following rule is evident.
If the new equation is to have its roots greater than those of the proposed equation, for x and its powers substitute $y-n$ and its powers; but if the roots are to be less, then, for x substitute $y+n$; and, in cither case, a new equation will be produced, the roots of which shall have the property required.
84. By the preceding rule, an equation may be changed into another, which has its roots either all positive or all negative; but it is chiefly used in preparing cubic and biquadratic equations ior solution, by transforming them into others of the same degree, but which want their second term.

Let $x^{3}+p x^{2}+q x+r=0$ be any culic equation; if we substitute $y+n$ for x, the equation is changed into the follawing:

$$
\left.\left.\left.\begin{array}{r}
y^{3}+3 n \\
+p
\end{array}\right\} y^{2}+3 n^{2}+2 p n, \begin{array}{c}
+n^{3} \\
+q
\end{array}\right\} \begin{array}{c}
+p n^{2} \\
+q n \\
+r^{\prime}
\end{array}\right\}=0 .
$$

Now, that this equation may want its second term, it is evident that we have only to suppose $3 n+p=0$, or $n=$ $-\frac{p}{3}$; for this assumption being made, and the value of n mubstituted in the remaining terms, the equation becomes

$$
y^{3}+\left(z-\frac{p^{2}}{3}\right) y+\frac{2 p^{3}}{27}-\frac{p q}{3}+r=0
$$

or, putting $-\frac{p^{2}}{3}+q=q^{\prime}$, and $+\frac{2 p^{3}}{27}-\frac{p q}{27}+r=r^{\prime}$, the sume equation may stand thus,

$$
y^{3}+q^{\prime} y+r^{\prime}=0
$$

85. In general, any equation whaterer may be transformed into another, which shall want its second term, hy the following rule.

Divide the coefficient of the second term of the proposed equation by the exponent of the first term, and add the quotient, with its sign changed, to a ners unknown quantity; the sum being substituted for the maknown quantity in the proposed equation, a new equation will be produced, which will want the second term, as required.

By this rule any adfected quadratic equation may be readily resolved; for by transforming it into another equation which wants the second term, we thus reduce its solution to that of a pure quadratic. Thus, if the quadratic equation $x^{2}-5 x+6=0$ be proposed; by substituting $y+\frac{6}{8}$ for x, we find

$$
\left.\begin{array}{r}
y^{2}+5 y+\frac{98}{4} \\
-5 y-\frac{36}{2} \\
+6
\end{array}\right\}=0, \text { or } y^{2}-\frac{1}{6}=0
$$

Hence $y= \pm \frac{1}{2}$, and since $x=y+\frac{8}{2}$, therefore $x= \pm \frac{1}{4}+\frac{8}{2}=$ +3 , or +2 .
86. Instead of taking away the second term from an equation, any other term may be made to ranish, by an assumption similar to that which has been employed to take away the second term. Thns, if in Art. 84 we assume $3 n^{2}+2 p n+q=0$, by resolving this quadratic equation, a value of n will be found which, when substituted in the equation, will cause the third term to vanish; and, by the resolution of a cubic equation, the fourth term may be taken away; and so on.
87. Another species of transformation, of use in the resolution of equations, is that by which an equation, having the coefficients of some of its terms expressed by fractional quantitics, is changed iato another, the coefficients of which are all integers.

Let $x^{3}+\frac{p}{a} x^{2}+\frac{q}{b} x+\frac{r}{6}=0$ denote an equation to be so transformed, and let us assume $y=a b c x$, and therefore $x=\frac{y}{a b c}$; then, by substitution, our equation becomes

$$
\frac{y^{3}}{a^{3} b^{3} c^{3}}+\frac{p}{a^{3} b^{2} c^{2}} y^{2}+\frac{q}{a b^{2} c} y+\frac{r}{c}=0 ;
$$

and multiplying the whole equation by $a^{3} b^{3} c^{3}$, wo have

$$
y^{3}+b c p y^{2}+a^{2} b c^{2} q y+a^{3} b^{3} c^{2} r=0
$$

Thus we have an equation free from fractions, while at the same time the coefficient of the highest power of the anknown cquantity is unity, as before.

Examples of the Transformation and Solution of Equations uhen ccitain relations arrongst the roots are known.

Ex. 1. If a, b, c are the roots of the equation $x^{3}-x^{2}+$ $2 x-3=0$, to form the equation of which the roots are
(1.)

$$
a+b, b+c, c+a
$$

Let y be any one root of the required equation; put $y=a+b+c-x=1-x$ (Art. 79), and the values of y will be the roots of the equation required, which is therefore
or

$$
\begin{gathered}
(1-y)^{3}-(1-y)^{2}+2(1-y)-3=0 \\
y^{3}-2 y^{2}+3 y+1=0
\end{gathered}
$$

$$
\begin{equation*}
\frac{a}{b+c-a}, \frac{b}{a+c-b}, \frac{c}{a+b-c} . \tag{2.}
\end{equation*}
$$

cubio equations.]

$$
\text { Let } \quad \begin{aligned}
y= & \frac{x}{a+b+c-2 x}=\frac{x}{1-2 x} ; \\
\therefore \quad & y^{3}+\frac{29}{17} y^{2}+\frac{16}{17} y+\frac{3}{17}=0
\end{aligned}
$$

is the equation required.

(3.)
 $$
a^{2}, b^{2}, c^{2}
$$

If $y=x^{2}$, the values of y are a^{2}, b^{2}, c^{2}. Accordingly we require to throw the given equation into a form which involves no odd powers of x. This is done as follows:

$$
\begin{gathered}
x^{3}-x^{2}+2 x-3=x\left(x^{2}+2\right)-\left(x^{8}+3\right)=0 ; \\
x\left(x^{2}+2\right)=x^{2}+3 \\
x^{2}\left(x^{2}+2\right)^{2}=\left(x^{2}+3\right)^{2}, \\
y(y+2)^{2}=(y+3)^{2} \\
y^{3}+3 y^{2}-2 y-9=0
\end{gathered}
$$

squaring,
or
or
(4.)

$$
\frac{a}{b c}, \frac{b}{a c}, \frac{c}{a b}
$$

Let $y=\frac{x^{2}}{a b c}=\frac{x^{2}}{3}$, and $y^{3}+y^{2}-\frac{2}{9} y-\frac{1}{3}=0$
is the equation required.
Ex. 2 Two roots of the equation

$$
x^{4}-16 x^{3}+86 x^{2}-176 x+105=0
$$

are 1 and 5. Find the other roots.
The quantity on the left hand side of the equation is (Art. 78) divisible by $(x-1)(x-5)$, or by $x^{2}-6 x+5$.
The quotient is $x^{2}-10 x+21$, which, being put $=0$, gives 3 and 7, the roots required.
$E x$. 3. The equation $x^{3}-4 x^{2}+x+r=0$ has one root, 3 ; find r and the other roots.

Write 3 for x, then $r=6$, and the equation may be written
which gives

$$
\begin{gathered}
(x-3)\left(x^{2}-x-2\right)=0 \\
x=3, x=-1
\end{gathered}
$$

Ex. 4. The equation $x^{3}+x^{2}-16 x-16=0$ has two zoots of the form $+a,-a$; find them.

If we writo $-x$ for x, we get the equation

$$
x^{3}-x^{2}-16 x+16=0
$$

which has also two roots, $-a,+a, \therefore x^{2}-a^{2}$ is a common measure of the two quantities. But $x^{2}-16$ is easily found to be a common measure of the two quantities, . . $a=4$.

Exx. 5. The roots of the equation

$$
x^{3}-6 x^{2}+11 x-6=0
$$

are in arithmetical progression; find them.
If $a, a+b, a+2 b$ be the roots, their sum is $3(a+b)$, i.e., three times the middle root. But (Art. 79) their sum is $6, \therefore$

$$
a+b=2
$$

also $\quad a(a+b)(a+2 b)=6$,
i.e., $\quad a(4-a)=3, a^{2}-4 a+3=0$,
$\therefore \quad a=1, a=3$.
Ex. 6. The three roots of the equation $x^{3}-7 x^{2}+16 x$ $-8=0$ are in geometrical progression; find them.
Let $a, a r, a^{r^{2}}$ be the roots; then their product is $(a r)^{3}$, $\therefore(a r)^{3}=8$, and $a r=2, \therefore$ their sum $a+a r+a r^{2}=7$, which gives

$$
a=1, r=2,
$$

and 12,4 are the roots.

Seot: XI.-Solution of Cubio Equationa.

88. Cubic equations, like all equations above the first dogree, are divided into two classes: they are said to be pure when they contain only one power of the unknown quantity; and adfected when they coutain two or more powers of that quantity.

Pure cubic oquations are therefore of this form, $x^{3}=125$, or $x^{3}=-27$, or, in gencral, $x^{3}=r$; and hence it appears that a value of the simple power of the unknown quantity may always be found without difficulty, by extracting the cube root of each side of the equation; thus, from the first of the three preceding examples we find $x=+5$, from the second $x=-3$, and irom the thurd, $x=\sqrt[3]{r}$.

It would seem at tirst sight that the only value which x can have in the cubic equation $x^{3}=r$, or putting $r=c^{3}$, $x^{3}-c^{3}=0$, is this one, $x=c$; but since $x^{3}-c^{3}$ may be re solved into these two factors, $x-c$ and $x^{2}+c x+c^{2}$, it follows, that besides the value of x already found, which reşults from making the factor $x-c=0$, it has yet other two values, which may bo found by making the other factor $x^{2}+c x+c^{2}=0$; and accurdingly, by resolving the quadratic equation $x^{2}+c x=-c^{2}$, we find these values to be $\frac{-c+\sqrt{-3 c^{2}}}{2}$ and $\frac{-c-\sqrt{-3 c^{2}}}{2}$, or $\frac{-1+\sqrt{-3}}{2} c$ and $\frac{-1-\sqrt{-3}}{2} c$. Thus it appears, that any cubic equation of this form, $x^{3}=c^{3}$, or $x^{3}-c^{3}=0$, has these three roots,

$$
x=c, x=\frac{-1+\sqrt{-3}}{2} c, x=\frac{-1-\sqrt{-3}}{2} c ;
$$

the first of which is real, but the two last are imaginary. If, however, each of tho imaginary vaiues of x be raised to the third power, the same results will be obtained as from the real value of x; the original equation $x^{3}-c^{3}=0$ may also be reproduced, by multiplying together the three factors $x-c, x-\frac{-1+\sqrt{-3}}{2} c$, and $x-\frac{-1-\sqrt{-3}}{2} c$.
89. Let us now consider such cubic equations as have all their terms, and which are therefore of this form,

$$
x^{3}+\mathrm{A} x^{2}+\mathrm{B} x+\mathrm{C}=0
$$

where A, B, and C denote known quantities; either posi tive or negative.

It has been shown (Art. 84) huw an equation heving all its terms may be transformed into another which wants the second term therefore. assume $x=y-\frac{A}{3}$, as directed in that article; then, by proper substitution, the atove equation will be changed into another of this form,

$$
y^{3}+q y+r=0,
$$

where q and r denote known quantities, whether positive or negative; now the roots of this equation being found, it is evident that those of the former may be readily obtaincd by means of the assumed equation $x=y-\frac{A}{3}$.

Resuming, therefore, the equation $y^{s}+q y+r=0$, let us suppose $y=v+z$, and it becomes

$$
\left.\begin{array}{rl}
v^{3}+3 v^{2} z+3 v z^{2} & +z^{3} \\
+q v & +q z \\
+r
\end{array}\right\}=0 .
$$

Thus we have a now equation, which, as it involves two unknown quantities, o and \&, may be reselved into any two others, which will simplify the determination of those quantities.

Now, it appears, that the only way in which we can divide that equation into two others, so as to simplify the question, is the following:

$$
\begin{gathered}
3 v^{2} z+3 v z^{2}+q v+q z=0, \\
v^{3}+z^{3}+r=0 .
\end{gathered}
$$

The first of these may also be expressed thus,

$$
(3 v z+q)(v+z)=0 .
$$

Hence, we must either suppose that $v+z=0$, or that $3 v z+q=0$; but the former supposition cannot be admitted without supposing also that $y=0$; therefore we must adopt the latter. So that to determine v and z we have these two equations,

$$
3 v z+q=0, \quad v^{3}+z^{3}+r=0 .
$$

From the first, we find $v z=-\frac{q}{3}$, and $\therefore v^{3} z^{3}=-\frac{q^{3}}{27} . \quad$ This reduces the sccond cquation to a quadratic in v^{3}, viz $v^{6}+r v^{3}-\frac{q^{3}}{27}=0$, the solution of which equation is

```
\(v^{9}=-\frac{1}{3} r+\sqrt{\frac{1}{2} \frac{1}{2} q^{3}+\frac{1}{2} r^{2}} ; z^{3}=-\frac{1}{3} r-\sqrt{\frac{1}{2}=r^{3}+\frac{1}{2} r^{2}} ;\)
\(v=\sqrt[3]{-\frac{1}{2} r+\sqrt{\frac{1}{2} q^{3}+\frac{1}{2}}} ; z=\sqrt[3]{-\frac{1}{2} r-\sqrt{\frac{1}{2} 2^{3}}{ }^{3}+\frac{1}{4} r^{2}} ;\)
    and \(y=v+z\)
    \(=\sqrt[3]{-\frac{1}{2} r+\sqrt{\frac{1}{27} q^{3}+\frac{1}{2} r^{3}}}+\sqrt[3]{-\frac{1}{2} r-\sqrt{\frac{1}{2} q^{9}+\frac{1}{2} r^{2}}}\).
```

Thus we have ebtained a value of the unknown quantity y, in terms of the known quantities q and r; thercfore the equation is resolved.
90. But this is only one of three ralues which y may have. Let us, for the sake of brevity, put

$$
\begin{aligned}
& \Delta=-\frac{1}{3} r+\sqrt{\frac{1}{2}+\eta^{3}+\frac{1}{4} r^{2}}, B=-\frac{1}{2} r-\sqrt{\frac{1}{2} \div Y^{3}+\frac{1}{6} r^{2}}, \\
& \quad \text { and put }\left\{\begin{array}{l}
\alpha=\frac{-1+\sqrt{-3}}{2}, \\
\beta=\frac{-1-\sqrt{-3}}{2}
\end{array}\right.
\end{aligned}
$$

Then, from what has been shown (Art. 88), it is crideut that v and z have each thesc three ralues,

$$
\begin{aligned}
& v=\sqrt[3]{\bar{A}, v=\alpha \sqrt[3]{A}, v=\beta \sqrt[3]{A} ;} \\
& z=\sqrt[3]{B}, z=\alpha \sqrt[3]{B}, z=\beta \sqrt[3]{B} .
\end{aligned}
$$

To determine the corresponding values of v and z, we must consider that $v z=-\frac{q}{3}=\sqrt[3]{\mathrm{AB}}$. Now if we observe that $a \beta=1$, it will immediately appear that $v+z$ has these three values,

$$
\begin{aligned}
& v+z=\sqrt[3]{A}+\sqrt[3]{\sqrt{B}}, \\
& v+z=a \sqrt[3]{A}+\beta \sqrt[3]{B} \\
& v+z=\beta \sqrt[3]{A}+a \sqrt[3]{B},
\end{aligned}
$$

which are therefore the three ralues of y.
The first of these formule is commenly known by the name of Cardan's rule; but it is well known that Cardan was not the inventor, and that it ought to be attributed to Sicholas Tartalea and Seipio Ferreus, who discovercd it much about the same time, and independently of each - other. (See the Historical Introduction.)

The formula given abore for the roots of a cubic equation may be put under a different form, better adapted to the purposes of arithmetical calculation, as follows :Because $z z=-\frac{q}{3}$, tharefore $z=-\frac{q}{3} \times \frac{1}{v}=-\frac{\frac{7 q}{3}}{\sqrt[3]{\Lambda}} ;$ lenee $+z=\sqrt[3]{\mathrm{A}}-\frac{t q}{\sqrt[2]{\mathrm{A}}}$: thas it appears that the three values of y may also be expressed thus:

$$
\begin{aligned}
& y=\sqrt[3]{A}-\frac{\frac{1 q}{\sqrt{A}}}{\sqrt[3]{2}} \\
& y=\alpha \sqrt[3]{A}-\frac{\sqrt[3]{7 q \beta}}{\sqrt[3]{A}} \\
& y=\beta \sqrt[3]{A}-\frac{\frac{3 q \alpha}{\sqrt[3]{A}}}{\sqrt[3]{A}}
\end{aligned}
$$

91. To show the manner of applying these formule, let Iit be required to determine x from the cubic equation

$$
x^{3}+3 x^{2}+9 x-13=0 .
$$

As this equation has all its terms, the first step towards its reselufion is to transform it into another which shall want the secend term, by substituting $y-1$ for x as directed (Art 84). The operation will stand thus:

$$
\begin{aligned}
& x^{3}=y^{3}-3 y^{2}+3 y-1 \\
&+3 x^{2}=+3 y^{2}-6 y+3 \\
&+9 x+9 y-9 \\
&-13= \\
&-13
\end{aligned}
$$

$:$ adding these, the transformed equation is

$$
y^{3}+6 y-20=0
$$

which being compared with the general equation,

$$
y^{3}+q y+r=0,
$$

fives $q=6, r=-20$; hence

$$
A=\sqrt[1]{-\frac{1}{8} r+\sqrt{\frac{1}{17} 9^{3}+l^{2}}}-\sqrt[3]{10+\sqrt{108}} .
$$

therefore the second formula of last article gives g_{-} $\sqrt[8]{10+\sqrt{108}}-\frac{2}{\sqrt[3]{10+\sqrt{108}}}$; but as this expression involves a radical quantity, let the square root of 108 be taken and added to 10 , and the cube root of the sum found; thus we have $\sqrt[3]{1 \mathrm{C}+\sqrt{108}}=2.732$ nearly, and therefore $\frac{2}{\sqrt[3]{10+\sqrt{108}}}=\frac{2}{2 \cdot 732}=732$; hence we at last find one of the ralues of y to be $2 \cdot 732-732=2$.
In finding the cube root of the radical quantity $\sqrt{10+\sqrt{108}}$, we have taken only its approximate value, so as to have the expression for the root under a rational form, and in this way we can always find, as near as we please, the cube root of any surd of the form $a+\sqrt{b}$, where b is a positive number. Bnt it will sometimes happen that the cube reot of such a surd can be expressed exactly by another surd of the same form; and accordingly, in the present case, it appears that the cube root of $10+\sqrt{108}$ is $1+\sqrt{3}$, as may be proved by actually raising $1+\sqrt{3}$ to the third power. Hence we find $\frac{2}{\sqrt[3]{10+\sqrt{108}}}=\frac{2}{1+\sqrt{3}}=\frac{2(1-\sqrt{3})}{(1-\sqrt{ } 3)(1+\sqrt{ } 3)}=-(1-\sqrt{3}) ; 80$ that $y=1+\sqrt{3}+1-\sqrt{3}=2$, as before.

The other two values of y will be had by substituting $1+\sqrt{3}$ and $1-\sqrt{3}$ for $\sqrt[3]{A}$ and $\frac{\frac{3}{3} q}{\sqrt[3]{A}}$ in the second ana third formule of last article, and restoring the values of a and β. We thus hare
$y=\frac{-1+\sqrt{-3}}{2} \times(1+\sqrt{3})+\frac{-1-\sqrt{-3}}{2} \times(1-\sqrt{3})=-1$
$+\sqrt{-9}$.
$y=\frac{-1-\sqrt{-3}}{2} \times(1+\sqrt{3})+\frac{-1+\sqrt{-3}}{2} \times(1-\sqrt{3})=-1$
$-\sqrt{-9}$.
So that the three values of y are

$$
+2, \quad-1+\sqrt{-9}, \quad-1-\sqrt{-9} ;
$$

and since $x=y-1$, the corresponding values of x are

$$
+1, \quad-2+\sqrt{-9}, \quad-2-\sqrt{-9} .
$$

Thus it appears that one of the roets of the proposed equation is real, and the other two imaginary.

The two imaginary reots might have been found otherwise, by considering that since one root of the equation is 1 , the equation must be divisible by $x-1$ (Art. 78), Accordingly, the division being actually perfermed, and the quotient put $=0$, we have the quadratic equation,

$$
x^{2}+4 x+13=0 ;
$$

which gives $x=-2 \pm \sqrt{-9}$, the same imaginary valucs as before.
92. In the applicatien of the preceding formula to the resolution of the equation $y^{3}+q y+r=0$, it is necessary to find the square root of $\frac{1}{27} q^{3}+\frac{1}{3} r^{2}$; now, when that quantity is positive, as in the equation $y^{3}+6 y-20=0$, which was resolved in last article, ne difficulty occurs, for its root may be found either exactly or to as great a degree of accuracy as we please.

As, however, the coefficients q and r are independent of euch other, it is erident that q may be negative, and such that $\frac{1}{2 \pi} 9^{3}$ is greater than $\frac{1}{6} r^{2}$. In this case, the expression $\frac{3}{2} \frac{1}{2} r^{3}+\frac{1}{4} r^{2}$ will be negative, and therefore its square root an imaginary quantity; so that all the reets appear under an imaginary form. But we are certain (Art. 81) that every cubic equation must have at least one real roet. The troth is that roots are frequently real, though they appear under
an imaginary form. Take, for instance, the equation $y^{3}-6 y+4=0$, of which the roots are found to be

$$
\begin{aligned}
& y=\sqrt[3]{2+2 \sqrt{-1}}+\sqrt[3]{2-2 \sqrt{-1}} \\
& y=\alpha \sqrt[3]{2+2 \sqrt{-1}}+\beta \sqrt[3]{2-2 \sqrt{-1}} \\
& y=\beta \sqrt[3]{2+2 \sqrt{-1}}+\alpha \sqrt[3]{2-2 \sqrt{-1}}
\end{aligned}
$$

ft will bc found by actual involution that the imaginary expressions $2+2 \sqrt{-1}$ and $2-2 \sqrt{-1}$ are the cubes of $-1+\sqrt{-1}$ and $-1-\sqrt{-1}$ respectively, whence by substitution we find

$$
y=2, y=1+\sqrt{3}, \text { and } y=1-\sqrt{3} .
$$

93. We shall now prove, that as often as the roots of the equation $x^{3}+q x+r=0$ are real, q is negative, and
 greater than $\frac{1}{r} r^{2}$, the roots are all real.

Let us suppose a to be a real root of the proposed equation

$$
\begin{aligned}
& \text { Then } \\
& \text { And } \\
& \begin{array}{l}
x^{3}+q x+r=0, \\
a^{3}+q a+r=0,
\end{array}
\end{aligned}
$$

And therefore, by subtraction, $x^{3}-a^{3}+q(x-a)=0$; hence, dividing by $x-a$, we have

$$
x^{2}+a x+a^{2}+q=0 .
$$

This quadratic equation is formed from the two remaining roots of the proposed equation, and by resolving it we find

$$
x=-\frac{3}{2} a \pm \sqrt{-\frac{3}{4} a^{2}-q} .
$$

And as, by hypothesis, all the roots are real, it is evident that q must necessarily be negative, and greater than $\frac{2}{2} a^{2}$; for otherwise the expression $\sqrt{-\frac{3}{a} a^{2}-q}$ would be imaginary. Let us change the sign of q, and put $q=3 a^{2}+d$; thus the roots of the equation $x^{3}-q x+r=0$ will be

$$
a,-\frac{1}{2} a+\sqrt{ } d,-\frac{1}{2} a-\sqrt{ } d,
$$

and here d is a positive quantity.
To find an expression for r in terms of a and d, let ${ }_{a}^{2} a^{2}+d$ be substituted for q in the equation $a^{3}-q a+r=0$; we thence find $r=-\frac{1}{1} a^{3}+a d$; so that to compare together the quantities q and r, we have these equations,

$$
q=\frac{3}{a} a^{2}+d, r=-\frac{1}{a} a^{3}+a d .
$$

In order to make this comparison, let the cube of $\frac{1}{3} q$ be taken, also the square of $\frac{1}{2} r$, the results are
and therefore, by subtraction,

$$
\begin{aligned}
& \frac{1}{31} q^{8}-\frac{1}{6} r^{2}=\frac{8}{18} a^{4} d-\frac{1}{9} a^{2} d^{2}+\frac{1}{27} d^{3} \text {, } \\
& =3 d\left(\frac{1}{150} a^{4}-\frac{1}{15} a^{2} d^{2}+\frac{1}{81} d^{2}\right)
\end{aligned}
$$

Now the square of any real quantity being always positive, it follows that $3 d\left(\frac{1}{5} a^{2}-\frac{1}{0} d\right)^{2}$ will be positive when d is positive; bence it is evident that in this case $\frac{1}{2} q^{3}$ must be greater than $\frac{1}{6} r^{2}$, and that $\frac{1}{87} a^{3}$ cannot be less than $\frac{1}{6} r^{2}$, unless d be negative, that is, unless $-\frac{1}{2} a+\sqrt{d,}-\frac{1}{2} a-\sqrt{d}$, the two other roots of the equation are imaginary. If we suppose $d=0$, then $\frac{1}{8-q^{3}}=\frac{1}{2} r^{2}$; and the roots of the equations, which in this caso are also real, tro of them being equal.

Upon the whole, therefore, we infer, that since a cubic equation has always one real root, its roots will be all real as often as q is negative, and $\frac{1}{2} q^{3}$ greater than $\frac{1}{r^{2}} r^{2}$; and consequently, that in this case the formule for the routs must express real quantities, notwithstanding their imaginsry form.
94. Let $y^{3}-q y+r=0$ denote any equation of the form which has been considered in last article, nammely; that which has its roots all real; then, if we put i $=-\frac{1}{3} r_{\text {, }}$
$\ell^{2}=\frac{1}{27} 4^{4}-\frac{2}{r^{2}} r^{2}$, one of the routs, as exdressed by the first formitial (Art. 90) will be.

$$
y=\sqrt[3]{a+b \sqrt{-1}}+\sqrt[3]{a-b \sqrt{-1}}
$$

This expression, although under an imaginary form, nust (as we have shown in last article) represeut a real quautity. although we cannot obtain it by the ordiwary process of arithmetic.
The case of cubic equations, in which the roots are oll real, is now called the irrelucible case.

It is remarkable that the expressiou

$$
\sqrt{a+b \sqrt{-1}}+\sqrt{a-b \sqrt{-1}},
$$

and in general,

$$
\sqrt{a+b \sqrt{-1}}+\sqrt{a-b \sqrt{-1}}
$$

where n is any power of 2 , admits of being reduced to another forn, in which no impossible quantity is found. Thus, $\sqrt{a+b \sqrt{-1}}+\sqrt{a-b \sqrt{-1}}=\sqrt{2 a+2 \sqrt{u^{2}+b^{2}}}$,
and

$$
\sqrt[4]{a+b \sqrt{-1}}+\sqrt[4]{a-b \sqrt{-1}}=
$$

$$
\sqrt{ }\left(\sqrt{2 a+2 \sqrt{a^{2}+b^{2}}}+2 \sqrt[4]{a^{2}+b^{2}}\right)
$$

as is easily proved by frrst squaring and then taking the square root of the :maginary formule. But when n is 3 , it does not seem that slich reduction can possibly take place.

If each of the surdis be expanded into an infinite serics, and their sum be taken, the imaginary quantity $\sqrt{-1}$ will ranish, and thus the roat may be found by a direct process.

Sect. XII,-Solution of Biquadratic Equations.

95. When a biquadratic equation contaius all its terms, it has this form,

$$
x^{4}+\mathrm{A} x^{3}+\mathrm{B} x^{2}+\mathrm{C} x+\mathrm{D}=0
$$

where $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ denote any known quantities whaterer.
We shall first consider pure biquadratics, or such as coutain only the first and last terns, and therefore are of this form, $x^{4}=b^{4}$. In this case it is erident that x may be readily had by tro extractions of the square root; by the first we find $x^{2}=b^{2}$, and by the second $x=b$. This, however, is only one of the values which x may have; for since $x^{4}=b^{4}$, therefore $x^{4}-b^{4}=0$; but $x^{4}-b^{4}$ may be resolvcd into two factors $x^{2}-b^{2}$ and $x^{2}+b^{2}$, each of which admits of a similar resolution; for $x^{2}-b^{2}=(x-b)(x+b)$ and $x^{2}+l^{2}$ $=(x-b \sqrt{-1})(x+b \sqrt{-1})$. Hence it appears that the equation $x^{4}-b^{4}=0$ may also be expressed thus

$$
(x-b)(x+b)(x-b \sqrt{-1})(x+b \sqrt{-1})=0
$$

so that x may have these four valucs,

$$
+b, \quad-b, \quad+b \sqrt{-1}, \quad-b \sqrt{-1},
$$

two of which are real, and the others imaginary.
96. Next to pure biquadratic equations, in respect of easiness of resolution, are such as want the second and fourth terms, and therefore have this form,

$$
x^{4}+q x^{2}+s=0
$$

These may be resolved in the manner of quadratic equations; for if we put $y=x^{2}$, we have

$$
y^{2}+q y+s=0,
$$

from which wo fiud $y=\frac{-q \pm \sqrt{q^{9}-45}}{2}$, and thercfure

$$
x= \pm \sqrt{\frac{-q \pm \sqrt{q^{2}-4 s}}{2}} .
$$

97. Then a biquadratic equation has all its terms, the manner of resolving it is not so obvious as in the two former cascs, but its resolution may be always reduced to that of a cubic equation. There are various methods by which
such a reduction may be effected. Tho following, which wo sclect as one of the most ingenious, was first given by Euler in the Petersburg Commentaries, and afterwards ex1l:inned more fully in his Elements of Algebra.

Wo have already explained, Art. 92, how an equation Which is conuplete in its terms may be transformed into annother of tho. samo degree, but which wants the seeond teran; therefore any biquadratic equation may be reduced to this furn?,

$$
y^{4}+p y^{2}+q y+r=0,
$$

Where the sccond term is wanting, and whero p, q, r, donuto an's known quautitics whatever.
That we may form an equation similar to the above, let us assume $y=\sqrt{a}+\sqrt{\bar{b}}+\sqrt{\bar{c}}$, and also suppose that the letters a, b, c denoto the roots of the cubic equation

$$
z^{3}+P z^{2}+Q z-R=0 ;
$$

then, from the theory of equations wo have

$$
a+b+c=-\mathrm{P}, \quad a b+a c+b c=\mathrm{Q}, \quad a b c=\mathrm{R}
$$

We square the assumed formula

$$
y=\sqrt{a}+\sqrt{b}+\sqrt{c}
$$

anid obtain $y^{2}=a+b+c+2(\sqrt{a b}+\sqrt{a c}+\sqrt{b c})$,
ur, substituting $-\Gamma$ for $a+b+c$, and transposing;

$$
y^{2}+\mathrm{P}=2(\sqrt{a} \bar{b}+\sqrt{a \bar{c}}+\sqrt{b} \bar{c}) .
$$

Let this equation bo also squared, and we havo

$$
y^{1}+2 P y^{2}+\mathrm{P}^{2}=4(a b+a c+b c)+8\left(\sqrt{a b b} c+\sqrt{a b^{2}} c+\sqrt{a b c^{2}}\right) ;
$$ and sinco. $\quad a b+a c+b c=Q$,

and $\sqrt{u^{2} b c}+\sqrt{a b^{2} c}+\sqrt{\bar{a} b c^{2}}=\sqrt{a b c}(\sqrt{a}+\sqrt{b}+\sqrt{c})=\sqrt{\mathrm{R}} \cdot y$, the same equation may be expressed thus:

$$
y^{4}+2 \mathrm{P} y^{2}+\mathrm{P}^{2}=4 \mathrm{Q}+8 \sqrt{\mathrm{R}} \cdot y
$$

Thus we have the biquadratic equation

$$
y^{4}+2 P y^{2}-8 \sqrt{R} \cdot y+P^{2}-4 Q=0
$$

one of the roots of which is $y=\sqrt{a}+\sqrt{b}+\sqrt{c}$, while a, b, c are the roots of the cubic equation $z^{3}+P z^{2}+Q z-R=0$.
98. In order to apply this resolution to the proposed equation $y^{4}+p y^{2}+q y+r=0$, we must express the assumed coefficients $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ by means of p, q, r, the coefficients of that equation. For this purpose, let us compare the equatiuns

$$
\begin{aligned}
& y^{4}+p y^{2}+q y+r=0, \\
& y^{4}+2 \mathrm{P}^{2}-8 \sqrt{1 \mathrm{l}} y+\mathrm{P}^{2}-4 \mathrm{Q}=0,
\end{aligned}
$$

and it immediately appears that

$$
2 \mathrm{P}=p, \quad-8 \sqrt{\mathrm{R}}=q, \quad \mathrm{P}^{2}-4 \mathrm{Q}=r
$$

and from these equations we find

$$
\mathrm{P}=\frac{p}{2}, \quad \mathrm{Q}=\frac{p^{2}-4 r}{16}, \quad \mathrm{R}=\frac{q^{2}}{64} .
$$

Hence it follows that the roots of the proposed equation are generally expressed by the formula

$$
y=\sqrt{a}+\sqrt{b}+\sqrt{c} ;
$$

where a, b, c denote the roots of this cubic equation;

$$
z^{3}+\frac{p}{2} z^{2}+\frac{p^{2}-4 r}{16}-\frac{q^{2}}{61}=0 .
$$

But to find each particuler root, wie must consiler, that as the square root of a number may be either positive or negative, so each of the quantities $\sqrt{a}, \sqrt{b}, \sqrt{c}$ may have either the sign + or - prefixed to it; and hence' our formula will give eight different expressions for the root. It is, however, to be obscrved, that as the product of the three quantities $\sqrt{a}, \sqrt{\bar{b}}, \sqrt{c}$ must be equal to \sqrt{R} or to $-\frac{q}{8}$; when q is positive, their product must be a negative quantity, and this can only be effected by making either one or three of thera negativo; again, when q is negative,
.their product must bo a positive guimity: so that in this case they must either be all positive, or twe of them must bo negative. These considerations cmablo.us to determine, that four of the eight expressions for the roct belong to the case in which q is positive, and the other four to that in which it is negative.
99. We slall now give the result of the preceding investigation in the forn of a practical ruln; and as the cuefficients of the cabic equation which hask becen found involve fractions, we shall transfurn it into anotlier, in whieh the coefficients are integers, by suppusing $z=\frac{v}{4}$. Thus the equation

$$
z^{3}+\frac{p}{2} z^{2}+\frac{p^{2}-4 r}{16} z-\frac{q^{2}}{64}=0
$$

Lecomes, after reduction,

$$
v^{3}+2 p v^{2}+\left(p^{2}-4 v\right) v-q^{2}=0,
$$

it also follows, that if the roots of the latter equation are a, b, c, the roots of the former are $\frac{a}{4}, \frac{b}{4}, \frac{c}{4}$, so that our rulo may now bo expressed thus:

Let $y^{4}+p y^{2}+q y+r=0$ be any biquadratic equation wanting its second term. Form this cubic equation

$$
v^{3}+2 p v^{2}+\left(p^{2}-4 r\right) v-q^{2}=0
$$

and find its roots, which, let us denote by a, b, c.
Then the routs of the proposed biquadratic equation aro,
when q is negative,
$y=\frac{1}{2}\left(\sqrt{\frac{1}{a}}+\sqrt{b}+\sqrt{c}\right)$,
$y=\frac{1}{2}(\sqrt{a}-\sqrt{b}-\sqrt{c})$,
$y=\frac{i}{2}(-\sqrt{a}+\sqrt{\bar{b}}-\sqrt{c})$,
$y=\frac{1}{2}(-\sqrt{a}-\sqrt{b}+\sqrt{c})$.
100. As an example of the method of resolving a bi quadratic equation, lut it be required to determine. the roots of the following,

$$
x^{4}-25 x^{2}+60 x-36=0
$$

liy comparing this equation with the gencral formula, wo have $p=-25, q=+60, r=-36$; hence

$$
2 p=-50, y^{2}-4 r=769, q^{2}=3600,
$$

and the cubic equation to be resolved is

$$
v^{3}-50 v^{2}+769 v-3600=0 ;
$$

the roots of which are found, by the rules for cabies, to be 9,16 , and 25 , so that $\sqrt{ } a=3, \sqrt{ } b=4, \quad c=5$. Now in this case q is positive, therefore

$$
\begin{aligned}
& x=\frac{1}{2}(-3-4-5)=-6, \\
& x=\frac{1}{2}(-3+4+5)=+3, \\
& x=\frac{1}{2}(+3+5)=+2, \\
& x=\frac{1}{2}(+3+4-5)=+1 .
\end{aligned}
$$

101. We have now explained the particular rules by which the roots of equations belonging to each of the first four orders may be determined; and this is the greatest length mathematicians have been able to go in the clirect resolution of equations; for as to those of the fifth, and all higher degrees, no general method has hitherto been foum? either for resolving them directly, or reducing them. to others of an inferior degree.
It eren appears that tho formule which express the roots of cubic equations are not of universal application; for in one case, that is, when the roots are all real, they become illusory, so that no conclusion can be drawn from them. The same observation will also apply to the formule for the roots of biqualratic equations, because, before they can bo applied, it is always necessary to find the roots of a cubic equation. But both in calics and in b : adratic equations, even when the formulee involvo no imaginary quantities, and therefore can be always applied, it is more ennvenient in practice to cmploy other methods, which we are hereafter to explain.

Secr. XIl.- Solumton of Equations in whicil certain relations are znown to exist amongst the Roots.
102. When the coefficients of the terms of an equation form the same numerical series, whether taken in a direet or an inverted order, as in this example,

$$
x^{4}+p x^{3}+q x^{2}+p x+1=0
$$

it may always be transformed into another of a degree denoted by half the exponent of the highest power of the unknown quantity, if that exponent be an even number; or half the exponent diminished by unity, if it be an odd number:

The same observation will also apply to any equation of this form,

$$
x^{4}+p a x^{3}+q a^{2} x^{2}+p a^{3} x+a^{4}=0
$$

103. That we may effect the proposed transformation upon the equation

$$
-x^{4}+p x^{3}+q x^{2}+p x+1=0
$$

let every two terms which are equally distant from the extremes be collected into one. and the whole be divided by x^{2}, ther

Let us assume

$$
\begin{gathered}
x^{2}+\frac{1}{x^{2}}+p\left(x+\frac{1}{x}\right)+q=0 \\
x+\frac{1}{x}=z
\end{gathered}
$$

then

$$
x^{2}+2+\frac{1}{x^{2}}=z^{2}, \text { and } x^{2}+\frac{1}{x^{2}}=z^{2}-2
$$

Thus the equation $x^{2}+\frac{1}{x^{2}}+p\left(x+\frac{1}{x}\right)+q=0$,
becomes

$$
z^{2}+\dot{p} z+q-2=0
$$

and since $\quad x+\frac{1}{x}=z$, therefore $x^{2}-z x+1=0$.
Hence, to determine the roots of the biquadratic equation

$$
x^{4}+p x^{3}+q x^{2}+p x+1=0
$$

we form the quadratic

$$
z^{2}+p z+q-2=0
$$

and find its roots, which, let us suppose denoted by z^{\prime} and $z^{\prime \prime}$; then the four roots of the proposed equation wilk be found by resolving two quadratic equations, viz.

$$
x^{2}-z^{\prime} x+1=0, \quad x^{2}-z^{\prime \prime} x+1=0
$$

10t. It may be observed, respecting these two quadratic equations, that since the last term of each is unity, if we put a, a^{\prime} to denote the roots of the one, and b, b^{\prime} those of the other, we have from the theory of equations, $a a^{\prime}=1$, and therefcre $a^{\prime}=\frac{1}{a}$; also $b b^{\prime}=1$, and $b^{\prime}=\frac{1}{b}$: now a, a^{\prime}, b, z^{\prime} are also the roots of the equation

$$
x^{4}+p x^{3}+q x^{2}+p x+1=0
$$

Hence it appears that the proposed equation has this property, that one-half of its roots are the reciprocals of the other half; and to that circumstance we are indebted for the simplicity of its resolution.
105. If the greatest exponent of the unknown quantity in a reciprocal equation is an odd number, as in this example,

$$
x^{5}+p x^{4}+q x^{3}+q x^{2}+p x+1=0
$$

the equation will always be satisfied by substituting -1 for x; hence, -1 must be a root of the equation, and therefore the equation must be divisible by $x+1$. Accordingly, if the division be actually performed, we shall have in the present case

$$
x^{4}+(p-1) x^{3}-(p-q-1) x^{2}+(p-1) x+1=0
$$

another reciprocal equation, in which the greatest exponent of x is an even number, and therefore resolvable in the manner we have already explained.
106. As an application of the theory of reciprocal equations, let it be proposed to find x from this cquation,

$$
\frac{x^{3}: 1}{(x+1)^{5}}=u
$$

Where a denotes a given number.
Every expression of the form $x^{n}+1$ is divisible by $x+1$ when n is an odd number. In the present case, the numerator and denominator being dirided by $x+1$, the equation becomes

$$
\frac{x^{4}-x^{3}+x^{2}-x+1}{x^{4}+4 x^{3}+6 x^{2}+4 x+1}=a
$$

and this again, by proper reduction, becomes
$(\alpha-1) x^{4}+(4 \alpha+1) x^{3} f_{3}(6 a-1) x^{2}+(4 a+1) x+a-1=0 ;$
and, putting $p=\frac{4 a+1}{a-1}, q=\frac{6 a-1}{a-1}$,

$$
x^{4}+p x^{3}+q x^{2}+p x+1=0
$$

a reciprocal equation, resolvable into two quadratics.

Equations which have Equal Ruots.

107. When an equation has two or more equal roots, these may always be discovered, and the equation relluced to nother of an inferior degree, by a method of resolution which is peculiar to this class of equations.

Although the method of resolution we are to employ will apply alike to equations of every degree, having equal roots, yet, for the sake of brevity, we shall take a biquadratic equation,

$$
x^{4}+p x^{3}+q x^{2}+r x+s=0
$$

the roots of which may be generally denoted by a, l, r, and d. Thus wo have, from the theory of equations, $(x-a)(x-b)(x-c)(x-d)=x^{4}+p x^{3}+q x^{2}+r x+s$.

Let us put

$$
\begin{aligned}
& \mathrm{A}=(x-a)(x-b)(x-c), \mathrm{A}^{\prime \prime}=(x-a)(x-c)(x-d), \\
& \mathbf{A}^{\prime}=(x-a)(x-b)(x-d), \mathrm{A}^{\prime \prime \prime}=(x-b)(x-c)(x-d):
\end{aligned}
$$

then, by actual multiplication, we have

$$
\begin{aligned}
& \left.\left.\begin{array}{r}
\mathbf{A}=x^{3}-a \\
-b \\
-c
\end{array}\right\} \begin{array}{l}
+a b \\
x^{2} \\
+a c \\
+b c
\end{array}\right\} x-a b c, \\
& \left.\left.\begin{array}{r}
\mathrm{A}^{\prime}=x^{3}-a \\
-b \\
-d
\end{array}\right\} \begin{array}{r}
+a b \\
x^{2}+a d \\
+b d d
\end{array}\right\} x-n h d, \\
& \left.\left.\begin{array}{r}
\mathbf{A}^{\prime \prime}=x^{3}-a \\
-c \\
-d
\end{array}\right\} \begin{array}{c}
+a c \\
x^{2} \\
+a d \\
+c d
\end{array}\right\} \begin{array}{l}
x-a c d,
\end{array} \\
& \left.\left.\begin{array}{r}
\mathrm{A}^{\prime \prime \prime}=x^{3}-b \\
\\
-c \\
-d
\end{array}\right\} \begin{array}{r}
+b c \\
x^{2}+b d \\
+c d
\end{array}\right\} x-b c d:
\end{aligned}
$$

and taking the sum of these four equations;

$$
\begin{aligned}
& \left.\mathrm{A}+\mathrm{A}^{\prime}+\mathrm{A}^{\prime \prime}+\mathrm{A}^{\prime \prime \prime}=4 x^{3}-3 a\right\} \quad+2 a b \\
& \left.\left.\begin{array}{r}
3-3 a \\
-3 b \\
-3 c \\
-3 d
\end{array}\right\} \begin{array}{r}
+2 a b \\
x^{2}
\end{array} \begin{array}{r}
+2 a c \\
\\
+2 a d \\
+2 b c \\
\\
\\
+2 c d
\end{array}\right\} \begin{array}{r}
\\
-a b c \\
-a b d \\
-a c d \\
-b c d .
\end{array}
\end{aligned}
$$

But since a, b, c, d are the roots of the equation $x^{4}+p x^{3}+q x^{2}+r x+s=0$,
we have $-3(a+b+c+d)=3 p$,
$2(a b+a c+a d+b c+b d+c d)=2 q$,
$-(a b c+a b d+a c d+b c d)=r ;$
$\mathrm{A}+\mathrm{A}^{\prime}+\mathrm{A}^{\prime \prime}+\mathrm{A}^{\prime \prime \prime}=4 x^{3}+3 p x^{2}+2 q x+r$.
This result expressed in its most general form is os follows:-Let A represent the product of all the differences $x-\alpha$, \&e., except one, ΣA, the sum of all such products; then $\Sigma \mathrm{A}=r_{n} x^{n-1}+(n-1) p x^{n-2}+(n-2) q x^{n-3}+d c$.
108. Let us now supposo that the proposed biquadratic equation has two equal roots, or $a=b$; then $x-a=x-b$, and since one or other of these equal factors enters each of the four products $A, A^{\prime}, A^{\prime \prime}, A^{\prime \prime \prime}$, it is evident that $\mathrm{A}+\mathrm{A}^{\prime}+\mathrm{A}^{\prime \prime}+\mathrm{A}^{\prime \prime \prime}$, or $4 x^{3}+3 p x^{2}+2 q x+r$ must be divisible by $x-a$, or $x-b$. Thus it appears that if the proposed equation

$$
x^{\sqrt{4}}+p x^{8}+q x^{2}+r x+s=0
$$

have tro equal roots, each of them must also be a root of this equation,

$$
4 x^{3}+3 p x^{2}+2 q x+r=0
$$

for when the first of these equations is divisible by $(x-a)^{2}$, the latter is necessarily divisible by $x-a$.

Let us next suppose that the proposed equation bas thrce equal roots, or $a=b=c$; then, two at least of the three equal factors $x-a, x-b, x-c$, must enter cach of the four products $A, A^{\prime}, A^{\prime \prime}, A^{\prime \prime \prime}$, it is crident that $\mathrm{A}+\mathrm{A}^{\prime}+\mathrm{A}^{\prime \prime}+\mathrm{A}^{\prime \prime \prime}$, or $4 x^{3}+3 p x^{2}+2 q x+r$ must be twice divisible by $x-a$. Hence it follows that as often as the proposed equation has three equal roots, two of them must also be equal roots of the equation

$$
4 x^{3}+3 p x^{2}+2 q x+r=0
$$

1:34, Procceding in the same manner, it may be shown, that whatever number of equal roots are in the proposed equation

$$
x^{4}+p x^{3}+q x^{2}+r x+s=0
$$

they will remain, except one, in this cquation.

$$
4 x^{3}+3 p x^{2}+2 q x+r=0
$$

Which may be derived from the former, by multiplying each of its terms by the exponent of x in that term, and then diminishing the exponent by unity.
110. If we suppose that the proposed equation has two equal roots, or $a=b$, and also two other equal roots, or $c=d$, then, by reasoning as before, it will appear that the equation derived from it must have one root equal to a or b, and another equal to c or d; so that when the former is divisible both by $(x-a)^{2}$ and $(x-c)^{2}$, the latter will be divisible by $(x-a)(x-c)$.
111. As a particular example, let us take this`equation,

$$
x^{5}-13 x^{4}+67 x^{3}-171 x^{2}+216 x-108=0
$$

and apply to it the method we have explained, in order to discover whether it has equal roots, and if so, what they are. We must seek the greatest common measure of the proposed equation and this other équation, which is formed agrecably to what has been shown (Art. 109),

$$
5 x^{4}-52 x^{3}+201 x^{2}-34 x+216=0
$$

and the operation being performed, we find that they have a commou divisor, $x^{3}-8 x^{2}+21 x-18$, which is of the third degrce, and consequently may have several factors. Let us therefore try whether the last equation, and the fullowing,

$$
20 x^{y}-156 x^{2}+402 x-342=0
$$

which is derived from it by the same process, have any common divisor; and, by proceeding as before, we find that they admit of this divisor, $x-3$, which is also a factor of the last divisor, $x^{3}-8 x^{2}+21 x-18$; and therefore the product of the remaining factors is immediately found by division to be $x^{2}-5 x+6$, which is evidently resolvable into $x-2$ and $x-3$.

Thus it appears that the common divisor of the original equation, and that which is immediately derived from it, is $(x-2)(x-3)^{2}$; and that the common divisor of the recond and third equations is $x-3$. Hence it follows that the proposed equation has $(x-2)^{2}$ for one factor, and $(x-3)^{3}$ for another factor, and may therefore be expressed thus, $(x-2)^{2}(x-3)^{3}=0$. The truth of this conclusion may be easily verified by maltiplication. The five roots are $2,2,3,3$, and 3 .
112. The property proved in Art. 107 enables us to establish numerons relations between the coefficients and roots of an equation, in addition to the fundamental onc sstablished in Art. 79, such as the following:-
Since $x^{n}+2 x x^{n-1}+q x^{n-1}+$ \&ic. $=(x-a)(x-b)(x-c) \&$.
and $n x^{n-1}+(n-1) p^{x-2}+(n-2) x^{n-3}+$ \&c. $=$

$$
(x-b)(x-c) \ldots+(x-a)(x-c) \ldots+\ldots \ldots
$$

by division

$$
\begin{gathered}
\frac{n x^{n-1}+(x-1) p x^{n-2}+(n-2) x x^{n-3}+\& c .}{2 x+p x^{n-1}+q x^{n-2}+8 c .} \\
\quad \frac{1}{\dot{x}-a}+\frac{1}{x-b}+\frac{1}{x-c}+d c . \\
=\frac{1}{x}+\frac{S_{1}}{x}+\frac{S_{2}}{x^{3}}+\frac{S_{3}}{x^{4}}+\& c .
\end{gathered}
$$

Where S_{1}, S_{2}, S_{3} \&c., are the sums of the first, second, third, \&c., powers of the roots of the equation.

Multiplying out and equating coefficients, we get-

$$
\begin{gathered}
(n-1) p=\mathrm{S}_{1}+n p \\
n-2) q=\mathrm{S}_{2}+p \mathrm{~S}_{1}+n q \\
(n-3) r=\mathrm{S}_{3}+p \mathrm{~S}_{2}+q \mathrm{~S}_{1}+ \\
\& \mathrm{C}_{1}=\& \mathrm{C} . \\
\mathrm{S}_{1}+p=0 \\
\mathrm{~S}_{2}+p \mathrm{~S}_{1}+2 q=0 \\
\mathrm{~S}_{3}+p \mathrm{~S}_{2}+q \mathrm{~S}_{2}+3 r=0 \\
\& \mathrm{c} .8 \mathrm{c} .
\end{gathered}
$$

Or $\quad \mathrm{S}_{1}+p=0$

Ex. 1. As a particular case take the cubse equation $x^{3}+q x+r=0$.

$$
\begin{array}{ll}
\text { Here } & S_{1}=0 \\
& \mathrm{~S}_{2}+2 q=0 \\
& \mathrm{~S}_{2}+3 r=0 \\
& \mathrm{~S}_{4}+q \mathrm{~S}_{2}=0 \\
& \mathrm{~S}_{5}+q \mathrm{~S}_{3}+r \mathrm{~S}_{2}=0 \\
\therefore & 2 \mathrm{~S}_{1}=\mathrm{S}_{2}{ }^{3}, \mathrm{~S}_{5}=5 q r .
\end{array}
$$

The last may be written-

$$
\frac{\mathrm{S}_{5}}{5}=q r=\frac{\mathrm{S}_{3}}{3} \cdot \frac{\mathrm{~S}_{4}}{2}
$$

i.e., if $a+b+c=0$, then will

$$
\frac{a^{5}+b^{6}+c^{5}}{5}=\frac{a^{3}+b^{3}+c^{3}}{3} \cdot \frac{a^{2}+b^{2}+c^{2}}{2}
$$

From $\mathrm{S}_{7}+q \mathrm{~S}_{5}+r \mathrm{~S}_{5}=0$, we get

$$
\begin{aligned}
& \mathrm{S}_{7}=\mathrm{S}_{5} \cdot \frac{\mathrm{~S}_{2}}{2}+\mathrm{S}_{2} \cdot \frac{\mathrm{~S}_{5}}{5} \\
& \frac{\mathrm{~S}_{7}}{7}=\frac{\mathrm{S}_{5}}{5} \cdot \frac{\mathrm{~S}_{2}}{2}, \& c \cdot \& c_{0}
\end{aligned}
$$

Or
Ex. 2. Take the biquadratic equation

$$
x^{4}+q x^{2}+r x+8=0
$$

Hero

$$
\begin{array}{cc}
& S_{2}=0 \\
& S_{2}+2 q=0 \\
& S_{3}+3 r=0 \\
& S_{4}+q S_{2}+4 s=0 \\
& S_{6}+q S_{3}+r S_{2}=0 \\
& S_{3}=S_{3} \cdot \frac{S_{2}}{2}+S_{2} \cdot \frac{\mathrm{~S}_{3}}{3} \\
\therefore \quad S_{5}=\frac{S_{3}}{3} \cdot \frac{S_{2}}{2} ; \\
\text { or } \quad \\
\text { i.e., if } a+b+c+d=0, \\
\text { then } \frac{a^{5}+b^{5}+c^{5}+d^{5}}{5}=\frac{a^{3}+b^{3}+c^{3}+d^{3}}{3} \cdot \frac{a^{2}+b^{2}+c^{2}+d^{2}}{2} .
\end{array}
$$

Equations whose Roots are Rational

113. It has been shown in Art. 79, that the last term of any equation is always the product of its roots taken with contrary signs. Hence, when the roots are rational. they may be discovered by the following rule:

Bring all the terms of the equation to one side; find all the divisors of the last term, and substitute them successively for the unknown quantity. Then each divisor, which produces a result equal to 0 . is a root of the equation.

Ex. Let $x^{9}-4 x^{2}-7 x+10=0$.

The divisors of 10 , the last term, aro $1,2,5,10$, each of which may be taken either positively or negatively; and these being substituted successivelv for x we obtain the following results:
$\begin{array}{rlr}\text { By putting } & +1, \text { for } x, 1-4-7+10= & 0, \\ & -1, & -1-4+7+10= \\ & +2, & 8-16-14+10= \\ & -2, & -8-12, \\ & +5, & 125-100-35+10= \\ & & 0, \\ & & \end{array}$
Here the divisors which prodice results equal to 0 are $+1,-2$, and +5 ; therefore these are the three roots of the proposed equation

Sect. XIV. Solution of Equations by Λ pproximation

114. When the roots of an equation cannot be accurately expressed by rational uumbers, it is necessary to have recourse to methods of approximation; and by these we can always determine the numerical values of the roots to as great a degree of accuracy as we please.

The application of methods of approximation is rendered easy by means of the following propusition:

If two numbers, either whole or fractional, be found, which, when substituted for the unknown quantity in any equation, produce results with contrary signs, we may conclude that at lcast one root of the proposed equation is betweeu those numbers, and is consequcutly real

Let the proposed equation be

$$
x^{3}-5 x^{2}+10 x-15=0
$$

which, by collecting the positive terms into one sum, and the negative into another, may also be expressed thiss,

$$
x^{3}+10 x-\left(5 x^{2}+15\right)=0
$$

then, to determine a root of the equation, we must find such a number as, whew substituted for x, will render

$$
x^{3}+10 x=5 x^{2}+15
$$

Let us suppose x to increase and to have every degree of uagnitude from 0 upwards in the scale of number; then $x^{3}+10 x$ and $5 x^{2}+15$ will both continually increase, but with different degrees of quickness, as appears from the following table:-
Suceessive valucs of $x ; 0,1,2,3,4,5,6, \& c$. ——of $x^{3}+10 x ; 0,11,28,57,104,175,276$, dc. of $5 x^{2}+15 ; 15,20,35,60,95,140,195, \& c$.
By inspecting this tnble, it appears that while x increases from 0 to a certan numerical value, which excceds 3 , the positive part of the equation, or $x^{3}+10 x$, is always less than the negative part, or $5 x^{2}+15$; so that the expression

$$
x^{3}+10 x-\left(5 x^{2}+15\right) \text { or } x^{3}-5 x^{2}+10 x-15
$$

must necessarily be negative.
It also appears, that when x has increased beyond that numerical value, and which is evidently less than 4, the positive part of the equation, instead of being less than the negative part, is now greater, and therefore the expression

$$
x^{3}-5 x^{2}+10 x-15
$$

is changed from a negative to a positive quantity.
Hence we may conclude that there is some real and determinate value of x, which is greater than 3, but less than 4, and which will render the positive and negative parts of the equation equal to one another; thercfore that value of x must be a root of the proposed equation; and as what bas bcen just now shown in a particular case will readily apply to any equation whatever, the truth of the proposition is obvious.
115. From the preceding proposition it will not be diffcult to discover, by means of a fow trials, the nearest iutegers to the roots of any proposed numerical equation;
and those being found, we may approximate to the roote. continually, as in the following example:

$$
x^{4}-4 x^{3}-3 x+27=0
$$

To determine the limits of the roots, let $0,1,2,3,4$, be substituted successivcly for x; thus we obtain the fullowing corresponding results :

$$
\begin{aligned}
& \text { Substitutions for } x, 0, \quad 1, \quad 2, \quad 3 ; \\
& \text { Results, } \\
& \\
& +27,+21,+5,-9,+15
\end{aligned}
$$

Hence it appears that the equation has two rcal roots, one betwcen 2 and 3 , and another between 3 and 4 .

That we may approximate to the first root, let us suppose $x=2+y$, where y is a fraction less than unity, and therefore its sccoud and higher powers small in comparison to its first power: heuce, in finding an approximate value of y, they nay be rejected. Thus we have

$$
\begin{aligned}
x^{4} & =+16+32 y, \text { \&c. } \\
-4 x^{3} & =-32-48 y, \& c . \\
-3 x & =-6-3 x \\
+27 & =+27
\end{aligned}
$$

Hence $0=5-19 y$ uearly,
and $y=\frac{5}{19}=26$; therefore, for a first approximation we Lave $x=2.26$.

Let us next suppose $x=2 \cdot 26+y^{\prime}$; then, rejecting as before the second and higher powers of y^{\prime} ou account of their smallness, and retaining three decimal places, we have $y^{\prime}=\frac{\cdot 135}{18 \cdot 119}=\cdot 0075$, and $x=2 \cdot 26+y^{\prime}=2 \cdot 2675$. This value of x is true to the last figure, but a more accurate value may be obtained by supposing $x=2 \cdot 2675+y^{\prime \prime}$, and proceeding as before.
116. The method we have hitherto employed for approximating to the roots of equations is known by the name of the method of successive substitutions, and was first proposed by Newton. It has been since improved by Lagrange, who has given it a form which has the advantage of showing the progress made in the approximation by each operation. This improved form we now proceed to explain.

Let a denote the whole number next less to the root suught, aud $\frac{1}{y}$ the fraction, wich, when added to a, com. pletes the root; then $x=a+\frac{1}{y}$. If this value of x be sub stituted in the proposed equation, a new equation inrolving y will be had, which, when cleared of fractions, will necessarily have a root greater than unity.

Let b be the whole number which is next less than that root; then, for the first approximation, we lava $x=a+\frac{1}{b}$. But b being only an approximate value of y, in the same manner as a is an approximate value of x, we may suppose $y=b+\frac{1}{y^{\prime}}$; then, by substituting $b+\frac{1}{y^{\prime}}$ for y, we shall have a new equation, involving only y^{\prime}, which must be greater than unity. Putting therefore b^{\prime} to denote the next whole number less than the root of the equation involving y^{\prime}, wo have $y=b+\frac{1}{b^{\prime}}$; and substituting this value in that of x, the result is

$$
2=a+\frac{}{b+\frac{1}{b^{\prime}}}
$$

for a second approximate value of x.
To find a third value, we may take $y^{\prime}=b^{\circ}+\frac{1}{y^{\prime \prime}}$, and so un, to obtain more accurate approximations.

Sect. XV. - Indeterminate Problens.

117. When the conditions of a question are such that the number of unknown quantities exceeds the number of equations, that question will admit of innumerable solutions, and is therefore said to be indeterminate. Thus, if it be required to find two numbers subject to no other limitation than that their sum be l0, we have two unknown quantities x and y, and only one equation, viz. $x+y=10$, which may evilently be satisficd by innumerable different ralues of x aud y, if fractional solutions be aduntted. It is, however, usual, in such questions as this, to restrict values of the numbers sought to positive integers, and therefere, in this case, we can have only these wine solutious,

$$
\begin{aligned}
& x=1,2,3,4,5,6,7,8,9 \\
& y=9,8,7,6,5,4,3,2,1
\end{aligned}
$$

which indeed may be reduced to five; for the first four become the same as the last four, by simply changing x into y, and the contrary.

1is. Indeterminate problems are of different orders, according to the dimensions of the equation which is obtaused after all the unknown quantities but two have been eliminated by incans of the given equations. Those of the first order lend always to equations of this form,

$$
c \cdot x+1, y=c
$$

Where a, b, c, denute given whole numbers, and r, y, two numbers to be found, so that buth may be integers. That this cundition may be fulfilled, it is necessary that the coetficients a, b, bave no common divisor which is not also a divisur of c; fur if $a=n u l$ and $b=m e$, then $a x+b y=m d x$ $+m e y=c$, and $d x+c y=\frac{c}{m}$; but d, e, x, y, are supposed to lee whole numbers, therelure $\frac{c}{m}$ is a whole number; hence n must be a divisor of c.

We proceerl to illustrate the manner of resolving indeterminate equations of the first order, by some numerical examples.
$E x .1$. Given $2 x+3 y=25$, to determine x and y in whole positive numbers.

From the given equation we have $x=\frac{2 \bar{y}-3 y}{2}=12-y-$ $\frac{y-1}{2}$. Now, since x must be a whole number, it follors that $\frac{y-1}{2}$ must bo a whole number. Let us assume $\frac{y-1}{2}$ $=z$, then $y=1+2 z$; and $x=11-3 z$, where z might be any whole number whatever, if there were no limitation as to the signs of x and y. But since these quantities are required to bo positive, it is crident, from the walvo of y, that z must be cither 0 or positive, and from the value of x, that it must be less than 4 ; hence z may have these three values, $0,1,2,3$.

$$
\text { If } \begin{array}{rll}
z=0, & z=1, & z=2, \\
\text { Then }\left\{\begin{array}{ll}
x=11, & x=8, \\
y=1, & y=5, \\
y=3, & y=5,
\end{array}, y=7\right.
\end{array}
$$

Ex. 2. It is required to find all the possible ways in which $\mathcal{L} 60$ can be paid in guineas and moidores only.

Let x be the number of guincas, and y the number of moidures. Then the value of the guineas, expressed in - Thillings, is $21 x$, and that of the moidures $27 y$; therefore, irom the uature of the question, $21 x+27 y=1200$, or, dividing the equation by $3,7 x+9 y=400$; hence, proceedugg as before, we obtain

$$
\begin{aligned}
& y=7 v-3, \\
& x=61-9 v .
\end{aligned}
$$

From the value of x, it appears that v cannot exceed 6 , aud from the value of y, that it cannot be less than 1

$$
\begin{array}{r}
\text { Henco if } v=1,2,3,4,5,6, \\
\text { we havo } x=52,43,34,25,16,7 . \\
\\
y=4,11,18,25,32,39 .
\end{array}
$$

110. In the ioreguing examples the unknown quantities x and y have each a deterininate number of positive vilues; and this will evidently be the caso as ufter as the proposed equation is of this form, $a x+b y=c$. If, lowever, b be nemative, that is, if the equation be of this form, $a x-b y$ $=c$, or $u x=b y+c$, we shall have cuestions of a different kind, adnitting each of an infnite number of solutions; these, however, may be resulved in the same manuer as the preceding.
111. If an equation wero propused involving three unknewn quantities, as $a x+b y+c z=d$, by transpusition we have $a x+b y=d-c z$, and, putting $d-c z=c^{\prime}, a x+b y=c^{\prime}$. From this lust equation we may fiud values of x and y of this form,

$$
\begin{gathered}
x=m r+n c^{\prime}, y=m r+n^{\prime} c^{\prime} \\
\text { or } x=m r+n(d-c z), y=n^{\prime} r+u^{\prime}(d-c z)
\end{gathered}
$$

where z and r may be taken at pleasure, except in so far as the values of x, y, z, may be required to be all positive; for from such restriction the values of z and r may be confined within certain linits to be detenuined from the given equation.
121. We procecd to indeterminato problems of the secund degree: limiting ourselves to the consideration of the formula $y^{2}=a+b x+c x^{2}$, where x is to be found, so that y may be a rational quantity. Tho possibility of rendering the propused formula a square depends altogether upon the coefficients a, b, c; and there are four cases of the problen, the solution of each of which is connected with some peculiarity in its nature.

Case 1. Let a be a square number; then, putting g^{2} for a, we have $y^{2}=g^{2}+b x+c x^{2}$. Suppose $\sqrt{g^{2}+l x+c x^{2}}=g+$ $m x$; then $g^{2}+b x+c x^{2}=g^{2}+2 y m x+m^{2} x^{2}$, or $b x+c x^{2}=$ $2 g m x+m^{2} x^{2}$, that is, $b+c x=2 y m+m^{2} x$; hence

$$
x=\frac{2 g m-b}{c-m^{2}}, y=\sqrt{g^{2}+b \cdot x+c x^{2}}=\frac{c g-b m+g m^{2}}{c-m^{2}} .
$$

Case 2. Let c be a square number $=g^{2}$; then, putting $\sqrt{a+b \lambda+g^{2} x^{2}}=m+g x$, we fiud $a+b x+g^{2} x^{2}=m^{2}+2 m g x$ $+g^{2} x^{2}$, or $a+b x=m^{2}+2 m g x$; hence we find

$$
x=\frac{m^{3}-a}{b-2 m g}, y=\sqrt{a+b x+g^{2} x^{2}}=\frac{b m-g n n^{2}-a g}{b-2 n m g} .
$$

Case 3. When neither a nor c is a square number, yet if the expression $a+b x+c x^{2}$ can be resolved into twe simple factors, as $f+g x$ and $h+k x$, the irrationality may bo talien away as follows:

Assume $\sqrt{a+b x+c x^{2}}=\sqrt{(f+g x)(h+k x)}=m(f+g x)$, then $(f+g x)(h+k x)=m^{2}(f+g x)^{2}$, or $h+l x=m^{2}(f+y x)$; hence we find

$$
x=\frac{f m^{2}-h}{k-g m^{2}}, y=\sqrt{(f+g x)(h+k x)}=\frac{(f k-g h) m}{k-g m m^{2}} ;
$$

and in all these formulæ m may be taken at pleasure.
Case 4. The expression $a+b x+c x^{2}$ nay be transformed into a square as often as it can be resolved into two parts, one of which is a complete square, and the other a product of two simple factors; for then it has this form, $p^{2}+q$ r, whero p, q, and r are quantitics which contain no power of x higher than the first. Let us assume $\sqrt{p^{2}+q ?}=p+$ $m q$; thus we have $p^{2}+q r=p^{2}+2 m p q+m^{2} q^{2}$ and $r=2 m p$ $+m^{2} q$, and as this equation involves only the ürst power of x, we may by proper redustion obtain from it rational values of x and y, as in the three foreguing cases.

Tho application of the preceding general methods of resor lution to any particular case is very easy; we shall there fore conclude with a single example.
$E x$. It is required to find two square numbers whose sum is a given square number.

Let a^{2} be the given square number, and x^{2}, y^{2}, the numbers required; then, by the question, $x^{2}+y^{2}=a^{2}$, and $y=$ $\sqrt{a^{2}-x^{2}}$. This equation is eridently of such a form as to be resolvable by the method employed in case 1. Accordingly, by comparing $\sqrt{a^{2}-x^{2}}$ with the general expression $\sqrt{g^{2}+b x+c x^{2}}$, we have $g=a, b=0, c=-1$, and substituting these valnes in the formulx, and also $-n$ for $+m$, we find

$$
x=\frac{2 a n}{n^{2}+1}, y=\frac{a\left(n^{2}-1\right)}{n^{2}+1} .
$$

If $a=n^{y}+1$; there results $x=2 n, y^{\prime \prime}=n^{2}-1, a=n^{2}+1$. Hence if r be an eren number, the three sides of a rational right-angled triangle are $r,\left(\frac{r}{2}\right)^{2}-1,\left(\frac{r}{2}\right)^{2}+1$. If r be an odd number, they become (dividing by 2) $r, \frac{r^{2}-1}{2}, \frac{r^{2}+1}{2}$

For example, if $r=4 ; 4,4-1,4+1$, or $4,3,5$ are the sides of a right-angled triangle; if $r=7,7,24,25$ are the sides of a right-angled triangle.

Sect. XVI.-Theorevs of Expansion.
 1. Binomial Theorem.

122. To demonstrate this theorem, which has for its object the expansion of $(a+x)^{*}$ in the form $\mathrm{P}+\mathrm{Qx}+\mathrm{A} x^{2}$ $+\mathrm{B} x^{3}+\& c$, We shall first find P and Q; and then determine the other coefficients $A, B, \& c$. in terms of P and Q .

$$
\text { (1.) }(a+x)^{n}=\left\{a\left(1+\frac{x}{a}\right)\right\}^{n}=a^{n}\left(1+\frac{x}{a}\right)^{n} \text {, }
$$

it being assumed that the power of a product is the product of the powers of the factors, whatever be the index.
(2.) Let n be a whole number. Since

$$
\begin{aligned}
& (1+x)^{1}=1+x \\
& (1+x)^{2}=1+2 x+x^{2} \\
& (1+x)^{3}=1+3 x+\& \text { c. } ;
\end{aligned}
$$

if we assume $(1+x)^{n-1}=1+(n-1) x+\& c$., and multiply both sides by $1+x$, we shall obtain $(1+x)^{n}=1+n x+\& c$.; whence our induction is complete to prove that the numerical of coefficient x is the same as the index.

$$
\begin{aligned}
& \text { (3.) Let } n \text { be a positive fraction } \frac{p}{q} \text {. We may tale } \\
& (1+x)^{\frac{p}{q}}=1+\mathrm{Q} x+\& \mathrm{c} . \\
& \begin{aligned}
& (1+x)^{p} & =(1+Q x+\& \mathrm{c.})^{q}, \\
\therefore & 1+p x+\& c_{0} & =1+q Q x+\& c_{0} \quad(\text { Case 2. })
\end{aligned} \\
& \therefore \quad \mathrm{Q}=\frac{\beta}{q} \text {. }
\end{aligned}
$$

(4.) If n be neative $=-m$

$$
\begin{aligned}
&(1+x)^{n}=(1+x)^{-n}=\frac{1}{(1+x)^{n}} \\
&=\frac{1}{1+m x+\& c} \quad \text { (Case 3.) } \\
&=1-m x+\& c \quad \text { by division. }
\end{aligned}
$$

Hence, generally the numerical coefficient of x is the same Jo the index.

To obtain $A, B, \& c$., in terms of the first and second terms, we break up x into twa parts, y, z, which enables us to mrite the expression $1+x$ in troo differeut ways: 1 st, retaining the parts of x in connection; $2 d$, disserering them. In tbe first form we simply multiply out, and thus exhibit a result not dependent on the properties of an index, except in so far as relates to the first and sccond terma - Ta the second horm we appiy the properties of an
index to every term. The consequence is, that the latter form, bearing a more intimate connection with the property of an index than the former, is more determinate than the other. The comoarison of the two results comfletes the demonstration.

$$
\text { L. } \begin{aligned}
(1+x)^{n}= & (1+y+z)^{n} \\
= & 1+n(y+z)+\mathrm{A}(y+z)^{2}+\mathrm{B}(y+z)^{3}+\& c \\
= & 1+n y+\mathrm{A} y^{2}+\mathrm{By} y^{3}+8 \mathrm{c} . \\
& +n z+2 \mathrm{~A} y+3 y^{2} y^{2}+8 \mathrm{c} \\
& +\& \mathrm{c} . \\
& +\& \mathrm{c} .
\end{aligned}
$$

II. $(1+x)^{n}=(1+y+z)^{n}=(\overline{1+z}+y)^{n}$

$$
\begin{aligned}
= & (1+z)^{n}\left(1+\frac{y}{1+z}\right)^{n} \\
= & (1+z)^{n}\left\{1+\frac{n y}{1+z}+\frac{A y^{2}}{(1+z)^{3}}+\mathrm{B} \frac{y^{3}}{(1+z)^{3}}+\& c\right\} \\
= & (1+z)^{n}+n(1+z)^{n-1} y+\mathrm{A}(1+z)^{n-2} y^{2}+\& c . \\
= & 1+n y \quad+\mathrm{A} y^{2}+\& c_{0} \\
& +n z+n(n-1) z y+\mathrm{A}(n-2) z y^{2}+\& \mathrm{c} . \\
& +\& c+\& \mathrm{C}_{0} \quad+\& \mathrm{c} .
\end{aligned}
$$

Now, as these two expansions are the expansions of the same thing in the same form, the coefficients of $z, z y, z y^{2}$, \&c., must be the same in both. Comparing them, we get

$$
\begin{aligned}
& n=n, 2 \mathrm{~A}=n(n-1), 3 \mathrm{~B}=A(n-2) \& c \\
\therefore \quad & \mathrm{~A}=\frac{n(n-1)}{1.2}, \mathrm{~B}=\frac{\mathrm{A}(n-2)}{3}=\frac{n(n-1)(n-2)}{1.2 .3}
\end{aligned}
$$

\&c. $=\& \mathrm{c}$. ; and finally, whatever n be,
$(1+x)^{n}=1+n x+\frac{n(n-1)}{1.2} x^{2}+\frac{n(n-1)(n-2)}{1.2 \cdot 3 \cdot x^{3}+\& \mathrm{c} .}$
Cor. 1. If n is a positive whole number, the series is finite, since every term after the $(n+1)$ th will involve $n-n$ as a factor.

Cor. 2. Since the coefficients, when the index is a whole number, are the results of simple multiplication, they are necessarily whole numbers, i.e., any such expression as $\frac{n(n-1)(n-2)}{1.2 .3}$ is a whole number when n is such

Cor. 3. The sum of the numerical coefficients is 2π, for it is equal to $(1+1)^{n}$, as will appear if we mrite 1 for x.

Cor. 4. The sum of the coefficieats in the even places is equal to the sum of the coefficients in the odd. This will appear if we write -1 in place of $x_{\text {. }}$

Cor. 5. If the index is a whole number, the coefficients from the end are the same as those from the beginning; for they occur at the beginning of $(x+1)^{n}$ in the same positions as at the end of $(1+x)$.

Cor. 6. The product $1.2 .3 \ldots r$ is sometimes expressed by the abbreviated form $\mid \underline{r}$. With this notation the cuefticient of x^{r} in $(1+x)^{\bullet}$ may be written $\frac{\mid n}{r \cdot \mid \underline{n}-r}$.

Cor. 7. The sum of the squares of the coefficients of $(1+x)^{*}$ is the coefficient of x^{*} in the expansion of $(1+x)^{2^{*}}$, and is equal to $\frac{\mid 2 n}{(\underline{n})^{2}}$.

Examples.

Ex. 1. $(1+x)^{-2}=1+\frac{-2}{1} x+\frac{-2 \cdot-3}{1 \cdot 2} x^{2}+\frac{-2 \cdot-3-1}{1 \cdot 2 \cdot 3}$. $+\& c$
generally $(1+x)^{\cdots}=1-n x+\frac{n(n+1)}{1.2} x^{2}-\& \mathrm{c}$
and $\quad(1-x)^{-n}=1+n x+\frac{n(n+1)}{1.2} x^{2}+$ \&c.
Ex. 2. Find the coeflicient of x^{7} in $\left(x+x^{2}+x^{3}+6\right.$ $\left.+x^{5}+x^{6}\right)^{2}$
The expression may be nritten

$$
\begin{gathered}
\left\{x\left(\frac{1-x^{0}}{1-x}\right)\right\}^{2}=x^{2}\left(1-x^{6}\right)^{2}\left(1-x^{2}\right)^{-2} \\
=x^{2}\left(1-2 x^{6}+x^{12}\right)\left(1+2 x+3 x^{2}+4 x^{3}+8 \mathrm{c} .\right)
\end{gathered}
$$

The coofficiont required is thercfore that of x^{8} in tho liwt factor, vik. 6.
Ex. 3. Find the sum of $1+2 n+3 \frac{n(n-1)}{1.2}+4 \frac{n(n-1)(n-2)}{1.2 .3}$ $+\& c$.
By writing $1+1$ for $2,1+2$ for 3 , $\& c$., this scries may be broken up into the sum of $1+n+\frac{n(n-1)}{1.2}+\& c$.
and

$$
n+2 \frac{n(n-1)}{1.2}+\& c
$$

The latter is $n\left\{1+\frac{n-1}{d}+\frac{(n-1)(n-2)}{1.2}+\& c c\right\}$
\therefore the sum required is $\quad 2^{n}+n 2^{n-1}$.
Ex. 4. Find the sum of $1+\frac{1}{2} n+\frac{1}{3} \frac{n(n-1)}{1.2}+\& c$.
Multiply by $n+1$; the product is

$$
n+1+\frac{(n+1) n}{1.2}+\frac{(n+1) n(n-1)}{1 \cdot 2 \cdot 3}+8 n
$$

\therefore the sum required is $\frac{2^{n+1}-1}{n+1}$.
$E x$. 5. If x_{r} denote the product $x(x-1)(x-2) \ldots$ $(\varepsilon-r+1)$ whatever be r, and a similar notation be applied tu y, and $(x+y)$, then

$$
(x+y)_{r}=x_{r}+r x_{r-1} y_{1}+\frac{r(r-1)}{1.2} x_{r-2} y_{2}+\& c .
$$

We have $(1+a)^{x}=1+x_{1} a+\frac{x_{2}}{1.2} a^{2}+\frac{x_{3}}{1 \cdot 2 \cdot 3} a^{3}+d c$.

$$
\begin{array}{ll}
& (1+a)^{y}=1+y_{1} a+\frac{y_{2}}{1.2} a^{2}+\& c \\
\therefore \quad & (1+a)^{n+y}=\text { their product. }
\end{array}
$$

But $(1+a)^{x+y}=1+(x+y)_{1} a+\frac{(x+y)_{2}}{1.2} a^{2}+\& c$.
Equating coefficients of a^{*} in the two expressions for $(1+a)^{2+y}$, and multiplying by $1.2 \ldots n$; the required resalt is obtained.

Ex. 6. If x and n be less than 1 , then $(1+x)^{n}<(1+n x)$.
For $(1+x)^{n}=1+n x+\frac{n(n-1)}{1.2} x^{2}+\ldots \cdot$

$$
=1+n x-\frac{n(1-n)}{1.2} x^{2}\left(1-\frac{2-n}{3} x\right)-\& c .
$$

Ex. 7. On the same hypothesis $(1+x)^{n}<\frac{1}{1-n x}$
Prove that $(1+x)^{-n}>1-n x$ exactly as in the last cample.
$E x$. 8. If $x<1 ; n>r<r+1$; then $(1+x)^{n}>$ tho sum of the first $r+1$ terms of the expansion; and $<$ the sum of the first $r+2$ terms.
$E x$. 9. The difference between the sums of the squares of the even coefficients of the expansion of $(1+x)^{n}$, when n is an even whole number, and the sum of the squares of the odd coeffioients is $(-1)^{\frac{n}{2}}\left(\frac{\left\lvert\, \frac{n}{n}\right.}{\left(\frac{n}{2}\right)^{2}}\right.$.

2. Logarithmic Theorem.

123. The definition of a logarithim is precisely the same as that of an inder or exponent (Art. 21) viz. -the logarithm of a product is equal to the sum of the logarithms of the factors. Such being the case, we are at liberty to employ the definition, either in the form first given, or in the algebraic form $a^{*}=y$. In this last form x is called the logarithm of y to the index or base a. The base of the conraon or tabular logarithms is 10 .
124. Before proceeding to tho demunstration of the theorem by which a logarithm is expressed in tho furm of a series, it may bo as well to illustrate the definition as applicd to common logarithms.
$18 t$, Since 1 is the logarithm of 10 , we may inquire of what is 子 the logarithm; if we resume the form $10^{\prime \prime}=y$, and write $\frac{t}{2}$ for x, we have to inquire what is y.

Sinco

$$
10^{\frac{1}{2}}=y, 10^{\frac{1}{2}} \times 10^{\frac{1}{2}}=y^{2} .
$$

But $\quad 10^{\frac{1}{2}} \times 10^{\frac{1}{2}}=10^{\frac{1}{2}+\frac{1}{2}}($ def. $)=10$,

$$
\therefore \quad y^{2}=10 \text { and } y=\sqrt{ } 10=3.1622777,
$$

so that the pun.'.ur of which $\frac{f}{2}$ is the logarithm is not a whole number, but a fraction lying between 3 and $3 \neq$.

In the same way, we may, but with great labour, ascer. tain the numbers of which any given fraction is tho logarithm,
$2 d$, The definition will cvidently cnable us to obtain a large number of logarithms, when a few haro become known. For example: Given $\log 2=.30103$ to fund $\log 4$ and $\log 5$.
$\log 4=\log (2 \times 2)=\log 2+\log 2$ (def.)

$$
=2 \log 2=.60206 ;
$$

$\log 5=\log \frac{10}{2}=\log 10-\log 2$

$$
=1-\log 2=.69897 .
$$

If in addition to $\log 2, \log 3$ be known, we can finl a vast number of others. For examplo: Ginu-

Lug $3=.47712$ to find $\log 6$ and $\log 72$.
$\log 6=\log 2 \times 3=\log 2+\log 3=.77815$,
$\log 72=\log 8 \times 9=3 \log 2+2 \log 3=1.85733$.
125. To expand $\log (1+x)$ in terms of x.

Since $\log l=0$; the expansion must commence with the first power of x, the cocfficient of which will depend ou the radix or base. This coefficient we shall determine afterwards for the common logarithms. In the meantime wo shall denote it by A.

Let then $\log (1+x)=\mathrm{A} x+\mathrm{B} x^{2}+\mathrm{C} x^{3}+8 \mathrm{c}$
Put $y+z$ for x; then
I. $\log (1+y+z)=\mathrm{A}(y+z)+\mathrm{B}(y+z)^{2}+\& r$

$$
\begin{aligned}
&=\mathrm{A} y+\mathrm{By} y^{2}+\mathrm{Cy}^{3}+\& \mathrm{C} . \\
&+\mathrm{Az}+2 \mathrm{By} y+3 \mathrm{C} y^{2} z+\& \mathrm{C} \\
&+\& \mathrm{C} . \\
&+\& \mathrm{C} .
\end{aligned}
$$

IL

$$
\begin{aligned}
\log & (1+y+z)=\log (1+y)\left(1+\frac{z}{1+y}\right) \\
& =\log (1+y)+\log \left(1+\frac{z}{1+y}\right) \\
& =\mathrm{A} y+B y^{2}+\& c . \\
& +\frac{A z}{1+y} \\
& +\& c . \\
& =A y+B y^{2}+\& c . \\
& +A z\left(1-y+y^{2}-\& c .\right) \\
& +\& c .
\end{aligned}
$$

Equating coefficients of $z, y z, y^{2} z, \& c$., in the two zz. pansions, there results

$$
\begin{array}{cc}
& \mathrm{A}=\mathrm{A}, 2 \mathrm{~B}=-\mathrm{A}, 3 \mathrm{C}=-\mathrm{A} \\
\therefore \quad & \log (1+x)=\mathrm{A}\left(x-\frac{x^{3}}{2}+\frac{x^{3}}{3}-\& \mathrm{c} .\right)
\end{array}
$$

126. Cor. If $x=a-1$, where a is the base of the system, we have $1=\mathrm{A}\left\{a-1-\frac{1}{2}(a-1)^{2}+\&\right.$ c. $\}$

This expansion of $\log (1+x)$ is not convergent, i.e., the terms do not diminish as we advance, but the contrary, when x is any whole number greater than 1 . We can, how. ever, readily obtain from it a converging series for the difference between the locarithms of the consecutive numbers.

For $\quad \log (1+x)=\mathrm{A}\left(x-\frac{x^{\Delta}}{2}+\right.$ vc. $)$

$$
\operatorname{lng}(1-x)=A\left(-x-\frac{x^{2}}{2}-\& c .\right)
$$

$\therefore \quad \log (1+x)-\log (1-x)=2 \mathrm{~A}\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+8 c.\right)$
Now $\log (1+x)-\log (1-x)=\log \frac{1+x}{1-x}$,
and x has to be found. so that $\frac{1+x}{1+x}$ shall be the quotient of consecutive numbers $=\frac{1+u}{u}$.

This gives $\quad x=\frac{1}{\Omega_{u+1}}$,
und $\log \frac{1+u}{u}=2 \mathrm{~A}\left\{\frac{1}{2 u+1}+\frac{1}{3} \frac{1}{(2 u+1)^{3}}+\& \mathrm{c}.\right\}$
127. To apply this formula to the calculation of common logarithms, we will commence by finding from it a few logarithms of the system for which $A=1$. In this system

1. If $u=1, \log 2=2\left\{\frac{1}{3}+\frac{1}{3} \cdot \frac{1}{2^{3}}+\&\right.$ c. $\}$

$$
=.693,147,2
$$

2. If $x=4, \log 5=\log 4+2\left\{\frac{1}{9}+\frac{1}{3} \cdot \frac{1}{9^{3}}+\& c_{.}\right\}$

$$
=1.609,437,9
$$

Hence $\quad \log 10=\log 2+\log 5$

$$
=2.302,585,1
$$

This system, for which $\mathrm{A}=1$ is the so-called Napierian system, which assumes no base, but defines a logarithm to' be such that the increment of the number shall be the product of the number by the increment of the logarithm. In this system the number of which the logarithm is 1 is 2.718.... and is generally designated by the letter e.

To. pass from Napierian logarithms to common, we observe that if $e^{x}=10^{y}=n ; x$ is the logarithm of n to the base ε, and y to the base 10 . Now, taking the Napierian logarithm of each side of this equation, we obtain $x=$ y Nap. $\log 10$.
Or

$$
\begin{aligned}
y & =\frac{x}{\text { Nap. log } 10}=\frac{x}{2 \cdot 202,585,1} \\
& =x \times \cdot 4342944819 \\
& =x \times \cdot 4343 \text { very nearly. }
\end{aligned}
$$

This multiplier, which was previously denoted by A , is called the modulus of the common system of logarithms. A celebrated calculator of the last century, Mr A. Sharp, found it to be

> 43429448190325182765112891891660508229439700 5803666566114454 .

For further details on the construction and use of logarithmic tables, the reader is referred to the Article on Logarithess.

3. Exponential Theorem.

128. It is now required to expand a^{*} in terms of x.
129. Write $1+a-1$ for a, and apply the binomial theorem: the result is

$$
\{1+(a-1)\}^{=}=1+x(a-1)+\frac{x(x-1)}{12}(a-1)^{2}+\& c
$$

Here the only term which does not contain x is 1 ; and the coefficient of x being traced through the different terms. is easily seen to be

$$
a-1-\frac{1}{2}(a-1)^{2}+\frac{1}{3}(a-1)^{3}-\&
$$

Thus will seem (Art. 126) to be the reciprocal of the
modulus of the system of logarithms whose bese is a call it r. We have now to determine $\mathrm{B}, \mathrm{C}, \& \mathrm{c}$, , in terma of r, from the form of expansion

$$
a^{2}=1+r x+\mathrm{B} x^{3}+\mathrm{C} x^{3}+\& \mathrm{c}
$$

Write $y+z$ is place of x; then
I.

$$
\begin{aligned}
a^{y+z}= & 1+r(y+z)+\mathrm{B}(y+z)^{2} \pm \& a \\
= & 1+r y+\mathrm{B} y^{2}+\& c \\
& +r z+2 \mathrm{Byz}+\& \mathrm{c} \\
& +\& c .
\end{aligned}
$$

IL. $\quad a^{y+}=a y \times a^{z}=\left(1+r y+B y^{2}+8 c a\right)$ $x\left(1+r z+\mathrm{Bz} z^{2}+\& \mathrm{c}\right)$
$=1+r y+\mathrm{B} y^{2}+\& \mathrm{c}$ $=1+r y+B y^{2}+\& c$ $\begin{aligned}+r z & +r^{2} y z+r B y^{2} z+\& c \\ & +\& c\end{aligned}$ $+8 \mathrm{C}$
Equating coefficients of $z, y z, y^{2} z, \& c .$, in L and IL we "et

$$
\therefore \quad \begin{aligned}
& r=r, 2 \mathrm{~B}=r^{2}, 3 \mathrm{C}=r \mathrm{~B}, \& \% \\
& \mathrm{~B}=\frac{r^{2}}{1.2}, \mathrm{C}=\frac{r^{3}}{1.2 .3}, \& \mathrm{c}
\end{aligned}
$$

and

$$
a^{x}=1+r x+\frac{r^{2} x^{2}}{1.2}+\frac{r^{3} x^{3}}{1.2 .3}+i c
$$

129. Now, since e is such (Art. 127) that $e-1$ -$\frac{1}{2}(e-1)^{2}+\& c .=1$, and $r=a-1-\frac{1}{2}(a-1)^{2}+\& c$., what ever a be, it follows that when e takes the place of a, r becomes 1 .

$$
e^{x}=1+x+\frac{x^{3}}{1.2}+\frac{x^{3}}{1 \cdot-3}+\& c
$$

and putting $\quad x=1, e=1+1+\frac{1}{1.2}+d \mathrm{c}$

$$
t=3.718281828459045
$$

Again ${ }^{-}$

$$
e^{r}=1+r+\frac{r^{s}}{1.2}+\& a
$$

bu+ since,

$$
a^{\prime \prime}=1+r x+\frac{r^{2} x^{2}}{1.2}+\& a
$$

we nave . $\quad a=1+r+\frac{r^{2}}{1.2}+\& \alpha_{0}$

$$
=e^{r}
$$

From this equation we have $r=$ Nap. $\log a$, a resolt obtained before.
130. We may approximate directly to the value of, when $a=10$, thus

$$
\left(\frac{1}{a}\right)^{\prime}=a^{-6}=1-r x+\frac{r^{2} x^{3}}{1.2}-\varepsilon a
$$

so that the coefficient of x in $\left(\frac{1}{a}\right)^{*}$ is $-r$.

$$
\operatorname{Now}\left(\frac{1}{a}\right)^{x}=\left(1+\frac{1}{a}-1\right)^{\prime} \text {, whence (Art. 1-28) the cieffi }
$$ cient of x in $\left(\frac{1}{a}\right)^{2}$ is

$$
\frac{1}{a}-1-\frac{1}{2}\left(\frac{1}{a}-1\right)^{2}+\frac{1}{3}\left(\frac{1}{a}-1\right)^{8}-\& a
$$

$\therefore \quad r=1-\frac{1}{a}+\frac{1}{2}\left(1-\frac{1}{a}\right)^{2}+\frac{1}{3}\left(1-\frac{1}{a}\right)^{3}+\infty a$

$$
\begin{aligned}
& =\frac{9}{10}+\frac{1}{2}\left(\frac{9}{10}\right)^{2}+\frac{1}{3}\left(\frac{9}{10}\right)^{3}+\& c \\
& =2.302
\end{aligned}
$$

Additionai Mxanpies

Ex. 1. To find the value to which $\left(1+\frac{\omega}{m}\right)$ sumosche: as m becomes larger and larget.

By the binows theorem

$$
\begin{aligned}
\left(1+\frac{x}{m}\right)^{m}= & 1+m \frac{x}{m}+\frac{m-1}{m}\left(m-\frac{x}{m}\right)^{2}+d c . \\
= & 1+x+\frac{1-\frac{1}{m}}{1.2} x^{2}+\frac{\left(1-\frac{1}{m}\right)\left(1-\frac{2}{m}\right)}{1.2 .3} x^{3}+d c . \\
= & 1+x+\frac{x^{3}}{1.2}+\frac{x^{3}}{1.2 .3}+\mathbb{E} c \\
& \quad+\frac{\mathrm{P}}{m}+\frac{\mathrm{Q}}{m^{2}}+\mathbb{d} c .
\end{aligned}
$$

no that $\left(1+\frac{x}{m}\right)^{m}$ approaches the value $1+x+\frac{x^{2}}{1.2}+$ \&c. wr ϵ^{*}, is m becomes larger and larger.

Ex. 2. $\left(1+\frac{x}{m}\right)^{m}$ approaches to $e^{x}\left(1-\frac{x^{2}}{2 m}\right)$ as m increases.
E.r. 3. $n^{n}-\frac{n}{1}(n-1)^{n}+\frac{n(n-1)}{1.2}(n-2)^{n}-\&$ c.

$$
=1.2 \ldots n
$$

कhen n is a whole number.

$$
\begin{gathered}
e^{n x}=1+n x+\frac{n^{2} x^{3}}{1.2} \text { \&c. } \\
d^{-1 v}=1+(n-1) x+\frac{(n-1)^{2} x^{3}}{1.2}+8 c
\end{gathered}
$$

$$
\text { . . . }=. . .
$$

Now I. $\left(e^{x}-1\right)^{n}=e^{n x}-n e^{(n-1) x}+\frac{n(n-1)}{1.2} e^{(x-n) x}-\& \mathrm{cc}$.
But $e^{x}-1=1+x+\frac{x^{2}}{1.2}+$ \&c. $-1=x+\frac{x^{2}}{1.2}+$ \&c.
\therefore II. $\quad\left(e^{n}-1\right)^{n}=x^{n}+n x^{n+1}+\&$ cc.
Equating cocfficients of x^{n} in I. and II., we get

$$
\frac{n^{n}}{1.2 \ldots n}-\frac{n(n-1)^{n}}{1.2 \ldots n}+\frac{n(n-1)}{1.2} \frac{(n-2)^{n}}{1.2 \ldots n}-\& c=1
$$

. which is the required result.
Cor. When r is less than n,

$$
n^{r}-n(n-1)^{r}+\frac{n(n-1)}{1.2}(n-2)^{r}-d c .=0
$$

Ex. 4. The logarithm of a number to the base a^{n} is a mean proportional between its logarithms to the bases a and $a * 2$.
Jf x, y, z, are the logarithms to the three bases in order, we have
\therefore
consequently

$$
\begin{aligned}
\left\langle a^{n}\right\rangle^{x}=a^{y} & =\left\langle a^{n 2}\right| \\
n x & =y \\
n x & =n^{2} z \\
x^{2} & =y z .
\end{aligned}
$$

Ex. 5. $e^{x}>1+x$, whatever be x.
If x be positive, or if it be negative and less than unity. the expansion may be throwi into the form

$$
e^{2}=1+x+\frac{x^{3}}{1.2}\left(1+\frac{x}{3}\right)+8 \mathrm{c}
$$

every term of which after $1+x$ is positive.
Ex. 6. $e^{n}>\frac{(1-n)}{n}$.
For $\quad e^{n}>1+x \therefore e^{\frac{1}{n}}>1+\frac{1}{n}$
Hence

$$
\begin{aligned}
& e n^{n \prime}>(1+n)^{n} \\
& \text { e. } 1^{2}>2^{1}
\end{aligned}
$$

e. $2^{2}>3^{3}$
$e n^{n}>(1+n)^{\prime}$
end, by multiplication, $e^{n} \mid n>(1+n)$.
Ex. 7. If n be a whole number $>e, n^{n+1}>(n+1)^{*}$
Yy sue demonstration of Ex. 6,

$$
e n^{n}>(1+n)^{n}
$$

But $n>e \therefore n^{n+1}>(1+n)$:
E.r. \& if $n^{n+1}=(n+1)^{n}$, then $n>1<e_{0}$

For n is eridentl >1. If then we supposo $n>1<\mathbf{3}$,

$$
\begin{aligned}
& n=\left(1-\frac{1}{n}\right)^{n} \\
& =1+1+\frac{\left(1-\frac{1}{n}\right)}{1.2}\left(1+\frac{1-\frac{2}{n}}{3}\right)+d e .
\end{aligned}
$$

$=2+$ a series of positive terms by the liypothesis $n<2$, which is absurd, $. \therefore n>2$.
Taking the Napicrian logarithms of each sido of the equation $n=\left(1+\frac{1}{n}\right)^{*}$. we get

$$
\begin{aligned}
\log ^{2} x & =1-\frac{1}{2 n}+\frac{1}{3 n^{2}}-\& c . \\
& =1-\frac{1}{n}\left(\frac{1}{2}-\frac{1}{3 n}\right)-\& c c \\
& <1
\end{aligned}
$$

Ex. 9. Nap. $\log x>1-\frac{1}{x}<x-1$.
Because $\log x=-\log \frac{1}{x}=1-\frac{1}{x}+\frac{1}{2}\left(1-\frac{1}{x}\right)^{2}+80$

$$
\therefore \quad \log x>1-\frac{1}{x} .
$$

And because when $x>1, x<1+(x-1)+\frac{1}{1.2}(x-1)^{2}+$ \&c.

$$
\therefore \quad \quad \log x<x-1
$$

when $x<1, \quad \log x=\log (1-\overline{1-x})$

$$
\begin{aligned}
& =-\left\{1-x+\frac{1}{2}(1-x)^{2}+d c c\right\} \\
& =x-1-\frac{1}{2}(1-x)^{2}-\mathbb{\& c} \\
& <x-1
\end{aligned}
$$

Eix. 10. Nap. $\log x$ approaches to $2^{n}\left(x^{\frac{1}{n}}-1\right)$ as : increases.

Sect. XVII.-Continued Fractions.

131. Every quantity which admits of bcing expressed by a common fraction may also be expressed in the form of what is called a continued fruction. The nature of such fractions will be easily understood by the following example:

Let the fraction be $\frac{31.4153}{100000}$, or, which is the same, $3+$ $\frac{14159}{100000}$. Since $100000=7 \times 14159+887$, therefore $\frac{14159}{100000}=\frac{14159}{7 \times 14159 \div 887}=\frac{1}{7+\frac{887}{14159}}$ and $\frac{314159}{100000}=3+$ $\frac{1}{7+\frac{887}{14159}}$.
By treating the fraction $\frac{887}{14159}$ in the same way, and con tinuing the process. we radily obtain
$\frac{314159}{100000}=3+\frac{1}{7}+\frac{1}{15}+\frac{1}{1}+\frac{1}{25}+\frac{1}{1}+\frac{1}{7}+\frac{1}{4}$
By an operation in all respects the same as has been just now purformed, may any pruper fraction whatever be reduced to the form

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+d c
$$

and it is then called a continued fraction.
1 132. When the root of any equation is found by the
method explained in Art. 116, the value of the unknown quadity is evidently expressed by a continued fraction. For if x be the root sought, we have $x=a+\frac{1}{y^{\prime}}, y=b+\frac{1}{y^{\prime}}$ $y^{\prime}=b^{\prime}+\frac{1}{y^{\prime \prime}}, y^{\prime \prime}=b^{\prime \prime}+\frac{1}{y^{\prime \prime \prime}}$, \&c. Where $a, b, b^{\prime}, b^{\prime \prime}, \& c$. denote the whole numbers, which are next less than the true values of $x, y, y^{\prime}, y^{\prime \prime}$, \&c. If, therefore, in the value of x we substitute $b+\frac{1}{y^{\prime}}$ for y, it becomes

$$
x=a+\frac{1}{b+\frac{F}{y^{\prime}}}
$$

Again, if in this second value of x we subsititute $b^{\prime}+\frac{1}{"}$ for y^{\prime}, it become

$$
x=a+\frac{\bar{z}}{b}+\frac{1}{b^{\prime}+\frac{1}{y^{\prime \prime}}}
$$

And so on continually,
133. It is easy to see in what manner the inverse of the preceding operation is to be performed, or a continued fraction reduced to a common fraction.

The fractions which result from omitting portions of a continued fraction are termed the convergents to that fraction. Thus, if the fraction be $\frac{1}{a_{1}}+\frac{1}{a_{3}}+\frac{1}{a_{3}} ; \frac{1}{a_{1}}$ is the first convergent, $\frac{a_{3}}{a_{1} a_{2}+1}$ the second, \&c.
134. The principal practical application of the properties of continued fractions is to approximate to the value of a given fraction. The proposition on which this application depends is the following:-

No fraction in terms equally lww can give so good an approximation to the value of a fraction as a convergent to the coutinued fraction which expresses it does.

To demonstrate this proposition, it is requisite to establish three preliminary propositions, which we shall do very briefly.
135. (1.) If $\frac{p_{n}}{q_{n}}$ denote the nth convergent, or the reduced fraction which results from stopping at a_{n}, and reducing, then $p_{n+1}=a_{n+1} p_{n}+p_{n-1}, q_{n+1}=a_{n+1} q_{n}+q_{n-1}$.

Since no denominator can be multiplied by itself, the reduced fraction must give $p_{n}=a_{n} \mathrm{~A}+\mathrm{B}$.

Now p_{n+1} is obtained by writing $a_{n}+\frac{1}{a_{n+1}}$ for a_{n}, and reducing,

$$
\therefore \quad p_{n+1}=a_{n+1}\left(a_{n} \mathrm{~A}+\mathrm{B}\right)+\mathrm{A}=a_{n+1} p_{n}+\mathrm{A} ;
$$

e.e., the multiplier of any a is the previous p, and the other term is the multiplier of a in the previous convergent, hence the proposition.
136. (2.) $p_{n+1} q_{n}-q_{n+1} p_{n}=(-1)^{n}$.

This is at onco obtained by eliminating a_{n+1} from the two equations of last article.
137. (3.) The successive convergents are alternately greater and less than the complete fraction, and each convergent approaches nearer in value to it than tho preneding.

If A denote the complete denominator $a_{n+1}+\mathbb{C i c}$; u the complete fraction; then $u=\frac{A p_{n}+p_{n-1}}{A q_{n}+q_{n-1}}$; and by sabtract. ing successively $\frac{p_{n}}{q_{n}}$ and $\frac{p_{n-1}}{q_{n-1}}$ from u in this form, it will be seen at once that the results have different signs, and that the latter difference is the larger.
138. We are now able to prove the proposition enunsiated.

Let $\frac{p}{q}$ bea fraction nearcr to u than $\frac{p_{r+1}}{q_{n+1}}$; then since the convergents are alternately too great and too small; $\frac{p_{n+1}}{q_{n+1}}, \frac{p}{q}, \frac{p_{n}}{q_{n}}$, must be in order of magnitude.
q_{n+1}. The the first be the greatest,

$$
\frac{p_{n+1}}{q_{n+1}}-\frac{p_{n}}{q_{n}}>\frac{p}{q}-\frac{p_{n}}{q_{n}}
$$

Reducing and applying Prop. 2, there results $q>{ }^{0}+1$.
Similarly by inverting the fractions, it may be proved that $p>p_{n+1}$.
Ex. 1. To determine when a transit of Venus may be expected.

The relative sidereal periods of Venus and the earth are 224,700 days and 365,256 days. The continued fraction which expresses the quotient of these numbers is

$$
\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{9}+\frac{1}{29}+\& c
$$

The fifth convergent is $\frac{8}{13}$; the sixth $\frac{235}{382}$.
On account of the smallness of $\frac{1}{29}$, the former is a ver 3 close approximation, i.e., 8 years and 13 sidereal periods of Venus are very nearly equal.

In consequence of this, a transit occurs after one period of 8 years, and then again not till after 235 years have been completed.

The last pair of transits at the descending node occurred in 1769,1777 ; and at the ascending node in 1639, 1647.

The next peir will accordingly occur at the lattcr nodu in 1874 and 1882 . The days of transit will be December 8 and December 6, respectively.

Ex. 2. To find the periods of probable recurrence of eclipses of the sun.

An eclipse of the sun will occur whenever the place of the new moon is within about 13° of the line of nodes. Now, the iuterval between two new moons is 29.5306 days; and the mean synodic period of the earth and the line of nodes is 346.6196 days. The proportion of the latter of these numbers to the former, reduced to a continued fraction, gives as convergents $\frac{47}{4}, \frac{223}{19}, \& c$.

Hence, after 47 lunar months, things have come rearly to their original position, and after 223 lunar months, very nearly. This latter period, termed the saros, has been known from the remotest antiquity. It enabled the Chaldean shepherds to predict the return of eclipses. It amounts to 18 years and 10 or 11 days. Thus, there was a total eclipse on the 18 th July 1860 ; adding 18 years 11 days, we get for an eclipse 29th July 1878. If we add 47 lunations or 1383 days, we get 6th March 186t, on which day there was an eclipse.

This period of 1388 days, multiplied by 5 , makes exartly 19 years-a period which is designated as the cycle if Metor, giving eclipses which occur on the same day of th.s month. Thus, eclipses happened 18 th July 1841 anel 18th July 1860, and another will happen 1 Stlu July 1879.

Ex 3. The fraction given (Art. 131) represents the ratio of the circumference of a circle to its diameter. By taking the first two terms we have $\pi=3+\frac{1}{8}=\frac{22}{7}$ nearly; and this is the proportion which was found by Archimedea

Again, by taking the first three terms, we have

$$
\pi=.3+\frac{1}{7}+\frac{1}{15}=3+\frac{15}{206}=\frac{333}{106}
$$

which is nearer the truth than the former.
And, by taking the first four terms, we hase

$$
=-3+\frac{1}{7}+\frac{1}{15}+\quad=\frac{335}{113}
$$

Which is the proportion assigned by Metius.
Ex. 4. The mean tropical year consists of $365 \cdot 2422642$ days.

The fraction 2422642 , reduced to a continued fraction, gives as successive convergents

$$
\frac{1}{4}, \frac{7}{29}, \frac{8}{33}, \frac{39}{161} ; \frac{47}{191}, \frac{321}{1325}, \& c .
$$

To make the civil year approximate to the tropical, 1 leap year in 4 (the Julian Calendar) serves but imperfcctly. 7 lcap years in 29 would be incenvenient. The Gregorian Calendar, now in use, is bascd on combining the fractions $\frac{47}{194}$ and $\frac{1}{4}$, by doubling the numerator and denominator of the former, and trebling those of the latter, and adding them respectively. The resulting fraction is $\frac{97}{400}$, giving 97 leap years in 400 years, instead of 100 as the Julian does. This diminution of 3 leap years in 400 years is produced periodically, by causing years which indicate the completion of centuries not to be leap years unless the number of centuries is divisible by 4. Thus, 1900 will not be a leap year.

Semt. XVILI.-Permutations, Combinations, and Probabilities.

139. Hithertowe have supposed the letters of the alphabet, $a, b, c, \& c$., to stand for arithmetical quantities of some kind or other. Now we have to employ them, as in geometry, to represent inagnitudes or objects, such as pens, pencils, \&c., and to investigate the numbers of different ways in which a given set of them can be grouped according to a certain lav.

Permutations are their arrangements in a line, reference being had to the order of sequence; thus $a b$ and $b a$ are the two permutations of a and b; combinations are their arrangements in groups, without reference to the ordor of sequence; thus abc is a combination involving a, b, and c; and bac is the same combination, both consistiag simply of a, b, and c grouped together.

Prop. 1. To find the number of permutations of n things (1), two and two (2), thirce and three, \&c., together.

Set aside a, and lay down the other things in a line; place a before each of them in succession, and you obtain $a b, a c, a d$, dc., i.e., $n-1$ arrangements, each containing two things, with a first.

In the same way you can form $n-1$ arrangements, cach containing two things, with b first. The same is true of each of the other letters, and as there are n of them, the total number of arrangements of the n things, two together, is $n(n-1)$.

Again, lay aside a, and group the other $n-1$ things, two together; as we have just shown, there are $(n-1)(n-2)$ such groups. Place a before each of them, and there will be formed $(n-1)(n-2)$ arrangements, each containing three things, with a first; and there can be no moro arrangements with a first.

Treat $b, c, s c$. , in the same manner, and it will appear that there are $(n-1)(n-2)$ groups of things, three together, in which every separate thing in succession stands first. Hence, the total number of arrangements, three and three, is $n(n-1)(n-2)$.

By proceeding in the same manner we shall find the whal number of permutations of n things, r together, to be v $(n-1) \ldots \ldots(n-r+1)$.

Cor. The number of permatatiens of n things, all together, is $n(n-1) \ldots 3.2$. 1 .

Prop. 2. To find the number of combinations of n things, r together.

Let x be the number required.
Take any one of the x groujs of r things. The number of permutations which can be formed with it will be (Prop. 1. Cor.) $r(r-1) \ldots . .1$, or $1.2 \ldots r$.

Now, since each of the x groups is different from all the others, if we treat each of the x groups separately in this way, we shall form $1.2 \ldots . r \times x$ permutations, all different. Also, since the x groups contain every possible combination of the n things, r together, we shall thus have formed all the permutations which can be formed ; and conse quently (Prop. 1) tho number is $n(n-1) \ldots(n-r+1)$.

$$
\therefore \quad x=\frac{n(n-1) \ldots(n-r+1)}{1.2 \ldots r}
$$

Prop. 3. To find the number of combinations which can bo formed of n sets of things, containing respectively $r, 8, t$, \&c. things, by taking one from each set to form a combination.

1. Let there bo two sets, one containing r and the other s things.

Any one (say a) of the r things may be placed successively with each of the 8 things, and thus form s groups, in each of which a appears. The same is true of $b, c, d e$. ; i.e., each of the r things gives rise to s groups, \therefore the number required is r.
2. Any one of the t things may be placed in succession with each of the groups of two things referred to in Case 1, so that every one of the t things will give rise to $r s$ combinations of three things; \therefore the number required is rst. The same may be indefinitely extended.
140. The first and most obrious application of the theory of combinations is to the doctrine of chances. As, however, this application will form the subject of a separate article, all that is requisite for us now to do is to indicato the connecting link between the two subjects.

If we agree to designate certainty by unity, then the chance of an event happening, wheu it is less than certainty, will be designated by a proper fraction. Thus if the average number of wet days and of dry is the same, the chance of any day named at random turning out wet will be represented by the fraction $\frac{1}{2}$; that is, if the number of days under consideration be 100 , the chance is $\frac{50}{100}$, or number of wet days total number of days . Chance is accordingly defined by the fraction $\frac{\text { number of favourable events }}{\text { total number of events. }}$

The only proposition by which chances are combined that we shall offer is this.

If there are two events, and the probability of one of them happening to be $\frac{a}{b}$, and of the other $\frac{c}{d}$; then the probability that both will happen is $\frac{a c}{b d}$.

For a and c may be taken to represent the favourable events respectively, and be combined (Art. 139, Prop. 3) so as to give $a c$ ways in which they may happen together. And in the same way b and d may be combined to give the total number of events.
$E x$. A bag contains 3 white and 4 black balls. Find the chance of drawing (1) two white balls; (2) a white and a black; (3) one rhite at least, when two balls are drawn. Tho chance of drawing two white balls is the fraction,

Number of combinations of 3 things, 2 together
Number of combinations of 7 things, 2 together.

$$
=\frac{\frac{3.2}{1.2}}{\frac{7.6}{1.2}}=\frac{1}{7}
$$

The chance of drawing a white and a black is (Art. 139 Prop 3),

$$
\frac{3 \cdot 4}{\frac{7}{1} \cdot 6}=\frac{4}{7}
$$

To find the chance of drawing at least a white ball, we may remark that it is the same as the chance of not drawing two black balls, i.e.. certainty-the chance of drawing two black balls.

Now the chance of drawing two black balls is

$$
\frac{\frac{4.3}{1.2}}{\frac{7.6}{1.2}}=\frac{2}{7}
$$

\therefore the chance of drawing at least one white hall is

$$
1-\frac{2}{7}=\frac{5}{7}
$$

Sect. Xix.-On Series in General; their Summation and Convergence.
141. Certain series, from their very appearance, indicate that they are really the sums or differences of two other scries. From this circumstance their sum may frequently be deternined, as in the following examples:-

$$
\begin{array}{r}
\text { Ex. } 1 \quad \frac{1}{1.2}+\frac{1}{2.3}+\ldots \\
x=\frac{1}{1}+\frac{1}{2}+.
\end{array} \quad . \quad . \quad . \quad . \quad \frac{1}{n(n+1)}
$$

Let
\therefore by subtraction,

$$
\begin{aligned}
3-\frac{1}{n+1} & =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\quad . \quad\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =\frac{1}{1.2}+\frac{1}{2.3}+. . \quad \frac{1}{n(n+1)}
\end{aligned}
$$

and the sum is $1-\frac{1}{n+1}$, that is, $\frac{n}{n+1}$.
142. The sum of a series may often be easily found by the method of increments or differences, and this method is especially adapted to the summation of integral series, such as the squares of the natural numbers. We shall exhibit one or two illustrations only.

If we write $\mathrm{S}_{\mathrm{n}}=n(n+1)$, we have
$\mathrm{S}_{\mathrm{s}+1}=(n+1)(n+2), \therefore \mathrm{S}_{n+1}-\mathrm{S}_{\mathrm{n}}=2(n+1)$.
Hence conversely, and dividing by 2 ; if

$$
\begin{array}{ll}
\qquad \mathrm{S}_{n+1}-\mathrm{S}_{n}=n+1, \\
\text { then will } & \mathrm{S}_{n}=\frac{n(n+1)}{2} .
\end{array}
$$

Similarly, if

$$
\begin{aligned}
\mathrm{S}_{n+1}-\mathbb{S}_{n} & =(n+1)(n+2) \ldots(n+r-1) \\
\text { then will } \quad \mathrm{S}_{n} & =\frac{n(n+1) \ldots\left(n+r_{0}-1\right)}{r}
\end{aligned}
$$

This last conclusion, of course, assumes that S_{n} is 0 when n is 0 . If it be otherwise, some numerical constant, easy of determination, will have to be added.

Ex. 2. $\quad 1^{2}+2^{2}+3^{2}+\ldots u^{2}$.
Here $\mathrm{S}_{\mathrm{n}+1}-\mathrm{S}_{\mathrm{n}}=(n+1)^{2}=(n+1)(n+2)-(n+1)$.
$\therefore \quad S_{n}=\frac{n(n+1)(n+2)}{3}-\frac{n(n+1)}{3}=\frac{n(n+1)(2 n+1)}{6}$

Ex. 3.

$$
\begin{aligned}
& 1^{4}+2^{4}+3^{4}+\ldots n^{4} \\
& \mathrm{~S}_{n+1}-\mathrm{S}_{n}=(n+1)^{4}
\end{aligned}
$$

Let
$(n+1)^{4}=(n+1)(n+2)(n+3)(n+4)+A(n+1)(n+2)(n+3)$

$$
+\mathrm{B}(n+1)(n+2)+\mathrm{C}(n+1)
$$

Dividing by $n+1$, and proceeding as in $\Lambda i t$. 33, we get $A=-6, B=7, C=-1$.
$\therefore \quad \mathrm{S}_{n}=\frac{1}{5} n(n+1)(n+2)(n+3)(n+4)-$

$$
\begin{gathered}
\frac{3}{\overline{2}} n(n+1)(n+2)(n+3)+\frac{7}{3} n(n+1)(n+2)-\frac{1}{2} n(n+1) \\
=\frac{n(n+1)(2 n+1)}{30}\{3 n(n+1)-1\}
\end{gathered}
$$

On the Convergency and Divergency of Iufinite Series.
143. Def. If the limit to which the sum of a serics approaches, as the number of terms increases, is finite, the series is a converging series; if otherwise, diverging. For example, the sum of the series $1+r+r^{2}+\ldots$ to n terms is $\frac{1-r^{n}}{1-r}$ (Art. 52), which, when r is less than 1 , approaches to $\frac{1}{1-r}$, in which case the series is a couverging series.

Prop. 1. It is necessary and sufficient for convergency that the remaining terms after the nth have zero for their limit, both individually and collectively, as n increases.

It is obviously necessary and sufficient for convergency that the sum of the series after the nth term shall have 0 as its limit; and consequentiy, when all the terms of the series are positive, the same must be true of each individual term. But when the ternis are alternately positive and negative, though it is necessary for convergency that the sum of the consecutive terms with their proper sigus should have 0 as its limit, this is not sufficient; for, were it so, the sum to n terms would depend on whether n is even or odd.

Ex. 1. $1+\frac{1}{2}+\frac{1}{3}+\ldots$ is not a converging series; for although each term after the nth tends to 0 as its limitthe sum of n terms after the n th, viz., $\frac{1}{n+1}+\frac{1}{n+2}+\ldots$ $\frac{1}{2 n}$, which is greater than $\frac{1}{2 n}+\frac{1}{2 n}+\ldots \frac{1}{2 n}$ to n terms, i.e., greater than $\frac{1}{2}$, does not tend to 0 as its limit.

Ex. 2. $1+\frac{1}{1}+\frac{1}{1.2}+\frac{1}{1.2 .3}+\ldots$ the expression for e (Art. 129), is convergent.

The sum of the terms after the nth is

$$
\begin{aligned}
& \frac{1}{n}\left(1+\frac{1}{n+1}+\text { \&c. }\right) \\
< & \frac{1}{\frac{\mid n}{n}}\left(1+\frac{1}{n}+\frac{1}{n^{2}}+\ldots\right) \\
< & \frac{1}{\frac{\mid n}{2}} \cdot \frac{1}{1-\frac{1}{n}}<\frac{1}{(n-1) \mid n-1}
\end{aligned}
$$

the limit of which as n increases is 0 .
Prop. 2. If the linit of the nth term is 0 , and the terms continually diminish; then when the signs of the terms are alternately + and - , the series is convergent.

Let $u_{1}-u_{2}+u_{3}-\& c$., be the series; the terns after the nth (+ or -) make up the series of pusitive groups

$$
\left(u_{n+1}-u_{n+2}\right)+\left(u_{n+3}-u_{n+6}\right)+\&<c .
$$

But these terms may also be written $u_{n+1}-\left(u_{n+3}-u_{n+3}\right)-$ d.c., which, since the whole group is positive, musi
bo less than u_{n+1}, the only positive term in it. l3ut u_{n+1} has 0 for its limit, thercfore the series is convergent.

Ex. 3. $1-\frac{1}{2}+\frac{1}{3}-\ldots$ is convergent, for the sum of the series after the nth term is less than $\frac{1}{n+1}$, which has 0 as jts limit.

Prop. 3. If the terms of the series are all positive, and the limit of the nth term is 0 ; then if the limit of the quotient of the $(a+1)$ the term by the ath be less than 1 , the series is convergent; but if the limit be greater than 1 , thie sum is divergent.

1. Leet be the greatest value of $\frac{u_{n+1}}{u_{n}}$, after a certain value of n, and $k<1$; then,

$$
\begin{aligned}
u_{n+1}+u_{n+2}+\ldots & <u_{n+1}\left(1+k+k^{2}+\ldots\right) \\
& <\frac{v_{n+1}}{1-k}
\end{aligned}
$$

which has 0 for its linit. Hence the series is convergent (Prop. 1).
2. Let π, the least value of $\frac{u_{u+1}}{u_{n}}$ after a certain finito value of n, be greater than 1 ; then

$$
\begin{aligned}
u_{n+1} & =\text { or }>k v_{n} \\
u_{n+2} & =\text { or }>k^{2} u_{n} \\
d c . & \text { dc. } \\
\therefore \quad u_{n+1}+u_{n+2}+d c_{0} & =\text { or }>k u_{n}\left(1+k+k^{2}+d c .\right),
\end{aligned}
$$

which is infinite. Hence the scries is divergent.
Prop. 4. If $\frac{u_{n+1}}{u_{n}}$ be less than 1 ; then the two series

$$
\begin{align*}
& u_{1}+u_{2}+u_{3}+u_{1}+ \tag{1}\\
& u_{1}+2 u_{2}+4 u_{4}+8 u_{8}+
\end{align*}
$$

are both convergent, or both divergent together.
Series (2) $+u_{1}=2\left(u_{1}+u_{2}+2 u_{4}+4 u_{8}+\ldots\right)$, which is canal to or less than the following, term by term, viz.:-

$$
2\left\{u_{1}+u_{2}+\left(u_{3}+u_{4}\right)+\left(u_{6}+u_{8}+u_{9}+u_{8}\right)+\ldots\right\},
$$

i.e., trice series (1).

Hence if the one series be consergent, the otber will be also convergent; and if scries (2) be divergent, series (1) is also divergent.

Again, scries (2) is equal to or greater than the fellowing, term by tcrm,

$$
u_{0}+\left(u_{2}+u_{3}\right)+\left(u_{3}+u_{8}+u_{0}+u_{7}\right)+\ldots
$$

which is series (1).
Henco if scries (1) be divergent, series (2) is nlso divergent.

Ex. 1. The scries $\frac{1}{1^{r}}+\frac{1}{2^{r}}+\frac{1}{3^{r}}+\ldots$ is convergent if $r>1$, but divergent if $r=$ or <1.
The two scries (1) and (2) now becone

$$
\begin{aligned}
& \frac{1}{1^{r}}+\frac{1}{2^{r}}+\frac{1}{3^{r}}+\ldots \\
& \frac{1}{1^{r}}+\frac{2}{2^{r}}+\frac{4}{4^{r}}+\ldots
\end{aligned}
$$

the latter of which is the geometric series

$$
1+\frac{1}{2^{r-1}}+\frac{1}{4^{r-1}}+\ldots
$$

which is convergent or divergent according as $r>1$ or the contrary. Hence the same is true of the given series.

Ex. 2. The binomial series $1+n x+d c$., is convergent when $x<1$, divergent when $x>1$.

Ex. 3. To find when the binomial series $1-n+\frac{n(n-1)}{1.9}-$ \&c., is convergent.

Let $n<1$; the $(r+1)$ term may be written

$$
\begin{aligned}
& \frac{n}{r} \cdot \frac{r-n-1}{r-1} \cdot \frac{r-n-2}{r-2} \cdots \\
= & \frac{n}{r}\left(1-\frac{n}{r-1}\right)\left(1-\frac{n}{r-2}\right) \cdots \\
< & \frac{n}{r}\left(1+\frac{1}{r-1}\right)^{-n}\left(1+\frac{1}{r-2}\right) \cdots \text { (Art. 122. Ex. } 7 \text {; } \\
< & \frac{n}{r}\left(\frac{r}{r-1}\right)^{-n} \cdot\left(\frac{r-1}{r-2}\right)^{-n} \cdots \\
< & \frac{n}{r^{n+1}},
\end{aligned}
$$

whence (Prop. 4, Ex. 1) the scries 15 convergent. Similarly in uther cases.
(г. к.)

ALGECIRAS, or Algeziras, a scaport of Spain, in the province of Cadiz, 6 miles W. of Gibraltar, on the opposite side of the bay. The town is picturesquely situated, and its name, which significs in Arabic tho island, is derived from a small islct which forms one side of the harbour. It is supplied with water by means of a beautiful aqueduct. It has a dilapidated fortress, and also a military hospital. Though the harbour is bad, and the commerce of the town has considerably declined, thero is still a good coasting trarle; the exports and imports averaging about $£ 60,000$ amnually. Charcoal and tanned leather are the chief articles of export. Algeciras mas the Portus Albus of the Romans, and the first piace in Spain taken by the Moors. It remained in their possession from 713 till 1344, when it was taken by Alphonso XI. of Castile after a celebraterl siege of trenty months, which attracted crusaders from all parts of Europe, among whom was the English earl of Derby, grandson of Edward III. It is said that during this siege gunpowder was first used by the Joors in the wars of Europe. The Moorish city was destroyed by Alphonso, and the modern torm was not erected till 1760. During tho sicge of Gibraltar in 1780-82, Algeciras was the station of the Spanish flcet and floating batteries. Near Algeciras, on Gth July 1801, the English admiral Saumarez attacked a Franco-Spanish fleet, and sustained a
reverse; but on the 12 th he agnin attacked the enemy, whose flcet was double his own strength, and inflicted on them a complete defeat. Population, 14,000 .

ALGER of Liége, known also as Alger of Clugny and Alaerus Magister, a learned French priest who lived in the first half of the 12 th century. He was first a dcacon of the church of St Bartholomew at Liege, his nativo town, sas afterwards translated to tho cathedral church of St Lambert, and finally retired to tha monastery of Clugny, where he died not later than 1145, though the precise date is uncertain. His Mistory of the Church of Liége, and many of his other works are lost. The most important of lis still extant works are:-1. De Mrisericordia et Justitia, a collection of extracts from Fathers, with reflections, which is to be found in the Anecdota of Martèns, vol. v. 2. De Sacramento Corporis et Sanguinis Domini; a treatise, in three books, against the Berengarian heresy, highly commended by Peter of Clugny and Erasmus. 3. De Jibero Arbitrio; given in Pez's Anecdoia, vol. iv. 4. De Sacrificio Missa; given in the Collectio Scriptor. Vet. of Angelo Mai, vol. ix.

ALGERIA, or Algiers (French, L'Algérie), the largest and most important of the French colonial possessions, is a country of Northern Africa, bounded on the N. by the Mediterranean, W. by the state of Marocco, S. by the
desert of the Sahara, and E. by Tunis. The boundaries, however, are in many parts not accurately deternined. It extends for about 550 miles along the coast, aud stretches iuland from 320 to 380 miles; lying between $2^{\circ} 10^{\prime} \mathrm{W}$. and $8^{\circ} 50^{\circ}$ E. long., and 32° and $37^{\circ} \mathrm{N}$. lat. The area is estimated at about 150,500 English square miles.
The country is generally mountainous, being traversed by lofty ranges of the Atlas system, which ryn nearly parallel to the coast, and rise in some places to the height of upwards of 7000 feet. These are commonly divided into two leading chains, which are distinguished as the Great and Little Atlas. The former, which is the more southern and bordering on the Sahara, contains some of the highest poiuts in the country. The Little Atlas or Maritime Atlas, as it is sometimes called, lies between the sea and the Great Atlas, and is composed of numerous diversified ranges generally of no great elevation. A number of smaller chains lie between these principal ones, and also between the latter and the sea, forming so many ascending steps or degrees. These principal ranges are connected by numerous transverse ones, thus forming extensive table-lands aud elevated valleys, with no connection between them but the intervening heights. Occasionally the principal ranges are broken by deep defiles and narrow valleys. The maritime region presents numerons nacrow valleys, each carrying down to the sea its mountain strcam. In some parts the mountains rise abruptly from the sea, in others a tract of flat land intervenes between the mountains and the coast, and this is usually marshy, but sumetimes fertile and well cultivated. There are a number of extensive plains near the coast, one of the most important of which is that of Metidja, commencing on the eastern side of the bay of Algiers, and stretching thence inland to the south and west. It is about 60 miles in length by 10 or 12 in breadth. Another great alluvial plain extends south and west for many miles from the viciuity of Bona. A third similar plain lies to the southeast and south-west of Oran, and south of Mostaganem is the plain of Shellif. The coast is generally steep and rocky, abounding in capes and gulfs, but very deficient in good barbours, aud even in secure roadsteads, in consequence of its exposure to the north wiuds.

The rivers are numerous, but the majority of them have short courses. They mostly rise in the mountains near the coast, and rush down with great impetuosity through deep and rocky channels, presenting the character of mountain torrents. During the rainy season they are much swollen, so as to render communication with different parts of the country extremely difficult. The most important river, both from the length of its course and the volume of its waters, is the Shellif, which, rising in the. northern slopes of the Djebel Amur, flows first north and then west till it enpties itself into the Mediterranean near Mostaganem after a course of 370 miles, during which it receives numerous tributary streams. The Seybouse is formed by the union of several small streams in the intericr of the province of Constantine, south-cast of the town of that name, and after a course of about 120 miles falls into the Mediterranean near Bona. The Summam, which contains the greatest body of water after the Shellif, rises in the interior of the province of Algiers near Aumale, and pursues a generally north-east direction to its mouth near Bougie. The Rummel, formed of several small strearns south of the tomn of Constantine, passes that town and pursues a north-west direction to the sea. Among the less inportant rivers whicn cupty themselves into the Mediterranean are the Harrach, 1sser, Mazefran, Tafna, and Macta Besides these, there are a number of streams in the interiur, but they are less knomin and are generally dry except in the rainy season.

4 lyeria abounds in extensive lakes and marshes. Of
the lakes in the northeru part of the comutry, near the coast, the principal are,-the Fezara 14 niles south-west of Buna; the two lakes Sebkha and El Melah south of Oran; the three small lakes in the inmediate viciuity of Calle, and several others. In the southern parts of the country are the extensive lakes of Chott-el-Harbi or Western CLott; the Chott-el-Chergui or Eastern Chott; the Zarlhez-Gherbí and the Zarhez-Chergui; the Grand Sebkha-el-Chutt, and a number of others. These are mustly dried up in sumwer, leaving a thick stratum of salt. Many of the marshes, especially in the neighbourhood of the larger towns, have been drained by the French, and the climate has thus been rendered more salubrious. There are also a number of warn mineral springs, containing principally salts of lime, which are used with success by the Arabs in several kinds of disease. Some of these are in the viciuity of Calle Bongie, Milianah, de.

Algeria is dirided by a line running nearly east and Na aura west into two distinct zones, called by the natives the T'ell Divion and Sahara. The Tell constitutes the zone bordering upon the Mediterranean. and is the cultivated land-the land of corn. It consists of a series of fertile basins, yielding almost exclusively corn of different kiuds, especially wheat and barley. Some parts of it are extremely fertile, but at the same time flat and uniform. The chains selarating the basins are clothed with tinnber, and peopled by the Kabyles. The Sahara lies to the south of the Tell, and is the region of pastures and of fruits. Hence, while tho inhabitants of the Tell are agriculturists. those of the Sahara are skepherds and gardeners. The Sahara is sometimes spoken of as a desert, at other times as the country of dates. It may properly be divided into two regions; the northern is mountainous, but at the same time moro fertile, better watered, and more populous than the other, which, berdering on the Great Desert, consists chiefly of oases of greater or less extent. The villages of the Salara are surrounded by belts of fruit trees, of which the palm is the chief, though there are also pomegranate, fig, apricot, peach, and other trees, and rines. On the mountain ranges near the coast are extensive forests of various species of oak, pine, cedar, elm, ash, maple, olive, \&c. The cork tree is also very common. The trees, especially the cedars and oaks, are frequently of gigantic size. Great injury is often done to the forests by the people annually burning up the grass of their fields. In this way extensive forests are sometimes consumed. The want of roads and narigable rivers has prevented the French from deriving much benefit as yet from the forests. Besides wheat and barley, the cotton plant, sugar-cane, and tobacco are extensively cultivated.

The animal kingdom presents little calling for notice, Lious, formerly very plentiful, are now extremely rare; leopards, panthers, jackals, and hyænas are still common; and monkeys and apes are numerous. The wild boar is found in the oak forests, and the brown bear in the higher parts of the country. There are also various species of antelope. Of the fcathered tribes, eagles, vultures, hawks, and owls are common; snipes, curlews, plovers, storks, and herons frequent the marshy parts; and the ostrich has its habitat in the desert. Among the reptiles are various species of serpents, tortoises, turtles, lizards, \&c. Locusts are common, and sometimes do great damage to the crops. One of the sererest invasions of these pests ever known occurred in 1866, when the crops were nearly all destroyed, and the loss sustained by the colonists was estimated at $£ 800,000$. The coast is rrich in corai and sponges, and the obtainings of these forms a considerable branch of industry. The chief wealth of most of the Arab tribes consists in their sheep, of which they frequently possess immense flocks; camels are also common, but the horses and mules are more esteemed, and are noted for thcir eacelience.

From its posthon, Algeria might be eupposea to enjoy a warm climate; but the temperature varies considerably in different parts, according to the elevation and configuration of the country. In the nertheru districts the climate very much resembles that of the south of Spain, while in the Sahara the heat is often ercessive. In the mure elevated regions the winter is frequently very severe; but along the coast the temperature is mild, very rarely sinking to the freezing-point even in winter, when heary rains are of frequent occurrence. Dr Shaw knew tho thermometer reach the freezing-point only twice during twelve years' esidence at Algiers. The coldest month is January, the hottest August. The rains prevail from December to February; the temperate season continues from Mareh to June, and the hot seascu lasts from July to November. The mean annual temperature of the town of Algiers is about 66.5° Fahr.; being for the coldest month 48°, and for the hottest 83°. During summer there is a great difference between the day and night temperature, especially in the inland districts. The simoom or hot wind of the desert sweeps at interrals over the country, betreen May and September, impregnating; the air with fine sand from the desert. In general, with the execption of places in the vicinity of the marshes, Algeria possesses a healthy climate. Ophthauma, however, is very common, and elephantiasis is by no means an unusual disease, owing to the want of cleanliness among the country people. ${ }^{1}$

Besides the Europeans there are eight distinct races of inhabitants in Algeria-(1.) The Kabyles or Berbers, the descendants of the aboriginal inhabitants of the country, constitute a large portion of the entire population. They occupy chiefly the more elevated and mountainous parts, but numbers of them also inhabit the plains and valleys. They are deseribed as an active, industrious race, living in villages, and principally engaged in agriculture and the cultivation of fruit trees. They also make their own agricultumel implements, guns, gunpowder, leather, carpets, \&c. (2.) The Arabs are a very numerous class, and inhabit principally the southern parts of the country. Some of them are cultivators of the soil, and live in villages in the neighbourhood of the towns; but the majority of them have no fixed habitation, dwelling in tents and moving about from place to place. Theso are the Bedouins or nomadic Arabs, and are the most unsettled and turbulent of the Algerine population. (3.) The Moors, a mixed race, inhabit the towns and villages chicfly on or near the sea-coast. (4.) The Jews are also to be found in the towns, and are engaged in morcantile pursuits. (5.) The Turks, thourgh long the dominant race, were nerjer very numerous, and since the French conquest they have nearly disappeared. (6.) The Kolougis are the descendants of Turks by native women, and constitute a considerable proportion of the inlabitants of Algiers and other towns. (7.) The Negroes were originally brought from the interior and sold as slaves, but slayery now no longer exists. (8.) The Mozabites are an African race, to be found inhabiting the coast towns, and chicfly engaged in manual labour. They are described as an honest, industrious, and peaceable people.

[^72]The Europes civil population of Algeris amounted to only 45,050 persons in 1840, and in 1845 it had increased to 75,867 . In Dec. 1849 it had risen to 112,607 , of whom 58,005 wero French, 6943 Maltese, 33,659 Spaniards, 6956 ltalians, 2515 Germans, 1253 Swiss, and 3240 of other nations. According to the ceusus of $186 \mathbf{J}$ the entire population of Algeria was 2,966,836, of whom 2,374,091 were nomadic native races, 112,229 French, and 80,517 other Europeans. In 1866 the eatire population was 2,921,246, of whom 2,434,974 were of indigenous wadering tribes, 217,980 Europeans, and 251,050 natives settled in towns. Of the Europeans, 122,119 were French, 58,510 Spaniards, 16,655 Italians, 10,627 Maltese, and 5636 Germans. In the civil territory the entire popalation in 1870 is given as 478,342 , of which 121,629 were Freach, 97,912 other Europeans, 33,117 Jews, and 225,693 Mahometans.

When under the dominion of the Turks, this country was gorerned by a dey, and divided into four prorincesAlgiers and Titterie in the centre, Tlemcen in the west, and Constantine in the east. The last three were governed by beys under the dey. At present it is divided into three provinces-Algiers in the centre, Oran in the west, and Constantine in the east. Till 1871 the country was entirely under military rule, but in that year various important reforms were introduced; and in place of the former military governor a civil governor-general was appointed to administer the affairs of the colony, and to direct the action of both civil and military authorities He is invested with legislative powers in civil matters; but in all important cases he has to take the advice of a colouial council, the members of which are appointed by the Freach government. The power of the governorgeneral, however, extends only over the settled distriets. In the thinly-populated parts, and the districts where the nomadic tribes are chiefly found, military rule still prevails. The three prorinces are subdivided into twelve departments, at the head of each of which is a prefect, and under him are sub-prefects who rule over smaller divisions. By an Act of 14 th July 1865, the natives, both Mahometan and Jewish, were declared entitled to the rank and prerogatives of French citizens, on placing themselves completely and absolutely under the civil and political laws of France, and thus were made admissible to all the grades in the army and navy, and to many posts in the civil service of the state.

In 1810 the revenne amounted to $5,610,706 \mathrm{frs}$. and the expendi- Reveaz ture to $7,206,372$ frs. ; in 1850 these were respectively $19,632,271$ frs. sand $27,959,358$ frs. ; in $1860,38,908,990$ frs. and $39,471,372$ frs. ; and in $1870,45,360,859$ frs. and $51,762,316$ frs. or $£ 1,814,434$ and $£ 2,070,492$. This expenditure does not include the cost of the maintenance of the armay, the expenditure for pablic works, and other lerge sums disbursed by the home government. In the French financial estimetes for 18% toe home expenditure for Algeria was set down ot $24,496,109 \mathrm{frs}$. or $£ 979,844$, and tho revenue derived from the colony at $19,008,584$ frs. or $£ 760,343$. According to a statement made in the French Jcgislative asscmbly in 1864, Algeria hed cost the mother country three milliards of francs, or $£ 120,000,000$ in moncy and 150,000 lives. The French army in Algcria numbers sbont $60,000 \mathrm{mcn}$, and consists of two classes, namely, Freach troops, who remain there for a certain number of years, and then return to France; and native troons, who never quit the country except for fighting purposes.

Algeria in the time of the Romans was noted for its fertility, sad this is still the character of the cultivated parts of the country. Blany parts only want water to render them fertile, and the government has letcly sunk a number of Artesian wells with the most beneficial reaults. Tho principal grain crops are wheat and barley. In 1866 thene were in the three provinces $4,168,367$ acres of land under different kinds of gmin^{2} and the produce amounted to 2,802,208 quarters; 28,132 acrec of vineyards, 14,266 acres ander cotton, 5957 under flax, and 9793 under tobacco. In the province of Algiers the total area of land under cultivation with cereals in 1868 was, in the civil portion, 178,642 scres, of which 120,286 were cultivated by Eurnpeans; and in the military portion, 808,896 acres. The total jield in the former case was 266,578 , and in the latter 668,666 quarters. These figures do not inclade other agricultural produce, such as beans, maize, \&c, of which about 277,052 quarters were produced by 99,603 acres. The producn of tobaccu throaghont the country was estimated at $6,845,000 \mathrm{Jb}$. Olives aro brown largely and almost exclusively in the monntains of Kabylia.

Is that portion of the district incladed in the province of Algiers the quantity of fruit gathered is estimated at over $100,000,000 \mathrm{tb}$. At present not mnch attention is given to this article of produc. tion; but there can be no donbt that with more care and aftention Algeria might becoms one of the best olive-producing countries in the world. Oranges are grown to a considerable extent, and the trade in this article is increasing. The rine is cultivated; but the produce is chiefly for home consumption, and it has scarcely yet become an article of export. In the proviace of Algiers in 1868 about $1,350,000$ gallons of wine were produced. During the same year the exportation of cork from the colony amounted to $£ 63,932$. The most important fibre is the crin vegetal, or vegetable horse hair, produced from the dwarf palm (Chamarops humilis), with which a vast proportion of the uncultivated parts of the country is covered. Throughout the entira colony, fibre to the value of $£ 89,332$ was exported in 1868. The alpha fibre or esparto grass of Oran ranks next in importance, and is largely nsed in the manufacture of paper. During the American war the cultivation of cotton was extensively carried on, but since the close of the war it has very much fallen off. Flax is cultivated to a considerable extent in some parts. The rearing of the silk-worm is also prosecuted.

Although the mineral wealth of Algeria is enormons, mining operations have not hitherto been carried on very extensively. The most important mineral products are iron, copper, lead, mercury, and antimony. During 1868 the iron mines in the province of Constantine turned our about 240.000 tons of ore, valued at $£ 486,672$, heing an increase of $£ 185,532$ as compared with the preceding year. Nearly the whole of this was from the mine of Ain Mokra or Mokhta-el-Hadid, which yields on an average 200,000 tons of ore per annum. The ore contains 65 per cent. of the metal. Lead ore to the value of $£ 125,745$ was exported during that year.

The trade of Algeria has very much increased since it became a French colony. The imports, which in 1831 amounted to only $£ 280,000$, rose to $£ 1,600,000$ in 1844 , to $£ 3,249,377$ in 1854 , and to nearly $£ 4,500,000$ in 1863.' The exports, however, have not grown in proportion; and during the ten years preceding 1863 they never exceeded from $1 \frac{1}{8}$ to 2 millions sterling. In 1865 an Act declared the navigation not only between France and Algeria but also between Algeria and foreign countries open to all nations, and abolished various oppressive taxes affecting forcign shipping. The following year these privileges were extended: the coasting trade was thrown open and free navigation permitted, tonnage duties on furcion shippiog were abolished, and raw manufactured goods entering France free of duty had the same advartage conceded to them in Algeria. Algerian products might enter France free of duty, and the same privilege was accorded to French products in Algeria, sugar excepted. In 1868 the imports amounted to $£ 7,706,574$, which was an increase of $£ 199,494$ over the previous fear. The proportions received from the different countries were-France, 75 per cent.; Turkey, 8.44 ; Russia, 4.29 ; Spain, 3.99 ; Great Britain, 3.54 ; ltaly, 2.56 ; Barbary States, $1 \cdot 40$. The imports from Turkey and Russia are exceptionally high, owing to the necessity of obtaining graio aupplies from these countries in conseqnence of a failure in the crops. The principal ports of import were-Algiers, 40.43 per cent.; Oran, 33.33 ; Philippeville, $15: 04$; Bona, 7.01 ; Mostaganem, $2 \cdot 33$. In 1869 the imports amounted to $£ 7,332,192$, arid in 1870 to $£ 6,907,628$. The principal imports are cotton goods, wines, spirits, sugar, glass, crystal, cheese, salt-fish, soap, \&c. The total value of the exports during 1868 amounted to $£ 4,122,7 \% 2$, being an increase of $£ 236,293$ as compared with 1867 . The proportions sent to the different countries were-France, $79 \cdot 20$ per cent.; Spain, 11.68 ; Great Britain, 5.84 ; Italy, 1.80 . The principal exports are sheep, oxen, skins, wool, tobacco, flour, fresh and dried vegetables, olive-oil, flay, cotton, ores, crin vegetal. In 1869 the total exports amounted to $£ 4,438,045$, and in 1870 to $£ 4,978,250$. The overland trade between Algeria and its neighhours, Marocco and Tunis, now begins to assume some importance. The number of vessels that entered aud left the varions ports in 1868 was 8740 , of en aggregate burden of $1,664,513$ tons, and manned by 16,173 men. This is an increase over the previous year of $18 \cdot 40$ per cento as regards the nutaber of ships, and of 12.63 per cent. as regards the tonnage. As engraged in the direct trade with Britain, there entered 99 British vessels with an aggregate of 17,940 tons, and cleared 109 British vessels with an aggregate of 12,523 tons. Besides these there were British vessels engaged in the direct or carrying trade with other countries, of which entered 125 with an aggregate burden of 14,972 tons, and cleared 106 with an aggregate of 19,960 tons. The number of British vessels trading at the four principal ports, namely, Algiers, Oran, Dona, and Philippeville in 1872 was as follows:-direct, entered, 171-tonnage, 60,285; left, 251-tonnage, 76,973 ; indirect, entered, 170 -tonnage, 79,454 ; left, $125-$ tonnage, 63,645. Daring that year 1595 vessels of $3,746,130$ tons entered, and 1587 vessels of 376,402 tons cleared, at the port of Algiers. The most important articles of export, as far as British trade is concerned, are crin vegetal and alpha fibre. During the first nine months of .1872 about 6000 tons of the former were exported from the port of Algiers alone: and about 60,000 tons of
the latter from the whole colony, chicfly from Oran. Some ides of tne rapidly advancing commercial prosperity of Algeria may be gatheren from the fact that the amount of sums discounted at the Bank of Algeria (which was established in 1851) had risen from $£ 3,900,130$ in 1866-7 to $£ 8,131,535$ in 1871-2. Dluch has been done, partict. larly of late years, in the way of opening up the country and de. veloping its resources. Roads have been formed and bridges built in various parts, harbours have been improved, and lighthouses erected. There are now 374 miles of railway open for traffic, forming a line from Algiers to Oran and one from Philippevills to Constantine.

In early times this country was inhabited by two nations, the Massyli and the Massæsyli. During the strnggle tetween Hannibal and the Romans, Syphax, the prince of the Massæsyli, espoused the cause of the former, and Massinissa, the prince of the Massyli, that of the latter. On the defeat of the Carthaginians the territories of Syphaz were annexed to those of Masinissa, who received the title of King of Numidia. During the Roman civil war, Juba, king of Numidia, sided with Pompey, and being defeated by Cæsar, his kingdom became a Poman province. Under the Romans the country enjoyed a great degree of prosperity. Agriculture was encouraged, innumerce extended, roads were formed, and towns sprang up. Christianity, too, was early introduced and flourished. This state of things, however, received a severe check when tl:̇ Romans were driven out of Africa by the Vandals about the middle of the 5 th century. These in turn were expelled by Belisarins, Justinian's general, in 533. About the middle of the 7th century the Saracens made themsolves masters of the country, which came afterwards to be divided into a number of petty states under independent chiefs, and the people sank into a state of barbarism. About the middle of the 11th century Abdallah-ben-Yazim, a learned Arab, formed a nunerous sect of religionists, known as Morabites, who overran the country, subdued many of the petty chiefs, and laid the foundation of the dynasty of the Almorarides. That dynasty reigned for nearly a hundred years, and at one tine nearly the whole of Barbary and a great part of Spain were under their government. They were succeeded by the dynasty of the Almohades, who reigned over the region till 1273, when it was again split up into a number of small states. In 1505, Ferdinand, king of Spain, sent a powerful fleet and army agairst the country, under the . Count of Navarre, who soon made himself master of Oran, Bugia, and other towns, and finally, in 1509, took the town of Algiers. The Spanish rule, however, was very distasteful to the Algerines; and on hearing of the death of Ferdinand, in 1516, one of the native princes sent an embassy to Aruch Barbarossa, the famous Turkish pirate, requesting his aid against the invaders. This was readily granted; and no sooner had he established himself in the country than he murdered the prince and caused himself to be proclaimed king in his room. He introduced that system of piracy for which Algeria was afterwards noted down to 1830. By force and treachery he extended his dominion over other parts of the country, till at length the Spaniards marched a large army against him from Oran, and being joined by many of the natives, defeated him in various engagements, took him prisoner, and beheaded him. His brother Hayradin was then chosen sultan; and he feeling himself unable to cope with the Spaniards, sought the assistance of Turkey, and put himself under the protection of the Grand Seignior. Aid was readily granted, and he himself was appointed pasha or viceroy of Algiers. Having thus got rid of his enemies the Spaniards, he turned bis attention to the extension of his piratical enterprises; and in order to do this with the greater security, he fortified the port of Algiers and built a strong mole for the protection of his ships. He is said to have employed 30,000 Christian slaves for three years in the construction of the mole. The Algerine pirates soun became dreaded, not
only by the Arabs and Moors, but also by the maritimo Christian powers, particularly the Spaniards. At length Pope Paul III. induced Charles V. to undertake an expedition to suppress these depredations, and issued a bull offering remission of sins and the crown of martyrdom to all who either fell in battle or were made slaves. The emperor set sail with 120 ships and 20 galleys, having on board 30,000 chosen men. They landed in safcty, and were proceeding to attack the torn of Algiers when a fearful storm arose, and in one night (28th Oct. 1541) destroyed 86 ships and 15 galleys with all their crews and military stores, so that the army on shore was deprived of the means of subsistence. This was then fallen upon by the Algerines, when many were killed and a great number taken prisoners, Charles himself and the remains of his army escaping with difficulty.

Alfiers continued to bo governed by viceroys or pashas appointed by the Porte till the beginning of the 17 th century, when the janissaries solicited and obtained the right to choose their oma dey or governor from among themselves. This subsequently led to frequent altercations between the pashas and the deys, the former seeking to recover their lost poreer, the latter to reduce it. In 1609, the Moors being expclled from Spain, flocked in great numbers to Algiers, and, as many of them were very able sailors, they contributed to raise the power of the Algerine fleet. In 1616 it consisted of forty sail of ships, of between 200 and 400 tons, their flagship having 500 tons. I'he Algerine pirates now became so formidable to the European powers, that in 1617 the Frcnch sent against them a fleet of fifty sail, under Beaulieu, who defeated their fleet and took two of their vessels. In 1620 the English sent out a squadron under the command of Sir Robert Mansel on the same errand, but it returned without effecting anything. Their depredations becoming still more frequent and troublesoine, the Venetians cquipped à flect of twenty-eight sail, under the command of Admiral Capello, with orders to burn, sink, or take all the Barbary corsairs he should meet. In an engagement which speedily took place le signally defented them, and took and destroyed sixteen of their galleys. They soon, howerer, regained their former strength; and at length Louis XIV., provoked by the outrages committed by them on the coasts of Provence and Languedoc, ordered, in 1081, a considerable fleet to be fitted out against therm, under the command of Vice-admiral Duquesne. He attacked them near the island of Scios, and destroyed fourteen of their ships. This, however, had little effect upon them, and the following year he bombarded the town of Algiers and nearly reduced it to ashes. The Algerines, by way of reprisal, sent a number of galleys to the coast of Proveuce, where they committed great ravages. In May 1683, Duquesue with his fleet again cast anchor before Algiers, and proceeded to bombard the town. The dey and the people sued for peace; but Mezomorto, the Algerine admiral, who was to have been delivered up as one of the hostages, violently opposed coming to terms, stirred up the soldiery against the dey, and caused him to be murdered, and was himself chosen as his successor. The bombardment was renewed, and Mezomorto, reduced to extremities, caused all the French in the city to be cruelly murdered, and the French consul to be tied to the mouth of a mortar and shot off in the direction of the bombarding flect. Duquesne was so exasperated by this piece of cruelty that he did not leave Algiers till he bad utterly destroyed the fortifications, shipping, almost all the lower, and about swo-thirds of the upper part of the Lisn. The Aigerines, now thoronghly humbled, sent an conbassy to France to sue for peace, which was readily granted them. In 1686 the English concluded a treaty with the Algerines on favourable terms, and this was
several times subsequently renewed; but it was not till tho taking of Gibraltar and Port Mahon that England had sufficient check upon them to enforce the observance of treaties. From that time England was treated with greater deference than any other European power. In 1710 the Turkish pasha was expelled aud his office united to thatof dey. The dey thus bocame the supreme ruler in thecountry. Ho had the charge of the Turkish militia, recruited from Constantinople and Smyrra, because their chiluren by native mothers could not be allowed to enjoy the same privileges as themselyes in consequence of former rebellions against the gevernment. Under the dey there was a divan or council of statc, chosen from the principal civic functionaries.

Matters continued very much in tho same state, and the bistory of Algiers presents little calling for speciai-noticedown to the expedition of Lord Exmouth. The principal States of Europe had had their attention taken up with veightier matters; but on the establishment of tho peace of 1815 the English sent a squadron of ships, under Lord Exmouth, to Ngiers, to demand the liberation of all slaves then in bondage there, and the entire discontinuance of piratical depredations. Afraid to refuse, the Algerines returned a conciliatory answer, and released a number of their slaves; but wo sooner had the ships left than they redoubled their activity and perpetrated every sort of cruelty agaiust the Christians. Among other acts of cruelty, they attacked and massacred a number of Neapolitan fishermen who were engaged in the pearl-fishery at Bona. The news of this excited great indignation in Englaud, and Lord Exmouth was again despatched with five ships of the line and eight smaller vessels, and at Cibraltar he was joined by a. Dutch fleet of six frigates, under Admiral Capellen. They anchored in front of Algiera: on the 26th August 1816. Certain terms, which ware extremely moderate, were proposed to the dey; but these not meeting with acceptance, a fierce bombardment was at once commenced. At first the assailants were subjected to a heavy fire from the cnemy's batteries; but after a time these were one by one silenced, and ship after ship caught fire, till the destruction of the Algerine uaval force was conplete. Next day the terms proposed to the dey were accepted; Christian slaves to the number of 1211 were set at liberty, and a promise vas given that piracy and Christian slavery slould cease for ever. The Algerines, however, did not long adhere to the terms of the treaty. They lost no time in putting their city in a more formidable state of defence than before, and this done, they considered themselves in a condition to set the great powers of Europe at defiance.

Various injuries had from time to time been inflicted on the French shipping, but that which more directly led to a declaration of war was an insult offered to the French consul by the dey. A debt had been contracted by the French government to two Jewish merchants of Algicrs at the time of the expedition to Egypt, and the dey baving a direct interest in tha matter, had made repeated applications for payment, but without success Annoyed at this and at what he considered insulting language on the part of the consul, he struck the latter on the face in public. In consequence of this, a French squadron was sent to Algiers which took the consul on board, and for three ycars maintained an ineffective blockade. At length war on a great scale was resolved on, and a fleet was equipped at Toulon in May 1830 under the command of Admiral Duperré It had also on board a land force, under the command of General Bourmont, consisting of 37,000 infantry, 4000 cavalry, and a proportionato number of artillery. The troops began to land on the 14th June upon the western side of the perinsula of Sidi Ferruch, in the hay of Torne

Chica. They did not meet with much opposition till the 19th, when a general attack was made upon them by a force of from 40,000 to $50,000 \mathrm{men}$. These, after a firce conflict, were completely routed. They renewed their attack on the 24th and 25th, but were on both occasions rupulsed. The French then adranced upon Algiers, and on the 29th the trenches were opened. On the morning of the 4th of July the bombardment commenced, and before night a treaty was concluded for the eutire surrender of Algiers. The next day the French took possession of the town; and 12 ships of war, 1500 brass cannon, and over $£ 2,000,000$ sterling came into their hands as conquerors. The Turkish troops were permitted to go wherever they pleased, provided they left Algiers, and most of them were ronveyed to Asia Minor. The dey himself, with his private property and a large body of attendants, retired to Naples.
When the French undertook the expedition against Nlgiers a pledge was given to the English government that they did not aim at the permanent possession of the country, but only at obtaining satisfaction for the injuries and insults that they had received, and putting down that system of piracy which had so long outraged Europe. The French government engaged that these objects being accomplished, the final settlement and government of the country should be arranged in concert with the other European powers for the general advantage. Notwithstanding this, the French ministry in 1833 publicly declared that it was the intention of their government to retain possession of Algiers and to colonise it. Subsequently, the English government acquiesced in this, on receiving an engagement that the French would not extend their conquests beyond Algeria either on the side of Tunis or of Marocco.

The capture of Algiers was celebrated in France with great demonstrations of joy. General Bourmont was raised to the rank of marshal, and Admiral Duperre was promoted to the peerage. The revolution of 1830 followed, when Bourmont was deposed, and General Clausel appointed to succeed him. The conquerors, instead of attempting to gain the good-will of the natives, destroyed a number of their mosques, scized upon lands set apart for religious purposes, and attempted to introduce their own laws and usages in place of those of the country, the consequence of which was that the natives entertained the greatest abhorrence for their oppressors, whom they regarded as the enemies of God and their prophet. General Clausel incensed them still more by seizing upon the possessions of the dey, Lhe beys, and the expelled Turks in direct opposition to the conditions on which the capital had been surrendered. Bona was taken possession of, and an incursion was made into the southern province of Titterie, when the troops of the bey were defeated and Mediah taken. The bcys of Titterie and Oran were deposed, and tributary rulers set up in their room. Still the war continued. The French wero incessantly harassed by irruptions of hordes of the Arabs, so that no Frenchman was safe, eren in the vicinity of tho town; and little reliance could be placed on the fidelity of the beys who governed the provinces. Mediah was evacuated, and Oran abandoned. In February 1831 General Berthezene was appointed commander-in-chief, and undcrtook several expeditions into the interior to chastise the hostile tribes, but met with little success. In October Bona was surrounded and taken by the Kabyles. There was now no safety but in the town of Algicrs; agriculture was consequently neglected, and it was necessary to send to France for supplies of provisions and for fresh troops. In November 1831 General Savary, Duc de Rovigo, was sent out with an additional force of 16,000 men. The new governor sought to accomplish lis ends by the grossest acts of cruelty and treachery. One of his exploits was the massacre of a whole Arab tribe, including old men, women,
and children, during night, on account of a robbery committed by some of them. Ife also treacherously murdered two Arab chiefs whom he had enticed into his power by a written assurance of safety. These proccedings exasperated the natives still further against the French, and those tribes that had hitherto remained qujet took up arms against them.

About this time Abd-cl-Kader first appears upon the field. His father, a Marabout, had collected a few followers, and attacked and taken possession of the town of Oran. On this they wished to clect him as their clicf, but be decliued the honour on account of his great age; and reconmeurled his son who, be said, was endowed with ali the qualitios necessary to success. Abd-el-Kader was born about the beginning of 1807, and had early acquired a great reputation among his countrymen for learning aud piety, as he was also distinguished among then for skill in horses manship and other manly exerciscs. He had made two pilgrimages to Mecca in company with his father, once when a child and again in 1828, by which he obtained the title of Madji. At this time he was living in obscurity, distinguished by the austerity of his manners, his piety, and his zeal in observing the precepts of the Koran. He collected an army of 10,000 horsemen, and, accompanied by his father, marched to attack Oran, which had been taken possession of by the French. They arrived before the town about the middle of May 1832, but after continuing their attack for three days with great bravery they were repulsed with considerable loss. This was followed by a series of conficts, more or less severe, between the parties, but without any permanent or decided advantage to either side. In March 1833 the Duc de Rovigo was obliged, on account of his health, to return to France, and General Avizard was appointed interim governor; but the latter dying soun after, General Voirul was nominated his successor. Abd-el-Kader was still extending his influence more and more widely amono the Arab tribes; and the French at last considered it to be their interest to offer him terms of peace. A treaty was accordingly concluded with him by General Desmichels, governor of Oran, in February 1834, in which he acknowledged the supremacy of France, and was recognised by them as emir of the province of Mascara. One of the conditions of the trenty was that the emir was to have a monopoly of the trade with the French in corn. This part of the treaty wns regarded with great dissatisfaction at home, and the gencral was removed from his post. In July Gcucral Drouct d^{\prime} Erlon was sent out as governor cencral of the coiony. An intendant or head of the civil department was also appointed, as well as a commissary oî justice at the head of the judicature. Tribunals of justice were also established, by which both French and matives were allowed to enjoy their respectivo laws. From the tranquil state of the country at this time the new governor was enabled to devote his attention to its improvement. The French, however, soon became jealons of the power of the emir, and on the pretence that he lad been encroaching on their territory, General Trezel, who had succceded Desmichels in the governorship of Oran, was sent against him with a considerable force. The armies met at the river Makta, and the Frencli were routed with great slanghter on the 28th of June 1835. On the news of this defcat Marshal Clausel was sent to Algiers to succeed Count d'Erlon. In order effectually to humble the emir, be set out for his capital, Mascara, accompanied by the Duke of Orleans, at the head of $11,000 \mathrm{men}$. Or reaching the town the French found it deserted, and, haring sct it on fire, they returned without haring effected anything of consequence. In January 1836 Marshal Clausel undertook an expedition against Tlemcen, which he took and garrisuled. Soon
after this the emir attacked and put to flight a body of 3000 men under Count d'Arlanges on the Tafna. General Bugeaud, who had succeeded Marshal Clausel, attacked the Arabs uuder Abd-el-Kader on tho Sikak river, 6th July 1836, and gained a complete victory over them. An expedition against the bey of Constantine was next resolred on, and Marshal Clausel, at the head of 8000 men, set out from Bona for this purpose in Norember 1836. They encountered on their march a severe storm of hail and enow, followed by a sharp frost, so that many of them died; and when they arrived before the walls of the town they were unable to undertake the siege, and cffected their rotreat with difficulty. The French were now anxious to conclude a peace with Abd-el-Kader, and with this view Gencral Bugeaud arranged a meeting with him on the banks of the Tafna, and a treaty was signed, 30th May 1837. They were then free to turn their strength against the bey of Constantine, and an army of 20,000 men set out from Bona with this object under the command of General Damremont early in October. The town was, after a very gallant defence, taken by storm on the 12th of that month by General Valee, General Damrémont laving been killed by a cannon-ball the previous day. On the capture of the city the neighbouring tribes hastencd to make their submission to the conquerors, and a strong garrison being left to defend the town, the army returned to Bona. As a reward for his services, General Valéo was made a marshal and appointed governor-general of the colony. Disputes with the emir as to the boundaries of his territory were frequent, and at length war was again declared between the parties. The inmediate cause of war on this occasion was the marching of an armed force of Freach troops through the emir's territory. This the latter looked upon as an infringement of the treaty, and consequently declared war. In October 1839, he suddenly fell upon the French troops in the plain of Metidja, and routed them with great slaughter, destroying and laying waste the European settlements. He surprised and cut to pieces bodies of troops on their march; outposts and encampments were taken by sudden assault; and at length the possessions of the French were reduced to the fortified places which they occupied. On the news of these events reaching France, reinforcements to the amount of 20,000 men were sent out. The spring campaign was vigorously opened on both sides, and numerous skirmishes took place, but without decisive results to either party. The French were, indeed, everywhere successful in the field, but the scattered troops of the enemy would speedily reassemble and sweep the plains, so that there was no safety beyond the camp and the walls of the towns. The fort of Masagran, near Mostaganem, with a garrison of ouly 123 men, gallantly withstood a fierce attack by 12,000 to 15,000 Arabs, which lasted for three days. Marshal Valég was now recalled, and General Bugeaud appointed to succeed him. The latter arrived at Algiers on the 22d of February 1841, and adopted a new system, which was completely successful. He made use of movable columns radiating from Algicrs, Oran, and Constantine, and having from 80,000 to 100,000 troops at his disposal, the result soon told against the emir. Many of the Arab tribes were thus intimidated or brought under subjection, hard pressed garrisons were relieved and victualied, and town after town taken. Tekedemt, the principal stronghold of Abd-el-Kader, was destroyed, and the citadel blown up; Mascara was taken; and Saida, the only remaining fortress in the possession of the emir, *as entirely demolished. In January 1842 the town of Tlemcen was taken, and ten days afterwards the fort of Tafna, which was demolished. The terrified Arabs submitted on all sides, and now almost the extire country was subdued The emir himself, driven to extremities, was
compelled to take refuge in Marocco. Here he snccealed in raising a considerable force, and returned to Algena. He made up for the want of troops by the rapidity of his morements, and would suddenly make an attack on one place when he was supposed to be in quite an opposite quarter. In November 1842 the Duke of Aumale arrived in Algiers to take part in the operations against the emir; and in the spring of the following year he suddenly fell upon the camp of Abd-el-Kader while the great body of his troops were absent, and took several thousand prisouers and a largo booty, the cmir himself making his escape with difficulty. Not long afterwards the latter again took refuge in Marocco, and so excited the fanatical passions of the people of that country that their ruler was forced into a war with France. The army which was sent into Algeria was attacked and defeated by Bugeaud at the river Isly, 14th August 1844. The emperor of Marocco soon afterwards sued for peace, which was granted him on condition that be should no longer succour or shelter the emir, but aid in pursuing him. Abd-cl-Kader was now reduced to great extremities, and obliged to take refuge in the monntain fastnesses, whence he would from time to time come down to annoy the French. In June 1845 a tribe of Arabs, who were being pursued by a body of French troops under General Pelissier, took refuge in a cave. As they refused to surrender, the general ordered a fire to be kindled at the mouth of the care, and the whole of those within, men; women, and children, to the number of 500 , were suffocated. The emir at length was brought to such straits that he agreed to deliver himself up to the Franch on being allowed to retire to Alexandria or St Jean d'Acre. Notwithstanding this promise, which was given by General Lamoricière, and ratified by the governor-general, he was taken to France, where he arrived on the 29th of January 1848; and was imprisoned first in the castle of Pau, and afterwards in that of Amboise, near Blois. In October 1852 Louis Napoleon, then president of the French Republic, gave him his liberty on condition that he should not return to Algeria, but reside at Brousso in Asia Minor. Here he remained till 1855 when, in consequence of the destruction of that town by an earthquake, he obtained permission to remove to Constantinople, and afterwards to Damascus. At the latter place he rendered valuable aid to the Christians by protecting them during the massacre by the Turks in Syria in 1860.

On the revolution in France of 1848, General Cavaignac was appointed governor-general of the colony; and the National Assembly, wishing to establish a closer connection between the country and France, offered to incorporate it with the republic. This proposal, however, met with considerable opposition, and Algeria was simply dechared a permanent possession, with the right to send four deputies to the National Assembly, to be heard on all matters affecting the interests of the colony. Colonists were also sent out to settle there, and other means taken to further its prosperity. Still the republic did not seem to be more successful in the administration of affairs than the monarchy had been. The colonists died off or left in disgust, the natives were not more reconciled to the French yoke, and many of them rose in open rebellion. The Kabyles, in particular, the most intelligent and industrious of the native population, manifested the greatest repugnance to the imposition of taxes and of the usages of civilisation. In 1849 General Pelissier marched against several of the rebellious tribes, and reduced them to subjection. Generals Canrobert and Herbillon were sent into the district of Zaab to quell an insurrection excited by the Marabout Bon-Zian. The latter was driven to take refuge in Zaatcha, which resisted the utmost efforts of the French to take it for fifty-one days, but at last it was carried liy atorm. In 1850 there
were several expeditions sent out against the natives, and in 1851 General St Arnaud succeeded in reducing to subjection Little Kabylia In 1852 General M'Mahon set out against Eastern Kabylia, and Pelissier, in the south, took Laghouat by storm. The neat ferw years present us with several expeditions against the Kabyles, but these rere not productive of very marked results. In 1854 there was an expedition against certain Arab tribes in the snuth, who were reduced to subjection. In 1856 a great expedition, under the command of General Fiandon, nias organised agninst the tribes of Great Kabylia that bad not yet subinitted to the French; and after many months' fighting they were brought under subjection. The authority of France was now undisputed over the country, and peace for a time was established.

In 1858 the administration of the colony was confided to a special minister, the first nominated being Prince Napoleon; but he only held office for a short time; and soon after, the special ministry was abolished. In October 1859 certain Arab tribes rose in rebellion, but were speedily subdued. In 1860 Marshal Pelissier was made governorgeneral, with a rice-gevernor, a director-general of civil affairs, and a council of thirty members. In the beginning of 1863 the emperor promised to Algeria a constitution, with a representative assembly for provincial matters; and said that it was not a colony properly so called, but an Arab kingdom, and that the natives had an eqnal right to his protection with the colonists. In April 1864 a formidable insurrection of the Arabs broke out in the south, in consequence of an insult offered to one of their chiefs in a court of justice, and they suddenly fell upon and cut to pieces a detachment of French troops. A large force was specdily assembled and cent against them, and after they had been beaten in several encounters the insurrection was at length put down. Marshal Pelissier died in May, and Marshal M'Mahon was appointed to succeed him. A fresh insurrection of the Arabs broke out in October, but after screral defeats they were brought to subjection. In May 1865 the Emperor Napolcon visited Algeria, and was everywhere receired with the greatest demonstrations of joy. After his return to France be wrote a letter to Marshal M"Mahon respecting the future government of the colony. He particularly pointcd out the necessity of seeking to gain the good-will of the natives by permitting them to enjoy their territories unmolested, and to maintain their own customs, and that they should be held as equal with the colonists before the law. He further directed him to scek to stimulate the industry of the colonists, and to strive to develop the resources of the country. In October a fresh insurrection broke out in the province of Oran. It commenced with an attack upon a friendly tribe, but was at length put down by a body of troops under the command of Colonel de Colomb. It again broke out in March 1866, and Colonel de Colomb was a second time sent out against the insurgents. He encountered them on the 16 th, and, after a fierce engagement, put them to llight with great loss. In the beginning of 1867 a new expedition was organised against the refractory Arabs in the south, and these being effectually put down, a period of comparative peace followed. The crops in 1866 were almost entirely destroyed by an invasion of locusts, and in January 1867 a violent earthquake destroyed several villages in the vicinity of Blidah. A prolonged drought followed, which dried up the sources of the springs and produced a famine, from which the natives suffered much. A visitation of cholera succeeded, which is estimated to have carried off not less than 50,000 persons. In January 1868 a fresh revolt broke out among the Arabs, instigated by Si-Hamed, who had led on more than one of the previous revo!ts. They assailed and plundered some of the
frieudly tribes, and being pursued and attacked by'a body of French troops, a fierce engagement took place, in which Si-Hamed was killed and his followers put to Hight. Peace was enjoyed for the rest of that year; but towards the end of January 1869 scveral large bands of insurgent Arabs in the extreme sonth marched northward, took by surprise Tiggnin, and being joined by others, in a short time they nunbered 3000 horse. A body of French tronis was scut out against them from Laghouat, under the command of Colunel Sonis, and after two and a half hours' hard fighting the insurgents were put to flight with great slaughter. In 1871 a widespread insurrection of Arab and Kabyle tribes broke out, stimulated no doubt by a knowledge of the meakened condition of France at home. It commenced with El-Mokrani, the hereditary bach-agha of the Medjana, attacking and burning the .village of Brody-Bon-Arreredy, destroying isolated houses and pests throughout the district subject to his influence, the colonists who did not succeed in reaching a place of safety being massacred. All his attacks against the fortified places, however, failed; and as soon as the French were able to assume the offensive he was beaten in every engagement, and subsequently killed in action. When this rebellion appeared almost overcome, the whole $v_{i}{ }^{\circ}$ Kabylia rose in arms at the command of the sheibh ElHaddad, one of the most porrerful chiefs in Kabylia, and head of an influential religious confraternity. The Kabyles, for the first time in history, descended from their mountain fastnesses, and attempted to invade the plains of the Metidja. The most horrible massacres were perpetrated, and all the principal ports on the coast were strictly blockaded on the landward side. It was not till after the fall of the commune in Paris that troops could be spared in sufficient numbers to suppress the insurrection. But this was at length effected, and a war contribation of $£ 1,200,000$ imposed upon the rebels, whose lands were also sequestrated, bnt the owners were permitted to resume possession on comparatively casy terms. The greater part of the sum recovered was distributed among the colonists who had suffered during the insurrection, and a considerable portion of it has been allotted for public works The sequestration bas also opened up much valuable territory for European colonisation. Since the insurrection many new colonists hare arrived here, and among them many from Alsace and Lorraine. A law passed by the French Chamber, 15 th September 1871, authorises, on certain conditions, the gratuitous concession of 247,000 acres of land to such natives of Alsace end Lorraine as might desire to preserve their French nationality. A more favourable era, it is believed, has now damed for the colony. Down to 1871 it had continued under military rule, and this, it was thought, had had not a little to do with the frequent insurrections that had broken out in the country. Accordingly, in October of that year, a civil government was established, as has been already noticed, and since that time the colony has continued in a more peaceable and flourishing condition.
(D. K.)

ALGHERO, a seaport of Italy, in the province of Sassari, Sardinia, situated on the west coast of the island, 14 miles S.W. of Sassari. It was founded by tho Genoese, and was afterwards taken by the Catalonians, whose language is still spoken. Though strongly fortified towards the sea, the landward side of the town is commanded by the overhanging bills. Alghero is an episcopal see, and has a cathedral, erected in 1517, several monasteries, convents, and public schools. Many of the houses are of antique architecture. Near the town are some fine stalactite grottoes. The ncighbourhood produces oil and fruit, and the best wine of the island; and the corals of Alghere are the most beautiful found in the Mediterranean.

Thie other exports melude grain, wool, tobaceo, bones, skins, and ancheries. Porte Conte, 9 milcs to the N.W., is the roadmtead frequented by the largest vessels, and is a secure and fortified anchorage, capable of accommodating a large flect. Population of commune (1865), 8419.

ALGIERS (Fr. Alger, Arab. Al-Jesair, i.e., The Islands), a city and seaport of Northern Africa, and capital of Algeria, is situated ou the west side of a bay of the same name in the Mediterranean. Lat. (of lighthouse), $36^{\circ} 47^{\prime}$ $20^{\prime \prime} \mathrm{N} .$, long. $3^{\circ} 4^{\prime} 32^{\prime \prime} \mathrm{E}$. It is built, in the furm of an amphitheatre, on the northern slope of a steep hill rising abruntly from the coast. It ascends the side of the hill in the form of an irregular triangle, the apex of which is oecupied by the Casbab, or ancient fortress of the deys, which is about 500 feet abore the level of the sea. As secn from a distance, the city presents a rery imposing and picturssque appearance ; and the honses rising one above the other, and being all built of white stone, it has been compared to a ship under sail. It consists of two torns-the new, which is entirely European in its character, and is built on the lower part of the slope and along the shore; and the old town, which occupies the higher region, and is entirely Oriental in its character. The new town consists of handsomo streets and squares, and contaius the government houscs, hotels, warchonses, barracks, \&c. In the centre of the new town is the Pluce du Gouvernement, a large and handsome square in the European style, with a fountain, and planted with orange and lime trees. The streets are regular, spacious, and handsome, and adorned with arcades. In the Arab or old town the streets are narrow, winding, and dirty. The houses are squaro substantial-looking buildings, presenting to the street bare walls, with only a few slits proteeted by iron gratings in placo of mindows. Each horse has a quadrangle in the centre, into which it looks, and which is entered by a low narrow doormay. Algiers is surrounded by walls and otherwise fortified, but its landward defences are weak and exposed, while the batteries which defend it towards the sea are very strong. It has two handsome suburbs, and numerous elegant villas are scattered over the vicinity. The town is the residence of the governor-general of Algeria, of the prefeet of the department of Algiers, and of the chiefs of the different administrative services. It is also the seat of a bishop and of the supreme courts of justice, and has a chamber and tribunal of commeree, a royal college, rarious schools, a bank, public library, and museum. Among the principal buildings are a cathedral and several Roman Catholic churches, a Protestant church, several synagognes, and a number of mosques. The town is well supplied with कater, and there are numerous publie and private founiains and baths. Various markets are held here, and horse-racing is a farourite amusement: Algiers bas of late come to be, noted as a winter residence for invalids. The French have spent large sums of money in the improvement of the port of Algiers. It has an area of 220 aeres, and it is calculated that when a rock near the centre, called Roche Suns Nom, is removed, it will be capable of accomroodating 40 vessels of war and 300 trading vessels. It has tro docks, capable of containing the largest ressels. The lighthouse has a revolving light risible at ihe distance of 15 miles. Population (1866), 52,614. (For the trade and climate of Algiers, see Algerde.)

ALGOA BAY, an inlet in Cape Colony, on the S.E. coast of Africa, $42 \bar{J}$ miles east from the Cape of Good Hope. Int. of Croix Island, in the bay, $30^{\circ} 47^{\prime} \mathrm{N}$., and long. $25^{\circ} 46^{\prime}$. Algoa Bay lies between capes Recife and Padrone, on the former of which there is a lighthouse. It receives the rivers Sunday and Baasher. The best anchorage is in the west side of the inlet, near Port Elizabeth, which is the most important seaport on the
south coast of Africa. Here the holding gronud is good, and the anchorage is sheltered, except from the south-east winds. Fort Frederick stands on a hill overlooking Port Elizabeth. Ngoa Bay was the first landing-place of the British cmigrants to the eastern ${ }^{\circ}$ province of the C'ape Colony, and as the harbour of that province it enjoys a rapidly increasing trade

ALHANA, a city of Spain, in the prorinee of Gramada, 24 miles S.W. of Granada. It is very picturesquely situated on the edge of a gorge in tho bills of the Sierra de Alhama, the streets rising in terraces one above another. The river Marchan flows through the chasm, and the mountains behind the town reach a height of 8000 feet. The name Alliama signifies in Arabic "the bath," and is derived from the hot mineral springs in tho neighbourhood. These springs, which have a temperaturo of 118° Fahr., are considered beneficial in cases of dyspepsia and rheumatism, and in former times had as many as 14,000 risitors annually. Alliama was a most important fortress while the Moors ruled in Granalla, and its capture by the Marquis of Cadiz in 1482 was the most decisive step in tho reduction of their power. Remains of the Moorish castlo and walls are still to be sten, as well as an aqueduct of Roman or Moorish origin. Many of the houses are of Moorish architecture, and the antiquities of the town, the mineral springs, and the wild scenery of the environs attract numerous risitors. Popalation, about 7000 .

ALHAMA, a town in Spain, in the province of Murcia, 13 miles S.W. of the torn of that name. It is celebrated for its sulphur springs, which have a temperature ranging from 91° to 113° Fahr., and attract numerous visitors. The town has a hospital and the ruins of an ancient castle. Population, about 6500.
ALHAMBRA, the ancient fortress and residenee of the Moorish monarebs of Granada, lies on a hill overlooking the city of Granada, on the north. The name, signifying in Arabic "the red," is derived from the colour of the sundried tapia, or bricks made of fino gravel and clay, of which the outer walls are built. This famous Mooris: palace was erected at various dates, chiefly between 1248 and 1354, under the reigns of Ibn-l-Ahmar and his successors. The splendid decorations, and in particular the exquisite painting of the interior, are ascribed to Yusuf I., who died in 1354 . Immediately after the expulsion of tho Moors in 1492, their conquerors began, by innumerable acts of vandalism, to spoil the marvellous beauty of the Alhambra. The open work was filled up with whitewash, the painting and gilding effaced, the furniture soiled, torn, or removed. Charles V. rebuilt portions in the modern style of the period, and destroyed the greater part of the Winter Palace to make room for a modern structure which has never been completed. Philip V. Italianised the rooms, and completed the degradation by running up partitions which blocked up whole apartments, gems of taste and patient ingenuity. In subsequent centuries the carelessness of the Spanish authorities permitted this pearl of Moorish art to bo still further defaced ; and in 1812 some of the towers were blown up by the French under Sebastiani, while the whole buildings narrowly eseaped the same fate. In 1821 the ancient pile ras shattered by an earthquake. Directions were given in 1862, by Isabella, then queen of Spain, for the restoration of the Alhambra to its original condition. The work has been carried on with considerable skill, but the sums devoted to it have been too small for its satisfactory accomplishment.
The hilly terrace on which the Alhambra stands is about 2430 feet in length by 674 in breadth at the widest part. A strongly-fortified wall, flanked by thirteen square towers, encioses an area of 35 acres, within which the palace is built. Approaching from the city, the visitor pssses
through the Gate of Pomegranates and enters the grounds of the Alhambra, which are well mooded, and in spring are covered by sweet-sceuted wild flowers. The gardens, though weedy and ravined, are a charming resort, adorned by beautiful waterfalls and sparkling fountains, and enLivened by the song of the nightingale. Passing the pillars of Charles V., a steep ascent leads to the chief entrance to the Alhambra, the Gate of Judgment-a massive archway, surmounted by a square tower 62 feet high, which, while serving as an outwork of the forress and as an entrance-hall to the palace, was principally used as an open-air court of justice, according to the patriarchal custom of the east. The pillars of the gate are of sculptured marble, and the horse-shoe arch is 28 feet high. A narrow passage leads to the Plaza de los Algibes, the Place of the Cisterns, so called from the tanks underneath filled with water from the Darro, which foams through the ravine to the north of the hill. The Plaza is about 225 feet long by 187 wide. To the left rises Alcazaba, the ruined fortress of the Alhambra, with the Torre. de la Tela or Watch Tower, where the Christian flag was first hoisted on the expulsion of the Moors in 1492. It commands a noble prospect. Below lies the city of Granada, with its hundred churches; and abore rise orerhanging heights, with white houses glancing out from the green foliage, reminding one of the saying of the Arabic poet, that Granada is like a pearl set round with emerald. In the Place of the Cisterns stands an isolated JFoorish tower, the Torre del Vino, erected in 1345; and to the right lies the palace of Charles V., displacing so much that was curious in Moorish art. It is a majestic but cold-looking structure in the Renaissance style, unfinished and roofless, and presenting a desolate and ruinous aspect. Behiud this edifice lies the Moorish palace, the exterior being serere, piain, and almost forbidding in appearance, according to the peculiarity of Moorish architecture, by which they contrived to heighten the splendour of the interior by contrast with the bare and unadorned structure of the outer walls. But within, the palace stands unrivalled in the gorgeous splendour of its halls and the exquisite beancy of its decorations. Everywhere are seen evidences of the delicate taste and the artistic luxury of the Moors. Spacious courts, with marble pillars and fretted ceilings, partitions coloured and gilt like the sides of a Stamboul casket, and filagree stuccos of veil-like transparency, all distinguished by airy lightness and grace, are amoug the main features of this palace of the voluptuous caliphs of Granada, who held dominion over that sunny land which their poets described as a terrestrial paradise. The colours chiefly employed are blue, red, and a golden yellow. In the hey-day of Moorish prosperity the palace must have been the most delicious of royal residences. Odoriferous gardens, in which the orange and the myrtle bloomed, alternated with sparkling fountains and soft couches, inviting to a luxurious repose. Everything contributed to render the whole the most splendid abode of Oriental magnificence, to which only the fantastic creations of the Arabian Nights can be fitly compared.

The present entrance is by a small insignificant door, from which a corridor couducts to the Patio de la Berkàh, the Court of the Blessing. This court is 140 feet long by 74 broad; and in the centre there is a large pond set in the marble pavement, full of gold-fish, from which some have called this the Court of the Pond. It is also known as the Court of the Myritles, from the myrtles which grow along its sides. There are galleries on the north and south sides; that on the south 27 feet high, and supported by a marble colonnade. Underneath it, to the right, was the principal entrance, and over it are three elegant windows with arches and miniature pillars. The columns
supporting the galleries are light in structure, and arches, sleuder and bending gracefully like palms, spring from the capitals and meet overhead. From this court the walls of the Torre de Comares are seen rising over the roof to the north, and its tower and colonnades are reflected in the crystal mirror of the pond.
The Hall of Ambassadors (Sala de Anbajadores) is the largest in the Alhambra, and occupies all the Tomer of Comares. It is a square room, the sides being 37 feet in leugth, while the centre of the dome is 75 feet high. This was the grand reception-room, and the throne of the sultan was placed opposite the entrance. The azulejos are nearly 4 feet high all round, and the colours vary at intervals. Over them is a series of oval medallions with inscriptions, interwoven with Glowers and leaves. There are nine windows, three on each façade, and the ceiling is admirably diversified with inlaid work of white, blue, and gold, in the shape of circles, crowns, and stars-a kind of imitation of the vault of heaven. The walls are corered with varied stucco-work of most delicate pattern, surrounding mauy ancient escutcheons.

Another of the more celebrated courts of the palace is the Patio de los Leones, the Court of the Lions. This is an oblong court, 116 feet in length by 66 in breadth, surrounded by a low gallery supported on 124 white marble columns. A parilion projects into the court at each extremity, with filigree walls and light-domed roof, elaborately ornamented. The square is pared with coloured tiles, and the colonnade with white marble; while the walls are corered 5 feet up from the ground with blue and yellow tiles, with a border above and below enamelled blue and gold The columns supporting the roof and gallery are irregularly placed, with a view to artistic effect; and the general form of the piers, arches, and pillars is most graceful. They are adorned by varieties of foliage, dc.; about each arch there is a large square of arabesques; and over the pillars is another square of exquisite filigree work. In the centre of the court is the celebrated Fountain of Lions, a magnificent alabaster basin supported by the figures of twelve lions in white marble, not designed with sculptural accuracy, but as emblems of strength and courage. When the fountain was in good order a great volume of water was thrown up, which fell into the basin, passed through the lions, and issued from their mouths.

The Hall of the Abencerrages derives its name from a legend according to which Boabdil, the last king of Granada, having invited the chiefs of that illustrious line to a banquet, massacred them here. This room is a perfect square, with a lofty dome, and trellised windows at its base. The roof is exquisitely decorated in blue, brown, red, and gold, and the columns supporting it spring out into the arch form in a remarkably beautiful manner. Opposite to this hall is the Hall of the Tmo Sisters, so called from two very beautiful white marble slabs laid as part of the parement. These slabs measure 15 feet by $\uparrow \frac{1}{2}$, and are without flaw or stain. There is a fountain in the middle of this hall, and the roof is composed of stalactites, nearly "5000 pieces entering into its construction. The whole decorations here are of the most exquisite description.
Among the other wonders of the Alhambra are the Hall of Justice; the mosque; the Mirador de Lindaraja, or boudoir of the sultana ; the Patic de la Reja; the Tocador de la Reina, or queen's boudoir; and the Sala de los Banas, in all which are to be seen the same delicate and beautiful architecture, the same costly and elcgant decorations. There must also be noticed the celebrated rase of the Alhambra, a splendid specimen of Moorish ceramic art, dating from 1320 , and belonging to the first period of Moorish porcelain. It is 4 feet 3 inches high ; the ground is white, and the enamelling is in blue, white, and gold

A new hall, called the Hall of the Shields or Escutcheons, bas recently beeu discovered; and tho palace contains, tesides the moro important halls already weutioned, ranges of bed-sooms and summer-rooms, a whispering gallery and labyrinth, and vaulted sepulelires.

The towers of the fortress have also much of the orna. mented character of the palace. Separated from the Alhambra by a ravine lies Generalife, the Garden of the Architect, probably in the first instance an outwork of the fortress, afterwards the summer villa of the sultans of Granada. It is impossible to conclude the description of the Alhambra without remarking aow admirably every thing was planned to render this palace the most voluptuous of all retreats-the numerous fountains which cooled the air, the judicious disposition of doors and windows securing a free ventilation, tho shady gardens, and the noble views of the hills and plaius around.' Some idea of the beauty of the original is afforded Ly the Albambra Court in tho Crystal Yalace at Sydenham, imitating the Moorish palace in gorgeousness of colouring, elaborateness of ornamentation, and quaint grace of architectural style.

One of the most striking features of the Alhambra is the appliance of poetical concatts and passages from the Koran to enhanco and form part of the ornamentation. "There is no God but Allah," "There is no conqueror but God," "Glory be given to our Lord," and other similar inscriptions are everywhere to be observed.
(See Mr Owen Jones's Plans, Elevations, and Sections of the Alhambra, 2 rols. fol., 1848.)

ALHAZEN (full name, Abu Ali al-Hasan Ibn Aim masav), a mathematician of tho 11 th century, was born at Bassora, and died at Cairo in 1038. He is to be distinguished from another Albazen who translated Ptolemy's Almagest in the l0th century. Alhazeu having boasted that the could construct a machine for regulating the inundations Ef the Nile, was summoned to Egypt by the caliph Hakem; but, aware of the impracticability of his scheme, and fearing the caliph's-anger, he feigned madness until Hakem's death in 1021. Alhazen was, nevertheless, a diligent and successful student, being the first great discoverer in optics after the time of Ptolemy. His researches were prosecuted under the greatest disadvantages, as be was compelled to eke out a livelihood by copying his own works and selling them. To him, and not to Ptolemy, is due the explanation of the apparent increase of heavenly bodies near the horizon. He correctly attributed the phenomenou to the fact that the eye compares these bodies with intervening terrestrial objects. He taught, previous to Vitello, that vision does not resuit from the emission of rays from the eye, aud wrote also on the refraction of light, especially on atmospheric refraction, showing, e.g., the cause of morning and evening twilight. Ho solved the problem of finding the point in a convex mirror at which a ray coming from one giveu point shall be reflected to another given point. As a writer, Alhazen is remarkable for prolixity and scholastic subtilty. Only two of bis works have been printed-his Treatise on Twilight, nnd his Thesaurus Opticae. (Seo Casiri, Bill. Arab. Ilisp. Escur.)

ALl, the fourth in order of the caliphs or successors of Mahomet, was born at Mecca, about the year 600 A.d. His father, Abu Taleb, was an uncle of the prophet, and Ali himself was adopted by Mabomet and educated under his care. While he was still a mere boy be distinguished himself by being the first to declare his adhesiou to the cause of Jahomet, who in return made him his ricegerent, and some years after gave him his daughter Fatima in marriage. Ali proved himself to be a bravo and frithful soldier; and when Mahomet died without male issue, be scemed to have the best claims to become the recognised head of Islamism. Three other companions of

Mahomet, howerer, Abubekr, Omar, and Othman, ocu-pred this position before him, aud it was not until 656, after the murder of Othman, that he assumed the title of caliph. Almost the first act of his reign was the suppression of a rebellion under Tellha and Zobeir, who were instigated Ly Ayesha, the widow of Mahomet, a Litter enemy of Ali, and hitherto one of the chief hindrances to his advancement to the caliphate. The rebel army was defeated at Kharibah, near Bassorah, tho two generals being killed, and Ayesha taken prisoner. Ali's next care was to get rid of the opposition of Doawyah, who had established himself in Syria at the head of a mumerous army. A bloody battle took place in the plain of Suffeiu, near the Euphrates, which seculed at first to be going in favour of Ali; when suddenly a number of the enemy, fixing copies of the Koran to tho points of their spears, exclaimed that "the matter ought to be settled by refurence to this book, which forbids Mussulmans to shed each other's blood." On hearing this the superstitious soldiers of Ali refused to fight any louger, and demanded that the matter should be referred to arbitration. Abu Musa was appointed umpire on the part of Ali, and Amru, one of the shrewdest men in the kingdom, on the part of Moanyal. Ainru persuaded Abu Musa that it would be for the advantage of Moslemism that neither candidate sloould reign; and also, with a preteuce of deference, asked him to gire his decision first. Abu Musa, falling into the snare, proclaimed that he deposed both Ali and Moawyali; thereupon Amru deelared that bo also deposed Nl , Lut that he invested Moawyah with the caliphatc. This treacherous decision greatly injured the causo of Ali, which was still further weakened by the loss of Egypt, Syria, and Persia, iueluding the sacred cities of Mecea and Medina. Ali, howeyer, resolved to make a final effort, and collected a large army for that purpose. Ite was not destined to see the result of his plaus. Three of the fauatic sect of the karigites made an agreement to assassinato Ali, Moanyal, and Anru as tho authors of disastrous fends among the faithful. The only victim of this plot was Ali, who died at Kufa in 661, of the wound inflicted by a poisoned weapon. Ho had eight wives besides Fatima, and in all, it is said, thirty-three children, one of whom, Hassan, a son of Fatina, succeeded him iu the calipbate. Ali is described as a bold, noble, and geuerous man, "the last and worthiest of the primitive Moslems, who imbibed his religious enthusiasm from companionship with the prophet himself, and who followed to the last the simplicity of his example." He was also remarkable for learning and wisdom, and there are still extant collections of proverbs, verses, dc., which bear his name, especially tho Sentences of Ali, an English translation of which, by William Yule, was published at Edinburgh in 1832. The question of Ali's right to succeed to the caliphate is an article of faith which divided the Mahometan world inte two great seets, the Sumnis and the Shials, the former denying and the latter affirming his right. The Turks, consequently, who are usually Sunnis,' hold his memory in abhorrence; whereas the-Persians, who are generally Shiahs, venerate him as second only to tho prophet, and celebrate the anniversary of his martyrdom.

ALI BEY (1728-i3), an adrenturer, said to have been a native of the Caucasus, and to bave been sold about the ago of twelve or fourteen for a slave in Cairo. The two Jew's who becamo his masters presented him to Ibrahim, then one of tho most influential men in the kingdon. In the family of Ibrahim be receired the rudiments of a literary education, and was also instructed in tho military art. Ho gradually gained the affection of his patron to such a degree that he gave him his freedom, parmitted him to marry, and promoted him to the rank of governor of a
district. Afterwards he was clected to the elevated station of ono of the governors of provinces. Deprived of his protector by death, and engaging in the dangerous intrigues that pave the way to power in an unstable goverument, he procured his own banishment to Upper Egypt. Here ho speut two years in maturing his schemes for future greatness; and in 1766, returning to Cairo, he either slew or expelled the beys, and seized the reigns of government. Emboldened by succoss, he rescued himself from the power of the Porte, coined money in his own name, and assumed the rank of sultan of Egypt. Occupied in more important concerns, the Porte made no vigorous opposition to his measures, and Ali seized the opportunity to recover a part of the Said, or Upper Egypt, which had been taken possession of by an Arab sheik. He next sent out a fleet from Snez, which, seizing upon Djedda, entered the port of Mecca; while a body of cavalry, commanded by Mahomet Bey, his favourite, took and plundered Mecca itself. Having formed an alliance in 1770 with the Sheik Daher, a rebel against the Porte in Syria, he aimed at the conquest of all Syria and Palestine. He first endeavoured to secure Gaza; then his army, forming a junction with that of Daker at Acre, advanced to Damascus. There, on the 6th of June 1771 , a battle was fought with the Turkish pashas, and Mahomet and Daher, Ali's generais, routed them with great slaughter. The latter instantly took possession of Damascus, and the castle itself had also capitulated, when Mahomet unexpectedly hastened back to Egypt with all his Mamelukes. Some ascribe this strange conduct to an impression made upon Mahomet by the Turkish agents, and others to a report of the death of Ali Bey.

Although unsuccessful, Ali never lost right of his favourite object; and Mahomet, losing his confidence, was forced to save his life by exile. Mahomet, however, quickly returned with an army, and drove Ali Bey from Cairo. In this unfortunate state of affairs Ali fled to Daher, and, combining their forces, they attacked the Turkish commander at Sidon, and came off victorious, although the Turkish army was three times their number. After a siege of eight months, they next took the town of Jaffa. Deceived by letters from Cairo, which were only intended to ensnare him, and stimulated by his recent victories, Ali returned to Cairo. Entering the deserts which divide Gaza from Egypt he was furiously attacked by a thousand chosen Mamelukes led on by Murad Bey, who was enamoured of Ali's wife, and had obtained the promise of her, provided that he could take Ali captive. Ali was wounded, made prisoner, and carried to Mahomet. He died three days after, from the effects either of poison or of his wounds.
ALI PASHA, surnamed Arslan or "The Lion," was born at Tepelini, a village of Albania, on the Voyutza, at the foot of the Klissoura Mountains, in 1741. He belonged to the Toske tribe, and his ancestors had for some years heid the title of Bey of Tepelini, this dignity baving become hereditary in his family. His grandfather fell in 1716 at the siege of Corfu, which was then held by the Venctians. His father, who died when Ali was in his \{ourteenth year, is represented by most authorities as a man of amiable character and peaceful habits, who was despoiled of his territories by the chiefs that lived around him ; but his mother was a woman of fierce and unyielding disposition. Inciting her son to recover the possessions of his father, she roused in him a spirit of cruclty and aggression, tempered, however, by a considcrable amount of cunning and foresight, which bore bitter fruit in his riper years. Many romantic etories are told of Ali's adventures at the outset of his career, but the only fact3 that are known with certainty are, that after living in tho
mountains as a robber for some years, and enduring great privations, he made himself master of his beylik of Tepo lini by the aid of his associates. He is said to bave then murdered his brotber and imprisoned his mother, who died shortly after, on a charge of attempting to poison him. In order to increaso and establish his power, he then made overtures to tho Turkish government, by whose orders he attacked and defeated the pasha of Scutari, then in rebellion against the sultan, and put to death Selim. pasha of Delvino. For these acts he was rewarded by being placed in posscssion of the whole of his father's territories, and he was appointed lieutenant to the Derwendpacha of Rum-ili, an officer who was charged with tho suppression of brigandage and highway robbery in the district. Ali, however, by permitting the robbers to go unchecked in return for a share of the spoil, brought his superior to disgrace and death, but escaped himself by sending bribes to the ministers of the sultan. For his services in the field in the war between Prussia and Turkey in 1787 ho was appointed pasha of Trikala in Thessaly, and Derwend-pasha of Rum-ili. He soon cleared the country of robbers, mainly by summoning to his standard all who were willing to serve under him, and by their aid he took forcible possession of Joannina in 1788. By means of the powerful body of troops at his command, and the wise measures that he introduced, he wrought considerable amelioration in the districts under his charge, and the Porte seeing this, confirmed him in the pashalik of Joanning. His whole attention was now turned to the aggrandisement of his territory and personal power. He obtained possession of the western part of Northern Grecee, or Livadia as it was then called; but was baffled for many years in his attempts to occupy the country of the Suliotos in the south-west of Epirus. These brave and hardy mountaineers at last, in 1803, agrecd to evacuate their country, and were treacherously massacred by Ali while on their way to the coast to embark for Corfu. When the French took Venice in 1797, Ali, by pretending admiration for the principles of the revolution, induced Napoleon to send him engineers, by whose aid be fortified Joannina; but failing to obtain from him, as he had hoped, the Venetian ports on the seaboard of Epirus, he took occasion, after the defeat of Napoleon in Egypt, to lay sicge to Prevesa, which was surrendered by the French troops Ali had now a difficult part to play, but he succeeded so well with his master the sultan, that ho was confrmed in the possession of the whole of Albania northwards from Epirus to Montenegro, over which he had asserted his authority, partly by intrigue and partly by force of arms. He also held the high position of governor of Rum-ili for a brief period (1799), during which he amassed a large sum of money by his extortions. The cruel massacre of the inhabitants of Gardiki, for an alleged insult to his mother and sister about forty years previously, was perpetrated about this time. He contrived to make his peaco with the French in spite of the capture of Prevesa, ancl in 1807 once more entered into alliance with them, with the view of obtaining Parga, which he had attempted to capture, but without success, in 1800. Napoleon, however, neglected to secure Parga for him at the peace of Tilsit, and the fortress remaincd in the hands of the French until it was taken in 1814 by the English, who gave it up in 1817, ostensibly to the sultau, but in reality to Ali. Ali was now at the height of his power : he was almost supreme over Albanin, Epirus, part of Thessaly, and the western part of Northeru Grecce; while one of his sons held the pashalik of the Morca. So powerful was he that, though he was nearly eighty years of age, the Porto fearcd and hated him, and desired his death, but could find no good prctext for taking measures against him until

1820, then Ali procured tho azsassination of an officer who had left him and taken service under the sultan at Constantinople. For this daring act tho.sultan proscribed Nli, and ordered all tho Leuropean pashas to march areinst him. He resisted every effort to capturo him, but was at last induced by Kourschid Pasha to surrender in Jamuary 1822 on promise of a pardon from the sultan. On fth Februar-', ou pretence of landing him the necessary document, $\dot{\text { Fourschid Pasha procured an interview with }}$ him, and then produced the firman authorising his execution. The brave old despot defended himself with his usual resolution and courage, but was overpowered by numbers, and his head was struck from his body and sent to Constantinople.

ALIAS, signifying at another time, is used ia judicial proceedings to connect the several names of a person who attempts to conceal his truo name, or to pass under a feigned one; as Smith alias Jones, James alias John.

ALIBI, in Law, denotes tho absence of the accused from the place where ho is charged with having committed a crime; or his being elsewhere, as tho word imports, at the time specified.

ALICANTE, a proviace of Spain, bounded on the N. by Valencia, on the W. by Albacete and Murcia, on the S. ly Murcia, and on the S.E. and E. by the Mediterrancan Sea. It was formed in 1834 of districts taken from the ancient provinces of Taleacia and Murcia, the former contributing by far the larger portion. Its length is about 73 miles, its breadth 68 miles, and the area 2090 square miles. The surface of the prorince is extremely diversified. In the north and west there are extensive mountain ranges of calcareous formation, intersected by deep ravines; while farther south the land is more level, and there are many fertile valleys. On the Mediterranean coast, salt marshes, exhaliug an insalubrious miasma, alternate with rich plains and pleasant and productive buertas or gardens, such as those of Alicanto and Denia. There is no considerable river in tho province, but a few rivulets flow east through the vallegs into the Mediterranean. The sky is clear, the climate temperate, and the rainfall very slight. Notwithstanding the want of rivers and of rain, agriculture is in a very flourishing condition. The inkabitants possess a spirit of steady industry uncommon in Spain, and by ineans of wells and canals they have to a large estent sucreeded in overcoming the disadvantages of nature. Many tracts originally rocky and sterile have been levelled, and now present terraces covered with tho vine and with uscful trees. Cereals are grown, but the inhabitants prefer to saiso such articles of produce as aro in demand for export, and consequently part of the grain supply of the province has to be iniported. Esparto grass, rice, the sugar-cane, and tropical fruits and vegetables are largely produced. Great attention is given to the rearing of bees and silk-worms; and the wine of the province is held in high repute throughout Spain, while some inferior kiads are sent to France to bo mixed with claret. Cattle are not extensively reared. Tho most important minerals of the province are lead, copper, iron, and coal. There are about trenty lead and copper mines; and mineral springs are found at various places. The manufactures consist of fine cloths, silk, cotton, woollen and linen fabrics, girdles and lace, paper, hats, leather, carthenware; and soap. There aro aumeoous oil-mills and brandy distilleries. Many of the inhabitants are engaged in the carrying trade, while the fisheries on the coast are also actively prosecuted, tanny and anchories being caught in great numbers. Barilla is obtained from the sea-weed on the shores, and some of the salino marshes yield large supplies of salt hy sjontaneous evaporation. The province is divided into 16 judicial divisions oud 206 parishes. Nicante is the
chef town, and the other piaces of importance are Denia and Villajoyosa on tho const; and Orihuela, Elche, Villena, and Aloy in the interior. Education is in a low state; of tho criminals arrested it is found that 14 in 15 can neither read nor writo. Tho people are of a lively and irasciblo temperament, and offeaces against the persou are frequent. Population (1870), estimated at 440,000.

Alicante, the capital of the above province, and, after Cadiz and Barcelona, the most considerablo seaport of Spain. It is situated at the head of the bay of Alicante, in the Mediterranean Sea, in $38^{\circ} 20^{\prime} \mathrm{N}$. lat., and $0^{\circ} 30^{\prime}$ W. long. The city is built on the bay in tho form of a half-monn, and is overlooked by a rock 400 feet high, surmouated by a castle, which has beea suffered to fall into decay. There is good anchorincerground in the bay, but only tho smaller vessels can come up to the mole or pier. The bay is protected by batteries, and there is a fixed light on the mole, 95 fcet high, and visiblo for a distance of 15 miles. Alicante was the Incentum of the Romans; but notwithstanding its antiquity, the town presents a modern appearance, and has few remains of Roman, medioval, or Moorish times. It is the seat of a bishop, and has a cathedral and episcopal palace. It has also a good town-Louse, an orphanage, a lyceum, a public library, and a school of navigation. Cotton, linen, and woollen goods, cigars, and confections aro manufactured. Thero is a considerable trade in tho fruit and other produce of the surrounding plain ; aud the vino tinto, or darlc red wine, produced in the vicinity, is sent to Franco for mixing purposes. At the island of Plana, on the coast, very. beautiful marble is procured. The foreign trado of the port, though still considerable, has greatly declined on account of tho imposition of an excessive import tariff. In 1871, besides coasting traders, 372 Spanish and foreign ressels, with a tonango of 62,546 , entered tho port. Of theso vessels, 78 wero British, measuring 29,021 tons. The ralue of the imports under foreign and native flags was $£ 542,526$, and the dutics paid wero $£ 90,421$, without reckoning duties corresponding to material and fuci fos railways, which are admitted free. The chief imports are coals, iron, machinery, and guano ; and the chief exports esparto-of which 11,000 tons were shipped in 1871raisins, almonds, oranges, olive oil, silk, salliron, wine, lead, salt, and soda. There are here English and other European consuls. Alicanie was besieged by the Moors in 1331, and again by the French in 1709, when the English cornmaadant and his staff were killed by the explosion of a mine. Population, 31,500 .

ALICA'I'A, or Licata, a seaport of Italy, in the province of Girgenti, Sicily, situated on the south coast, at the mouth of the Salso, the largest river in the island. It is supposed to occupy the site of the ancient Phintias, built by Phintias, tyrant of Agrigentum, in 280 B.c., after the destruction of Gela. The neighbourhood was the seene of many of the most memorablo events of the Punic wars. On the hill overlooking the modern town there are extensive aneient remains. Alicata is now the most important commercial town on the south coast of Sicily, though the port is only an open shallow roadstead. The larger vessels tie a mile off shore, and aro laden and discharged by means of barges. The chief trade is in sulphur, and the other exports include corn, fruit, macaroni, soda, and escellent wine. Population, 16,000.

ALICUDI, one of the Lipari Islands. 太'ee LiraEl Islands.

ALIEN, cbviously derived from tho Latin a'ienus, is the technical term applied by British constitutional law to aty one who does not enjay the privileges of a Britisl subject. The jealousy which has generally existed asfuinst corw unicating the jrivileges of eitizeaship to forcigners
has its foundation in mistaken viess ot pontical economy. It arose from the impression that the produce of the energy and enterprise of any community is a limited quantity, of which each man's share will be the less the more competitors there are; superseding the just view that the wealth of a state depends on the number and energy of the producers. Thus the skilled workmen who would increase its riches have often been jealously kept out of a country. But, on the other hand, special temptations, including the gift of citizenship, have often been offered to skilled foreigners by states desiring to acquire them as citizens. Britain bas occasionally received industrious and valuable citizens, driven forth by the folly or tyrany of other powers, as in the memorable instance of the revocation of the edict of Nantes, which sent the Spitalfields colony and many other Frenchmen to this country. Looking on the full benefit of British citizenship as a transcendent boon, the principle of our older legislation on the subject has been to allow friendly aliens to possess at least a portion of it. There never existed in Britain a law so harsh as the Droit d'Aubaine of France, which confiscated to the crown all the property of a deceased alien. The courts of justice have ever been opened to them, and they have thus been entitled to protect themselves from any inequalities which do not apply to them by special law. It seems to be a rule of the general public law that an alien can be sent out of the realm by exercise of the crown's prerogative; but in modern practice, whenever it has seemed necessary to extrude foreigaers, a special Act of Parliament has been obtained for the purpose. (See Phillimore's Internat. Law, vol i., p. 133; Forsyth's Cases and Opinions on Const. Law, p. 181.)

Our law, save with the special exceptions mentioned afterwards, admits to the privileges of subjects all who are born within the British dominions. In the celebrated question of the post-nati in the reign of James I. of England, it was found, after solemn trial, that natives of Scotland born before the union of the cromns were aliens in England, but that those born subsequently enjoyed the privileges of English subjects. A child born abroad, whose father or whose graadfather on the father's side was a British subject, may claim the same privilege, unless at the time of his birth his father was a traitor or felon, or engaged in war against the British empire (4th Geo. II. c. 22). Owing to this exceptional prorision, some sons of Jacobite refugees, born abroad, who joined in the rebellion of 1745 , were admitted to the privilege of prisoners of war, because, as the conduct of their fathers deprived them of the privileges of citizenship, they were held not to be liable to its burdens.

It has been enacted with regard to the national status of women and children that a married moman is held to be a citizen of the state of which her husband is for the time being a subject; that a natural-born British woman, having become an alien by marriage, and thereafter being a widow, may be rehabilitated by certificate of the Secretary of State ; that where a father or a widow becomes an alien, the children in infancy becoming resident in the country 'where the parent is naturalised, and being naturalised by the local law, are held to be subjects of that country; that those of a father or of a widow readmitted to British nationality become British subjects also; and that the children of a father or of a vidow who obtains a certificate of naturalisation, becoming resident with such parent in the United Kingdom, become naturalised (33 and 34 Vict. c. 14, s. 10). The same statute provides that a declaration of alienage before a justice of peaco or other competent judge, having the effect of divesting the declarant of the character of a British subject, may be made by a naturalised British subject desiring to resume the nationality
of the country to which he originally belonged, if there be a convention to that effect with that country; by naturalborn subjects who tere also born subjects of another state according to its law; or by persons born abroad baving British fathers.

The main characteristic disabilities to which aliens have been subjected are incompetency to exerciso political privileges, such as that of electing or being elected to sit in Parliament, and incapacity to hold landed property. The privilege of sitting on a jury was also countcd among the political rights from which they are excluded; but When a foreigner is on trial, he had in England the privilege of the jury de medietate lingur, in which half the panel consisted of foreigners, a privilege which was taken amay in 1870, and never existed in Scotland. An alien enemy can neither by himself nor assignee sue for the recovery of a debt due to him in this country, unless by the Queen's special licence. But his right to do so revives when the war is terminated. (See Mr Justice Story's judgment in Society for Propagation of the Gospel ∇. Wheeler, 2 Gallison's Reports, 127 , and Phillimore's International Law, iii. 121).

Many of the special disabilities to which aliens were subject under the Narigation Act and other laws cornected with our old restrictive commercial policy, have been removed or neutralised by the free trade measures of later years; but it is still impossible for an alien to be the owner of a British ship. In other respects the tendency has been to communicate some of the rights of citizenshif to aliens, and to widen the definition of subjects.

Most of the acts of Parliament passed with regard ts aliens during the last and the present centuries have been repealed by 33 \& 34 Vict. c. 14 -the Naturalisation Act, 1870. It enables aliens to take, acquire, hold, and dispose of real and personal property of every description (except British ships), and to transmit a title to land, in all respects as natural-born British subjects. But the act expressly declares that this relaxation of the law does not qualify aliens for any office or any municipal, parliamentary, or other franchise, or confer any right of a British subject other than those abore expressed in regard to property. nor does it affect interests rested in possession or expectancy under dispositions made before the act, or by devolution of law on the death of any one dying before the act.
The Act $6 \& 7$ Will. Γ. c. 11 has not been repealed by the Act of 1870. It requires masters of vessels to intimate the arrival of all aliens, who are thereby bound to have their names registered and to obtain certificates of registration. It is believed that these conditions have seldom been complied with or enforced.

It may be remarked that the repealed Act of 1864 ($7 \& 8$ Vict. c. 66) was the first considerable relaxation of the alien law. It communicated to the children born abroad of a British mother the privilege of acquiring land by purchase or succession. It gare friendly aliens the privilege of holding leases for any time not exceeding twenty-one years. Before this act the rights of citizenship could only be conferred on aliens by statute; and it was enacted at the commencement of the Hanorer succession, that no private naturalisation bill should be brought in unless it contained a clause disqualifying the person it applied to from being a privy councillor or a member of Parliament, and from holding any office, cinil or military, and from being a freeholder; but this restriction is repealed by the act of 1844 . Limited privilegcs could formerly be given by the sovereign's letters of denization; but by the act of 1844 an alicn intending to reside and settle in Britain was enabled, by application to the Home Secretary, to obtain a certificate giving him all the rights of a naturalborn subject, with certain exceptions. Naturalisation,
which is accompanied by political and other rights, privileges, and obligations, may now, under the act of 1870, be olltainel by apllying to the 1Lomo Secretary and producing cvidence of having resided for not less than five years in the United Fingdom, or of laving been in the servico of the crown for not less than five years, and of intention to reside in the United Kingdom or serve under the cromn. Such a certificate may bo granted by the Secretary of State to one naturalised previously to the passing of the act, or to a British sulject as to whose nationality a doubt exists, or to a statutory alien, i.e., one who has become an alien by declaration in pursuance of tho act 1870. The laws of a British colony with regard to naturalisation have effect only within the limits of that colony. Naturalisation is also effected by the operation of the law upon the acts of individuals, as a woman by marriago acquires the nationality of her husband. The naturalisation of a father earrics with it that of his children in minority; and Folix holds that that of a widow has the same effect upun her minor children. (See Folix, Traité de Droit Internat. Priv., 1. i. t. 2, s. 2; Savigny, Priv. Internat. Law, translated by Guthric, pp. 26, 31, 32 ; I'hillimoro's Intemat. Law, vol. i.; Bar, Das Internat. Drivat und Strafrecht, § 30 ; Gand, Code des Etrangers; Hansard on Aliens; Heffter, Europ. Folkerrecht, § 59 sqq.; Sir A. E. Cockburn -on Nationality, Lond. 1869; Cutler on Naturalisation, Lond. 1871).

In the United States an alien desiring to be naturalised must declare on oath his intention to become a citizen of the United States; two years afterwards must declare on oath his intention to support the constitution of tho United States and renounce allegiance to every foreign power, including that of which he was before a subject; must prove residence in the United States for five years, and in the state where his applieation is made for one year, as a good citizen; and must renounce any title of nobility. In France an alien desiring naturalisation must obtain permission to establish his domicilo in Frnnce; three years after (in special cases one year) he is entitled to apply for naturalisation, which involves the renunciation of any existing allegiance. (Sce firther, Alleginnce and International Law.)

ALIGARH, a district of British India, in the Meerut division, and under the juriadiction of the LieutenantGovernor of the North-West Provinces, lies between lat. $27^{\circ} 29^{\prime}$ and $28^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{N}$., and between long. 77° $32^{\prime} 30^{\prime \prime}$ and $78^{\circ} 42^{\prime} 30^{\prime \prime} \mathrm{E}$. It contains an area of 1954 equare miles, of which upwards of two-thirds, or 884,060 acres, are under cultivation. Population in 1865 returned at 925,538 souls, and by the census of 1872 ascertained to be $1,073,108$. Aligarh is bounded on the N. by the Bulandshahr district and a portion of Budáon; on the E. by Etah district; on the S. by Mathura district; and on the W. by Gurgaon and Mathurá districts. Tho district is nearly a level plain, but with a slight elevation in the centre, between the two great rivers, the Gange's and Jamná. The only other important river is the Kall Nadi, which traverses the entire length of the district from north-west to south-east.

Tho civil station and principal town is Koel, situated a ohort distance to the south of Aligarh Fort. The chief products are דheat, barley, joar, bajrá, pulses, oil-seeds, gram, and indigo. There are no manufactures. In 1870-71 the total net revenno of the district was returned at $£ 233,709$, and the expenditure at $£ 45,488$; the land revenue in the same year amounted to $£ 196,655$, or 84 per cont. of the total net revenue. Nine towns are returned as containing a population of upwards of 5000 souls, as follows:Kocl, the civil station and principal city, population within manicipal limita, 55,228 ; Hátras, population, 33,100 ; Atrauli, population within municipal limits, 15,895 ; Sikandrá Ráo, population withło municipal limits, 11,988; Jaláli, population, 7516; Mursán, population. 6113 ; Topal, population, 6031 ; Bljaigarh, population,

5779; and IIardenganj, population, 6202. There are five mundetpal towns in the district, the revenue rased luing derived from octroi duties. The following whe tho municipal revenue and its incidenco per head iu 1871-72:-Koel (Aligarh), municipal revenue, $£ 5467$; incidence, 1s. 11 多d. per head of the municipal population. Hatris, municipal revenue, 25221,168 ; incidence pcr head, 3 s .1 zd . Sikandra hio, municipal income, $£ 505,129$. ; incidence, 10 d . per head. Atraull, municipal income, fit09; incidence, 10 gd. per head. llardeoganj, municipal income, $£ 462,18 \mathrm{~s}$; incideuce, 10.91 d . per head. In 1871-72, the district coutaincd 370 schools, attended Ly a total of 7939 pupils, of whom 6766 were Hindus and 1173 Mahometans. For tho protection of person and property, a regulni police force is maintaiued, enssisting of 1056 men of all grales, equal to oue man to every 1.85 square raile of area, or one to every 1016 of the population. The Village Watch or rural police numbered 2000 in 1871, equal so oue man to cevery " 67 日quare miles, or one to every 536 inhabitants.

Alfgare Fort, in the distriet of the same name, is situated on the Grand Trunk Road, in lat. $27^{\circ} 56^{\prime}$ N., and long. $78^{\circ} 8^{\prime} \mathbf{E}$. The fort consists of a regular polygon, surrounded by a very broad and deep ditch. It was captured from the Marhattás under the leadership of Perron, a French officer, by Lord Lake's army, in September 1803, since which time it has been much strengthened and improved. In the rebellion of 1857 the troops stationcd at Aligarh motinied, but abstained from murdering their officers, who, with the other residents and ladies and children, succeeded in reaching Hátrás.

ALIMENT, in the Law of Scolland, is the sum paid or allowance given in respect of the reciprocal obligation of parents and children, husband and wife, grandparents and grandchildren, to contribute to each other's maintenance. The term is also used in regard to a similar obligation of other parties, as of creditors to imprisoned debtors, the payments by parishes to paupers, \&c. Alimentary funds, whether of the kind above mentioned, or set apart as such by the deed of a testator, are intended for the mere support of the recipient, and are not attachable by creditors.

ALIMONY is, in English Law, the allowance for maintenance to which a wife is entitled out of her husband's estate on a decree, obtained at the wife's instance, for judicial separation or for the dissolution of the marriage. It is settled by the judge of the Divorce Court on a consideration of all the circumstances of the case.
ALISON, Rev. Archibald, an anthor of great reputation in his own day, was born on the 13 th November 1757 at Edinburgh, of which his father was for a time lord provost. After studying at the university of Glasgou and at Balliol collego, Oxford, he took orders in the Churel of Eugland, and was appointed in 1778 to the curacy of Brancepeth, near Durham. In 1780 he married Dorothes, youngest daughter of Professor Gregory of Edinburgh. The next twenty years of his life were spent in Shropshire, where he held in succession the livings of High Ereall, Roddington, and Kenley. In 1800 he removed to Edinburgh, having been appointed senior incumbent of St Paul's chapel in the Cowgate. For thirty-four years he filled this position with great acceptance, his preaching attracting so many hearers that a new and larger church was built for him. His last years were spent at Colinton, near Edinburgh, where he died on the 17th May 1839. Mr Alison published, besides a Life of Lord Woodhouselee, a volume of sermons, which passed through several editions, and at work entitled Essays on the Nature and Principles of Tuste, which received a very laudatory criticism from Lord Jeffrey in tho Edinburgh Review for May 1811. His theory of the beautiful, which is based on the principle of association, is incomplete and unsatisfactory, and his work is now only of historical importance. Two sons of Mr Alison attained distinetion. The elder, Dr William Pulteney Alison, born in 1790, was from 1820 until within a few years of his denth, in 1859, a prominent member of the medical faculty in the university
of Edinbargh. The younger son is the subject of the following notice.
alison, Sir Arcimibald, Bart., the celebrated historian, younger son of the preceding, was born at Kenley, Shropshire, on the 29th December-1792. He studied at the university of Edinburgh, distinguishing himself especially in the classes of Greek and mathematics. In 1814 he passed at the Scotch bar, but he did not at once enter on the regular practice of his profession. The close of the war had opened up the Continent, and Alison, sharing with many of his countrymen the desire to witness the scene of the stirring events of the previous twenty years, set out in the autumn of 1814 for a lengthened tour in France. It was during this period, as he tells us in a characteristic passage of the work itself, that he "conceived the first idea" of writing his History, and "inhaled-that ardent spirit, that deep enthusiasm," which enabled him to accomplish his self-imposed task. A more immediate result of the tour was his first literary work of any importance, Travels in France during the Years 1814-15, which appeared in the latter year. On his return to Edinburgh, Mr Alison practised at the bar for some years with but very moderate success. In 1822, however, he became one of the four advocates-depute for Scotland. The extensive and varied experience gained in this office, which be held until 1830, gave him the necessary qualifications for writing his Principles of the Criminal Law of Scotland (1832), and Practice of the Criminal Law of Scotland (1833), works that are still of standard authority. It was the acknowledged merit of these treatises that chiefly induceci Sir Robert Peel, during his brief administration of 1834, to confer on Mr Alison the important judicial office of sheriff of Lanarkshire, which ranks next in dignity and emolument to a judgeship in the supreme court. The office, though by no means a sinecure, afforded considerable leisure, which Mr Alison employed in not only making frequent contributions to periodical literature, but also writing the longprojected History of Europe, for which he had been coliecting materials for more than fifteen years. The history of the period from the commencement of the French revolution till the restoration of the Bourbons in 1815 was completed in ten volumes in 1842, and met with a success almost unexampled in works of its class. Within a few years it ran through ten editions, and was translated into most of the languages of Europe, as well as into Arabic and Hindustani. At the time of the author's death it was stated that 108,000 volumes of the library edition and 439,000 volumes of the popular edition had been sold. A popularity so wide-spread must almost of necessity have had some basis of real merit on which to rest, and the good qualities of Mr Alison's work lay upon the surface. It brought together, though not always in a well-arranged form, an immense amount of information that had before been practically inaccessible to the general public. It made an attempt at least to show the organic connection in the policy and progress of the different nations of Europe; and its descriptions of what may be called external history-of battles, sieges, and state pageants-wers always spirited and interesting. On the other hand, the faults of the work were so numerous and glaring as to preventit from ever taking rank as a classic. The general style was prolix, involved, and vicious; inaccurate statoments and fallacious arguments were to be found in almost every page; and the constant repetition of trite moral reflections and egotistical references seriously detracted from its dignity. A more grave defect resulted from the zuthor's strong political partisanship, which entirely unfitted him for dealing with the problems of history in a pinilosophical spirit. In the position of unbending Toryism which he occupied, it was impossible for him to give any
explanation of so complex a fact as the French revontion that would be satisfactory to reflective minds. Accordingly, his treatment of what may be called the inner history of those forces hidden in the French revolution which have made modern Europe what it is, was meagre and incomplete in the last degree.
A continuation of the History, embracing the period from 1815 to 1852, which was completed in four volumes in 1856, did not meet with the same success as the earler work. The course of events did not afford the same material for the exercise of the author's powers of description, and the period being so near as to be almost contemporary, there was a stronger temptation, which he seems to have found it impossible to resist, to yield to political prejudice. Three great measures of English legislationthe Act restricting the paper currency, the Reform Act of 1832, and the Act abolishing the corn laws-were the object of his special aversion; and, with little regard for consistency, he was in the kabit of tracing, now to one and now to another of these measures, all the real and many imaginary evils in the state of the nation. On the currency question, in regard to which he stood from the first almost alone in opinion, he has inserted several tedious dissertations in the continuation of his History, besides publishing a separate pamphlet in 1847. On the two other great measures he clung tenaciously to his opinion long after the more intelligent of his party had admitted the necessity, if not the justice, of the concessions that had been made. The use which Mr Alison made of statistics in the continuation of his History to support his peculiar political and economic theories was little short of astounding. He will be acquitted of intentional unfairness only by those who are aware, not merely how easy it is to make figures yield any result that may be wished, but also how dificult it is to bring out the correct result, even with the most honest purpose, unless there be special aptitude and special training.on the part of the investigator.
Mr Alison's successful literary career received from time to time due recognition in the fcrm of public honours. In 1845 he was chosen rector of Marischal College, Aberceen, and in 1851 he was raised to the same honourable position by the students of Glasgow University. In 1852 the dignity of baronet was conferred upon him by Lord Derby, and in the following year he was made a D.C.L. of Oxford. His literary activity continued till within a short time of his death, the chief works he published in addition tc his History being the Principles of Population (1840), in answer to Malthus ; a Life of Marlborough (1847); and the Lives of Lord Castlereagh and Sir C. Stevart (1861). Three volumes of his political, historical, and miscellaneous essays were reprinted in 1850. Sir Archibald died at Possil House, Glasgow, on the 23d May 1867.

ALIZARLN, the principal colouring matter of madder, may be obtained by subliming on papeé an alcoholic extract of madder, or by exhausting the root with water, precipitating with sulphuric acid, dissolving the moist precipitat3 in a solution of chloride of alumina, and separating the impure alizarin by the addition of hydrochloric acid. The impure alizarin is dissolved in alcohol, and separated as a lake on treating with hydrate of alumina, which is \cdot now boiled with carbonate of soda to separate another colouring matter called purpurin, and is finally treated with hydrochloric acid, which dissolves the alumina and leares the pure substance.
Alizarin in the anhydrous state forms red prisms, and in the hydrated condition crystals like mosaic gold. It dissolves sparingly in water even at the boiling point, hrit is soluble in alcohol or ether. Mineral acids do not decompose the colouring matter at ordinsry temperatures, Caustic alkalis or alkaline carbonates dissolve alizarin.
forming deep purple solntions, from which acids μ reciputate in orange-coloured flakes. Alizarin has the atomic composition $\mathrm{C}_{24} \mathrm{H}_{8} \mathrm{O}_{4}$, and has recently been made synthotically from tho bydrocarbon $\mathrm{C}_{16} \mathrm{H}_{10}$ called anthracene, which occurs amorg the products of the destructive distillation of coal. This is the first example of the artificial formation of a natural colouring matter. For further details sce Caemistry.

ALkALI, a term originally applied to tho ashes of plants, now employed in inorganic chemistry as a geaeric namo given to the group of compounds that have the property of neutralising acids. The use of the term is, bowever, generally confined to such members of the group as aro solublo in mater. Tho most solublo alkaline bodies aro tho oxides of potassium (potash), sodium (soda), lithium (lithia), and ammonium (aqueous ammonia); aad next in order tho oxides of calcium (lime), barium (baryta), and strontiun (strontia). The solutions of theso bodies exert a caustic or corrosive action on vegetable and animal substances, and precipitate the oxides of the heavy metals from solutions of their salts. Many regetable colouring matters aro changed in tint by alkaline solutions-for instance, reddened litmus recomes blue, yellow turmeric brown, and syrup of violets and infusions of red cabbage green.

ALKALOILS, the name of a group of organic bodics that possess alkaline properties. They are characterised by the prouerty of combining with acids to form salts, and many have the power of giving an alkaline reaction with regetable colours. All the natural alkaloids contain nitrogen as an cessential constituent, and they are especially marked by pussessing great medicinal power. Many artificial alkaloids have been made of recent years in which phosphorus, arsenic, and antimony occupy the place of nitrogen. For the individual properties, tests, \&e., of different alkaloids, see Chemistry.

ALKANET (Alkanna tinctoria, or Aırfusa tinctoria), a plant of the order Boraginacece, indigenous to the south of France and the shores of the Levant. It is extensively cultivated on the Continent for the sake of the root, which yields a fine colouring matter, imparting a beautiful carmine tint to oils, wincs, wax, and all unctuous substances. Being perfectly harmless, alkanet is much used for colouring in pharmacy. Some of the mixtures styled port wine owe their colour to this dye, and it is also employed in staining furniture.

AL-KINDI, ABU YUSUF, \&c., styled by pre-eminence "The Philosopher of the Arabs," flourished during the first half of the l0th century, and died at some unknowa date posterior to 961 . His literary activity was encyclopædic, and spread itself over all the sciences. The titles of his works number nearly 200 in the catalogue of Casiri, and amount to 265 iu that of Fliigel; but the latter appears in some cases to have enumerated the same works under two divisions, and it is doubtful whether the philosopher has not been confounded with another writer of the same name. His treatises are arranged under the following heads, which throw some light on bis classification of the sciences :-Philosophy in general, logic, politics, ethics, arithmetic (under which he discusses the unity of God), spherology, theory of musio (which was closely connected with all primitive speculation from its religious character), astronomy, meteorology, geometry, cosmology (the form, \&c., of the heavens), astrology, raedicine, aud on various arts, besides his commentaries and controversial writings. Of all these, none except some treatises on medicine and astrology remain. Others of thera must have been known in the Niddle Ages, for Al-Kindi is placed by Roger Bacon, along with Alhazen, in the first rank after Ptolemy as a writer on perspective (uptics). Some of them were certainly translated by Ocrard of Cremona. Whatever his influence may have been
ou the Scturluer, he was unduabtedly a great initiater as regards his countrymen. Ho was one of tho carlieet translators and commentators of Aristotle, but he appears to have been, like Al-Farabi, superseded by Aricenns He marks the first philosophic revolt against Islamism, and his doctriao on the simplicity and unity of the Deit. was apparently equally Aristotelian and un-Mahometan Sce Flügel, Abhandlungen für die Kunde des Morgen. landes, crster Band, 1859.)

ALKMAAR, a town of the Netherlands, in the province of North Holland, situated on the Helder canal and on the railway between Haarlem and the Helder, about 20 miles N.N.W. of Amsterdam. The atreets of Alkmaar are extremcly neat and regular, and are intersected by canals lined with trees, while the ramparts of the town hare been converted iato beautiful boulevards Many of the public buildings are clegant, especially tho church of St Lawrence, a Gothic edifice of tho 15 th century. Alkmaar is the seat of a court of primary jurisdiction and of a tribunal of commerce, and possesses good sehools as well as several literary and scientific societics. Its principal articlo of commerce is cheese, for which it is aaid to be tho chief market in the kingdom, if not in tho world. Besides cheese, it has a good trade in butter, com, and cattle, and manufactures of salt, saileloth, soap, vinegar, and leather. Alkmaar successfully sustained a siege by the Duke of Alba in 1573, and in 1799 gave its name to a convention signed by the Duke of York and the Frecech general Brune, in accordance with which the Russo-British army cracuated Holland. Population, 12,000.
aLKMAAR, Heinrik von, the German translator of the colebrated satirical poem Reinehe de Vos, flourished in the latter half of the 15 th century. In the preface to his work, which is the only source of information as to his life, he states that he was tutor to the Duke of Lorraine, and that he translated the poem from the Walsch. In spite of the latter statement, many have attributed the authorship to him ; but it is now known that the atory had a much earlier origin. Some have aupposed the name Alkmaar to be a pseudonym.

ALl-SAINTS DAY, All-Hallows, or Hallowatas, a festival, first instituted about $610 \mathrm{~A} . \mathrm{D}$. , on the 1 st of May, in memory of the martyrs, and celebrated sinco 834 on tho 1st of November, as a general commemoration of all the saints. As the number of saints increased, it became inpossible to dedicate a feast-day to each. Hence it was found expedient to have an annual aggregate commemorntion of such as had not special days for themselves. The festival is common to the Roman Catholic, Eaglish, and Lutheraa churches. See Beltane.

ALLAH, the Arabic name for the one true Cod which is employed in the Koran, and has been adopted into the language of all Mahometan nations. It is compounded of $a l$, the definite article, and ilah, meaning worthy to be adored. Sce Mahometanism.

ALLAHABAD, a division, district, and city of British India, under the jurisdiction of the lieuteanat-governor of the North-Western Provinces. The Allatabad Division comprises the six districts of Allahábâd, Campur, Fathipur, Hamirpur, Bándá, and Jaunpur. It is bounded on the north and cast by the Etáwah and Farrakhábád districts and the province of Ondh; on the aouth by the Benares division and the Rewah atate; and on the west by the states of Bandelkhand and the Jhánsf division. Total population (1872), 5,466,116.

Allahabád District lies betwcen $24^{\circ} 49^{\prime}$ and $25^{\circ} 44^{\prime}$ N. lat., and between $81^{\circ} 14^{\prime}$ and $82^{\circ} 26^{\prime} \mathrm{E}$. long. In shope the district is that of an irregular oblong; and it is diffcult accurately to describe its boundaries, as at one extremity it wanders into Oudh, while on the south the villages
of the state of Rewah and those of this district are hopelessly intermingled. Roughly speaking, however, the boundaries may be described as follows:-On the north by the district of Jaunpur and by the Ganges; on the west by the districts of Fathipur and Bándá; on the south by the independent state of Rewah; and on the east by the districts of Mirzápur and Jaunpur. The settlement of the district is at present undergoing revision; and as the measurements are still incomplete, it is impossible to state the exact area. For practical purposes, it may be estinated at 2802 square miles, or $1,793,906$ acres, of which $1,065,990$ acres are cultivated, and 727,916 acres are uncultivated; of this latter, however, there are about 250,000 acres capable of being brought under tillage, although not actualiy cultirated. The census of 1872 returned the population of the district at $1,394,245$ souls, of whom 1,211,778 are Hindus, 181,574 Mussulmans, and 893 Christians. There is, however, a manifest error in these figures, as the European and Eurasian population of Allahábád city alone cannot be set at a lower figure than 3500 . The census returns are in consequence undergoing revision. Of the Hindu population, 173,916 are returned as Bráhmans.

The Jamna and the Ganges meet at Allahábád city, and enclose within their angle a fertile tract, well irrigated by means of tanks and wells. The East Indian Railway and the Grand Trunk road afford the principal means of land communication. The former enters the district from the east, crosses the Jamná at Allahábád city, and travels westward, leaving the district near Khágá station. Tho Grand Trunk road enters Allahábad from the north-east, meets the railway at Allaháhád city, and thence runs almost parallel with it till it leaves the district. Only three tomns are returned as containing a population of orer 5000 souls-viz., Allahábád, population 144,464; Manaimá, population 6146; and Chizwá, population 5791. Rice is the principal crop, the area under it being returned at 139,000 acres, and the averaga produce at $5 \frac{1}{3} \mathrm{cwt}$. per acre. A littis more than half of the total rice crop is retained for local conaumption, and the remainder exported. The avcrage price of common rice in Fehruary 1873 was 6s. 9d. per cwt. Pulses are also grown in large quantities, the area under tha parious sorts being about the same as rice, and the yiold also about the same. Joar and bajrá cover as large an area as either rice or pulses, but the yield is neither so large nor of guch value. About half the crop is said to be annually exported. Wheat is cultivated to the extent of about $150,000 \mathrm{cwt}$. per annum, of which about one-half is exported; the average pield is said to be about $6 \frac{1}{2} \mathrm{cwt}$. per acre, and the average price from 6s. 2 d . to 6 s .9 d . per cwt. Mustard, tobacco, opium, linseed, and indigo are also cultivated largely, with cotton and augar-cane in small quantities. Indigo stands first among the manufactures of the district, and large factories exist at Alamchánd, Sarái Salem, Gadúpur, Kansaridh, Thardai, and Dum-duma These are generally under the supervision of European managers, and the produce is forwarded direct to the Calcntta market. Next to indigo, the most impertant industry is stone-cutting. The stone is chielly quarried from a low range of hills near Shiorajpur, whence it is carried in country carts to the Jamna river; and after crossing it in llat-bottomed boats, it is finally landed at Balwá Ghát. Hera the stone-masons take it in hand. The gross income of the Balwá Chat stone traders is estimated at $£ 2000$ per annum. A brisk trade is also carried on in hides, the principal mart being the village of Karwá, in Arail fiscal division, where it is estimated that tho sale of skins amounts to upwards of $£ 10,000$ per annum for the Mirzápur and Calcutta hide markets. Paper is manufactured in the fiscal division of Karrá, and a considerable quantity exported to Oudh. Séveral villages in the fiscal divisions of Karrá and Chail are noted for the manufacture of brass and copper vesscls; and iron vessels are largely manufactured in Khairagarh, Karrá, and Phulpur. The East India Railway Company have a large castor-oil manufactory at the village of Manauri. The total net rerenue of the district in 1871.72 is "eturned at $£ 244,537$, and the total net civil expenditure at $£ 51,770$. The district passed into the hands of the English in 1801, by a treaty between the Vazir of Ondh and the East India Company.

AycahAbid City, the capital of the North-Western Provinces, is also the administrative headquarters of the Allahábsd division and of the district of the same name. It is situated at the confluence of the Ganges and Jamná rivers, in $25^{\circ} 26^{\prime} \mathrm{N}$. lat., and 81° 55' E long. Its most conspicuous feature is the fort, which rises directly from the banks of the confluent rivers, and com-
pletely commands the navigation of both streams, Within the fort are the remains of a splendid palacc, erected by the Emperor Akbar, and once a favourite residence of his. A great portion of it bas been destroyed, and its hall is converted into an arsenal. Outside the fort, the placs most of importance are the Sarái and garden of Khasru, the son of the Emperor Jahángí, and the Jumá Masjid, or great mosque. When the town first came into the hands of the English this mosque was used as a residence by the military officer commanding the station, and afterwards as an-assembly-room. Ultimately it was returned to its former owners, but the Mahometans considered it desecrated, and it has never since been used as a place of worship. Allahábad is one of the most noted resorts of Hindu pilgrimage. It owes its sauctity to its being tho reputed confluence of three sacred streamo-the Ganges, the Jamad, and the Saraswati. This last stream, however, is not visible. It leares the Himalayas to the west of the Jamná, passes close to Tháneswar in the Payjab, 'and loses itself in the sauds of Sirhind, 400 miles north-west of Allahábád. The Hindus, however, assert that the stream joins the other two rivers under ground, and in a subterraneous temple below the fort a little moisture trickling from the rocky walls is pointed out as the waters of the Saraswatí. An annual fair is held at Allahábád, at the confluence of the streams, on the occasion of the great bathing festival, at the full moon of the Hindu.month of Mágh. Allahabad was taken by the British, in the year 1765 , from the Vazir of Oudh, and assigned as a residence for Sháh Alam, the titular Emperor of Dehli. Upon that prince throwing himseglf into the hands of the Marhattás, the place was resumed by us in 1771, and again transferred to the Nawab of Oudh, by whom it was finally ceded, together with the district, to the British in 1801, in commutation of the subsidy which the Vazir had agreed to pay for British protection. The population and trado of Allahábád city have rapidly increased of late years. According to the census of 1853 , the city and suburbs contained 72,098 inhabitants. Before 1872 the popula. tion had exactly doubled, the census returns for that year exhibiting a total population of 144,464 . The municipal income and expenditure of Allababbad city in 1871-72 were as follows:-Income-Octroi dutics, $£ 13,676,14$ s. ; tax on professions, $£ 220,10$ s. ; carriage tax, $£ 1264,4$ s. ; proceeds of the Hindu fair and ground rents, $\mathfrak{E} 5364$: total municipal income, $£ 20,525,8 \mathrm{~s}$. ; incidence of taxation, 2s. 11d. per head of the population. Expenditure-Establishment, including cost of collection, police, conservancy, and lighting, $£ 9906,4 \mathrm{~s}$. ; street watering, £1002, 12s.; neाT morks, £7677, 16 s . ; repairs, £1088, 2 s . ; vaccination, £20; dispensary, $£ 330$; charities, $£ 250$; Alfred Park, $£ 800$; other items, $£ 223,2 \mathrm{~s}$. : total, $£ 21,297,16 \mathrm{~s}$. Allahábad forms the junction of the great railway system which unites Bengal with Ceutral India and Bombay, and it is rapidly developing into a great centre of inland and export trade.

ALLamand, Jean Nicolas Sebastian, natural philosopher, born at Lausanne in 1713, was educated for the church, and held for a short time a clerical appointment at Leyden. Here he enjoyed the patronage and friendship of the celebrated S'Gravesende, who mado him his literary executor. In 1747 he was appointed professor of philosophy and natural history at Franeker, and tro years later he was transferred to a similar chair at Leyden, which he occnpied until his death in 1787. Allamand's chief service to science consisted in translating and editing the scientific works of others, but he also made some original discoveries of importance, especially in connection with electricity. He was the first to explain fully the phenomena of the Leyden jar, and he made a near approach to the discovery of negatire electricity. He greatly enriched
the botanical garden and natural history museum at Leyden by specimens from all quarters of the globe. His translation of Büfon's works was published at Amsterdam, in thirty-eight quarto volumes, between 1766 and 1779. Allamand was a member of the Royal Society of London and of the Academy of Sciences at Haarlem.

ALLAN, DAvtd, a Scottish historical painter of considerable celebrity, was born at Alloa on the 13th February 1744. At a very early age he gare such proofs of natural artistic talent as led to his being placed under the care of the Messrs Foulis, who some time before had instituted an academy in Glasgow for painting and engraving. On leaving the academy (1762), after seven jears' successful study, be obtained the patronage of Lord Catheart and of Erskine of Mar, on whose estate be had been bom. The latter furnished him with the means of preceeding to Rome (1764), where he remained for a number of years engaged principally in copying the old masters. Among the original works which he then painted was the "Origin of Portraiture"-representung a Corinthian maid drawing her lover's shadow-well known through Cunego's excellent engraving. This gained for him the gold medal given by the Academy of St Luke in the jear 1773 for the best specimen of historical composition. Feturning from Rome in 1777, he resided for a time in London, and oceupied himself in portrait-painting. In 1780 he remored to Edinburgh, where, on the death of Alexander Runciman in 1786, he was appointed director and master of the Academy of Arts. There he painted and etched in aquatint a variety of works, those by which he is best known-as the Scotch Wedding, the Highland Dance, tho Repentance Stool, and his Illustrations of the Gentle Shepherd-bcing remarkable for their comic humour. He has had frequently applied to him the name of the "Scottish Hogarth;" but his drolleries are not to be compared for a moment with the productions of the great English satirist. Allan died at Edinburgh on the 6th Angust 1796.
'ALLAN, Sir Wllliam, R.A., and president of the Royal Scottish Academy, was born at Edinburgh in 1782. At an early age he was entered as a pupil in the School of Design established in Edinburgh by the Board of Trustees for Arts and Manufactures, where he had as companions, Wilkie, Burnet the engraver, and others who afterwards distinguished themselves as artists. Here Allan and Wilkie were placed at the same table, studied the same designs, and contracted a friendship which terminated only with their lives. Leaving the Edinburgh school, Allan prosecuted his studies for some time in London; but his attempt to establish himself there was unsuccessful, and after exhibiting at the Royal Academy (1805) his first pieture, A Gipsy Boy and Ass, an imitation in style of Opie, he determined, in spite of his scanty resources, to seek his fortune abroad. He accordingly set ont the same year for Russia, but was carried by stress of weather to Memel, where he remained for some time, supporting himself by his pencil At last, however, he reached St Petersburg, where the kindness of Sir Alexander Crichton, the court physician, and other friends procured him abundant employment. The cmoluments of his profession enabled him by and by to make excursions into southern Russia, Turkey, the Crimea, and Circassia, where he filled his portfolio with vivid sketches, of which he mado admirable use in his subsequent pictures. In 1814 he returned to Edinburgh, and in the two following years exhibited at the Royal Academy The Circassian Captives and Bashkirs conducting Convicts to Siberia. The former composition, which united graceful forms and porrerful expression with norel and picturesque costumes, established his reputation as B master in the highest walk of art; but the picture remained so long unsold in the studio of the artist, that, thoroughly disheartened, he threatened to retire to Circassia
when, througn the kinduess of Sir Walter Scott, a subscription of 1000 guineas was obtained for the picture, which fell by lot into the possession of the Earl of Wemyss. About the same time the Grand Duke Nicholas, afterwards emperor of Russia, visited Edinburgh, and purchased his Siberian Exiles and Haslan Gheray crossing the River Kiuban, giving a very favourable turn to the fortunes of the painter, whose pictures were now sought for by collectors. From this time to 1834 we find him pursuing his art in the sphere in which he achieved his greatest success and firmly established his fame, the illustration of Scottish history. His most important works of this class were Archbishop Sharpe on Magus Moor; John Knox admonishing Mary Queen of Scots (1823), engraved ly Burnet; Mrary Queen of Scots signing her Abdication (1524); and Regent Murray shot by Hamilton of Bothwell. haugh. The last procured his election as an associate of the Rojal Academy (1825). Later Scottish subjects were Lord Byron (1831), portraits of Scott, and The Orphan (1834), which represented Anne Scott seated near the chair of her deceased father. In 1830 he was compelled, on account of an attack of ophthalmia, to seek a milder climate, and visited Rome, Naples, and Constantinople. He returned with a rich store of materials, of which he made excellent use in his Constantinople Slave Market and other productions. In 1834 he visited Spain and Morocco, and in 1841 went again to St Petersburg, when ho undertook, at the request of the Czar, his Peter the Great teaching his Subjects the Art of Shipbuilding, exbibited in London in 1845 , and now in the Winter Palace of St Petersburg. His Polish Exiles and Moorish Love-letter, \&e., had secured his election as a Royal Academician in 1835; he was appointed president of the Royal Scottish Academy (1838), and limner to Her Majesty for Scotland, after Wilkie's death (1841); and in 1842 received the honour of knighthood. His later jears were occupied with battle-pieces, the last he finished being the second of his two companion pictures of the Battle of Waterloo. He died on the 22d February 1850, leaving a large picture unfinished-Bruce at Bannockburn-which exhibits no traces of impaired power.

Alleghany, Allegheny, or Allegany Mountanss, is the name often given to the Appalachian Mountains in the United States. A more exact use of the name restricts it to the portion of the system that lies west of the Hudson river, and forms the watershed of the Mississippi basin on the south-east. See Appalachian Mountanss.

ALLEGHANY, a river of the United States, which rises in the north of Pennsylvania, and after flowing about 300 miles, first in a northerly, but for the greater part of its course in a westerly direction, during which it passes for a short distanco into the state of New York, unites with the Monongahela at Pittsburg to form the Ohio. The country through which it flows is mostly hilly, and large numbers of pines, white oaks, and chestnuts grow upon its banks. It is navigable for small steamers for about 200 miles abore Pittsburg.

ALLEGHENY, a large suburb of Pittsburg (q.v.) In 1870 it contained 53,180 inhabitants.

ALLEGIANCE, either derived from the French allegeance or taken from the same Latin source, has been used to express that duty which a person possessing the privileges of a citizen owes to the state to which he belongs. and is technically applied in law to the duty which a British subject orres to the sovereign as representing the state. It has been divided by the English legal commentators into natural and local ; the latter applying only to the deference which a foreigner mast pay to the institutions of the country in which be happens to live ; but it is in its wider sense that the word is important, as representing a condition attached to mankind of which it is
rery difficult in theory, ana still more in practice, to adjust the true character and limits For a state to decide what persons are bound to it by alleglance may. be easy, but for a man to know where his allegiance lies when two or more states claim him-and hence for jurists to decide what is ihe reasonable exitent to which any state ought to make such a claim-is often involved in difficulty. The English doctrine, which was also adopted in the United States, asserted that allegiance was indelible: Nemo potest exuere patriami (Forsyth's Cases and Opinions in Constitutional Lav, ip. 257, sqq., 333, sq.) Accordingly, as the law stood before 1870, every person born within the British dominions, though he should be removed in infancy to another country'where his family resides, owes an allegiance to the British crown which he could never resign or lose, except by Act of Parliament or by the recognition of the independence or the cession of the portion of British teritory in which he resided. By the Naturallsation Act, 1870, $33 \& 34$ Vict. c. 14 (see Auren), it was made possible for British subjects to renounce their nationality and allegiance, and the ways in which that nationality is lost are defined. So British subjects voluntarily nsturalised in a foreign state are deemed aliens from the time of such naturalisation, unless, in the case of persons naturalised before the passing of the Act, they hare declared their desire to remain British subjects within two years from the passing of the Act. Persons who, from having been born within British territory sre British subjects, but who at birth became under the law of any foreign state subjects of such state, and also persons who, though born abroad are British subjects by reason of parentage, may by declarations. of alienage get rid of British nationality..

Allegiance, Oath of, an oath of fidelity to the sorereign taken by all persons holding public office. By ancient common law it might be required of all persons sbore the age of twelve, and it has repeatedly been used as a test for the disaffected. It was first imposed by statute in the reign of Elizabeth (I. c. 1), and its form has more than once been altered since. Up to the time of the Revolution the promise was "to be true and faithful to the king and his heirs, and truth and faith to bear of life sud limb and terrene honour, and not to know or hear of any ill or damage intended him without defending him therefrom." This was thought to favour the doctrine of absolute non-resistance, and accordingly the Convention Parliament enacted the form that has been in use since that time-"I do sincerely promise and swear that I will be faithful and bear true allegiance to Her Najesty Queen Victoria." These words are included in the form prescribed by $21 \& 22$ Vict. c. 48 , which substitutes one oath for the oaths of allegiance, supremacy, and abjuration.

ALLEGORY. (ädlos, other, and áyopeúw, to speak), a figurative representation conveying a meaning other than and in addition to the literal. It is generally treated as a figure of Thetoric, but the medium of representation is not necessarily language. An allegory may be addressed to the eye, and is often embodied in painting, sculpture, or some form of mimetic art. The etymological meaning of the word is wider than that which it bears in actual use. An allegory is distinguished from a metaphor by being longer sustained and more fully carried out in its details, and from an analogy by the fact that the one sppeals to the imagination and the other to the reason. The fable or parable is a'short allegory with one definite moral. The allegory has been a favourite form. in the literature of nearly every nation. The Hebrew scriptures present frequent instances of it, one of the most beautiful.being the comparisón of the history of Israel ©o the growith of a vine, in the 80 th psalm. - In classical sferature one of the best known allegories is the
story of the stomach and its members in the speech of Mencnius Agrippa (Livy, ii. 32); snd several occur in Ovid's Metamorphoses. Perhaps tise most elaborate and the most successful specimens of allegory are to be found in the works of English authors. - Spencer's Faerie Quetre, Smitt's Tale of a Tub, Addison's Vision of Mirze, and, above all, Bunyan's Pilgrim's Progress, are examples that it would be impossible to.match in claboratior, beauty, and fitness, from the literature of any other nation.
allegri, Antonto. See Corregsio.
ALLEGRI, Gregorio, musical composer, probably of the Correggia family, was born at Rome about 1580. He studied music under Nanini, the intimate friend of Palestrina. Being intended for the church, he obtained a benefice in the cathedral of Fermo. Here he composed a large number of motetts and sacred pieces, which, being brought under the notice of Pope Urban VIII, obtained for him an appointment in the choir of the Sistine chapel at Rome. He held this from Dec. 1629 till his death on the 18 th Feb . 1652. His character seems to have been singularly pure and benevolent. Among the masical compositions of Allegri were two volumes of.Concerti, published in 1618 and 1619; two volumes of JFotetts, published in 1620 and 1621 ; besides a number of works still in manuscript. He was one of the earliest composers for stringed instruments, and Kircher has given one specimen of this class of his works in the Musurgia. But the most celebrated composition of Allegri is the Miserere, still annually. performed in the Sistine chapel at Rome It is written for two choirs, the one of five and the other of four voices, and has obtained a celebrity which, if not entirely factitious, is certainly not due to its intrinsic meris alone. .The mystery in which the composition was long enshrouded, no single copy being. allowed to reach the public, the place and circumstances of the performance, and the added embellishments of the singers, account to a great degree for much of the irppressive effect of which all who have heard the music speak. This view is confrmed by the fact, that when the music was performed at Venice by permission of the pope, it produced so little effect that the Emperor Leopold I., at whose request the manuscript had been sent, thought that something else had been. substituted. In spite of the precautions of the popes, the Miserere has long been public property. In 1769 Hozart was able to write it down after hearing it twice ; and in 1771 a copy was procured and published in England by Dr Burney. The entire music pcrformed at Rome in Holy Week, Allegri's Niserere included, has been issued at Leipsic by Breitkopf and Härtel. Interesting accounts of the impression produced by the performance at Rome may be found in the first volume of Meudelssoln's letters, aud in Miss Taylor's Letters from Italy.

ALLELNE, Joseph, Nonconformist divine, the suthor of An Alarm to the Unconverted-a book which remains as potential as when first modestly sent forth, scarcely second to Richard Baxter's Call to the Unconverted-was otherwise noticeabie. Baxter himself wiote a characteristic introduction to his Life fully two centuries ago (1672); while recently (${ }^{\prime} 8011$) the Rev. Charles Stanford has retold his story and the story of his age with great fulness of knowledge and historical fidelity. The Alleines came out of Suffolb, and as early as 1430 same of them-sprung of Alan, lord of Buckenhall-settled in the neighbourhood of Calne aud Derizes, whence descended the immediate ancestors of "worthy JIr Tobie Alleine of Derizes," father of our worthy. Joseph Alleine, fourth of a large family, was born at Dcrizes early in 1634 . 1645 is marked in the title-page of a quaint old tractate, by an eye-witness, as his "setting forth in the Christian race." His eldest brother Edward had been a clergyman, but in this year died, in his twenty
ceventh year ; and Josepli entreated his fallier that he might be educated to suceeed his bruther in the work of the ministit. His father couscuted, and les was innmediately seut to loalshot, then wider a fellow of Exeter Colloge, Oaford (William Spiuage). Iu April 16ty ho set uut for Lincoln College, Oxford, iu the presidency of Dr l'aul Hood, with Dr Joln Orren as the vice-chavcellur of the university. A Wiltshire place becominy vacant in Curpus Christi College, on the 3d Nov. 1651 he was chosen scholar of that houso. Of his student life it mas written contemporaneuusly, "Ife could tuil terribly." On 6th July 1653 he took the degree of B.D., and thercapon became a tutor of his cullege. Ho became also chaplain of Corpus Christi, preferting this to a fellowship. In 1654 he lad offers of hish preferment in the state, which he declined. Tho succeeding year (1655) brought him another offer, which ho did not decline. Georye Nevton, of the great chureh of St Mary Naglaleue, Tauitun, sought him for assistant ; and putting from him all other things, even forsaking further academical honours within his immediate grasp, he accepted the invitation by procceding at once to 'Tauntou, undergoing the accustomed probation, and at last being ordained as this associate of one of the most venerable of the later Puritan fathers. The ministry that resulted stauds out lustrous and noble in the histury of Listorical Tannton, and in the Life of the junior pastur, as told by Baxter and Stanford. Almost coiucident with ordiuation came the marriage of the associate-pastor with Theodosia Alleinc, danghter of lichard Alleine. Friendships amung "gentle and simple" -of the former, with Lady Farewell, grand-daughter of Protector Sormerset-bear witness to the attraction of Alleine's private life. His publie life-in preaching after the intense, awakeniing, wistul type; in catechising with all diligenco and fidelity; in risitation among the poor and uscan and sad; in letter-writing, tender aud sympathetic; in devotional intereession through long consecrated hours of divy and night-was a model of pastoral devotion. This is all the woro remarkable as the pastor continued the student-toil of Corpus Christi, one monument of which was his Theologia Philosophica, a lost MS., estalilishing the harmouy between revelation and nature, anl whose learning-classical, patristic, and reconditc-drew fortl the wouder of Baxter. Alleine was no mero scholar or divine, but a man who associated on equal terms with the patriarchs of the Royal Suciety, then laying thoso broad and decp foundations on which rusts England's present scientific renown. These ecientifie studies and experiments, nevertheless, were ever kept in subordination to his proper work. The extent of his influence was, in so young a man, uniqne, resting fundamentally on the earnestness of his nature and the manifest power of his munistry. The year 1662 found sentor and junior pastors like-ninded, and both wero of the Two Thousand. Alleine, when the Ejection blow fell, with John Wesley (sTaudfather of the celebrated John Wesley) for fellow labourer, alsu ejected, carried on a kind of itineracy whereever oppurtunity was found for preaching the gespel. For this he was cast into prison, indicted at sessions, and suffered as hundreds of England's noblest men have suffered. His Letters from Prison were an earlier Cardiphoria. He was released on 26th May 1661; and apito of the Conventicle Act (Five Mile Act), he returned to his beloved work as a prcacher of the gospel. He found himself again in prison, and again and again a sufferer. Tempestrous and troubled were his remaining years. Now in hiding, now in great bodily weakness, now coming to the fron: in some act of charity or patriotism, now at the waters of Bath, blowly but serenely wearing out. He died Nupember 17, 1668 ; and the mourners, remember-
ing their beloved minister's words while yet with them, " If I should die fifty miles away, let mo bo buried at Taunton." found a grave for him in St Mary's chancel Pilgrims from over the sea read with din eyes the briet Latin inscription on his stene. No Puritan-Nunconfurmist name is so atfectionately cherished as is that of Juseph Alleine. "Being dead he yet speaketh" throagh his inperishable practical books. (Life, edited by Baxter; Joseph Alleine: his Companions and 't'imes, by Charles SLanford, 1861 ; Wood's Athence; Palmer's Nonc. Mem., s.v.; Har. leian MSS., and Willians MSS.)
(A. B. G.)

ALLEINE, Riciard, M.A., author of Findicio Piefatus, was educated at St Albans Hall, Oxford, where Anthony a. Wood states ho was entered commoner in 1627, aged sirteen; and where, haviug takeu the degree of B.A., he trausferred hinself to New Iun, and continued there until he proceedea M. A. He and tho like-minded William Alleine were suns of Richard Alleine, rector for upwarks of fifty years of Dichet, Somerset. The younger Iicliard being ordaincel; becane assistant to his reucrable father, and inunediately stirred the entire county by his burning cloquenco. In March 1641 he succeeded to many-sided Richard Bernard as rector of Batcunb (Sumerset). He declared himself on the side of the Puritans by suhscribing "The testimony of the ministers in Somersetshire to the truth of Jesus Christ" and "The Solemn Leagno and Covenant." He continued for twenty years rector of Batcomb. On the Act of Uuifornity being passed, he cast in his lot with the Two Thousand of the ejected. Upou the Five-Mile Act he removed to Frome Selwoud, and preached there and around until his death on Deceuber 22, 1681. His works are all of the 1 ichest spiritual character, with a wistfulness of appeal that goes right to the heart. His Vindicice Pictatis (which appeared successively in 1660,1663 , and 1665) was refused liceuco by Sheldon, and was published, in common with other Noncouformist books, without it. It was rapidly bought up, and "did much to mend this bad world." Noger Nortun, the king's printer, caused a large part of the first impression to be seized, on the ground of not beiug licensed, and to be sent to the royal litchen. Glancing orer its pages, he was struck with what he read, aud ou second thuughts it seemed to him a sin that a bouk so holy-and so sale-able-should be destroyed. He thercfure bought back the sheets, says Calamy, for an old song, bound them, and sold them in his own shop. This in turn was complained of against him, and the shrewd publisher had to beg pardon on his knees before the council-table; and the remaining copies were sentenced to be "bisk'd," or rubbed over with an inky brush, and sent back to the kitchen for lighting fires. Such "bisk'd" copies occasionally occur still. Tho book was not killed. It was reissucd, with additions, and a contribution by Joseph Alleine, and went forth ou a mission which has endured to our day. (Calamy, s.v.; Palmer's Nonconf. Mcm. iii. pp. 167-8; C. Stianford's Joseph Alleine; Researches at Lalcomo anl Frome Selwood; Wood'e Athence, s.v.)
(A. в. с.)

ALLEN, Bog of, the namo given to a congeries of mnorasses in Kildare and Kinge County, Ireland. Clane Bog, the eastern extremity, is withiu 17 miles of Dublin, and the morasses cxtend westward almost to the Shannon. Their total area is about 238,500 acres. They do not form one continuous bog, the tract of the country'to which the name is given being intersected by strips of dry cultivated land. The rivers Brosna; Barrow, and Boyne take their rise in these morasees; and the Grand Canal crosses them. The Bog of Allen has a general elevation of 250 feet abore the level of the sea, and the average thickness of the peat of which it consists if 25 feet. It rests on a subsoil of clay and marl

ALlen, Joun (1770-1843), was born near Edinkurgh, and educated at the university of that city, where he took the degree of M.D. in 1791. With youthful enthusiasm, Allen joined the Scottish movement of that period for parliamentary reform. He was an acute metaphysician, and the prelections on physiology which he delivered in Edinburgh are distinguished by clearness and precise philosophical views. Leaving Ediuburgh, he took up his abode at Holland House as the friend and private secretary of the late Lord Holland. In 1811 be was elected warden of Dulwich College; and in 1820 obtained the comfortable sinecure of master of that institution, where he dicd in 1843. Allen's detaclied publications, though well written, are not very important, if we except his valuable- Inquiry into the Growth of the Royal Prerogative (1830), "a learned and luminous work;" but he was an able contributor to the Edinburgh Review, to which he is said to have furnished no less than forty articles, chiefly on physiological, metaphysical, and political subjects; and some of his contributions on French and Sparish history are very interesting. For this last department he was peculiarly fitted by his. residence with Lord Holland in France and Spain; he had even collected materials for a history of Spain, but was hindered from fulfilling his purpose by his deep interest in politics. The latter portion of his life was divided between politics and the study of the history of the British constitution. Brougham, in his éloge of Allen (Works, vol. iv., 1872), has highly commended him for extensive learning and philosophical talent.

ALLEN, or Alleyn, Thonas (1542-1632), a famous English mathematician, was born at Uttoxeter in Staffordshire, 21st December 1542. He was admitted scholar of Trinity College, Osford, in 1561; and in 1567 took his degree of master of arts: In 1580 he quitted his college and fellowship, and retired to Gloucester Hall, where he studied very closely, and became famous for his knowledge of antiquity, philosophy, and mathematics. Having received an invitation from Henry, Earl of Northumberland, a great friend and patrou of men of science, he spent some time at the earl's house, wheré he became acquainted with Thomas Harriot, John Dee, and other fanous mathematicians. He was also intimate with Cotton, Camden, and their antiquarian associates. Robert, Earl of Leicester, had a particular esteem for Allen, and would have conferred a bishopric upon him, but his love of solitude made him decline the offer. His great skill in mathematics earned him, as was usual in those times, the credit of being a magician; and the author of Leicester's Conmonwealth accuses him of employing the art of "figuring" to further tho Earl of Leicester's unlawful designs, and of endeavouring by the black art to bring about a match between his patron and Queen Elizabeth. Allen was indefatigable in collecting scattered manuscripts relating. to history, antiquity; astronomy, philosophy, and mathomatics. A considerable part of his collection was presented to the Bodleian library by Sir Kenelm Digby. He published in Latin the second and third books of Claudius Poteny of Pelusium, Concerning the Judgnent of the Stars, or, as it is commonly called, of the Quadripartitc Construction, with an exposition. He wrote also notes on some of Lilly's books, and on Bale's De Scriptoribus M. Britannice.
ALLENTOWN, formerly called Northampron, a thriving town of the United States, capital of Lebigh county. Pennsylvania, is pleasantly situated on a height on the western bank of the Lehigh River, 85 miles E.N.E. of Harrisburg. It is a well-huilt place, and contains a good court-house, a military institute, an academy, and a theological seminary. Most of the inhabitants are of German descent; the German language is commonly spoken, and
is used alung with English both iu the newspapers and in the courts of law. The valley of the Lehigh is very rich in iron ore and anthracite, and in the town and neighbourhood extensive iron-works and anthracite furnaces are in operation. This trade is being rapidly developed, and is favoured by good railway communication, New York and Philadelphia being both within 100 miles of Allentown by rail. A tenth of the whole iron manufactured in the United States is said to be produced here. Population (1870), 13,884.

Allestry, or Allestree, Riehard, D.D., was born at Uppingtown in Shropshire in 1619, and educated in the grammar school of Coventry, and afterwards at Christ Church, Oxford. After passing as bachelor of arts he was made successively moderator in philosophy, canon of Christ Church, doctor of divinity, chaplain in ordinary to the king, and regius professor of divinity. His early studies, however, were interrupted by the hostilitics of the times. In the year 1641 he and many other students of Oxford entered the royal service, and gave signal proofs of their courage and loyalty. A short interval of hostilities permitted Allestry to return to his literary pursuits ; but soon after, he again took up arms, and was present at the battle of Keintonfield. On his way to Oxford to prepare for the reception of the king he was taken prisoner, but was released by the king's forces. A violent disease which then prevailed in the garrison of Oxford brought Allestry to the brink of the grave; but recovering, he again joined a regiment of volunteers, chiefly consisting of Oxford students. Here he served as a common soldier, and was often seen with the musket in one hand and a book in the other. At the close of the revolutionary struggle he returned to his favourite studies, but still continued true to his party. This occasioned his expulsion from the college; but he was provided with a comfortable retreat in the families of the Honourable Francis Newport and Sir Anthony Cope. Such was the confidence reposed in him that when the friends of Charles II. were secretly preparing the way for his restoration, they entrusted him with personal messages to the king. In returning from one of these interviews he was seized at Dover, and upon examination committed a prisoner to Lambeth Hoase. The Earl of Shaftesbury obtained his release in a few wecks. His valuable library was bequeathed to the university. He died in January 1681. He erected at his own private expense the west side of the outward court of Eton College, and the grammar school in Christ Charch College ; besides settling several liberal pensions upon individual persons and families. His only extant work is a volume of sermous, printed at Oxford in 1684.

ALLEYN, EDTARD, eminent as a stage-player in the reigns of Elizabeth and James I., but better remembered in after-times as the founder of Dulwich eollege, was born in London, in tho parish of St Botolph, Bishopsgate, on the lst of September 1566. When he was only four jears old, his father, an innkecper, dicd, and his mother soon afterwards married an actor named Browne. This change in his domestic surroundings brought young Alleyn into early and close association with the stage, for which he possessed great natural aptitude. Thus it chanced that "he was bred a stage-player," as stated by Fuller (Worthies) A tenacious memory, a polished clocution, a stateliness o figure and countenance, and a gouial tcmperament, wers among the natural and acquired accomplishments that $\mathrm{h} \epsilon$ brought to bear on his chosen pursuit. He gained distine tion in his calling while yet quite a young man, and by common consent was erentually rated as the foremost actor of his time. Several prominent dramatists and other writers of the period hare left forcible testimony to his
rare excellence in the histrionic art. Ben Jonson, a critic nowise prone to caalt the merits of nien of mark among his contemporaries, but addicted rather to disparagement, and even, as Drummond of ILawthornden tells, to bitterest detraction, bestowed, nevertheless, unstinted praise on Alleyn's acting (see Jonson's E'pigrams, No. 89). Nash, in Pierce Pennyless, his Supplication to the Devil, expresses in prose the same enlogy that Jonson renders in verse. Heywood calls Alleyn "inimitable," "the lest of actors," and
"Proteas for ahnpes and Roscius for a tongue." - (Prologue to Marlome's Jew of Mfilla.)

Peele's letter to Narlowe, quoted by several of Alleyn's biographers, telling of a merry mecting at which Shakespeare, Bea Jonson, and Alleyn figure in the front rank of a group of choice spirits, has long been numbered among literary forgeries. (See the Lifo prefixed to Dyce's Peele's Works, 1829.)

But ample and clear evidence remains to show his great celebrity as an actor. His professional earnings as a player formed, however, one only, and not the chief, among several sources from which he drew the wealth that afterwards sustained his great foundation; and his fame as an actor ınusi long since have faded into a dim tradition, of little or no concern to present times, but for the association of his name with an institution around which cluster interesting historic reminiscences, and whose future is franght with high promise. He inlicrited house property in Bishopsgate from his father. His marriage, in 1592, with Joan Woodward, stepdaughter to Henslowe, a successful speculator in thectical and kindred enterprises, brought him eventually much wealth He become successively part owner in Henslowe's rentures, and in the end sole proprietor of sundry play-houses and other resorts for the diversion of pleasure-scekers. Among these were the Rose Theatre at Bankside, in close contiguity to Shakespeare's Globe Thestre ; the Paris Garden, in the sarne vicinsge, where were enacted such pastimes as bear-baiting, bullbaiting, and other sports of the period; and the Fortune Theatre in St Luke's. He filled, too, in conjunction with Henslowe, the post of "mnster of the king's games of bears, bulls, and dogs." He continued to discharge the duties of this offce long after he had relinquished his other professional work.
Allesn's ownership in Dul wich lands began in 1606, and further acquisitions, made in the course of the next five years, during which he was gradually breaking away from the actual practice of the histrionic sirt, though not from theatrical speculations or kindred enterprises, incrcased his holding to more than 1300 acres. His residential connection with Dulwich began in 1607 . He occupied the manor-house, a mansion even then rery ancient, but which is still tenanted, after many additions and alterations. The priors and abbots of Bermondsey owned and occupied it through the four centuries preceaing their expulsion in 1537, When Henry VIII. assigned their house and adjacent church lands to Thomas Calton, grandfather to the Calton who sold his heritage to Alleyn. Some details respecting this and other purchases of neighbouring estates are set forth in Alleyn's own writing, in a small thick memorandum-book which, with other Alleyn papers preserved at Dulwich, has been carefully scrutinised by the sriter of this notice.

The landed property stretches from the crest of that rarge of Surrey hills on whose summit rests the Crystal Palace, to the crest of the pasillel ridge, three miles nearer London, known in its several portions as Heruo Hill, Denmark Hill, and Champiou Hill. Alleyn acquired this largo suburban proparty for little more than $£ 10,000$, Which may be estimated as equivalent to $£ 50,000$ in the present day. But the present value of the lands which he
bought for such a price is Lardly noder a million and a-half sterling, so cnormuus has been the rise in the value of land in and near Loudon. Alleyn had barely got full possession of this property before the question how to dispose of it begnn to press upon him. He was still childless, after twenty years of wedded life. Then it was that the prosperous player-the man "so acting to th? life that he made any part to become him" (Fuller, Worthies)-began "playing the Inst act of his life so well" (Bacon's Letter to the Marquis of Buckingham, dated 18th August 1618), as to gain the general applause of his own sge, and a large measure of adıniration in after times. He built and endowed in his orw lifetime the College of God'e Gift at Dulwich. All was completed in 1617, except the charter or deed of incorporation for setting his lands in mortmain. Tedious delays occurred in the Star Chamber, where Lord Chancellur Bacon was sclucıaing to bring the pressure of kingly authority to bear on Alleyn with the aim of securing a large pertion of the proposed endowment for the maintenance of lectureships at Oxford and Cambridge. Alleyn finally carried his point, and the College of God's Gift at Dulwich was founded, and endowed under letters patent of James I. dated 21 st of June 1619. The college, as thus incorporated, consisted of twelve "poor schclars" and as many pensioners, the latter comprising equal numbers of men sad. women"poor brethren" and "poor sisters,"-together with a teaching and governing staff of six ligher ofticials. These latter included a master and a marden, whe were always to be of the founder's surname, and four fellows, all "graduates and divines," among whom were apportioned the ministerial mork of the chapel, the instruction of the boys, and the supervision of tho almspeople or pensioners. The scholars and pensioners were to be drawn in equal numbers from the four London parishes out of which the founder drew his wealth. A curious legend, dating from the time of the founder, and always current afterwards among the pensioners on his bounty, tells that he mas scared into his generous and charitable scheme by an apparition of the devil, in propria persona, among some theatrical demons in a drams in which he was acting. In the fright thus occasioned he mas said to hare niade a row, which he redeemed in the fonuding of Dulwich College.

Alleyn was never a member of his orn foundation, as stated by Heywood, snd copied by succeeding writers. The college records clearly set this point git rest. But ha continued to the close of his life to guide and control the affairs of his foundation, under powers reserved to himself in the letters patent. His diary shows that be mixed much and intimately in the daily life of the college. Many of the jottings in that curious record of daily doings and incidents favour the inference that he was genial, kind, smiable, and withal a religious man. His fondress for his old professional work is indiented by the fact that he engaged the boys in occasional theatiral performances. At a festive gathering on the 6th of January 1622 "the boyes play'd a playe."

Shakespesre's name is interwoven with local traditions bearing on Alleyn's life at Dulwich, and the links of association between these famous contemporaries afford strong antecedcut probability that the tradition sprang from something more solid than " buch stuff" as dreams are made of." Each began and closed his professional career as a stage-player in nearly the self-same period and in acighbouring theatres. During several years they were near ncighbours in their homes at Bankside, then the headquarters of players and play-Louses. Leading actors then, as afterwards, came much in contact with the living. suthors whose creations they personated. Alleyn per. formed in "Leir," the "Moore of Veais," "Romeo,"
"Pericles," and "Henry VIIL." as appears from his inventory of his own theatrical mardrobe. Aroong the intimate fricnds of both were Ben Jonson, Michael Drayton, and other meinbers of the goodly company of pocts and dramatists whose genius shed a lustre on their day. Shakespeare had not finally betaken himself to the retirement of Stratford-on-Avon until seven rears after Alleyn took up his abode at Dulwich. In the face of all these facts, it can hardly be said the local tradition is groundless, though no direct proof has yet been brought to bear on the point.
Alleyn's first wife died in the summer of 1623. In December of the same year be married Constance Donne, who.'survived him. This lady was a daughter of Dr Donne, dean of St Paul's. Her maiden name was misquoted by an early biographer. This mistake gave rise to the further error which attributes to Alleyn a third wife. He died in November 1626, in the sixty-first year of his age. His gravestone at Dulwich fixes the date of his death on 21 st November, but there are grounds for the belicf that the true date is the 25 th of the same month.
Besides dispensing bounties within the bounds of his college, Alleyn provided, by an after-thought, some years later than his deed of foundation, for certain extensions of the benefits of his endowment. But successive actions at lavr, carried on at various periods, resulted in the ruling that it was not within the competence of the founder to divert any portion of the revenues of his foundation to the use of others than the members thereof, as specified in the letters patent. Chief among the good intents on the part of the founder that were thus frustrated was his scheme for embracing in the school work within the college as many outsiders as would bring the total number to cighty boys, inclusive of the twelve foundationers. But as this was not within the bond, his successors in the administration of the trust, for more than two centuries after his death, declined the work. In the latter part of that period, decay, and not development, fixed on the time-honoured memorial of Alleyn's high but thwarted purposes the stigma of a public scandal Then came, in 1842, a grudging and partial, rather than a full and loyal, concession torrards the realisation of the founder's aims. Finally, however, an Act of Parliament, in 1857, extinguished the stagnant and unprogressive corporation. Alleyn's College of God's Gift at Dulwich entered thenceforward on that prosperous career which already links its name with the front rank of institutions doing good service in the educational mork of the day.
(J. Go.)

ALLLANCE, a league between independent states for the purpose of combined action, defensive or offensive, or both-a subject which falls to be treated under the heading Law of Nations. The alliances of greatest historical importance are the Triple Alliance (1688) of Great Britain, Sweden, and the Netherlands against France; the Grand Alliance (1689) of the Emperor Leopold I. and Holland, subsequently joined by England, Spain, and Saxony, against Louis XIV. ; the Quadruple Alliance (1718) of Great Britain, France, Austria, and Holland, against Spain; the Holy Alliance (1815) of Russia, Austria, and Prussia, for the maintenance of peace and the establishment of the existing dyaasties; and the alliance (1854) of Great Britain, France, and Turkey, against Russia.

ALLIER, a department in the centre of France, so called from the river of the same name; bounded on the N. by the department of Cher and Nièrre, on the E by those of Soonne-et-Loire and Loire, on the S. by that of Puys de Dôme, and on the W. by those of Creuse and Cher; extending at the widest points 82 miles from E. to W., aud 55 from N. to S.; and containing an area of 2821 square miles. Its surface is in general undulating,
rising to considerable elevations among the mountains oi Forez on the southeast, and among those of Auvergue towards the west. The river Allien, flows northward betreen these rangcs, recciving the Andclnt, the Sionle, and the Bioudre, all from the left; cast of the Allier is the Btbre, which joins the Loire within the limite of the dcpartment; and on the wcst the Cher, with its tributary the Aumance. The soil is for the most part fertile, especially in the valleys of the Allicr, the Sioule, and the Bebre, yielding wheat, oats, barley, rye, fruits, and potatoes, in quantities exceeding what is required for home consumption, as well as some red and white wines. Good timber is grown, and cattle, sheep, goats, and horses are reared in large numbers; but agriculture is on the whole in a backward condition, owing to tho inhabitants' aversion to change. The mineral wealth of the department is very considerable, including iron, coal, antimony, marble, and manganese-the coal mines of Commentry being among the most important. The chief manufactures are of cutlery, earthenware, glass, cloth, leather, and paper. The climate is healthy, but is liable to sudden variations of temperature. The mineral waters at Vichy, Nèris, and Bourbon l'Archambault, in the department, are in mach repute. Allier comprehends the greater portion of the old province of Bourbonnais, and is at present divided into four arron-dissements-Moulins, Gannat, La Palisse, and Montluģon, which are subdivided into 28 cantons and 317 communes. Moulins is the capital, and the seat of a bishop whose diocese is co-extensive with the department. The other important towns are La Palisse, Cusset, Vichy, Gannat, Saint Pourçain, Montluçon, and Commentry. Population in 1871, 390,812; of whom 196,831 were males, and 193,981 females. Of the total population, 223,374 could neither read nor write, and 36,786 could read but could not write.

Allier, the ancient Elaver, a river of France, which rises in the department of Lozère, among the Margeride mountains, a few miles east of the town of Mende, and, after traversing Haute Loire, Puys de Dôme, and Allier, forms the boundary between Cher and Nièvre, until it falls into the Loire four miles west of Nevers. Its length is 200 miles, for a considerable portion of which it is narigable, and its chief tributaries are the Dore and the Sioule.
ALLIGATOR, (probably derived from the Spanish el lagarto, the lizard), an animal so closely allied to the crocodile that some naturalists have classed them together as forming one genus. It differs from the true crocodile principally in haring the head broader and shorter, and the snout more obtuse; in having a large canine tooth of tho under jaw received, not into an external furrow, but into a pit formed for it within the upper one; in wanting a jagged fringe which appears on the hind legs and feet of the crocodile; and in having the toes of the hind feet webbed not more than half-way to the tips. The principal species, all found in America only, are the common alligator (Alligator Mississippiensis or Crocodilus Lucius), occurring in the southern United States; the caiman or cayman (A. palpebrosus), in Surinam and Guiana; and the spectacled alligator or jacaré (A. sclerops), principally in Brazil. The names alligator and crocodile are often confounded in popular speech; and the structure and habits of the two animals are so similar that both may be conveniently considered under the heading Crocodite.
ALLiteration. As 3ilton defined rhyme to de "the jingling sound of like endings," so alliteration is the jingle of like beginnings. All language has a tendency to jingle in both ways, even in prose. Thus in prose me speak of "near and dear," "high and dry," "health and wealth" But the initial form of jiugle is much more common-" safe and sound." "thick and thin," "real or
woo," "fair or foul," "spick and span," "fish, flesh, or fowl," "kith and kin." The poets of nearly all times and tongues have not beeh slow to seize upon the emphasis which could thus be produced. Accordingly we read in Shakespeare:-

> "Full fathom fire thy father lies: Of his bones are corals mado."

In Pope:-
"Here files of pins extend their shining rows
Pafts, powders, patches, bibles, billet-doux
In Gray:-
"Teave the warp and reave the moof,
The minding•sheet of Edward'a race."

In Coleridge:-

"The fair brecze blew, the white foam flew, The furrow followed free; We were the first that ever burst Into that silent sea."
Churehill deseribes himself as one

> "Who often, but without suecess, had prased For apt alliteration's artful aid,-"
an example which is itself a proof of his failure; for allitera. tion is nerer effective unless it runs apon consonants

As thus far considered, alliteration is a device wholly dependent on the poct's fancy. He may use it or not, or use it mueh or little, at his pleasure. 'But there is an extensive range of poctry whose metrical laws are entirely based on alliteration. This, for example, is the principle on whieh Icelandic rerse is founded; and we have a set nearer interest in it, because it furnishes the key to Anglo-Saxon and ia large portion of early English verse. For a specimen take the following lines, the spelling modernised, from the beginning of Piers the Ploughman:-

> "But in a May morning | on Malvern hills,
> Me befel a ferly | of firy methought;
> I was oceary of wandering | and neent me to rest Under a broad bank | by a burn-side; And as I lay and leaned | and looked on the waters, I slumbered in a sleeping | it sounded so merry."

The rule of this verse is indifferent as to the number of syllables it may contain, but imperativo as to the cumber of aceented ones. The lino is divided in the middle by a pause, and each hall ought to contain tro accented syllables. Of the four accented syllables, the first three should begin with the same letter; tho fourth is free, and may start with any letter. Those who wish for a more minute analysis of the larrs of alliterative verse, as practised by the Anglo-Saxion and early English poets, may consult an exhaustive essay on the subject by the Rev: W. W. Skeat, prefixed to rol. iii. of Bishop Percy's. Folio Mfanuscript; ouly the reader most bo on his guard against an error which pervades it, and whioh this able writer seems to have derived frem Rask. The question arises-What is the pature of tho cadenco in alliterative verso? Now all metrical movement is of tro kinds, aecording as the beat or emphasis begins tho movement or ends it . If the beat is initial, we say in classical language that the move ment is trochaic or dactylic, according to the number of its syllables; and if the beat is final, wo in like manner say that the morement is iambic or anapæstic. Mr Skeat and many others object with some reason to use the classical terms, and therefore brushing them aside, let us put the question in the simplest form-Has the morement of alliterative verse got the initial or the final beat? In the middle of last century Bishop Percy decided this question with sufficient accuracy, though he mized up his statement with a blunder which it is not easy to account for. He points ont how the poets began to introduce rhyme into alliterative verse, until at length rhyme came to predominate over alliteration, and "thus was this kind of
metro at length swallored up and lost in our common burlesque Alesandrine or anapæstic verse, as

A cobbler there ras, and he lired in a stall."

Percy made a scrious mistake when he gare the name of Alexandrino to anapæstic rerse; but he is quite right in his general statement that alliterative verso became lost in a measure, the movement of which had the final beat. Conybeare has stated the-fact still more accurately. "In the Saxon poetry a trochaic character is predominant. In Piers Plowman there is a prevailing tendency to an anaprestic cadence." It is the result of a changg in the language-the loss of inflection. Take the word man. Tho genitivo in Saxon rould be mannes, a trochee; in English, of man, an iambus. The tendency of the language was thus to pass from a metrical movement, in which the beat was initial, to one in which it was final. It may therefore be quite right to speak of Anglo-Saxon alliterative poctry as trochaic or dactylic, and quite wrong to apply the same terms to the cadence of our later alliterative verse. And this is precisely the error into which Mr Skeat has fallen. He says-":Lines do not always begin with a loud syllable, but often one or two and sometimes (in early English especially) eren three soft syllables precede it. Theso syllables are necessary to the sense, but not to the scansion of the line." That is just the point at issuc. - By learing out of account the light syllable or syllables at the beginning of a line, and taking his start from the first syllable that has the alliterative beat, Mr Skeat may certainly prove that all the later alliterative poetry has a movement of initial beat. But Engiish cars will not.submit to this rule. It is those light syllables of no account which have altered the rhythm of English deseant from one of initial to one of final beat.
(E. S. D.).

ALLIT, Pierre, a distinguished divine of the French Reformed Chureh, was born at Alençon in 1641. He was pastor first at St Agobile in Champarno, and then at Charenton, near Paris. The revocation of the Edict of Nantes in 1685 compelled him to take refuge in London, where, under. the sanction of James II., he opened a chureh for the French exiles. His reputation for learning wis such is to oltain for him, soon after his arrival, the degree of doctor of divinity from both universities, and in 1690 he receired from Bishop Burnet the more substantial honour of the treasurership and a canonry in Salisbury cathedral. He died at London in March 1717.

The works of Allix, which are very numerous, are chiefly of a controversial and apologetic character, and, liko most works of that class, aro not thoroughly trustworthy. At the invitation of a number of English ministers, he is said to have mritten a history of the councils of the church, which, however, owing to want of support, never was published. In opposition to Bossuet he issued Some Remarks upon the Ecclesiastical History of the Ancient Churches of Piedmont (1690), and Remarks upon the Ecclesiastical IIistory of the Ancient Churches of the Albigenses (1692), with tho view of showing that the Albigenses were not Manicheans, but historically identical with the Waldenses. His Dissertation on the First Rise of the Trisagium or Doxology (1674), and Reflections upon the Books of Holy Scripture (1688), are of littlo present value.

ALLOA, a scaport town of Scotland, in the eounty of Clackmanuan, situated on the north side of the Firth of Forth, 25 miles from Edinburgh, and 6 below Stirling, with which it is connceted by railway. The town as a whole is irregularly built, although in the modern portions there are sercral spacious streets, with good shcps and housos. The parioh chnrch, opened in 1819, is a fino Gothio edifice, with a handsome spire 200. feet high; there are also piaces of worship belonging to the other denomina
tions, as well as the county court-house, a corn exchange, and schools of various grades. In the immediate ricinity of the town is an ancient torer, 89 feet high, with walls 11 feet in thickness, said to have been built about the year 1315 , formerly the residence of the powerful family of Erskine, descendants of the Earls of Mar. Here many of the Scottish princes received their education as wards of the Lords Erskine and the Earls of Mar, the last of these educated here being Henry, the eldest son of James VI. Among the manufactures of Alloa are ale, whisky, iren goods, glass (especially bottles), bricks, sarns, shawls, and blankets. Shipbuilding is also carried on to some extent, and in the neighbourhood there are several collieries. The harbour is safe and commodious, having a depth of 16 feet at ueap, and 22 at spring tides; adjoining it is an excellent dry dock, and a capacious wet dock was constructed in 1863. In 1872, 446 ressels of 49,941 tons entered, and 533 of 70,499 cleared the port of Alloa, in addition to coasting ressels in ballast; and in the same year $£ 453$ were derived from customs duties. The chief exports were pis-iron, ale, glass, and coals; the imports, timber, grain, iron, linseed, and flax. There is a ferry here across the Forth. Population in 1871, 9362.
ALLODIUM or ALODIUMI denotes lands which are the absolute property of their owner, and not subject to any service or acknowledgement to a superior. It is thus the opposite of fe-odum or fief. The proper derivation of the word has been much discussed and is still doubtful, though it is probably compounded of all, whole or entire, and odh, property. Allodial tenure seems to have been cummon throughout northern Europe. It exists in Orkney and Shetland, where the proprietor of an allodial estate was known until recently as an udaller. (See Sir Walter Scott's Pirate.) In England allodial tenure is unknown, the feudal system having been made universal by William the Conqueror.
ALLORI, Alsssandro, a painter of the Florentine school, tyas born at Florence in 1535, and died in 1607. Haring lost his father in his fifth year, he was brought up and trained in art by his uncle, Angelo Bronzino, whuse name be sometimes assumed in his pictures. Visiting Rome in his nineteenth year, he carefully studied the works of Michael Angelo; but having himself little genius and no originality, the influence of that great master can only be traced in the anatomical correctness of his drawing of nude figures. He was very successful as a portraitpainter.
allori, Cristofano, son of the preceding, was born at Florence on the 17th October 1577, and died in 1621. He received his first lessons in painting from his father, but becoming dissatisfied with the hard anatomical drawing and cold colouring of the latter, he entered the studio of Pagani, who was one of the leaders of that later Florentine school which endeatoured to unite the rich colouring of the Venetians with the correct drawing of Jichael Angelo's disciples. Allori became one of the foremost of this school. His pictures are distinguished by their close adherence to nature and the delicacy and technical perfection of their execution. His technical skill is proved by the fact that several copies he made after Correggio have been taken to be duplicates by Correggio hiniself. His extreme fastidiousness limited his power of production, though the number of his works is not so small as is sometimes asserted. Several specimeus are to be seen at Florence ond elsewhere. The finest of all his works is his "Judith and Holofernes," in the Pitti palace. The mudel for the Judith was his mistress, the beautiful Muzzafirra, who is also represented in his Magdalene; and the head of Holofernes is geuerally supposed to represent himself, though this is oulustioned by the best authorities.

ALLOTROPY (from ällos, other, and τ рóтos, manner), a name applied to a property, whereby certain substances, chemically simple, assume different forms and conditions without undergoing chemical change. Sulphur and phosphorus, for instance, occur sometimes in crystals and sometimes in an amorphous state, being in the latter case sometimes translucert and sometimes opaque, and present very different properties under these difierent conditions. Ozone is an allotropic form of oxygen. The name isomerism is given to the similar by no means uncommon property whereby compound bodies, although entirely distinct, are made up of the same chenrical elements in precisely the same proportions.
ALLOXAN, a product of the action of oxidising agents on uric acid , obtained by adding slowly, in small quantities, uric acid to strong nitric acid of specific gravity $1 \cdot 4$, kept cool, and stirring constantly. Carbonic acid and nitrogen are evolved during the action, and the alloxan crystallises out on standing. It is purified by recrystallisation from water, and then lias the composition $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}+a q$. Tha crystals of this compound ore large and colourless, and when heated to a temperature of $150^{\circ} \mathrm{C}$., lose the water of crystallisation, and acquire a red colour. Allozan is readily soluble in water and alcohol, and its aqueous solution reddeus litmus, has an astringent taste, and colours the skin purple after some time. It produces a great number of derivatives, for which see Uric AcmD.
ALLOY, the name given to a combination obtained by fusing metals with each other. Few metals are emplojed in the pure state, with the exception of iron, copper, lead, tin, zinc, platinum, aluminium; metals are more frequently used in the forns of alloys for technical purposes. Every industrial application necessitates special qualities that may not occur in any isolated metal, but which may be produced by the proper mixture of two or more of these substances. Thus gold and silver, which in their pure state are too soft and flexible for the maunfacture of plate, coin, trinkets, \&c., are hardened by the addition of a tenth part of copper, while the colour and other valuable qualities are not materially impaired. Similarly copper is reudered hard by mixture with zinc, when we obtain brass, an alloy of a beautiful yellow colour, easier to work than the pure metal. If brass las to be used in turning operations it is found to tear under the action of the clisel, unless a small quantity of lead has been added. These examples are suficient to show that au alloy is really an iudustrial metal, often of greater inportance than the metals which compose it.
Alloys are equally interesting from a purely scieutific point of rier. They are not only mixtures of metals having certain particular qualities, but in reality are true chemical compounds, generally dissulved in au escess of one of the constitueut metals. In the appearances which accompany the union of the netals, and in the properties of the resulting products, we observe that which characterises the manifestation of affinity, that is, an evolution of heat and light, resulting in the formation of substances having a definite composition, distinct crystalline form, aud a variety of properties differcnt from those of the constituents. If a piece of clean sodiun is rabbed in a mortar with a quantity of dry mercury, the metal dissolres, producing a harsh sound resembling the immersion of red hot iron in water. This phenomenon is due to the large evolution of heat which accompanies the combination, as the mercury rises rapidly in temperature on the addition of each successive piece of sodiuni. If the mass is allowed to cool after the action, long needles of a white brilliant alloy of definite composition crystallise from the middle of the liquid, frome which the excess of mercury may be separated by decanta tion. Platinum, iridium, gold, rhodium, ruthenium, and silver unite mith tin, producing an evilution of heat: is
the tin is in execss after ecoling, a metallic ingot is obtained resembling closely the original substance ; but if tho mass is treated with strong hydrochloric.acid, the excess of tin is dissolved and crystals remain of a definito alloy of tin and the precious metal. These alloys are insoluble in strong hydrocllyoric aeid, which dissolves tin so easily; but they are soluble in aqua regia, even when the precious metal contained therein (rhodium, ruthenium, iridium) is in tho free state absolutely insoluble. This is no proof that tho industrial alloys are almays the resnlt- of one defnite combination dissolved in excess of one of the metals, as many combinations are able to. co-exist in the same alloy. This may be proved by taking an alloy of tin, lead, and bismuth, which melts below tho boiling point of water, heating to a temperature of $25^{\circ} \mathrm{C}$., and observing the rate of .cooling by means of a thermometer. Tho thermometer falls at first regularly as far as a certain degree, where it remains stationary for somo time, after which it descends to a lower temperature, where it is again similarly arrested. These two stoppages in the rate of eooling can only bo explained by admitting the production of a less fusiblo alloy in the fluid mass, which solidifies with' an evolution of heat, rendering tho thermometer stationary for a time. Each successive arrest will therefore correspond to the formation of moro fusiblo combinations. Thus the metals form amongst themselves true chemioal combinations; and alloys are often formed by the mixture of one or more of these compoutnds with excess of one of the constituents.
Recently hydrogen, which, although a gascons substance, has chemical propertics resembling those of the true metals, has been combined with palladium, sodium, and potassium, producing compounds similar in properties to the recognised alloys.
Properties of Alloys. Density.-If the density of any alloy is calculated from that of the compopents-assuming that there is no condensation of volume-the resulting number is sometimes greater than, equal to, or less than, the experimental result. Thus the alloys of gold and silver are less dense than the theoretical-mean density; whereas brass and the alloys of lead and antimony vary in the opposite direction. The former are therefore produced through an expansion, the latter through a condensation of their constituents. In the formation of many alloys there is no alteration of volume, and then the calculated density is correct. Colour.-This is generally grey, unless when we have a coloured metal like copper or gold present in sufficient quantity. Hardness, Ductility, and Tenacity.Alloys are for the most part harder and more brittle, and are gencrally less ductile and possess less tenacity than the constituent metal that has these properties in excess. Aluminium bronze is an exception, as its tenacity is greater than that of cither of the components. Fusibility. -This is almays.greater than that of the least fusible metal entering into the composition of the alloy, and is sometimes greater than in any of the components. Thus an alloy, composed of 5 parts of bismuth, 3 of lead, and 2 of tin, mells at $91^{\circ} \mathrm{C}$. Alloys of lead and silver, containing a small quantity of the latter, are more fusible than lead, and potassium and sodium form an alloy fluid at the ordinary temperature of the air. Liquation.-The constituents of an alloy heated gradually to near its point of liquefication frequently unito anew in such proportions as to form a mass that is fnsible at the given temperature. If the fluid portion is poured off, thera remains a solid alloy less fusible than the original. Copper is separated from silver by this process. Decomposition.-When the alloy contains a volatile metal like zinc or mercury, heat decomposes it, but the teruperature required to expel the last trace of the volatile metal must be consideratly ligher than that
metal's normal temperature of ebullition. Temper.-The alloy of 94 parts of copper and 6 parts of tin forms \& bronze so brittle that it may be pulverised with a hammer when it has been slowly cooled; but if, on the contrary, it is cooled rapidly by tempering it in cold water, it becomes malleable. Influence of the Corstituent Metals.- Micrcury, bismuth, tim, and cadmium give fusibility to alloys in to which they enter; tin also gives hardness and tenacity if present in considerable quantity; lead and iron give hardness; arsenic and antimony render alioys brittle.

Composition of Alloys.-A statement of the average proportions in which the metals enter into the best known alloys, the composition of which is generally very variable, is given in tho following table:-

Preparation of Alloys-The metals are generally fused together under a layer of charcoal to prevent oxidation, thoroughly mixed by agitating, and the mass left to cool slowly. This process can only be employed when the constituent metals are all non-volatile at the temperature required for combination. If the mixture containg volatile metals, liko sodium, potassium, magnesium, or zinc, they are added after the more refractory metal is fused.

ALLSTON, Wasmegton, an eminent American historical painter and poet, was born 5 th November 1779, at Waccamar, in South Carolina; where his father was a planter. He early displayed a taste for the art to which he afterwards devoted himself. He graduated at Harvard in 1800 , and for a short time pursued his artistic studies at Charleston with Malbone and Charles Fraser. He thon removed to Loudon, and entered the Royal Academy as a student of Eenjamin West, with whom he formed a lifolong friendship. In 1804 he repaired to Paris, and from that city, after a few months' residence, to Rome, where he spent the greater part of the next four years studying Italian art and Italian scenery. During this period he became intimate with Coleridge and Thorwaldsen From 1809 to 1811 he resided in his native coultry, and from this Latter date to 1817 he painted in England. After visiting Paris for a second time, he returned to the United States, and practised his-profession at Boston (1818-30), and afterwards at Cambridge, Massachusetts, where ho died on the 9th July 1843. He was elected an associate of the Royal Academy in 1819. The paintings of Allston are characterised rathor by grandeur of conception than by skilful execution * In colour and the management of light and shade he closely imitated the Venetian school, and he has hence becn styled "the American Títian." Many of his pictures have biblical subjects, and Allston" himself had a profoundly religious nature. His first great painting, "The Dead Man Revived," executed shortly after his second visit to England, gained a prize of 200 guineas from the British Institution; in England he also prepared his "St Peter Liberated by the Angel," "Uriel in the Sun," "Jacob" Dreams" and "Elijah in the Wilderness." To the periud of
his residence in Amcrica belong "The Prophet Jeremiah," "Saul and the Witch of Endor," "Miriam," "Beatrice," "Rosalie," "Spalatro's Vision of the Bloody Hand," and the vast but unfinished "Belshazzar's Feast," at which he was working at the time of his death. As a writer, Allston shews great facility of expression and imaginative power. His friend Coleridge said of him that he was surpassed by no man of his age in artistic and poetic genius. His literary works are-The Sylphe of the Seasons and other Poems (1813), where he displays true sympathy with nature and deep knowledge of the human heart; Monaldi (1841), a tragical romance, the sceue of which is laid in Italy; and Lectures on Art, edited by his brother-in-law, R. H. Dana the novelist (1850).

ALLUVIUM, soil or land made up of the sediment deposited by running water. Rivers act on the rocks in their course both mechanically and chemically, and are in consequence always more or less loaded with detritus, which in its turn again aids the mater in abrading other rocks. A great proportion of the matter with which rivers are thus charged is carried out to sea. But in level tracts, where the motion of a river is slow, it frequently overflows its bauks, and leaves a sediment of earth, mud, gravel, \&c., when it returus to its ordinary channel. The principal alluvial tracts are the deltas or deltoid formations at the mouths of large rivers. These rary in character very considerably. The Delta of the Nile is the best-marked specimen; the waters of the Rhine, Ganges, \&c., arrested by the solid matter they have washed down, force their way through it in numerous smaller channels; the Mississippi has carried the solid matter it holds in suspension far into the Gulf of Mexico, forming long spits of land on the banks of the stream. The cognate term diluvium (now little used) has been applied to formations produced by extraordinary aqueous agencjes. 1

ALMA, a river of Russia, in the S.W. of the Crimea, which falls into the sea about 16 miles N. of Sebastopol. It gives its nome to a battle gained over the Russians, on the 20th September 1854, by the allied British, French, and Turkish armies. The British numbered 25,000 men, with 60 guns, and were commanded by Lord Raglan; the French force consisted of 30,000 men and 68 guns, to which were added 7000 Turkish infantry-all under the command of Marshal St Arnaud. To these were opposed 36,000 Russians, with 122 guns, under Prince Menschikoff, strongly posted on the heights on the left bank of the river. The victory was largely due to the determined advance of the British in face of the Russian fire.

ALMADEN, or Almaden del Azogue (in Arabic, the "Mine of Quicksilver"), a town of Spain, in the province of Ciudad Real, lies in the Sierra Morena, 55 miles S.W. of the town of Ciudad Real. It is the Sisapon of the Romans, and is famous for its quicksilver mines, which have been wrought extensively both in ancient and in modern times. They were the richest and most productive in the world until the discovery of quicksilver at New Almaden in California. The annual yield is about $1,400,000 \mathrm{ib}$, and $\$ 000$ workpeople are employed. The principal rein is 25 feet thick; a depth of 1000 feet has been reached, and the ore increases in richness with the depth of the descent. These mines belong to the Spanish Gorernment, and yield a large revenue. At various periods they have been leased to private speculators. The town has a good hospital and mining schools. Population, 9000.

ALMLAGEST, compounded of the Arabic al and $\mu \mathrm{cyi}$ iom, the name applied by the Arabians to their translation of the Mєyá λ_{η} さúvrałes of Claudius Ptolemy, which contains a large collection of problems in geometry and astronomy. The translation was made about the year 827 A.D. by order
of the caliph Al-Jamun. The name is also applicd to other editions and translations of the work, as well as to other scientific compilations. Thus Riccioli publisheci a book of astronomy, the New Almagest, and Plukenet au Almagestum Botanicum.

ALMAGRO, a town of Spain, in the province of Ciudad Real, 12 miles E.S.E. of the town of that name. It stands in a fertile plain, and is a well-built town, with spacious streets and a fine square. It was once almest exclusively inhabited by monks and the Knights of Calatrava, and contains several ruined churches, monasteries, and cenvents. In the town and neighbeurhood lace is extensively manufactured, as many as 9000 morkmen being employed. Brandy, soap, earthenware, and leather are also made; and the surrounding district is famous for its breed of asses and mules, for the sale of which two great fairs are annually held. Excellent red wine is produced in the district. Population, 14,000 .

ALIIAGRO, Diego de, a Spanish commander, the companion and rival of Pizarro, was born at Aldea del Rey in 1475. According to another account he was 8 foundling in the village from which he derived his name. Nothing is known of his life until 1525, when he joined Pizarro and Hernando de Luque at Panama in a scheme for the conquest of Peru. The details of his subsequent carees are given at length in the article Pero. He was executed by order of his former associate Pizarro in 1538.

ALMALI, a prosperous torn of Asiatic Turker, situated on the river Mjra, 25 miles from its mouth, and 50 miles W.S.W. of Adalia. It lies 5000 feet above the sea, in a valley at the extremity of an extensive plain, the neighbouring mountains rising to a height of 10,000 feet. The town is well built, with handsome houses, several mosques, and a bazaar; and its appearance is rendered very attractive by the lofty trees interspersed through the streets, and by the gardens of the environs. There are numerous mills and factories, tanyards and dyeworks; and the inhabitants are exceedingly industrious. The town is much frequented by merchants from Smyrna and other places, who purchase the produce of the district and send it to the coast for ship. ment. Population, 8000.

AL-MAMUN (also written Al-Manoun, Al-Mamon, and simply Manus), one of the most renomned of the Abbasside dynasty of caliphs, was born in 786 A.D. . He was the son of Harun-al-Raschid, whose caliphate is the golden age of Mahometan history. Harun, dying in 808, left the supremacy to his son Al-Amin, Al-Mamun being at the time governor of Khorassan, and favourable to the succession of his brother. Irritated, hotever, by the treatment he received at the hands of Amin, and supperted by a portion of the army, Mamun speedily betook hiunself to arms. The result was a five years' struggle between the two brothers, ending in the death of Amin, 4th October 813, and the proclamation of A1-Mamun as caliph at Baghdad. Various factions and revolts, which disturbed the first years of his reign, were readily quelled by his prudent and energetic measures. But a much mere serious rebellion, stirred up by his countenancing the herctical sect of Ali and adopting their colours, soon after threatened his tbrone. His crown was actually on the head of his uncle Ibrahim ben Mahdi (surnamed Mobarek) for a short time, and a civil war with the orthodox Mussulmans was imminent, when the timely death of Mamun's vizier and of the imam Rizza removed his principal herotical advisers, and restored the people to their allegiance. This inaugurated a period of tranquillity, which Al-Mamun employed in patronising and fostering the cultivation of literature and science throughout his empire. He had already, while governor of Khorassan, founded a cellcge there, and attracted to it the most eminent men of tie
day; end now Baghdad became, nnder his auspiecs, the seat of academical instruction and the centre of intelligence. At his own expense he caused to bo translated into Arabic many valnable books from the Oreek, Persian, Chaldean, and Coptic lauguages; and he was himself an ardent stndent of mathematics and astronomy. The first Arabic translation of Euclid was dedicated to him in 813. Mamun founded obscrvatories at Baghdad and Kassiun (ncar Damascus) for astronomical purposes, and he succeeded in determining the inclination of the celiptic. He also caused a degree of the meridian to be measured on the plain of Shinar; and he constructed astronomical tables, which aro said to be wonderfully accurate. The supposed antagonism of orthodoxy and seience receives some support from the conduct of Mamun. A lover of philosophy and letters, he did not concern himself about the creed of the professors he appointed to his colleges, or the physicians he employed at his court; and on the occasion of his marriage he distributed largesses to Mussnlmans, Jews, and Christians indiscriminately. TLeso liberal measures culminated, howerer, in his becoming a couvert in 827 to the heterodox faith of the Motasali, who asserted the free-will of man and denied the cternity of the Koran. The later years (829-830) of his reign were distracted by hostilities with the Greek, emperor theophilus, occasioned, it is said, by a dispute about an eminent Greek priest whom the caliph mished to attach to his collego at Baghdad. A series of revolts in different parts of the Arabian empire betokered the decline of the military glory of the caliphs. Already had Spain and part of Africa asserted their independence, and Egypt and Syria wero now inclined to follow. In S33, after quelling Egypt, at least nominally, Mamun marched into Cilicia to prosecute the war with the Greeks; but with this expedition the career of one of the most famous of the caliphs, was to terminate. He died near Tarsus, leaving his cromn to a younger brother, Motassem. Tho death of Al-Mamun ended an important epoch in the history of science and letters, and the period of Arabian prospenty which his father's reign had begun. The inlluence of these two sovereigns is sometimes exaggerated; but there can be no doubt we owe much to their exertions at a time when Europe was sunk in barbarism. Mamun was the author of Inquirics into the Kioran, of a tract on the Signs of Prophecy, and of one on the Rhetoric of the Priests and Panegyrists of the Caliphs.

ALMANAC, a book or table, published from year to sear, containing a calendar of the days, weeks, and months of the jear, a register of ecclesiastical festivals and saints' days, and a record of various astronomical phenomena, particularly the rsing and setting of the sun, the changes and phases of tho moon, eclipses of the sun and moon, the times of high water at particular ports, \&c. In addition. to these contents, which may bo regarded as essential to ${ }^{\circ}$ the almanac, it generally presents additional information, which is more or less extensive and varied according to the many different special objects contemplated in works of this kind. The derivation of the word is doubtful. The first syllable is the Arabic definito article; the rest of the word has been variously derived from the Greck μ riv, a month; the Anglo-Saxon mona, the moon; and (which appears the most probable derivation) the Arabic manah, to reckon.

The Calesdar will be treated of in a separato article (which sce). Here we have to do with the publication which contains the calcndar of any particular year, along with other matter, astronomical, statistical, political, \&c. The Ephemeris again, it is to bo observed, is a strict astronomical term, being a register from day to day of tho places and motions of the hearenly bodies.

The attention given to astrunumy by Eastern nations,
and the practice that prevailcd among them of divination by means of the stars, must havo led to tho early construction of such tables as are comprised in our almanacs. Our information respecting these is extremely scanty; but we are not left in the same ignorance with regard to the practice of the ancient Romans. The peculiar arrangement of their calcodar is well known, and their fasti sacri or kalculares wero very similar to modern almanacs. Originally knowledgo of the calendar was confined to the class of portifices or priests, whom the pcople lad to consult not only about the dates of the festivals, but also regarding the proper times of institnting varions legal proceedings. liut about 300 B.C. ono Cn. Flavius, the secretary of Appius Claudius, possessed himself of the sccret, either by tho stealthy use of documents. in the possession of his master, or, according to Pliny, by repeatedly consulting the poutifices and jurists, and collating the particulars of thie information he obtained from them. It was neither more nor less than publishing an almanac Then, as Liry ${ }^{1}$ relates, he cxhibited the fasti on white tablets round the forum. From this time tablets containing the calendar, tho festivals, astronomical phenomena, and sometimes historical notices, seem to havo been common. The Fasti of Orid is a poetical relation of ineidents and traditions connected with the calendar. Tho researches. of antiquaries have brought to light numerous fasti or calendaria cut on marble and other kinds of stone. Representations of scveral of theso will be found in Gruter's Inscriptiones. One figured there, the Farnese zustic calendar, is a cubical block of stone, on each of the four rertical faces of which thres columns are engraved, detailing for each different month the number of days, the date of the nones, the lengths of the day and night, the sun's place in the zodiac (which is also indicated by a representation of the sign at the top of the column), the tutelary deity of the month the rural operations of the season, and the chief festivals.

Almanaes of a ruder kind, known as clogg almanacs, were in use in some parts of England as late as the eád of the 17 th century. Dr Robert Plot, keeper of the Ashmolean Museum and professor of chemistry at Oxford, gives a fignre of one of these, mith a very minute description, in his Natural Mistory of Staffordshire (Oxford, 1686); and another is represented in Gough's edition of Camden's Britannia (1806, vol. ii. p. 499). The cloggs were squars blocks of hard wood, about 8 incles in length, with notches along the fonr angles corresponding to the days of the year. The accompanying illustration shows the anglo

on which is registercd the almanac for the months of January, February, and March, taking it from left to right. The marks on the under side in the figure exhibit the primes or golden numbers of a cyele, which is fully described in Plot's work. They generally increaso by 8, 19 being struck off when that number is exceeded; and the same number will be found to stand against all tho dates (approximately) of new moon throughout the jear. The cross mark is for X, and the hook at the end of a line fo ${ }^{-}$V. Tho weeks are indicated by a deeper notch for evry seventh day, and a broadening stroke on the upper sidn in the figure-represents the first day of conh month

[^73]The other characters on the upper side are for saints' days and festivals. Thus Epiphany (Jan. 6) is indicated by a star, St Hilary (Jan. 13) by a bishop's double cross, the conversion of St Paul (Jan. 25) by an axe, St Valentine (Feb. 14) by a true lover's knot, St Matthias (Feb. 24) by a battle-axe, \&cc. All the feasts of the Virgin, as the Purification (Feb. 2) and the Annunciation (March 25), are denoted by a heart-Dr Plot was greatiy puzzled to know why. St Blaise (Feb. 3), St Agatha (Feb. 5), and othiers were indicated by their initials; and opposite the day (March 1) consecrated to David, the patron saint of Wales, is a evmbol which some consider a harp and others a leek.

The earliest almanac regarding which Lalande (whose Bibliographie Astronomique, Paris, 1803, is the best authority on publications of this kind) could obtain any definite information belongs to the 12th century. Manuscript almanacs of considerable antiquity are preserved in the British Museum and in the libraries of Oxford and Cambridge. Of these the most remarkable are a calendar ascribed to Roger Bacon (1292), and those of Peter de Dacia (about 1:00), Walter de Elvendene. (1327), John Somers (1380), \&c. It is to be remembered that early calendars (such as the Ralendarium Lincolniense of Bishop Robert Grosseteste) frequently bear the names, not of thcir compilers, but of the writers of the treatises on ecclesiastical computation on which the calendars are based. In 1812 there was printed at Hackney what purported to be a transcription of the greater part of an almanac for 1386. This, if it exists, must be one of the earliest, perhaps the earliest, in the English language that bas been preserved. The earliest English calendar in the British Museum is one for the year 1431. The first printed almanac known is one for the year 1457; the first of importance is that of Joannes de Monte-Regio, better known as Regiomontanus, which appears to have been printed at Nuremberg in 1472 . In this work the almanacs for the different months embrace three Metonic cycles, or the 57 years from 1475 to 1531 inclusive. The Ephemerides of Regiomontanus, which are to be distinguished from his almanac, were sold, it is said, for ten crowns of gold, considerably more than their own weight. The earliest almanac printed in England was The Kialendar of Shepardes, a translation from the French, printed by Richard Pynson about 1497.

The exclusive right to sell "almanacs and prognostications," enjoyed in the time of Elizabeth by two members of the Company of Stationers, was extended by James I. to the two universities and the Stationers' Company jointly; but the universities commuted their privilege for an annuity from the company. About a century ago one Thomas Carnan, a bookseller, conceiving that the company had no just title to its monopoly, published an almanac for three successive years, and was thrice imprisoned on that account by the company. In 1775 the case came before the Court of Common Pleas, and was decided in Carnan's favour. The question argued was, "Whether almanacs were such public ordinances, such matters of state, as belonged to the king by his prerogative, so as to enable him to communicato an exclusive right of printing them to a grantee of the crown ?" and the judges were unanimously of the opinion that the crown had no such right. The minister, Lord North, made an attempt in 1779 to put the company in possession, by a parliamentary enactment, of what the judges had denied it; but the proposed monopoly was denounced by Erskine and others with such ability and severity that the bill was thrown out by a majority of forty-five. In consequenco of this loss to the company of its exclusive right to issue almanacs, the universities lost their title to their annuity, and in lieu of it they received
a parliamentary grant. The company continued, however, virtually to retain its monopoly by buying up as much as possible all the almanacs issued by other publishers, and by means of the great influence it possessed over the book trade. In more recent times the power to control the sale of this class of publications has altogether ceased, but $\&$ considerable proportion of the almanacs published in this country's still issue from the ball of the Stationers' Company. A lively description of "Almanac Day" at Stationers' Hall will be found in Knight's Cyclopadia of London (1851), p. 588.

The infurnce of the heavenly bodies on the conditions and affairs of men has beer believed in, and a superstitious importance has been attached to particular times and seasons by the credulous from the remotest times. As might be imagined, therefore, since the bases on which the whole system of judicial astrology rested all fall within the field of the almanac-makers' labours, great prominence was given to omens and predictions in many of these publications. The early almanacs had commonly the name of "prognostications" in addition, and what they professed to show may be gathered from titles like the following, which is quoted by Mr Hallivell :-" Pronostycacyon of Nayster John Thybault, medycyner and astronomer of the Emperyall Majestie, of the year of our Lorde God mcccccexxiris., comprehending the iiij. partes of this yere, and of the influence of the mone, of peas and warre, and of the sykenesses of this yere, with the constellacions of them that be under the vij. planettes, and the revolucions of kynges and princes, and of the eslipses and comets." In 1579 Henry 11I. of France deemed it necessary to prohibit all almanac-makers from indulging in predictions. No such restriction, however, existed in this country; and it was to their prophesyings that the almanacs of the Stationers' Company were long indebted for much of their popularity. Among almanacs of this class published in England, and principally by the Stationers' Company, are Leonará Digges's Prognostication Everlasting of Right Good Effect, for 1553, 1555 , \&c.; William Lilly's Dferlinus Anglicus Junior, for $1644, \& c^{2}$, and other almanacs and "prognostications;" Booker's Bloody Almanac and Bloody Irish Almanac, for 1643,1647 , \&c.- the last attributed erroneously to Napier; Partridge's Mercurius Colestis, for 1681, Merlinus Redivivus, \&c. The name of Partridge has been immortalised in Pope's Rape of the Lock; and his almanacs were very cleverly burlesqued by Swift, who predicted Partridge's own death, with all details of time and circumstance, in genuine prognosticator's style. The most famous of all the Stationers' Conpany's predicting almanacs was the Vox Stellarum of Francis Moore, dating from about 1680. Of a different but not a better sort was Poor Robin, dating from 1663, and published by the company down to 1828 , which abouuded in coarse, sometimes extremely coarse, huniour.

On the lst of January 1828 the Society for the Diffusion of Useful Knowledge issued the British Almanac for that year-a publication greatly superior in every way to the almanacs of the time. To quote the society's Almanav for 1829-
"This was almost the first attempt in this country to produce ab almanse thet should not on!'y be useful to all classes, and of which the information should be wholly of a popular character, but which should be purified from the superstitions, prejudices, and indecencies which have characterised some of the almanacs of whica the circulation has been the most extensive. By a parliamentary return of the year 1828 re find that the stamp duty paid upon the almanacs of England exbihits a circulation of 451,593 annualiy. It may be safely asscrted that two-thirds of these publications contain some large portion of the matter just described; and they thus kcep alive \& spirit of ignorance utterly opposed to the desire for sound and practical information which distinguishes our own times."
The success of the British Almanac. with its raluable
supplement, the Companion to the Almanac, led to a great improvement in this class of publications. The Stationers' Company issued tho English Almanac, a work of a similar kind. The entiro repeal in 1834, by the 3d and 4th Will. IV., 0 . 57 , of tho heavy stamp duty on all almanacs of fifteenpence per copy, gavo an additiomal stimulus to the publication of almanacs of a better class, and from that time the number has greatly increased. It is interesting to remark that the British Almanac and Companion still exist, and retain their original form and character, and that this has from 1870 been the principal almanac published by the Stationcrs' Company.

The variety of extraneous matter included in almanacs, corresponding to the very numerous other objects to which the almanac proper is often only secondary, can be merely alluded to here. A number of publications, issued in Germany from the middle of the 18 th to the middle of the 19th century, under such titles as Musenalmanach, or Almanach des Muses, contain some of the best works of some of the most celebrated German pocts. The Almanach de Gotha, which has existed since 1764, and is published at present both in French and German, gives a particular account of all the royal and princely families of Europe, and ample details, compressed into little space, concerning the administration and the statistics of the different states of the world. As works of general statistical reference, the two national almanacs, Oliver and Boyd's New Edinburgh Almanac (from 1837) and Thom's Irish Almanac (from 1843), aic of very great value.
The Nautical Almanac is a publication the object of which is to supply information that is indispensable to the narigator and the astronomer. It gives with the utmost precision the positions of the principal heavenly bodies at short intervals of time, and other important details of celestial phenomena. The moon's exact position is registered for every hour, and also the angular distances at noon and midnight daily of the moon from the sun and several fixed stars. By means of the data thus supplicd, in connection with obserrations of the heavenly bodies, time, latitude, and longitude can be determined. The Nautical Almanac has been published regularly since the issue in 1766 of the Almanac for 1767 . It was originated by Dr Maskelyne, the astronoracr-royal, who conducted it for many years. About 1830 the Lords of the Admiralty were induced by complaints of its defects to bring the subject under the notice of the Royal Astronomical Society. The society appointed a committeo to consider what changes seemed necessary, and, on the committee's recommendation, tho furm was adopted which bas continued with little change from 1834 to the present time. During that period the Almanac has been published under the superintendence of the Admiralty. It is issued generally three years at least before it comes into use. The Connaissance des Temps (from 1679), the Berliner Jalurbuch (from 1776), and the American Ephemeris and Nauticgl Almanack (from 1855) are publications of a similar kind.
(See, in addition to works referred to above, interesting papers by Mr J. O. Halliwell and Professor De Morgan in the Companion to the Almanac for 1839, 1840, 1845, 1846.)

ALMANSA, a torm of Spain, in the province of Albacete, 35 miles E.S.E. of the town of that name, on the Madrid and Alicante railway. The surrounding plain is very fertile, and irrigated by means of a large reservoir. There are manufactures of linen and cotton fabrics, and also of brandy, leather, and soap. A Moorish castle is to be scen on a hill to the north-west of the town. About a milo from Almansa stands an obelisk commemorating the decisive battle fought here on 25 th April 1707, in which the French, under tho Duke of Berwick, the natural son
of James II. of Englaud, completely defcated the allied English and Spanish armies. Tho French greatly our numbered the opposing force. Tluis battle hastened the conclusion of the war of the Spanish succession. Population of the town, about 8000 .

Alale, or Alnai (froun dilim, wise, learned), the name of a distinct class of singing girls in Egypt. To be reccived into it, according to M. Savary, it is necessary to have a good voico, to uaderstand the language well, to kuow the rules of poctry, and be able to composo and sing impromptu couplets adapted to tho circumstances. The almai are present at all festivals and entertainments, and also at funerals, where they act the part of hired mourners. They are to be distinguished from the ghawazce, or dancing girls, who perform in the public strects, and are of a lower order.

ALMEIDA, a strongly-fortified town of Portugat, in the province of Beira, situatcd between the Coa and the Duas Casss, a branch of tho Agueda, 95 miles N.E. of Coimbra, and 25 miles from the Spanish fortress of Ciudad Rodrigo. It was taken by the Spaniards in 1762, and again by the French in 1810. The recapture of it by the Duke of Wellington in 1811 was deemed one of the most brilliant exploits of the Peninsular war. It is well fortified, and contains an ancient church and two hospitals. Population, 6580.
almeida, Don Francisco de, the first viceroy of Portugneso India, was born at Lisbon about tho middle of the 15 th century. He was the seventh son of the second Count of Abrantes, and thns belonged to one of the most distinguished families in Portugal. In his youth ho took part under Ferdiuand of Aragon in the wars against the Moors (1485-92). In March 1505, having received from Emmanuel I. the appointment of viceroy of the newly-conquered territory in India, he set sail from Lisbon in command of a large and powerful fleet, and arrivcd in July at Quiloa, which yielded to him almost without a struggle. A much more vigorous resistance was offered by the Moors of Mombaza, but the town was talicn and destroycd, and its large treasures went to strengthen the resources of Almeid. At other places on his way, such as the island of Angediva, near Goa, and Cananore, he built forts, and adopied measures to secure the Portugnese supremacy. On his arrival in India be took up his resilence at Cochin, where a Portuguese fort had been built hy Nlbuquerque in 1503. The $n_{n} n s t$ important events of Almeida's brief but vigorous administration were the conclusion of a commercial treaty with Malacca, and the discuveries mado by his son Lorenzo, who acted as his lieutenant. The latter was probably the first Portugucse who visited Ceylon, where he established a settlement, and is also celebrated as the discoverer of Madagascar and the Maldive islands. In 1508 he was killed at Dabul in a naval engagenent with the Moors. His father was preparing signally to avenge his death when Albuquerque arrived in Cochin, and presented a commission empowering him to supersedo Almeida in the government. It was probably Almeida's unvillingness to be thrarted in his scheme of vengeance that chiefly induced him to refuse to recognise Albuquerque's conimission, and to cast him into prison. (See Albuquerque.) The punishment he inflicted on the Moors was speedy and terrible. Skiling along tho coast, be pillaged and burned various ports, including Goa and Dabul, and finally encountering the enemy's combined flcet off Diu early in 1509, he completely destroyed it. Returning immediately to Cochin, he held out for a few months against the claims of Albuquerque, but in November 1509 he was compelled to yield. On the lst December ho set sail for Europe with an escort of three vessels. On the voyage the fleet called at Saldanha Bay, in South Africa, th
procure water, and here Almeida was killed (March 1, 1510) in an unprovoked attack upon the Caffre natives, during which he showed great personal courage.' His body was recovered on the following day, frightfully mutilated, and received a hasty burial.

ALMERIA, a modern province of Spâin, comprehending the eastern portion of the ancient kingdom of Granada. It is bounded on the N. by Jaen and Murcia, on the E and S. by Murcia and the Mediterranean, and on the W. by Granada; with an area of about 3300 square miles. The province is traversed by mountain ridges, some of them of considerable eleration, with corresponding valleys and plains of great fertility. The principal siertas are those of Maria, Almahilla, Cabrera, Aimagrera, Gata, and Gador, and in the W. some offshoots of the Sierra Nevada The most considerable rivers are the Almanzora, running from west to east, with a course of about 50 miles; the Almeria, flowing from north-west to south-east; and the Adra from north to south, watering the fertile district between the Sierra de Gador and the Alpujarras. On the S. coast is the Gulf of Almeria, a spacious bay, 25 miles wide at the satrance, and about 10 miles in depth. The climate of the province is mild, except in the interior, where the winter is cold. On the coast rain seldom falls, and south-west winds preaail. The inhabitants are priccipally engaged in mining and agriculture. Many of the proprietors farm their own land, the number of landed properties being 44,858 , while the tenants are only 7365 . Of the area of the provincc, 376,698 acres are arable and pasture land; 13,538 acres vineyards; 5360 acres olive plantations; 30,797 acres cultirated mountain and wood lands; and 1,686,738 acres uncultirated. There are 438,357 head of live stock. All kinds of grain are raised in abundance. The common fruits are plentiful, as well as oranges, lemons, and vines. Much excellent silk is produced in the western districts ; cotton is raised to some extent along the coast, and the sugar-cane is also cultivated. Cattle are extensively bred; those of the valley of the Almeria are especially remarkable for their size and beauty. The province is one of the richest in minerals of all Spain, the monntains yielding silver, mercury, lead, antimony, copper, and iron. The silver mines of the Sierra de Almagrera, opened in 1839, produced in 1843 nearly $1,700,000$ ounces; while the lead mines of the Sierra de Gador are computed to have yielded, from 1795 to 1841 inclusive, $11,000,000$ quintals of lead, and the present annual output is from 30,000 to 40,000 tons of ore. In the Sierra de Gata, jaspers and agates are found ; in the Sierra Nevada, to the west, are the celebrated quarries of Macael marble; and the Sierra Cabrera yields antimony, malachite, gypsum, magnetic iron, \&c. The manufactures of the province consist chiefly of esparto cordage, white-lead, shot, saltpetre, soap, leather, and earthenware. The principal exports are lead, esparto, barill ${ }^{2}$, and soap; while the imports include coal and machinery from England, woollen and cotton stuffs from Catalonia, silk from Valencia and Malaga, and linen from Marseilles and Gibraltar. From the want of adequate facilities for communication, the development of the agrisultural and mining resources of Almoria has nöt been so rapid as might have been expected. The disturbances attending the revolution of 1868 tve also had a prejudicial effect. Education is in a back and state, the proportion of the population at school being only fifteen in the thousand. Crime, althongh great, is not excessive, offences against the person forming the grater number of the cases tried. The people generally are simple, sober, and religious. Population in 1870, estimated at 361,553 .
Acsieria, the capital of the above province, lies on the Gulf of Almeris, on the Mediterrancan, 72 miles E.S.E
of Granada. From the strength of the port it was deemed by the Moorish kings of Grauada one of the most valuable of their fortresses and their best commercial harbour. Sailing hence, their cruisers overawed the Catalans and Italians, and their merchant ships conveyed the produce of the country to Africa, Egypt, and Syria. In the time of the Moors Almeria was the seat of lordes of pirates. The walls of the town, and the Moorish fortress, or Alcazaba, overlooking it, as well as the architecture of many of the houses, still attest its 1 foorish origin. It is pretty well built, and has sereral handsome squares, although the streets are generally narrow. Almeria is the seat of a bishop, and has a cathedral and theological seminaries. Off the port there is good anchorage in 12 and 14 fathoms water; and in addition to its landward defences the place is protected towards the sea by the forts of Triuidad and Tiro. In 1866, 46 ressels, of 21,603 tons, with cargoes, entered and cleared the port; and the annual value of the exports is abont $£ 50,000$. The manufactures are trifing, but there is a good export trade in wine, soda, esparto, silk, and lead; while the imports consist chielly of coal and manufactured goods. Here there are also some mineral springs. Population (1857), 27,036.

ALMOHADES (Almoahedun, Unitarian), a Mahometan dynasty that flourished in Africa and in Spain during the 12th and 13th centuries. Mohammed-Ibn-Abdallah, the founder of the Almoahedun sect, ㅜㅜㄹ the son of a lamplighter in the great mosque at Sous-l-Aksa. He studied at. Cordova, and afterwards visited Cairo and Baghdad, where he became the disciple of the famons philosophcr Algazali. In order to establish his porer with his countrymen, he connected himself with Abd-l-Mumen, a young Mussulman of great abilities, whom he sent forth as his apostle to propagate the new doctrine (1116-17); while in his own person he affected an unusual degree of piety and mortification, appearing in tattered garments, and interdicting the use of wine and music and every gratification of the senses: His fame spread repidly among the mountain tribes of Mahgreb, and the ignorant multitude adopted his opinions with eager zeal His followers saluted him as the Al-Mehedi on the 28th Norember 1121. Entering the city of Marocce, this new prophet foretold the downfall of the existing dynasty, and mocked the authority of the reigning prince Ali-Ibn-Yussef. Ali, Lulled in security, despised his predictions as the mere rarings of a fanatic ; and it was not without some difficulty that he was at length prevailed on to banish him from the city, Mohammed retired to the mountains, and fortified thd town of Tinmal, which he defended against every assault of his enemies (1123). His retreat becacie the rendezrous of a numerous scct, who assumed the title of Almoahedi, or Almohades, and asserted that they alone of all the Mussulmans maintained the religion of Islam in its original purity: Many Arab and Berber tribes acknowledged him as their political chief, and 20,000 solders rallied around his standard. Ali only perceived the error he had committed when it was too late : his armies, at each encounter, were panic-struck, and fled. Fet notwrithstanding the great success of the Almohades, the vast empire of the Almorarides was not at once subdued: and Mohammed, after an ineffectual attempt to reduce the city of Marocco, died in the year 1130, haring failed to eccomplish the object of his ambition, the possession of a throne. He was sncceeded by Abdel-Mumen, who assumed the title of Emirel-1fumenin, or Commander of the Faithfol. During the thirty years that he reigned, and under his descendants, Yussef and Yakub, called Almanzor-Billah, the dynasty of the Almohades mes exceedingly illustrious, and the arts flourished greatly. They rendered themselses masters of
the prorinces of Fez, Marocco, Tlemeen, Oran, and Tunis; and passing into Spain, they overran Andalusia, Valencia, and a part of Aragon and Portugal, as far the Ebro on one side and the Tagus on the other. But this vast empire was not of long continuance; for in the year 1212, when the Moslems under Mohammed were defeated by the Christian princes of Spain in the great battle of Las Navas, near Tolosa, the governors of the several provinces took adrantage of that disaster to throw off their allogiance, and declared themselres independent-an example that was the signal for a general revolt. The dynasty of the Almohades became extinct in Spain in the Jear 1257, and in Africa in 1269. The last sovereign of this race, Abu Dabus Edris, who had with difficulty maintained a sladow of power in the city of Marocco, was assassinated by a slave. They were succeeded by the dynasties of tho Hafsides, the Merarides, and the Merimides. See Almoravides.

ALMON, JoHn, a political pamphleteer and publisher of considerable note, was born at Liverpool about 1738. In early life he was apprentice to a printer in his native town, and he subsequently spent tro jears at sea. He came to London in 1758, and at once commenced a career which, if not important in itself, had a very important influence on the political history of the country. The opposition, hampered and harassed by the government to an extent that threatened the total suppression of independent opinion, were in great need of a channel of communication with the public, and they found what they wanted in Almon. He had become personally known to the leaders through various publicatious of his own which had a great though transient popularity; the more important of these being The Conduct of a late Noble Commander [Lord Gecrge Sackille] Examined (1759); a Review of the Reign of George II., published on the death of that monarch; a Reviens of Mr Pitt's Administration (1761); and a collection of letters on political subjects. The review of Pitt's administration passed through four editions, and secured for its author the friendship of Lord Temple, to whom it was dedicated. Being thus in the counsels of the party, he mas persuaded in 1763 to open a bookseller's shop in Piccadilly, chiefly for the publication and sale of political pamphlets. As be generally received with every pamphlet a sum suflicient to secure him against all contingencies, it cannot be said that he acted entirely from disinterested or patriotic motives. At the same time, he deserves the credit of intrepidity; and it caunot be denied that, whether he knew the full value of the principle for which he was con-. tending or not, he did very much to secure the freedom of the press. The government of course were not unobservant of Almon's proceedings, and, as has often been the case, ofrengthenerl his influence by the very measures they took to repress it. In 1700 the Attorney-General moved to have him tried for the publication of the pamphlet entitled Juries and Lilels, but the prosecution failed; and in 1770, for merely selling a copy of the London Ifuseum containing Junius's celebrated "Letter to the King," he mas sentenced by Lord Mansfield to pay a fine of ten marks, and give security for his good behariour. It was this trial that called forth the letter to Lord Mansfield, one of the most bitter of the Junius serics. Almon himself published an account of the trial, and of course did not let slip the opportunity of reprinting the matter that had been the ground of indictment, but no further proceedings mere taken against him. In 1774 Almon commenced the publication of his Parliamentary Register, and he also issued an abstract of the debates from 1742, when Chandler's Reports ceased, to 1774. About the same time, having earned a competency, he retired to Bormoor in Hertfordshire, thongb he stiil continued to write on political subjects. Iif ailerwards became proprietor of the General Advertiser,
in the management of which he lost his furtune, and was declared insolvent. To these calanities was added an imprisonment for libel and a sentence of outlawry. Being enabled at last to return to Boxmoor, he continued for some years a carcer of undiminished literary activity. His last work, a Life of Wilkes, in five volumes (1805), was perhaps his worst, being entirely wanting in proportion and arrangement. He died on the 12 th December 1805. A complete list of Almon's works, most of which appeared anonymously, is given in Watt's Bibiiotheca Britannica. Though their literary merit is not great, they are of very considerable value to the student of the political histery of the period.

ALMOND. This is the fruit of Amygdalus communis, a plant belonging to the natural order losaceæ, sub-order Amygdalea or Drupiferx. The tree appears to be a native of Asia, Barbary, and Marocco; but it has been extensively distributed over the warm temperate region of the Old World. It is a tree of moderate size; the leaves are oblonglanceolate, and serrated at the edges; and the flowers, which appearearly in spring, are of a pink colour. The fruit.is a drupe, having a downy outer coat, called the epicarp, covering a tough portion called the mesocarp, which encloses the reticulated hard stony shell or endocarp. The seed is the kernel which is contained within these coverings. The shell-almonds of trade consist of the endocarps enclosing the seeds. The tree grows in Syria and

The Almond-tree (Amygdalus communts), tho (rait of which is a drupe with o tough mesocarp. The Hebrew word Shaked is gencrally translated Almond (Gen. xlli, 11; Eiod. $\mathbf{x x v}$. 33, 84 ; xxx 11.19 ; Numb. 2Fit, 8). The word Luz, which occure in Gemests x xre 37 , and is there translated Hazel appeers to be the name of the Almondtree, whlle shoked is the nsme of the fruit.

Palestine; and is referred to in the Bible under the name of Shaked, meaning "hasten" The word Luz, which occurs in Genesis xxx. 37, and which has been translated hazel, is supposed to be another namo for the almond. In Palestine the tree flowers in January, and this hastening of the period of flowering seems to be alluded to in Jeremiah i. 11, 12, where the Lord asks the prophet, "What seest thou ?" and he replies, "The rod of an almond-tree;" and the Lord says, "Thou hast well seen, for I will hasten my word to perform it." In Ecclesiastes xii. 5 it is said the "almond-tree shall flourish." This has often been supposed to refer to the resemblance of the hoary locks of age to the flowers of the almond; but this exposition is not borne out by the facts of the case, inasmuch as the flowers of the almond are not white but pink. The passage is more probably intended to allude to the hastening or rapid al roach of old age. The application of Shaked or hasten to the almond is similar to the uso of the pame "May" for the hawthorn, which usually flowers in that month in Britain. The rod of Aaron, mentioned in Numbers avii., was taken from an almond-tree; and the Jews still carry rods of almond-blossom to the synagogues on great festival day.. The fruit of the almond supplied a model for certain kinds of ornamental carved work. (Exodus xxv. 33, 34; xxxrii. 19, 20). Dr Tristran remarks: "The blossom of the almond is a rery pale pink, but where, as in the
orchards near Nablous (Shechem), the peach and almond trees are intermingled, the almond looks white by comparison. In early spring it forms a beautiful feature in the landscape there, as the lower slopes of Gerizim, as well as the valley, are studded with almonds and peaches, in lively contrast with the deep green foliage of the orange-trees, and rivalling an apple orchard in splendour of colour. There are also many wild almond-trees on Mount Carmel. The tree seldom exceeds 12 to 16 feet in height." There are two varieties of the plant, the one producing sweet, the other bitter almonds. The kernel of the former contains a fixed oil and emulsin; while that of the latter has in addition a nitrogenous substance called amygdalin, which, by combination with emulsin, preduces a volatile oil and prussic acid. The flowers of the bitter almond-tree (Amygdalus communis, variety amara) are larger and whiter than those of the sweet almond-tree (Amygdalus communis, variety dulcis). The street almond is bland and inodorous. There are numerous commercial varieties, of which the most esteemed is the Jordan almond, imported from Malaga. Valentia almonds are also valued. Fresh sweet almonds are nutritive and demulcent, but as the outer brown skin or episperm sometimes causes irritation of the alimentary canal, they are blanched by removal of this skin when used at dessert. When bitter almonds are pounded in water a ratafia odour is produced, on account of the formation of prussic acid. The essential oil or essence of almonds, so mach employed for flarouring dishes, requires to be used with caution, as it possesses marked poisonous qualities. In some cases the oil, even when taken in small quantities, produces nettle-rash. The import of sweet almouds into Britain in 1870 amounted to $36,189 \mathrm{cwt}$.; of bitter almonds, 7618 cwt .

ALMONDBURY, au extensive parish and township of Yorkshire in England, lying to the S.E. of Huddersfield. As the manufactures of Huddersfield have increased, various outlying districts have been built on, so that the parish of Almondbury now includes a considerable part of that important and flourishing town. The parish contains 28,092 acres. The town lies on the river Calder, 2 miles S.E. of Huddersfield, and had formerly a cathedral and a strong castlc. By some writers it is supposed to occupy the site of the Roman. Campodunum mentioned by Antoninus; but whether or not, the place can boast a Roman origin-it was at least a town of importance in Saxon times, and a seat of the kings of Northumbria. It has a free grammar school founded by James I., a good church, and several other public buildings. The inhabitants of the town and parish are chiefly engaged in the manufacture of fine cloths, and woollen, cotton, and silk goods. In 1871 the population of the parish was 46,299 ; of the township, 11,669.

ALMONER, in its prinitive scnse, denotes an officer in religious houses, to whom belonged the management and distribution of the alms of the louse. By the ancient canons, all monasteries were to spend at least a tenth part of their income in alms to the poor, and all bishops were required to keep almoncrs.

Lord Almoner, or Lord High Almoner of Evgland, is an ecclesiastical officer, generally a bishop, who bas a right to the forfciture of all deodands and the goods of a felo de se, which he is to distribute among the poor. He bas also, by virtuc of an ancient custom, the power of giving the first dish from the king's table to whatever poor person he pleases, or, instcad of it, an aims in money. See Maunday Teursday.

ALMORA, the principal town in the British district of Kumáon, within the licutenant-governorship of the NorthWestern Provinces, is situated in $29^{\circ} 35^{\prime} \mathrm{N}$. lat., and 79° $42^{\prime} \mathrm{E}$. long. The town is built on the crest of a ridge of
the Himálayas, running east and west, and 5337 feet above sea-level. It consists chiefly of a single strcet, about 50 fect wide and three-quarters of a mile long, closed by a gate at each end. A few detached houses, inhabited by Europeans, are scattered along the face of the mountain below the town. The town was captured by the Gurkhis in 1790 , who constructed a fort on the eastern extremity of the ridge. Anotiner citadel, Fort Moira, is situated on the other extremity of the ridge. Almorá is also celebrated as the scene of the British victory which terminated the war with Nepal in April 1815, and mhich resulted in the evacuation of Kumáon by the Gurkhas, and the annexation of the province by the British. According to the census of 1872 , the tomn contains a population of 5900 souls. It has been constituted a municipality, the revenue and expenditure of which in 1871-72 is returned as follows :-Revenue-Receipts from octrei, £29, 16s. ; housetax, £211, 8s.; other sources of income, £30, 14 s : : total, £271, 18s. Expenditure-Establishment, including cost of collection, police, and conservancy, $£ 182$; repairs, $£ 90$, 16 s ; other items, $£ 3,16 \mathrm{~s} .:$ total, $£ 276,12 \mathrm{~s}$.

ALMORAVIDES, a family of Mabometan princes mho reigned in Africa and in Spain between 1073 and 1147 A.D. This appellation was derived from the sect of Al Morabethun (Dedicated to the service of God), which arose about the middle of the llith century, among a poor ignorant tribe of Berbers inhabiting the mountains of Atlas, on the shores of the Atlantic Ocean. At the request of a sheik of Lamtouna, who had acquired some taste for learning by travelling in the East, Abdallah-ben-Yazim, an Arabian of extraordinary erudition, consented to instruct the people in the truths of Islam. The enthusiasm of Abdallah created a like zeal in the hearts of his igmorant hearers; and by the energy and novelty of his discourses he so inflamed the minds of his disciples that they compelled those whom persuasion could not more to embrace the new religion. Thus Abdallah found himself at the head of a numerous sect, who soon began to regard him as their leader both in tempcral and spiritual matters. Under the name of Almorabethun or Almoravides, they overman the country of Daza, lying betreen the desert of Sahara and the ancient Getulia, and ultimately extended their conquests from the shores of the Mediterraneen to the frontiers of Nigritia. Abdallah died on the field of battle in the year 1058. He was succeeded by Abu-Dekr-Ibn-Omar, a man whose abilities were scarcely equal to the difficulties of the position in which he was placed. In 1072 he was supplanted by Iussef-Ibn-Tashfyn, to thom he had entrusted the gorernment on setting out for Atlas to quell an insurrection of the Berbers. Iussef completely established the Almoravide power in Al-Magreb in 1073. On the invitation of Mohammed of Seville, he crossed to Algeciras in 1086, and at once marched against Alphonso VI., the most powerful prince in Christendom. They met in the plains of Zalaca (23d Oct. 1086), and Alphonso mas defeated with terrible slaughter. The nems of Yussef's success induced many of the Arabs of Spain to enlist under his victorious banner. In a third expedition to Spain (1091), he attacked Mobammed, and after a protracted siege became master of Scrille. This conquest was follomed by the subjugation of Almeria, Denia, Xativa, and Valencia. The acquisition of the Balcaric Islcs mas the completion of this rast empirc, which cxtended from the Ebro and the Tagus to the fronticrs of Soudan. Although Maroceo mas his capital, he frequcatly visited his Spanish dominions; and on the last occasion, having assembled the governors of the province at Cordova, be appointed Ali, the joungest of his sons, as his successor. He then returned to Marocco, where he died at a very advanced age, 1106 A.D. (500 of the Hegira), after a rcign of forty years.

596

A L II - A L N

Fers kings have received so noblo a heritage as that to which Ali succeeded. The first years of his reign were prosperous, though disturbed by the Almolades, who were preparing the way for the destruction of the Almoravides. Ali was at last obliged to recall from Spain his son Tashfyn, who was using his utmost endeavours to oppose the victorious career of Aphonso of Aragon, surnamed the Fighter. But the valour of Tashfyn was of little avail against the rising power of the Almohades: disaster followed disister; and when, in 1143, he succeeded to the throne, buo a moiety of the kingdom remained. It was in vain that he received succours from Spain, the troops from that soft climate being little fitted for service in the wild regions of Atlas. Driven from Tlemeeen, he sought refuge in Oran ; but Abd-el-Mlumen appeared before its walls, and by threats so intimidated the inhabitants that Tashfyn was compelled to attempt eseape on horseback, with his farourite wife behind him ; but being closely pursued, he urged his horse over a precipice, and with his wife was dashed to pieces. With Tashfyn expired the domination of the Almoravides ; for although they still remained in passession of the city of Marocco, their power was completely broken. IshakIbrahim, the son of Tachfyn, was taken and put to death at Alcazar in 1147, on the surrender of Maroceo by treachery, and with him the dynasty of the Almoravides became extinct. The remnant of the sect, driven from Spain, took refuge in the Balearic Islands, but it was finally suppressed in 1208. (For the history of the Arabians in Spain, gee the works of Cardonne, Condé, St Hilaire, D'Herbelot, Al-3akkari, and Dozy.)
almqvist, Karl Jonas Ludwig, one of the most extracrdinary figures that the history of literature can produce, was born at Stockholm in 1793. He began life under highly favourable auspices; but becoming tired of a university career, he threw up the position be held in the capital to lead a colony of friends to the wilds of Wermland. This ideal Seandinavian life soon proved a failure; Almqrist found the pen easier to wield than the plough, and in 1829 we find hin once more settled in Ștockholm. Now began his literary life; and after bringing out several educational works, he made himself suddenly famous by the publication of his great novel, The Book of the Thorn-Rose. The career so begun developed with extraordinary rapidity; few writers have equalled Almqvist in productiveness and versatility ; lyrical, epic, and dramatic poems ; romances; lectures; philosophical, æsthetical, moral, political, .and educational treatises; works of religious edification, studies in lexiccgraphy and history, in mathematies and philology, form the most prominent of his countless contributions to modern Swedish literaturo. So excellent was his style, that in this respect he has been considered the first of Swedish writers. His life was as varied as his work Unsettled, unstable in all his doings, he passed from one lucrative post to another, at last subsisting entirely on tho proceeds of literary and journalistic labour. More and more vehemently he espoused the cause of socialism in his brilliant norels and pamphlets; friends were beginning to leave him, foes beginning to triumph, when suddenly all minor criticism was silenced by the astounding news that Almqrist, convicted of forgery and charged with murder, had fled from Sweden. This occurred in 1851. For many years no more was heard of him; but it is now known that he went orer to America, and settled at St. Louis. During a journey in Texas he was robbed of all his manuscriph, among which are said to have been several unprinted norels. He appesiced in person to President Lincoln, but the roblen could not be tracel. In 18 年 he returned to Europe, and hi strange and sinitere existence came to a close at İremen on the 26th of seprember, 1866. It is lys his romances, un-
doubtedly the ocst in S :sedish, that his literary fame will mainly be supported ; but his singular history will al waya point hin out as a remarkable figure even when his works are no longer read. He was another Eugene Aram, but of greater genius, and so far more successful that he escapei the judicial penalty of his crimes.
(E w. G.)
ALMUG or ALGUM TREE The Hobrew words Almuggin or Algummim are translated Almug or Algum trees in our version of the Bible (see 1 Kings x. 11, 12; 2 Chron. ii. 8 , and ix. 10,11). The wood of the tree was very precious, and was brought from Ophir (probably some part of India), along with gold and precious stonc3, by Hiram, and was used in the formation of pillars for the temple at Jernsalem, and for the king's house; also for the inlaying of stairs, as well as for harps and psalteries. It is probably the red sandal-wood of India (Pterocarpus santalinus). This tree belongs to the natural order Leguminosx, sub-order Papilionacex. The wood is hard, heavy, closegrained, and of a fine red colour. It is different from the white fragrant sandal-wnod, which is the produce of Santalum album, a tree belonging to a distinct natural order.

ALMUNECAR, a small seaport town of Spain, in the province of Granada, about 33 miles south of the town of that name. It is a place of Moorish origin, and is tolerably well built. The harbour is fit for small ressels only, and is much exposed to gales from tho east. Sugar, cotton, and fruits are the chief products of Almunecar and the surrounding country, which is naturally very fertile, but the trade is small compared with that of former times. Population, 5000 .

ALNWICK, the county town of Northuniberland, is situated on the south bank of the river Alne, 310 miles N. of London, 34 N . of Neweastle, and 29 S . of Berwick. There are remains of the old wall which surrounded the town, and one of the four gates still exists; but most of the houses are comparatively. modern, and are laid out in wellpaved spacious streets. In the market-place there is a large town-hall, and a handsome building containing an assembly-room and a reading-room. Besides the parish church, Alnwick possesses a beautiful district churel, a Roman Catholic chapel, and several Protestant dissenting places of worship. The chief employntents are brewing, tanning, and briekmaking, but these manufactures are here of little importance. A small export trade is carried on through Alnmouth in corn, pork, and eggs, and a market is held every Saturday chiefly for these articies. The local government consists of a bailiff, nominated by the Duke of Northumberland, and twenty-four common councilmen, four of whom are elected annually as chamberlains; the councilmen fill up vacancies in their body from the freemen, who usually are about 300 in number. The ceremony of making freemen is of a very peculiar kind. The candidates, mounted on horseback, assemble in the market-place very early in the morning of St Mark's daythe 25th April-clad in white from head to foot, with swords by their sides, and attended by the bailiff and chamberlains, who are mounted and armed in the same manner. From the market-place they proceed, with music playing before them, to a large pool called Freeman's Wecll, where they dismount and draw up in a body at some dis tance from the water, and, on a given signal from the bailiff, rush into the pool, and seramble through the mad as fast as they can. As the water is generally very foul, they come out in a dirty condition; but they put on dry clothes, remount their horses, and ride at full gallop round the boundaries of the town. According to tradition, the observance of this custom was enjoined by King John to punish the inhabitants for their carelessness, the king haring, it is said, lost his way, and been bemired in a bog, from their neglect of the roads near the town. To the
nurth west of the town $1 s$ Alnwick Castle, which has belonged to the Northumberland family since 1310. In early times this foritress was an important defence against the Scotch, and was besiegcd by them on several occasions, most memorably in 1093, when Matcolm Canmore and his son Edward were slain under its walls; and in 1174, when William the Lion was defeated and taken prisoner. For a long time it was permitted to fall into decay, but it has recently been restored, and to some extent remodelled, and is now one of the most magnificent speciinens of a baronial residence in England. The grounds are extensive, and contain the remains of two abbeys, Alnwick and Hulme. The population of Alnwick in 1871 was 5822.

ALOE Aloes is a medicinal substance used as a purgative, and produced from various species of aloe, such as A. spicata, vulgaris, socotrina, indica, and purpurascens, all belonging to the natural order Liliaceæ. Several kinds of aloes are distinguished in commerce-Barbadoes, socotrine, hepatic, Indian, and Cape aloes. The first two are those commonly used for medicinal purposes. Aloes is the inspissated juice of the leaves of the plant. When the leaves are cut the juice flows out, and is collected and evaporated. After the juice has been obtained, the leaves are sometimes boiled, so as to yield an inferior kind of aloes. The active principle is called aloein. Aloes is used in the form of extract, pill, tincture, and wine. It is irritant, and requires to be used with caution.

The plant called American aloe belongs to a different order, viz., Amaryllidacee. The plant is called Agave Americana. The juice of the plant, taken immediately before flowering, is used in America for the manufacture of an intoxicating beverage. In Ecuador the spongy substance of the flower stem is used instead of tinder, and in the schools the green leaves serve as paper. A punishment among the Aztecs was introducing the spiny points of the leaves into the skin. The plant often delays flowering for many years, and then pushes up a flowering stalk with great rapidity, sometimes at the rate of 1 foot or even 2 feet in twenty-four hours. The fibrous matter procured from the agave by maceration supplies pita flax.

The aloes or lign aloes of the Bible (Numb. zxiv. 6, and Psalm zlv. 8) is quite different from the medicinal aloes. The Hebrew words ahalim and ahaloth, and the Greek word aloe, are rendered aloes in our version of the Scriptures. The substance is supposed by some to be the fragrant wood of Aquilaria Agallochum, a plant belonging to the natural order Aquilariaceæ. There are, however, considerable doubts as to the correctness of this view, more especially as the tree is a native of Cochin China, Silhet, and Northern India, and is not found in Chaldea or Syria. From the allusion made to the trees of lign aloes by Balaam, it seems probable that they were kncwn as growing in Syria. It is quite possible, however, that the precious fragrant substance called aloes, and mentioned in Scripture along with cinnamon, cassia, myrrh, and spices, may have been brought from India. As a perfume it is noted in Psalm xlv. 8; Prov. vii. 17; Song of Sol. iv. 14. The use of aloes in perfuming the coverings of the dead is referred to in John six. 39, 40.

ALOIDE, or Alouder, the designation of Otus and Ephialtes, sons of Poseidon by Iphimedea, wife of Aloeus. They are celebrated for their extraordinary stature, being 27 cubits in height and 9 in breadth when only nine years old. The story of their piling Pelion upon Ossa in their war with the Olympian gods is one of the best known of the early Greek"myths. According to Homer's account, they were destroyed by Apollo ere their beards began to grow. (Odyssey, xi. 305 ; Mliad, r. 385.)
alompra, aloung Phoura, founder of the reigning dyasaty in Burmah, was born in 1711 at Monohaboo, a
small village 50 miles north-west of Ara Of humble origin, he had risen to be chief of his native village when the invasion of Birmah by the king of Pegu in 1752 gave hin the opportunity of attaining to the highest distinction The whole country had tamely submitted to the invader, and the leading chiefs had taken the oaths of allegiance. Alompra, however, with a more independent spirit, not only contrived to regain possession of his village, but was able to defeat a body of Peguan troops that had been sent to punish him. Upon this the Birmese, to the number uf a thousand, rallied to his standard, and marched with him upon Ava, which was recovered from the invaders before the close of 1753. For several years he prosecuted the war with uniform success. In 1754 the Peguans, to avenge themselves for a severe defeat at Keoum-nuoum, slew the king of Birmah, who was their prisoner. The son of the latter claimed the throne, and was supported by the tribe of Quois; but Alompra resisted, being determined to maintain his own supremacy. In 1755 Alompra founded the city of Rangoon. In 1757 he had established his position as one of the most powerful monarchs of the East by the invasion and conquest of Pegu. Ere a year elapsed the Peguans revolted: but Alompra, with his usual promptitude, at once quelled the insurrection. The Europeans were suspected of having instigated the rising, and the massacre of the English at Negrais in October 1759 is supposed to have been approved by Alompra after the event, though there is no evidence that he ordered it. Against the Siamese, who were also suspected of having abetted the Peguan rebels, he proceeded more openly and severely. Entering their territory, he was just about to invest the capital when he was seized with an illness which proved fatal on the 15th May 1760 . Alompra is certainly one of the most remarkable figures in modern Oriental history. To undoubted military genius he added considerable political sagacity, and he deserves particular credit for his efforts to improve the administration of justice. His cruelty and deceitfulness are faults common to all Eastern despots.

ALOST, or Aasst, a town of Belgium, on the eastern frontier of the province of East Flanders, about midway between Ghent and Brussels. The Dender, a narigable tributary of the Scheldt, passes through the town, which is a clean, well-built place, surrounded by a wall with five gates. The church of St Martin, a fiue edifice, although unfinished, contains a celebrated picture by Rubens, "St Roche Praying for the Cessation of the Plague." Among the other public buildings are a town-hall, which was founded about 1200 A.D., a college, and an hospital. The trade is extensive, chiefly in corn, oil, hops, and beer; and there are linen, lace, and cotton manufactories, and iron foundries of considerable importance. Alost was formerly the capital of imperial Flanders. The French under Turenne took it in 1667, but were obliged to abandon it after the battle of Ramillies in 1706. Population, 19,000.

ALPACA is a name applied generally to several allied Scuth American wool-bearing animals, but more properly restricted to one of the species. It is further used to distinguish the wool obtained from these animals, and the woven textures manufactured from the wool are also known as alpacas. The alpacas or llamas are natives of the lofty table-lands and mountaiu-range of the Andcs in Peru and Chili, and in that region of the globe they long occupied the position held in the Old World by their congeners of larger size, the camels. To the ancient Peruvians the llamas were the only available beasts of burden and wool-bearing creatures, just as to the present day the camel is to the tribes of the Asiatic deserts. The camel (Camelus) and the llams (Auchenia) form the two existug genera of the family Camelidæ; and thus in a zonlogical sense also the one
represents the other in different regions of the earth. A great deal of doubt and confusioa has existed as to the number of species into which the llamas can be divided-a very common ocgurrence in dealing with domesticated or semi-domesticated creatures. Most authorities now, however, agree in regarding them as separable into four species, following the classification of Von Tschudi, who has given much careful. consideration to the subject. The species, according to that naturalist, are the llama (Auchenia lama), the buanaco or guanaco (A. huanaco), the alpaca or paco (A. paco), and the vicugna (A. vicunna.) The two first-named speeies are, or rather were, more valucd as beasts of burden, and for their flesh, than as sources of wool, being able to bear from 120 to 150 lb burden over long distances daily. The guanaco attains a size not much less than our red deer; and is the largest and most widely spread of all the species, being found from the equator southward to Patagonia. The llama is neat in size, but its habitat is limited to the loftier mountains of North Peru. Although both species yield a serviceable quality of wool, which is used by the Peruvians and found in commerce, it is chiefly to the alpaca we owo the supply of wool imported into this cotstry under that name. The alpaca is considerably smaller than either the llama or the guanaco, but in general outline all the species resemble each other. In its native condition tho alpaca ranges between 10° aud $20^{\circ} \mathrm{S}$. lat., from the centre of Peru into Bulivia, not coming lower down in vertical distribution than betreea 8000 and 9000 feet above the sea-lerel. At and above these heights it lives in herds in a semidomesticated condition, being only driven into the villages to be shorn. The wool, which varies in length from 2 to 6 inches, is of a rery lustrous and fine quality, and is mostly white, black, or gray, shades of brown or fawn being rarer. The vicugna is a much rarer auimal than the alpaca, being found sparsely scattered from Ecuador, throughout Peru, into Bolivia, but seldom descenting under 13,000 feet above the sea-level. It is about the same size cs the alpaca, and yields an exceedingly delicate wool, varying in colour from a reddish yellow to a dull white. It is usually morth about twice as much as alpaca, and is greatly valued for fine felts.

There is eridence of these animals having been held domesticatcd and used for their wool in their arative regions from remote aatiquity. Remains of clothing made from alpaca wools have beca found in the graves of the Incas; and when, in the early part of the 16 th century, Europeans frst visited Peru, these animals formed the chief wealth of the gatives, being the carriers of their commerce as well as the main source of their food and clothing. Small quantities of the wool were occasionally met with in English commerce; but it was not till 1836 that it became established as a regular trading commodity with Europe. In that jear Mr (now Sir) Titus Salt, a wool-broker and maaufacturer in Bradford, purchased a quantity he met with in a Liverpool warehouse at 8 d . per ib , and set himself to discover its capabilitics. The amount and manner of his success mil be described in the articles Wool and Worsted Mavufactures; it need only be remarked here that his experiments have resulted in making alpaca a staple secoad in importauce to wool, and so creatiag an industry of great and rapidly increasing dimensions. The success of his experiments led to the erection of his great manufacturing establishment of Saltaire, in which upwards of 3000 hands are emplosed in the alpaca manufacture. The quantity of alpaca imported into Eagland from 1836-the year of Sir Titus Salt's first experimental purchase-to 1840, avcraged 560,800 ib jearly, which sold at about 102 per tb. In 1852 the imports had risea to $2,186,480$ 03 , and the price advaaced to 2 s . 6 d . per Eb . In 1864 the
imports amounted to $2,664,027 \mathrm{tb}$, and in 1872 they were $3,878,739 \mathrm{lb}$; the value of arerage qualities being from 2s. 6d to 2s. 10d. per 1 bb . The introduction of the rarious species of llama into Europe has been frequently urged. Geoffres St Hilaire and other French aaturalists having specially pointed out the desirability of their iutroduction into France, and at ono time a berd existed in the Pyrences; but in Europe the creatures must bo still regarded as curiosities of zoological collections. In 1859 systematic and costly attempts were made to acclimatise the alpaca in our Australian colonies by Mr Ledger, a gentleman who had deroted many years to observation of the conditions of life of the animal. At first the experiment presented most eacouraging prospects; the herds continued healthy and increased in numbers; but gradually the subtle influences of the loss of their native mountain climate became apparent,-the creatures drooped, their numbers dwindled, and for the present the undertaking must be regarded as a complete failure.
aLP ARSLAN or AXAN; Mohammed Ben Daud, tho second sultan of the dynasty of Seljuk, in Persia, and greatgrandson of Scljuk, the founder of the dynasty. He was born in the jear 1029 A.d., 421 of the Hegira. He assumed the name of Mohammed whea he embraced the Mussulman faith; and on account of his military prowess he obtaiaed the surname Alp Arslan, which signifies "a raliant lion." He succeeded his father Daoud as ruler of Ihorassan in 1059, and his uncle Togrul Bey as sultan of Oran in 1063, and thus became sole monarch of Persia, from the river Oxus to the Tigris. In consolidating his empire and sub. duing contending factions he was ably assisted by Nizam-al-MIulk, his vizier, one of the most eminent statesmen in early Mahometaa history. Peace and security being established in his dominions, he conroked an assembly of the states, and declared his son Malik Shah his heir and successor. With the hope of acquiring immense booty in the rich temple of St Basil in Cæsarea, the capital of Cappadocia, he placed himself at the head of the Turkish cavalry, crossed the Euphrates, and entered and plundered that city. He then marched into Armenia and Georgia, Which, in the year 1064, he finally subdued. To punish the Georgians for the brave defence which they bad made, and as a badge of their humiliating condition, the conqueror obliged them to wear at their ears horse-shoes of iron. In the year 1068 Alp Arslan invaded the Roman empire, the seat of which was then at Constantinople. The Emperor Romanus Diogenes, assuming the command in person, met the invaders in Cilicia. In three several campaigns his arms were victorious, and the Turks were forced to retreat beyond the Euphrates. In the fourth he advanced with an army of 100,000 men into the Armenian territory, for the relicf of that country. Here he was met by Alp Arslan; and the sultan haring proposed terms of peace, which were insuliingly rejected by the emperor, a bloody and decisive engagement took place near Malazkurd, in which the Greeks, after a terrible slaughter, were totally routed. Romanus was taken prisoner and conducted into the preseace of Alp Arslan, who treated hin with a noble generosity. A ransom of a million and an anaual tribate of 3000 pieces of gold, an intermarriage between the families, and the deliverance of all the captive Mussulmans in the porrer of the Greeks, having been agreed to as the terms of peace and the liberty of the emperor, Romanus was dismissed, loaded with presents and respectfully attended by a military guard. He was unable, however, to fulfil the terms of the treaty, and the war was accordingly reacwed. At this time the dominion of Alp Arslan extended over the fairest part of Asia: 1200 princes or sons of princes surrounded his throne, and 200,000 soldiers ware ready to execute his commands. Ho now decla
his purpose of attempting the ciaquest. of Turkestan, the original seat of his ancestors. After great preparations for the expedition, he marched with a powerful army, and arrived at the banks of the Oxus. Before he could pass the river with safety, it was necessary to gain possession of some fortresses in its vicinity, one of which was for several days vigurously defonded by the governor, Yussuf Kothual, a Kharizmian. He was, however, obliged to surrender, and was carried a prisoner before the sultan. Being condemned to suffer a cruel death, Yussuf became incensed, rushed upon the snltan, and stabbed him in the breast. The wound proved mortal, and Alp Arslan expired a few hours after he received it, on the 15 th Der. 1072.

ALPES, the name of three departments in the southeast of France,-Basses Alpes, Hautes Alpes, and Alpes Maritimes.

Basses Alpes is bounded on the N. by the departinent of Hautes Alpes; on the E. by the kingdom of Italy and the department of Alpes Maritimes; on the S. by the departments of Var and Bouches du Phônc; and on the W. by those of Vancluse and Drôme. It extends at the widest points 96 miles from N.E. to S.W., and 70 from E. to W., and contains an area of 2680 square miles. Its surface is morntainous, especially on the northeast, where offshoots of the Maritime Alps penetrate into the country, rising near the river Ubaye to an elevation of over 9000 feet above the level of the sea. With the exception of the south-eastern corner, which is drained by the Var, the . whole department is in the basin of the Durance, which for a considerable distance separates Basses from Hautes Alpes, but eventually strikes southward through the former. Its chief tributaries are the Buech and the Jabron on the right, and the Ubaye, the Bléone, the \triangle sse, and the Verdon on the left. The climate in the monntainons districts of the north is cold and variable. The soil there is poor, but it is cultivated with great industry - producing rye, oats, barley, potatoes, and timber. In the south and south-west, however, where the country is comparatively flat, the temperature is milder and the soil more fertile; here plums, almonds, apricots, peaches, and other fruits are produced in large quantities, as well as wine of an excollent description, chiefly for home consumption. Considerable numbers of cattle, sheep, goats, and pigs are reared in the Basses Alpes, besides which many flocks of sheep, from Var and Bonches du Rhône, are pastured during summer in the upper vallcys of the department. Game is abundant. There are mines of lead and other metals of some value. The manufactures are ferw and of little importance, the chief being leather, coarse woollen cloths, cutlery, earthenware, and paper. Basses Alpes, one of the departments formed out of ancient Provence, is divided into five arrondissements-Digne, in the centre; Barcelonnette and Castellane, on the east; Sisteron and Forcalquier on the west; which together contain 30 cantons and 251 communes. Digne is the capital and the seat of a bishop, whose diocese is co-extensive with the department; and among the other towns are Barcelonnette, Castcllane, Sisteron, Forcalquier, and Manosque. Population (1871), 139,332.

Hautes Alpes is bounded on the N. by the departments of Isère and Savoir; on the E by the kingdom of Italy; on the S. by the department of Alpes Basses; and on the W. by that of Drôme. It extends nearly 80 miles from N.E. to S.W., and contains an area of 2158 square niles. Its surface is very mountainous, being traversed in all directious by the Cottian and Dauphiné $\mathrm{A}!p s$, which, in Mont Pclooux and other peaks, ṛise to an elera-
tion of about 13,000 feet abore the sea, the highest sunimits in France. The Drac, flowing northwards into the Isere, and the Durance, with its tributaries the Guil and the Buech, are the chief rivers of Hautes Alpes. The climate is cold in winter, and in summer variable; the soil is barren, yielding only oats, barley, patatoes, rye, and timber, except in a few favoured valleys, where wine of a fair quality and fruits of various kinds are produced. Large numbers of sheep and other domestic auimals are reared or pastured in the department. Game, both largo and small, is found in great abundauce. The mines produce lead, copper, iron, and other metals. There are no manufactures of any commercial iniportance, although some leather, coarse woollen cloth, hats, woodwork, and iron wares are made. Hautes Alpes, a part of the old province of Dauphiné, is divided into three arrondisse inents: Gap on the west, Embrun on the Southeeast, and Briançon on the north-east, with 24 cantons and 89 communes. The capital is Gap, the seat of the bishop; Embrun and Briançon being the ouly othcr towns of any size. Population, 118,898.

Alpes Maritimes, bounded on the N. by Basses Alpes and the kingdom of Italy, which also forms its boundary on the E. ; on the S. by the Mediterrancau Sea; and on the W. by Var and Basses Alpes. It extculs at the widest points 55 miles from N. to S., and 50 from E. to W.; and contains an area of 1517 square miles. The surface of this department, like that of the two former, is more or less mountainons, branches of the Maritimes Alpes covering the greater part of the territory. It is watercd by the Roya, the Paillon, the Var (with its tributaries the Tinea and the Esteron), the Loup, and the Siagne. The climate is on the whole warm and gentle, except among the higher monntains; while the mildness of the temperature along the shores of the Mediterranean has made that portion of the department a favourite resort for invalids. The upper valleys and mountain slopes are chiefly devoted to pasture for sheen, being ill-suited for cultivation, alth ough a Little barley and maize is grown; the richer districts of the south produce fruits of rarious kinds, tobacco, honey, and flowers, used in the making of perfumes. The other manufactures are of dried fruits, olive-oil, preserved anchovies and sardines, silk, soap, and paper. Alpes Maritimes is divided into three arrondissements-Grasse and Nice on the south, and Puget Théniers on the north, containing 25 cantons and 146 communes. The arrondisscmente of Nice and Puget Théniers constitute the bishopric of Nice; Grasse belongs to that of Fréjus. Nice is the capital; and among the other towns are Mentone, Villafranche, Grasse, Antibes, Cannes, and Puget Théniers. The Marseilles, Nice, and Ventimille railway, skirting the coast, connects Cannes, Antibes, Nice, and Mentone, and joins an Italian line which affords direct railray communication with Genoa. The department of Alpes Maritimes was forined in 1860 from the territory of Nice, which had been ceded to France, together with Mentone and Roccabruna, purchased from the Prince of Monaco, and the arrondissoment of Grasse, transferred from Var. It had a population of 119,037 in 1871.
ALPHA and OMEGA (A and Ω), the frist and last letters of the Greek alphabet, frequently employed to symbolise the idea of completeness or infinity. They are used as a designation of himself by the speaker in Rev. i. 8 ; xxi. 6 ; xxii. 13. In the last passage the speaker is undoubtedly Jesus Christ. In the symbolism of the early church A and $\Omega_{;}$combined with a cross or with the monogram of Xpıoтós, represented Christianity, or, more specifically, faith in the divinity of Christ.

A L P H A B E T

A L P H A B E T

BY an alphabet we mean a list of symbols which represent conventionally to the eye the sounds which are heard in the specch of a nation. An alphabet will therefore be perfect if the number of its symbols exactly corresponds to the number of simple sounds which are commonly distinguishable in the spoken language. But this perfection has probably never yet been reached: all known alphabets have failed, either by defect, i.e., from not representing all the simple sounds; or by redundancy, in having more than one symbol for the same sound. They must also necessarily become imperfect by lapse of time. No nation keeps the sound of its language unaltered through many centuries: sounds change as well as grammatical forms, though they may endure longer, so that the symbols no longer retain their proper values; often, too, several different sounds come to be denoted by the same symbol; and in strictness the alphabet should be changed to correspond to all these changes. But little inconvenience is practically caused by the tacit acceptance of the old symbol to express the new sound; indeed the change in language is so gradual that the variation in the values of the symbols is imperceptible. It is only when we attempt to produce the exact sounds of the English language less than three centuries ago that we realise the fact that if 'Shakespeare could now stand on our stage he would seem to us to speak in an unknown tongue; though one of his plays, when written, is as perfectly intelligible now as then. Such changes of sound are most developed in countries where many different dialects, through conquest, immigration, or otherwise, exist side by side : they are checked by the increase of education and by facility of locomotion-both of which causes tend to assimilate all dialects to that one which by some lucky chance has become the literary speech of the nation.

The term alphabet has come to us from the Latin alphabetum, which, however, occurs in no prose writer before Tertullian. It could not have been used, for metrical reasons, by Juvenal, when he wrote, "Hoc discunt omnes ante alpha et beta puellæ"-their a B C. But there is no reason why it should not have existed earlier: the word was borrowed from the Greek, as seems clear from the compound aval ϕ á β pros, which is as old as the comedian Philyllius (Meineke, Com. Frag. ii. 857), and he was alive in 392 в.o. It does not seem likely that this compound adjective would have been coined if the noun itself had not already existed in the same sense which it now bears.

The symbols of our alphabet are nearly those of the Latin; these in their turn were borrowed from a Greek alphabet; and there seems no reasonable ground for doubting the common tradition that the Greeks derived their characters from a Phœnician source. All these borrowings will be fully described hereafter. At this point absolute certainty ends. We cannot prove to demonstration the origin of our alphabet; but positive facts and analogical arguments may be adduced which enablo us to attain a very high degree of probability. It is now commonly believed that the characters were originally hierogiyphics, and in that ultimate form were devised in Egypt. There, for convenience of wriving, they tock a simpler form (called hieratic). In this shape they were borrowed by the Phœnicians; and thus, in their long course down to us, they passed gradually from being the written expression of an idea into the written expression each of a single sound. It is true that the proof is not clear throughout : sometimes the links are feeble, and here we have to employ the analogy of other languages, in which
the particular step which we want to prove has undoubtedly becu made under similar circumstances. Still, it may with some truth be said that we can only prove the possibility of such a process, while any given alphabet may have had a perfectly independent origin; the Phœnician alphabet may have been developed in Phœnicia itself, and ncver been hieroglyphic at all. But this is very difficult to conceive. The a priori argument for the derivation of phonetic from hieroglyphic characters is strong. Hieroglyphics have unquestionably been the first attempt of many nations in a rude state to record their thoughts in a permanent and universally intelligible form. It is also certain that these hieroglyphics have undergone progressive degradation of shape, so that their visible connection with the thing signified was often lost; they became in many cases the expression of those combinations of sounds by which the things were denoted in the spoken language, though they still generally retained their original value as well. Here, at all events, a certain connection between bieroglyphics and sounds establishes itself; and a priori it is more probable that all alphabets should have derived the single sounds of which they consist from hieroglyphics, through the medium of their derived phonetic values, than that any alphabet should have been produced independently of hieroglyphics (which are admitted to have existed), by some arbitrary process of formation for which absolutely no testimony can be adduced. As we have said above, such a process is not impossible, and may be true for any particular alphabet; but the opposite theary has the most internal probability and all the evidence of which the case admits. Against this it seems insufficient to urge (as has been done) that there exist upon earth savages who have never developed any alphabetic writing out of their rude attempts-a fact which may be readily granted; or that civilised men often return to the simple methods employed by uncivilised nations, such as cutting notches on sticks or tying knots in strings-such return being apparently adduced to prove that two totally different methods of expression can co-exist without there being any tendency to pass from one to the other; nay, it is added that in Egypt the hieroglyphic and the common (or demotic) character did certainly exist side by side; and if the latter were borrowed from the former, it would have superseded it, which it did not do. Now, in answer to this, reasons will appear shartly why the hieroglyphic characters lingered so persistently, even when the later phonetic character was in common use-nay, in the very same inscription or document with the hieroglyphic. Still, the argument would have some weight if it were not grounded on the false assumption that the demotic alphabet was a purely phonetic one, totally unconnected with its more aged rival. But modern research has proved incontestably that the dematic characters can be traced back to their original hieroglyphic shape through the medium of the hieratic; in fact, that the cumbraus hieroglyphics were successively put into more and more abbreviated shapes, for convenience of writing, as its use increased.

Excluding, then, attempts of savages such as have been mentioned above, whioh were neither durable nor intelligible enough to make them of service, except for the smallest number of men during the most limited timeexcluding these as not deserving the name, we derive all real writing from hieroglyphics, such hieroglyphics being either purely pictorial, the expression of visible objects in the external world: or symbolic, when some external object is conventionally chosen to represent some action er
some abstract ider These two methods were probably nearly contemporancous in their origin, because the necessity of writing at all supposes a considerable advance in civilisation, and therefore a considerable development of ideas. To this system as a whole the convenient term ideography is now generally applied. From this men have passed to phonetic vriting, first, apparently, in the form of syllabism, in which each syllable of a word is regarded as an independent whole and represented by a single sign ; then from this to alphabetism, in which the syllable is no longer denoted by an indivisible symbol, but is resolved into vowel and consonanto each with its own accepted sign.
It seems probable that all known alphabets (with one or two possible exceptions) may be traced back to four or five parents. Theso have differed much in fruitfulness, but all were originally hieroglyphic. These five systems of writing are the Egyptian, the cuneiform, the Chinese, the Mexican or Aztec, and the curiously cumbrous characters of Yucatan and central America: these last may be seen interspersed with figurative paintings in a facsimile given by M. de Rosny at p. 20 of his very useful little summary, Les Ecritures Figuratives desDifferents Peuples Anciens et Modernes. Of these, the first three alone can be said to bave had any great extension ; and the first, if the Phcenician, and by consequence the European alphabets, were derived from it, far exceeds in importance all the rest together. These systems were perfectly independent, and developed themselves, each in the same course, but in its own manuer, and each in the main to a different degree. At certain points in their history all bat one became crystallised, and remained to show us the steps by which the progress to phonetism can be made. We do not propose to describe here folly any of these systems of hieroglyphics. We are only concerned to point out their relative degrees of developfnent, their deficiencies, and the consequent motives which must have impelled men by degrees to the production of a genuine alphabet. ${ }^{3}$
There are obvious deficiencies even in the most highly developed hieroglyphics. In the first place, they must have been excessively burdensome to the memory. They speedily lost their original form, which was in most cases too cumbrous to be retained when writing became frequent; their pictorial value was therefore lost, and the new form could not generally have been intelligible to a learner, who was thus obliged to acquire by memory an enormous number of symbols, compared with which even the Sanskrit alphabet may be regarded as easy. Secondly, it is impossible by hieroglyphics to express grammatical relations: the order, indecd, in which the symbols are placed may denote the distinction between subject and object; plurality may be expressed by the repetition of a symbol ; soroe even of the relations in space, denoted in more advanced languages by cases, may be pictorially rendered; but all these belps do not go far to remedy this obvious want. Experience, however, shows bow much inconvenience a nation will undergo rather than make any radical change in its phonetic system. We have only to look at our own alphabet, with its numerous and universally confessed deficiencies and redundancies, and then

[^74]remember the fruitless attempts which have been made to work a reform in it, to be convinced that no people will of its own accord strike out a thoroughly new system of writing. Such revolutions can only be produced by the meeting of two different civilisations, and the reception by the one of the arts and ideas of the other. But such a meeting may, and more commonly does, only stimulate the inferior race to some partial development. For the new idcas new names are required: these may be metaphorically represented out of the old vocabulary, as when the liomans called the unknown elephant the Lucanian ox, and of course wrote it so. But suppose the inferior people to be one which has not yet adranced beyond bieroglyphic writing; their simplest and most obvious plan will be to take the strange name, and express it by those symbols out of their old stock which denote the nearest sounds to that of the name required. Such symbels tisen cease to represent ideas only, as they used to do ; they aro consciously employed to represent mere sounds, and thus arise the first beginnings of phonetism. A good example of this process may be found in the Aztec (Lenormant, i. 29; De Rosny, p. 19, who also gives others). When Christianity was introduced into Mexico, the Lord's Prayer was reduced to writing in the following manner:-The Mexican symbols nearest to the two syllables of paten were a flag (sounded as pantli), and a rock (tetl): pater was therefore represented pictorially by a flag and a rock; we cannot tell whetlier it was sounded as pan-tetl, or only as pa-tethe nearest possible equivalent in the Mexican language, which has no r. Similarly, noster was phonetically rejresented by noch-tetl, pictorially by the Indian fig (nochetli) and the rock as before. Herc, then, we have the application of symbols to denote sound without regard to the original sense; just as we might draw the figures of an eye, a saw, and a horse, and convey by them the idea, "I saw a horse." The Aztec would not long have the ideas of a flag, a rock, and a fig presented to his mind when he read these symbols; and so the first conception of phonetism was gained, the first more from hieroglyphic to alphabetic writing. Yet he had not attained the first real step in the progress-i.e., syllabic writing-because if he had decomposed his new words, pan would not have represented to bis mind merely so much sound-a syllable by itself meaningless: it would have given bim only the idea of a flag. And further than this the Aztec language did not pass: probably it only reached this stage incompletely with a small number of words. The great advance to syllabic writing is to be found clscwhere; first in the Chinese, perlaps through the accident of the monosyllabic nature of the language; lut with a clearly-developed purpose in the Aramaic cuncifonn inscriptions.

In the Chinese written character we find a considerable number of symbols which were unquestionably at first pictorial. Though but very slight vestiges of their original meaning can now be seen in them, yet they can be traced back to older forms which are unmistakeable; and their origin is further attested by the namo "images," which the Chinese give them, as distinguished from others which they call "letters." These symbols were simple, aud denoted very ingeniously natural objects-the sun (by a circle with a dot inside), the moon (by a crescent with a line inside), a mountain (by three peaks side by side), rain (by drops under az overarching line), a child (thus f), a mother (${ }^{\circ}$, a figure expressing the arms and bosom effectively enough), \&c.' Theso symbols could be combined: thus the symbols for water and eye combined denoted tcare, an ear and \& door expressed hearing and under-
etarding; but such combinations of pure hieroglyphics were rare, as they would have been liable to be confused with combinations of the same kind used in a different way, as will be seen immediately. There were also some hieroglyphs used symbelically; e.f., a hand to denote a worknan, the twe valves of a shell-fish to denote friends. These also are few in number, a:id not very ingenious. Last in this class come some symbuls which are essentially pictorial, though they represent no visible object; e.g., "above" was expressed by a dot aheve a horizontal line; "below," by a dot below it ; the numerals one, two, three, by so many horizontal lines; "right," by the symbol \geqslant
"left," by $K, d c$. So far, we havo simple hieroglyphs;
or ideograms (a more convenient term),-picterial representations, expressing not merely visible objects, but also abstract ideas, and even actions; but each of these could also have the phonetic value of the name of the object which it depicted.
Distinct from these are the "letters"-in use, thougb not in origin. These have two parts-one, a symbel which was originally an ideogram, and which could still be used as such, but which in this particular combination lost its ideographic value, and retained only the phonetic value of the name of its object ; the other, an ideogram, which laid aside its phonetic value, and only restricted to a particular class the phenetic symbel which it accompanied. Thus, for example, the ideogram of a ship had also the phonetic value tcheu-i.e, the name denoting ship in the spoken language; the ideogram of fire had the phonetic value hvo: these two symbels combined were still pronounced tchen, and meant the flickering of flame. The second symbol dropped its phonetic value altogether, but kept the generic idea of fire : the ship was lost, but the idea of undulating motion modified that of fire, and the complex symbol combined the two ideas, with the one sound tcheu. Similarly, the ideogram ship and speech combined expressed loquacity, and this in the spoken language was also tcheu, the phonetic value of the symbel for speech being dropped, just like that of the symbol fire above. In this way there are teu different ideas given by Endlicher (p . 10) , all called in the spoken language tcheu, and all expressed to the eye by different cemplex symbols formed on this principle. These symbels, he reckons, form at least $\frac{2}{3}$ gth the written language.
This is a very imperfect sketch of the Chinese system of writing, and into the history of the " keys," which indeed belong rather to Chinese lexicography, we do not propose to enter. But it is enough to throw light on some questions connected with our subject. First of all, we see ideography and phonetism existing side by side ; and even the same symbel, having in most cases (uot in all) either an ideographic or a phonetic value at will. Therefore, in this case the passage from the one system to the other may be considered as certain ; but how it was made there is not sufficient evidence to show. It must have been earlier than the combination of pure idcograms mentioned above. It was probably greatly facilitated by the Chinese being a monosyllabic language ; each syllable is a complete word in itself, expressing a complete notion: hence the idea of completeness and individuality would attach to such a combination of sound more easily than would be possible in polysyllabic language; and it would seem more natural to give that sound a symbel for itself, quite apart from its : Aoorraphic meaning. Further, as the whole number of single syllables of which the language consists is only 450 , the effort of remembering the symbols could not be great, and the memory must have been alrcady trained in that
direction, because the symbols <even in their ilengraphic acceptation) had lost their obviously pictorial claracter, and must have been kept by the memory, not re:oguised each time by the eye, just as children. in learniug to reat, commonly remember shott and faniliar words as a wìnle, without analysing them inte the component letters.

The explanation of the cumbrous "letters" described above is simple ; and it will show us, secondly, how so apparently monstrous a system of writing could be maintained. and has been in its essence maintained, domn to the :resent day. With so few radical sounds in the laugrage it was inevitable that many different objects must have be:m expressed, as ideas grew and multiplied, by the same simund. as we saw above that there were eleven different ideas (including the ship itself) all called tcheu. These could be distinguished in the spoken language by tone or acrent, and actually were so distinguished. But how were they to be distinguished in writing ? Now, writing is but the visible exponent of language, and therefore is natnrally formed under the same conditions-those conditicus which, because the effect is obvious. while the reasun is ofter difficult to detect, we raguely call the genius of the language: and it must accommodate itself to the defects as well as the strength of the language. There is an inherent evil in Chinese speech-ineritable in a mouosyllabic language with a linited number of radicals-that the same conbbination of sound should serve to express many different ideas. A combination, therefore, of symbols is absolutely necessary, which shall represent to the mind through the eye the fact that the sound which is heard has changed its meaning to meet that of another sound which is not heard-that tcheu no longer means a ship, but means the flickering of flame, or something else quite different. It would have been easy enough to have had different symbels for the different meanings of tcheu; but it would not practically hare been so convenient, because it would not have represented so well the facts of the language. If the Chinese had chosen in their speech to do universally what they did occasionally, to form compounds like "ear-dooring" for "heariug" a thing, the native genius for pictorial representation would bave pru duced a symbolism which might have supplied all its wants down to the present day. But that was not tbe bent of the language; and the writing therefore remains to the present day a mixture of ideugraphy and phonetism, and is perhaps better so. Still. a great deal of confusion is possible. In modern writing, according to Endlicher, each syllable bas several symbols, partly because of the extraordinary number of meaniugs belonging, as we bave seen, to each combination of sound, partly frou considerations of calligraphy, because it is not every synnbol. which will combine neatly with evcry nther; and therefore fur particular combinations a different symbul with the same phonetic value is requircd, so that the shapes of the mised symbols increase in uumber. Also, the pictorial symbuls being comparatively few, aud many of these being employed phonetically for the same syllable, it is obrious that, with the growth of ideas, many new symbels must have been required. To mect this want, the mised symbols so often mentioned were employed purely phonetically, each in new combination on the old principle with an ideogram, whose meaning was disregarded. Generally these symbols kept their phonetic worth, but sometimes in combination with particular ideograms they change. Thus we see a double eril arise in the language. Not only have we sereral symbuls for each combination of sound, but also the same symbol can under certain circumstances have different phonetic values. But the difficulties thus caused seem gecater to a stranger than to a native; and the Chinese have never been moved thereby to exchange their
picturesque but unwieldy system. The impure syllabism marked out for them by the genius of their language has been their furthest development. It was reserved for the Japaneso to borrow tho Chinese characters, and, expelling all ideographic associations, to employ them simply as syllables, thus adrancing to a pure syllabic mriting. This borrowing and extension of a system by a foreign nation will be more fully dwelt upon hereafter. It should perhaps be added that the expression of many different senses by one symbol, which has so largely modified the Chinese writing, is not pcculiar to monosyllabic language. It is found in all languages, though not to the same extent: roots of different sense have been worn down by phonetic decay till they reach the same form, and this cause may have operated to some extent in China, though it cannot have been very important.

The cuneiform writing, so called from the wedge-Iike shape of the characters, $\bar{\nabla}$ or which compose it, was employed by different nationalities. It was first deciphered by Grotcfend on inscriptions of Persepolis, and was found to be the exponent of the Aryan spoken by the couquering Pcrsians, which belonged, as is well known, to the Indo-European family of languages. But cuneiform inscriptions in three languages were found on a monument at Behistun: the first was the Persian, and much the simplest in form; the-second and third were composed of clements of the same shape in much more unwieldy combinations. ${ }^{1}$ It was obvious that the threc inscriptions were identical in meaning, but in different languages; and principally by the help afforded by recurring proper names, whose value could be compared with the known values in Persian, the characters of the last two inscriptions were deciphered, and found to belong, one to the language of the Assyrian and Babylonian subjects of Darius, the other to the old Scythian population of Media, who used a Turanian speech. Other languages, the old Armenian and that of Susa, were found afterwards to be represcnted by the same characters; and to these different systems the collective name Anarien (i.e. non-Aryan) has been given by French writers (Oppert, \&c.), to distinguish them from the Aryan-Persian, which is a purely phonetic character.

It seems clear that tho origin of this system was Turanian, and that it was borrowed by the Semitic races who used it. It was originally hieroglyphic, though the stiff combinations of wedges give but little indication of such an origin. But both in Assyrian and Babylonian there is an older character and a newer one, and the older forms can again be traced back to a still more archaic shape, which was unquestionably the original of both, and which is not cuneiform, but composed of straight lines only. ${ }^{2}$ These show little of the brilliancy of invention of the Chinese; they seem to appeal to the reason rather than to the eye; they are obviously intended to recall the image of the object, but they must have been first explained in order to be intelligible at all, and then they might be remembered.
For example, a house was denoted by $\sqrt{\Gamma}$; a town by

Neither of these are symbols which will be intelligible as soon as secn by a person who has not been taught them. This is probably due to the fact that they were produced, not by' the hair-pencil of the Chinese, but by the chisel; they were intended to be written on rock, and for this straight lines are more convenient; and the wedge shape which they assumed afterwards may be explained

[^75]by the case with which it can be made by two strokes of the chisel-rerhaps no other figure so clear can be produced with such facility.

This system seems to have reached syllabism before it was adopted by the Aramaic peoples. But the syllabism was still mixed up with ideography, just as we have eeen was the case in China-that is, the same symbol denoted ideographically the object, and phonetically the sound, of the name of the object; as though in English we should denote by the symbol B both the insect bee and the sound be. But there is a difference between this idiom and the Chincse; it was polysyllabic, whereas Chinese was syllabic. When, then, the name of the object containcd more than one syllable, the first alone was taken to be denoted phonetically by the symbol. The evidence for this is small in quantity, owing to the scanty remains of the language of that Turanian element of the Chaldee nation from which the cunciform writing was borrowed. To this language the name Accadian has been given by Dr Hincks, and this name seems to be now generally received. But the Medo-Scythic, mentioned above, which is a closuly-connected dialect, supplies us with forms sufficiently close to the old Scythian spoken originally by all the Turanian stock in that part of Asia. Thus one symbol in Assyrian denotes ideographically God and phonetically an; now the name for God in Medo-Scythic is Annap. Another denotes a city and but; batin is a city in Scythian. Another is a father and at ; in Scythian a father is atta. (Oppert, ii. 79; Lenormant, i 41.) This evidence will doubtless be strengthened with time, but even now it is conclusive; and the principle thus established, the arbitrary selection of the first part of a name to have a particular phonetic value, seems to be exactly the principle which we should a priori have expected to find if we had tried to conceive the possible ways in which ideography could pass into phonetism.

The confusion which was occasioned by the imperfection of Assyrian writing was immensely increascd by the fact of their characters being borrowed, not indigenous, as in China. There is first of all the obvious difficulty of adapting Turanian symbols to a Semitic language, in which the shot rowels were not written, and the meaning of the radical group of consonants in any particular place had to be determined by the context. Instead of being ablo to retain the same symbol to express a root in its modified forms, e.g. in the conjugation of a rerb, a new symbul woula be necessary for each person-form, which could be expressed by mere vowel change in the root, and these sym. bols might be totally unconnected, so that all sense of the connection of diffcrent parts of a verb would be lost. This is bad enough, but it is an evil inherent in the borrowing of such a system of writing to express a language whose genius was so essentially different. But there was another evil, much greater, which might have been avoided, and was not. This is polyphony-the expression of many different sounds by the same symbol. When the Assyrians took an Accadian symbol, they should have taken only its phonctic raluc, or one of them, if it hed more than one, ana in this way they migkt hare acquired a purcly syllabic ckaracter, as the people of Susa afterwards actually did. But, 13 was not unnatural at the time, they took it with all its values, ideographic and phonetic, and added more of their own. A striking example given by Oppert (ii. 85) will make this plain. In Accadian this symbol was the ideogram for an open hand, donbtless originally in a mora elaborate form.' In the spoken language a hand was called Kurpi, and therefore, by the principle mentioned above, this symbol had also the phonetic value kur. Bnt by a metaphor the hand symbol had the furtbar idsographio
values of seizing, possessing, and understanding. To seize in the epoken language must have been mat, or something very like it (imid occurs in this sense in the Scythian), for this phonetic valne also belonged to one symbol. But further, in Accadian a mountain was called kur; sunrise, kurra; earth was mat; to go was mit; and these sounds, identical or nearly identical, were every one expressed by the same symbol, which thus had eight ideographic and two phonetic values, kur and mat; and in this wretched condition it was taken by the Assyrians, and employed by them in all these different senses. But this was not all In the Assyrian language kur was the name of a furnace, and mat meant to die; and as it must have been to obtain a visible exponent for these sounds that the foreign symbol was adopted, both of these ideas were necessarily denoted by it. Again, in Assyrian, "to understand" was pronounced as nat, and to "possess" was nal; and so were added two more phonetic values by reason of the metaphoric value of mat in Accauian. Lastly was added the phonetic value shat, because that was the Assyrian name for a mountain, which we saw was denoted in Accadian by kur. Thus, when an Assyrian came upon this little plainlooking symbol he had to determine whether it meant the earth, a mountain, sunrise, a furnace, or seizing, possessing, understanding, going, or dying; or whether it had only one of the phonetic values, kur, mat, shat, nal, or nat. And a large list of other symbols is given by M. Oppert, which, in a similar way, have two, three, four, and even six different phonetic values. It may seem incredible that a people under such difficulties should ever have been able to express what they wished to say, much less to understand what was written. It is a great witness to the strength of the feeling which must have existed in these old people that ideography was the natural and proper method of writing, and phonetics were only a supplement to eke out its deficiencies. To us such a feeling is at first incomprehensible, but after such an example we cannot doubt its existence. With respect, indeed, to the dificulty caused by one symbol having many ideographic values, we have only to think of the many different significations expressed in our own language by the same combination of sound, without any confusion arising, because the particular meaning is marked out by the context; for instance, when the one sound but denotes a conjunction, a verb, and a noun with two senses-one original and one derived, but now quite different,-we should therefore only see in the Assyrian an aggravated case of this want of clearness. But the difficulty is much more serious when the same symbol has different phonetic ralues; and much help cannot have been obtained from the grammatical lists which have actually been dug out under the superintendence of Mr Layard, in which the Assyrian kings state, avowedly for the instruction of their subjects, the different values which each symbol could possess. (See Oppert, ii. 53.) By these lists some limit might undoubtedly be put to the further multiplication of values for the same sign, but it could not help a rcader to trace which of all the authorised values he was to give to a symbol at any particular time. 'Tt would sppear that in the cuneiform, as unquestionably in the Egjptian, conventional phonetic symbols could be used as complements to other symbols, which might represent an idea or a mere syllable, and by these phonetic complements the special sense could be defined with some approach to exactness. But into these remedies of the ills of polyphony we need not further enter.

It is far beyond the scope of the present article to describe fully the development of hieroglyphism in Esypt, the country in which the last step to alphabetism-the separation of the vowel-symbols from those which mark the coasonants-was undorbtedly taken, though with much
faltering, and cven turning back. According to M. Lenormant, the Egyptians passed through every stage which wo have already seen successively reached by different peoples; and at one of which every one of these peoples halted, without ever achieving for themselves the triumph of alphabetic writing. And cridence of each stage, more or less distiuct, certainly lingers in the Esyptian, producing an extraordinary medley, little suited for popular or cven literary use, but well adapted for the transnission of occult records and rituals, the purpose for which the Greeks not unnaturally supposed the whole hieroglyphic system to have been invented by the priests. As we have already described the phenomena of each stage with some fulness, it is not necessary to do more here than to indicate their occurrence in Egyptiau. The hieroglyphs thenselves are certainly the finest of their kind. Whether they represent the full contour of the object with all the assistance of vivid colouring, or whether they are simply formed by lines which convey its essential claracter-a practice which doubtless owed its origin to the increased use of writingit is impossible not to admire the extraordinary completeness of the representation. Nothing can be more porfectly pictorial than the portraiture of the different cmotions, each by the figure of a man affected by it: the position of the body and the gestures of the arms are simply perfect. These belong in the main to the symbolic use of the hieroglyphs : this use we saw in Chinese was but slight, but in Egypt it was immense. Thus, the sun, with rays streaming from it, denoted to the Egyptian light and clcarness; the moon, with its horns turned downward, denoted the month,-in these cases the cause is put for the effect. Sometimes the part is put for the whole: two arms, one holding a shield and one an offensive weapon, express battle; two legs with the feet denote movement, forward or backward according to the direction of the feet, Λ or

几. an arm holding a stick denotes force. Sometimes

 the symbol is purely metaphorical : as when a king is expressed by a bee; knowledge by a roll of papyrus; or justice by the feather of an ostrich, because all feathers of that bird were supposed to be of equal length. Such symbols are clearly of later origin than the other; they imply the existence of conventional rules, which could acquire currency for meanings quite unintelligible in themselves. These symbolic ideograms were not very often used alone; most commonly they accompanied other symbols used phonetically, merely to determine their special meaning in each place : as such they are commonly called determinatives; this practice we also sam in China, less shilfully employed. Thus, for example, on the Rosetta stone-whose trilingual inscription, hieroglyphic, demotic, and Greek, is the hasis of all our knowledge of Egyptian writing-the word for a decree is expressed by characters, consonant and rowel, which denote the sounds of which it is composed, just as in any modern writing; but at the end of these, forming part of the word, though adding nothing to its pronunciation, is the figure of a man with his hand raised to his mouth, which adds the idea of passive obedience to the phonctic combination, and limits it to the idea of a decree. In like manner, the arm with the stick, which as we said denotes force, is added as a determinative to express actions which require force; and the ideogram of motion is also very frequent. This seems ti us unnecessary and cumbrous; but when a phonetic cont. bination might have two diferent meanings, they could hardly have been differentiated in a more intelligible manner. A good list of these symbols may be seen in D_{s} Rosny, p. 46.The tmecs of the rebus stage which me saw in the Aztea
in which a symbol could betransferred from one object to another, because the names of the tro had the same sound in the spoken language, are not very distinct, and have nut been fully examiued; ou this point wo may hope for more light from M. Lenormant. He points out that the same symbol denotes "holiness" and a "slave." No metaphorical explanation seems possible here; but both are sounded hen in the spoken language, and the community of symbol becomes at once intelligible. In such a practico as this we see at once a cause of great confusion, especially when the same syinbol was employed to denote two things the names of which were not exact homophones, and yet sufficientily near in cound to allow themselves to be expressed by the same symbol; e.g., when the circle which denoted the suin was also taken to denote the idea of day; the sun was called ra, the day $h r u$, and 80 the symbol became a polyphone; it had two not very different sounds. It is true that here the application of the symbol for the sun to denote the day was not caused only by the similarity of sound in the two words-it was probably employed at first metaphorically; but there can be little doubt that it was helped to its double use by the indistinctnes of the Egyptian rowel-sounds, which caused the two words to be sounded nearly alike. From this and similar causes arose that polyphony which necessitated tho use of the determinatives described above. Vestiges of the syllabic stage in Egyptian exist beyond a doubt, and they point to a slowly. effected transition from the older to the newer form of writing. Thus the symbol of a fish represented at the syllsbic stage the syllable an; later on, the letter a alone came to be denoted by a reed, and n by a waring line. Now we find the syllable an represented not merely by its own simple exponent, the fish, but also by the reed and fish together, that is, in phonetic value, by A. an; by the reed above the waving lino $\left(\frac{a n}{n}\right)$; and even by all three ($A \cdot \frac{a n}{n}$) (Lenormant, ii. 44). This surely points to a stage at which the alphabetic values of the reed and line were not yot so firmly fixed that the writer could dispenso with the older and zore familiar sign of the fish to specialise the other two. Of Egyptian alphabetism proper it is not necessary to give examples; we are sufficiently acquainted with the use of letters pure and simple, and their use in Egypt is not denied.

To what causo are wo to assign the progress of the Egyptian beyoud the Assyrian method of writing? What circumstances enabled the one nation to develop at least an imperfect alphabetism, while the other never advanced beyond syllabism? No certain answer can be given; but at least a probable suggestion is made by M. Lenormant. The Egyptian vowel-sounds were indistinct: the consonants were clear and definite. Therefore it was natural (as Lepsius pointed out) that in each syllable the consonant should come to be regarded as the important element, and should finally extrudo the following vowel altogether. Thus a large number of symbols, which originally represented syllables beginuing with the same consonant but followed by different vowels, would become in time absolutely identical in value, the different representatives of the same consonant. And a great abundanco of such homophones is actually found in Egyptian. The method, therefore, which was fullowed in passing from the syllable to the mere alphabetic eign, was identical with that which we have already pointed out in Assyrian, by which the symbol of a polysyllabic word was taken to have tho phonetic value of the first syllable of that word ; in each case it denoted the first element of the name- the syllable in Assyrian, the single sound in Egjptian. And in each language the symbol thus applied to a new use still retained for a long time its old valuo as the hieroglyphic or at least conventional exponent of a
material object or of an idea. Thus in Egypt uefer meant good. This word in writing is expressed in two ways: tirst, by a single symbol-which had originally been the pictorial representation of some material, object, but was afterwards the conventional symbol of the idea of goodness; secondly, by this same symbol followed by two others, which liad also, from being originally hieroglyphs, acquired the phonctic values of j and r; that is to say, one symbol could at will express the whole word nefer and its initial letter n. This is the natural, perheps the only possiblo way of eliminating the single sound; but it is obvious that great difficulties would attend it at the outsct. There could be at first no convention to restrict the symbol for n to that of tho particular word nefer; any other beginning with n would have served. There was no law to prevent a writer taking as many symbols for n as took his fancy ; and in fact each letter in this wsy did have several different symbols.

It follows that while Egypt must be credited with having first invented an a'phabetic system, and must for ever claim for this the gratitude of the world, yet that system was far too imperfect to become the instrument of a popular literature. It suffered equally from the opposite diseases of homophony and polyphony, from the expression of the same sound by many different symbols, and from the use of one symbol to denote many different syllables. And each of these evils was only aggravated by time. The earlier EgJptian writing is much more simple than the later, wherein homophones increased to a degreo to which there was practically no limit except tho strength of the menory; and the numerous phonetic devices to unravel the confusions of polyphony inust bare been equally burdensome. It might have been expected that polyphony at least would have becume extinct with time; that the differents symbols for the samo syllable would all have been worn down into single letters, and thus, tEnugh homophon's might'have multiplied, polyphony would have perished. This might have been the caso if these symibols had ever become perfectly clesr of their originally pictorial or conventional origin. But this was never the case. To the last, tho employment of a syinbol to express an object or idea continued side by side with its employment as a single letter. The spirit of hicroolyphism, real if not apparent, could not be vanquished by alphabetism; and in order that ideography may be finally expelled, it would seem that circumstances are needed more favourable than can be often found combined at any period of any nation's history. In fact, a purely phonetic alphabet is most likely to be produced when one nation borrows from another such portion of that nation's symbols as it requires for its own needs, and rejects that superfluity which only leads to confusion. We have already seen indications of this fact.

Many circumstances combine to render it difficult for a nation to reach of itself pure phonctism in writing. There is the strong disinclipation to clange, of which wo have before spoken. It is always easier to put up with diffculties to which we have been accustomed all our life than to make any radical change, especially when that change causes at once serious difficulties at every moment. It was casier for the Egyptians to retain the odd mixture of ideographic, syllabic, and alphabetic vriting, and occasionally to add some new key for unlucking the difficulties to tho formidable list which was already in use. The ingenuity of these grammatical devices almost surpasses belief. TYe can only refer the curious to the bieroglyphic grammar in the fifth volume of Bunsen's Egypt's Place in Universal IIistory. In the second place, a good deal must be allowed to the restraining influence of religion. It is well known that most of the ancient nations ascribed a divine origin to their systems of writing. It might well
seem to thern to be too wonderful a thing for the result of human ingenuity. Thus in one of the Assyrian lists of the different values of syllables, published, as has been already mentioned, by royal authority; Sardanapalus V. states that the god Nebo has revealed to the kings, his ancestors, the cuneiform writing, which he thus endeavours to simplify for the better understanding of his people (Oppert, ii. 53). The Sanskrit character, which is now known to be due to a Phœnician source, was called Devanâgar̂̂, "belonging to the city of the gods," unless, as Prof. M. Müller suggests (Sanskrit Grammar, p. 1), we are to understand by the gods here only the Brahmans; but whaterer the name may inean, their belief in its divine origin is certain enongh. And M. Lenormant points out (i 80) that the native Egyptian term for writing meant "writing heavenly words." Now it is clear that no nation among which this belief lingered in any degree would be likely to alter fundamentally the spirit of their system of writing. Lastly, it is possible, though, as we have suggested above, not very probable, that the obscurities of the existing system may have recommended it to the priests. These reasons may suffice to show that it was not in Egypt that we should expect to find the development of a purely phonetic system. But just as the Japanese took the Chinese characters, and gave them a derelopment which they have never had in the land of their creation-just as the people of Suisiana took the cuneiform writing and made it purely phonetic, without any remnant of ideography,-so the work of extracting order ont of the chaos of Egyptian writing was reserred for the Phœenicians.

The Phœenicians were peculiarly fitted to perform this inestimable part in the history of human development. An active and enterprising nation, they were early brought into commercial relations with Egypt, and must of necessity have learnt something of their system of writing; they could see its advantages and its perfectly remediable faults; the adrantage of one definite symbol for one sound, and the disadvantage of a dozen; the desirability that this symbol should signify that sound only, and the undesirability of its denoting a horse or a man as well. And the religious scruples which may have affected the Egyptians need have no welght for strangers. If the characters were dinne for the priests of Isis, they were a convenient instrument to supply every-day wants for the sailors of Tyre. ${ }^{1}$

These considerations do not, of course, amount to a proof that the Phœnician alphabet was derived from Egypt. ‘It is of course possible that it disengaged itself by degrees out of an earler hieroglyphic system at home. But of such a system no vestiges remain; and the correspondence between the Phœnician characters and those of the earlier Egyptian hieratic is sufficiently striking to warrant us in regarding it as at. least provisionally true that what was natural and perfectly possible did actually take place. ${ }^{2}$ The general testimony of the early Greek and Roman writers, that the alphabet was invented in Phonicia, must then be limited to the sense in which Tacitus says that the Phœnicians had this credit-tanquam repererint, quce acceperant.

It cannot be known with certainty whether the Phonicians took, together with the Egyptian. symbols, the phonetic values which they had in Egypt, or whether they totally disregarded those values, and simply assigned to the symbols the value of their omn sounds at will. The first vierr, howerer, seems clearly the more probable. The Phonicians could only become acquainted with the EgJptian

[^76]symbol and sound together; the one would naturally sug. gest the other; and we should expect that they rould first take the symbols belonging to those sounds which exactly corresponded in Egyptian and Phœenician, then the symbols of other Egyptian sounds which did not exactly correspond to their own, but which seemed in each case the most analogous to them; but that there mould never be any violent rupture between the symbo. and its old sound. Yet it seems quite certain that there is no connection between the names which the letters bore in Phoenicia and the original object of which the Egyptian character is the debased representation. Thus the first letter of the Phœnician- alphabet (corresponding to the Hebrew aleph) was named from its fancied resemblance to an ox's head, the second (Hebrew beth) to a house, and so on. But the symbol which strangely seemed to the Phœnicians like an ox is only the form, rapidly drawn, of an eagle; beth, in like manner, is the quickly-dram figure of a crane. It would seem, then, that the PLœnicians borrowed sound and symbol, but no name. They cared nothing for the history of the symbols; and when they found it convenient to have a name for each symbol they chose some object whose name began with the letter in question; and we should have said that it was totally impossible that any similarity in form between the letter and the object whose name it borrowed could have helped to give currency to the nomenclature, did me \cdot not see evidence of similar and apparently equally impossible fancies in the names of the constella. tions, let the origin of those names be what it may.

Such, very briefly traced, seems to have been the origin of the Phœnician alphabet, the parent of almost every alphabet, properly so called, existing on the earth. For the main ramifications of this alphabet in subsequent times we cannot do better than translate the summary of an author already often referred to, M. Francois Lenormant. He distinguishes (p. 110) fịe main stems. These are-

1. The Semilic stem, wherein the values of the letters hare remained exactly the same as those of the Phonicians, except in o few derired slphabets framed in Persia and the countries imme. diately adjacent, which being emploged to mrite Indo-European languages, turn the soft breathings of the Phonician into genuine vowels. This stem subdivides itself into two main brauches-the Hebræo-Samaritan and the Aramaic.
2. The Central stem, whose province includes Greece, Asia Minor, and Italy. The transformation of the symbols of the smooth, and even of the rough, breathings into symbols of rowels is here the invariable rule. This stem contains first the different varieties of the Hellenic alphabet, then the alphabets derived from the Greek, including three families-the Albanian, Asiatic (taking Asià in the same seuse as the old Greeks did), and the Italian. In the Asiatic family we distinguish two groups-one for the Pheygian alphabet only, which is mada up of elements whose origin is exclusively Greek, the other containing the Lrcian and Carian, where these elements are mixed up with Cypriote ${ }^{3}$ characters. The Italian family must also be snbdivided into an Etruscan group and a Latin group, between which stards the Faliscan alpbabet, of a mired character.
3. The Western stem, containing the srstems of writing which resulted from the spread of the alphabet by the colonists of Tyra among the indigenous inbabitants of ancient Spain. This stem reckons but one single family. It has, as that which precedes it for its fundamental character the change of the ralue of the Phœnician breathings. But the direction in which the forms of the letters vary is signally differento
4. The Northern stem, containing only one branch, the ranes of the Tentonic and Scandinarian peoples, who were settled at a particular epoch in the north of Europe, but had arrived from Asis, where they still lived during a part of historic time, and where they must have had imparted to them the alphabet produced by the Phœnicians. Some elements in the runic writing seem to point to a direct reception of the writing from the seamen of Canasn; others, on the contrary, bear a certain stamp of Greek influence. . .

8 The only two alphabets, in the strict sense of the term, which M. Lenormant cannot classify as of Phenician origin are the Cypriote and the Persian cuneiform-the former still imperfectly deciphered, bnt seemingly to some catent eyllabic; the latter pwhape not pure slphabetic, but retaining certain ideograms.
5. The Indo. Homerile stem, distinguished by the appearance of a new principle, the expression of vowel sounds by meaus of conventional adjuncta sttached to the symbol of the consonant, and thus somatimes considerably modifying its shrye. The place of its origin seoms to have been southern Arabia. From thence it has radiated on the one side to Africa, where the Abyssinian and the African syetems forin a separate family with the Himyaritic, or alphabet of the old inhabitants of Yemen; on the other side to Ariana, where a special form of writing established itself; and to India, whose most ancient alphabet, Magadhl, now referred by A. Weber to e Phœnician origin, has given birth to an enormous list of derivatives, which can be classified among six families-Devanâgari, Pâli, Dravidian, Trensgangetic, Oceanic, and Thibetan-which wo bere enumerate in their chronological order of descent.
It will of course be observed that this classification of alphabets runs entirely counter to the universally-accepted classification of languages into certain well-recognised groups under three main heads-Indo-European, Semitie, and that family whieh, rather because its members differ from the two first-named than from any especial bond of union among themselves, is called Turanian. This is in nowise surprising. There is no neeessary connection whatever between the sound and the symbol which signifies it -between the language and the alphabet. The languages of nearly all Europe are Indo-European (or Aryan, as they are sometimes called); the alphabets are universally Semitic -that is the fact, explain it as we may. In fact, if we wish to maintain that sound and symbol correspond, so that the second is the only natural exponent of the first, we must form two hypotheses which refute themselvesfirst, that it was possible that any race of men, when they first felt the need of an alphabet, deliberately set themselves to form their letters so as to represent the different positions of the organs of speech as each sound was produced ; secondly, that such forms could have been exaetly preserved through long lapse of time, so as to convey to subseqnent generatiens exactly the same idea as they gave to their inventors. But each supposition is elearly impossible. An alphabet so formed would also be an artificial alphabet, such as could never have entered the minds of men who needed to supply just their actual wants as they arose, not to construet a scientific table of sigas to denote all possible sounds. But the construction of such a pietorial alphabet as we have supposed is quite possible, and it has actually been formed mest ingeniously by Mr Melville Bell. In his system, which he calls "Visible Speech," consonants are denoted by curved lines, which represent the position of the tangue or lips in their formation. For example, in forming the gutturals $k, g, n g$, the back of the tongue is raised, and this is expressed by the curre \mathbf{C}; in pronouncing y, the front of the tongue is arched, and this is denoted by Ω; in pronouncing dentals, the point of the tongue is raised, and this is expressed by \mathcal{O}; in sounding labials, the lips are closed, and this is denoted by 9 ; where the passage of the mouth is completely closed by the symbolised organ (as in k, g, t, d, p, b), the ends of the curve are shut by a connecting linethus $\$ denotes k; the consonants which are voice articulations (i.e., in producing which the chordoe vocales vibrate, and so produce voice), as g, d, b, \&c., are further distintinguished by a short straight line within the curve, the physiological sign which is chosen (conventionally, it must be allowed) to represent voice being (1) a straight line; and the other distinguishing marks of the consonants are similarly expressed either by added marks or by elight modifications of the primary curve. Equally ingeniously, the vowels are expressed by the straight line which is the sign of voice, a subordinate symbol, or "definer," being
added to denete the part of the mouth which modifies the vowel-i.g., a hook or a solid point at the top or bettom of the vowel-line, a bar across the line to express that the lips are contracted or drawn aeross the aperture of the mouth, de., de. . We need mit enter further into the minutix of the system; enough has been said to show the principle on which it is formed. It is obvious that there would be ne greater difficulty in teaching this alphabet to a child than in teaching it a, b, c, except that the number of symbols is greater, because one is provided for every gound in the language, which our alphabet certainly faile to do ; still, to learn either our alphabet or "visible speech" must for a child be simply an effort of memory. And one great practical gain which wonld be derived from the general adoption of such a system is the case witb which foreign languages could be mastered. The great difficulty in learning to speak a foreign language does not consist in the mere mastering so many declensions ; it lies in the fact that two alphabets may be composed of exactly the same symbols, and yet many of these symbols may express to the two nations quite different sounds. This is a preliminary difficulty which must be mastered at onee ; and it would be immensely lessened if such dissimilar sounds-as, e.g., the German, French, and English u-were not all presented to the learner nider the same symbol. It seems certain that, with the lapse of time and the progress of invention, the intercourse between nations must be largely increased; and the need of some more perfect instrument of speech between them must increase proportionately. But in spite of the obvious gains, it is utopian to suppose that the werld will ever be converted to a system of nniversal writing; and the real and immense gain of such a method is the power which it gives to a linguistic inquirer to denote accurately on paper the exact sounds heard in any dialect spoken in any part of the world, civilised or uncivilised; for it is as competent to register the click of the Hottentot as the most subtle vowel sound of Europe. With our present alphabet it is utterly impossible to represent adequately the strange sounds of some out-of-the-way dialect (which for stndents of language may be as important as the literary speech) in such a way as to be generally intellicible, because there often is no symbel to correspond exactly, and naturally no two inquirers agree apon the nearest out of the existing symbels.: The science of language is therefore greatly indebted to Mr Bell ior providing so effective a method for preserving for ever those dialectic peculiarities which are vanishing with startling rapidity in these days of con stant communication between different parts of a country. Another system, equally valuable seientifically, has been invented by the eminent philologer, Mr Alexander J. Ellis, In his " Palæetype" only the ordinary symbels are employed, but they are printed in different ways to denote different sounds-sometimes as capitals, sometimes in italics, sometimes turned upside down; so that, despite the familiarity of the letters, a page of palxotype is at least as appalling to the uninitiated as the curves and lines of "visible speech."
We may proceed to trace the variations from the Pheenician alphabet to our own, down the central stem of Greece and Italy. The Phœenician alphabet consisted of twenty-eight letters, which for convenience we may call by the names of their Hebrew equivalents. These were (1) Aleph, (2) Beth, (3) Gimel, (4) Daleth, (5) He, (6) Vav, (7) Zayin, (8) Chetb, 9) Teth, (10) Yodh, (11) Kaph, (12) Lamedh, (13) Mem, (14) Nun, (15) Samekh, (16) Ayin, (17) Pe, (18) Tsadhe, (19) Koph, (20) Resh, (21) Shin, (22) Tav. None of these were vowel sounds. Aleph was the lightest guttural or rather faucal sound, being pronounced below the guttural point at the very top of the larynx: it can have been barely andible even before a vowel. He corresponded nearly
to our h. Cheth was a strongly-marked ch, a continuous guttural sound produced at the back of the palate. Ayin represents a faucal sound peculiar to the Semitic race, varying between an evanescent breathing and a g rolled in the throat.

The Phœnicians employed hardly any vorel signs: in Hebrew the three principal sounds a, i, u (see article A) were sometimes expressed in writing, and long i and u were denoted, not by special signs, but by consonants akin to them, yodh and vav: a was regularly omitted except at the end of a word, where it was denoted by He and sometimes by Aleph. In fact, in all Semitic languages the practice was to ignore vowels in writing, laving it to the reader to fill in, according to the context, the unvarying framework of consonantal sounds: the Hebrew vowel-points were a later invention, rendered necessary when the langrage had ceased to be spoken.

When the Greeks received the Phœenician alphabet it is obvious that they must hare made considerable changes in the values of the symbols. Several of them would be unnecessary, for they had no sounds in their language to correspond to them: while for other most important sounds, e.g., the vowels, no symbol was provided. It is clear how imperfect any previous alphabet of the Greeks must have been when they adopted in its stead another so foreign to the genius of their language, which developed the vowels and marked strongly the momentary consonants and nasals, but rejected as far as possible the continuous consonants, both palatal and labial, and even under many circumstances the dental s, the one sibilant they employed. But they ingenionsly adopted the strange signs to new ends. Aleph, He , and Ayin were turned without difficulty into a, ϵ, and 0 : Yodh became ℓ, as it seems that the semi-vowel y had totally disappeared from Greece even at that early period: on the same principle Vav might have served to express v, although apparently the w-sound was still sufficiently common to require the retention of Vav with its consonantal value. Bnt from what source they took their upsilon cannot be known with certainty. Professor Key thinks that it is the Hebrew form of Ayin, which differs much in shape from the nearly perfect circle of the old Phœnician. This is possible enough, for the sound of Ayin was not more like o than u; and if the Greeks knew the two forms, it is not likely that they may have taken both. On the other hand, it is equally possible that v may be a remnant of an earlier native alphabst. Among the consonants $\beta, \gamma, \delta, \kappa, \lambda, \mu, v, \pi, \rho, \tau$ were borrowed with little change of form, and probably of value. And these letters (with σ and the vowels already mentioned) are stated by tradition to have been the only ones brought to Greece from Phœnicia by Cadmus, others having been added by Palamedes, Simonides, or Epicharmus; but which were the letters added by each of these is a question on which the different authorities do not agree; and the incorrectness of most of them is proved by the letters being found in Greek inscriptions before the time of their supposed inventor. In fact, all tradition on this point is worthless, unless it is borne out by inscriptions. It is at least probable that the whole alphabet was borrowed at one time, for all, or neazly all, the characters occur on the oldest inscriptions we possess. Thus on inscriptions of Thera dating from Olympiad 40 (see Franz, Epigraphice Groca, pp. 51-59; Kirchhoff, Studien zur Geschichte des Griechischen Alphabets, p. 41), we find Cheth in the form © denoting mainly the rough breathing h, but also applied to denote e, as it afterwards did regularly by the name Eta: Teth occurs as Θ, nearly the later Theta; and Koph as $\boldsymbol{\beta}$, Koppa, a symbol which was once current tbroughout Greece, and
remained nniversally as the numezal 90 , though as a letter it was retained only by the Dorians, and passed with the Doric alphabet into Italy as Q. It may be observed that in this alphabet, and in some later ones of Crete, Corinth. end Corcyra, Iota appears not as a straight line, but in many curved shapes, approximating much nearer to the old Phœenician; and the same is true of Pi , which has the top rounded like a crook. We have then left only the four sibilants, Zayin, Samekh, Tsadhe, and Shin. These aro believed to have had the values $d z, s, t s, s h$ respectirely. We have already said that the Greeks had no sreat affec tion for sibilants; witness the manner in which σ was constantly dropped, e.g., in 耳éveos for γ '́vec-os. It ras therefore not to be expected that they could employ all the wealth of the Phoenicians; and one symbol (Tsadhe) appears in no Greek alphabet. The name, however, recalls the name Zetir; but the shape of Zeta (always I) is unquestionably that of Zayin; and its place in the alplabet agrees to this. It seems, therefore, most probable that the Greeks confounded together the tro compound sounds $d z$ and $t s$, and kept hut one symbol, perhaps with the name of the other (Tsadhe), because it was most like that of the neighbouring letters Eta and Theta This confusion of the two sounds seems the more probable when we remember that no symbol was required for the compound $t s$ at the time when a special symbol for $p s$ was added, and that for $k s$ (another analogous compoind) perhaps revived. There is also much uncertainty with regard to the relations of Samekh and Shin in their Greet dress. $X i(=k s)$ occupies the place of Samekh, sigma of Shin. One form of Sanekh seens unquestionably to have furnished that of the Greek Σ (see the forms, p. 600); another IS exactly the Greek ξ of all the inscriptions. Sigins jad the sound (s) of Samekh, and cannot be shown ever to have had the sound (sh) of Shin. Two names were preserved among the Greeks, sigma and san. Herodotus (i. 139) speaks of the "same letter which the Dorians call od́v, the Ionians oiyua;" and though san was no letter of the Ionic alphabet, the compound sampi $(=\sigma a \nu+\pi \iota)$ denoted 900 . The name san is obriously the Semitic shin or \sin : it is just possible that oizpa may be an attempt to turn samekh into a form which should explain its meaning to Greek ears. The oldest Greek alphabets known to usthose of Thera, Melos, Crete, and the earlier forms of those of Argos, Corinth, and Corcyra-have the form M to denote s,-that is, the equivalent of Shin. It seems fair to infer that this was originally the case in the other alphabets also. Then this symbol was dropped by degtees to avoid confusion with m, while one form of samekh, with the name sigma, was introduced into its place: another form was kept in its old place to denote the compound $k s$ ($x i$).

We now come to the apparently non-Phonician letters of the Greek alphabet, ϕ, χ, ψ, ω. Of v we have already spoken: We may add that its sound was not a pure u, but modified, perhaps as is the German u. This appears from the fact that, when the Romans borrowed Greek words in the later times of the republic (when Roman taste had gromn more scrupulous), they did not use their own symbol u to denote the Greek upsilon (as their forefathers had done), but together with the sound borrowed the symbol also: which clearly shows that the sound of upsilon was different from the ordinary u. We now take the aspirates ϕ and χ. It is most probable that the sounds of the Greek aspirates χ, θ, ϕ, were not those of the German $c h$, and the English $t h$ and f : that is, they were probably not continuous consonants, but momentary
sounds, followed in each caso by a slight but distinetly audible breath; so that χ might be represented in Eaglish characters by $火 h$, though the following breath is not so distinct as an English h,-if it were, we should have a compound, not a simple sound. Now two of these aspirates were actually written in tho oldest alphabets KHI
and $\Gamma \mathbf{H}$ ($p i$ having tho right down-stroke much shorter
than the left): for the dental the single symbol θ, borrowed from the I'hœnician, sufficed. Afterwards the symbols ϕ and χ (Fariants (1) and +) were taken to supply the place of these compounds, from what source cannot be certainly known; but it is not impossible that they may bave been characters of an older Greek alphabet which originally had the values p and k. This draws some probability from the history of ψ. That letter was originally written $\Gamma \mathcal{\sum}$; and ξ, of which twe bave already spoken, mitten as, K S (or KM). But each of these also appears as $\Phi \mathbf{\Sigma}$ and $X \Sigma$; so that bere at-least ϕ and χ appear as no more than p and k : the compound 0Σ remaincd permanently in the Western alphabets. It is to Epicharmus that tradition (here with some probability) ascribes the establishment of ψ in the alphabet. The history of ω is closely connected with that of η. At an early period, certainly before the 40 th Olympiad, in the eastern part of Hellas an attempt was made to distinguish the different kinds of e. The symbol ϵ bad hitherto denoted both ϵ and the diphthong ε, where the 4 was probably not a much more important sound than the y-e.g., in our day. The habit of writing the two symbols came in late in the Ionic alphabet, and so spread through Greece. But at the carlier time of which we speak the symbol H began to denote some e. It is commonly supposed that this mas long e as distinguished from epsilon, which, by tho way, does not mean short e, but " e unaccompanied," perhaps by that after sound of c mentioned above, though a different reason is commonly given for the name. It seems rery strange that the Greeks should have introduced symbols to express long e and o, and none to mark the length of the other vowels, which must have been just as urgently needed: surely this would have been done at Athens at the time of the formal introduction of the Ionian alphabet. Again, there are a great many recognisable varieties of sound which border closely on pure e and o (but none of importance near i and u), and such varieties are clearly marked in the south of Europe now. For these two separate reasons, it seems at least more probable that η was adopted to express a sound the same, or nearly the same, as the open e of the Italians. For the same reasons, it seems probable that ω was taken not to denote long 0 , but a more open sound; perhaps something between openo and the English ar. The form Ω is of doubtful origin. It is found in an alphabet of Niletus of about Olympiad 60; not earlier. It looks like a conscious modification of O.

Greek writing in the earliest times was from right to left, following the example of Phœnicia: several specimens of this still exist. The more convenient practice of writing from left to right soon became universal. It was preceded, however, by an intermediate method, in which the direction of the lines was alternately right to left and left to right, s. that it was not-necessary to carry the eye back, as with us, from the end of one line to the beginning of the next.
 ir. the same way as the furrows by oxen in ploughing.

Kirchboff distinguishes two main divisions of Greek a) phabets--the East and the West; not that this geographical distribution is eract, but it is the most convenient. The eastern includes firat the alphabets of the towns of Asia

Minor-Halicarnassns, Ephcsus, Teos, Miletus, Colophon, and Rhodes, which, agrecing essentially, became that Ionic alphabet that was adopted at Athens 463 B.C., and is the Greek alplabet with which we are familiar; secondly, those of the Aggean islands-Thera, Melos, Crete, Paros, Siphnos, Thasos, Naxos,-in which Ω does not stand for Omega, but occasionally appears as well as o for Omicron, and there are other minute differences in the shape of the letters; thirdly, some of the alphabets of the mainland of Greece, which have a closer affinity to the Ionic than to their neighbours, viz., the old ono of Attica, down to Ol. 91 - Argos, Corinth and its colones, Corcyra, and even Syracuse. The western division includes the. remainder of the towns of Greece proper and their Sicilian and Italian colonies; these are marked by peculiar variations of certain characters, especially $g, e, h, t h, l, r$, and s, by the use of h as the aspirate only, by the absenco of omega, and by the universal application of the symbol ψ or ψ to denote, not $p s$, but ch, whilst X or + , the symbol of $c h$ in the castern alohabets, here deuotes x. Cumpare wath this last variation what we have said above of the use of $\mathrm{X} \Sigma$ to express $\mathrm{X}:$ there can be little doubt that it was from the occurrence of X in this collocation, and no other, that this new value for it arose, and Σ was dropped. It is significant that in the old Latin alphabet XS appear instead of X. The diference in value of V in the eastern and western alphabets is perplexing: it seems that in one or the other the original value must have been consciously changed, but it is not easy to say in which. The most important alphabet of this group for our purpose is that of the Chalcidian colonies of Sicily and the west coast of Italy-Cumæ, Neapolis, de.-because from this was derived the Latin alphabet, the direct progenitor of our own. It is distinguished from others of the same class by therounded form of the Gamma C, by the peculiar form of the Lambda L, by the very old $M u(/ w)$, and by a rounded Sigma 2, though it has also tho two other ordinary forms之 and $\Sigma:$ in common with some other western alphabets. it has a double rho (P and R). (Seo p. 600.)

From this Chalcidian alphabet it seems clear that all the Italian alphabets were derived. They fall into two families, which differ from each other considerably, but principally in the loss of old letters and the insertion of netr-differences which do not militate against their common origin, but show the cause of their separate development. The first family contains the Etruscan, Umbrian, and Oscan alphabets; the second the Latin and Faliscan. Into the peculiarities of the members of the first group we do not propose to enter at length : they agree in the total rejection of O and X , and the addition of a strange symbol

8 to denote the f sonnd, vau being retained with a slightly

 modified form for v : the Etruscan retains the symbols © and V which the other two dropped, and the Etruscan and Umbrian agree in rejecting the soft mutes. The Umbrian, however, has a new symbol for a modified d, peculiar to itself, and also for a modified k; the Osean has new symbols for a modified i and a, and in general shows a difference in the shape of its, characters from alr the other Italian dialects, which does not seem due to any other foreign influence so much as to its own individuality. These three languages are all written from right to left, in which the Faliscan agrees with them: the Latin alone, from the earliest time of which we have any records, was written from left to right; but there can be little doubt. that it did not originally differ from its fellows, but. changed at a later time, just as the Greek alphabet itselfhad done. The fact that X, fonnd in the Latin aud Faliscan alphabets, has the value of x, and not of $c h$, and that V , as already mentioned, is found with the ralue of ch in Etruscan, shows that the common source of these five alphabets was a western, not an eastern Greek alphabet; and the rounded form of C, and the peculiar $L(V, \operatorname{not} \Lambda)$ limit the choice to the Chalcidian family. The points in which the Latin differs from the Chalcidian alphabet of Cumæ, from which it was probably derived through commercial intercourse, lie-
(1.) In the application of the symbol van (F), to denote not the v but the f sound, which was probably strange to the Grecks.
(2.) In allowing K to fall almost out of use-it was employed only in abbreviations, such as the first letter of a prenomen, as Kæso, or for Kalendæ, \&c.-and employing C instead, which had of course in the present Greek alphabet the power of g. This change may point to a time when the distinction of the sounds k and g was obliterated, to be afterwards restored.
(3.) In the formation of the new symbol G-2.e., C with a distinguishing line-to mark the soft gutturals, when the want of a distinctive symbol was again felt. This was some time in the 3 d century b.c.; but instead of replacing K for the hard guttural sound, they preferred to leave C in its old place, but with a new value, k instead of g; while the modified form G was inserted into the place of $\boldsymbol{I}(\mathrm{Z})$, which may have been talen by the Romans (as it certainly was found in the other Italian alphabets), bat which fell out of use absolutely without any record.
(4.) In absence of the aspirates V, \oplus, and \mathcal{O} : these sounds were not matural to the Roman tongue, and therefore the symbols were never regularly reccived into their alphabet, though incy were taken to represent numerals. Their forms, howeier, were much altered, and so in process of time they became confused with other letters : thus ψ denoted 50 ; but it came to be written \perp, and so naturally passed into the quite meaningless $L: \oplus$ demoted 10 , but being too cumbrous to write, the circle was dropped, and the cross (X) alone remained. A variaut form of the sane letter (\odot) seems to have originally represented 100 , and either to have been shortened into the common form C , or C superseded it as being the first letter of centum. © was taken for 1000 , but for convenience of miting it was broken up into CID, and this was the more easily done because the parts were characters in use; but this symbol also was replaced by M, the first letter of mille. It is probable that (0 mas simply divided, and the half of it (D) then stood for half of 1000 , or 500 ; and half of X, ten, became V, five. Neither D nor V have any other propriety as symbols.
(5.) In the addition, in the lst century e.c., of the two symbols Y and Z after X (which had long been the last letter of the alphabet), to express the Greek sounds v and Z. In borrowed words these in earlier times lad been roughly denoted by u and $s s$; but in Cicero's day greater precision was desired; and not being able to compound two characters of their own to denote the strange sound (as they did for the aspirates $k h, t h, p h$, formerly denoted ouly by k, t, and p or b), they took sound and symbol together, so that dpuyes appcared, not as Bruges, but as Pliryges: т $\rho a \pi$ egitons ceased to bo tarpessita, and sona bccame zona, \&c.
The Latin alphabet agrees with the Chalcidian in the retention of koppa (8) ; the downward stroke became by degrees more oblique. This symbol had a mach wider use in Latin than it had in any Greek language : it was needed to express a modified k-sound which the Latins Liked, wherein a slight wo sound was heard after the k.

This sund was distasteful to the Greeks, and consequently they changed this $k w$ (or $q u$) into p; so also did the other Italians (compare equos, 行Tos, E'pona, \&c.); but the Romans liked it. and therefore. alone in Italy, kept the P to denote it. It is true that the Q was generally followed by as written \imath, though not always in the older inscriptions; but it was fully recognised that this u was not a real letter. It was only a symbol expressing further, and somewhit unnceessarily, the indistinct after-sonnd which made Q different from \mathbb{K}; it would have been more logical to have written Q alone, as was actually attempted under the empire, where we find on inscriptions forms such as qis, qidem, qaerella; but this never became general. The Latin and Chalcidian alphabets are again at one in not having the symbol Mf for s, differing in this respect from the alphabets of South Italy, and also fiom the Etiuscan and Umbrian, which had both forms. Lastly, the Chalcidian (as we saw) had two fomus for r, P and R; of theso the Latin chose the last, and generally employed the first
for p; thongh for that leiter the genuinc Crook form Γ also appears rarely.
The Romans did not retain the Greek names for the characters of the alphabet. The vowels were knowu by their sounds only. The momentary sounds and h wers denoted by their own sound followed by a vowel, as be, ce de, $g e, p e$, and $t e$, but kic, hat; q, as we saw, had sufficient vowel sound to float it ; on the other hand, the continuons consonants were preceded by the vowel, as ef, el, em, en, $e r$, es ; x was called $i x$. The difference in the names of the consonants obriously was caused by their mature = momentary sonnds are produced by a complete closure and opening of the organs required in each case; "when this opening is made, the organs are so placed as to form a vowel, which naturally is proltuced by the remuant of sound required for the consonant ; whereas a vowel cannot be produced before any one of these sounds withont conscious effort : hence it was sinpller to call k, $k u$, than to call it αk. But the continuous sounds are pronounced when the necessary organs only approximate more or lcos closely to each other; the chaunel through which the sound passes from the larynx to the lips is never, closed altogether, and by reason of this slightly open position a certain amount of vowel sound tends to escape-just as the orgaus are drawing together to produce the consonant, and thus is heard before it; but to sound a vowel after one of these consumants the organs must be intentionally put into the f.oper position. Thus, then, exactly the same principle -the conscious or unconscious striving for ease of articula-tion-produces exactly opposite results in the case of the momentary and the continuous consonants. The sane rcason caused a different vowel to be employed for h and k from that whicl is used for the other letters. In sounding a the organs are in nearly the same position as in sounding these two gutturals, only a little more open; whereas the position of e is more ncarly that of all the other consonants. It must of course be remembered that a Roman, if he bad wished to speak of his ABC, would not have said, as we do, a-bee-see, but al-bay-kay.
The arrangement of the letters of the alphabet has cansed much ingenious spearlation. It has been more than once pointed out (as by Prof. Kicy, The ATPhabet, 1. 28) that there are certainly traces of regularity of arrangement. The three soft nomentary sounds b, g, d, were placed together; and it is possible that p, k, t (if denoted by Pe, Koph, Tau), may have once been together, and separated by later intrusions; l, n, n have an affinity more apparent than real, which was perpetiated by their meaningless designation as "liquids;" still, the appcarance is sufficieut to justify the idea that they may bave beeg
purposely put together. It has been suggested that the alphabet was at first composed of "four quaternions" of letters, each headed by a vowel, and the scattered position of the vowels lends itself to this arrangement ; but it must be remembered that the arrangement of the European alphabets is cortainly the same as that of Phœnicia, and in the Phenician there were breathings but no vowel symbels. Besides, the remaining letters are just as necessary as any sixtecn which wo might so arrange, and to all appearance just as ancient. The author of the New Cratylus, indeed (p. 170, ed. 3), actually drew up his list of fours: tho three soft momentaries hcaded by aleph; then came h, folloswed by vaut, cheth, and teth, oddly grouped as aspirates; then the three " liquids," with samekt behind them; and lastly, pe, koph, and tou, under the care of ayin. This, of course, renders it necessary to " omit caph, which is only a softened form of coph, the liquid resh, and tho semi-rowel yodh, which are of more recent introduction." Also it is "quite certain that at the first there was only one sibilant, samekh." In this way Dr Donaldson satisfies himself that the " original Semitic alphabet contained only sixteen letters." We give this futile attempt at arrangement with no wish to sneer at a philologer who did good work in his day, but simply to show the arbitrary nature of all such attempts, resting as they must do simply on internal evidence. If we bear in mind the history of the derivation of the Phonician alphabet, as we have attempted to give it, from the Egyptian hieratie, we shall conclude that it is hardly probablo that aymbols berrowed for practieal uses should have been arranged upon any scientific method; that chance guided the general arrangement, though a few sounds obviously similar may have been put intentionally together. No argument can bo drawn (as by Rödiger in his Hebrew Grammar) from the juxtaposition of two letters meaning a hand (yodh and kaph), two meaning a head (koph and resh), \&c.; reasons have been given above for believing that these names have no relation to the original import of the signs, but were merely fanciful analogies drawn by the Phenicians themselves; and it seems as possible that the juxtaposition may have suggested the idea of the names as that the names caused the arrangement. But if the argument be sound, it is valid against the supposition that the order was fixed throughout on scientific grounds.

It is quite certain that the Teutonie tribes of northwestern Europe possessed characters of some sort before they reeeived the Greek or Latin alphabets. These characters are generally called runes, and have been the subject of some sound scholarship and much baseless speculation. They may be divided into three main classes -the Anglo-Saxon, the German, and the Scandiravian; each of these contain a number of lists of characters, which, however, do not differ from each other mure than the Greek alphabets; and there is so much likeness in the whole family that we may infer a common origin for all. The term rune is recognised as the name of a German letter by Venantius Fortunatus at the beginning of the seventh century, in the lines-

> Barbara fraxineis pingatur rhuna tabellis;

Quodque papyras agit, virgula plana valet.
t.e., these eharacters were cut on smoothed ash-boughs. The meaning of the word r în in Angle-Saxon is a "seeret;" oud the verb rynnan, which is derived from the same, means "to whisper"-the samo verb which appears in the now disused phrase, to "round in the ear." Ruina denoted a magician; the word is contained in the German alruna, the well-known designation of those prophetesses whorn the German tribes venerated, which appears corrupted by Tacitus (Germ. c. viii) into aurinia. There is sufficient pvidence to show that the knowledge of these runes was
confined to a small class; that they were used as magieal eharacters, and also as means of augury. It was for this reason undoubtedly that they were gencrally proseribed on the introduction of Christianity; and the reccption of the Latin characters by the Anglo-Saxons was regarded as important as their reception of the Christian doctrincs.

It is impossible to belicve that the barbarous inhabitants of the Gcrman forests should have worked out for thenselves a genuine alphabet before they came into intercourse with the civilised nations of the south. When we remember the long process through which a pure alphabet was reached by the highly-developed nations which dwelt on the eastern shores of the Mediterranean, it is utterly incredible that such success should have been achieved, as it were, per saltum, under so much more unfavourable circumstances in the Wcst. It may be asserted with some confidence that if the runes were genuine alphabets (which there seems ne rcason to deny), they must lave been derived from the Phoenicians in process of commerce. There is quite sufficient similarity in several of the eharacters to make this view antccedently probable, but any bistorical proof would be extremely difficult, if not impossible. It is true that even where the characters resemble the Phoenician the names of the letters differ altogether ; but this, as we have before scen in the case of the Phonicians themselves, is nowise unnatural when an alphabet is borrowed; the form is important, the name signifies little, and new names are attached according to the fancy of the borrowers. It is highly probable, both from the meaning of the word rune itself and from the evidence of foreign writers, that these symbols were not used by their owners for any of the ordinary ends of an alphabet (exeept, perhaps, for inscriptions) until the Teutonic nations came into contact with Greek and Roman civilisation; by the mass of the people they were probably looked on simply as charms, the unknown symbols of an occult seience. Nay, it might be held that even to the initiated they had merely a sort of hieroglyphic value, and were developed into phonetic significance only by the contact of the Greek and Roman alphabsts. For this view, indeed, there is no evidence, and it is not in itself probable. But we should be driven to it if we were to suppose that the runes were the ereation of the Teutonic intellect.

These ancient characters oeeur pleutifully on memorial stones, rings, coins, \&c., in Scandina via. In England they have been found principally in Northumbria, Mercia, and East Anglia. It has been suggested (by Mr Haigh) that this may be due to the milder principles of the Irish monks, who restored Christianity to the north of England after its fall with Edwin in 633, and did not pursue that system of eradieating every trace of paganism which had been originally commanded by Gregory. Runic writing was even emploged in the service of Christianity. Mr Kemble (Archeologia, vol. xxviii. p. 349) interpreted with great ingenuity the mutilated inscription on the famous cross discovered at Ruthwell, and showed that it refers to the Crucifixion. But the Anglo-Saxon alphabet was soon -early in the 7th century-conformed to the Latin type, those letters of the older form alone bcing retained which were required to denote sounds that had no counterparts in Latin ; these wero p (wîn), and \downarrow (thorn), the latter of which expresses the surd breathing heard in " t lin :" in order to express the corresponding sonant (heard in " $t h a t, "$ and confusedly denoted by the same compound (λ) a stroke was drawa across the simple d (\%), and the new letter was called edh. The symbol 3 is somctimes found instead of y. Curious admixtures of runes with Latin characters occasionally occur even to late times. Thus, in the Codex Exoniensis (p. 400, ed. Thorpe), an enigma occurs in verse, and the parts apparently of the subject to be guessed anf
mritten in runes; the odd effect is increased by these runes bcing written in the regular way-(sumetimes they were written β ovarpo $\eta^{\prime} \delta \delta^{\circ} v$-from right to left, contrary to the general run of the words. Kemble, in the Archreologia, has given an interesting translation of an Anglo-Sason poern, eack stanza of which begins with the name of a runic letter; thus the first stanza begins with Fesh, "money," the name of f, the first runic letter, and goes on to say-

> "Money is a consolation
> To every nann:
> Yet hanal erery man
> Litherly distribute it ;
> If be will that before God,
> Houour shall fall to his lot.",

The second $\operatorname{stan} z a$ is dedicated to the bull, $\mathrm{Ur}(u)$, the third to thorn $(t h), \& c$. This poem accordingly gives the order of the alphabet, which agrees in the main with that of all other runic alphabets. Yet the poem is not old, for the name of s (Sigel, "the sun") is treated by the writer as though it-bad been Segel "a sail"-clearly a mistake of a later tine, when the true name had passed out of use. It may be added that the names of this alphabet are sometimes stranyely abstract; thus we find "gift," "hnpe," "necd," "war," which differ much from the very concrete obiects which the Phernicians chose to denote their letters. In consequence of all these old alphabets beginning with the letters $f, u, t h, o, r, c$, in the same order, the alphabets are called by some antiquarians "futhorcs," just as we commonly speak of the ordinary alphabet as the A B C.
The doctrines of Christianity were first presented to a Teutouic people in a written form by Ulfilas, who, though not the first successful missionary to the Goths, has thereby established his claim to be regarded as the apostle of his race ; and while the main body of the Goths, spurning the weak control of Rome, poured westward in their fierce career of victory towards Italy and Spain, a remnant was left in Mrsia, to whom Uliflas gave the gospel in their own tongue. This was at the end of the 4th century of our era. He employed an alphabet of twenty-four or twenty-five letters, some of which are unmistakably Greek in form ; others are common (or nearly so) to the Greek and the runic alphabets, and may therefore have been derived from either ; but if they were runic, they at least received a more rounded form, it being no longer necessary to retain those angles which (as we saw above in describing the cuneiform characters) were most convenient in days when writing meant cutting on stone or wood. But some of the letters seem to be beyond doubt runic: most clearly so are f, r, u, y, and the symbol for the compound sound $k i w$; and the reason for all these (except r) appears to be the lack of a proper equivalent in Greek. The letter which Ulfilas adopted to denote the surd breath th is not runic, so that the Gothic and Anglo-Saxon alphabets here differ: it is apparently the Greek ϕ. It would seem, therefore, that this letter still denoted an aspirate ($p^{\prime} h$) in Greek, and not a breath, otherwise it would surely have been taken for f; here, on the contrary, it seems to have been selected at random from a list of symbols which denoted no corresponding sounds in Gothic. On the same lack of principle © was taken to denote $h w$. X was the exponent of the breath ch, as heard in German words: here the difference between the true aspirate and the breath is not great. Long of formed a symbol which is very like omega.

Another alphabet which has had an important influence on Europe, and which may be destined to a yet wider extension as the alphabet (in a modified form) of the great and progressive Russian empire, is the Cyrillic. This was the work of Cyril, a monk of Constantinople, who, together with Methodius preached the gospel among the Sclavonic trikcs of Bulgaria and Moravia, in the 9th century, long after the Teutons had come under the influ-
ence of Christianity. Cyril held the services of the church' among his new couverts in the vulgar tongue, into which he also translated certain books of the Scriptures. The alphabet which he employed for' this purpose is more thoroughly Greek than that of Uliflas; but since tho Greek alphabet was not nearly sufficient to express all the Sclavonic sounds-especially the numerous sibilants-he added further signs, the history of which is not clear. This alphabet has been largely adopted by the eastern branches of the Sclavonic race, including the Russians, Bulgarians, and the llyrian division of the Sclaves. The old Bulgarian (commonly called the Ecclesiastical Sclavonic) is the language into which Cyril translated the Scriptures; in philology it holds the same rank as the Gothic has among the Teutonic languages: it is the parent, however, only of one of the least important dialects, the modern Bulgarian. The Illyrian family is divided into the Servians on the one hand, and the Croats and Slovenian peoples on the other. These parties are separated by difference of religion : the Servians belong mainly to the Greek Church, while the others are exclusirely Roman Cathotic ; and tho members of the Greek Church naturally cling to the Cyrillic characters, while the Catholics have adopted the Latin alphabet. It is not easy to predict which characters will ultimately predominate. The Latin letters are insufficient to express the Sclavomic sounds; but this deficiency can be eked out by diacritical signs, and the greatest literary activity is shown by the Latinising party. Lastly, the Cyrillic alphabet has been adopted by the Wallachians, through the influence of their Sclavonic neighbours, though it is little adapted to express their essentially Latin speech, derived from the colonists whom Trajan settled in the new Roman province of Dacia. Most of the needless symbols have been dropped in the nerwest form of the Wallachian alphabet. (See Max Müller, Survey of Languages, pp. 39-84.)
Cyril's original alphabet consisted of forty-eight symbols, but some of these are slightly different representations of the same sound; others are tachygraphies for conibinations of sound, as slit, $t s$, $\& c$. The names were not Greek, with the exception of threo-kisi, psi, and thita-which were rolegated to the end as unnecessary, but they retained their.original Greek place as numerical signs. The alphabet is printed at the end of this article. It will be seen that B occupies the third place, while a modified B stands second: the reason is, that B had come to denote the v sound in Greek, and therefore carried this value into the Sclavonic. The modified letter denotes the old b sound. The 7th letter, which is not Greek, had the sound of English soft j, a little softer than the French j in jamais. The 8th and 9th symbols are the Greck s and z : they are supposed to have had the same sound, that of the soft English z (not $d z$)-perhaps one of them may have originally denoted $d z$, a sound which easily passes into $d j$; $d j$ had a special symbol both in the Servian and Wallachian, though it had none in the Cyrillic, probably because the sound had not then been produced; if it had, we may conclude, from the exactness which the Cyrillic alphabet everywhere shows, that it would not have been left without a mark. The 8th letter has been expelled from the Russian alphabet as superfluous: the Russians have no dj sound. The 10 th and 11 th letters were sounded alike as i; the 10th is the Greek Eta, which had therefore become undistinguishable from Iota in Cyril's day, as it is in modern Greek. The 12th letter, I pure and simple, denoted the semi-rowel y. The 22 d was t, followed by a parasitic y. The 23 d and 24 th are only different ways of writing the same combination ou; the Greeks having changed the u sound into u, Cyril was obliged to write ou for u, as the Greeks themselves did. The Russian has one symbcl (Y) to denute this sound: it is
protably a tachygraphy of the 24th．The 25th and 26th denoted respectively the breathings f and German ch．We may recall here the different treatment of ϕ by Uliflas；it seems a fair inference that the sound of ϕ bad changed from an aspirate to a breathing between the times of Ulfilas and Cyril．The 27th and 28 th are the Greek Onega in the simple and in a modified form：they de－ noted the sounds heard in note and not respectively； these have been dropped in all the derived alphabeta，in which the 17th letter does work for both．We now come to a series of letters（29－44）which are not Greek，and denote sounds which were probably unknown，or at least had no separate exponents，in tho Greek system．The first four are sibilants，simple or compound．It will be remem－ bered how the Greek dropped the large Phenician stock of sibilants，through their own disinelination to such sounds．Cyril，however，did not go baek to the original types，but had recourse to the inartistic expedient of using two or three upright strokes，with small modifiers velow．Letter 29 is the compound $t s, 30$ denotes the fuller compound tsch（English ch in＂church＂）， 31 is the simple sh， 32 is sht，which in Russian is said to be expressible only by schisch，unquestionably a very strong sibilant；the newer form of Wallachian used 29 to express dj．The letters 33 － 36 wiere attempts to express tho neutral vowel （heard in English in fir，sun，de．），the first two in its aspect nearest to u ，the last two nearer to i ．The first and last are important in Russian：they are mritten，but not pronounced；but the first bardens a preceding letter，or， if it be a continuous consonant，makes it be sounded as though it were double．The 36th，on the contrary，softens a preceding letter，giving it the mouillé sound．The 34th letter has been dropped in Russian；the 35th has a pecu－ liar kind of i sound．The 37th letter has an e sound；it was apparently introduced into the alphabet in consequence of the polyphony of the original e ，which in Russian does the work of $e, 0$ ，and \propto, ，and also of each of these preceded by the semi－vowel y ；but as the new letter has three of these sounds，there is not much gain of clearness．A third symbol，
however，has been introduced－an inverted e, \exists ，which did not belong to the Cyrillic alphabet：it is used at the begin－ ning of words where the pure e sound is heard－not $y e$ ，and also in foreign words beginning with \propto ．Letters 38－40 are compounds expressing the u, a ，and e sounds，preceded by y ．The combinations seem to us needless，but the Greek had no symbol for y ；therefore Cyril probably thought it neeessary to connect the I－symbol with the following vowel，in order to show that it was only the semoi－vowel，not a full rowel，which would have caused another sylable．The first of these symbols bas been retained in Russian unchanged；the second is now written
rather like an invertea r g；the third was suffered to drop－Whence arose the confusion respecting e which we hare just mentioned．Nos． 41 and 42 denoto nasalised vowels，e and o ，as heard in the French en and on：these sounds seem to have fallen out of all Sclavonic languages， except the Polish． 13 and 44 denote tho same vowels ＂pre－iotised，＂like＂the three $38-40$ ：these siso are now unknown．Then came the Greek Ksi and Psi，the char－ acters being very slightly altered：they have fallen out of use altogether．No．47，Thita，is retained in Russian，but sounded as an f ，which has thus two exponents，θ and ϕ ．Lastly came the equivalent of the Greek Upsilon called ijica：this is employed in Russian in words borrowed from the Greek．

Fourteen of these letters have been expelled from the Russian alphabet，namely $8,11,22,23,27,28,34,40-46$ ； their list of 35 letters is made up by the addition of the inverted e ，which stands in the 31st place of the alphabet． The forms of the letters are more rounded than those of Cyril，as will be seen by a comparison of the two．This refcrm，among others，was due to Peter the Great，who printed the first Russian periociical at Moscow in 1704. （Max Müller，Survey，p．49．）

The Servian alphabet differs from the Russian chiefly by the insertion of symbols to denote modification of sound caused by a following y ．Thus we find a character to express $d y$（equiralent to the Hungarian $g y$ heard in ＂Magyar＂）；another for $l y$ ，denoting the sound of the Italian $g l i$ ；another for $n y$ ，the Italian aud French $g n$ ； and one for $t y$ ，a softer sound than the $t s c h$ ，the symbol for which is common to Russian and Servian．

The Wallachian adopted nearly all the Cyrillic charac－ ters，except the superfluous rowel－symbols and the nasalised rowels．The list was soon considerably shortened，as was natural in a language originally non－Sclavenie，though in the course of time it bas naturally borrowed many words from its neighbours．Sinco it has been used for literary purposes，it has been further diminished to 27 symbols by the loss of the short sibilant（32），the second e ，and the iotised a ；the other iotised rowels had gone before．The forms of the characters hâve also been much assimilated to the Latin types：instead of the peculiar symbol for sch， which the Russian retains，the new Wallachian has a J with a wary stroke through the middle；n is written as N ， not as H ；and Cyril＇s combinations of perpendicular lines are more rounded than the Russian．The Wallachian has one special symbol \hat{f} to denote the sound $\ddot{u} n$ ．

We have thus described the alphabets used in modern Europe．The only others which have any special interest for Englishmen are the different Indian alphabets；but these aro too numerous and complicated to be fully described here．
（J．P．）

CYRILLIC AND RUSSIAN ALPHABETS．

rs．	RUSS．	CYR		uss．	Yr．	Russ．	CYR．	RUSS．	cyr．	russ．	CYR．	RUSS．
a	A a	17		IIIt	P p	P p	（1）		T ${ }^{\text {F }}$	T ${ }^{\text {b }}$	3 \％	
［ 5	E б	i			$C \mathrm{C}$	C c	44	II 3		Э	坐 ${ }^{*}$	
［ $\mathrm{K}^{\text {E }}$	B в	1		i 1	T \quad T	T T m	Y Y	$\underline{4}$	10	10 по	θ－	$\boldsymbol{\theta}$－
Γ	$\boldsymbol{\Gamma}$	K			\％\quad t		แ щ	IIL \＃	IT is	Я 4	$1 \times$	\checkmark r
A A	A A		I	I	O4，out		サ	山，щ	If IC			
¢ $¢$	E 0	II	I	I m	$\chi^{\circ} \mathrm{8}$	Y \quad－	万 \quad \％	＇\quad	发			
等 \quad \％	※込		H	I II	Ф Φ	Ф	W \quad \＃		而 \quad \％			
5 s			0	0	$\boldsymbol{x} \times$	X X	Ы ы	bl m	Lx m			
33	$3 \quad 3$	Π	II	1 n	（1）ω				178170			

ALPHEUS, (A入內aớs), the chief river of Peloponnesus, now called Rufia or Rouphi. Its sources are in the mountains of Arcadia, to the east of Megalopolis. Being fed by a great number of small streams, it becomes navigable, and traversing Elis, empties itself into the Ionian sea. At screral points in its course it runs in a subterranean channel. This fact probably gave rise to the welllnown myth which represents $A_{\text {plens }}$ the river-god, as passing under the sea to the nymph Arethusa, who had been changed into a fountain in the island of Oitygia. Milton in his Arcades thus alludes to the story-
"That renorsned flood, so cften sunf,
Divine Alphéus, who by secret sluice
Stole under seas to meet his Arethuse."
ALPHONSO, Alfonso, Alonzo, Affonso, or Ildefoniso. "Chis name, so famous in the annals of the Spanish peninsula, has been borne by no fewer than twenty-two of its sovereigns -viz., by ten of the Asturias and Leon, one of Castuic when separate from Leon, five of Aragou, and sis of Portugal.

1st, Asturias and Leon.-Aipnonso I., surnamed "The Catholic," King of the Asturias, the son of Pedro, duke of Biscay, was born in the year 693. On the death of Favila, the suu of Pelayo, Alphonso, who had narried Ormisinda, the daughter of the latter, was proclaimed king of Asturias. During his whole reign he was engaged in almost perpetual conflicts with the Moors, and is said to have wrested Leun, Galicia, and Castile from thcir hands. His zeal for the church, displayed in endowing and repairing monasteries and churches, gained for hin his suruame of "The Catholic." Apphonso died at Cangas in 757, and was succeeded by his son Fruela I.

Alphosso II., surnamed "The Chaste," King of the Asturias, the son of Fruela I., was but a child wien his father was assassinated in 768 , and consequently his claims to the throne were passed over in farour of Aurelio, who was probably a cousin of Fruela. Alphonso mas inrested with regal authority by Silo, the successor of Aurelio ; on whose death, in 783 , he became sole ruler. He was afterwards dethroned by his uncle Mauregato, and was compelled to retire into Biscay. Mauregato, after a reign of about five jears, was succeeded by Bermudo, who, in 791, took Alphonso as his partner on the throne. Bermudo reigned for only about four years longer. A rebellion of many of the chief nobles in 802 compelled Alphonso to surrender lis throne for the third time; but he was soon afterwards restored, mainly through the assistance of Theudius, one of his most faithful followers. In addition to haring to defend himself against these internal dissensions, Alphonso was during the greater part of his reign at war with the Moors, obtaining, amoug other successes, a signal rictory over Mohammed, governor of Merida, in 830. Alphonso died in 843 , in the city of Oviedo, which he had greatly adorned and made the capital of his kingdom. He had some rears previously abdicated in farour of Ramiro, son of Bermudo. His surname of "The Chaste" has been sonnected by some with the legend that he refused to pay the Moors their tribute of a hundred Spanish virgins, but is rather to be ascribed to his vow to preserve an absolute continence.

Alphonso III., surnamed "The Great," King of the Asturias, was born in the year 848 , and succeeded his father Ordoño I. in 866. In the following year, Fruela, count of Galicia, disputed Alphonso's right of succession, and forced him to retire to Alara; but Fruela's tyranny so exasperated the people that he was assassinated before he had been a jear in power, and they gladly recalled Alphonso to the throne. Other conspiracies marked the beginning of Alphonso's reign, but he soon felt himself tolerably secure at home, and turned his arms against the MCoors. 1y 901 , the jear in which he gained a splendid rictory at

Zamora, he had, it is sald, extended his empire to the banks of the Guadiana, and had, by founding and fortifying cities, made good his hold over a large part of the conquered territory. But Alphonso's rictories abroad wero greatly neutralised by discontent among his orm subjects, who found it difficult to bear the heary war taxes that had been imposed upon them. There was a rising under Ano in 885, and another under Witiza in 894; aud in 907 a more formidable insurrection broke out, headed by Garcia, the king's eldest son. Garcia was defeated aud taken prisoner: but as the greater part of the nation sided mith the queen in demanding that he should be relcased, Alphonso, either wishing to prevent a civil war, or think. ing that his cause was hopeless; resigned his crown to Lis son in 901. After his alidication, Alphonso, offering his services to his son in the true spirit of the ago, led an expeditiou against the Moors, in which he gaiued fresh rictories. He died towards the end of the same year (901). He was the last monarch who bore the title King of Asturias, his successors being called kings of Lcou, from the new capital of the kingdom. It was in his reign that the counts of Navarre became independent. There is still extant a Latin chronicle, treating of the history of Spain from the Moorish invasion donn to the death of Ordoño, which is usually attributed to Alphonso.

Alpiosso IV., "The Monk," Fing of Leon, succeedrd Fruela II., his uncle in 924. On the death of his wie, about six years afterwards, he resigned his crown to his brother Fiamiro, and retired into a cloister ; but soon growing weary of monastic life, he made an attempt to resume the sceptre. He was, howerer, taken prisouer at Leon, and confined in the monastery of St Julien, where be died, probably about two and a half years after.

Alrionso V. succecded his father liwnudo IT. in 999, being then about five years of age. Gonsalez, count of Galicia, and his wife, were, by appointment of Bernudo II., guardians of the young king; and on arriving at manhood he married their daughter Elvira. The regency is remarkable for the defeat and death of the famous Moor Almansur in 1002-a success that led ultimately to the conquest of Cordova by the Christians. Alphonso himself made war upon the Moors, recapturing Leon and other places that had been lost during his minority. Alphonso died at the siege of Viseo in 1028. He was succeeded in the lingdom of Leon by his son Bermudo III., while the hitherto dependent countship of Castile became a separate kingdom under the sovereignty of Sancho el Mayor, king of Nararre, and husband of thre eldest daughter of the late count.

Alphonso VI. of Leon, and eventually I. of Castile, surnamed "The Valiant," was born in the jear 1030. His father, Fernando the Great, who in his own right was king of Castile only, but succeeded to the throne of Leon in right of his wife, died in 1065 , leaving his kingdom dirided among his children. Sarcho, the eldest son, received as his portion Castile ; to Alphonso was given the kingdom of Leon, the territory of Campos, part of Asturias, and some towns in Galicia; and Garcia the foungest brother, received a part of Galicia and of Portucgal ; while the tomns of Toro and Zamora were left to Urraca and Elvira, Fernando's two daughters: Peace was not long maintained between the three brothers: In 1068 Sancho made war upon Alphonso, and defeated him in a bloody battle at Piantica, on the Pisuerga. In 1071, hostilities, which seem to have been suspended, again commenced, and Alphonso having recruited his army, defeated Sancho at a place called Valpellage, on the banks of the Carrion; but the latter, being reinforced, it is said by the famons Roderigo Diaz de Bivar, commonly called "The Cid," made an attack during the night, and almost exterminated the Leonnese army, Alphonso himself being taken prisoner._He
was compelled to abdicate his throne, and was imprisoned in the monastery of Sahagun, probably with the intention of making him become a monk; but escaping from this place of confinement, he sought refuge with Almamun, the Moorish king of Toledo, who received him with great hospitality. Sancho haring taken possession of Leon, advanced into Galicia against Gareia. The tro brothers met at Santarem, when tho Galicians were defeated with great slaughter, and Garcia limself captured and throrm into prison. Sancho was assassinated in 1073, and Alphonso, after making a solemn declaration that ho was guiltless of this brother's death, was reinstated in his own dominion, besides receiving his brother's kingdom of Castile. Garcia, who had been liberated on the death of his brother, was preparing to recover his throne, when Alphonso, having treacherously invited him to his court, shut him up in the castle of Luna, where he died ten years afterwards. Being now the undisputed master of nearly all his father's kingdom, Alphonso was at liberty to turn his arms against the Moors. His first expedition, in 1074, was in defence of Almamun of Toledo, who had befriended him in his adversity, and whose kingdom was now inraded by the Cordovans. Some years later, however, disregarding the ties of gratitude, he himself laid waste the territories of Yahia ben Ismail, the son and successor of Almamun, and ended by taking the city of Toledo itself in 1085. Many parts of Spain, hitherto subjeet to the Moors, were now added to the empire of Alphonso ; and it is not improbable that he would have reduced the entire peninsula to his sway, had not a new and formidable power arisen, which threatened to undo all he and his predecessors had accomplished. A large army of Moors from Africa, under Yussef ben Tashfyn, one of the Almoravides, entered Spain, and, with the assistance of Ben Abad, king of Serille, inflicted a terrible defeat upon Alphonso near Zalaca, in the year 1086. Fortunately for the Christian cause, the Moorish chicfs began to quarrel among themselves, and Alphonso was enabled not only to recorer his position, but even to extend his conquests in some directions. In 1108, however, the Almoravides made another serious attempt to destroy the power of Alphonso. A bloody battle was fonght at Uclès, in which the Leonnese army was completely defeated, and Sancho, Alphonso's only son, who commanded in place of his father, slain. Alphonso died at Toledo in 1109, and was suecceded by his daughter Urraca, whoso husband, Alphonso I. of Aragon, is by some historians enumerated among the kings of Leon as Alphonso VII. Through his illegitimate daughter Teresa, whom he gave in marriage to Henry of Burgundy, Alphonso became an ancestor of the Kings of Portugal.

Alpyonso VII., the same as Alphonso L of Aragon (q.v.)

Alphonso VIII. of Leon (or TI., according to those who do not consider Alphonso vi Aragon as properly a king of Leon) and II. (or IIL.) of Castile, often called Alphonso Raymond and "The Emperor," was born in the year 1106. He was the son of Urraca, daughter of Aphonso VI., and Raymond of .Burgundy, her first husbaud. In 1112 he was proclaimed king of Galicia, by whom it does not clearly appear ; in 1122 he was associated with his mother in the government of Leon and Castile; and on her death in 1126 he became sole monarch. Soon after this event he made war upon his stepfather, Alphonso of Aragon, in order to recover the territories, properly belonging to Leon and Castile, which had been lost owing to his mother's misgovernment. The two kings came to an agreement about the year 1129, Alphonsc of Leon having regained most of his possessions. In 1135, Alphonso, elated by the homage of the ling of Navarre and the coarto of Bareelona and Toulouse, caused himself
to be solemnly crowned emperor of Spain. This dignity was, however, little more than a, name, for Alphonso Henriquez of Portugal and Garcia Ramiro of Navarre declared war upon the new emperor almost immediately after his elcration. Intestine feuds between the varions Christian princes of Spain, which resulted in no very definite gain to any of them, lasted until tho advance of large Moorish armics under the Almohades compelled the Christians to turn against their common foe. Alphonso invaded Andalusia in 1150, and gained several victories, which contributed greatly to the extension of Christian territory in Spain. Ho died in 1157 at Tremada, on his return from an indecisive battle with Cid Yussef at Jaen ; and was succeeded by his clder son, Sancho, in the throne of Castile, and by his younger, Fernando, in that of Leon. In 1156 he instituted the order of St Julien, afterwards so celebrated under the name Alcantara (q.v.)
Alphosso IX. (VIII.), King of Leon only, succeeded his father Fernando in 1188. In 1190 he sought to strengthen his position by marrying his cousin Teresa of Portugal This marriage, being within the forbidden degrees, was pronounced null by the pope (Celestine IlI.), who excommunicated Alphonso and his queen until 1195, wheu they agrced to separate. In 1197 Alphonso a second time defied the papal anthority by marrying his cousin Berengaria, daughter of Alphonso III. of Castile, with a view of putting a stop to the frequent quarrels between the two kingdoms. As before, the pope (Innocent III.) prevailed, and in 1204 the separation took place, Innocent, however, granting that the children already born should be recognised as legitimate. After the dissolution of the marriage the old chronic state of feud between the two kings returned, and was kept up, although with littlo actual warfare, until the death of Alphonso of Castile in 1214. In 1217, Fernando, the cldest son of Alphonso and Berengaria, became king of Castile. Alphonso, thinking that his own claims had been unjustly passed over, deelared war upon his son; but finding that the people preferred Fernando, he relinquished his claims. The remainder of Alphonso's reign was chiefly spent in campaigns against the Moors. Along with his son, he captured Merida, Badajoz, and other cities; and in 1230 gaincd a brilliant victory over Mohammed Ibn Hud at Merida. He died in the same year, and was succeeded by his son Fernando, who thus finally united the kingdoms of Leon and Castile.
Alphosso X., surnamed El Sabio, or "The Wise," King of Leon and Castile, was born in 1221, and succeeded his father Fernando III. in 1252. Ho ascended the throne with the entire approbation of his subjects, and with every prospect of a bappy reign; but, through the ill-directed aims of his ambition, few sovereigns have been more unfortunate. He first attempted to gain possession of Gascony, contending that he had a better. right to that province than Henry III. of England. The arms of England, however, proved too formidable; and ho agreed to renounce his claim on condition that Henry's son, afterwards Edward I., should marry his sister Eleonora The marriage was solemnised with great pomp and magnificence towards the end of October 1254. Alphonso's next act was to lay claim to the duchy of Swabia, which he believed to be his in right of his mother Beatrix, daughter of the late duke. This claim was passed over, but when advancing it Alphonso formed a connection with the German princes, and in 1256 became a competitor, against Richard, Earl of Cornwall, for the imperial crown. He was again unsuccessful, the Earl of Cornwall being elected by a small majority. In 1271 , on the death of Richard, he a second time attempted to make himself emperor of Germany, and even after Rodolph of Hapsburg had actually been elected, he undertook a fruitless journey to Beaucaire
in order to prevent the pope (Gregory X.) from confirming the election. These repeated attempts to increase his dignity weakened rather than strengthened the power of Alphonso, and forced him to impose heary taxes upon his suhjects, and cven to debase the coinage, thus producing much discontent and disturbance, while the Moors were ever ready to take advantage of any misfortunes that might happen to him. From 1261 to 1266 he was engaged in a war with Mohammed of Granada, during which his army suffered several defeats. In 1270 an insurrection broke out, headed by Felipe, brother of the king, who was assisted by Mohammed of Granada; it was only quelled after nearly all their demands lad been conceded to the rebels. In 1275, when Alphonso was absent on his fruitless journey to Beaucaire, his eldest son, Fernando de la Cerda, died, an event which, raising as it did the question of the succession to the crown, threatened anew to involve the kingdom in war. Sancho, Alphonso's second son, was, according to the law of the Visigoths, proclaimed heir by the Cortes at Segovia; but Philip of France, uncle of the tivo young sons of Fernando, declared war with Alphonso on their behalf; actual bostilities were, however, prevented by the intercession of Pope Nicolas III. In 1281, Sancho, irritated probably by some attempt that Alphonso had made to favour the sons of Fernando, raised the standard of revolt against his father. Sancho, who was a favourite with the people, having secured the assistance of Mohammed of Granada, reduced his father to such extremities that the latter solemnly cursed and disinherited his son, an act which he confirmed by his will in 1283, and at the same time solicited aid from the king of Marocco. At. the commencement of the following year, however, Alphonso, on receiving intelligence from Salamanca that Sancho was dangerously ill, pardoned him. Alphonso died a few days afterwards, on 4th April 1284 He was a learned prince, and a great encourager of learning, brave and energetic, but at the same time restless and ambitious. He has been charged with impiety, chietly on account of a well-known saying of his, that "had he been present at the creation, he could have given some useful hints for the better ordering of the universe." To him science is indebted for a set of astronomical observations known as the Alphonsine Tables, which were drawn up under his auspices by the best astronomers of the age; and in the palace of Segovia a room is still shown as the observatory of Alphonso. He was also distiuguished as a poet and as a legislator. In the Escurial is preserved a curious manuscript containing scme hymns of his com. position; and he was the principal compiler of a code of laws which is still extant under the name of Las Siete Partidas.

Alphonso XI., "The Avenger," was an infant when he succeeded his father, Ferdinand IV., in 1312. During his long minority the kingdom was cruelly distracted by intestine warfare. Assuming the reins of government in 1324, he strove to repress the tuibulent spirit of the nobility, and to put down that system of brigandage to which it had given rise, acquiring by his inflexible severity the title of "The Avenger." He lost Gibraltar in 1329, but as commander of the allied armies of Catholic Spain, on the 29th Oct. 1340 he gained a complete victory over the kings of Morocco and Granada at the Salado. The slaughter was immense, and the booty so rich that the value of gold is said to have fallen one-sixteenth. "In 1342 Alphonso laid siege to Algeciras, where cannon were employed for the first time in Europe by the Moors in defence of their walls. This siege had lasted two years, when the Moors capitulated on condition of a truce between the twio nations for ten years; but the king of Castile broke his word a few years after by besieging Gibraltar,
where he died of the plagne on the 26th March 1350, aged 40. He was succeeded by lis son, Pedro the Cruel. From this reign dates the institution of regidors or jurats, to whom was committed the administration of the communes; and these regidors became the exclusive electors of the Cortes, in which the people ceased to have a voice.
$2 d$, Castile.-Alphonso III. (according to other enumerations, VIII. or IX.), surnamed "The Noble", is the only king of Castile of the name who was not also king of Leon. He was born in 1155, and succeeded his father, Sancho III., in 1158. His minority was disturbed by the contention of the two powerful houses of Lara and Castro for the regency ; but after his marriage with Eleanor, daughter of Henry II. of England, he was proclaimed sole ruler. After compelling the kings of Aragon, Navarre, and Leon to surrender the territories they had taken possession of during his minority, he turned his arms against the Moors, and at Alarcos, in 1195, sustained one of the most terrible defeats recorded in the annals of Spain. This disaster encouraged the kings of Leon and Navarre to renew their hostilities, which were carried on for several years with varying success. In 1211 the Moors again threatened Castile; but in the following year, Alphonso, along with Pedro II. of Aragon and Sancho VIL of Navarre, gained a most complete and splendid victory over them at La Navas de Tolosa. Alphonso died at Garci Muños in 1214, and was succeeded by his son, Enrique I. Alphonso was a patron of literature, and in 1208 founded a university at Palencia, the first in Christian Spain. .This university was afterwards transferred to Salamanca.

3d, Aragon--Alphonso I., surnamed El Batallador, "The Fighter," King of Nararre and Aragon, was the second son of Don Sancho Ramirez, and succeeded his brother Pedro I. in 1104. By his marriage in 1109 with Urraca, daughter and heiress of Alphonso VI. of Leon and Castile, he became her associate in the government of these kingdoms, and in the same year assumed the title of "Emperor of all Spain." Misunderstandings soon arose between Alphonso and his wife, and he separated from her shortly after their marriage, an act which was confirmed by the council of Palencia in 1114. AIphonso, however, refused to give up his claims to the kingdoms of Leon and Castile, and maintained a constant struggle with Urraca till her death in 1126. Alphonso's chief rictories were gained over the Moors. He laid siege to Saragossa for the first time in 1114, but the city was not captured until 1118, after several bloody battles had been fought in its neighbourhood. In 1120 his territories were menaced by a large force sent against him by Ali; but engaging the enemy near Daroca, he left 20,000 Almoravides dead on the field. Three years afterwards, while the king of Marocco was fully occupied at home by the rise of a dangerous sect of Almohades, Alphonso seized the opportunity to invade Valencia. In 1125 he undertook a new expedition against Granada in aid of the Mozarabes or Christian Moors. The Moors in their reprisals invaded Estremadura, and defeatcd the Castilians near Badajoz The king of Aragon, so far from rendering his neighbour any assistance, determined to take adrantage of the critical position of Alphonso Raymond, as well as of the troubles which the death of Urraca had occasioned in sereral parts' of his dominions, but when on the point of battle the two kings came to an agrecment. Alphonso next crossed the Pyrenees, and captured the cities of Bordeaux in 1130, and Bayonne in 1131 . On his return to Spain he took Mequinenza from the Moors in 1133, and invested Fraga in 1134, where, during a sally from the town, he received a wound fron which he died a few dars after.

Alphonso II. was born in 1152, aud in 1163 succeeded his father, Raymondo V., as count of Barcelona, his mother, Petronilla, daughter of Ramiro II., king of Aragon, at the same time resigning that kingdom to him. He was frequently at war with liaymondo of Toulouse, and also directed an expedition against the Almohades, from which the invasion of Aragon by Sancho of Navarre recalled him. He assisted Mphonso of Castilo against Cuença, for which service he was relieved from doing homage to Castile. He died in 1196. He mas a patron of the troubadours, and wrote some poems in the Provençal language.

Alpiovisu 1II., tho son of Pedro Ill., was bern in 1265, and in 1285, on the death of his father, being absent in Majorea on an expedition against his uncle Jayme, assumed the title of king without taking the oaths of adberence to the articles to which his predecessors had subscribed. When he returned in 1286, however, ho was compelled to go through the usual coronation ceremony. In 1287 bo signed the Privilege of Union, which permitted his subjects to have recourse to arms to defend their liberties, and invested the justizera with tho power of citing the king himself to appear before the Cortes. Alphonso's chief wars wero with Jayme of Majorea, Sancho of Castile, and the pope. He died in 1291.

Alpionso IV., son of Jayme II., was born in 1299, and ascended the throne in 1327. During almost the whole of his reign he was occupied in war with the Gennese about the possession of Corsica and Sardinia. Ho died in 1336.

Alpionso V. of Aragon, I. of Sicily and Sardinia, and latterly I. of Naples, was born in 1385, and succeeded his father, Fernando the Just, as king of Aragon and of Sicily and Sardinia, in 1416. In 1420 Joanna I. of Naples offered to make Alphonso her successor if he would assist her against Louis of Anjou. This he did; but, owing to misunderstandings, the queen revoked her adoption of Alphonso in 1423, making Louis of Anjou ler heir. Recalled to Spain immediately after by an attack made by the Castilians upon his hereditary kingdom, he left his brother Pedro as his lieutenant at Naples, which he had taken by storm the year before. On his way to Spain he captured, but generously refrained from pillaging, Marseilles, a city belonging to his rival the duke of Anjou. After restoring peace at home, Alphonso again turned his attention to Naples, where his cause now appeared to be hopeless. Louis of Anjur died in 1434, and Queen Joanna tho following year, learing Naples to Louis's brother René, who had in his possession the whole kingdom except a fer fortresses which still held out for Alphonso. In the same year (1435) Alphonso laid siege to Gaëta, but the siege was raised, and Alphonso himself taken prisoner by Philippo Maria Visconti, duke of Milan. Visconti, however, being greatly pleased with the high character and noble appearance of Alphonso, soon released him, and even made him his ally. Immediately on recovering his liberty, Alphonso made a third attempt upon the kingdom of Naples. The issue of the war at first was doubtful, but latterly the arms of Alphonso were nearly everywhere victorious. He laid siege to Naples, and after an obstinate resistance captured it in 1442. The States-General were then convoked, and solemnly proclaimed Alphonso king; his election being sanetioned by Pope Eugenius IV., who had previously promised that honour to René. Alphonso now fixed his residence at Naples, and devoted himself chiefly to the improvement of his kingdom; although he was also frequently involved in the wars and disputes of the Italian princes. He died at Naples on the 27 th June 1458; and was succeeded in his kingdoms of Aragon and of Sicily and Sardinia by his brother John, and in that of Naples by bia natural son Ferdinand. Alphonso was undoubtedly
une of the best monarehs of his name. His bravery and generalship fitted him for the warlike enterprises he hat to undertake; and it is evident that, from his generous and humano disposition, as well as from his love of literature and eneouragement of law and justice, his rule would have been equally suceessful had it been his lot to live in more peaceful times.

4th, Portugal.-Alphonso I., Enriquez, son of Henry of Burgundy, count of Portugal, and Teresa of Castile, was born at Guimaraens in 1094. He succeeded his father in 1112, and was placed under the tutelage of his mother. When te came of age he was obliged to wrest from her by force that power which her vices and incapacity had rendered disastrous to the state. Being proclaimed sole ruler of Portugal in 1128, he defeated his mother's troops near Guimaraens, making her at the same time his prisoner. He also vanquished Alphonso Raymond of Castile, his mother's ally, and thus freed Portugal from dopendence on the crown of Leon. Next turning his arms ageinst the Moors, he obtained, on the 26th July 1139, the famous victory of Ourique, and immediately after was proelaimed king by his soldiers. Not satisfied with this, however, he assembled the Cortes of the kingdom at Lamego, where he received the crown from the archbishop of Braganza; the assembly also declaring that Portugal was no longer a dependency of Leon. Alphonso continued to distinguish himself by his exploits against the Moors, from whom he wrested Santarem in 1146, and Lisbon in 1147. Some years later he became urvolved in a war that had broken out among the kings of Spain; and in 1167, being disabled during an engagement near Badajoz by a fall from his horse, he was made prisoner by the soldiers of the king of Leon, and was obliged to surrender as his ransom almost all the conquests. he had made in Galicia In 1184, in spite of his great age, he had still sufficient energy to relieve his son Sancho, who was besieged in Santarem by the Moors. He died shortly after, in 1185. Alphonso was a man of gigantic stature, being 7 feet high according to some authors. He has long been regarded as a saint by the Portuguese, who reverence him botli on account of his personal character and as the founder of their kingdom.
Alphonso II., "The Fat," was born in 1185, and succeeded his father, Sancho I., in 1211. He was engaged in mar with the Moors, and gained a victory over them at Alcazar do Sal in 1217. He also endeavoured to weaken the porter of the clergy, and to apply a portion of their enormous revenues to purposes of national utility. Having been excominunicated for this by the pope (Honorius III.), he promised to make amends to the church; but he died in 1223 before doing anything to fulfil his engagement. Alphonso framed a code which introduced several heneficial clanges into the laws of his kingdom.

Alphonso III., son of Alphonso II., was born in 1210, and succeeded his brother, Sancho II., in 1248. Besides making war upon the Moors, he was, like his father, frequently embroiled with the church. In his reign Algarve became part of Portugal. Alphonso died in 1279

Alpironso IV. was born in 1290, and in 1325 succeerled. his father, Dionis, whose death he had hastened by his intrigues and rebellions. Hostilities with the Castilians and with the Moors occupied many years of his reign, during which he gained some successes; but by consenting to the barbarous murder of Iñez de Castro, who was seeretly espoused to his son Pedro, he has fixed an indelible stain on his character. Enraged at this barkarous act, Pedro put himself at the head of an army, and devastated the . whole of the country between the Douro and the Minho. before he was reconciled to his father. Alphonso died almost immediately after, on the 12th May 1357.

Al.phonso V.. Africano. was born in 1432, and succeeded
his father Edward in 1438. During his minority he was placed under the regency, first of his mother, and latterly of his uncle, Don Pedro. In 1448 he assumed the reins of government, and at the same time married his cousin Isabella, daughter of Don Pedro. In the following year, being led by what he afterwards discovered to be false representations, he declared Don Pedro a rebel, and defeated his army in a battle at Alfarrobeira, in which his uncle was slain. In 1458, and with more numerous forces in 1471, he invaded the territories of the Moors in Africa, and by his successes there acquired his surname of "The African." On his return to Portugal in 1475 his ambition led him into Castile, where two princesses were disputing the succession to the throne. Having been affianced to the Princess Juana, Alphonso caused himself to be proclaimed king of Castile and Leon; but in the following jear he was defeated at Toro by Ferdinand, the husband of Isabella of Castile. Alphonso went to France to obtain the assistance of Louis XI., but finding himself deceived by the French monarch, he abdicated in favour of his son Juan. When he returned to Portugal, however, he was compelled by his son to resume the sceptre, which he continued to wield for two years longer. After that he fell into a deep melancholy, and retired into a monastery at Cintra, where he died in 1481.

Alphonso VI., the second king of the house of Braganza, was born in 1643 , and succeeded his father in 1656 . In 1667 he was compelled by his wite and bother to abdicate the throne, and was banished to the island of Tercera. These acts, which the vices of Alphonso had rendered necessary, were sanctioned by the Cortes in 1668. Alphonso died at Cintra in 1675.
alphonsus a Sancta Maria, or Alphonso de Cartagena, a celebrated Spanish historian, was born at Carthagena in 1396, and died on the 12th July 1456. He succeeded his father, Paulus, as bishop of Burgos. In 1431 he was deputed by Juan II. of Castile to attend the council of Basle, in which he made himself conspicuous by his learning. He was the author of several works, the principal of which is a History of Spain from the earliest times down to the year 1496, printed at Granada in 1545, fol.

ALPINI, Prospero (in Latin Prosper Alpinus), a celebrated physician and butanist, was born at Marostica, in the republic of Venice, on the 23 d November 1553. In his youth he served for a time in the Milanese army, but in 1574 he quitted it, and went to Padua to study medicine. He was admitted to the degree of doctor of physic in 1578 , soon after which be left the university, and settled as a physician in Campo San Pietro, a small town in the Paduan territory, at the invitation of its citizens. In the course of his studies he had paid particular attention to
botanical science; but the sphere of his present practice was too limited to afford him much upportunity of prosecuting his favourite study. He wished particularly to extend his knowledge of exotic plants, by observing their economy and tabits in their native soil. To gratify this laudable curiosity an oppustunity presented itself when George Emo or Hemi, the cuasul for the Venetian republic in Egypt, appointed Alpini his physician. 'They sailed from Venice in September 1580, and arrived at Grand Cairo in the following year. Alpini spent three years in Egypt, and by his industry and assiduity greatly improved his botanical knowledge, having travelled along the banks of the Nile, visited every place, and consulted every person from whom he expected any new information. From a practice in the management of date-trees which he observed in this country, Alpini seems to have deduced the doctrine of the sexual difference of plants, whicn was adopted as the foundation of the celebrated system of Linnæus. He says that "the female date-trees or palms do not bear fruit unless the branches of the male and female plants are mixed together; or, as is generally done, unless the dust found in the male sheath or male flowers is sprinkled over the female flowers." His treatise De Medicina Egyptiorum contains the first account of the coffee-plant that was published in Europe. When Alpini returned to Venice in 1586 he was appointed physician to Andre Doria, prince of Melf; and during his residence at Genoa he was esteemed the first physician of his age. The Venetians were unwilling that the Genoese state should number among its citizens a person of such distiaguished merit and reputation; and in the year 1593 he was recalled to fill the botanical chair in the university of Padua, with a salary of 200 florins, afterwards increased to 750. He discharged the duties of his professorship for many yeare with great reputation, till his declining health interrupted his labours. He died of slow fever on the 6th February 1617, in the sixty-fourth year of his age, and was succeeded as botanical professor by one of his sons. The genus Alpinia, belonging to the order Zingiberaceæ, is named after him. Alpini wrote the following works in Latin:-1. De Medicina A'gyptiorum Libri iv., Venice, 1591, 4to; 2. De Plantis Eigypti Liber, Venice, 1592, 4to; 3. De Balsamo Dialogus, Venice, 1592, 4to; 4. De Prasagienda Fita et Morte Bgrotantium Libri vii., Venice, 1601, 4to; 5. De Medicina Methodica Libri xiii., Padua, 1611, folio; 6. De Rhapontico Disputatio, Padua, 1612, 4to. Of all these works various editions have appeared; and besides these, two posthumous treatises were published by his son1. De Plantis Exoticis Libri i2., Venice, 1627, 4to; 2. Historice Naturalis Egypti Libri iv., Lugd. Bat. 1635, 4to. Several other works of Alpini remain in manuscript.

A L P S

TAKING a general view of the earth's surface, the continent of Europe appears to be no more than a great peninsula extending westward from the much vaster continent of Asia. Its shores are deeply indented by two inland seas connected by narrow straits with the Atlantic Ocean, and these in their turn are divided into gulfs that penetrate still more deeply into the land, and form a number of secondary peninsulas. The Mediterranean Sea, by its branches-the Gulf of Genoa, the Adriatic, and the \&gean Sea-forms the Iberian, the Italian, and the Greck peninsulas; and the Baltic Sea, extending northward into the Gulf of Bothnia, forms on one side the great Scandinavian peninsula, and on the other that of Denmark. Save the last, all these peninsulas of Europe are essentially countain regions, traversed by lofty chains that occupy
a large portion of their surface. But in height and importance these are much srrpassed by a great mountain zone stretching from the south-cast of France to the frontiers of Hungary, and between Italy and the plains of southern Germany, which is collectively known as the Alps, and which must be considered as the most important feature in the physical geography of our continent Of the influence of this mountain system on the climate of the surrounding regions, on the distribution of animal and vegetable life, and, indirectly, on the political condition of Europe, some brief notice will here be given; but it may be well to remark that owing to the peculiar disposition of the greater masses which form this system, the Alps do not present so continuous a barrier as might be expected from a comparison with other grest mountain raugeso

Thus if we take the great masses of the Himualay in Asia, the Andes in South America, or even such lesser ranges as the Pyrenees or the Great Atlas, we find that they interpose a far more absolute limit between the regions lying on their opposite flanks than occurs in respect to the Alps. These are formed of numerous ranges divided by comparatively deep valleys, which, with many local exceptions, tend towards parallelism with the general direction of the entire mass. This, between Dauphine and the borders of Hungary, forms a broad band convex towards the north, and most of the main valleys lie between the directions west to east and south-west to north-east. But in many parts deep transverso valleys intersect the prevailing direction of the ridges, and facilitate the passage not only for purposes of human intercourse, but also for the migration of animals and plants, and for currents of air which mitigate the contrast that would otherwise be found between the climates of the opposite slopes.

The received opinion is, that the name Alps is derived from a Celtic root-alp or alb-signifying height. This has been connected by some writers with the Latin alb, allus, white, referring to the colour of the peaks. Strabo says that the name "A $\lambda \pi \iota$ was formerly "A $\lambda \beta \iota a . ~ A l p$ in south Germany-alpa in old High German-is exclusively applied to monntain pastures. For the present the derivation must remain somewhat uncertain.

To define the precise limits of the Alps, as will be seen fully in describing the several groups, is a somewhat arbitrary operation. To the W. they extend through a large portion of the French departments of Savoie, Haute-Savoie, Hautes Alpes, and Basses Alpes, being divided from the mountain district of the Cevennes by the broad and deep valley through which the Rhone flows from Lyons to the Mediterranean. The Jura range, usually regarded as distinct from the Alps, is nevertheless closely connected on one side with the outer ranges of the Alps of western Sarcy, and on the other mith those of northern Switzerland. On the N. side the Alps are definitely bounded by the lake of Constance, the plain of Bavaria, and the low country extending from Salzburg to the neighbourhood of Vienna. By these they are completely separated from the mountainous distriets of central Germany, which extend through western Bohemia and Saxony in one direction to the Hartz mountains, and in the other to the Sudeten, or Riesengebirge, of Silesia. Hence it happens that the drainage of the northern slopes of the Alps flows either to the North Sea through the Rhine, or is diverted through the Danube to the Black Sea, and no portion of it reaches the Baltic. The eastern limit of the Alps is not easily defined with accuracy. The region of high hills, chiefly formed of tertiary strata, that extends from the left bank of the Mur into Hungary is continued by the north side of Lake Balaton to the Danube near Buda; and some geographere see in the hilly district that stretches thence to the northern Carpathians a connection between that range and the Alps. For practical purposes it seems that the line of depression, partly formed by the valley of the Mur, through which the railway is carried from Vienna to Laybach, may be considered as the eastern boundary of the Alpine clain. On the southern side the difficulty of fixing the precise linits of the Alpine chain is still more appareut. For a distance of some 350 railes, from the neighbourhood of Turin to that of Gorizia, the boundary is sufficiently obrious. The mountains subside into the continuous plain which includes the greater part of Piedmont, Lombardy, and Venetia; and their drainage is all borne eastward to the Adriatic. But on the west side of Piedmont the Alpine chain dividing Italy from Trasce anterub nearly due southward till it approaches to the Mediterranean in the neighbourhood of Nice. About 40 miles north of this city,
that which, from its superior height and its geological strue ture, we call the main chain, is beut round from west to east in a curre, slightly convex towards the south, till it becomes parallel to the Mediterranean shore, and is merged in the chain of the A pennines. For reasons hereafter mentioned it would appear that the limits of the Alps in this direction may best be fixed at the Col d'Altare, west of Savona, though the boundarig commonly adopted is that of the Col di Tenda a_{2} lying considerably farther to the west. At the southcastern extremity of the Alpine chain the difficulty of fixing its limits arises rather from the vague use of geographical terms by ancient and modern writers than from the physical structure of the region. Taking no account of the arbitrary proceedings of geographers who have included in the Alps the mountains dividing Bosnia from Croatia and Dalmatia, and regarding only the natural features of the country, it seems clear that the south-eastern extremity of the Alps must be looked for in the group of lafty peaks between tho head waters of the Isonzo and those of the Save, whose highest summit is the Terglou; and if we are not to include all the mountain ranges of European Turkey and Greece within the same designation, the plateau of the Karst must be held to form the boundary between these and the Alps. Within these limits the Alps extend from about the 44th to the 48th parallel of N. lat., and from about $5^{\circ} 10^{\prime}$ to $18^{\circ} 10^{\prime}$ E. long:

In every mountain system geographers are disposed to regard the watershed, or boundary dividing the waters flowing towards opposite sides of the range, as marking the main chain; and this usage is often justified by the fact that the highest peaks lie on, or very near, the boundary so defined. In applying this term in the case of the Alps, thero are, however, difficulties arising from their great extent and the number of their branches and ramifications. Many of the loftiest groups lie altogether on one side of that which we call the main chain, and at the eastern extremity, where all the drainage is ultimately borne to the Black Sca, we must be partly guided by geological considerations in deciding which of several ranges deserves to be considered pre-eminent.

Starting from the pass of Altare or Cadibona, west of Savuna, the main chain extends first south-west, then nearly due west, to the Col di Tenda, but nowhere rising beyond the zone of coniferous trees. Beyond that limit the range is more lofty, and includes four peaks exceeding 10,000 feet in height, till the line dividing the waters flowing to the Adriatic, through the Po, from the short streams that flow into the Gulf of Genoa, reaches the Mont Enchastraye. • Beyond that point, although the line of watershed is very sinuous, its general direction for a distance of about 75 miles is nearly due north. On the east side the waters run to the Po; on the west they flow through the Durance to join the Rhone, near Avignon. The most considcrable peaks in the range immediately north of the Mont Enchastraye aro the Grand Rioburent and the Aiguille de Chambeyron; but these are much surpassed by the Monte Viso, which is the highest peak in the range dividing Piedmont from Dauphine. On the north side of Monte Viso the main chain diminishes much in avcrage height, and presents no prominent peaks.until we reach the Mont Tabor. That summit forms the aper of a salient angle which the main chain here presents on the side of France. For a distance of about 28 miles this extends eastward to the prominent peak of the Roche Melon, which may be considered as a re-entering angle in the great rampart by which Italy is guarded from her northern neighbours. Here the main chain resumes its northerly direction, and attains a greater average height than it had previously exhibited. Several of the prominent peaks in the range connecting the Roche Melon with Mont

Blanc exceed 11,000 English feet in height, though they are much surpassed by the highest group of the Graian Alps, lying on the side of Piedmont, and that of the Tarentaise Alps in Savoy; while there is in this part of the main range but one considerable depression, which is that crossed by the road of the Little St Bernard. In the range crowned by the summit of Mont Blanc the Alpine chain attains its highest elevation. From thence to the Pass of St Gottbard its general direction varies between east and uortheast. To the east of Mont Blanc a comparatively low tract allows of several comparatively easy passes between Switzerland and Piedmont, one of which has long been famous as the Pass of the Great St Bernard; but from that to the Simplon Pass, a distance of about 52 miles in a straight line, or about 75 miles if measured along the watershed, the main chain preserves a greater average height than in any other part. Several peaks lying in the dividing ridge, such as the. Grand Combin, Matterhorn, Lyskamm, and Monte Rosa, exceed 14,000 feet in beight; and these are rivalled by at least six summits on the north side of the same ridge, which at two points only sinks below the level of 10,000 feet. The Simplon Pass corresponds to what may be called a dislocation of the main chain From thence to the St Gotthard the dividing ridge runs nearly due north-east, and does not present any dominant summit excepting the Monte Leone. On the east and south-east side of the St Gotthard Pass, as far as that of the Maloya, the line of watershed between the affluents of the Rhine and that of the Po is determined by what may be called accidental conditions. The chief mountain ridges, which culminate in the Cima Camadra, Piz Valrhein, and Tambohorn, instead of being arranged along the parting of the waters, lis in a transverse direction, aud hence the natural frontier of Italy is here more broken and irregular than elsewhere ; and it is only on the south side of the Maloya Pass that the main chain assumes a tolerably continuous direction from west-south-west to east-northeast, as between Piz Güz and the Bernina Pass it rises into the lofty group whose dominant peaks are Piz Tremoggia, Piz Bernina, and Piz Cambrena. Eastward of the Bernina Pass the same direction is preserved, and in the range including the Corno di Campo, Monte Zembrasca, and Monte Foscagno the level scarcely sinks below 9000 feet; but beyond the last-named summit, in the space lying between the Lower Engadine, the head waters of the Adige, and those of the Adda, the semblance of a continuous ridge forming the watershed between the Inn and the Adriatic altogether disappears. If we adhere to the usage of designating as the main chain the ridges which part the waters flowing in different directions, it must be owned that the disposition of the chief mountain masses has no connection with the direction of that chain. Lying between the great mass of the Orteles Alps to the south and the considerable group of the Silvretta Alps on the north side of the Inn, the greater part of the mass in question is drained by streams that flow into the latter river; but the arrangement of the valless seems to be largely due to erosive action. Few summits in this part of the main chain exceed 10,000 feet, the highest being Piz Scesvenna, on the east side of Val Scarla.

The break in the continuity of the Alpine chain marked by the deep valley through which the main branch of the Adige descends, first southward and then eastward from its source to Meran and Botzen, is one of the most remarkable features in the orography of the Alps. The little lake which is regardec as the chief source of the river lies within less than five miles of the Inn, where that river enters the Tyrol, and no apparent barrier divides the lake frem the Inn valley. Easimard of this limit the Alpine chain exibibite e degree of order ir ite general arrange-
ment which it is impossible to trace in its western and central portions. For a distance of some 250 miles a broad zone of crystalline rocks extends frow west to east, flanked on the uorth and south sides by parallel zones of sedimentary rocks, chiefly belonging to the older secondary formations. Two great valley systems on the upposite sides of the central zone closely coincide with thoso geological boundaries, and mark out in the phssical aspert of this region the limits between the central and the secondary zones. In the former are situated all the highest peaks of the eastern Alps. For a distance of about 140 miles, fron the Sclafkngel, southeast of Nauders, to the Markkalirspitz, the average lerel of the main chain is nearly as high as iu any cyually long section of the central or western Alps. There is oue very considerable depression which is marked by the Breuner Pass, but elsewhere in that long barrier there are lut three points where the range is passable by beasts of burden. Between the two main sources of the Adige, at the Reschen Scheideck and the Brenner Pass, the considerable groups of the Oetzthal and Stubay Alps attain a great average elevation, though two points only-the Wildspitz and the Weisskugel-surpass the level of 12,0110 feet. . The drainage of these groups is mostly carried to the Inn, aud the line of watershed, about 53 niles iu length, is nuch less direct than in the more easterly portion of the chain. This extends nearly due east for about 90 iniles from the Brenner Pass, nowhere falling below the level of 8000 feet, and in two promincnt peaks-the Gross Venediger and the Gross Glockner-rising considerably above the limit of 12,000 feet. At a point somewhat north of the Markkahrspitz the central chain divides into two parallel ranges, between which lies the upper valley of the Mur. This river flows for a distance of fully 80 miles nearly due east, till at Bruck-an-der-Mur it turns southward to approach the Drave, and ultimately joins that stream. Various reasons combine to induce geographers to regard the more northern of the two ranges above mentioned, which divides the Enns and other minor tributaries of the Danube from those of the Drave, as constituting the eastern extremity of the main chain of the Alps. "This extends a little north of due east for more than 110 miles, with a comparatively low mean elevation, from the Arlscharte to the Semmering Pass, which we regard as the eastern limit of the main chain of the Alps.

Measured along the watershed, as above defined, bat without taking into account the minor sinnosities, which would considerably increase the total, the length of the main chain is about 790 English miles.

For ages before there existed any correct knumledge of the configuration of the Alpine chain, the needs of war and commerce had urged the people dwelling on the opposite sides of the great barrier to seek out the easiest and most direct routes for traversing it. Hence the chief passes of the Alps have been known and frequented from a period antecedent to authentic history, while until a quite modern period little attention was given to the parts of the chain which did not lie in or near the lines of traffic. It is lighly probable that many other passes, affurding the easiest means of communication betweeu adjacent valleys, have been known and used by the native population from a very remote period, but only those which served for international purposes of war or peace became known at a distance, and are alluded to by ancient writers. A pass is a depression between two adjacent mowitains, and the track is usually carried over the lowest part of that depres sion; but nevertheless nearly all the passes of the Alps involve a long ascent to reach the summit, and a long descent upon the opposite slopes. Hence the Romans, who were the first semi-civilised people to make extensivs
n38 or the diphu passes, upplied to ench of then the term Mons. Tho same names, more or less modified in the middlo ages, have been preserved in the dialects of Jatin origin that prevail thronghout the western half of the Alpine chain, and the modern name for the chief passes are still Mont Genevre, Mont Cenis, Mont Iséran, Petit Mont St Bernard, Graud Mont St Bernard, Monto Moro, and Nonte San Gottardo. In more recent times, since geographers have attempted to fix the names and positions of the chief summits of the $\$ 1 \mathrm{ps}$, they have been continually misled by the supposition that a name of high antiquity desiguating a mountain must belong to some prominent peak. The errors arising from that source have not yet disappeared from geographical works of high repute, but in point of fact each of the mames above enumarated belungs solely to the pass, and there is no nerghbouring peak cutitled to the same designation. The mure important passes of the Alps are enumerated in the following description of the chicf groups of the Alps; but it may be bere remarked that the direction of the main routes for traffic is not exclusively determined by the position of the lowest and easiest passes over the main chain. The confguration of the mountains is such that a traveller proceeding from Italy to France, Switzerland, or Germany, after crossing a comparatively easy pass over the main chain, may find it necessary to traverso a second and loftier pass over a lateral chain, or else follow a circuitous ronte that may double the length of his journey. Thus a traveller going from Turin to Lyons, who should take what appears to be the direct course over tho pass of Mont Genévre, the easiest in the whole range of the western Alps, will find on deseending to Eriançun that he must cross the much higher and more difficult pass of the Col de Lautaret, or else descend along the Durance till it emerges into the lower country near Gap, and thus more than double the length of lis journey. Including the Semmering Pass, there are now not less than 60 Alpine passes that are traversed by carriage roads; and besides three lines of railway now open for traffic, several others are in course of construction.

Frem the time of Julius Cessar dernamards, the Romans, in the prosecution of their policy of universal dominion, or for the purpose of maintaining communicatiun with their military colonies, had become acquainted with all the easiest and most serviceabla passes of the Alps, and were thus naturally led to atrach names to the chief groups. As their acquaintance with the entire region was very incomplete, the exact boundaries of these groups were imperfectly onderstood, and the denominations adopted by thens were never accurately defined. As might have been expected, the divisions thus roughly established had reference rather to the aspect of the mountains as presented to one travelling from Italy towards the nerth or west, than to a gencml view of the physical conformation of the entira region. Hence the ancient divisions are essentially defective, as taking no note of some important groups, or including noder a single designation groups entireiy distinct. Natwithatanding these defects, the ancient divisiens have been adhered to by all but a few modern geographers, and it is therefore desirable to record them separately.

1. Maritime Alps (Alpes Maritimx). -These included the portion of the main chain diriding south-western Picdment from the coast of the Mediterrancan, and extending northward to the neighbourhood of the conspicuous peak of Monte V iso.
2. Cotlian Alps (Alpes Cottix or Cottianx) included the portion of the main chain dividing Piedmont from Dauphine and Savoy, and extending from Monte Yiso to the neighbou:hood of the Mont Cenis. The name appears to be derived from Cottins, the king or chief of a powerful tribe whe ruled the greater part of this region when the paramount authority of Angustus was established in Cisalpine Gaal.
3. Graiar Alps (Alpes Graix).-Under this designation was known the great group of mountaing between Turin aud the apper Val d'Aosta, and the portion of the main chain lying between the Mont Cenis and the Little St Bernard. Pliny and otoer Latin writera derive the name from the legendary passaga of a body of Grecks led by Harcules through this region ; bot the true derivation fs prohably from some lost Celtic appellation.
4. Pernine Alps (Alpes Penninæ) was the name applied to the
grent mage iuctuding Muat d3lauc and Dteute Rosa, which, from tho tinse of Julius Caesar, if not carlier, was recognisel as the highest portion of the entire clairn. The word Pen or Ben is still in use in the living dialects of the Celtic atock as a common desimation for a couspicuous moantain, and was certainly in use in the apeech of this part of Cisalpine Gaul, where Inauy other Celtic terma are preserved in the local names. The Rouran designation Jupiter Penninus was moloubtedly taken from the Celtic root, but the asserted use of tho name Pen for a diviaity by the uutive tribes is not establishal by valid evidence.
5. Lepontine $\Lambda l{ }^{2}$ s (Alyes Leprontince). -It would appear that this demomiuation was origiually restrictel to the parts of the main chain lying on cither side of the lass of St Gettliard, including the sources of the river Ticiue, with those of its tributaries, of which the most inportant is the Tosa or Toccia, daiuing the rango between the neighbourhood of the Simplon Puss aud that of thie Grics. The name is derived from the Lepontii, a tribe of doubtful extraction (lihxtian, according to Strabo) who inhabited the main Valley of the Tessin or Iicino, the upper part of which is still called Val Leventida. The eastern limit of this group was usually fixed at the pass of San Bernardiue.
6. Whotian Alps (Alpes lihuticx) derived their name from the Bhxti, a powerful tribe or aation holding a largo tract of territory Which appears to haveextended from the sources of the Thimo and the Ticino on the west, to those of the Adige and the Salza on the cast. The area included under this vague heading is at least equal in area to that of the five divisions hitherto enumerated.
7. Noric Alps (Alpes Noricæ). -Under this name the entire region lying north of the Drave, and extending thence to the valley of the Dannbe on the north and the plains of Hungary on the ease, was included.
8. Carnic Alps (Alpes Carnicæ). -This name was given to tha mountain tract lying between the upper Drave and the low country of Friuli. By some writers it has been linited to the ranges that fecd the Tarliamento (Tilaventus) and its tributaries; by others the range secms to have been held to extend from the sources of the Piave to those of the Save. The bame Carnia is atill in use in Friuli, but is strictly limited to the basin of the Tagliamento.
9. Julian Alps (Alpes Julic). -This desigaation has been still more vaguely used by ancient and modern geographers than any of the preceding The lofty group of peaks crowned by the Terglou, and lying between the head waters of the Isonzo and those of the Save, undoubtedly forms the chief nuclens of the grenp distinguished by this ame; but it also appears to have included the ranges of eastern Friuli, which rrovince, as well as the Alps in question, took its name trom the Lioman Formm Julii, now known as Cividale. By others, and even by contemporary Italian writers, tho term Julian Alps is made to extend southward through the district of Kar at between Carniola and the shores of the Adriatic, and thence through Croatio to tha fronticrs of Bosnis. A great part of this district is an undulating plateau, in part not attaining to 2000 feet above the sea-level, to which by no stretch of language can the term Alps be properly applicd.
In addition to the grounsabove mentioned seme writers have enumerated the Dinceric Alps (Alpus Dinarica), and include under that tem the mountain range extending allong the western frontier of Bosnia. This is a portiou of the extensive mountainsystem of Europenn Turkey, which in one direction includes the Balkan, and in another is continued ihrottoh Albania into Grecce. The Iomans probably applied to these the desigmation Alps as some of their later writers did to the Pyrenees and the mountains of southern Spain; but it can merely cause confusion to speak of them as a portion of the great systen to which the mame Alps specially applies. For the reasons already mentioned it is impossible to regard the ancient groups above enumerated as affurding a satisfactory division of the region under consideration; but so fiar as they can be made to correspond with the divisions sucgested by a more exact knowledga of its physical configuration, it seems desirable to retain the established nomenclature.
Actual observation of the Alpine region through the greater part of its extent, or even the careful study of accurate models, must convince any one who sceks to divide it into groups that it is not possible to do this by adhering rigidly to any single test or rule. In a general way, it is natural and desirable to include under the same name mountain masses that are not divided by a broad and deep opening; but it is sometimes more convenient to include in one group disjoined masses that have some natural concexion with each other, rather than multiply groups to an inconvenient extent. In some cases the geological structure may supply a rational ground for preferring one arrangement to another, when the choice would otherwise be arbitrary; and in a few cases it may be well to yjeld something to ancient usage, based upon political
or ethmological gronnds. Accurate knomledge of the Alps 18 so recent that few attempts hare been made to establish a general division of the entire region, and it cannot be said that any one arrangement has obtained such general recognition as not to be open to future modification; but there is a pretty general agreement as to the main features of that here proposed, to which a few general remark must be premised.

Whatever may hare been the original cause of those disturbances of the earth's crnst to which great mountain chains owe their existence, it is generally, though not universally, true that the higher masses (formed of rocks geologically more ancient) are found towards the central part, and that these are flanked by lower ranges, composed of more recent rocks, which surround the central groups very much as an outer line of entrenchment may be seen to surround a fort. In most cases it is not possible to descend continuously in a nearly direct line from the crest of a great mountain chain to the plains on either side, for there are usually intermediate valleys, running more or less parallel to the central range, which separate this from outer secondary ranges. These, in their turn, are often accompanied by external ranges, intermediate between them and the plains, and related to them as they are to the central ranges. The type of arrangement here described is more or less traceable throughout the greater part of the Alps, but is most distinctly exhibited in the eastern portion lying betreen the Adige and the frontier of Hungary. We have a central range, composed mainly of crystalline rack; a northern range, formed of secondary rocks, separated from the first by the great valleys of the Inn, the Salza, and the Enns; a southern range, somewhat similar to the last in geological structure, divided from the central one by the Rienz, or east branch of the Adige, and the Drave. Flanking the whole, as an external entrenchment on the north side, are the onter ranges of the Bararian Alps, of the Salzkammergut, and of Upper Austria, to which correspond on the eouth side the Monti Lessini, near Verona, the mountains of Recoaro, those of the Sette Comuni, and the considerable masses crowned by the summits of the Grappa, the Col Vicentino, the Monte Cavallo, the Monte Matajur, and Monte Nanos. Where, as in the cases above mentioned, the secondary ranges of the Alps rise to a greater altitude, and are completely separated from the neighbouring portions of the central chain, it is impossible not to distinguish them as distinct groups; but the outermost ranges, which rarely rise abore the forest zone, are in all cases regarded as appendages of the adjoining grcups. These onter ranges are called in German Foralpen, and in Italian Prealpi, and it is to be desired that equivalents should be introduced in other European languages. A complete catalogue of the peaks and passes of the Alps mould exceed the limits of this article, but it seems desirable to append to each of the main gronps in the following arrangement the names of the more conspicuous summits, with the beight of each above the sea-level in English feet. No limit of absolnte height has been fixed in selecting the peaks here enumerated, as the highest summits of the less lofty groups would appear insignificant in those whose arerage eleration is much greater. The more important passes are also enumerated, distinguishing. those traversed - (1) by carriage road, (2) by bridle-path, practicable for beasts of burden, and (3) by footpath; and (4) snow passes, involving the necessity of crossing snow-fields or glacier

Maln Drvisions of tee Alps.

1. Maritime Alps.-On examining a map of the region Where the chain of the Alps approaches the shores of the Mediterranean, it will be seen that, about 50 miles
N.N.W. of Nice, and abont 20 S.S.W. of the Monte Viso, several valleys diverge in various directions, disposed, roughly speaking, like the rays of a fan. These are formed by a number of ridges which converge towards, although they do not actually meet at, the Mone Enchastraye or Cima dei Quattro l'escovadi. On the west side one of these ridges divides the upper valley of the Ubaye from that of the Verdon, and zonds out a branch which separates the latter trom the Bléone. A third ridge divides the Verdon from the Var, and a fourth separates this from its main affluent, the Tinéa. As already mentioned, the range extending S.E. from Mont Enchastraye is regarded as the inain chain of the Maritime Alps, and extends, with numerous diverging secondary ridges, in a curved line, gradually approaching nearer to the coast till it is merged in the chain of the Apennines. To fix the limit between the Alps and the Apenaines in this direction is necessarily a somewhat arbitrary process, and different criteria may be applied with different results; bnt it seems most natural to fix on the depression west of Savona known as the Col d'Altare or Col di Cadibona, aver which the road is carried which leads in one direction to Alcssandria, and in the other to Mondovi. This is by far the lowest depression in the barrier dividing the Adriatic from the Mediterranean, the summit being only 1608 feet above the sealevel; and during the Niocene epoch it formed a strait connecting those seas. In modern times the project of utilising the same pass for the construction of a camal to connect the Po with the Gulf of Genoa is an illustration of its geographical significance. On the north side of the Mont Enchastraye, a comparatively low pass, Col de 'Argentiere, divides that mountain from the adjuining portion of the main chain. This might properly be regarded as the northern limit of the Maritime Alps, but ancient usage has included in that group the ranges that encloso the Val Maira, and separate it on one side from the Stura di Demonte, and on the other from the Vraita. Conforming to that practice, we fix the nurthern limit of the Maritime Alps at the Col de Longet, S.E. of the peak of Monte Viso, connecting the head of Val Yraita in Piedmont with the sources of the Ubaje in France.

> Chief Peaks of the Maritime Alps.
(The beights are siven in English feet.)

te Gale	
Monte Fronte 7,198	Mont Tinibras....
Monte Bertrand 8,209	Modt Enc
Rocca dell' Abisso 9,193	Grand Riobu
Cima dei Gelas..................10,433	Aiguille de Caambeyron
Rocca dell' Argentera10,617	Pointe Haute de 3Iarc......... 10,

Chief Passes of the Maritime Alps.
Col di San Bernardo (Albenga to Garessio), cartiage road:3301
Col di Ňava (Oneglia to Ormea), carriage road.................................. 3150
Col di Tenda (Tenda to Cuneo), carriage road 6158
Col delle Finestre (S. Martino to Entracque), footpath 8189
Col delle Cerese (S. Martino to Valdieri), footpatb........................... 8412
Col di Fromis Morta (Val Tidea to Valdieri), bridle-path 839
Col della Lombarda (Val Tinea to Vinadio), footpath 7858
Col di Sta, Anna (same), footpath .. 8009
Col de Pouriac (San Stefano to Bersesio), foot path............................. 8360 Col del'Argentiere (Val. of the Stura to Barcelonnette), bridle-path 6545 Col de Sautron (Val Maira to Barcelonnette), footpathsbout $\$ 000$ Col de Lauzanier (Val Tines to the Ubaye), footpath............about 8300
2. Cottian Alps.-In the well-known panorama presented to an observer who takes his stand on the Superga, or some other eminence near Turin, the most distant objects are the peaks of the Maritime Alps south of Cuneo and, exactly in the opposite direction, the great mass of Monte Rosa. In the western horizon, subtended by this chord, about 120 miles in length, the eye follows the irregular curre traced out by the main peaks of the western Alps, that separate upper Italy from France. More than any other part of the Alpine chain, this is characterised by extreme irregularity in the disposition of the mountain masses and the chief valleys. On the west sice the nre
vailing direction seens to be from south-west to north-east, while on the east side it is more nearly from west to east; but the valleys and the ridges that enclose them are often curved or irregularly sinuous. Convenicnee seems to ronfirm immemorial usage in subdividing this region into two or more groups; but it is not casy to decide low this is to be effeeted. The great valley of the Dora Riparia, and the low passes connecting it with the valley of the Durance, seem to afford the most matural dirision. Ancient and modern usago being alike opposed to this, it alpears that the valley of the Orco in Piedmont and that of the Arc in Savoy, with the comecting pass of the Col del Carro, may best be taken as the boundary between the northern and southern portions. The latter is distinguished as the group of the Cottian Nps. This includes a number of secondary ridges that extend from the main chain on the side of Piodmont, with a gencral direction from west to east; and on the French side one considerable range, stretching sonthwest from the neighbourhood of Monte Viso, that divides the Ubaye from the Guil, besides a lesser parallel ridge lying between the Guil and the head waters of the Durauce.

Chief Passes of the Cottian Alps.

Col de Loaget (Val Vraita to the Ubaye), footpath \qquad 8,727
Col de St Verau (Val Vraita to Queyras), footpath... \qquad 8,564
9,827
Col de la Traversette (Criasolo to Abriès), footpath \qquad Col da la Croix (La Tour do Luseraa to Abriès), bridle-path. 7.611

Col da la Croix (La Tour do Lugerna to Abries), bride-path......... 7,611
Col de Sastrieres (Pignerol to Cesanne), earriage road............... 6,335
Col de Sastrières (Pigncrol to Cesanne), carriage road. 6,102
Col d'Izouard (Queyras to Briançon), bridle-path 6out 6,560
Col des Echelléa de Planpiact (Bardonnẻche to Briançon), footpath 5,873
Col de la Roue (Bardonoècha to Modane), bridle path.... \qquad 8,334
Col d'Etiaches (Bardonnèche to Bramans), footpath 9,301
Col du Clapier (Bramans to Susa), footpait 8,107
),
Mont Cenis (Susa to Lanslebourg), carriage road 6,772
Col de l'Autaret (Viu to Lanslebourg), enow. $.10,170$
Col do Coloria (Ala to Lanslcbourg), glacier. 10,662
Col de Séa (Groscavallo to Lanslebourg), glacier. $.10,154$
Col dolla Crocetta (Groscavallo to Ceresole), footpath 10,154
9,179
3. Dauphine Alps.-On the west side of the Cottian Alps, and separated from these by the broad valley of the Durance, rises a group of lofty peaks, surpassing them considerably in height, and almost completely isolated from their neighbours. This group has not usually been included amongst the Cottian Alps by geographers, and it is more natural to regard it as the nueleus of a distinet division constituting the Dauphine Alps. On the north side of this central mass, and separated by the valley of the Romanche and the Col de Lautaret, is a considerable group, including threo principal ridges, whose direction is nearly due north and south, separated from the neighbouring mountains of Savoy by the deep valleys of the Are and the Isère, whieh may best be regarded as an outlying portion of this division. On the south side of the main group another outlying mass, which on one side feeds the chief sources of the Drac, and on the other several short tributaries to the Durance, must also be included in this division. The ranges of secondary rocks lying west of the broad valley between Grenoble and Chambery, which aro geolngically and orographically a southern extension of the chan of the Jura, are at the same time exactly parallel to the northern ranges of the Dauphine Alps, and must be regarded as the outer range or "Border Alps" (Voralpen) of the group. The only doubt in fixing the limits of the Dauphiné Alps is as to the boundary between their northern group and the adjoining mass of the Cottian Alps. It seems that this may best be fixed at the Col de Galibier,
cornecting the clier source of the Durance with the ralley ot Valloires in Savoy.

Chief Peaks of the Dauphint Alps.

Pic des Eerins, or Pointa \mid Grandea Rousscs................. 11,395
des Arcines13,462 Taillefer..................................... 9,387
La Moije, or Aiguille du Pic de Belledonne 8, 180
Midi de la Grave13,081 l'ic du Frẻne........................ 9,203 Pic d'Ailefroida.........alhont 13,000 Pic Bonvoigin11,503 Mont Yelvoux (highest pcali) 12,973 Dormillouae 10,571 Pic d'Olav 11.739 Aiguille d'Arve (highent)......11,529

Cliamechauda
6,847 Chief Passes of the Dauphine Alps.
Col de Falitier (Brisuçon to St Mieliel), footpath
5,302
9,154
Cor de Lautaret (MoDestier to Bourg d Oisans), carriage road 6,791
Col des Ecring (Vallouise to La Bérardo), glacier 11 , 07 I Col du Glacier Blane (Vallouise to La Grave en Oisans), glacler...10, 811 Col do l'Echsuda (Vallouise to Monestier), bridle-path 7,930 Col de la Lavze (St Christophe Lo La Grave ed Oisans), glacier ... 10,509 Col de Venosc (Venose to Freaey), bridle-path.............................. 5,292 Col da Sais (La Berarda to Val Godernar), glacier 10,293 Col de Célar (Vallouise to Val Godemar), glacier........................... 10,092 Col des T'ourettes (Orcières to Chateauroux), footpath................. 8, 8,465 Col de l'Lafernet (La Grave en Oisade to St Jean de Maurienne), footpath

8,826
Col de la Croix de Fer (Bourg d'Oisans to St Jcaa de Maurienae),
bridle path.
6,600
4. Graian Alps.-The lufty group of snowy mountains lying between the plain of Piedmont and Mont Blanc has from a remote period borne the designation Graian Alps. To the north they are bounded by the Val d'Aosta, and to the south by the valley of the Oreo; but on the west side the boundary is not so easily determined. The portion of the main chain dividing Savoy from Piedmont, between the Levana and Mont Blane, must unduubtedly be included in this division; but it is not so easy to determine the relations of a group of lofty summits that are divided from the rest of the Graian Alps by the upper valley of the Isere, filling the space between the upper course of that river and that of the Arc. This is further geologically distinguished by the fact that the higher summits are chiefly composed of nearly unaltered sedimentary rocks. This group has by some writers been associated with the mountains of Beaufort, lying between the Isère and the Arly, to form, with some subordinate branches, a group of south Savoy Alps ; but we prefer to adhere to the older usage of those who have united them with the Graian Alps. The exact boundary between these and the Mont Blanc group may best be fixed at the pass of the Little St Bernard, the lowest in the main chain between the Mont Cenis and the Simplon.

of the Grazan Alps.	
di Lavina	
Chicf Passes in the Graian Alps.	
Col del Carro (Locana to Lanslehourg), glacicr10,	
Col de Gailletta (Tignes to Val de Rhêmes)	
Col du Mont (Sainte Foi to Val Grisanche), footpath 8,635	
Pass of Little St Bemard (Bourg St Maurice so Aosta), car. road 7,192 Col la Croir de Nivolet (Cercsolo (a Val Savaranche) brille.path 8,624	
Col de Grancrou (Cogne to Nozaca), glacier .	
Col de Telleccio (Cogne to Locana), glacier ...	
de Corne (Cogne to Barl),	
Col de Lore (Cogne to Brissogne), glacier10, 049	
l d'Iaéran (Boury St Maurice lo Laaslebourg), bridle-path 9,085	
1 da la Lalsse (Tignes to Entre-deux-Eaux), sno	
Col de Chaviere (Pralognan to Modane), 日now 8, 144	
Col da la Platière (Moutiers Tarentaisa to St Jean de Maurienoe), footpsth $\qquad$$\qquad$	

5. Pennine Alps.-The portion of the great chain that includes the peaks of Mont Blanc and Monte Rosa has always been recognised as the most important among the divisions of the Alps. This pre-eminence is due not only to its surpassing height, but to the fact that its peaks are so conspicuous. Throughout the plain of Upper Italy, from Turin to Milan, and even as far as the slopes of the Apennines, Monte Rosa, with its attendant peaks, is commonly the most remarkable object in the northern horizon; while in western. Switzerland, and as far westward as the heights above Lyons, the dome of Mont Blanc, rising in the distant eastern horizon, attracts the frequent attention alike of natives and strargers. Some doubts may arise as to the precise limits that should be assigned to this group. Towards the north-east. it is generally agreed that the Simplon Pass is the most natural limit. In the opposite direction most writers have fixed on the Col de Bonhomme, south-west of Mont Blanc, as the proper boundary; but it seems reasonable in a general arrangement toregard the range extending from the last-named pass to Grand Cœur, in the valley of the Isère, as a south-western prolongation of the range of Mont Blanc. From the portion of the main chain connecting the Mont Combin with Monte Rosa, numerous branches, with peaks that rival these in height, diverge northward. The secondary ranges that extend on the side of Italy, southward and eastward from Monte Rosa, are much inferior in altitude. On the north and west sides of Mont Blanc an extensive mountain district, including the French department of Haute Savoie, must be considered as an appendage to the group of the Pennine Alps. On the south side, the short range extending parallel to that of Mont Blanc, from Courmayeur to the Val de Bellaval, corresponding to the range of the Aiguilles Rouges and the Brévent, on the opposite side, mav best be included within the group of the Pennine Aips.

Peaks of the Pennine Alps.	
Grandes Jorasses 13,799	
Grande Rosaere................ 10,904	
Mont Vélan...................... 12,353	
Grand Combin 14,164	
Mont Gelé 11,539	
Mont Colon...................... 12,264	G
Dent d'Hérens 13,714	Sassencire '..................... 10,69
Bec de Luseney................ 12,350	
Matterhorn, orMont Cervin 14,780	
Breithorn......................... 13,685	
L.yskamm........................ 14,889	
Mite Ross (bichest peak i. 15,217	
Chief Passes of the Pennine Alps.	
Col de Bonhomme (Contamines to Chapin), bridle-path 8,195	
Col de la Seigne (Chapiu to Courmayeur), bridle-path................ 8, 827	
Col du Mont Tondu (Contamiues to Allée Blanche), glacier........ 9,204	
Col de Miage (Contamines to Courmayeur), glacier 11,076	
Col du Géant (Chamouni to Conrmayeur), glacier11,030 Col du Tour (Chamouni to Orsièrea), glacier.................................11,213	
Col de Ferrex (Courmayeur to Orsieres), bridle-path......................... 8,320	
Great St Bernard Fass (Orsières to Aosta), bridle-path 8,120	
Col de Fenétre (Chables to Aosta), bridle-path............................ 9,141	
Col de Colon (Aosta to Evolena), glacier..................................10,269	
Col de la Val Pellina (Aosta to Zermatt), glacier........................11,687	
Col de Vessona (Oyace to St Barthelemi), footpathabout 8,600	
Col de Vacornère (Prarayen to Val Tournanche), anow10,335	
Col de Chermontane (Chermontane to Evolena), glacier..............10, 349	
Col d'Hérens (Evelena to Zermatt), glacier................................11, 418	
Col do Torrent (Evolena to Vissoie), footpath 9,593	
Paa du Bexff (St Luc to Turtruanthal), footpath......................... 9,154	
Augstbord Pass (Griaben to St Niklaus), bridle-path................... 9,515	
Trift Joch (Zinal to Zormatt), glacier..11,614	
Col de St Théodule (Zermatt to Val Tournanche), glacier10,899	
Schwarz Thor (Zermatt to Val d'Ayas), glacier12,777	
Lya Joch (Zerraatt to Val de Lys), glacier14,050	
Weisa Thor (Zermatt to Macugnaga), glacier............................. 11.851	
Betta Furke (Val d'Ayas to Val de Lys), footpath...................... 8,639	

Col di Val Dolbia (Gressonay to Riva), bridle-path 8,360
Turlo Pass (Alagna to Macugraga), anow 9,080
Col di Barranca (Varallo to Ponte Grande), bridle-path 5,749
Alphubel Joch (Zermatt to Saas), glacicr....................................... 12,474
Adler Pass (Zermatt to Distel Alp), glacier...46, 46
Monte Moro (Saas to Macugnaga), snow..................................... 9,390
Saas Pass, or Passo d'Antrona (Sajas to Val Antrona), glacier 9,331
Zwiachbargen Pass (Saas to Gondo), glacier 10, 732
Simiplon Pass (Brieg to Domo d'Ossola), carriage road.................. 6,595
Col de Balme (Cbamouni to Martigny), bridle-path 7,231
Col d'Anterne (Servoz to Sixt), bridle-path..................................... 7, 612
Col de Sesanfe (Champery to Martigny), footpath................................. 7,940
6. Bernese Alps.-There is no considerable mass of Alpine summits whose boundaries are better defined than that which is generally known as the group of the Bernesc Alps. By the number and height of the peaks, that rise far above the limits of perpetual snow, it ranks next in importance to the Pennine group; and its position with reference to that group has largely contributed to the fame of the region which they occupy for a marvellous and almost unique combination of grandeur and variety. The most characteristic feature in the orography of Switzerland is the great valley system that extends in a nearly direct line from Martigny to Coire-interrupted, it is true, by two passes (the Furka and Oberalp) of small elevation compared to the surrounding heights. On the opposite sides of this great trench the chief groups of the central Alps are arranged in masses that, amid much apparent irregularity, approach to parallelism with the direction of the central valley. Hence the traveller who attains any considerable height on either side sees over against him the dominant summits of the opposite group in constantly varying combination. The highest groups (the Pennine and Bernese) are so placed that the chief peaks on the one side are rarely more than 20 miles apart from their rivals in the opposite chain, and the projecting summits of the secondary ridges betwecn them afford panoraric views of wonderful beauty and grandeur. What may be called the main chain of the Bernese Alps, forming the boundary between the Swiss cantons of Bern and Valais, extends parallel to the course of the Rhone, from the glacier which is the main source of that river, to Martigny, a distance of about 70 miles ; and we must regard as a dependency of that chain the mountain district that lies on its northern side, between the upper course of the Aar and the head of the Lake of Geneva. Desiring to adhere to the divisions of the Alps admitted by ancient geographers, many modern writers have included the Bernese group among the Lepontine Alps; but this arrangement is not consistent with any rational criterion that can be applied. The only question admitting of doubt is as to the eastern limit of this group. The Aar issues from its parent glacier at a point very near to the chief source of the Rhone, and separated only by a comparatively deep and broad depression, the Grimsel Pass; and it might appear that the Bernese Alps.should be defined as the group enclosed between those rivers. But some ten miles east of the Grimsel Pass the range lying north of the great valley of Switzerland is completely cut through by the valley of the Reuss, where that stream descends towards the Lake of Lucerne through the famous defile of the Devil's Briage; and as it would be inconvenient to reckon the comparatively small group that lies between the head waters of the Reuss and those of tho Aar as a separate division, we prefer to include this as a portion of the Bernese Alps.

Chief Pcaks of the Bernese Alps.

Grand Moveran10,043	
Diablerets10,066	Jungfran...........................13,671
Wildhorn10,722	Mönch 13,438
Wildstrubel10,715	Eiger................................13,045
Balmhorn12,100	Finsterashorn...................14,026
Doldenhora11,965	Schreckborn13,394
Blümlis Alp (Bliimlisalp-	Wetterhorn (Mittelhorn)..... 12,166
horn)12.041	Rizliboru.......................... 10.774
Bietschborn-....12.969	EgXiarhborn 9 ,649

Loftel borae.......10,138	Titlis...............................10,627
Gslenstock......................... 11	Uri Rothstock 9,620
Dammastock.............11,020	Niesea 7
Sustenhoru.......................11,518	Brienzer Rothhorn.............. 7,9
Gross Spanuort10,5	Pilatus (Oberhaupt)........... 7,2

Gross Spanuort

Chief Passes in the Bernese Alps.

Col de Chevills (Bex to Sion), bridle-path 6,680
Sanetsch Pess (Sioa to Saanen), bridle-path 7,363
Rawy! Pass (Sioo to Zweisimmen), bridle-path 7,043
Gemmi Pass (Kandersteg to Leule), hridle-path 7,553
Lütschea Pass (Kandersteg to Turtman), glacier 8,796
Tachingel Pass (Kanderstog to Lauterbrunnen), glacier 9,252
Peterscrat (Luatcrhrunnen to Kippel), glacier. 10,550 Lotscheo Liicke (Fipiel to the Kegischhorn), placier... 10,512 Kleise Scleidegg (Lauterbrannen io Grindelwald), bridle.path... 6,768 Grosse Scheidegg (Grindelwald to Meyringen), bridle-path 6,910 Muinch Joch (Grindelwald to Vieseh), glaeierabout 11,600 Strahleck Pass (Griodelwald to the Grimsel), glacier10,904 Bridaig Pass (Brienz to Sarnca), carriage road $.10,904$ Eagelberger Joch (Meyringea to Engelborg), bridle-path 7, 214
Sustea Pass (Meyringen to Wiasea), carriage road (?) 7,440 3,649 Triftlimmi (2rifi Glacler to Grimael), glacier................................. 10,200 Geschenenlimmi (Gesclenea to Stein Alp), glacierabout 10, 1.0 Surenea Pass (Eagelberg to Aldorf), bridle-path 7,562
7. North Swiss Alps.-Attention has already been called to the great lino of valley that traverses Switzerland from Martigny to Coire. The range of high peaks lying on the north side of this valley is interrupted at one point only, where the Meuss flows through the deep defils of the Devil's Bridge from Andermatt to Altdorf, and this breach in the continuity of the range has been hore regarded as the eastern limit of the Bornese Alps. The range extending eastrard from that boundary to the neighbourhood of Coire might perhaps be considered as a prolongation of the range of the Bernese Alps; but independently of the inconvenience of assigning such wide boundaries to a single group, there are geologic as woll as orographic grounds for preferring to class this along with the dependent ranges lying further north as a separate division of the Alps. With regard to the latter ranges, those lying between the valley of the Reuss and the Lake of Lucerne, on one side, and the ancient valley of the Rhine, which included the lakes of Wallenstadt and Zurich, on the other, manifestly correspond to the outer ranges of central Switzerland, which we regard as appendages of the Bernese Alps. The case is somewhat different as regards the small detached group culminating in tho Hoh Sentis, and lying in the angle between the ancient course of the Rline and the modern Rhine valley from Sargans to the Lake of Constance. This is so far separated orographically and by gcological structure that it might properly rank as a separate division, but it is on the whole more convenient to reckon it as an outlying portion of this group. The Oberalp Pass, a few miles east of Andermatt, forms the watershed between the Rouss and the main branch of the I'nine, and the waters meet again at the confluence with the latter of the united streams of the Aar and the Reuss at Waldshut, so that the entire territory comprehending this division of tho Alps is cnclosed between the two firsto named rivers.

Chief Peaks of the North Swise Alps.

Crispalt (Piz Giuf)10,164	Kärpistock........................ 9,180
Oberal pstock (Piz Cotschea) 10,925	Saurenstock 10,
Piz Tumbif, or Brigelserhorn 10,663	Mythen (higher peak) 6,244
Biferteostock, or Piz Durgia 11,237	Glarniseh (bighest peak,
H1ausstock10,355	Bächistock) 9,584
Sesneshorn........................10,870	Murtschenatock 8,012
Calands 0,213	Magerea, 8,294
Bristeastock10,059	Churfirsten (highest peak,
Scheerhorn.......................11,142	Scheibenstoll) 7,554
Claridenstock10,709	Faulirst 7,916
Sclbsanft.o........................ 9,921	Hoh Seatig..................i....... 8,215
Chief Passes of th	North Swiss Alps.
Oburalp Pass (Dissentis to Andertm	tt), carriage rosd 6,782
Krauzli Pass (Dissentis to Amste	tpath 7,710
Sand Grat Pass (Dissentis to Stac	borg), glacier...................... 9,188
Clariden Grat (Amsteg to Stachel	
tea Pass (Manz to Stachol	

Segnes Pass (Relcionsa to Elm), snow.. 8,612
Sardons Pass (Elm to Vättis), glacior …... 8, 8, 0,500
Ramia Pass (Elm to Sargaos), Gootpath .. 6,772
Klausen Pass (Altdorf to Stachelberg), bridle path 6,437
1'ragel Paba (Sch wyz to Glarua), bridle-path.................................... 5,062 Kamor Pasa (Weissbad to Kuiti), bridle-patls........................about 5,300
8. Lepontine Alps.-The portion of the Alpine chain lying between tho simplon and Splügen passes, and forming the boundary betwecn the tributaries of the Po and those of the Rhine, presents some peculiar orogmphie characteristics. The line of watershed is pretty nearly pamallel to that great line of depression traced across Switzerland by the valley of the Iihone, the Urscrenthal, and tho valley of the Vorderrbein; and a tendency to parallelism with the same system may be traced in many parts of this group. But the dominant direction of the secondary palleys and ridges is that of the meridian; and on the south sido we find a scrics of long valleys running from north to south, with oecasional slight distortions. The nost considerable of these are partly occupied by the two famous Lombard lakes-Maggiore and Como-which have from an early period attracted the admiration of strangers to this region. Ancient geographers limited the term Lepontino Alps to the portion of this group that sends its drainage on the south side to the river Ticino; but the ranges between the Splügen and Bernardino passes, and betwecn the lakes Maggiore and Como, evidently belong to the same system, and must be united in any natural urrangement of the Alps. On considering a tolerably correct model, it is impossible not to be struck by the fact that all the valleys that contain the most considerable streams of the central Alps appear to radiate from the neighbourhood of the St Gotthard Pass. If we measure from the summit of that pass to the head valleys of the Rhone, the Aar, the Rcuss, the Vordcrrhein, the Ticino, and the Toccia, we find that the most distant lies within 9 English miles from that point. This fact has doubtless a significance which we are not yet able fully to appreciate, but scarcely suffices to justify the view of those who regard the St Gotthard Pass as in some special sense the central point of the whole systern of the Alps. It is worth remarking that, so far from being distinguished by superior height, the neighbouring peaks are surpassed by all the surrounding groups, and that the valleys are much deeper than in many otber districts, and especially than those of eastern Switzerland.

Chief Peaks of the Lepontine Alps.

	Piz Vial or Ganinario.o.......10.88
Wasenhorna........................ 10,628	Piz Valrheis21,148
Ofonborn, or Punta d'Arbola 10,728	Vogelberg
Blinaeahorn 10,932	Piz Terri..........................10,33
Moate Basodine10,748	Piz Cavel........................... 9,659
Pizzo Rotondo10,489	Fanellahorn10,243
Pizzo di Campo Teaca ${ }^{10,096}$	Löchliberg 9,990
Piods di Crana................... 7,059	Piz Beverin........................ 9,8
Cima di Laurasca 7,264	Tambohorn10,7
Badus, or Six Maduns......... 9,616	Cime di Balniscio 9,967
Scopi.	Monte Camogle 7,30
Cims	

Chief Passes in the Lepontine Algs.

Ritter Pase (Viesch to Jiselle), snow .. 8, 854
Albrun Pass (Viesch to Premia), bridle-path.................................. 8,005
Gries Pass (Obergestelen to Formazza), bridle-path 8,050
Nuferien Pasa (Obergestelen to Airolo), bridle-path 8, 8,009
Passo di San Giscomo (Formazza to Airolo), bridle-path 7,572
Furka Pasa (Obergestelen to Hospentbal), carriage road............... 7,992
St Gotthard Pass (Eospenthal to Airolo), carriage road 6,936
Criner Furka (Locarno to Val Formazza), footpath 7,631
Passo di Nartet (Locamo to Airolo), footpath 8,013
Passo dell' Uomo (Dissontia to Airolo), footpatb........................... 7, 257
Passo dell Jomo (Dissontis to Airolo), footpath........................... 7, 289
Greina Pasi (Trons to Olivone), bridle-path 7,743
Disrat Pess (Ilanz to Olivone), footpsth 7,953
Scaradra Pase (Tlanz to Gburone), gnow 9,088
Passo di Buffalora (Val Calnnca to Mesocco), bridle-path 6,686
Bernardino Pass (Hinterrhein to Val Mesocco), carriago road...... 6,769
Bernardino Pass (Hinterrhein to (lanz to Hiaterrhein), bridle-path 8,225
Valserberg Pass (Hanz to Hinterrbein), bridle-path 8,225
Lưchliberg Pass (Reichensu to Splidgen), footpath................... 8.165

Splugen Pass (Splügen to Chiavenna), carriage road \qquad 6,915
7,75
7,275 Passo di Balniscio (Campodolcinu to Mesocco), footpatl \qquad Prsso della Forcola (Chiaveuna to Roreredo), footpath \qquad 6,274
$6,41 \%$
9. The Rhatian Alps.-The older geographers included under the term Rliætian Alps a vast mountain region extending orer 6° of long., from the east side of the Lago Maggiore to the left bank of the Salza, and through $2 \frac{1}{2}^{\circ}$ of lat., from the neighbourhood of Brescia to the plain of Bavaria. There is no assignable reason for uniting in a single dirision mouutain groups so distinct as many of those included within this wide space-scarcely less than that occupied by all the divisions hitherto enumeratedsave the fact that at an early perind they received a common designation from mriters who had a most imperfect acquaintance with their topography. It might be expedient to discard a term to which it is difficult to assign a limited meaning without incurring the risk of confusion; but general usage has so constantly applied the term Ribxtia to the mountain region of Switzerland lying east of the Rhine, with the adjoining portion of Tyrol, that it seems best to preserve the ancient name while endeavouring to restrict it within juster limits. With that object it is necessary to take account of one of the most remarkable features in the orography of the Alps-the great breach in the continuity of the main chain shown in the upper valley of the Adige. On a general riew of western Tyrol it is apparent that the lakes which feed the head of that stream lie on the northern side of the axis of elevation of the main chain, and in fact several streams draining the northern slopes of the central mass are borne southward to the Adriatic through that opening. This is not the place to take into consideration the important influence that this breach in the line of defence between Italy and the north, and the equally deep opening of the Brenner Pass at the head of the other main branch of the Adige, has had on the history of Europe, nor to discuss the geological significance of the same depression throughout an incalculably longer period; but it is sumiciently clear that this should be taken as the eastern limit of the group to which the term Rhætian Alps most properly applies. On the west the limit, as we have already seen, is marked by the valley of the Rhine, and the line of depression over which the Splügen road is carried to the head of the lake of Como. In the space between these boundaries the chief monntains of the Khetian Alps appear as islands of crystalline rock, divided by intervening masses of palæozoic and older secondarystrata; but on the sonth side lies a district which differs considerably in geological structure, and is cut off by a distinct orographic boundary. A straight line drawn from the head of the lake of Como to Cles in Tyrol, will throughout lie close to a trench formed by the valley of the Adda, the low pass of Aprica, the head of Val Camonica, the Tonale Pass, anci the Tyrolese Val di Sole. On the south side of this trench, and parallel to $i t$, extend in succession a broad baud of paleozoic rock and a still broader zone of trias, bordered on he southern slope by a narrow girdle of jurassic rocks which decline towards the廿hain of Lombardy. Towards the east these are interrupted hy a great mass of very peculiar granite, the most considerable tract of true.granite to be found in the Alps. Beyond this the ridges and valleys no longer preserve the direction from east to mest, but become parallel to the lake of Garda and the ralley of the Adige. The district thus limited is enumerated hereafter as a distinct division under the designation Lombard Alps, the boundary between this and the Rhætian division heing the trench above described, which is prolonged from near Cles over the low Gampen Pass to the neighbourhood of Meran. On the northern side the Rhætian Alps are divided from the Vindelician by a well-marked trench closely corresponding with the
northern limit of the crystalline rocks of the Silvretta group, formed by the valley of the III, the Vorarlberg Pass, and the course of the Rosanna. Within the limits here assigned the Rhztian Alps occupy an area measuring about 80 miles by 60 . The entire mass is divided into two nearly equal portions by the upper valles of the Inn, known in Switzerland as the Engadine.

E Wand..........................11,55¢
enezia Spitze..............110.09\%
Hasenohr10,673
Pailon della Mare12038
TTesero..............................11,636
Monte Confinale11,07e
Monte Sobrettaabout 11,006
Piz Curver 9,701
Piz Starlera10,001
Piz Platta11,10¢
Gravasalvas (l'iz Lunitn) ...10,42]
Piz d'Aela10,80t
Piz d'Err.........................11,13!
Cima da Flix.....................10,947
Piz Munteratsch.................11,10¢
Piz Ott............................ 10,660
Piz Uertsch10,738
Piz Kesch17, ${ }^{171}$
Piz Vadred.......................10,610
Schöne Bleise 9,79t
Scesa Plana 9,738
Blankahom10,382
Piz Linard11,208
Fluchtlorn.........................11,142
Nuttler10, 10.1
Piz Mlondin.......................... 10

Chief Passes in the Rhetian Alps.

Pauso di Madesimo (Campo Dolcino to Arers Thal), footpath 7,480
Passo della Duana (Casaccis to Avers Thal), glacier 8, in 20
Septimer Pass (Casaccia to Molins), bridle-path 7,582
Naloya Pass (Casaccia to Silvaplana), carriage road . 5,942
Maloya Pass (Casaccia to Silvaplana), carriage road - 8,957

Passo di Zocea (Casaccia to Val Masino), glacier. 8,916
8,616
Muretto Pass (Casaccia to Sondrio), snow 7,658
Passo di Canciano (Chiesa to Poschiavo), footpath............................ 8,356
Lavirum Pass (Ponte to Val Lirigno), anow 8,249
Passo di Val Viola (Poschiavo to Bormio), footpath 9,249
Foscasno Pass (Bormio to Zernetz), bridle-patia 6,329
Ofen Pass (Zernetz to Santa Maria), carriage road 7,070
Umbrail Pass (Bormio to Santa Maria), footpath 8,3t2
Stelvio Pasa (Bormio to Prad), carriage road.................................. 9, 213
Passo Ceredale (Sta. Catarina to Latsch), glacier 10,765
Passo di Vios (Sta. Catarina to Pejo), glacier 10,868
Passo di Sforzellina Nal Gavia to Pejo), glacier 9,950
Gavia Pass (Sta. Catarina to Val Camonica), bridle-path.......ebout 8,600
Hohenferner Joch (Martell Thal to Val della Mare), glacier......... 9,904
Saënt Pass (Martell Thal to Rabbit, glacier 9,954
Kirchberger Joch (Ulten Thal to Rabbi), footpatb........................ 8,13.
Julier. Pass (Molins to Silvaplana), carriage road 7.503
Albula Pass (Bergin to Ponte), carriage road $\boldsymbol{\text { I }}, 589$
Sertig Pass (Scanfa to Berguin), footpath ... $0,06 ?$
Strela Pass (Coire to Davos), bridle-path....................................... 7,739
Laret Pass (Berguin to Klosters), carriage road.............................. 5.338
Scaletta Pass (Davos to Scanfs), snow .. 8, 613
Fluéls Pass (Davoa to Suis), carriage road 7. S $^{2} 1$
Vereina Pass (Klosters to Süs), footpath....................................... 8, 133
Silvretta Pasa (Klosters to Guarda), glacier 9,928
Cavell Joch (Bludenz to Seawis), footpsth 7,562
Schweizerthor (Vadans to Schiersch), footpath.............................. 7,120
Drusenthor (Schrons to Schiersch), footpath 7, 822
Scblappizer Joch (St Gallenkirch to Klosters), bridle-path (?) 7,185
Fermant Pass (Pattenen to Guarda), glacier................................. 9,206
Bieler Joch (Montafun to Paznaun Tbaly, bridle-pathabont 6,000 Fimber Joch (Iscbgl to Remuis), snow ... 8, 547
Vigaitz Pass (Kappel to Samnaunthal), snow 8,85s
10. Lombard Alps.-The limits of the Lombard Alps bare been already pointed out. They are enclosed on the east and west sides by the Adige and the lake of Como, extending through about 90 miles from near Meran to Lecco. Their northern boundary is the great orographic trough that stretches from the head of the lake of Como along the valley of the Adda to Tresenda, thence by the low Aprica Pass to the upper Val Camonica, and over the Tonale Pass to the Tal di Sole. Where that valley bends abruptly to SSE., the trough still keeps its original direction across the Gampen Pass to the right bank of the Adige below Meran. In spite of the zeal with which
travellers have of late ycare explored the unfrequented parts of the Alps, this group continues to be very imperfectly known, although it offers abundant attractions to the naturalist and the lover of picturesque and grand scenery.

Chief Peaks of the Lombard Alps.

Legrone 8,568	Crozzon di Laris10,889
Pizzo del Tre Signori, about 8,600	Moate Adamello11,832
Grigua (Monte Codeno) 7,908	Carè Alto11, 152
Corno Stella 8,845	Presanella, or Cima di Nar-
Aralalta 6,585	dis11,688
Monte Arera 8, 8.255	Cima delle Rochettc 10,777
Monte Redorta................... 9,980	Brenta Alta(?) 10,771
Pizzo del Diavolo 9,574	Monte Baldo (higbest peak
Pizzo di Cocca 9,705	-La Colras)................... 7,212
M onte Presulana 8,202	Mendola (Monte Roen) 6,919
Monte Frerone 8.676	Monte Bondono 7,412
Monte Blumone 9,321	

Chief Passes in the Lombard Alps.
Passo di San Marco (Morbecno to Val Brembana), hridle-path ... 5,997 Passo del Salto (Sondrio to Val Seriana), footpath................about 7,500 Presolana Pass (Castiono to Val di Scalve), footpath 4, 265
Presolana Pass (Castiono to Val di Scalve), footpath
Aprica Pass (Sondrio to Edolo), carriage road \qquad
\qquad 6,483
Oamen Croce Domini Pass (Breao to Lodron), bridle-path...............about 6,500 Passo di S. Valentino (Val di Fum to Tioue), snowabout 9,300 Passo del Lago Ghiacciato (Ponte di Legno to Pinzolo), snow 9,437
Passo di Lares (Pinzolo to Val di Fum), glacier 9,230
Ginerrie Pass (Pinzolo to Val di Non), bridle-path 5,200
Boces di Brenta (Plnzolo to Molveno), ajow
................................... 8 ,

Mendelscharte (Cles to Botzen), bridle-path 8, 404
11. Vindelician Alps.-Reference has already been made to the contrast offered by the orderly arrangement of the Eastern Alps, as compared with the far more complicated and irregular disposition of the masses that make up the Western and Central Alps. In the former wo have a broad zone of crystalline or metamorphic palrozoic rocks, extending from the upper valley of the Adige to the frontier of Hungary, flanked on either side by a parallel zone of secondary rocks, which rise into peaks that do not much exceed the limit of perpetual snow. The nor thern zone extends for a distance of fully 260 miles from the lake of Constance to the neighbourhood of Vienna, with an average width varying from 30 to 40 miles. For the greater part of that distance this is separated from the central range by broad and deep valleys, throngh which the Inn, Salza, and Eans flow from west to cast, till each of them, turning abruptly northward, runs through an opening that cuts across the general strike of the stratification to reach the plain of South Germany. In geological structure and general aspect the mountains of this tract show many common characteristics, and convenience supplies the only good reason for dividing it into two main groups, separated by the valley of the $\ln n$, the greatest of the tributaries which the Alps send to the Danube. Of the western portion of this region the larger part belongs to Bavaria, but a considerable share lics in the Austrian provinces of Tyrol and Vorarlberg; and on this account the designations Bavarian Alps and North Tyrol Alps are open to objection, and have the further disadvantage of excluding the Alpine districts of Bavaria and North Tyrol lying east of the Inn. The name Suabian Alps is liable to the serious objection that none but a very small part of this district was ever included in the circle of Suabia. On the whole, it seems that the region lying north of the Vorarlberg road and the valley of tho Inn, between the lake of Constance and the latter river, maty best be termed the Vindelician Alps. The whole was included within the territory of tho Vindelici before that powerful tribe was conquered by the Romans, and their territory joined to that of the Rhxtians to form a single Roman province. In height the mountains of this division fall considerably short of those hitherto enumerated, not more than four or five exceeding 9000 feet. It is impossibla to consider a mav of this region without being struck by the
fact, that although the general slope inclines northward towards the plain of Bavaria, or southward towards the Ill and the Inn, acarly all the ridges and minor vallcys Lie east and west parallel to the course of those rivers and to the outcrop of the sedimentary strata, which is equally the direction of the line of depression followed by the Vorarlberg road forming the southern boundary of this group.

Chief Peaks of the	Vindelician Alps.
Mittagspitz 6,851	Miemingergebirge (higbest) 8,856
Rothowand......................... 8,842	Karwandlspitz 8,259
Schafberg 8,774	Kreuzspitz 7,156
Mädelegabel 8,674	Solstein 8,649
Biberkopf 8,543	Edkorspitz........................ 8,91]
Widdersteix 8,294	Lavatscherspilz. 8.081
Hoch Vogel 8,501	Vomperjoch 7,505
Stanzerkopf 9,041	Soiernspitz........................ 7,303
Muttekopf 9,077	Juifen 7, 14d
Zugspitz 9,716	

Chief Passes in the Vindelician Alps.

Arlberg Pass (Bludenz to Landeck), carriage road...................... 5,902
Haldenwanger Eck (Schrecken to Oberstdorf), footpath 5,070 Schrofen Pasa (Oberstdorf to Steg in Lectthal), Uridlo-path 5,569 Madelejoch (Oberatdorf to Holzgau), footpath....................about 7,000 Ksiserjoch (Steg to Petuou in Stanzerthal), footpath …......about 7,000 Zamserjoch (Elbigen Alp to Landeck or Imst), footpath......about 7,000 Fern Pass (Lermoos to Telfs), carriage road 4,063 Seefeld Pass (Parteakirch to Zirl), carriage road......................... 3,900 Geissel Pass (Mittenwald to Lermoos), footpath 4,258 Stempeljoch (Scharnitz to Hall), footpath,.................................. 7,346 Haller Anger (Scharnitz to Schwaz), footpath 5,835 Plumserjoch (Hinter-Rise to PertisaL), bridle-path........................ 5,492 Pfans Joch (Fall to Pertisau), footpath...............................about 5,800 Stockeralp Pass (Schliersee to Brixlegg), bridle-path.............about 4,000 Hörhag Pass (Bairisch-zell to IIfstein), bridle-path............about 4,000
12. Northern Noric Alps.-We have already spoken of the broad mountain zone extending from the Inn to the neighbourhood of Viemna, and bearing a general resemblance in orographic and geological character to the group last described. For reasons given hereafter, it seems impossible to preserve the ancient designation Noric Alps for any portion of the central chain of the Eastern Alps, but the name Northern Noric Alps seems the most' suitable for a region which was altogether included in the Roman province of Noricum, and which closely coincides with the northern half of the Alpine district known to them as Alpes Norica. The boundaries of this division are casily determined. To the north and east the mountains subside towards the valley of the Danube. To the west it is bounded by the Inn, which bends first to north-east, then to north, to enter the plain of Bavaria. On the south side the boundary runs from the Inn through a part of the Zillerthal, over the low Gerlos Pass, and along the vallcys of the Salza and the Enns, evidently forming a singlo line of depression; but where the Enns enters the defile of Gesaüse, a broad and low valley, through which runs the road from Rottenmann to Leoben, seems to form the most natural division between this and the central chain. The line of separation is completed by the valley of the Mur and the depression of the Semmering Pass, over which the railroad is carried to Vienna. The highest pcaks of the Dachstein group form the most considerable prominence in the entire range of the Northern Alps; but the average height of the mountains of this division does not exceed that of the Vindelician Alps.

Chief Peaks of the Northern Noric Alps.

Thorholm	8,548	Thorstein 9,677.
Hohe Salv	5,993	Dachstein 9,845
Rettenstein	7,750	Sarstein 6,558
Scheffauer K	7,611	Grimming 7,700
Birnhorn	8,635	Grosser Priel 8,238
Staufen	5,950	Waschenegg 8,112
Watzmann	8,988	Buchstein 7,269
Untersberg (bighest point)...	6,467	Hochthor 7,478
Hohe Goll	8,286	Eisenerzer Reichenstein 7,08
Hochkalter	8,595	Kaiserschild 6,817
Debergossene Alp or Hoch-		Oetscher 6,320
könig	9,643	Brandstein 6,542
Tannengebirge (Raucheck)...	7,947	Hochschwab 7,441
Schafberg	5,837	Raxalp............................. 6,575
Hollko	5,754	8chneeberg......................... 6,809

Chief Passes in the Northern Noric Alps.

Gerlos Pass (Jenbach to Mittersill), bridle-path 4,717
Pass Thurn (Kitzbuhel to Mittersill), carriage road
Salza Joch (Kelschau to Wald), footpith 4,371

Waidriog Pass (St Johann to Lofer), carriage road...
Lochfilzen Pass (St Johann to Saalfelden), bridle-pathabout Pohwarzhachwacht (Reichenhall to Ramsan), carriage road Hirachiibel Pass (Berchtesgaden to Saalfelden), carriage road......
Uirachitbel Pass (Berchtesgaden to
Diesbach Scharte (Königssee to Frohn wies), footpath
Weisshach Scharte (Könicssee to Saalfelden), footpath
Torrener Joch (Berchtesgaden to Golling), footpath...................
Urschlauerscharte (Werfen to Saalfelden), footpath
Filzen Sattel (Saalfelden to Lend), bridle-path..
Faram Sattel (St Johann iny Pongau to Radstadt)
Wagram Sattel (St Johann inı Pongau to Radstadt), carriage road Pass Gschuitt (Abtenau to Gosau), carriage road.
Pyrhn Pass (Windischgarsten to Lietzen), carriage road..........................
age road.......................
Prebichel Pass (Eisenerz to Leoben), carriage road \qquad
Eisenerzer Höhe (Eisenerz to Wildalpen), bridle-track
Kastenriegel Pass (Weichsาlhodon to Wegscheid), bridle-path..... Seeberg Pass (Mariazell to Aflenz), carriage road \qquad Niederalpl (Mariazell to Muirzsteg), carriage road \qquad Semmering Pass (Bruck-an-der-Mur to Wiener Neustadt), c. rd. . 3,256
13. Central Tyrol Alps.-To the eye of the geologist, taking a cursory view of the Eastern Alps, it may appear that the great central zone, extending from the upper valley of the Adige eastward to the neighbourhood of Gratz, forms but a single district of tolerably uniform structure. "He will, however, remark that about the centre of the range the prevailing crystalline rocks-gneiss and mica-schist-give place to metamorphic schists, probably of palæozoic age, that rise into several of the highest peaks of the entire mass. Those who are disposed to regard the above-named crystalline rocks as merely extreme forms of metamorphic sedimentary strata, may not attach much importance to this circumstance; but it is. a still more significant fact that at a short distance east of the same extension of the metamorphic rocks we have proof of the former existence of a depression which seems to have cut completely through the central range. On the north side triassic rocks extend from the Enns to the upper valley of the Mur, and the presence of miocene deposits at several points in the latter valley, the Lieserthal and the Maltathal, seems to show that at a much later period this portion of the ehain underwent_great relative depression as compared with those on either side. Another and more obvious character that distinguishes the western from the eastern portion of the central zone, is the fact that in the latter the great range that extends like a vertebral column from the Weisskugel to the Hochalpenspitz forks into two branches of inferior height, that enclose between them the upper valley of the Mur. Ancient geographers divided the main mass of the Alps between the Bernardine Pass and the frontier of Hungary into two vast divisions, respectively called the Rhætian and Noric Alps, placing the boundary between these at or about the Dreiherrnspitz, at the head of the Ahrenthal, and their example has been followed by, some modern geographers. Nothing in the form or structure of the chain justifies the adoption of that arbitrary boundary between two main divisions of the Alps We have already assigned reasons for fixing the western boundary of the Rhætian Alpz at the upper valley of the Adige, and we propose to retain the designation Central Tyrol Alps for the portion of the main chain extending thence to the head of the Malta Thal in Carinthia, nearly the whole of which lies within the limits of Tyrol. The exact boundaries of this division are, on the north, the course of the Inr from Landeck to the opening of the Zillerthal, the track thence over the Gerlos Pass to the head of the Pinzgau, and the valley of the Salza to the opening of the Gross Arl Thal; to the east, the way through the latter valley, over the Arlscharte, through the Malta Thal to Gmünd, and the foad thence to Villach; on the south, the continuous trough extending from near the latter town to Mühlwald, on the Reinz, through the Gail Thal, the Lessach Thal, the head of the Drauthal and the
upper valley of the Rienz. From Mühlwald the tortuous course of the Eisack forms the boundary as far as Botzen, whence the high road running N.W. along the Adige and though the Finstermünz completes the western boundary. Although the region thus limited does not present mauy prominent peaks, it is remarkable for the great average height of the main chain which forms the watershed between the affluents of the Danube on one side, and those of the Adige aud the Drave on the other. In a distance of 120 miles-which would be much increased if measured along the sinuosities of the main chain-there is but a single low pass, that of the Brenner, none other being below 8000 feet in height, or suited for the construction of a carriage road. The Brenner is the lowest pass in the entire range of the Alps, and has from a remote period afforded the easiest access from middle Europe to the plains of northern Italy, but is properly described as a pass rather than as a breach in the continuity of the chain.

Chief Peaks of the Central Tyrol Alps.

Karls-spitz........................10,253	
Glockenthurm10,998	Reichenspitz10,866
Portles-spitz10,066	Wildgerlos-spitz 10,771
Rems-spitz........................10,511	Eldechsberg, or Hegedex...... 8,975
Blickspitz11,045	Dreihermspit\%11,494
Weiskugel12,277	Rödtspitz 11,459
Wildspitz12,390	Gross Dürreck10,325
Anichspitz11,654	Gross Venediger12,053
Similaun11,810	Hohe Fürleg......................11,114
Rothbergspitz (The "Röthen-	Lasörling...........................10,171
spitz" of Sonklar)...........11,904	Hochgall, or Rieser11,284
Texelspitz10,890	Schneebige Nock, or
Birkkogel 9,281	Derborn11,068
Grieskogel (highest peak) ...10,638	Tauernkogel 9,790
Ruderhotspitz11,393	Kitzsteinhorn10,482
Schrankogl........................11,474	Johanniaberg11,425
Serles-spitz, or Waldraster-	Gross Glockner...................12,405
spitz.............................. 8,598	Hoch Schober10,628
Schaufelspitz.....................10,924	Petzeck10,761
Wilder Ptaff (Zuckerhütl) ...11,512	Vischbachhorn..................11,738
Sonklarspitz11, 410	Fuscherkahrkopf10,957
Habicht10,746	Hochnarr10,692
Sarner Scharte................... 8,255	Ankogl..............................10,674
RittDerhora 8,064	Hochalpenspitz11,026
Glungetzer 8,781	Saiuleck10, 108
Gilfertsberg 8,201	Kreuzkofel........................ 8,979
Olperer Fuss-stein11,451	Dobratch, or Villacher Alp 7,067

Hochfeiler11,535 Chief Passes of the Central Tyrol Alps.
Reschen Scheideck (Landeck to Meran), carriage road................. 4,596
Weisse See Joch (Glurns to Kaunser Thal), glacier 9,657

- La0gtauferer Joch (Mallag to Fcnd), glacier10,335

Hoch Jocls (Fend to Kurzras), glacier .. 9,515
Nieder Joch (Fend to Obervernagt), glacier 9,847
Gehatsch Joch (Fend to Kaunser Thal), glacier .. 10,80ut
Timbler Joch (Oetzthal to Meran), bridle-path............................... 8,298
Langthaler Joch (Gurgl to Pfelders Thal), glacier 9,939
Gruben Joch (Pfelders to Schnalser Thal), glacier 9,548
Gurgl Joch (Gurgl to Schnalser Thal), glacier 9,956
Pitzthaler Jöchl (Pitzthal to Sölden), glacier..................................... 9,808
Jaufen Pass (Meran to Sterzing), bridle-path 6,872
Penser Joch (Botzen to Sterzing), footpath.................................... 7,040
Gries Joch (Selrain to Lengenfeld), snow.. 8, 8, 82
Mutterberger Joch (Neustift to Lengenfeld), glacier...................... 9,893
Bildstöckl Pass (Neustift to Söluen), glacier..................................10,294
Grub Joch (Pflersch to Oberbergthal), footpath 7, 7, 021
Brenner Pass (Innshruck to Sterzing), carriage road.......................... 4,588
Pfitscher Joch (Sterzing to Mayrbofen), bridle-path 7,. 7,297
Tuser Joch (Stafflach to Lanersbach), footpath 7,618
Lappacher Joch (Lappach to Abrenthal), footpath........................ 7,768
HórndI Joch (Mayrhofen to Steinhaus), snow 8, 8, 363
Heiligengeist Jöchl (Mayrhofen to Kasern), footpath .. 8
Krimmler Tauern (Krimml to Kaserm), snow.................................. 9,071
Dorfer Sulzbach Thörl (Pregratten to Wald), glacier..................... 9, 433
Velher Tauern (Windisch Matrey to Mittersill), footpath 8,024
Vorder Umbal Thörl (Pregratten to Kasern), glacier..................... 9,723
Troyer Thörl (Pregratten to Defereggen), snow................................... 4, 4, 85
Mulitz Thörl (Virgen to Defereggen), snow................................... 8,911
Klamml Joch (Defereggen to Taufers), footpath 7,606
Staller Sattel (Defereggen to Antholz), bridle-path........................ 6,738
Gsiesser Joch (Defereggen to Gsiess), footpath.................. 7,353
Kalser Tauern (Kals to Uttendorf), sDow 8,410
Kapruner Thörl (Stubachthal to Kaprun), glacier 8,740
Riffelthor (Kaprun to Meiligenblut), glacier 9,959
Pfandelscharte (Ferleiten to Heiligenblut), glacier 8, 8, 817
Fuscher Thörl (Ferleiten to Seidelwinkelthal), footpath............... 7.998
Hoch Thor (Buche ten to तeiligenblut), footpath 8,55
Berger Thö'l (Kals to Heiligenblut), footpath .. 7, 971

Auf der Stanz (Bucocoes to Gastein), hridle path .. 6,920 Tramerscharte (Rauris to Dollach), glacier. 8,321
Kleio Zirkaitzscharte (Rauris to Fragant), aoow
Mallailzer Tauera (Gastein to Maldaitz), bridle-path..
Arscharta Johamn io Poo to Gmund, 亻oolpath.................. 7,493
Kleia Eleadscharte (Gastein to Gmund), glacier.......................... 8,231
Dobssaer Scharte (Gmllad to Ober Vellach), soow 8,743
-.... 8,14
-.. 3951
Teblacher Feld (Bruoeck to Lienz), carriage road 3,951
Zochen Pass (Lienz to Maria Lukau), footpath............................. 7.291
Eotschach Sattel (Oberdrauburg to Kotschach), carriage road..... 3,210
14. Siyrian Alps.-The boundary between the central range of lofty peaks that extends through Tyrol and the adjacent province of Salzburg, and the much lower masses that spread eastward through Styria to the frontier of Hungary, has been already fixed at the Arlscbarte. On the east side of that pass the mass whose conspicuous summits are the Markkahrspitz and the Hafnereck is dirided into two parallel branches that enclose between them the upper valley of the Mur. The northernmost of these ranges is cut through by the broad and deep valley, traversed by the road that leads from Liesing on the Eans to Leoben, which we have regarded as the limit between the Northern Noric Alps and the central mass. The eastern boundary of this division, which we at the same time regard as the proper limit of the Alps, is marked by the river Mur, which, after flowing castward for about 100 miles to Bruck-an-der-Mur, turns southwurd, and finally joins the Drave in Hungary. The eastern limit of the Alps is completed by the depression between Spielfeld and Marburg, over which is carried the railway from Vienna to Trieste. The southern boundary of the central range is unmistakably marked by the great ralley of the Drave. The whole of this region was, along with large portions of the adjoining divisions, included under the term Noric Alps by ancient geographers; but as the retention of that desiguation can only lead to confusion, we readily adopt the name Styrian Alps, proposed by Karl ∇. Sonklar, whose writings have done so much to inerease our knowledge of the Eastern Alps. It must, however, be remarked that the region above defined also includes a considerable district of Carinthia, along with a small part of the province of Salzburg, which extends to the head of the valley of the Mur. Excepting the comparatively high muss in which that river takes its source, the summits of this region do not attain nearly so great a height as those of the other main divisions of the Alps, and only two or threir reach the limit of perpetual snow.

	0.915
Markkahrspitz................... 9,245	
Hafpereck10, 011	
Faschauner Nock 9,130	
Hoch Gelling 9,383	
Predigtstuhi 8, 8 ,	
Böserateia 8,018	
Iloch Reichart................... 7,900	

Chief Passes in the Slyrian Alps.
Radstadter Taoern (Radstadt to St Michael), carriage road ..8..... 5,703
Katschberg (St Michael 10 Gmïnd), carriage road........................ 5,261
Wiodsfeld (Flachau to Zederhaus), footpath 7, 037
Waldhornthörl (Schladming to Tap̣swee), footpath 7, 7, 437
Solkerscharte (Grobming to Murau), bridle-path........................... 5,767
Rottenmanner 'Tauern (Tiottenmann to Judenburg), c. road...about 4,900 Turrack Pass (Feldkirchen lo Tamsweg), carriage road 5,8.5
Turract Pass (Feldkirchen lo Tamsweg), carriage road 5, 5, 8.................. 5,00
Fladnitz Pass (Friesach to Stadl), bridle-path.........
Perchauer Pass (Friesach to Scheitliog), carriage road...................... 3, 374
Ohdacher Sattel (Wolfsberg to Judeoburg), carriage road 3, 174 Stubalp Pass (Koflach to Weisskirchert), carriage road................. 5,130 Die Park (Küllach to Wellsuerg), carriage road 3, 370 Gleinalp Pass (Peggau to Jinittelfold), footpath 5,500
15. South Tyrol and Ventian Alps.-It has been seen that the mountain zone on the northern side of the main range of Tyrol extends from the lake of Constance to near Vienna, with a remarkable uniformity both of general aspect and of geological structure, so that no reason much more valid than convenience could be assigned for forming it into two separate divisions. The same remark does
nor hold good on the southern side of the main range. There is, iudeed, a general similarity between the northerb and southern zones, especially in their geological structure, so far as regards the sedimentary rocks; but in the western portion of the latter-in the region lying between the ddige and the sources of the liave-the intrusion of igneous rocks on a large seale, and the accumulation of deposits formed from ejected vulcanic matter, bave profoundly modified the structure and outward aspect of the country. Nowhere else in the Λ lps do the peaks rise so abruptly and with so little apparent connection, and nowhere are the contrasts depending on differences of geological structure so marked as those which strike the mere passing traveller, when, beside rounded masses of red and black porphyry, ho sees white and pink crystalline dolomite limestone rising in towers and pinnacless of extraordinary height and steepness. Dolomite limestone is found in many other parts of the Alrs, but nowhere else is it developed on so grand a scale, and tho exquisite beauty of this region has of late years led an increasing number of travellers to spots that before were scarcely known even to the inhabitants of adjoining valleys. Though there are abundant grounds for regarding the district here spoken of as a separate division of the $\mathrm{Alps}_{\text {, }}$ it is very difficult to assign to it a satisfactory designation. The larger portion of the region has long been politically connected with Tyrol, and is partly inhabited by a Germanspeaking population, while the remainder has been politically connected with Venice, and the inhabitants are thoroughly Italian in language and manners. Were it not for a reluctance to introduce new and unfamiliar terms, the present division might be denominated Cimbric Alps, as, according to ancient tradition, the Cimbri, after their final defeat by Marius, sought and-found a refuge in this part of the Alps; but for the present it seems best to designate as South Tyrol and Venetian Alps the region lying betwein the valley of the Adige and the sources of the Drave and the Piave, and south of the great valley traversed by the Eisack and the Rienz between Botzen and Innichen. The eastern limit may best be fixed by the track leading through tho Sextenthal from Inmichen to San Stefano in the head valley of the Piave, and by the road from that place to Conegliano.

Chief Peaks of the South Tyrol and Venetian Alps.

Schlern 8,405	,
Rosengartea..................... 10, I63	Cima d'A
Laogkofel 10,392	Monte lavioue, or Col di
Marmolata(?) 11, 045	Luna 7,877
Moote T'ofana.................. 10,724	Palle di S. Martino........(?) 10,643
Croda Rossa, or Ilohe Gaisl 10,262	Cimon della Palaabout 11,000
Monte Cristallo............... 10,644	Mlonte Civctia................... 10,440
Drei Zinden, or Cima di	Pelmo..... 10,377
Lavaredo............. abovo 10,300	Sorapis:...................... 10,798
Drcischusterspitz J0,368	Antelao 10,679
Cima di Posta,.................. 7,547	Sarmaroloabove 10,000
Covelaltoabout 7,500	

Chief Passes in the South Tyral and Venetian A/ps.
Piano delle Fugazze (Toveredo to Schio), carriage road 4,117
Passo di Maanzzo (Asiago to Levico), bridle-path 4,662
Caressa Pass (Botzen t2 Vigo di Fassa), bridle-path 5,966
Mahlkoecht ए'ass (V゙ols to Canpidello), bridle-path 7,016
Fedaya Pass (Val di Fassa to Caprile), footpath........................... 6,884
La Costonzella (Paneveggio to Primiero), carriage road 6,657
Passo di Valles (Padevcegrio to Cencenighe), bridle-peth............... 6,877
Grödoer Joch (St Ulrich to Brmacek), bridle-path 7,0.0. 0 ,
Carapolungo (Cortara to Arabs), bridle-path.................................. 6,200
Pordoi Pass (Gries to Araba), bridle-path 7.396
Passo dei Tre Sassi (Andraz to Cortioa), carriage road................. 7,073
Monte Giau, or P. di Falzarego (Caprilo to Cortina), bridle path... 7,511 Pentolstein Pass (Niederndorf to Cortina), carriage read......abeut 5,000 Passo delle Tre Croci (Cortina to Auronzo), bridle-path 5,970 Forcella Graade (Auroozo to San Vito), footpath 7.530 Kreuzberg (Inaichen to S. Steplano), carriage road 5,361
16. South-Eastern Alps.-Aricient geographers, and those who have followed their example, use the terms Carnic Alps and Julian Aps to designate tro of the main divisions of the Alps; bat the latter of these at least has
boen applied in a vague and inconsistent way. in pomt of fact, the south-eastern portion of the Alps, which includes both the groups above specified, presents three principal groups which are very closely connected together. The first of these-the Carnic Alps, properly so called-have been defined as including the legion between the upper valley of the Drave and the plain of Friuli. But to the orographer the true head of the Drave valley is the Gailthal, which extends in an almost straight and broad trench from near Innichen to Villach, while the main stream flows through a sinuous and contracted valley. For this reason we have taken the Gailthal as the boundary beiween the Central Tyrol and the Carnic Alps. Almest continuous with the Carnic Alps is a range, very similar in geological structure, which divides the Drave from the northern branch of the Save, and includes the mountains locally hnown as the Karawankas and the Sulzbacher Alps. Thronghout these, which may be called the main range of the South-Eastern Alps, palæozoic rocks, probably of carboniferous age, extend in a narrow band for a distance of fully 100 miles, giring place at the eastern extremity to the small granitic mass that forms the hills of the Bacher Gebirge near Marlurg. Dn the south side of the main range of the Carnic Alps two mountain masses, mainly formed of triassic rocks and Dachstein limestore, attain a considerable height in the Monte Carallo on the west, and the Monte Canin on the east side of Friuli. In a similar position as regards the Karawankas is a still loftier mass which is crowned by the Terglou-the highest peak of the South-Eastern Alps. This group is referred by geographers to the Julian Alps, which are said to divide the Save and its tributaries from the Adriatic. As has been already said, there is no range to which the term Alps can properly be applied forming such a boundary. The plateau of the Karst, though rising here and there into hills of moderate height, has an average elevation of about 2000 feet above the sea, and cannot correctly be spoken of as a mountain chain. The orographer, if seeking an eastern prolongation to the Terglou group, would prefer the hilly region between the Save and the southern Gurk; but the low country through which the railway is carried from Marburg to Laybach, and the road thence to Gorizia, may for all practical purposes be taken as the sonth-eastern limit of the Alps and of the division here described.

Chief Peaks of the Soutt-Eastern Alps.

Monto Paralbai.	9,0¢7	
Kelierwandabout	9,500	
Monte Cridola	8,474	Oistritza
Monte Premaggi	8,127	Eacher Gebirge (Velka
Munte Cavallo	7,377	Kappa)
Monte Crostis	7,384	Mangart.
Jof di Montasioabout	9,000	Terglor
Monte Canin (Prestrelenick)	8,111	Kra
Stou	7,326	Kuk

Koschutta 6,895 Chief Passes of the South-Eastern Alps.
Kartiscler Joch (Sillian to Tilliach), carriage road 5,363
Passo di Mauria (Ampezzo to Pieve di Cadore), carriage road....... 4,191
Piano di Sappada (San Stefano to Forno Avoltri), car. road, about 4,100
Giogo Veranis (Forno Avnltri to Lorenzen), footpath 7,521
Wolaver Jorh (Forno Avoltri to Kötschach), footpath 6,563
Monte Croce (Tolmezzo to Kötschach), bridle-path.......................... 4, 4,337
Nosfeld Pass (Pontebha to Hermagnr), footpath............................nt 5,0n0
Saifnitz Pass (Pontebba to Tarvis), carriage road \qquad
Predil Pass (Tarvis to Flitsch), carriage road......
Wurzener Bery iVillach to Wurzen), carriage road. 2,6乏2 3,822
Loibl Pass (Neamarktl to Unterbergen), carriage road 4, 4,45
Seeberg Pass (Krainhurg to Kappel), carriage road 4,445
3,976
St Leonhard Sattel (Kappel to Sulzbach), bridle-path..................... 4,666
Schkaria Pass (Sulzbach to Stein), footpath 6,193
\qquad 6,193
Kerma Pass (Moistrana to Feistritz), footpath.... \qquad
\qquad . 6,332
Skarbinja Jocls (Tolmino tó Feistritz), footpath. hont 6,000
It is well known that as we rise from the sea-lerel into the opper regions of the atmosphere the temperature decreases. The effect of mountain chains on prevailing
minds is to carry warin air belonging to the sower regnon into an upper zone, where it expands in volume at the cosi of a proportionate loss of lheat, uften accompanjed by the precipitation of moisture in the form of snow or rain. The position of the Alps about the centre of the European continent has profuundly modified the climate of all the surounding regions. The accumulation of vast masses of snow, which have gradually been sonverted intu permanent glaciers, maintrins a gradation of rery different climates within the narrow space that intervenes between the foct of the mountains and their upper ridges; it cools the breczes that are wafted to the plains on either side, but its most important function is to regulate the water sululy of that large region which is traversed by the streanis of the Alps. Nearly all the moisture that is precipitated during six or seven months is stored up in the form of snow, and gradually diffused in the course of the succeeding summer: and ever in the hattest and driest seasous tho reserves accumulated during a long preceding period of jears in the form of glaciers are available to maintain the regular flow of the greater streams. Nor is this all; the lakes that fill several of the main valleys on the southern side of the. Alps are somewhat abuve the level of the llains of Lombardy and Venetia, and afford an inexhastible supply, which, from a remote period, has been used for that system of irrigation to which they owe their proverbial fertility. Six regions or zones, which are best distinguished by their characteristic vegetation, are found in the Alps. It has been a common error to suppose that these are indicated by absolute height above the sea-level. Lacal conditions of exposure to the sun, protcction from cold winds, or the reverse, are of primary importance in determining the clinate and the corresponding vegetation.

1. Olive Hegion.-The great plain of Upper Italy has a winter climate colder than that of the British Islands. The olive and the charactelistic shrubs of the northern coasts of the Mediterranean do not thrive in the open air, but the former valuable tree ripens its fruit in sheltered places at the foot of the mountains, and penetrates along the deeper valleys and the shores of the Italian lakes. Tho evergreen oak is wild on the rocks about the lake of Crarda; and lemons arc cultivated on a large scale, with partial protection in winter. The olive has been known to survivo severe cold when of short duration. but it cannot be cultivated with success where frosts are prolonged, or where the moan winter temperature falls below 42° Fahr.; and to produce fruit it requires a heat of at least $75^{\circ} \mathrm{Fahr}$. during the day, continued through four or fire months of the summer and autumn.
2. Vine Region. - The vine is far more tolerant of cold than the clire, but to produce tolerable wine it demauds, at the season of ripening, a degree of heat not much less than that needed by the more delicate tree. These conditions are satisfied in the deeper valleys of the Alps, eren in the interior of the chain, and up to a considerable height on slopes exposed to the sun. The protection afforded by minter snow enables the plant to resist severe and prolonged frosts, such as would be fatal in more exposed situations. - Along with the vine, many wild plants characteristic of the warmer parts of middle Europe are seen to flourish. A mean summer temperature of at least 68° Fahr. is considered necessary to produce tolerable wine, but in ordinary scasons this is much erceeded in many of the great ralleys of the Alps.
3. Mowntain Region, or Region of Deciduous Trees.Mary mriters take the growth of corn as the characteristic of this region; but so many rarieties of all the common specier are in cultivation, and these have such different climatai requirements, that they do not afford a satisfactory criterion. A more natunal limit is sfforded by the presenos
of tno chief deciduous trees-oak, beech, ash, and sycamore. These do not reach exactly to the eame elevation, nor are they often found growing together; but their upper limit corresponds accurately enough to the change from a temperate to a colder climate that is further proved by a change in the wild herbaceous vegetation. This linit usually lies about 4000 feet above the sea on the north side of the Alps, but on the southern slopes it often rises to 5000 feet, rometimes even to 5500 feet. It must not be oupposed that this region is always marked by the presence of the characteristic trecs. The interferenco of man has in many districts almost extirpated them, and, excepting the beech forests of the Austrian Alps, a considerable wood of deciduous trees is scarcely anywhere to be found. In many districts where such woods once existed, iseir place has been occupied by the pine and Scotch fir, which auffer less from the ravages of goats, the worst enemies of tree vegetation. The mean annual temperature of this region differs little from that of the British islands; but the climatsl conditions are widely different. Here snow usually lies for aeveral months, till it gives place to a spring and summer considerably warmer than the average of our seasons.
4. Suibalpine Region, or Region of Coniferous Trees.This is the region which mainly determines the manner of life of the population of the Alps. On a rough estimate, we may reckon that, of the space lying between the summits of the Alps and the low country on either side, one quarter is available for cultivation, of which about one-half may be vineyards and corn-fields, and the remainder produces forage and grass. About another quarter is utterly barren, consisting of snow-fielde, glaciers, bare rock, lakes, and the beds of atreams; and there remains about one-half, which is divided between forest and pasture, and it is the produce of this which mainly supports the relatively large population. For nearly half the year the flocks and herds are fed on the upper pastures; but the true limit of the wealth of a district is the number of animals that can be supported during the long winter, and while one part of the population is engaged in tending the beasts and in making cheese and butter, the remainder is busy cutting hay and storing up winter food. The larger villages are mostly in the mountain region, but in many parts of the Alps the villages stand in the aubalpine region at heights varying from 4000 to 5500 feet above the sea, more rarely extending to about 6000 feet. The most characteristic feature of this region is the prevalence of coniferous trees, which, where they have not been artificially reduced, form vast forests that cover a large part of the aurface. These play a most important part in the natural economy of the country. They protect the valleys from destructive ara lanches, and, retaining the auperficial soil by their roots, they mitigate the destructive effects of heary rains. In valleys where they have been rashly cut away, and the waters pour down the slopes unchecked, every tiny rivulet becomes a raging torrent, that cuts away and carries off the grassy slopes and devastates the floor of the valley, covering the soil with gravel and debris. In the pine forests of the Alps the prevailing apecies are the common apruce and the silver fir; on ailiceous soil the larch flourishes, and surpasses every other European apecies in height. The Scotch fir is chiefly fonnd at a lower level, and rarely forms forests. The Siberian fir is found scattered at intervals throughout the Alps, but is not common. The mughus, creeping. pine, or Krummholz of the Germans, is common in the Eastern Alps, and sometimes forms on the higher mountains a distinct zone above the level of its congezers. In the Northern Alps the pine forests rarely aurpass the limit of 6000 feet above the aea, but on the south side they commonly attain to 7000 feet; and the
lareh, Sibenan fir, and mughus often extend above that elevation.
5. Alpine Region.-Throughout the German Alps the word alp is used specifically for tho upper pastures, whero cattle aro fed in summer, but this region is beld to include the whole space between the uppermost limit of trees and the first appearance of permanent masses of snow. It is here that the characteristic vegetation of the Alps is developed in its full beauty end rariety. Shrubs are not wauting. Three species of rhododendron vie with each other in the brilliancy of their masses of red or pink flowers; the common juniper rises higher still, alung with three species of bilbcrry; and several dwarf willows attain nearly to the utmost limit of vegetation. The upper limit of this region coincides with the so-called limit of perpetual snow, which demands further explanation.
6. Glacial Region.-On the higher parts of lofty mountains moro snow falls in earh year than is melted on the spot. A portion of this is carried away by the wind beforo it is consolidated; a larger portion accumulates in bollows and depressions of the surface, and is gradually converted into glacier-ice, which descends by a slow secular motion into the deeper valleys, where it goes to swell perennial streams. As on a mountain the snow does not lie in beds of uniform thickness, and some parts are mure exposed to the sun and warm winds than others, we commonly find bcds of anow alternating with exposed slopes covered with brilliant vegetation; and to the observer near at hand there is no appearance in the least corresponding to the term limit of perpetual snow. But the case is otherwise when a high mountain chain is viewed from a distance. Similar conditions are repeated at many different points, so that the level at which large snow-beds show themselves along its flanks is approximately horizontal. But this holds good onty so far as the couditions are similar. On the opposite sides of the same chain the exposure to the sun or to warm winds may cause a wide difference in the level of permanent snow; but in come cases the increased fall of snow on the side exposed to moist winds may more than compensate the increased influence of the aun'a rays. Still, even with these reservations; the so-called line of perpetual snow is not fixed. The occurrence of favourable meteorological conditions during several successive seasons may and does increase the extent of the snow-fields, an'l lower the limit of acemingly permanent snow; while an opposite state of things may cause the limit to rise higher on the flanks of the mountains. From these remarks it may be inferred that all attempts to fix accurately the level of perpetual snow in the Alps are fallacious, and can at the best approach only to local accuracy for a particular district. In some parts of the Alps the limit may be sut at about 8000 feet above the sea, while in others it cannot be placed much below 9500 feet. As very. little snow ciry rest on rocks that lie at an angle exceeding 60°, and this is soon removed by the wind, some steep masses of rock remsin bare even near the summits of the highest peaks, but as almost every spot offering the least bold for vegetation is covered with snow, few flowering plants are scen above 10,000 feet. There is reason to think, however, that it is the want of soil rather than climatal conditions that checks the upward extension of the Alpine florm Increased direct effect of solar radiation compensates for the cold of the nights, and in the few spots where plants have been found in flower up to a height of 12,000 feet, nothing has indicated that the processes of vegetation were arrested by the aevere cold which they must sometimes endure. The climate of the glacial region has often been compared to that of the polar regions, but they are widely different. Here, intense aolar radiation by day, which raises the surface when dry, to a temperature approaching 80° Fahr.,
alternates with severe frost by night. There, a sun which never sets sends feeble rays that maintain a low equable temperature, rarely rising more than a few degrees above the freezing-point. Hence the upper region of \uparrow the Alps sustains a far mure varied and brilliant vegetation.

At the earliest poriod of which records are preserved the $A_{\text {ps }}$ alppear to have been mainly inhabited by Celtic tribes, sone of which, before they were subjugated by the fiumans, had made considerable progress in the knowledge of the useful arts. The Rhætians and Vindelicians especially, in whom a prinitive Turanian stock seems to Luve been amalgamated with a dominant Celtic race, readily assimitated the civilisation of Rome; and the language of the conqueror, nodified by peculiarities of pronunciation and the retention of some native terms, still survives in Eastern Switzerland, and in a few isolated valleys of Tyrol. Throughout by far the larger part of the Alps, however, the flood of Teutenic invasion either externinated or drove iuto exile the previous population. The Alemanui and other kindred tribes settled in the main valleys of the Eastern Alps, and finally became masters of the greater part of Switzerland, leaving to the original Celic population the Western Alps and both slopes of the great Peunine chain. At a later period the invasion of Slavonic hordes threatened to substitute a new natiounlity throughout the same region, but after prolonged contests these tribes were restricted to its south eastern portion, being nearly confined to the upper valleys of the Drave and the Save, with their tributaries. The Italian valleys of the $\mathrm{Alps}^{\mathrm{p}}$, from the Val d'Ossola to the Tagliamento, inhabited by peeple of mixed race, have, with a few exceptions, preserved the language of Italy, much varied in the local dialects; while the western districts, in which the Celtic elewent remained predominant, have for the most part clung to the French tongue. The estimates formed of the present pepulation of the Alps are uncertain, because they ustally include towns and populous districts lying. withont the mountain region. It is usually reckoned that there are about $1,500,000$ of Celto-Gallic stock in the French and Savey Alps, western Switzerland, and some valleys of Piedment; about $4,000,000$ of Teutonic origin in the Swiss and German Alps ; about $1,000,000$ of Slavonic stock, chiefly Slovenes; and about 1,000,000 of Italians in the valleys of Northern Italy, the Swiss cantons of Tessin and Grisons, and in the Italian Tyrel, making an aggregate of $7,500,000$. To these should be added about 70,000 people speaking some dialect of the Rhæto-Roman or Romansch. All these numbers excepting the last are excessive, if we would restrict the estimate within the proper limits of the Alps.
Although no conspicuous species of quadruped or bird is known to be exclusively confined to the Alps, they have afforded an asylum to many animals that have become rare or extinct elsewhere. The great urus, the clk, and the wild swine have disappeared since the Reman period, and the beaver in more recent,times; but the brown bear, the lynx, the wild cat, and the wolf still survive. Among Ruminants, the red deer, fallow deer, and reebuck, chiefly found in the lower forest region, are common to other mountain districts. More characteristic of the Alps is the chamois, which is found elsemhere only in the Carnathians, Pyrenees, and the mountains of European Turkey, and is the sole representative of the antelopes in this part of the world. Much rarer is the ibex or bouquetin, which still lives in the higher Alpine region of the Graian Alps, and possibly also in some recesses of the Pennine chain. Unlike the chamois, which descends at night to find sustenance as low as the verge of the pine forests, this fine animal remains, at least in the summer, in the upper region, on the verge of the snow-fields, or on the recks that
rise amidst the glaciers. The massive horns of the male are often a yard or more in length. Closely, allied species are found in the Pyrenees and other mountain ranges of the Iberian peninsula, and in the Cancasns, but the true ibex seems to be now confined to this small cor :er of the Alps. The few endemic species of Nanumalia found in the Al_{p} s are chietly small Rudentia and I_{1} :scetivora, which alone can multiply rapidly in the midst of a large and increasing human pepulation. The marnot, which is the most characteristic of the Rodentia, maintains its ground in the stony recesses of the ilipine region, and does not diminish in numbers as most other wild animals have done. The most singular of this group, is the suow-vole (Arvicola nivalis), whose nearest ally is a uative of East Siberia. Several forms (varieties or sub-species) are fould in various parts of the Alps^{2}. They ascend through tl.e Alpine region to the recks of the glacia! zone, at least as far as 12,000 feet above the sea; aud, wulike other auimals framed to endure severe cold, they continue in activity throughout the long winter. There is at least one species of slirew (Sorex alpinus) peculiar to the $\mathrm{Al}_{\mathrm{i} \text { s. }}$. The Cheiroptera are represented by numerous fornus, which, with one exception (Vesperugo maurus), are not confined to this region ; but the Alps form a linuit to the distribution of many of this order : some species of middle Europe do not cross the main range, whilo several species of the Mediterranean region find their northern liwit in tho valleys on the southern side.

The Birds of the Alps are proportionately very nunier- Birden ous. Many southern species find a beme in the waruer Italian valleys, and there meet northern forms that descend during the winter and spring, but return to the upper zone in the warm season. Of the more conspicuous species of the high Alps, the lämmergeyer (Gypreëlos barbatus)-once cornmon, but now become very rare-is pre-eminent. It is also found in Algeria, in Syria, and in Northern Asia, but is one of those animals that is threatened with extinction by the progress of civilisation. The rock clough (Pyrrhocorax alpinus), distinguished by golden-yellow bill and feet, builds on racks in the glacial region as high as 10,000 feet above the sea. Several song birds, such as the snow lark and snow fuch, ascend to the limits of vegetation. The Gallinaces are well represented. The cock of the woods (Tetrao urogallus), the grouse, ptannigan, blackcock, gelinotte, and rock partridge (Caccabis saxatilis), are the mest renarkable. The first, which is somewhat rare and extremely shy, surpasses the dimensions of an ordinary well-grewn fowl.

Several Reptiles are found even in the upper region, of Reptitice the Alps, though noue are very conmon. Of three venomous species of viper, Vipera beris ascends to about 8000 feet ; and the black viper (V. prester) also reacbes the Alpine region. V. Rediii is confined to the warmer ItaKan valleys. The snakes aud lizards frequent the lower zones, excepting Lacerta pyrrhogastra, which is sometimes seen in the upper region.

Batrachians are mere common than true reptiles. An Alpine frog attains the extreme limit of regetation, and a toad ascends nearly as far. These have been considered by some as distinct species, by others as varieties of the common animals. At least one triton (T. Wurfbeinii) is peculiar to the Alps. The spotted salamander is common in the sub-Alpine region, but in the Eastern Alps it is replaced by S. atra, which is entirely black. This is sometimes found far above the limit of the pine forests.
The great lakes of the Aips are very rich in Fish, not only as regards the number of individuals, but in species slso. Thus in the Chiemsee, at the northern foot of the Bavarian Alps, thirty-three species have been found, in the lake of Constance twenty-six species, and tweuty-four
in the lake of Lucerne. The most estecined are those of the trout and salmon tribe, whose specific differences bave not yet been fully investigated by ichthyologists. First in rank is the saibling (Salmo salvellinus), which flourishcs in lakes between 2000 and 4000 fect above the sea, and occasionally extends to those of the Alpine region betreen 6000 and 7000 feet. Tho fish of the northern side of the Alps are fully described in Siebold's Süsswasser-Fische Mitteleuropas. Those of the waters running to the Mediterranean havo not been so fully investigated. Two or three pcculiar species have been fuund in tho lake of Genera. In some of the Lombard lakes, the agone, a small fish of the herring tribe (Clupea finta), is a much estecmed article of diet.

In the classes hitherto noticed the number of species 'peculizr to the Alps is very small. This rule is reverscd among the Invertebrata, especially as regards the Articulata and Mollusca. The number of insects is very great, and a considerable proportion extend to the limit of perpetual snow. Oswald Heer has pointed out several peculiarities in the insect fauna of the higher Alps. In ascending from the mountain region the proportion of the carnivorous tribes rapidly increases, and the fanilies that feed on living vegetable matter either disappear or are much reduced in numbers. Beetles and other insects either lose their wings in the upper region, or are represented by allied wingless specics. Along with the tendency to lose the power of flight, a diminution of brilliancy of colour appears, the prevailing hues being black or dingy grey. These peculiarities are to be explained by the fact that in the upper Alpine zone most insccts live under stones, and the power of flight generally proves injurious to animals liable to be carried by the wind and upward air-currents over the snow-fields, whenco they are unable to return. This is often scen to occur to butterflies and a few moths, which ascend as far as the highest flowering plants. The snow-fields and glaciers are not devoid of insect life. Several species of snow-flea have been detected; and further observation will probably bring to light other minute animals livinig in the pools that form on the surface of glaciers, or on the snow-beds, although their activity is often interrupted by the freezing of the surface.
The Arachnida are eminently characteristic of the fauna of the high Aps, where they abound both in species and individuals. Spiders ascend to the utmost limit of vegetation, and are even to be found on the bare rocks that rise out of the snow up to a height of 11,000 fect.
Although most of the orders of Articulata are represented in the Alps by numerous forms, these are far outnumbered by the total number of European species of that class; but among land and fresh-water Mollusca the proportion is reversed, and as many as sevven-eighths of all the species known in middle Europe, and a large proportion of those of the Mediterranean region, have been found in the Alps. Still more remarkable is the large proportion of endemic species. In the important group of the Helicer fully one hundred species, or four-tenths of the whole number, are peculiar to the Alps. Between thirty and forty species only have been found in the Alpine zone, and of these bat five-Vitrina diaphana, V. glaciallis, IIelix glacialis, H. foetens, and Vertigo Charpentieri-attain the upper limit of regetation.

The Annulosa and Radiata of the Aps, so far as they aro known, do not offer any points of special interest; and the study of the minute organisms, which have been proved to exist as high as 12,000 feet abore the sea, is still in its infancy.

In describing the several regions which are found in ascending from the low country to the enow-clad summirs of the Alps, and whose existence is due to climatal differ-
ences, it was necessary to refer to the characterisuc vegotation of each zone, inasmuch as this affords the clief anparent distinction which climatal conditions impress on the earth's surface. The most cursory observation suffices to show that within each of the zones thus broadly sketched out there cxist marked differences in the vegetablo population, so that a comparison of the local floras in two spots possessing a similar climate as regards temperature may cexhibit but few points of agrecment along with many marked contrasts. This partly depends on external conditions, of which the most important aro diffcrences in tho amount and distribution of inoisture in the air and the soil, and differences in the composition and stato of aggregation of the soil itself. But a moro important element in determining the flora of any particular district depends upon the causes which have operated througlout the whole period sirice it bas become dry land to facilitate migration for certain epecies, and to impede it for others. The subject of the distribution of Alpine plants, so far as regards the eastern laalf of the chain, has been very well discussed in an essay by Dr A. Kerner in the 1st rol. of the 2d edit. of Schaubach's Deutsche Alpen, although some of the conclusions of the miter may net bear careful criticism. He divides the natural foras of the Alps into four-named respectively Arctic, Baltic, Pontic, and Mediterranean, the term Baltic referring to the region that includes Germany, Southern Scandinavia, and North-IVestern Russia; while Pontic comprehends the region north and west of the Euxine - the northern provinces of Turkey and the whole space between the Carpathians and tho Crimea. It does not appear that the writer bolds that tho plants existing in the Alps bave actually migrated to their present homes from the geographical regions corresponding to the above denominations, but merely that they belong to the types of vegetation characteristic of each of them. It must be borne in mind that the Alps, and especially the mountain and sub-Alpine regions, produce a large number of peculiar forms, many of which bave no near allies in the other mountain regions of Europe, while at the same time the differences are seldom so wide as to place these in distinct generic groups; and it seems quite inadmissiblo to suppose that the flora has been altogether formed by colenisation from surrounding districts. No space can be bere found for details, but it may broadly be said that while the highest zone of all, lying close to the limit of permanent snow, exhibits throughout the whole chain an approach to uniformity, several of the most conspicuous species being common to this and to Arctic flora, the zone immediately below this, as well as those lower down, shows a large admixture of quite distinct clements. This is especially true of the southern slopes. In truth, but a very few of the well-marked endemic species of the Alps are confincd to the porth side of the main chain. A considerable number are common to both slopes, and a still larger proportion are restricted exclusively to the southern side. Of the larger groups which are represented in tho Alps by numerous well-marked endemic species, the genera Alsine, Audrosace, Arabis, Campanula, Crepis, Gentiana, Pedicularis, Primula, and Saxifraga may be especially notcd. Without attempting to enter into details, it may be said that, along with a general Alpine flora, which extends throughout the entire chain, there are three large districts where, along with species common to all, we find a considerable number of others either absolutely local and endemic, or else representative in the Alps of the floras of other distant mountain groups. Only a few of the more remarkable species characteristic of each can be cited. The IFest Alpine Flora is found in Dauphiné, South Savoy, and Western Piedmont, as far north as tho group of the Graian Alps. In the following list of the more remark-
sble spectes those which are either identical with or nearly allicd to Pyrenean forms bave an asterisk prefixed :-

Arabis pedemontana, Huguenina tanacetifolia, *Dianthus ueglectus, Silene cordifolia, *Saponaria Zutea, "Iypericum nummulariafolium, Astragalus alopccuroides, Saxifraga florulenta, S. diapensioides, "S. pedemontana, *Asperula hexaph ylla, Cephalaria alpina, Achillea Herbarate, Berardia subacauis, Campanula Allianii, C. elatines, Primula marginata, P. Allionii, *Erinus alpinus, Veronica Allionii, Thymus piperella, and Alopecurus Gerardi.

The Lombarl Flora is marked by a considerable number of very distinct species that are limited to the southern declivity of the Alps, between the Lago Maggiore and the lake of Garda. Dist of these are absolutely confined within these boundaries, but a few extend some distance east of the lake of Garda. The following deserve to be specified :-

Viola Comollia, V.helcrophyllc, Silene Elizabothe, Arenaria grincensis, Cytisus, glabrescens, Sanguisorba dodecandre, Saxijraga Vandellii, S. arachnoidea, Laserpitium nitidum, Telekia speciosissima, Leontodon tenuifolus, Hieracium porrifolium, Crmpanula Raineri, C. elatinooides, Daphne rupestris, Euphorbia variabilis, and Carex baldensis.
The East Alpine Flora, extending through the region east of the valley of the Adige, is characterised by a large number of peculiar species, and by a perhaps equal number of plants not seen elsewhere in the Alps, but also natives of the Carpathians, or of the region lying between Servia and the Adriatic. In the following list those included in he latter category are marked with an asterisk:-

Arabis vochinensis, *A. Scopoliana, "Cardamine trifolia, Braya alpina, Cocllearia brevicaulis, Silene pumilio, S. c:"pestris, Dianthus alpinus, "Genista scricea, Medicago Pironce, *Potentilla Clusiant, Saxijragd Eurscrixna, S. tenella, "S. petraca, *S. hieracijolic, *Hacquetia Enipactis, Astrantia carniolica, Hladnikia golacennsis, Anthemis alpina, Achillea Clusiana, *Screcio abrotanifolius, Cenntaurea alpina, C. тupestris, "Saussurea pygmax, Phyteuma comosum, Campanula pulla, *C. alpina, C. morcttiana, C. Zopsii, Rhododendron chamacistus, Genticund imbricata, *G. frigida, G. Fröllichiz, - Primulla minima, P. glutinosa, A ndrosace Hausmanni, Pexderota Bonarota, P. Ageria, Wulfenia earinthiaca, Sesleria sphiarocephala, and S: microccphala.

It is worthy of remark that the central and highest part of the Alpine chain, including the Pennine and Bernese groups, the Lepontine Alps, and those of North Swrizerland, produce scarcely a well-marked species-with the doubtful exceptions of Rumex nivalis and of Poientilla grammopetala, which is confined to a small district south east of Monte Rosa-that does not spread throughout the rest of the chain.

The phenomena of glaciers have been chiefly studied in the Alps, but they are not especially characteristic of the mountains of central Europe. The investigation of their origin and structure, and the laws of their motion, fall within the province of the physical philosopher, and are discussed elsewhere. See Glaciers.

The geological structure of the Alps is a subject that has occupied the labours of many eminent mer of science, especially during the last thirty years, yet it may be safely asserted that it will continue to offer new problems to the researches of at least another generation. There is scarcely a single dificult question regarding the nature and mode of deposition of the strata that make up the earth's crust; the mode of eleration of mountain chains, the causes of the formation of valleys and lake basins, the action of metcoric forces, of rivers and ice-streams, that nust not be decided before we can give a rational account of the structure of the Alps. Along with these, and scarcely less important, is the study of the various agencies involved in the phenomena of metamorphism, and that of the part played by rolcanic action in some parts of the chain. The study of the organic remains embedded in the rocks is not so constantly the duty of the geologist in the Alps as it is
in most other mountain diotricts; but of late years this has been actively pursued; and has tended to clear up many difficulties, while much room is left for further investiga tion. The reader is referred to the article Geology, and, with reference to detailed information as to the structure of the Alps, to the list of works on alpine geology given below.

The number of publications relating to the Alps has been so largely increased during the last quarter of a century that a bare catalogue rould fill a considerable space. The majority of these are of a narrative aud descriptive claracter, and do not add muda to our knowledge of the Alps, either topographically or scientifically. It will suffice to give here a brief list of the chief works that may fairly be cansidered to have achieved that object. Works of exclusively scientific character, especially those relating to Alpine geology, are separately enumerated.

Scheuchzer (J. J.), Itinera Alpina, Leyden, 1723. Grüner, Die Eisgebirge dea Schreizerlandes, Bern, 1760. Saussure (H. B. de), Toyages dans les Alpes, Neuchâtel, 1803-6. Hugi (J. J.), Natarhistorische Alpenreise, Solothurn, 1830. Agassiz (L.), Etudea sur les Glaciers, Ňeucluâtel, 1840; Système Glacaire, on Nouvelles Etudes, \&ic., Paris, 1847. Forbes (J. D.), Travels through the Alps of Savoy, \&c., Edinburgh, 1843. Desor (E.), Excursions et Fejoura dans les Glaciers et les Hautes Pégions des Alpes; 2 series, Neuchâtel, 1844-5. Saluzzo.(A. di), Le Alpi che cingono l'Italia, 1 ma. Parte, Torino, 1S45. Schlagintweit (H. und A.), Untersuchungen über die Physicalische Gcographie die Alpen; 2 series, Leipzig, 1850-4. Tyndall (J.), The Glaciers of the Alpś, London, 1860. Berlepsch (H. A.), Die Alpen in Natur- und Lebensbildern dargestellt, Leipzig, 1861. Browne (Rev. G. F.), lce-cares of France and Switzerland, London, 1865. Morell, Scientific Guide to Switzerland, London, 1866. Sonklar (Karl ron), Dié Oetzthaler Gebirgsgruppe, \&ic., Gotha, 1860 ; Die Gebirgsgruppe der Hohen Tauern, \&c., Wien, 1866. Schaubach Die Deutsche Alpen; 2d edition, Jena, 1865-71. Bonney (Rev. T. G.), The Alpine Regions of Switzerland and the neighbouring countries, Cambridge and London, 1868. Ball (J.), The Alpine Guide; new edition, in ten parts, London, 1873. Considerable additions to our knowledge of the Alps are also to be found in the periodical publicarions of the English, Swiss, Auatrian, Italian, and German Alpine Clubs; and also in papera that have appeared in Petermann's Geographische Mittheilungen.

No general zoological warks of a purely scientific character relating exclusively to the fauna of the Alpa can be quoted; but much valuable information, conveyed in a popular form, will be found ín Tschudi's Thierleben der Alpenwelt, of which translations have appeared in English and French. The want of a compact work containing descriptions of all the plants of the Alpa has been much felt by botanists. Those of Switzerland and tha Eastern Alps are included in Koch's Synopsis Floræ Germanicæ et Helvetica, a work of high authority, written in Latin; but it does not compre. hend the species peculiar to Piedmont and the Western Alpa. An illustrated Work, by J. C. Weber, Die Alpenplanzen Deutschlands und der Schreiz, may also be recommended. Of numerous booka and memoirs connected with the geology of the Alpa, the folloring deserve special mention:-L. von Buch, Geologische Beobachtungen auf Reisen, 1802. Sir R. I. Murchisan,. On the Geological Structure of the Alps, the Apenmines, and the Carpathians, Quart. Journal Geol. Sac. of London, vol. v.; a translation of this innyortant memoir into Italian, with an appendix, by P. Savi and G. Meneghini, Florence, 1851. Sedgwick and Murchison, On the Geology of the Eastern Alps, Trans. Geal. Soc. Lond. 1832. J. de Charpentier, Essai sur les Glaciera et sur le Terrain Erratique du Basain du Rhone, 1841. B. Studer, Geologie der Schreiz, 1853 ; Id. Index der Petrographie und Stratigraphie der Schweiz, \&c, Bern, 1872. A. Stoprani, Studii Geologichi e Paleontologichi sulla Lombardia, 1857. C. Lory, Description Géologique du Dauphine, 1860. Gümbel, Geologie dea Königrcichs Bayern, 1861. O. Heer, Dic Urwelt der Schweiz, Zürich, 1865. E. Desor, Der Gebirgsbau der Alpen, \&c., Wiesbaden, 1865. A. Favre, Recberches Géologiques dans les Parties de la Saroie, \&c.; ; Voisines du Mont Blanc, Genoेve, 1867. L. Rütimeyer, Ueber Thal- und Seebilding, Basel, 1869. A copious callection of facts and obserrations bearing on the physics and recent geology of the Alpg will be found in a work by M. Dollfuss-Ausset, Matcriaux pour l'Etuda des Glaciers, of which nine volumes have appeared. Many juportant contributions to Alpine geology are scattered through the Proceedings of scientific socictiea. The Bulletin of the French Geological Society contains raluable papers by Colleguo, Dauase, Gras, Huber, Mortillet, Omboni, Rozet, and others. The geology of the Austrian Alps is illustrated by numerous papers in the Jahrbuch der $k . k$. Reichsanstalt. The memoirs of A. Sismonda and B. Gastaldi, in the Memorie della R. Academia di Tarino, must be consulted by those who would study the geology of Piadmant. The phenomena of the motion and structure of glaciers bave been discussed in numerous.
papers that have appeared in the London and Edinburgh Philosophical Magazine during the last thisty years. The important memoirs of Professor'Tyndall were published in the Philosophical Transations for 1857, 1858, and 1859; and these of the late Mr Hopkins in the Transactions of the Cambridge Philosophical Socicty, vol. viii. Various coatributions to illustrate and enforce the viewa first set forth by the late Principal Forbea in his Travels through the Alps were published in a collected form by Messrs Black, Edinburgh, in 1859.

With the exception of special maps of small districts, the only maps of the Alpo founded on actual survey are those which have been published under the authority of the governments whose territory is concerned. Among these the first place is due to tho federal map of Switzerland, execated under the direction of Gencral Dufour, on the scale roviov, in 25 aheets. Considering the dificulty of the task, this is nosurpassed both for accuracy aod skill in execation. The Austrian War Otfice has lirought ont, daring the last sixty years, a seriea of maps, executed on a large scale, of the several states of the empire. These are of scry unequal merit. That of the kingdom of Venctian Lombardy, in 42 sheeta, on tho scale of हुtro, bas considerable merit, but falls short of the standard of the Sriss map. A new map of Tyrol is in preparation, and will donbtless austain the reputation of Austian cartographers. The general map of Piedmont, in 91 sheets, on the scale zodor, is safficiently correct as regarda the inhabited districts, but quite unsatisfactory as regards the higher region. Until latelv there
existed no tol able map of the Alpine proviaces of France. The general map of France, on the scale sobor, has of late years beca extended to the greater part of Dauphine, and wilt before long inclado the newly-acquired departtoedts of Savoy and Nice. The portion already published ia quite on a level wath modern requirementa, and reflects credit on the French war department. The oniy tclerable map that ancludes the entire chain of the $A l p s$ is that compiled by J. G. Mayt. It is on a small seale (frobor), and is not frec from serions errors. A map published by Worl, in 48 sliects, on a scale शoobog, cotutled "Alias rou Sudwest Deutschland nad den Alpenladde," is very unsatisfactory. Scheda's general map of the dustrian Empire and adjoining territories, in 20 sleets, ia an ex-ellent compilation. It includes the $A l_{1}$ s as far weat as Monte Rosa and the lake of Thun, but the scale (ह7ofos) is incoaveaiently small.
Of geolomical maps including any considerable portion of tho Alps the following deserve to be specified :-
Favre (A.), Carte Géologique des Partiea de la Savoie, sc, Voisines du Moot Blauc. Gümbel, Geoguostischo Karte des Kónigreichs Bayera. Haner (F. yon), Gcologische Uebersichtskarie der Uesterreichischen Alonar hie ; sheets 5 and 6 include the Austrian Alps. Lory (C.), Carte Géologique du Dauphiné. Morlot, Uebersichtskarta der Nordösthichea Alpen. Sismonda (A.), Carta Gcologica di Savoja, Piemonte, e Liguria Société Géologiquo de France, Carte Géologique de la Savoia. Studer (B.) u. Escher fo d. Listh, Carte Ǵeologique de la Suisse.
(J. B.)

ALPUJAKR.IS, or Alpuxaras, a mountainous district in the south of Spain, in the province of Andalusia, lying betreen the Sierra Nevada and the Sierras Lugar and Contrariesa and consisting principally of valleys, which descend at right angles from the crest of the Sierra Nevada. These valleys are among the most beautiful and fertile in Spain. They contain a rich abundance of fruit trees, especially vines, oranges, lemons, and figs, and in some parts present scencs of almost Alpine grandeur. The inhabitants are the descendants of the Moors, who rainly sought to preserve the last relics of their independence in their mountain fastnesses, and many of the names of places in the district are of Moorish origin. The principal villages are Lanjaron, Orgiba, Trevelez, and Ugijar, all situated at a considcrable eleration-the highest, Trevelez, being 5333 feet above the sca-and containing from 1500 to 4000 inhabitants.

Alredus, Alured, or Aluredus, of Beverley, one of the earliest English historians, was born at Ecrerley, in Yorkshire. He wrote in the reign of Henry I., but little is known mith certainty of his life. It is generally believed that he was educated at Cambridge, and aftermards bccame one of the canons and treasurer of the church of St John's at Beverley. We learn from a note in Bishop Tanner's Bibliotheca Brit.-Hib. that, for the sake of improvement, he travelled through France and Italy, and at Rome became domestic chaplain to Cardinal Othoboni. He died in the year 112 S or 1129 . 11is chief work, entitlcd Annales sive Mistoria de geslis Regun Britannicce, was edited by Thomas Hearne from a manuscript belonging to Thomas Rawlinson, and was published at Oxford in 1716. It contains an outline of the history of England from Brutus to Henry I., written in elerant Latiu, and with remarkable accuracy as to facts and dates, though, of course, much of the earlier portion is fabulous. A manuscript cntitled Libertales Ficelcsice S. Johannis de Beverlo, in the Cottomian library, is also ascribed to him, but on donbtful authority. It is a collection of records relative to the church of Beverley, translated from the Saxon.

ALRESFORD (New), a markct town in Hampshire, so named from a ford on the river Arle, a tributary of the Itchin, on which it is situated. It is 58 miles distant from London and 7 from Winchester. It suffercd severely from a series of conflagrations, and partly on this account and from the decline of a small manufacture of linseys, it is now a place of little importance. Alresford House, the seat of
the Rodney family, is in the ncighbourhood and the naval hero of that name was interred in New Alresford clusch in 1792. Miss Mitford was a native of Alresford. Alresford is a station on the L. and S.-W. Railway. Population of the parish of New Alresford (1S71), 1623 .

ALSACE (Germ. Elsass), a former province of France, divided after the Revolution into the departments of Haut Rhin and Bas Rhin, and incorporated since the war of 1870 with the German cmpire. It is bounded on the north by the Rhine palatinate, on the cast by the Rhine, on the south by Switzerland, and on the west by the Tosges Mountains; and it comprises an area of 3314 English square miles. The district possesses many natural attractions, and is one of the most fertile in central Enrope. There are several ranges of hills, but no point mithin the province attains a great clevation. The only river of importance is the III, which falls into the Rhine after a course of more than 100 miles, and is navigable belor Colmar. The hills are generally richly wooded, chiefly with fir, becch, and oak. The agricultural products are corn, \#las, tobacco, grapes, and various other fruits. The country has a great wealth of mincrals, silver having bcen found, and copper, lead, iron, coal, and rock-salt bcing wrought with profit. There are considerable manufactures, chicfly of cotton and linen. The chief towns are JIühlhausen and Colmar in the upper district, and Strasburg in the lower. The province is traversed from east to west by the railway from Strasburg to Nancy, and the main line north and south runs between Basle and Strasburg.

From a very early period and for many agcs Alsace has been a disputed territory, ant has suffered in the contentions of rival raccs. It formed part of ancicat Gaul, and was therefore included in the lioman empire. Tha Romans held it nearly five hundred years, and on the dissolution of their power it passed under the sway of the Franks and of tho early French monarchs, by whom it was governed until the time of Otho 1., Empcror of Germany, who reigned about the middle of the 10th century. It was at that reiod that Alsace became German : its original population of Celtic tribes, which had beea first Romanised and then farther qualified by a Frankish clement, was now to a great extent supplanted by a parely Teutonic stock. By Otho II. the province was erected into a landgraviate, and it subscquently came into the possession of the Honse of Austria, which ancceeded in $12: 3$ to the imperial dignity of Germany. This state of things continued until 1648, Then o Inrge part of Alsace was ceded to France by the treaty of Minnster. In the far whica preceded this peace (geberally known as 15 Thity Years' War) Alsace had been ao terribly derastated by the French that the German emperor found himself unable to hold it. The population was grcatly reduced in numbers, and much of the
land was left uncultivated. In the subsequent war between France and the empire of Germany, arising ont of the attempt of Louis XIV. to orize Holland, that part of Alsace which remained to Germany was again overrun by the French. Although this war was termi. nated in 1678 lig the treaty of Nimegren, the French monarch was desirous of incorporating a still larger amount of Khine territory; and accordingly, in 1680 he laid claim to a number of territories, belonging to princes of the empire, which he alleged had been dismembered from Alsace. It was ordered that these territories should be at once restorcd to that province under the crown of Frence, and ecveral independent sovereigns were cited to appear before two chambers of inquiry which Louis had established st Brissac and Metz. Tho princes appealed to the German emperor and to the Diet; but the previous wars had so exhansted the power of the former that nothing, conld be done to resist the aggression. In 1681 the French troops under Louvois seized Strashurg, aided hy the treachery of the bishop and other great men of the city. A further war broke out, but by the treaty of Ratisbon in 1684, Strasburg was secured to France. Again the war was renewed in 1688 , and continued for nine years, when, at the peace of Ryswick, in 1697 , snother considerable prortion of Alsace was ceded to France. Sonse remaining territories of small extent were acquired by the French after the revolution of 1789.
It will be seen from the foregoing sketch that Alsace was originally French, that it then became German, and then French agui. From the middle of the tenth century, however, the populatiun has in the main been Teutonic; and the French conquests of the serenteenth centrury, while modifying this element, still left it predominant. The people continued to use German as their native tongue, though the educated classes also spoke French. Protestantism was professed by a large number of the inhabitants; and in many respects their characteristics identified them rather with the race to the east than that to the west of the Rhine. In process of time, however, they considered themselves French, and lost all desire for re-annexation to any of the German States.
Alsace suffered a good deal in the war of 1870-71. The earlier battles of the canpaign were fought there; Strasburg pand other of its fortified towns were besieged and taken; and its people were compelled to submit to very severe exactions. The civil and military government of the province, as well as that of Lorraine, was assumed by the Germans as soon as they obtained possession of those parts of France, which iwas very shortly after the commencement of the war. The Alsatian railways were reorganised and provided with a staff of German officials. German stamps were introduced from Berlin; the occupied towns were garrisoned by the Landwehr ; and requisitions on a large scale were demanded, and paid for in cheques which, at the close of the war, were to be honoured by whichever side should stand in the unpleasant position of the conquered. The people, notwithstanding their German origin, showed a very strong feeling against the invaders, and in no part of France was the enemy resisted with greater stubbornness. It was erident from an early period of the war, however, that Prussia was resolved to reannex Alsace to German territory. When the preliminaries of peace came to be discussed at Versailles in February 1871, the cession of Alsace, together with what is called German Lorraine, was one of the earliest conditions laid down by Count Bismarck and accepted by M. Thiers. This sacrifice of territory was afterwards ratifed by the National Assembly at Bordeaux, though not without a protest from the representatives of the departments about to be given up ; and thus Alsace once more became German. By the bill for the incorporation of Alsace and German Lorraine, introduced into the German Parliament in May 1871, it was provided that the sole and supreme control of the two provinces should be vested in the Emperor of Germany and the Federal Council until January 1st, 1873, when the constitution of the German empire was to be estabished. Bismarck admiited the aversion of the populace to Prussian rule, but said that ererything would be done to conciliate the people. This policy appears really to have been carried ont, and it was not long in bearing fruit. Many of the inhabitants of the conquered districts, however, still clung to the old connection, and on the 30th
of September 1872-the day by which the people were required to determine whether they rould consider themselves German subjects and remain, or French subjects and transfer their domicile to France- 45,000 elected to be still French, and sorrowfully took their departure. The German system of compulsory education of every child above the age of six was introduced directly after the annexation. The population in 1871 amounted to upwaris of $1,060,000$.

ALSEN, an island in the Baltic, situated off the coast of Schleswig, in the Little Belt. It formerly belonged to Denmark, but, as a result of the Danish war of 1864, was incorporated with Germany. Its area is 105 square miles; the length nearly 20 , and the breadtl from 3 to 12 miles. The island is fertile, -ichly wooded, and fields grain and fruit. Sonderburg, the capital, a town of 5475 inhabitants, with a good narbour and a considerable trade, is situated on the narrow channel that separates Alsen from the mainland. Population, 22,500.

ALSOP, Vivcent, a celebrated Nouconformist divine, was educated in St John's College, Cambridge. He received deacon's orders from a bishop, whereupon he settled as assistant-master in the free school of Oakham, Rutland. He was recovered from indifferent associates here by a very worthy minister, the Rev. Benjamin King. Subsequently he married Mr King's daughter, and "becoming a convert to his principles, received ordination in the Presbyterian way, not being satisfied with that which be had from the bishop." He was presented to the living of Wilby in Northamptonshire ; but was thence ejected by the Act of Uniformity in 1662. After his ejection he preached privately at Oakham and Wellingborough, sharing the common pains and penalties of Nonconformists-e.g., he ras imprisoned six months for praying with a sick person. A book zgainst Sherlock, called Antisozo (after Socinus), written in the vein of Andrew Marvell's Rehearsal Transprosed, procured him much celebrity as a wit. Dr Robert South, who cannot be supposed to bave been farourably disposed towards the Nonconformists, publicly pronounced that Alsop had the advantage of Sherlock in every way. Besides fame, Antisozzo procured for its author an invitation to succeed the venerable Mr Cawton in Westminster. He accepted the call, and drew great multitudes to bis chapel. The otber books he published showed a fecundity of wit, a playful strength of reasoning, and a provoking indomitableness of raillery. Even with Dr Goodman and Dr Stillingfleet for antagonists, he more than held his own. His Mischief of Impositions in answer to the latter's Mischief of Separation, and Melius Inquirendum in answer to the former's Compassionate Inquiry, remain historical landmarks in the history of Nonconformity. Later on, from the entanglements of a son in alleged treasonable practices, he had to sue for and obtained pardon from King James II. This seems to have given a somerrhat diplomatic character to his closing years, inasmuch as, while remaining a Nonconformist, he had a good deal to do with proposed political-ecelesiastical compromises. He died May 8, 1703.
(A. в. G.)
alsted, Jofany Heinrice, a German Protestant divine, and cae of the most roluminous miters of the 17 th century, was born in 1588 . He was some time professor of philosophy and divinity at Herborn, in the county of Nassau, and afterrards at Weissenburg in Transylvauia, where he continued till his death in 1638. His Encyclopoedia, the most considerable of the earlier works of that class, was long held in very high estimation. It was published in 1630, in two large folio volumes, the whoie having been composed by himself. His Thesaurus Chrono. logice has gone through several editions. He published in 1627 a treatise, De Mille Annis, in which he asserted
that the reign of tho saints on earth was to begin in 1694.
alston, Cuarles, m.D., a botanical and medical writer, was born in the west of Scotland in the year 1683. He began his studies at the university of Clasgow; and on the death of his father, prosecuted them under the patronage of the Duchess of Hamilton. After studring at Lcyden under Buerhaave, alung with Alexander Monro (171619), ho returned to Edinburgh. and shared with Monro, Rutherford, Sinclair, and Plummer, the honour of laying the foundation of the renowned school of medicine there. He lecturcd on botany and materia medica with increasing reputation till his death in November 1760 . He was a man of great ability, and an assiduous student of scienco. His most valuable work is his Lectures on Materia Medica, 2 vols., 17 T 0.
ALSTHOEMER, Jonss. a Swedish industrial reformer, was born at Alingsaes, in West Gothland, on the 7 th Jan. 1685. He left his native village at an early age, and in 1707 becamo clerk to Alberg, a merchant of Stockholm, whom he accompanied to London. After carrying on business for three years, Alberg failed, and Alström (as the clerk then called himself) engaged in the ousiness of shipbroker on his own account. which eventually proved very successful. After travelling for several years on the Continent, he was scized with the patriotic desire to transplant to his native country seme of the industries he had geell flourishing in Britain. He accordingly returned to Alingsaes, and in 1724 establishcd a woollien fectory in the villaye, which aiter preliminary difficulties was completely sucee: ssful. He aext established a sugar refinery at Gothenburg; introduced improvements in the cultivation of potatoes and of plants suitable for dyeing; and directed attention to improved methods in shipbuilding, tanning, and the manufacture of cutlery. But his most successful undertaking was the importation of sheep from England, Spain, and Angora. In return for his services he received nany marks of distinction. He was created (1748) knight of the urder of the North Star; and a few years later received letters of nobility, with permission to change his name to Alströmer. He dicd June 2, 1761; leaving several works on practical industrial subjects. A statue was erceted to his honorr in the exchange at Stockholm. One of his sons, Clas (.e.. Claude), was a naturalist of considerable eminence.

ALT, or Aluta, a tributary of the Danube, which, rising in the eastern Carpathian mountains, flows through Transylvania and Wallachia, entering the latter by the pass of lluthenthurm, and joins the Danubo opposite Nicopoli, after a course of more than 300 miles.

AL'CAI MOUNTALNS, a grunp of mountains in central Asia, separating the table-lands of Mongolia from Siberia. The irregular chains of which the group consists extend from 85° to 103° E. lung, and from 48° to $34^{\circ} \mathrm{N}$. lat. The great Siberian rivers, the Obi, Irtish, and Yenesei, take their rise in these mountains, which are said to abound in scenes of picturesque beauty. The highest summits exceed 12,000 feet. The rauge is rich in mineral productions, particularly silver, coppcr, and iron. See ASIA, and Geoorapity, Physical.

ALTAMURA, a cathedral town in the south of Italy, provnce of Terra di Bari, 28 miles S.W. of Eari. It is situated in a fertile country, which produces wine and oil, and is said to occupy the site of the ancient. Lupatia. Population, 17,365 .

ALTAR, in Classical Antiquity, was a solid base or pedestal on which supplication was made and sacrifice offered to tho gods and deified berocs. According to this difference in the service for which they were employed, altars fell into two classee, of which the one, smaller and
lower so that the suppliant could knect uron it, stoud inside temples, in frout of the sacrad intixe ; while the other, destined for burnt sacrifice, was 1niond in the oper air, and, if connected with a temple, in frunt ul the chtrance. Possibly altars of the former class were sulstitutes for, and rendered the same serrice in listorical times a.x, in an early age, the base of the sacred inage rithin a tenple. In this case the altar of Apollo at Delphi, on which Neoptolemus is frequently represented on the Greek rases a.4. taking refuge from Urestes, might be regarded as the pedestal of an invisible inage of tho god, and as fulfilling the zame function as did the base of the actual ipage of Minerva in Troy, towards which Cussandra tled from Aliax. The other class of altars, called $\beta \omega \mu o i$ by the Grceks aud altaria by the Rumans. appear to Lave originated in such temporary constructions as beaps of earth. turf, or stonc, mado as occasion offered for kindliug

Fro. 1 -Greck altar : usual form. a fire for sacrifice. The next step was to allow the bones and ashes of the rictims sacrificed to accumulate, and upon this to kindle new fires. Altars so raised were viewed with particular sanctity, the most remarkable recorded instances of them being the altire of Juno at Samus and at Olympia (Pausanias, r. 14, F_{5} v. 15, 6), of Apollo at Thebes (Pansanias, ix. 11, 5), aud of Jupiter at Olympia. The last-mentiuned stood on a platform (π pó $\theta_{\text {varis) }}$) measuring 125 feet in circumference, and led up to by steps, the aliar itself being 22 feet high. Women were excluded from the platform. Where hecatoubs were sacrificed, the $\pi \rho \sigma$ óvo ι necessarily assumed colossal proportions, as in the case of the altar at Parion, where it measured on each sido 600 fect. The altar of Apollo at Delos (ó кépútıvos ßupós) was made of the horns of deer believed to have been slain by Diana; while at Miletns was an altar composed of the blood of victims sacrified. The altar used at the festival in honour of Deedalus on Mount Cithæron was of wood, and was consumed along with the sacrifice (Pausanias, ix. 3, 2). Others, of bronze, are mentioned; but while these were exceptional, the usual material of an altar was marile, and its form, both among the Greeks and Romans, either square or round ; polygonal altars, of which examples still exist, being exceptions. When sculptured decorations were added - they frequently tools the form of imitations of the actual festoons with which it was usual to ornament altars, or of symbols, such as crania and horrs of oxen, referring to the victims sacrificed. As a rult, the altars which existed apart from temples bore the namu of the persou by whom

Fig. 2.-Polygonal Greek Altar. they were dedicated, and the names of the deitics in whose service they were; or, if not the name, some obvious representation of the deity. Such is the purpose of the figures of the Muscs on an altar to them in the British Musewn. An altar was retained fur the service of one particular god, except where, through local tradition, two or more deities had become intiunately associated, as in the case of the altar at Olympia to Diana and Alpheus jointly, or that of Neptune and Lrecitheus in the Erechtheum at Athens. and othcrs. Such deitics wcre styled
oi $\mu \beta \omega \mu o t$, each having a separate part of the altar, if we may jadge from that at the Amphiareum at Oropos (Pausanies, i. 34, 2). Deities of an inferior order, who were conceived as working together-c.g., the wind gods-had an altar in common. In the same way, the "unknnwn gens" were regarded as a unit, and had in Athens and at Olympis one altar for all (Pausanias, i. 1, 4 ; v. 14, 5 ; Acts of Apostles, xvii. 18). An altar to all the gods is mentioned by Aischylus (Suppl. v. 225). Amoug the exceptional classes of altars are also to be mertioned those on which fire could not be kindled ($\beta \omega \mu$ oi ämvpot), and those which were kept free from blood ($\beta \omega \mu$ иi àvaipaктot), of which in both respects the altar of Zeus Hypatos at Athens was an example. The érria was a round altar ; the éčapa, one employed apparently for sacrifice to inferior deities or heroes, or on comparatively unimportant occasions, as was also the ara among the Romans; though ara is sometimes used with the same signification as altare, and etymologicaily would have the same meaning if it is correctly derived from $\dot{d}^{\prime}(\rho)$, aot from ardere; while alture is connected with altus, "high."
Egyptian altars were monoliths, in the form of a truncated cone about four feet in beight. Some are extant, made of granite, others of green basalt; in alnost every case they bear hieroglyphical inscriptions. In the temple of Jupiter at Babylon there was an altar of massive gold. Assynan, Egyptian, and Persian altars were either square or oblong.
The most ancient altars of which any record has been preserved are those mentioned in the Bible. As sacrifice implies an altar, there must have been altars for those of Cain and Abel; but the first which is mentioned is that which Noan after the flood "builded unto Jehovah" (Gon. viii 20). The three patriarchs, Abraham, Isaac, and Jacob, are repeatedly said to have built an altar in the different parts of the land of Canaan in which they sojourned; and though is is not stated expressly, yet it may be inferred from there having evidently been a place where Abraham was accustomed to "stand before Jehovah" (ibid. xix. 27), that, once built, it remained during the whole period of the encampment at the particular place, and was frequently used for the purpose of sacrificing.
But the most remarkable altar mentioned in the book of Genesis is that which Abraham built for the sacrifice of his son Isaac, from which we glean several particulars relative to the patriarchal worship. The altar was evidently something distinct from the wood by whose fire the sacrifice was to be burnt, for Abraham " built an altar and laid the wood in order," which he had brought with him from Beersheba, as if he could not count upon finding it at the place. The rictim also was bound, laid upon the wood, and there slain. This was contrary to the practice under the Levitical dispensation, when the fire on the top of the altar was kept continually burning, and the animal was killed before being carried up to it; but it is probably alluded to in a verse of the Psalms, which has given much trouble to commentators, who have tried to reconcile it with the precepts of the Mosaic law-" Bind the sacrifice with cords unto the horns of the altar" (Ps. cxviii. 27). To this simple patriarchal ritual belong also the rules about the construction of altars given to the Israelites shortly after they left Egypt (Exod. xx. 24-26). While sojourning in that country they do not seem to have offered any sacrifice to Jchovah, till, just as they were learing it, they were commanded to sacrifice the passover. It is not unlikely that they might have despised the simple altars of their forefathers, and tried to imitate those which they had seen in Egypt, as they so soon copied their late oppressors in a still graver matter, the making a supposed likeness of the Deity. They were therefore ordered to

but they were not to be hewn, nor were the altars to be so high as to require the offerer to go up by steps to arrange the sacrifices upon them.

The first altar that is mentioned as having becn built after these directions were given, was the une for the solemn covenanting sacrifice between God and the Israelites (Ex. xxiv. 4-8). There it is mentioned that MIoses "builded an altar under the hill, and twelve pillars, according to the twelve iribes of Israel." Its being under the bill may have been a significant protest against the prevalcut heathen extor of localising the Deity in the sky, and the twelve pillars or rough blocks of stone appear to have been a principal part of the materials used in constructing it. They may te compared with the "twelve stones, according to the number of the tribes of the sous of Jacol," with which Elijah built his altar on Carmel (1 Kings xviii. 31). We seem to learn from these examples that when an altar was to be constructed for a special occasion, it was fitting that it shonld hear a symbolism of all in whuse name the sacrifice was offered. It is to be observed that this precept about making altars of earth or of unhernn stones was anterior to the Levitical ceremonial, and was superseded by it. After the sin of making the golden calf, the whole ceremonial of the worship of the Israelites tras altered. According to the new ritual, two different altars were required, and they were permanent, being carried about in the people's wanderings, and replaced by others, similar, but larger and more costly, when the ark was placed in the temple on Mount Moriah.

The first of these altars was that for lurnt offerings. For the tabernacle this was hollow, made of boards of shittim-wood, covered with brass. It was three cubits or about five feet high, and five cubits or eight feet square. It had a horn at each corner, and was carried about by means of staves. The corresponding altar in the temple was of greatly larger dimensions, ten cubits or about 18 feet high, and in the first temple 20 cubits square, and in the second 24 cubits. The tradition of the Jews is, that it was 32 cubits (about 50 feet) square at the base, contracting to 24 at the top, by sereral ledges round it at different heights. It must therefore have been an immense structure, and though called "an altar of brass," was probably built of stones, and merely covered with plates of that metal. From the account of the building of the altar in the second temple given in 1 Macc. iv. $45-47$, it is probable that it consisted merely of a mass of masonry of the proper form. Ezekiel, in his vision of the temple, gives andescription of the altar of burnt-offerings, from which we learn that it was surrounded by several ledges or steps, each a cubit broad. The uppermost of these was two cubits (about 3 fect) below the top of the altar, so that, standing upon it, the priest was able to arrange the sacriîce upon the fire, which was kept always burning, to supply it with fuel, ard to remove the ashes. The lower ledges were to enable him to sprinkle the blood on the sides of the altar, which (according to the Levitical ritual) was sometimes to be done on the upper part of the altar, and sometimes on the lower part. The lowest step is said to have had a raised ledge on the outside, by which the blood poured upon it ras confined till it ran through a hole into a subterranean pipe.

One of the most diffcult questions about the Levitical altars is their having horns ; for these do not seem to have been used in that ritual, yet they are specially ordered to be made, not only in the altar of burnt-offerings, bnt also in that of incense; and on certain solemn occasions they were sprinkled with blood, as if they were not mere appendages or ornaments of the altar, bat had a special significance of their own. From the way they are spoken of in the book of Exodus, we see that they most then have beon
well kuowa, and it might almost bo thought that tney were retained from the older ritual, according to which they were used to bind the rictim that was slain upon the altar.
The second temple having suffered greatly in the wars betwcen the kings of Syria and ESypt, and been plundered by the Ronims, was alwost rebailt by 1Ferod, the restoration occupying forty-six years. The altar of burnt-uffering erceted then is thus described by Josephus (De Bell. Jud. v. 5,6 !:-" Befure this temple stuod the altar, 15 cubits high, and equal both in length and breadth, each of which dimensions was 50 cubits. The figure it reas built in was a square : it had corners like herns, aud the passage up to it was by an insensible acclivity from the south. It was formed witheut any irou tool, nor did any iron toul so nuch as touel it at any time." A pipe was connected writh the south-west horn, through which the blood of the rictims was discharged by a subterraneons lassage into the brook Kedron. Under the altar was a cavity to recenve the drink-offerings. This was covered with a marble slab, and cleansed from time to time. On the nurth side of the altar several iron rings were fixed to fasten the rictions. Lastly, a red line was drawn round the wuddle of the altar to distinguish betweru the bloud that was to be sprinkled abuve and below it.
The second altar belunging to the Jewish worship was the alucr of incense, the golden altar (Ex. xxx. 1). It was placed in the holy place, between the table of slew-breal and the golden candlestick. This altar, in the tabernacle. was made of shiftin-wood orerlaid with grld plates, 1 cubit in length and breadth, aud 2 cubits in height. It had horns of the sarne materials; and round the flat surface was a border of wrought gelld, underneath which were the rings to receive "the staves, marle of shittim-wrod overlaid with gold, to bear it withal;" (Exod, xxx. l-5; Joscph. Antiq. iii. 6, 8). The altar in Solomon's temple was similar in form. but made of eedar overlaid rith gold (1 Kings vi. 20). It is a question whether it was hollow or filled up with stones, the construction of the IIebrew being doubtful, bit the former supposition appears the more probable. The altar in the second temple was taken away by Antiochus Epiphanes (1 Macc. i. 21), and restered by Judas Maccabreus (1 Macc. iv. 49). The archangel Gabriel stood at the right s:de of this altar when he announced the birth of Jelin the Baptist to Zacharias, who was burning incense upon it (Luke i. 11); and it is alluded to in the vision shown to St Jehn (Rev. viii. 3), where it is immediately "before the throne," the veil, which under the Mosaic dispensation had separated it from the holy of holies, having been rent asunder at the crucifixion.
On this altar incense was offered twice every day, and this was the only use of incense under the Levitical ritual; for though the word "censer" is repeatedly used in our common translation of the Old Testament, zeither in the IIebrew nor the Greek has the word any connection with incense, but denutes the fire-pan in which the burning clarcoal was earried from the brazen altar to be emptied out upon that of inconse. The true equivalent for censer is only nsed of sinful or licathen worship (2 Chron. xxvi. 14; Ezek. viii 11, and perhaps 2 Chron. xzx. 14). The firepans used as censers in the story of Korah, and of the atonement sulsequently made by Aaren burning incense among the people, do not belong to the Levitical ritual, but were to prove whether it was to be olserved or not.
The single exception to the exclusive use of the golden altar for incense was on the great day of atenement, when the high priest went into the boly of holies, carrying a fire-pan containing laghted charcoal from the great altar, and having set it down, throw incense apon it, and left it for some time hefore the ark while he went and came
back once and agaiu to sprinkle it with the bluod of the sacrifices. This fire-pan is accordingly called a golden censer by the author of the Epistle to the Helrews (ix. 4); but even this is no precedent for the swinging censers Which have been used for so many ceuturies in the Latin eluurches. Incense, indeed, was put un the luaves of shewbread ; but it does not appear that it was burned upon that table, which is nowhere called an altar. Mure probably, when the loaves were taken away, the inceuse was burnt on the proper altar. But the shew-bread was so completely special an appointueut of the Mosaic ritual that it is impossible to class it ameng sacrifices.

Anieng the early C'hristians, alike in the East and Wcst, that on which the bread and wiue were put in the colebration of the Eucharist appears to have been regarded as an altar, and accurdingly sacrificial words were used in connection with it, such as "offering," "unhloory sacrifee." It should be observed, however, that the Greek fathers scarcely ever apply the word $\beta \omega \mu{ }^{\prime}$ s to Christian altars, confining thenselves to $\theta v a t o \sigma t i p u o y$; while in the West there seems to have been a prefereuce for allare rather than ara, though the latter term is otten found. As the Christians geuerally slrunk from disclosug to the heatlen the details of their worship, their enemies used to taunt them with having neither teuples ner altars, and some of the apologists admit this ; but all they meaut by this ras that they had ne such altars as the heathen had, altars for slain beasts and for the burning of their bodies.

From the privacy with which the early believers lad to meet, their altars at first wonld maturally be sinple and uuobtrusive. We have seen that the Levitical altars were four-square, but (lhristian altars seem to have been always longer than they were bruad. and to have been placed "athwart" the length of the basilica or chureh, so as to preseut one of the broad sides and both the sacred vessels to the eyes of the great body of the worshippers.

There does net seem to have been any rule as to the material of which altars might be made. At first they appear to have been mostly of wood, as being easily procured and fashioned. But wheu the persecutions ceased, and the Cluristians began to erect churches for worship, there seems to have sprung up some diversity of usage, each proviuce following its own traditional custom, which perhaps was affected in some degree by the nature of the buiiding-stone found there, and the use commonly made of it. It seems that in Esypt and the region afterwards called Barbary the altars were of wood; and there is a tradition that this was also the case originally at Rume. On the other hand, in the latter half of the 4th century, they were made of stone in Asia Minor. Early in the 6th century a council, held at Epanne in Burgundy, ordered that only altars made of stone should be consecrated with the chrism, whieh shows that wooden altors also were still made in that province. In Eigland the change from wood to stone seems to have taken place about the time of the Norman Conquest, Wulfstan, bishop of Worcester, being mentioned as haring introduced it in his diocese. No doctrinal sigaifieance can be ascribed to the change, which was simply in keeping with the greater costliness of the Whola structure, when the cessation of the inroady of the Seandinavian sea-kings allowed the nations of Western Europo to accumulate wealth, of which a portion was dedicated to religion. A fcw exceptional instances are mentioned of altars of silver, and they were sometimes even covered in part with plates of gold; but the current set in steadily in favour of stone as the mast suitable material, and by degrees the legislation of the Latin church on this point grew more definite. The altar could only be of stone ; not that it was necessary that the whole structure should be so, for it was enough if there was a slab of
stome on the top large enough for the sacred vessels to stand upon ; the upper face of the altar must bave five crosses incised in the stone; before being used, it must have benn consccrated by the bishop with the chrism, according to the ritual prescribed in the pontificals, which by degrees grew more elaborate; and at first a plain cross, and afterwards a crucifix, was placed erect upon it.

At the Reformation the altars in churches were looked npon as symbols of the old Catholic doctrine, in those countries where the strnggle lay between the Catholics and the "Reformed" or Calvinists, who on this point went much further than the Latherans. In England the name " altar" was retained in the Communion Office in English, printed in 1548, and in the complete English Prayer-book of the following year, known to students as the First Book of Edward. But orders were given soon after that the altars should be destroyed, and replaced by morable wooden tables; while from the revised Prayer-book of 1552 the word "altar" was carefully expunged. The short roign of Mary reversed all this, but the work was resumed on the accession of Elizabeth, and has been carried out so thoroughly that the industry of recent antiquaries has only been able to find about thirty cases in all England where the old stone altar-slabs still exist, and of these that at Arundel is almost the only one which is still used.
The name "altar" has been all along retained in the Coronation Office of the kings of England, where it occurs frequently. It was also recognised in the canons of 1640 , and an important change was then made in the position of the communion tables, which has become universal throughout the Church of England. In primitive times the position of the Christian altar seems to have been such that, like the Jewish and patriarchal altars, they could be surrounded on all sides by the worshippers. The chair of the bishop or celebrant was on their west side, and the assistant clergy were ranged on each side of him. But in the Middle Ages the altars mere placed against the east wall of the churches, or else a screen, called a reredos (generally much decorated with carving), was erected close to the east of the altar, so as to cut off any one on that side from joining in the worship, and the celebrant was brought round to the west side, to stand between the people and the altar; while there were often curtains on the north and south sides. When tables were substituted for altars in the English churches, these were not merely movable, but at the administration of the Lord's Supper were actually moved into the body of the church, and placed table-wise as it was called-that is, with the long sides turned to the north and south, and the narrow ends to the east and west-the officiating clergyman standing at the north side. In the time of Archbishop Laud, however, the present practice of the Church of England was introduced. The communion table, though still of wood and morable, is, as a matter of fact, never moved; it is placed altar-wisethat is, with its longer axis running north and south, and close against the east wall, with for the most part a reredos behind it ; it is also fenced in by rails, within which the laity do not enter.
When, under the superintendence and partly at the charge of the Camden Society, the church of Saint Sepulchre at Cambridge, founded 1101, was restored, a stone altar, consisting of a flat slab resting upon three other upright slabs, was presented to the parish, and set up in the church at the east wall of the chancel. This circumstance was brought before the Court of Arches in 1845, and Sir H. Jenner Fust (Faulkner v. Lichfield and Stearn) ordered it to be remored, on the ground that a stone structure so wcighty that it could not be moved, and seeming to be a mass of solid masonry, was not a communion-table rithin.the meaning of the Church of England. No attempt
has been made to obtain a reversal of this judgment; but from other decisions some infer that only such altars as cannot also be considered as tables are forbidden.

Few particulars have come down to ns regarding the construction of the wooden altars used by the Christian Church in early times, except that several circumstances indicate that they were hollow. Gregory of Tours applies the word "arca" or "chest" to thern; and in other cases they must have been simply like ordinary tables supported by legs, since we read of persons taking refuge beneath them. There is nothing, therefore, either in the matter or the form of the ordinary English communion-tables, to prevent them serving as altars. The stone altars at first were probably ouly oue or more blocks of rough hewn stone; but by degrees they were ornamented, and this produced tivo differeut types. Either the altar remained a solid mass of masonry, but had its front richly panelled (in later times it had figures in bas-relief), or the upper slab was supported by from one to five columns, often of highly-polished stone. It was in the 16 th century that a new fashion was introduced in France, according to which the altar was regarded as being itself a tomb or sarcophagus, and to which are due the unsightly altars which now disfigure the roonderfully beautiful mediæval churches of that country. So complete was the change, that now, perlaps, there are not more ancient altars in France than there are in England.

In early times, before the altars were placed close to the east wall or to a large reredos, they were often surnounted by a canopy or baldacchino, supported by four pillars rising from the ground just beyond the corners of the altar.

At first there was but oue altar in a church; but for many centuries this rule has been disregarded in the Latin churches, and aimost every large church contains several altars dedicated in honour of different saints, and sometimes appropriated to the use of particular guilds, or endowed for a series of masses for the repose of the founder. These, horever, must not be confounded with the priucipal altar, called the high altar, or maitre autel, situated towards the east end of the choir or chancel. A few cases occur where there are two high altars, the second being placed near the west end of the church.

Altars are "rested" during service; that is, corered with cloths of various kinds. There is often a frontal, richly embroidered, whose colour depends upon the ecclesiastical season or the particular festival ; but in all cases the uppermost cloth on the top is of linen, to reprcsent that in which the body of the Lord was wrapped in the sepulchre.

Since the age of Bede, portable altars have been used in the Latin Church; but the East has never adopted them, and they quite put out of sight the symbolism of the form of an altar. They consist simply of a small slab of stone, large enough to support the chalice and paten. This must bear the incised crosses and must hare been consecrated by the bishop. They may be carried about on a journey by a bishop or priest in a heathen or heretical country, as now it is not allowed to say mass except on a duly consecrated altar, and they are also used in oratories attachicd to private houses.
Those who wish to investigate the matter further may be referred to the standard works on church ritual and ecclesiastical architecture. For the altars of the Israelites, much information will be found in Lightfoot's two treatises on the Temple Service, and in Carpzor's notes to his translation of Godmin's Moses and Aaron. Christian altars are described by Boua, Martenc, and Bingham; but the standard mork on the subject is probably that by the Lutheran Voigt, published after his death by J. A. Fabricius. Nearly trecuty jears ago an Essay on Christian Altars, by Laib

A LT-ALT

and Sehwartz, appeared at Rottenburg; while for France, the Abbe Thiers' Dissertation on the subject is full of curious information, like all his works. Drawings of mediæval altars which bave been preserved will be found in many works on architecture. Parker's Glossary gives the most noticeable preserved in England ; but the Dictionnaire de l'Architecture of Viollet le Duc is much superior, and, with its beautiful illustrations and careful descriptions, has nearly exhausted the subject so far as regards French examples, to which it is almost exclusively confined.
(c. н. ₹.)

ALTDORF, or Altorf, a town in Switzerland, capital of tho canton of Uri, situated at the northern end of the pass of St Gotthard, near the lake of Lucerne. It contains the oldest Capuchin monastery in Switzerland, but is otherwise of little interest, except as the place pointed out by tradition where William Tell shot the apple from his son's head. The lime tree, under which it is alleged the boy stood, has disappeared, but a fountain still marks the spot. There is also an old tower, with rude frescoes commemorating the feat. Bürglen, a village in the neighbourhood, is Tell's reputed birthplace. Population, 2724.
ALTDORFER, Albrecht, a painter and engraver of the early German school, was born at Regensburg, not later than 1480, and dicd in 1538. His paintings are remarkable for minute and careful finish, and for close study of ature. The most important of them are to be found in the Pinakothek at Munich. A representation of the battle of Arbela, included in that collection, is usually considered his chicf work. His engravings on wood and copper are very zumerous, and rank next to those of Albert Dürer.
altenburg, 2 town in Germany, capital of the duchy of Saxe-Altenburg, situated near the river Pleisse, about 24 miles south of Leipsic. The town, from its hilly position, is irregularly built; but many of its streets are wide, and contain a number of large and beautiful buildings. Its ancient castle is picturesquely situated on a lofty rock, and is memorable as the place from which, in 1455, Kunz von Kaufungen carricd off the young princes Albert and Ernest, the founders of the present royal and ducal families of Sazony. Altenburg is the seat of the higher courts of the duchy, and possesses a cathedral and several churches, a gymnasium, a library, a gallery of pictures and a school of art, several elementary schools, an infirmary, and various learned societies. There is considerable traffic in grain and cattle brought from the surrounding district; twice a year there are large horse fairs; and the book trade is extensive. Cigars, woollen goods, gloves, hats, and porcelain are among the chief manufactures. Population (1871), 19,966.
ALTEN OETTING, or Altoetting, a small market town in Upper Bavaria, situated on the Mörn, not far from its junction with the Inn. It has long been famous as a place of pilgrimage to which Roman Catholics resort in very large numbers, especially from Austria, Bavaris, and Swabia, on account of a celebrated image of the Virgin Mary in one of the churches. Another ehurch contains the tomb of Tilly. Population, 1500.

ALTENSTELN, a castle upon a rocky mountain in Saxe-3feiningen, on the south-western slope of the Thiringer Wald, not far from Eisenach. It is the summer resideuce of the dukes of Meiningen, and is surrounded by ε roble park, which contains, among other objccts of interest, a remarkable underground cavern, 500 feet long, through which flows a large and rapid stream. Boniface, the apostle of the Germans, lived and preached at Altenstein in 724 ; and near the castle is the place from which, ir. 1521 , Luther was seized, to be carried off to the Wartburg. There used to be an old becch called "Luther's
tree," which association connected with the Reformer, but it was blown down in 1841, and a small moument now stands in its place.

ALTIN, a lake of Siberia, which gives rise to the Bija, ono of the head streans of the Obi, is situated rimong the Altai mountains, 320 miles south of the city of Tumsk. It is about 80 miles lung, and its greatest breadth is about 50 miles ; but the large quantities of melted snow which flow down from the surrounding mountains mako it larger in summer than in winter. It is remarkable that in winter the northern part is frozen so hard as to be passable on sledges, while the southern is never covered with ice.

Aliting, Heinrice, a German divine, was born at Embden in 1583. His father, Menso Alting, was minister of Embden, and carly destined his son to the samo profession. He studied with great assiduity and success at the universities of Herborn and Gröningen. In 1608 he was appointed tutor of Frederick, afterwards elector-palatine, at Heidelberg, and in 1612 accompanied hin to England. Returning in 1613 to Heidelberg after the marriage of the elector with the Princess Elizabeth of England, he was appointed professor of theology, and in 1616, director of the Collegium Sapientio. In 1618 , slong with Sculteius, he represented the university in the synoci of Dort. When Count Tilly took the city of Heidelberg, and landed it over to plunder, Alting found great difficulty in escaping the fury of the soldiers. He first retired to Selorndorf; but in 1623 he removed with his fanily to Eurbden, and afterwards followed to the Hague his late pupil, the Flector Frederick, who had been conlpelled to flee from bis new kingdom of Bohemia. Such was the regard this prince had for Alting that he made him preceptor to his eldest son, and prevented him from accepting the chargo of the church at Embden, and likervise a professorship, in the university of Franeker. In 1627, Alting, with some difficulty, obtained leave from his patron to remove to Gröningen, where he was appointed to the chair of divinity; and there he continued to lecture, with increasing reputation, until his death, which took place in 1644. Alting was a man of great ability and extensive learning. Among the productions of his pen are:-Note in Decadem Problenatum Jacobi Behm, Heidelberg, 1618; Scrijta Theologica Heidelbergensia, Amst. 1662; Exxeyesis Augustunce Confessionis, Amst. 1647.

ALTLNG, Jacob, son of the preceding, was born at Heidelberg in 1618. He studied theology and the Oriental languages at Gröningen, and in 1638 he put himself undcr the tuition of a Jewish rabbi at Embden. In 1640 he went to England, and was admitted to clerical orders by Dr Prideaux, bishop of Worcester; but an offer of the Hebrew professorship in the university of Grüningen induced him to return to Holland in 1643. In 1667 he was appointed professor of theology in the university. In this office he gave great offence to his colleague, Samuel Desmarets, by his disuse of the scholastic method of teaching. Desmarets preferred a charge of heresy against him; but the divines at Leyden pronounced that Alting was not guilty of anything more serious than imprudent fondness for innovation. Alting died of a fever in 1679. The fondness which be showed for rabbinical learning gave birth to the general report that he was inclincd to become a Jew. His opiniuns, which seem to have excitsed more general attention than they deserve, may be seen in his writings, which were collected a ferr years after his death, and published in fire volumes folio, by his pupil, the well-knorp Balthasar Bekker.

ALTON, a town of Hampshire, on the Wey, 17 miles E of Wincliester, and 47 S . WV. of London by road; by the London and Soutb-Western Railway it is 60 miles from Lथdon Large markets and fairs are held for corn, hops,
cattle, and sheep; and the town contains some lighly reputed ale breweries, besides paper manufactories and an iron forndry. The church, a fine old building, was the scene of a fierce conflict between the royalist and parliamentary troops in 1643. Population in 1871, 4092.

AlTON, a town in Madison county, Illinois, United States, stands on a high bluff on the left bank of the Mississippi, 21 miles above St Louis, and 3 above the mouth of the Missouri It is a place of considerable importance, and carries on a thriving export trade in the produce of the surrounding country - grain, hay, fruit, coal, and lime. It has an excellent wharf, and good means of communication by railway, the two great lines from Chicago and Iudianopolis having their junction at Alton. The town contains a Roman Catholic cathedral, about ten other charches belonging to various sects, and several schools. It has also a printing trade, with daly and weekly newspapers. Population in 1870, 8665.

AL'TONA, the richest and most populous city of the Prussian province of Schleswig-Holstein, is situated on the north bank of the Elbe, so close to Hamburg that the two cities are virtually one. The rise of Altona to its present position has been rapid, at least for a continental city, and is mainly dne to the fostering care of the Danish government, who established it as a rival to Hamburg. In 1640, when it became the property of Denmark, it was a small fishing rillage; in 1871 it contained 74,131 inhabitants. After the war of 1864 it ceased to belong to Denmark, and eventually became part of Prussia, although, with Hamburg, it is not included in the Zollverein. It carries on a large trade with Britain, France, the West Indies, and other countries; but it has by no means succeeded in depriving Hamburg of its commercial pre-eminence-great part of the business of Altona being, indeed, transacted on the Hamburg exchange. Tobacco is probably the chief manufacture, but there are also breweries, tanneries, oilworks, soap-works, and linen factories. Altona is a wellbuilt modern town, really dating from 1713 (when the Swedes burnt it to the ground), with a higher situation than that of Hamburg, and consequently a purer and healthier atmosphere. It contains an observatory of some celebrity, several churches, troo synagogues, a gymnasium, and an infirmary. It is the terminus of the Altona-Kiel Railvay, which places it in connection with the principal towns of Schleswig-Holstein.
ALTOONA, a torn of the United States, in Blair county, Pennsylvania, on the Central Railway, 244 miles west of Philadelphia, situated near the eastern base of the Alleghany Mountain, where the railroad begins to ascend it. It contains extensive locomotive and railray carriage manufactories belonging to the Pennsylvania Central Railway Company: Near Altoona is the famous "Horse Shoe Bend," where trains of but ordinary length are seen to be moving in opposite directions at the same time. The line of railway, in its ascent between Altoona and Cresson, winds round the side of the mountain, affording some of the finest mountain scenery on the continent. Population in $1870,10,610$.

ALTO-RILIEVO (high relief) is the term applied to sculpture that projects from the plane to which it is attached to the extent of more than oue-balf the outline of the principal figures. It is thus distinguished from basso-rilievo, in which there is a greater or less approximation to the pictorial method, the figures being made to appear as projecting more than half their outline without actually doing so. See Relief and Scolpture.

ALTRINGHAM, or Altbischam, a market town in the north of Cheshire, 8 miles south of Manchester, with which it is connected by railray. It is a neat, clean place, surrounded by villas of Manchester manufacturers, who
are attracted by its healthy climate and pleasant situation. It has no parish church, but there is a chapel of eass belonging to the parish of Bowdon, in which it is situated, and also a Roman Catbolic and several dissenting places of worship. Yarn, worsted, and cotton are the chief manufactures; and large quantities of fruit and vegetables are sent to the Manchester market. Pupulation in 1871, 8478.

ALUM, a compound salt employed in dyeing and various other industrial processes. It is soluble in water, has an astringent, acid, and sweetish taste; reddens vegetable blues, and crystallises in regular'octahedrons. When heated, it liquefies; and if the heat be continned, the water of crystallisation is driven off, the salt fruthes and swells, and at last a white matter remains, known by the name of burnt alum.

Its constituents are sulphuric acid, alumina, an alkali, and water. The alkali may be either potush, socla, or ammonia. Hence there are three distinct species of alum, depending upon the nature of the alkali which each contains. Potash alum (in which the alkali is potash) is the common alum of this country, although both soda alum and ammoniacal alum are manufactured. The term alum is now used in chenistry as a generic one, and is applicd to the class of double salts formed by the union of the sulphates of alumina, chromium, or iron with the sulphates of the alkalies. The composition of the ordinary potash alum is represented by the formula $\mathrm{AlK}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$.

The progress made by chemists in the discovery of the constitution of alum was rery slow. The species first investigated was potash alum. That it contained sulphuric acid as a constituent was known even to the alchemists. Pott and Marggraff demonstrated that alumina was another constituent. Pott, in his Lithogeognosia, showed that the earth of alum, or the precipitate obtained when an alkali is poured into a solution of alum, is quite different from lime and chalk, with which it had been confonnded by Stahl. Marggraff went much farther. He not only showed that alumina is one of the constituents of alum, but that this earth possesses peculiar properties, is different from every other substance, and is one of the ingredients in common clay ("Expériences faites sur la Terre d"Alun," Marggraft's Opusc. ii. 111). Narggraff showed likemise, by many experiments, that crystals of alum cannot be obtained by dissolving alumina in sulphuric acid, and eraporating the solutions. The crrstals formed are always soft, and quite different in their appearance from alum crystals. But when a solution of potash or ammonia is dropt into this liquid, it immediately deposits perfect crystals of alum ("Sur la Régénération de l'Alun," Marggraff's Opusc. ii. S6). He mentions likerrise that manufacturers of alum in general were unable to procure the salt without a similar addition, that at first it had been customary. to add a quantity of putrid urine, and that afterwards a solution of carbonate of potash was substituted in its place. But subseqnent chemists do not seem to have paid much attention to these important observations of Marggraff: they still continued, without any rigid examination, to consider alum as a sulphate of alumina.

Bergmann indeed had obserred that the addition of potash or ammonia made the alum crystallise, but that the same effect was not produced by the addition of soda or of lime ("De Confcctione Aluminis," Bergmann's Opusc. i. 225). He had obsersed likemise that sulphate of potash is frequeutly found in alum. He deconposed the solntion of alum by means of ammonia, eraporated the filtered liquid to dryness, and exposed the residue to a red heat. A quantity of sulphate of potash often remained behind is the crucible (ibid., p. 326). From these facts he dremp
the conclusion that sulphate of potash readily combines with sulphate of alumina.

After Klaproth had discovered the existence of potash es an ingredient in leucite and lepidolite, it occurred to Vauquelin that it was probably an ingredient likewise in many other minerals. He recollected that alum crystals often make their appearance during the analysis of stony bodies; and, considering that alum cannot be obtained in crystals without the addition of potash, he began to suspect that this alkali constituted an essential ingredient in the salt. A set of experiments, undertaken on purpose to elucidate this important point, soon satisfied hin that his conjecture was well-founded. Accordingly, in the year 1797 he publishcd a dissertation demonstrating that alum is a double salt, composed of sulphuric acid, alumina, and potash (Annales de Chimie, xxii. 258). Soon after, Chaptal published the analysis of four different kinds of alum, namely, Roman alum, Levant alum, British alum, and nlum manufactured by himself. This analysis led to the same result as that of Vauquelin (Ann. de Chim. uxii. 280).

Since that time alum has been admitted by chemists to be a triple salt, and various analyses of it have been made to determine its constituents. Vauquelin (Ann. de Chim. 1. 167), Thenard and Roard (ibid., tom. lix. 72), Curaudau (Journab de Physique, Isvii. 1), and Berzelius (Ann. de Chim. Ixxxii. 258), successively published the results of their experiments. These analyses gradually led to an accurate knowledge of the composition of this salt.

One of the most remarkable differences between the three species of alum is the solubility of each in water. At the temperature of $60^{\circ}, 100$ parts of water dissolve-

> 9.37 parts of ammoniacal alum 14.79 parts of potash alum, $327 \cdot 6$ parts of soda alum.

This great solubility of soda alum renders the manufacture of it very difficult. It does not easily crystallise; indeed, when the weather is hot, crystals of it can hardly la obtained. Its great solubility would render it more convenient and more economical for dyers and calico-printers, provided it could be furnished at the same rate with common. alum. But the greater difficulty attending the making of it would probably prevent it from being saleable at a price sufficiently low to make it available as a mordant.

Soda alum was first mentioned by Mr Winter in 1810, in his account of the Whitby alum processes (Nicholson's Jour. Exv. pp. 254, 255); but before that time it had been made by Mr Charles Macintosh of Crossbasket. Mr William Wilson, at Hurlet, near Glasgow, afterwards made it in considerable quantities. Specimens of it have been sent by Dr Gillies from the neighbourhood of Mendoza, in South America, where it occurs native in considerable quantity.

These three different species of alum differ also somewhat from each other in their specific gravities, which are as follors:-

$$
\begin{aligned}
& \text { Soda alum... } 1-88
\end{aligned}
$$

The word alumen, which we translate alum, occurs in Pliny's Natural History. In the 15 th chapter of his 35 th book he gives us a detailed description of it. By comparing this with the account of ovorrmpia given by Dioscorides in the 123d chapter of his 5th book, it is obvious that the two are identical. Pliny informs us that alumen

[^77]was found naturally in the earth. He calls it salsugo terrce. Different substances, he informs us, were distinguished by the namo of alumen; but they were all characterised by a certain degree of astringency, and were all employed in dyeing and medicine. The light-coloured alumen was useful in brilliant dyes, the dark-coloured only in dyeing black or very dark colours. One species was a liquid, which was apt to bo adulterated; but when pure it had the property of striking a black with the juice of the pomegranate. This property seems to characterise a solution of sulphate of iron in watcr. It is quitc obvious that a solution of our alnm would possess no such proferty. Pliny says that there is another kind of alum which the Greeks call schistos. It forms in white threads upon the surface of certain stones. From the name sclistos, and the mode of formation, there can be little douhe that this species was the salt which forms spontaneously on certain slaty minerals, as alum slate and bituminous shale, and which consists chiefly of sulphate of iron and sulphate of alumina. Possibly in certain places the sulphate of iron may have been nearly wanting, and then the salt would be white, and rould answer, as Pliny says it did, for dyeing bright colours. Several other specjes of alumen are described by Pliny, but we are unable to make out to what minerals he alludes.

The alumen of the ancients, then, was not the same with the alum of the moderns. It was moist commonly a sulphate of iron, sometimes probably a sulphate of alumina, and usually a mixture of the two. But the ancients were unacquainted with our alum. They were aequainted with sulphate of iron in a crystallised state, and distinguished it by the names of misy, sory, chalcanthum (Pliny, xxxiv. 12). As alum and green vitriol wera applicd to a variety of purposes in common, and as both are distinguished by a sweetish and astringent taste, writers, even after the discovery of alum, do not secm to have discriminated the two salts accurately from each other. In the writings of the alchemists we find the words misy, sory, chatcanthum, applied to alum as well as to sulphate of iron; and tho name atramentum sutorium, which ought to belong, one would suppose, exclusively to green vitriol, applied indifferently to both.

When our alum was discovered is entirely unknown. Beckmann devoted a good deal of attention to the history of this salt, and published a curious dissertation on the subject; but his attempts to trace its origin were unsuccessful. The manufacture of it was discovered in the East, but at what time or place is totally unknown. It would appear that, about four or five hundred years ago, there was a manufactory of it at Edessa in Syria, at that time called Rocca, -bence, it is supposed, the origin of tho term rock alum, commonly employed in Europe; though others allege that the term originated at Civita Vecchia, where alum is made from a yellow mincral which occurs in the state of a hard rock.

Different alum works existed in the neighbourhood of Constantinople. About the time of the fall of the Grecian empire the art of making alum was transported into Italy, at that period the richest and most manufacturing country in Europe. Bartholomew Pernix, a Genoese merchant, discovered alum ore in the island of Ischia, about the year 1459. Nearly at the same time John di Castro, who was well aequainted with the alum works in the neighbourhood of Constantinople, suspected that a mineral fit for yielding alum existed at Tolfa, because it was corcred with the same trees that grew on the alum mineral near Constantinople. His conjecture was verified by trials, and the celebrated manufactory at Tolfa established. Another was begun in the neighbourhood of Genoa; and the manufacture flourished is different paris of Italy. To
this country it was confined for the greater part of a century. Various manufactories of it were established in Germany by the year 1544.
England possessed no alum works till the reign of Charles I. Thomas Chaloner, son of Dr Chaloner, who had been tutor to Charies, while hunting on a common in Yorkshire took notice of the soil and herbage, and tasted the water. He found them similar to what he had seen in Germany where alum works were established. In consequence of this he got a patent from Charles for an alum work. Since that time various alum works have been established in different parts of Great Britain,the most important now in operation being the Whitby works, originally established by Mr Chaloner; and the works at Pendleton, near Manchester, and Goole, Yorkshire, and at Hurlet and Campsie, both in the neighbourhood of Glasgow.
Several alum works exist in Sweden, particularly in West Gothland. There is one, for example, at Hænsxter, near the borders of the Wener Lake. But for a description of the Swedish works we refer to Bergmann's Opuscula, i. 284, or English translation, i. 342.
Various minerals are employed in the manufacture of alum, but by far the most important of them are the following three: alum-stone, alum-slate, bituminous shale.

Alum-stone or Alunite was first observed at Tolfa, near Rome, in the 15 th century, and afterwards in Hungary and several other places, chiefly in trachyte or otber volcanic rocks. 'It appears to be produced by the action of sulphureous vapours on the felspars they contain, and generally occurs in compact, granular, or earthy masses, mixed with quartz or felspar. Small crystals are found in cavities, and are either rhombohedrons with angles of $89^{\circ} 10^{\prime}$, and thus nearly cubes, or these with the polar angles replaced by the basal plane. The specific gravity ranges from 2.58 to 2.752 , the compact varieties being the lighter. Its hardness is 3.5 to 4 , or rather softer than fluor spar. It has a distinct cleavage perpendicular to the axis of the rhombohedron, and conchoidal fracture in other directions. The pure varieties are white and colourless, but it is often coloured greyish, yellowish; or reddish. The crystals decrepitate before the blowpipe, but are infusible, as well as the compact alunite. The alum is extracted from this mineral by reneated roasting and treating with water. The absence of iron accounts for the superior purity for which the Roman alum was long celebrated.
Alum-slate is a far more abundant substance, occurring in beds in different formations. Thus it is common in the older Palæozoic or Silurian strata of Scandinavia and Scotland. Generally it is distinctly slaty, but sometimes forms rounded balls or concretions. It contains much carbonaceous matter, and hence its colour is greyish or bluish-black. It has a dull lustre, is soft and sectile. It contains much disseminated iron pyrites, and on decomposition in the air yields sulphate of iron, and alum as an efflorescence on the surface.

Many of the shales or slate clays in the coal formation also contain much iron pyrites, and thus also produce alum when acted on by the atmosphere. Such are those used for manufacturing alum at Campsie and other places near Glasgow. Where they contain much bituminous matter they show a shining resinous streak and greyishblack colour, and are named bituminous shales. These burn when heated, with a pale flame and sulphureous odour.

The alum elates at Whitby in Yorkshire belong to the Lias, and are used in the alum works in that neighbourhood. In other places, as in many parts of Germany, similar beds are found in Tertiary formations particularly in connection with the brown coal deposits. When fresh
dug they often show no trace of alum, which only appeare after exposure to the air, or when the decomposition of the iron pyrites is assisted by the action of heat.

Several native varieties of sulphate of alumina and soda alum occur in South America, some of the most remarkable of which it may be proper to specify.

1. Sulphate of alumina, or Alunogene, was frst found at Rio Saldanha, but is nowv obtained from several places in Europe and America. The colour is white, here and there tinged yellow, obviously from external impurities. It occurs in fine crystalline needles; lustre silky; taste that of alum, but stronger; specific gravity, 1.6 to 1.7 ; soft ; before the llowpipe behaves like alum.
2. Soda-alum. It occurs native in the prorince of St Juan, situated to the north of Mendoza, on the east side of the Chilian Andes, at about $30^{\circ} \mathrm{S}$. lat. The alum is white, and composed of fibres adhering longitudinally, and having a certain breadth, but very thin. It bears some resemblance to fibrous gypsum, but it is harder, not being scratched by the nail, though the knife scratches it with great ease. It is sectile. The outer fibres are white and only slightly translucent, as if they had lost a portion of their water; but the internal fibres are transparent, and have a silky aspect. It tastes precisely like alum, and is very soluble, water at the temperature of 62° dissolving 3.773 parts of it, and boiling water dissolving any quantity whatever. When exposed to heat, it behares very nearly as common alum.
3. There is a mineral called aluminite, which was observed in the environs of Halle many years ago, and which was afterwards detected by Mr Webster in clay resting on chalk at Newhaven in Sussex. This, if it were sufficiently abundant, would constitute an excellent material for the manufacture of alum. Its colour is snow-white. It occurs in reniform pieces of greater or smaller size; fracture fine earthy ; dull; streak glistening ; opaque ; adheres feebly to the tongue ; soils very slightly; very soft ; feels fine, but meagre; specific gravity, $1 \cdot 7054$. It consists of alumina, sulphuric acid, and water.

Four different processes are employed in the manufacture of alum, according to the nature of the mineral from which the alum is to be extracted.
The process employed at Tolfa is the simplest of all. If the Tolfa stone be kept constantly moistened with water for about trio months, it falls to powder of itself, and yields alum by lixiviation. But this is not the process employed by the manufacturers. The alum-stone is broken into small pieces, and piled on the top of a perfrated dome, in which a rood fire is kindled. The smoke and flame of the wood penetrate through the pieces of alum-stone, and a sulphureous odour is disengaged, owing to the decomposition of a portion of the sulphuric acid in the stone. This roasting is twice performed; the pieces of ore which the first time were at the edge of the dome, being the second time put in the middle. The process of roasting this stone requires considerable attention. If the heat be too great, the quality of yielding alum is destroyed: if the heat be too small, the stone does not readily fall to powder. There can be little doubt that the unroasted stone would jield more alum than the roasted; but probably the additional labour requisite in the latter case would more than swallow up the increase of product.

The roasted stone, which has now acquired a reddish colour, is placed in rows between trenches filled with water. This liquid is so frequently sprinkled on it that the stone is always moist. In two or three days it falls to powder, like slacked quicklime; but the daily waterlng is continued for a month. The success of this part of the operation is said to depend very much on the weather. When" the weather is rainy, the alum is _all _washed
ont, and little or nothing left for the manufacturer to extract.

When the stone has by this process been reduced to a sufficiently fine powder, it is thrown into a leaden boiler filled two-thirds with water. During the boiling the powder is frequently stirred up, and the water that evaporates is replaced. When tho boiling has been continued for a sufficient time, the fire is mithdrawn, and time allowed for the earthy matter to subsido to the bottom. A cock is then opened, which alloss the clear liquor to flow out into dcep wooden square ressels; so made that they can be easily taken to pieces. Here the alum gradually crystallises, and attaches itsclf to the sides and bottom of the vessel. The mother liquid is then drawn off into shallower mooden troughs, where more alum crystals are deposited. The liquid has now a red colour, and is muddy; and the last alum crystals are mixed with this red matter. They are washed clean in the mother liquer, which is finally pumped into a trough, and used in subsequent processes.

The alum obtained at Tolfa is knomn by the name of Roman alum, and is in very high estimation. It is always mixed with a little reddish powdery matter, which is easily separatcd from it.

Alum-slate, being very different in its composition, requires a different treatment to fit it for jielding alum. If the alum-slate contain a notable quantity of lime or magnesia, it does not answer the purposes of the manufacturer 8o well. The essential ingredients in alum-slate, for the alum-makers, are alumina and iron pyrites.

The first process is to roast the ore. In Sweden, where the fuel is rood, and consequently expensire, it is customary to use the alum-slate itself as fuel for roasting the ore. For this purpose a small layer of brushwood is covered with pieces of alum-slate, and set on fire; and, as the combustion proceeds, new layers of alum-slate are added. It is usual to place alternate layers of roasted and anroasted alum-slate. The combustion continues for a month or sir weeks. At Whitby, coal is employed for roasting the alum-slate. Indeed the alum-slate of Whitby is lighter coloured than that of Sweden, and probably would not burn of itself. So great is the quantity of combustible matter in the Swedish alum-slate that it is employed as fuel for burning limestone. Gieat quantities of limestone are burnt in this manner at Hunneberg, near the south side of the lake Wener. The roasted ore has osually a brown colour. When it is red the quantity of alum which it yields is considerably diminished.

By this roasting the pyrites is oxidised into sulpnate of irun and sulphuric acid, thus:-

$$
\mathrm{FeS}_{2}+\mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O}=\mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}
$$

The sulphuric acid as it is produced is, however, at once neutralised by the large excess of alumina producing sulphate, so that the result of the action is to produce a mixture of the sulphates of iron and alumina.

The roasted has an astringent taste, orring to the sulphate of iron and sulphate of alumina which it contains. The next process is to lixiviate it with water, in order to dissolve these salts. For this purpose it is put into reservoirs made of mood or masonry, with a stopcock at the bottom to draw off the water. The usual method is to keep the water for twelve hours in contact with ore that has been twice lixiviated; then to draw it off, and allow it to remain for an equal period on ore that has been once lixiviated. Lastly, it is run upon fresh ore, and allowed to remain on it for twelve hours ionger. If the specific gravity of the liquid thus treated be 1.25 at the temperature of 55°, it may be considered as veturated with sulphate of alumina and sulphate of iron; ont probably this specific gravity is not often obtained.

The liquid, thus impregnated with salt, is now boiled down in leaden vessels to the proper consistency for crystallisation. In Sweden the fuel emploged for this purpose is alum-slate. By this means a doublo effect is produced-the liquid is eraporated, and the alum-slate is roasted. During the boiling abundance of oxide of iron falls, mixed with selenite, if lime be one of the coustituents of the alum-slate. When the liquid is suffciently concentrated it is let into a square resirvoir, in order to crystallise. Great quantities of sulphate of iron crystals are usually deposited in this ressel. Theso are collected by drawing the liquid off into another reserroir. When all the sulplate of iron that can be obtained has been separated, a quantity of sulphato of potash or ammonia, muriate of potash, or putrid urine, is mixed with the liquid. The sulphate of potash is procured from-the sulphuric acid makers, and the muriate of potash from thic soap-makers. By this addition alum is formed in the liquid, and it gradually deposits itself in crystals bn the sides of the ressel. These crystals are collected, and dissolved in the smallest quantity of boiling water that whll take them up. This solution is poured into large rocden casks. In a fortnight or threo weeks the alum crystallises, and corers the sidcs and bottom of the cask. The hoops aro now taken off, and the stares of the cask removed. A mass of alum crystals, laving tho shape of the cask, remains. This mass is pierced, the mother liquor allowed to run out, and preserved for a subsequent process: The alum, being now broken in pieces, is fit for sale.

The manufacture of alum from bituminous shale and slate-clay bears a considerable resemblance to the manufacture from alum-slate, but differs in several particulars. We shall give a sketch of the processes followed in tro works of this kind that are in operation in the neighbourhood of Glasgow. The bituminous shale and slateclay employed are obtalned from old coal-pits, which ara very extensive near Glasgow. The air in theso coal- F its is moist, and its arerage temperature about 62°. Tho shale having been exposed for many years, 'tas gradually opened in the direction of its slaty fracture, so as to resemble in some respects a half-shut fan; anc all the chinks in it are filled with a saline eflloreseence in threads. This salt is white, with a shade of green, has a sweetish astringent taste, and consists of a mixture of sulphato of iron and sulphate of alumica. In order to obtain these salts in a state of solution, nothing more is requisite than to lixiviate this shale with water. The lixiviated ore being left exposed to the weather, forms more salt, which is gradually washed out of it by tho rain-water, and this water is collected and preserved for use.

The rext step in the process is to boil dorm the liquid to a sufficient state of concentration. At Campsie all the boilers are composed of stone, and the heat is applied to the surface. This is a great saring, as lcaden ressels are not only much more expensive, but require more frequent renerval. When the liquid is raised to a sufficiently high temperature in the stone reservoir, pounded sulphate of potash, or muriate of potash, as they can be procured, is mised with it; and there is an agitator in the ressel, by which it is continually stirred about. This addition converts the sulphate of alumina into alum. The liquid is now let into another trough, and allowed to remain till it crystallises. In this liquid there are two salts contained in solution-viz., sulphate of iron and alum ; and it is an objcct of great consequence to separate them completely from each other. The principal secret consists in drawing of the mother liquor at the proper time; for the alum is much less soluble in water than the sulphate of iron, and therefore crystallises first. The first crystals of alum formed are very impure. They have a vellow colour, and
seem to be partly impregnated with sulphate of iron. They aro dissolved in hot water, and the solution poured into troughs, and allowed to crystallise a second time. These second crystals, though much purer, are not quite free from sulphate of iron; but the separation is accomplished by washing them repeatedly with cold water; for sulphate of iron is much more soluble in that liquid than alum. These second crystals are now dissolved in as small a quantity of hot water as possible, and the concentrated liquid poured while hot into large casks, the surface of which is covered with two cross beams. As the liquor cools, a vast number of alum crystals form on the sides and surface. The casks are allowed to remain till the liquid within is supposed to be nearly of the temperature of the atmosphere. This, in winter, requires eleven days; in summer, fourteen or more. The liquid, after standing eleven days in summer, has been observed to be still above blood heat. The hoops are then removed, precisely as in the manufacture of alum from alum-slate.

There alwsys remains in the boilers a yellowish substance, consisting chiefly of peroxide of iron. This is exposed to a strong lieat in a reverberatory furnace, and it becomes red. In this state it is washed, and yields more slum. The red residue is ground to a fine powder, and dried. It then answers all the purposes of Venetian red as a pigment. By altering the temperature to which this matter is expold, a yellow ochre is obtained instead of a red.

In France, where alum ores are by no means abundant, alum is manufactured from clay. This method of making the salt was first put in practice by Chaptal when professor of chemistry at Montpellier. His methods have been since gradually improved, and bronght to a state of considerable perfection. The first process tried was this: The clay was reduced to a fine powder in a mill, and then mixed with sulphuric acid. After remaining some days, it was exposed for twenty-four hours to a temperature of about 130°. It was then lixiviated, and the liquid mixed with urine or potash. This method being found inconvenient, was abandoned for the following:- The clay being well ground, was mixed with half its weight of the saline residue from a mixture of sulphur and nitre. This residue is little else than sulphate of potash. The mixture was formed into balls about 5 inches in diameter, which were calcined in a potter's furnace. They were then placed on the floor of a chamber in which sulphuric acid was made. The acid rapour caused them to swell, aud to open on all sides. In about a month they were sufficiently penetrated with the acid. They were then exposed to the air, under shades, that the saturation might become more complete. Finally, they were lixiviated, and the liquid being evaporated, yielded pure alum.

This process was considerably improved by Berard, of the Montpellier alum work. Instead of exposing the calcined balls to the fumes of sulphuric acid, he sprinkled them with a quantity of sulphuric acid of the specific gravity 1.367 , equal to the weight of the clay employed; but it is obvious that the proportion must vary with the nature of the clay. The solution takes place with the greatest facility, and crystals of alum are obtained by evaporating the liquid.

Another process was put in practico by Chaptal, in the neighbourhood of Paris. A mixture is made of 100 parts of clay, 50 parts of nitre, and 50 parts of sulphuric acid of the specific gravity 1.367 ; and this mixture is put into a retort and distilled. Aquafortis comes over, and the residue in the retort being lixiviated with water, yields abundance of excellent alum.

For chemical constitution and relations of the alums, see Camenistky.

ALUMBAGH, the name of a large park or walled enclosure, containing a palace, a mosque, and other buildings, as well as a beantiful garden, situated about 4 miles froni Lucknow, near the Camnpore road. It was converted into a fort by the mutineers in 1857 ; and after its capture by the British was of importance in connection with the military operations around Lucknow. See Lecknow.

ALUMINIUM, a metallic substance, first separated from the chloride by Wöhler in 1828. It remained a laboratory product until Deville, about 1858, succeeded in improring the mode of production, so as to render the operations capable of management on the manufacturing scale. The process consists in heating to a red heat a mixture of the double chloride of aluminium and sodium, or the double fluoride of aluminium and sodium (cryolite), with the metal sodium. A vigorous action takes place, chloride of sodium being formed and the metal aluminium separated. On the large scale the reduction is effected by throwing a mixture of 10 parts of the double chloride, 5 parts of cryolite; and 2 parts of sodium on the hearth of a reverberatory furnace. Immediately after the action, the fused metal and slag, consisting of common salt and fluoride of aluminium, are run out, and a new quantity of the previous mixture introduced. The various patents that hare been secured with reference to this manufacture have all regard to the saving of the metal sodium. The metal aluminium may be separated from the double chloride by electrolysis. For this purpose the fused salt has the electric current from ten cells of a battery passed through it, carbon poles being used. The metal appears at the negative pole in large globules, which may bo collected and melted together under a layer of fused salt.

Aluminium is a white metal resembling silver in appearance. It is vety malleable and ductile, and may be beaten and rolled into thin sheets, or drawn into fine mire. By hammering in the cold it becomes as hard as soft iron, but may be softened again by fusion. Being highly sonorous, it has been used for making bells. It is very light, being only $2 \frac{1}{2}$ times heavier than water, and is thus four times lighter than silver. After fusion it has a specific gravity of 2.56 ; by hammering this may be increased to $2 \cdot 67$. It melts at a red beat, and is non-volatile at very high temperatures. The metal conducts heat and electricity as well as silver. Aluminium does not oxidise in air, cren at a red heat, has no action on water at ordinary temperatures, and is not acted upon by sulphuretted hydrogen or sulphide of ammonium, and thus preserves its lustre where silver would be tarnished and blackened. It is not attacked by nitric acid, even when coucentrated, and is not soluble in dilute sulphuric acid, but is readily soluble in dilute or concentrated hydrochloric acid with crolution of hydrogen. Solutions of caustic potash or soda dissolre the metal with great ease, forming aluminate of potash or soda, and giving off hydrogen. Aluminium forms alloys with most metals. The copper alloy called aluminiumbrouze is the most important because of its colour, hardness, and malleability, and is largely used for articles of jewellery, for mounting sextants and other astronomical instruments, and for making balance beams.
ALUTA, an affluent of the Danube. See Alt.
ALVA, a village in Stirlingshire, Scotland, situated at the foot of Craigleith, one of the Ochil range, 7 miles N.E. of Stirling, with which it is conuected by railway. Besides the parisk church, there are places of worship belonging to the Free and United Presbyterian churches. Yarn spinning and the manufacture of shamls and tweeds are carried on to a considerable extent. Population in 1871, 4096.
AlVa, or Alba, Fernando Alvarez de Toledo, Duke of, born in 1508 , was descended from one of the most illustrious families in Spain. His grandfather, Ferdinand
of Toledo, educated him in military science and politics; and he was engaged with distinction at tho battle of Paria while still a youth. Selected for a military command by Charles V., he took part in the siege of Tunis (1535), and suecessfully defended Perpignan ngainst the Dauphin of France. He was present at the battle of Mihlberg (1547), and the rietory gained there over John of Saxony was due mainly to his cxertions. He took part in the subscquent siege of Wittenberg, and presided at the court-martial which tried the Elector and condemned him to death. In 1552 Alva was intrusted with the command of the army intended to inrade France, and was engaged for screral months in an unsuccessful sicge of Metz. In consequence of the succoss of the French arms in Picdmont, he was made commander-in-chief of all the cmperor's forces in Italy, and at the same time invested with unlimited porer. Success did not, however, attend his first attempts, and after several unfortunate attacks he was obliged to retire into winter quarters. After the abdication of Charles he was continued in tho command by Philip II., who, however, restrained him from cxtreme measures. Alva had subdued the whole Campagna, and was at the gates of Rome, when he was compelled by Philip's orders to negotiate a peace. One of its terms was, that the Duke of Alra should in person ask forgiveness of the haughty pontiff whom he had conquered. Proud as the duke was by nature, and accustomed to treat with persons of the highest dignity, yet such was the superstitious veneration then entertained for the papal character that he confessed his roice failed him at the interview, and his prescace of mind forsook him. Not long after this (1559) he was sent at the head of a splendid cmbassy to Paris, to espouse, in the name of his master, Elizabeth, daughter of Henry, king of France. In 1567, Philip, who wis a bigoted Catholie, sent Alra into the Netherlands at the head of an army of 10,000 men, with unlimited powers for the extirpation of heretics. When he arrived he soon showed how much he merited the confidence which his master rcposed in him, and instantly erected a tribunal which soon became known to its rictims as the "Court of Blood," to try all persons who had been engaged in the late commotions which the civil and religious tyranny of Philip had excited. He imprisoned the counts D'Egmont and Horn, the two popular leaders of the Protestants, brought them to an unjust trial, and condemned them to death. In a short time he totally annihilated every privilege of the people, and, with unrelenting cruelty, put multitudes of them to death. The executioner was employed in remoring all those friends of frecdom whom the sword had spared. In most of the considerable torms Alva built citadels. In the city of Antwerp he erected a statue of himself, which was a monument no less of his ranity than of his tyranny: he was figured trampling on the necks of two smaller statues, representing the two estates of the Low Countries. By his unusual and arbittary demand of new supplies from the states he greatly aggravated this insult. The exiles from the Low Countries, roused to action by his oppression, fitted out a fleet of privateers, and after strengthering themselves by suecessful depredations, rentured upon the bold exploit of seizing the town of Breil. Thus Alra, by his cruelty, became the unmitting instrument of the future independence of the scven Dutch prorinces. The fleet of the cxiles haring met the Spanish fleet, totally defeated it, and reduced North Holland and Mons. Many cities hastened to throw off the yoke; while the States-General, assembling at Dordrecht, openly declared against Alva's government, and marshalled under the banners of the Prince of Orange. Alra's preparations to oppose the gathering storm were made with his usual vigour, and he succeeded in recovering Mons, Mechlin, and Zutphen.
under the conduet of his son Frederick. With the exception of Zealand and Holland, he regained all the provinces; and at last his son stormed Waerdan, and massacring its inhabitants, procecded to inrest the city of Haarlem, which, after standing an obstinate sicge, was taken and pillaged. Their nert attack was upon Alkmaar ; but the spirit of desperato resistance was raised to such a height in the breasts of the Hollanders that the Spanish veterans were repulsed with great loss, and Froderick constrained reluctantly to retire. Alva's fecble state of health and continued disasters induced him to solicit his recall from tho government of the Low Countrics; a measure which, in all probability, was not displcasing to Philip, who was now resolved to make trial of a milder administration. In December 1573 the much oppressed country was relieved from the presence of the Duke of Alva, who, returning home accompanied by his son, made the infamous boast that during the course of six ycars, besides the multitudes destroyed in battle and massacred after victory, he had consigned 18,000 persons to the executioner. (For further details of his administration in the Netherlands, see Holland.)

On his return he was treated for some time with great distinction by Philip. A tardy and imperfect justice, however, overtook hin, when he was banished from court and confined in the castle of Uzeda for complicity in certain disgraccful conduct of his son. Here he had remained two jears, when the success of Don Antonio in assuming the crown of Portugal determined Philip to turn his eycs towards Alva as the person in whose fidelity and abilities he could most confide. A secretary was instantly despatched to Alva to ascertain whether his health was sufficiently vigorous to enable him to undertake the command of an army. The aged chief returned an answè full of loyal zeal, and was immediately appointed to the supreme command in Portugal. It is a striking fact, however, that the liberation and elevation of Alva were not followed by forgireness. In 1581 Alva eutered Portugal, defeated Antonio, drove him from the kingdom, and soon reduced the whole under the subjection of Philip. Entering Lisbon, le seized an immense treasure, and suffered his soldiers, with their accustomed riolenco and rapacity, to sack the suburbs and vicinity. It is reported that Alva, being requested to give an account of the money expended on that occasion, sternly replied, "If the king asks mo for an account, I mill make him a statement of kingdoms preserved or conquered, of signal victories, of successful sieges, and of sisty jears' service." Philip deemed it proper to make no further inquiries. Alra, however, did not enjoy the honours and rewards of his last expedition, for he died in January 1583, at the age of 74.

AJLVARADO, Pedro de, one of the Spanish leaders in the discovery and conquest of America, was born at Badajoz about 1495. He held a command in the expedition sent from Cuba against Yucatan in the spring of 1518, and returned in a few months, bearing reports of the wealth and splendour of Montezuma's•empire. In February 1519 he accompanied Hernando Cortez in the expedition for the conquest of Mexico, being appointed to the command of one of the eleren vessels of the fleet. (For the details of this expedition and of Hernando's sharc in it, see Correz and Mexico.) He was engaced (1523-4) in the conquest of Guatemala, of which he was subsequently appointed gorcrnor by Charles V. In 1.534 he attempted to bring the province of Quito under his power, but had to content himself with the exaction of a pecuniary indemnity for the expenses of the expedition. During a visit to Spain, three years later, he had the governorship of Honduras conferred upon him in addition to that of Guatemala. He died in Guatemala in 1541.

ALJAREZ, Feavcisco, born at Coumbra atter 1460, a
priest and almoner to Dom Manuel, king of Portugal, was sent in 1515 as secretary to Duarte Galvão, on an embassy to David, king of Abyssinia. The expedition having been delayed by the way, it was not until 1520 that he reached Abyssinia, where he remained six years, returning to Lisbon in 1527. In 1533 he was sent to Rome on an embassy to Pope Clement VII. The precise date of his death, like that of his birth, is unknown; but it must have been later than 1540, in which year he published at Lisbon, under the king's patronage, an account of his travels, in one volume folio, entitled Ferdadeira Informacam do Preste Joas das Indias. This curious work was translated in Latin, under the title of De Fide, Regione, et Moribus Ethiopum, by Damien Goez, a Portuguese gentleman; and has often been reprinted and translated int, other languages. The information it contains must, however, be received with caution, as the anthor is prone to exaggerate, and does not confine himself to what came within his own observation.
ALVAREZ, Don Jose, the foremost Spanish sculptor of modern times, was born at Priego, in the province of Cordova, in 1768, and died at Madrid in 1827. Bred to his father's trade of a stone-mason, he devoted all his spare time to drawing and modelling. In his twentieth year he became a pupil of the Academy of Granada. A work he executed soon afterwards for a fountain in his native town attracted the notice of the Bishop of Cordova, who took the young artist into his house and maintained him for several years. In 1799 he obtained from Charles IV. a pension of 12,000 reals, to enable him to visit Paris and Rome. In the former city he executed, in 1804, a statue of Ganymede, which placed him at once in the front rank of sculptors. Shortly afterwards his pension was more than doubled, and he left Paris for Rome, where he remained till within a year of his death. The most important of his numerous works, executed during this period, was a group representing Antilochus and Memnon, which was commissioned in marble (1818) by Ferdinand VII, and secured for the artist the appointment of court sculptor. It is now in the Mnsenm of Madrid. Alvarez modelled a few portrait busts (Ferdinand VII., Rossini, the Duchess of Alba), which are remarkable for their vigour and fidelity.
alvarez, Don Manuel, a Spanish sculptor, was born at Salamanca in 1727, and died in 1797. He followed classical models so closely that he was styled by his countrymen El Griego, "The Greek." His works, which are very numerous, are chiefly to be found at Madrid.

ALWAR, a semi-independent state of Rájputáná, and under the control of the Governor-General's agent for Rajputáná, lies between $28^{\circ} 13^{\prime} 25^{\prime \prime}$ and $27^{\circ} 14^{\prime} 34^{\prime \prime} \mathrm{N}$. lat., and between $77^{\circ} 15^{\prime} 35^{\prime \prime}$ and $76^{\circ} 14^{\prime} 10^{\prime \prime}$ E. long. It is bounded on the E. by the state of Bhartpur and the British district of Gurgion, on the N. by Gurgáon district and the states of Patiála and Nabhá, on the W. by the states of Nabhá and Jaipur, and on the S. by the states of Jaipur and Bhartpur. Its configuration is irregular, the greatest length from north to south being about 80 miles, and breadth from east to west abont 60 miles, with a total area of about 3000 square miles. The total population of the state, as ascertained by a census taken in 1872, was 778,596, consisting of 598,333 Hindus, 180,225 Mahometans, and 38 Christians. The number of males was returned at 418,723 , and females at 359,873 , the proportion of males to the total population being 53.76 per cent. The eastern portion of the state is open and highly cultivated; the western is diversified by hills and peaks, which form a continuation of the Aravalli range, from 12 to 20 miles in breadth. These hills run in rocky and precipitons parallel ridges, in some places upwards of 2200 feet in height. The Sabhi river flows through the
north-mestern part of the state, the only other stream of importance being the Ruparel, which rises in the Alwar hills, and flows through the state into the Bhartpur territory.

The one attempt at rosd-making in the stata is a line which connecta the chief town, Alwar, with Rájghar on the one sida and with Tijars on the other. The greater porrion of this road was metalled during the minority of tha present rajja, bat it has been neglected since he took the management of the state into his omn hands, and is Dow said to be almost impassable, and worse than the ordinary cart tracks. The earthwork for a road from Alwar to the Bhartpur border was thrown ap, but it has never been metalled, and the line is not used for traffic. The Alwar hills are rich in minerals. Irou ore is found in large quantities close to the surface. Thirty amelting furnaces are kept at work, and are capable of turning out 390 tons a-year. They give employment to a large number of people. Two copper mines have been in operation for a number of years, but with doubtful advantage to the state. Silver, lead, and sulphur are also found in small quantities, and attempts have been made to work them, but without succesa. The princlpal agricultaral products are wheat and barley during the cold weather, with grain to a less extent. Joar, bajrí, and Indian com are raised duriog the rains. Cotton is extensively cultivated, and exported on a considerable scale. A ten years' land settlement, which was formed by a late political resident, is now expiring, and \& fresh settlement for a Ionger term is being made. The revenne of the state has for some time been in an unsatisfactory state. When the raja attained his majority, and was invested with the full administration of his territory in 1863 , the treasury contained a surplus of $£ 205,000$. Within seven yeara this surplus had dwindled away, and debts to the extent of $£ 160,000$ accumulated. Under these circumstances, the government found it mecessary to place the administration of the state in the hands of the political resident, assisted by a council of management consisting of five of the principal chiefs and native gentlemen of the state. In 1870-71, the first year under the new madagement, the revenue of the state amounted to $£ 213,085$, and the expenditure to $£ 135,201$, leaving a sarplus of $£ 37,884$, part of which was devoted to the liquidation of the state deht, the remainder being kept as a working balance. An allowadce of $£ 18,000$ a-year is made for the household expenses of the raja, bekides an establishment of horses, carriages, and elephants maintained for his ase. The educstionsl institutions consist of a high school, attended in 1871-72 by 382 students; a Thákur achool, for the education of the sons of chicfs and pative gentlemen, and attended by 51 pupils; and sixty other schools, containing a total of 2785 pupils. Seven towns in tha state are returned as containing a population of upwards of 5003 souls-namely, Alwar, 52,357; Râjghar, 12,070; Tijará, 7352; Govindgarh, 5720 ; Rảmgarb, 5581 ; Rámpur, 5351 ; add Bahror, 5213. The only municipality is the town of Alwar. It derives ita monicipal revenue from a tax of 1 per cent. on the supposed incoma of the owners of houses. This tax fields about $£ 800$ per adaum out of which, with some assistance from the state, the city police, conservancy establishment, \&c., are paid.

ALYPIUS, one of the seven Greek writers on music whose works are collected and published, with a commentary and explanatory notes, by Meibomins (Antiquce Musicae Auctores Septem, Amstel., 1652). The time in which he flourished cannot be precisely ascertained. He is said to have written before Enclid and Ptolemy; and Cassiodorus arranges his work, entitled Introduction to Music, between those of Nicomachns and Gaudentins. The rork consists solely of a list of symbols of the various scales and modes, and is therefore probably only a fragment

ALYPIUS of Axtioch, a geographer of the 4 th century, who was sent by the Emperor Julian into Britain as prefect, and was afterwards commissioned to rebuild the temple of Jerusalem. Amoi.g the letters of Julian are tro (29 and 30) addressed to Alypius; one inviting him to Rome, the other thanking hi:n for a geographical treatise, which no longer exists.

ALYTH, a town on the eastern borders of Perthshire, in a parish of the same namo, situated in the ralley of Strathmore, 13 miles west of Forfar. It is tolerably well built, and contains a handsome parish church, and also Free, United Presbyterian, and Scottish Episcopal churches. The chief industrial employments are linen manufacturing and wool spinning, and there is a fair nearly every month. Alyth was created a burgh of barony by James III Population in 1871, 2134.

AMADEUS V., surnamed the Graat, Count of Savoy, was born at Bourget in 1249, and succeeded his unclo Philip in 1285. The cautious prudence of Amadeus enabled him greatly to increaso his territory by means of marriage, purchase, aud donations. He gradually rose to such eminenco among the European powers, that he was constituted their umpire to settlo their differences-an office which he performed with much reputation to himself and advantago to them. In 1310 he was created a prince of the empiro by Henry VII. When the Turks attempted to retake lhodes from the knights of St John of Jerusalem, ho acquired great renown by the palour with which he led an expedition to the relief of the island. A Maltese cross with the letters F.E.R.T. (Fortitudo ejus Rhodum tenait), it is said, became the arms of Amadeus and his successors, in memory of this victory. Amadeus undertook a journey to Avignon to persuado Pope John XXIL to preach a crusado in favour of Andronicus. Ho died there in tho year 1323.

AMADEUS VIII., Count and first Duke of Saroy, and latterly pope or anti-pope, under the namo of Felix V., was born at Chambery in 1383, and succeeded his father, Amadeus VII., in 1391. Having, by purchase or otherwise, added large territories to his patrimonial possessions, ho became so powerful that the Emperor Sigismund crected Saroy. into a duchy in 1416; and after his elevation Amadeus added Piedmont and other provinces to his dominions. After this increaso of rank and of territory he suddenly, in 1434, rotired to a monastery at Ripaille. He does not appear, however, to have resigned his duchy, but continued to administer it through his son Louis. It is said, too, although some historians have cast doubts apon the story, that, instead of leading a life of asceticism, he spent much of the ducal revenues in furthering his own luxury and enjoyment. In 1439, when the pope, Eugenius IV., was deposed by the council at Basle, Amadeus, although not in orders, was elected, through bribery some say, his successor; and after resigning his duchy, was crorncd in the following year as Felix V. In the stormy condlict that followed, the Emperor Frederick sided with Eugenius, and the nations of Europe, except Germany, which remained neutral, declared for the one pope or the other. In 1449 Amadeus thought it prudent to renounce his claim to tho pontificate in favour of Nicholas V., who had been elected on the death of Eugenius. He, however, induced Nicholas to annul all the acts of Eugenius; to confirm tho determination of the council of Basle to appoint him perpetual apostolical legate in Saroy, Piedmont, and the other places of his own dominions; and even to confer on him the bishoprics of Basle, Lausanne, Strasburg, and Constance. It was also conceded to Amadeus that he should continue to wear the pontifical dress, except in a very few particulars; that he should not be obliged to go to Rome to attend any general council; and that he, instead of kissing the pope's toe, should be permitted to kiss his cheek. Amadeus died at Geneva in 1451.

AMADIS OF GAUL. The best edition for English readers of this famous work is to be found in the abridged translation of Southey, and the best account of it is to bo found in his preface, which, howerer, is not soid of error. Here, for example, is its final sentence:-"Amadis of Gaul is among prose what Orlando Furioso is among metrical romances-not the oldest of its kind, but the best." We, of course, in England would place the Morte d'Arthur abore all romanecs of the kind; and the praise that wo allow to A madis of Gaul is precisely that which Cervantes bestows upon it-of being the carliest and best of the Spanish romances. When the licentiate and the barber burnt the library of Don Quixote, they spared from the flames only three romances-Amadis of Gaul, Palmorin of England, and Tirante the White. "I have heard." said
the licentiate, "that Amadis of Gaul was the first book of chivalry printed in Spain, and that all tho rest sprung from it; I think, therefore, as head of so pernicious a seet, we ought to condeinn him to the firo without merey:' "Not so, sir," said the barber, "for I have heard alsu that it is the best of all the books of this kind; and thereforeas being unequalled in its way-it ought to be spared." "You are right," said the priest, "and for that reason its life is granted." Although Cerrantes speaks of the romance as a Spanish one, and althongh Southey translated it from the oldest extant edition, which is also Spanish, it is currently supposed to have been originally written in Portuguese by Vasco Lobeira, himself a good knight, who received his spurs on the ficld of battle from King Joam, and Who died in 1403. The work, however, has been claimed ns of Frencl origin by the Comto do Tressan. Southey ridicules this theory, and insists upon the claims of the Fortuguese author. It is quite certain that the Comte do Tressan attempted to prove too much; but, on the other hand, Southey has not allowed weight enough to the fact that the Amadis of Gaul is but the first work of romance which appeared in the Portuguese and Castilian languages; that it was preceded for moro than a century by other romances of Anglo-Norman origin; and that, if not in its names and personages, yet in its idea-in the character of its incidents and in much of its reograply-it belongs to the world of Anglo-Norman romance. What though we cannot lay our hands on the French original from which Lobeira translated, any more than wo can lay our hands on Lobeira's own work from which the Castilian rersion has been made, we still know that all the ideas and materials, all the design, all the machinery of Amadis of Gaul, belong to the Anglo-Norman cyele of romance which was in vogue before Lobeira was horn. And in this creed we cheat him of nothing when we say that we know not to what extent he is entitled to the praise of originality. Knowing what we do of these romances, it is not enough to say, for the establishment of Lobeira's claims, that we cannot trace the Amadis of Gaul to any one before him. Expressions of his own throughout his work slow that if ho was not a literal translator, he was at least a borrower. Thus, towards the end of his third chapter he writes-"The author ceaseth to speak of this, and returneth to the child whom Gandales brought up." The Spanish timslator, Montalus, confesses to have taken liberties with the Portuguese version from which he worked, altering, adding, and abridging. The Comte de Tressan maintains that the original French work must havo ended with the third book and the rescuo of Oriana; and that from this point we can distinctly trace the work of Spanish hands. Southey, again, thinks that the work, as it left the hands of Lobeira, ended in the fourth book with the marriage of Amadis and Oriana, and that all which follows is due to the tasteless accretions of Montalus. Although this is mere conjecture, still it is natural that we should attach no little fore to the correct feeling of Southey. For the story itself, it is impossible to give a summary of it-the plot being too discon. nected; but be who has read one auch tale, or even a few chapters of one, may hare a general impression of allhacking and howing in every page, knights alwaye at war and seeking adventures, giants in the path, lions in tho forest, damsels in durance, castles to be attacked, wizards and witches with hate in their hearts, kings everywhere plentiful as blackberries, and lovely ladies abounding in tenderness. The sentiment of the work is very noble, and some of the descriptions are full of fire; but the reader owes more than ho is a ware to the curtailments of Southey.

AMADOU (Polyporus fomentarius), a fungus that grows upon old trees, especially the oak, ash, fir, and cherry. When beaten soft it is used as a styptic for slight hremorrhage.
$*$ d as material for surgical pads. After being boiled in a wofution of nitre it is employed as tinder.

AMAGER, or AMak, a small island belonging to Denmark, lying in the Sound, close to the cast coast of Seeland. The channel which separates its northern extremity from Seeland forms the barbour of Copenhagen; and nearly the third part of that city, the suburb of Christianshafen, is situated in Amager. The island is about 9 miles long and 4 broad, with a fertile soil, which produces large quantities of vegetables for the Copenhagen market. It is poopled chiefly by the descendants of a Dutch colony which Christian II. brought there in 1516, who still retain many of the old peculiarities of dress, language, and manners. Population about 9000, exclusive of the inhabitants of Christianshafen. The other towns are Dragoe and Castrup.

AMALASONTHA, or Avalastentita, daughter of Theodoric, king of the Ostrogoths, was born about 498 A.D. In 515 she married Eutharic, the last representative of the Amali family, who died (524-5), leaving an only son, Athalaric. The latter was designated by his grandfather Theodoric as the beir to the throne, and Amalasontha was appointed his guardian. On the death of Theodoric in 526, Amalasontha became regent, and endeavoured by a wise and vigorous administration to carry on the work of ctvilisation and enlightenment which her father had commenced. She devoted herself with special solicitude to the education of Athalaric, but her efforts were frustrated by the opposition of the Gothic nobles. Encouraged by them, the young heir to the throne threw off the restraints imposed by his mother, plunged into debauchery, and died at the age of sixteen (534). In the same year Amalasontha married her cousin Theodahadus, and made him co-regent with herself. A" few months later (April 535) she was assassinated by order of her husband in an island on Lake Bolsena.

AMALEKITES, an ancient people, widely spread throughout the country lying on the south and east of Palestine, often mentioned in the Jewish Scriptures, and celebrated also in Arabian tradition. In Scripture they occur first in Gen. xiv. 7, occupying the territory around Kadesh, and suffering from the invasion of Chedorlaomer and his confederates. They appear next asssollting the Israelites, shortly after the exodus from Egypt, at Rephidim, in the neighbourhood of Mlount Sinai (Ex. xvii. 8; cf. Deut. xxv. 17). They again occur falling upon a party of the Israelites on the southern verge of the promised land (Num. xiv. 45 ; cf. xiii. 29). In the time of the iudges they are found associated with the Moabites, the Ammonites, the Midianites, and "the children of the east," in repeated attacks upon the Israelites, invading their territory from the eastern side of Jordan (Judges iii. 13 ; vi. 3). Saul, by divine command, led an expedition into the country of Amalek, waging against them an exterminating war, "smiting them from Havilah until thou comest to Shur, that is over against Egypt" (1 Sam. xv. 1). David also "invaded the Geshurites, and the Gezrites, and the Amalekites; for these nations were of old the inhabitants of the land as thou goest to Shur, even unto the land of Egypt" (1 Sam. xxvii. 8). The last notice occurs in 1 Chron. iv. 43, from which we learn that in the days of Hezekiah a body of Simeonites "went to mount Seir" and "smote the rest of the Amalekites that were escaped;" a notice showing the accomplishment of the doom of extermination which had been denounced against them (Ex, xvii 14-16; Num. xxv. 20), and finding an echo in the words of an Arabian poet, "The race of Amlak has disappeared, and there is left of it neither mean man nor mighty" (Macoudi, Les Prairies d'Or, par Meynard et Courteille, vol iii. 104). We twice
hear of Agag as the name of the king of the nation (Num. xxiv. 7; 1 Sam. xv. 8); and it is reasonably supposed that this, like Pharaoh in' Egypt, was a name common to all their kings. It has been generally supposed that the Haman of the book of Esther, called "the Agagite," be. longed to the royal line of the Amalekites; but it is now found, from Assyrian records, that Agagi was the zame of a countryं east of Assyria, from which it may be assumed that the title was derived. See Lenormant, Lettres Ass. i. 45.

Josephus agrees with Scripture in assigning to the Amalekites the territory immediately to the south of Palestine. Thus he speaks of them as inhabiting "Gobolitis and Petra" (Gobolitis = Gebal, in Ps. Lxxziii. 7; cf. Reland, Palcestina, p. 71); and as reaching " from Pelusium to the Red Sea" (Ant. Jud. iii. 2, 1; vi. 7, 3; cf. ii. 1, 2). The sountry which they are thus represented as occupying is suited only to a nomadic population; and accordingly the indications of the Scripture narrative point to this as the general character of the Amalekite people. They appear as the Bedouins of ancient times, rapid and devastating in their movements ($1 \mathrm{Sam}$. xxx. 1); and in their expeditions "coming up with their cattle and their tents" (Jud. vi. 5). At the same time, in the more fertile portions of their territory they doubtless had settled abodes. We read in 1 Sam. xv. 5 of "a city of Amalek;" and Josephus speaks, apparently in an exaggerated way, of their cities being captured by means of elaborate siege operations (Ant. Jud. vi. 7, 2).

The ethnical character and relation of this people, and their complete national history, it is impossible satisfactorily to make ont from the fragmentary materials in our hands. They are not mentioned in the table of nations in Gen. x., while in Gen. Exxvi. 12, 16, their ancestry seems to be referred to Esau. At the same time, the existence of the nation is noticed in Gen xiv., long before Esan; and it seems unnatural to understand this, with Hengstenberg and others, in a proleptic sense, especially as there are other independent grounds for referring the beginning of their history to an earlier date. It is certain that the genealogical tables of Scripture, like those of Arabia, include cases of adoption or affiliation as well as of direct descent, and probably it is in this sense that the notice referring Amalek to Esau should be understood. In Balaam's pro-
 tissima gentium, Gesenius), Num. xxiv. 20, an expression scarcely reconcilable in the circumstances with descent from Jacob's brother. Again, though found in Jewish scripture located in the immediate south and east of the Israelitish territory, yet there are indications in Scripture itself that at one time they had had a wider extension. "The mount of the Amalekites" is mentioned as situated in "the land of Ephraim" (Jud. xii. 15), apparently waranting the inferenc3 that they once held possessions on the west of the Jordan (see Stanley, Sin. and Pal., p. 237, n.) "Amalek" also is found in some copies of the LXX., as the translation of Maacah, in $2 \mathrm{Sam} . \mathrm{x}$. 6,8 , giving some ground for the belief that a section of the same race had once been settled on tie no:th-east of Palestine (see Ewald, Gesch. Israel's, Bd. I. 335). Tl ere is little in the Bible to illustrate their linguistic affinity; but so far as appears their language was Shemitic, identical with or very closely allied to the Hebrew. Samuel and the captire Agag (1 Sam. xr. 32), and David and the Amalekite youth (2 Sam. i. 13) converse together; and it has been attempted also to explain the names Amalek and Agag by Shemitic analogies (Meier, Zcitschrift do. morg. Ges., Bd.'xvii. p. 577). By Philo (Vita Mosis, § 39) the Amalekites of the Sinaitio peninsula are called Phœenicians.

The traditions of the Arabisns regarding this race are sonfused and conflicting, jet certainly are not to be summarily rejected as destituto of any claim to historic credibility ; and with all their cntanglement they speak strongly for the ancient and far-extended power of the people in question, and also more donbtfully for their Shemitic affinities. In these traditions, Amlak or Amlik, the father of the Amalekites, is represented sometimes as the son of Laud (i.e., Lud), the son of Shem; sometimes as the son of Aram, the aon of Laud; while sometimes also he is spoken of as a son of Ham. They belong, with the Adites, Thamudites, and others, to the primitive races of Arabia. They ars said to have been expelled from Babylonia by the Assyrian conquerors, and driven westward into Arabia and Syria, to hare built and reigned in Aleppo, to have conquered and for some centuries retained possession of Egypt, and to bo the ancestors of the Berbers in North Africa (see 1 bulfeda, Hist. Ante-Isl., Pp. 16. 178 ; Macoudi, co. cit., vol iن., y. 106 ; C. do

Perceral, IIst. des Arabes, Fol. i., P. 18) ; Knobel, Folkertafel, P. 193 ; Movers. Phonizicr, 2ter Th., Bd. ii., p. 422). With these Arabian nccounts it is natural to briag into connection the liacts narrated by Dlanetho, and now in substance ascertained from old Egyptian records, regarding tho conquest of the Nile valley by an Arabian race, called Hyesos by the former, and Menti, or shepherds, in the latter (see Bunsen, Egypt's Place, vol. iii., p. 266°; Bragsch, Mist. d"Egypte, vol. i., p. 75; Chabas, Les Pastcurs en Eigmpte, p. 9) Now, from the time of the eightecnth dyansty, nurthern Arabia is found in Egyptian monusoents to bo in passession of a people called Shasu, a mame which Egyptologers generally compare with the second syllalle of IIycsos, and which also, perhajs, corresponds with Znzin of Gen. גiv. 5. These Shasu may with confideuce bo identified with the Amalokites of Scripture; their loculc aud their habits are the same; and of tbem we learn that "they wero spread orer a vast territory, quite like the wandering Aralus of our day. They aro found near Djor, on the northenst frontier of Egypt, ns well as in the defiles of Lebanon, whers their depredations made themselves felt fontecn centuries beforo our era" (Chabas, Eitudes sur l"Antiquit, Kistorique, p. 114; cf. his Voyage d'un Egyptien, p. 111). "They wear short tunics, a turban-like head-dress, and mre armed with spears and axes. A characteristic feature is the long beard, as among the Conaanitish nations" (Brursch, Gcog. Insehriften, Bd. ii. 53).

The notices occurring in Arabian writers, which speak of Amalekites as sprend over varions more sonthern portions of Arabia, may probably be referred to the period subsequent to their expulsion from their northern scats by the lsraclites and other enemies. The Bewu-kerker, who dwell around Meeca, are by some referred to this stock ; the same is true of the Benu-Amila, who, before migrating porthrards into Syria, dwelt in Yemen. We hear of Amalekites also in "Chcibar, Jatrib, and other parts of Hedjaz" (Abulfeda, op. cit., p. 1个9); in regard to which notice a certain derree of confirmation is afforded by the mention by Pliny of no Arabian town, the name of which reads Marippa Palmalacum, but which probobly should be read Jatrippa Alamalacum, that is, Jatrib the Amalekite (seo Pliny, Mist. Nat. vi. 32; Blau, Zcitschrift d. m. Qes., Bd. xxii. 663; cf. Noldeke, Uber d. Ainalekilor, 37). According to some (「uch, Blau, and others), the famors Sinaitic inscriptions, ascertained to be written in a Shemitic dialect, are to be ascribed to the Amalekite race. Doubtless their authors dwelt in the country once inhabited by this people, but that they belonged to them, aud not to some succeeding race, has not yet been demonstrated.
From the cuneiform records we have gained as jet do illustration of this subject, unless the peoplo Malikhn, or Malaku, mentioned in the inscriptions of Sennacherib among certain Aramæan tribes inlabiting the valley of the Euphrates, may be identifed with dmalek (see Records of the Fast, vol. i., Pp. 26, 57).

AMALFI, a town of Italy, in the Principato Citeriore, situated at the entrance of a deep ravine on the north side of the Gulf of Salerno. It was founded, according to the common account, uuder Constantino the Great, and was one of the first cities to recover from the irruption of the barbarians into 1 taly. During the 10 th and 11 th centuries it was an independent republic of great commercial importance, with a trade which extended to Egypt and the east, and a population of 50,000 . Its code of maritime laws (Tubula Amalfitana) is said to have regulated commerce at one time thronghout the whole of Italy, but the truth of this statement appears to be extremely questionable. In 1135 Amalfi was plundered by the Pisans, who are said to have then discovered and carried off the far-famed manuscript of the Pandects of Justinian, which is now in the Laurentian library at Florence. Soon after this the town passed under the dominion of Nanles, and from that time rapidly declined. In 1343 a terrible storm buried a large part of the town under the sea, and at the present day it is a mere wreck of its former greatness. It has only about 6500 inhabitants, whose chief employmeuts are fishing and the manufacture of macaroni, silk, and paper. It is still the seat of an archbishop, and contains an ancient cathedral dedicated to St Andrew. Flavio Gioja, to whomthe invention of tho mariner's compass has been ascribed, and Masaniello were born at Amalfi.

AMLLLGAM, the name given to an alloy of mercury and another metal. The amalgams are a very numerous class of compounds, and many of them are used largely in the arts. Many amalgams are produced by direct contact of the metals, with crolution of heat. Others are obtained
by the action of mercury on a sale of the metal, or tho action of the metal on a salt of mercury, assisted by tbo passage of a weak clectric curreat in some cases. Some amaigams are solid, others liquid. They are, generally speaking, weak compounds, many of them being decomposed by pressure, and all are decomposed at a white heat. Tin amalgam is used for "silvering" mirrors, gold and silver amalgam in gilding and silvering, cadmium and copper amalgam in dentistry, and an amalgam of zıne and tin for the rubbers of electrical machines. See Mercirry aud Chemistry.

AMALLA, Anna, Duchess of Saxe-Weimar, was bo:n at Wolfenbiittel on the 24 th October 1739, and married Duke Erncst of Saxe-Weimar in 1756. Her husband died in 1758 , leaving ber regent for their infant son. Karl August. During the protracted minority she admanistered the affairs of the duchy with the greatest prudence, strengthening its resources and improving its position in spite of the troubles of tho Seven Years' War. She was a warm patroness of art and literature, and attracted to Weimar many of the most eminent men in Germany. Wieland was appointed tutor to her son ; and the names of Herder, Goethe, Knebel, Böttiger, Musxus, and Schill-r shed an undying lustre on her court. In 1775 she retired into private life, ber son having attained his majority. In 1788 she set out on a lengthened tour through Italy, being accompanied by Goethe. She died on the 10th April 1807. A memorial of the duchess is included in Goethe's works under the title Zam Andenken der Fürstin Anna-Amalia.

AMalriC or Amauri of Pena, so called from his birthplace, a small village in the diocese of Chartres, was the founder of a school of pantheists known by his name. He lectured at Paris about the year 1200, and attracted a large circle of hearers. In 1204 his doctrines were ccademned by the university; and on a personal appeal to Pope Innocent III. the sentenco was ratified, Amalno being ordered to return to Paris and recant his erross. This he did in 1207. His death, two years later, wis caused, it is said, by grief at the humiliation to which Le had been subjected. In the same year (1209) ten of his followers were burnt before the gates of Paris, and Amalric's own body was exhumed and burnt, and the ashes given to the winds. The doctrines of the Amalricians were formally condemned by the fourth Lateran Council in 1215.

AMALTEO, the name of a family belonging to Oderzo, Treviso, several members of which were distinguished in literature. The best known are three brothers, Geronimo (1507-74), Giambattista (1525-73), and Cornelio (15301603), whose Latın poems were published in one collection under the title Trium Fratrum Amaltheorum Carmina (Venice, 1627; Amst. 1689). The eldest brother, Geronimu, was a celebrated physician; the second, Giambattista, accompanied a Venetian embassy to England in 1554, and was secretary to Pius IV. at the Conncil of Trent; the third, Cornelio, was a physiciar and secretary to the republic of liagusa.

AMALTEO, Pomponio, a painter of the Venetian school, was born at San Vito in Friuli in 1505, and died in 1584. He was a pupil of Pordenone, whose style he closely imitated. His works consist chiefly of frescoes and altar-pieces, and many of them have suffered greatly from the ravages of time.

AMARA SIN1IA, a Sanscrit grammarian and poet, of whose personal history bardly anything is known. He is said to have been "one of the nine gems that adorned the throne of Vikramaditya," and accordingly to have flourished about 56 b.c. This seems on the whole the most probable date, though the fifth century of the Christian era
and even the eleventh, hare also been assigned, on the supposition that the Vikramaditya spoken of was not the first but a later monarch of the name. Amara seems to have been a Buddhist; and an early tradition asserts that his works, with one exception, were destroyed during the persecution carried on by the orthodox. Brahmina in the fifth century. The exception is the celebrated Amara-Kosha (Treasury of Amara), a vocabulary of Sanscrit roots, in three books, and hence sometimes called Trikanda, or the "Tripartite." It contains 10,000 words, and is arranged, Fike other works of its class, in metre, to aid the memory. The first chapter of the Kosha was printed at Rome in Tamil character, in 1798. An edition of the entire work, with English notes and an index by Colebrooke, appeared at Serampore in 1808. The Sanscrit text was printed at Calcutta in 1831. A French translation by LoiseleurDeslongchamps was published at Paris in 1839.
amaranth, or Amarant (from the Greèk ápápaytos, unwithering), a name chiefly used in poetry, and applied to certain plants which, from not soon fading, typified immortality, Thus Milton (Paradise Lost, jii. 353):-

"Immurtal amarant, a flower which once

In paradise, fast by the tree of life,
Began to bloom; bnt soon for man's offence
To heaven removed, where first it grew, there grors, And flowers aloft, shading the fount of life, And whers the river of bliss through midst of heaven Rolls ooer elysian flowers ber amber stream:
With these that never fade the spirits elect Bind their resplendent locks."
The famous flowers, however, still live upon earth, and are known in our gardens as love-lies-bleeding, prince's feather, cockscomb, and the globe amaranth. As we wreathe our churches in winter with holly and ivy, the churches in Portugal and other southern countries are adorned with the purple tints of the globe amaranth, which is said to retain its colour for years. It should be noted that the proper spelling of the word is amarant; the more common spelling seems to have come from a hazy. notion that the final syllable is the Greek word for flower, which enters into a rast number of botanical names.
AMARAPURA, literally " the City of the Gods," a town of independent Burmab, situated on the east bank of the Lrawadi river, in $21^{\circ} 57^{\circ} \mathrm{N}$. lat., and $73^{\circ} 4^{\prime} \mathrm{E}$. long. The lown was founded in 1783, and made the capital of the Burmese kingdom. It increased rapidly in size and population, and in 1810 was estimated to contain 170,000 inhabitants; but in that year the town was destroyed by fire, and this disaster. fogether with the removal of the native court in 1819, caused a decline in the prosperity of the place. In 1827 its population was estimated at only 30,000 . Since then it has suffered another severe calamity from an earthquake, which in 1839 destroyed the greater part of the city. It is regularly laid out, but, with the exception of some temples, is built only of bamboos, although several of the buildings, being richly gilt, have a showy appearance. The most remarkable edifice is a celebrated temple, adorned with 250 lofty pillars of gilt wood, and containing a colossal bronze statue of Buddha. The remains of the ancient palace of the Burmese monarchs still survive in the centre of the town. During the time of its prosperity Amarapura was defended by a rampart and a large square citadel, with a broad moat, the walls being 7000 feet long and 20 feet high, with a bastion at each corner.

AMASIA, or Amasiayah, a town in Anatolia, Turkey, situated on bath sides of the Yeshil-Irmak, or Iris, in a narrow gorge about 80 miles from the mouth of the river. The houses being ill-built and the streets narrow, the town would have a mean appearance but for its situation and the splendid remains of antiquity in its neighbourhood.

The most remarkable of these are the Acropolis, which is built on a lofty rock overhanging the tomn; the tombs of the kings of Pontus, described by Strabo the geograpker, a native of Amasia; and a handsome mosque, erected in 1490 by the Sultan Bajazet II. The chief productions of Amasia and the surrounding districts are silk, saIt, wheats wine, and cotton. Population of the town, 25,000.

AMIASIS, King of Egypt, ascended the throne 569 в.c. From the rank of a common soldier he gradually rose to be one of the principal officers in the court of Apries, the last king of the line of Psammetichus. Being commissioned by Apries to quell an insurrection, he went over to the rebels, who proclaimed him king. Apries, whose tyranny had caused nearly all his subjects to desert him, took the field with an army of mercenaries, and meeting Amasis near Memphis, was defeated and taken prisoner. The usurper treated the captive prince with great lenity; but so violent was the popular hatred, that he was compelled to deliver him into the hands of his enraged countrymen, who instantly put him to death by strangling. Under the prudent administration of Amasis, Egypt enjoyed the greatest prosperity. He adorned it with numerous and splendid buildings, among which were a portico to the temple of Minerva at Sais, and the great temple of Isis at Memphis. He also erected a colossus before the temple of Vulcan, 75 feet in length, resting on its back; and on the basis stood two statues, each 20 feet high, cut out of the same stone. To gain the alliance of the Greeks, he allotted settlements for them on the sea-coast, permitting them to build temples, and to observe all the rites of their religion unmolested; ;and when the temple of the Delphians was burnt he presented them with 1000 talents to assist them in rebuilding it. He also married a Grecian lady, named Ladice, the daughter of Battus of Cyrene, and had a bodyguard of Greeks in his pay. Solon, the celebrated lawgiver, is reported to have visited Amasis. The close of his reign was disturbed by the threatened invasion of Cambyses, king of Persia, and by the rupture of the alliance between Amasis and Polycrates of Samos.. (See Polycrates.) Amashs, however, did not lipe to see the conquest of Egypt, for he died in 525, before the Persians had entered the country.
AMAT, Fellx, a Spanish ecclesiastical historian, was born at Sabatell, in the diocese of Barcelona, 10th August 1750. He entered the church in 1767, and after taking his doctor's degree at Grenada in 1770, was made professor of philosophy and librarian in the episcopal seminary at Barcelona. In these offices, and in that of director of the seminary, which he subsequently held, his talents and energy did much to advance the efficiency of the institution. In 1803 he was made archbishop of Palmyra by the pope, ond in the same year the king, Charles IV., created him abbot. of St Ildefonso. When the war with France broke out in 1794, Amat was at first looked upon as an undoubted patriot, but latterly he was suspected, and with some reason, of favouring the French cause. He mas compelled to leare Madrid on the entry of the British in 1812; and was subserquently, in 1814, banished to Catalonia. He died in a Franciscan convent near Salent on 28th September 1824. Amat's chief work is his Ecclesiastical History, from the birth of Christ to the end of the 18th century, originally published in twelve rolumes (1793-1803). It was condemned by the Inquisition, but rather on political than on religious grounds. His other works are numerous, the most important being his Observations on Ecclesiastical Power and his Six Letters to Irenicus, in which he attacked the theory thst consent of the subjects is the necessary foundation of sovereignty. Amat was a man of gigantic stature, being, it is said, at the age of seventeen, 7 fect 2 inches in height.

AMATI, the namo of a fanily of violin-makers who flourished at Cremona from about 1550 to 1692. According to Fétis, Andrea and Nicolo Amati, two brothers, wero the first Italians who made violins. They were succeeded by Antonio and Geronimo, sons of Nicolo. Another Nicolo, son of Geronimo, was alive in 1692. The violins made by this family are distinguished by their small size, exquisite finish, and the mathematical proportion of tho parts. Their tone is soft and sweet, but deficient in intensity, owing to the flatness of their model. Stradivari was a pupil of the Anatis

ABfTITLLN, the name of a lake and torn in Guatemala, Central America. The lako is 18 miles from tho city of Guatemala, and is about 9 miles long and 3 broad. The town, which is sometimes called St Juan d'Amatitlan, is situated on the shores of the lake. The houses are all of one storcy, and aro mostly built of mud. The Jesuits formerly had extensive sugar plantations at Amatitlan, but the chief industry now is the raising of the cochineal. The wells of the town are strongly impreguated with salt and alum, and in the vicinity there are seseral hot springs. Population about 10,000 , chicfly mulattoes and sambocs.

AMAUROSIS ($\mu \mu a i$ ip $\sigma \sigma t s$), a deprivation of sight. Tho term is now limited chiefly to those forms of defect or loss of rision which are caused by diseases niot directly involving tho eye, although sooner or later the optic nerve undergoes elianges recognisable by the ophthalmoscope. Sometiumes the amaurosis is temporary, disappearing with the removal of the disease with which it is associated; but in many cases, more especially where the brain and spinal cord are affected, the amaurosis remains permanent.

AMAMICHI, a seaport town on the N. of the Ionian island of Santa Maura. It is the capital of the island, and the residence of a Greck archbishop. The frequent occurrence of earthquakes compls the inhabitants to construct their houses of wood; hence the town is of mean appearance. Its harbour admits small craft only. Population, 7000.
amazon, Marañoy, Orellana, or Solmoens, a river of South America, tho largest in the world. Its head stream is cither the Ucayale or Apurimac, which rises in Peru about $16^{\circ} \mathrm{S}$. lat., and $72^{\circ} \mathrm{W}$. long.; or the more northerly Marañon, also called Tunguragua, which flows from Lake Lauricocha, $10^{\circ} 30^{\prime} \mathrm{S}$. lat., and $76^{\circ} 10^{\prime}$ W. long. The former is the longer river, but the latter has perlaps the weight of authority in its favour. The Marañen tlows in a north-westerly direction, parallel to the Ucayale, as far as $6^{\circ} \mathrm{S}$. lat., when it bends to the north-east, and, on reaching the frontiers of Equador, turns almost due east. It thence forms the boundary between Equador and Peru, with an easterly direction, until it joins the Ucayale. The united river continues to separate Equador and Yeru as long as these countries are centerminous, and thereafter strikes through Brazil, the general direction being north-north-enst. It finally discharges itself into the Atlantic under the equator. From the source of the Apurimac to the occan this mighty river has a length, including windings, of ncarly 4000 miles. It receives enormous tributaries-from the north, the Napo and the Putumayo, each about 700 miles long; the Yapura, 1000 miles; the Negro, 1400 ; as well as others of less importance : from the sonith, besides the Yavari, the Yutai, the Yurua, Tefe, the Purno, and others, there are the Madeira, of nearly 2000 miles; the Topayos, of 1200 ; the Xingu, of 1300 ; and the Tocantins, of 1200 . In addition to these, the Huallaga, of 500 miles, joins the Maranon, from the soutb, above itz union with the Ucayale. The area drained by the Amazon and its tributaries is probably not less than $2,500,000$ square miles, or more than s third part of South Ameriea. The breadth of the river,
of course, rarics at different points. At some distanco below Jaen, on the Marañon, it was found to be 860 fect wide ; at a pass called the Pongo de Manseriche its bed is suddenly contracted from 250 to 25 fathoms, being enclosed on either side by rocks, which rise liko perpendicular walls to a great height; at the junction with the Napo its breadth has increased to 900 fathoms. Between the Negro and the Madeira it has the breadth of a league, which extends to two leagucs at those parts whero islands abound; but during the annual rise of the water it covera a great part of the adjacent country, and has then no determinate limits. The main mouth is about 50 miles wide above the island of Caviana, but the wholo delta, including the Para mouth and the island of Joannes, is nearly 200 miles from shoro to shorc. The depth of tho Amazon in some parts excceds 50 fathoms, and the river is navigablo for vessels of the largest size up to the confluence of the Maraũon and the Ueayale. Beyond this point vessels of a smaller size can proceed as far as San Borja, on the Maraĩon, and a considerable distance up tho Ucayale and tho II uallaga. The velocity of the water above San Borja so greatly exceeds the average (which is about $2 \frac{1}{4}$ miles an hour), that navigation becomes difficult, and among tho rapids is impossible, even to canocs. Nearly all the branches of tho Amazon are navigablo to a great distance from their junction with the main stream; and collectively the whole presents an extent of water communication unparalleled in any other part of the globe. It may be mentioned, too, that as the wind and current are usually, at least from July to December, opposed to each other, a vessel can make her way either up or down with great facility by availing herself of her sails in the one case, and committing herself to the force of the current, in the other. Since the introduction of steamers, however, this circumstance is of less importance. The influence of the tides is felt 400 miles abovo the mouth of the Amazon, while on the other hand tho river current is distinctly perceptible in the occan for more than 200 miles from the shore. The curious tidal phenomenon called the bore, or proroca, is thus described by La Condamino:-
"During three days before the new and full moons, the period of the highest tides, the sea, instead of occupying six hours to reach its dood, swells to its highest limit in one or two minutes. The noise of this terrible flood is heard five or six miles off, and increases as it anproaches. Presently you see a liquid promontory 12 or 15 feet high, followed by another, and auother, and sometimes by a fourth. These watery mountains epread across the wholo channel, and advance with a prodigious rapidity, rending and crushing everything in their way. lmmense trces are sometimes uprooted by it, and sometimes whole tracts of land are swcpt awsy."
The Amazon traverses a region thickly covered with lofty forests, which are the launts of the jaguar, bcar, panther, and other wild animals, and are inhabited by numerous sinall tribes of savages, among whom the Spaniards and Portugueso liave established missionaries. The river abounds with fish, many of which are delicious eating; and turtles of an excellent quality are numerous.' Largo alligators may be frequently seen stretched motionless in the mud like trunks of trees. The name Amazon (which is also written Amazons and Amazonas) is derived from the Indian word Amassona, or "boat-destroyer," the reference being to the destructive proroca. According to native usage, the name Amazon ought to be restricted to the lower part of the river, below the mouth of tho Rio Negro, the portion above that point, as far at least as the junction of the Maraĩon and the Ucayale, being termed by the natives Solimeens. The other two designations by which the river is sometimes known owe their origin respectively to Francis Orellana, who in 1540 sailed from the mouth of tho Rio Napo to the ncean, and Marañon,
mho risited the upper waters in 1513. Yañez Pinzon, bowever, visited the river before either, having discovered the mouth in 1500. (See the morks of Bates, Wallace, end W. H. Edwards, and the article Brazic.)

AMAZONS ('A $\mu a ́ \zeta o v \epsilon s)$, a race of women represented in Oreek legend as baving lived in the north-east of Asia Minor, near the shore of the Black Sea, and as having there formed an independent state, with a queen at its head, and with the mythical town of Themiscyra, on the river Thermodon, as its capital. From this centre they made warlike excursions, sometimes northward, but chiefly against the people on the coast of Asia Minor. From the traditions that to repel and conquer them mas assigned as a task to Bellerophon by the King of Lycia, and again to Hercules by Eurystheus, it may be inferred that they were regarded by the Greeks at least as a permanent source of danger. But equally, if the task of conquering them is to be strictly compared with the other tasks in which these heroes were generally opposed to monsters and beings impossible in themselyes, but possible as illustrations of permanent danger and damage, it would follow that the Amazons mere mythical illustrations of the dangers which beset the Greeks on the coast of Asia Minor. Their impossibility as actual beings is further recognised in works of art, in which combats between them and Greeks are placed on the same level as, and often associatèd with, combats of Greeks and centaurs. The belief in the existence of the Amazons, however, having been once accepted and introduced into the national poetry and art, it became necessary to surround them as far as possible with the appearance of not unnatural beings. Their occupation was hunting and war; their arms the bow, spear, axe, a half shield, nearly in the shape of a crescent, called pelta, and in early art a helmet, the model before the Greek mind having apparently been the goddess Athene (Minerva). In later art they approach the model of Artemis (Diana), wearing a thin dress, girt high for speed; while on the later painted rases their dress is often peculiarly Persian-that is, close-fitting trousers, and a high cap called the kidaris. They fought partly on foot, partly on horseback, and always without quarter; so that the epithet of avvopoктóvol, or oiorpata, which is the Scythian equivalent (Herod. iv. 110), wàs applied to them. To maintain their stock, annual visits were paid to the neighbouring peoples; and when, in consequence of this, children were born, the males tere either sent over the borders or retained and brought up crippled, and in the condition of slaves, while the female children were assiduously trained to hunting and war. So as to have freedom in the use of the borr, the right breast was either remored by burning and other processes, or was checked in its growth ; hence the ancient derivation of the name Amazon from $\mathfrak{a}-\mu$ 'ábos, "breastiess." But instead of there being any indication of this in morks of art, it is noticeable that in the case of wounded Amazons the wound is in the breast, as if the artist conceived them as truly womanly in that region. The other derivations are-(l) from $\dot{a}-\mu a \dot{\zeta}$ os, in the sense of "strong-breasted," so as to compare with their deity Artemis Polymazos; (2) from à- $\mu \dot{\alpha} \sigma \sigma \omega$, "not touching (men);" (3) from the Scythian am.azzen, a "virago." The deities of the Amazons were Ares (Mars) and Artemis, the former being consistently assigned to them as a god of war, and as a god of Thracian and generally northern origin. In the case of Artemis, it was not here the usual Greek goddess of that name, but an Asiatic deity in some respects her equivalent, but different, among other points, in this, that troops of women (hierodules) were associated with her worship, cspecially as it existed at Ephesus in historical times. That it may have been so aiso in the early myth-making age, and that
accordingly the idea of the Amazons as a race may have originated in the ecstatic lawless life of these romen, has been conjectured. With regard to Ephesus, it was eaid that a body of Amazons, under a princess named Lampedo, had founded that town, and established the wrorship of Artemis; though in another account they appear as enemies of this religion, and as having burnt the temple of Artemis at Ephesus. Several other towns of Asia Minor clairned to have been founded by Amazons; but according to Diodorus (ii. 52, 55), the Amazons in this case were a race of women wh σ inhabited the west of Libya, and who once, led by their queen Myrina, advanced throngh Asia Minor and on to Thrace, where they were defeated by Mopsus, and compelled to return. Other memorials of the expeditions and battle-fields of the Amazons were recognised in the tumuli in the Troad and elsewhere in Asia Minor. These ancient local traditions derived a strong colour of reality afterwards, when inroads of barbarians, under a female leader, occurred, as in the time of Cyrus, or when Thalestris appeared before Alexander the Great, announcing herself as the queen of the Amazons; but chiefly when it was observed that certain characteristics of the Amazons actually existed among the women of Sarmatia. The effect of this mixture of fact and legend may be seen in the account given by Herodotus (iv. 110) of the collapse of the Amazonian state, or in the origin of it as related by Justin (ii. 4). On the other hand, the Persian war seems to have freshened, as if to supply a mythical prototype, the national legends of combats between Greeks and Amazons. These legends recounted the defeat of the Amazons; first.by Bellerophon, and secondly by Hercules, who had been ordered by Eurystheus to bring him the girdle of their quecn Hippolyte, or, in other words, since the girdle of their queen would in Greek eyes be the most sacred object, to conquer the whole race of Amazons. It is supposed that he was accompanied by his friend Theseas, and that this was the occasion on which the latter became possessed of the Amazon princess Antiope. From his pacsession of her originated a third legend, which described an inrasion cf Attica by a body of Amazons, with the view of carrying off Antiope. Their utter defeat by Theseus must hava seemed, in the light of Marathon and Salamie, as a forecast of the glory then won by Athens. The fourth legend, which deals with the appearance of an army of Amazons, led by their queen Penthesilea on the side of the Trojans in the Trojan war, was developed by Arctinus of Miletus in his poem the Cithiopis. Achilles and the queen meet in battle, and she falls by his hand; but the hero is smitten writh grief, and lifts her gently before she dies. It is this feeling of regret on the part of a hero tho is compelled to kill a roman in his own defence, that gives the principal tone to the existing works of Greek art, in which combats with Amazons are represented, and espccially to works of sculpture. Of this class there exist (besides a number of reliefs, among which those fron the temple of Apollo at Phigalia, now in the British Museum, are conspicuons for many touching motives of this hind), several statues of wounded Amazons, the sad cxpression of which, combined with the nobility of form and power of limb, shows what was the highcst conception of them in the best days of Greek art.
(A. s. ar.)

AMBALA, a division, district, and city of British India, under the jurisdiction of the Lieutenant-Governor of the Panjab. The Ambalá Diviston comprises the districts of Ambáláa and Ludhíńs in the plains, and the district of Simla in the Hinnalayas. The last-named district consists of a few detashed patches of territory, scattered among the terntories of the petty chieftains by whom the neighbouring hills are held. Simla district is, however, the

Beat of the supreme government of India during the not weather, and its chief town, of the same name, is the largest hill station in India. The other two districts of the division lio upon the plains at the foot of the Limalayas They are bounded on the N.E. by those monntains, on the N.W. by the rirer Satlcj, on the S.W. by the district of Firozpur, the independent native stato of Patiall, and the district of liarnal, and on the S.E. by the river Jamná.

Ambala District stretches N.W. and S.E. along the lower face of the Himallayas, and lies between $29^{\circ} 55^{\prime}$ and $31^{\circ} 14^{\prime} \mathrm{N}$. lat., and between $76^{\circ} 37^{\prime}$ and $77^{\circ} 38^{\prime} \mathrm{E}$. long. It is bounded on the N.E. by the Himalayas, on the N.W. by the river Satlej, on the S.E. by the river Jamad, and on the S.W. by the district, of Ludhiáná, the state of Patiala, and the district of Karnsl. The total area of the district is 2628 square miles, or 1,681,930 acres, of which 945,526 acres are cultivated, 283,989 acres aro cultivable, but not actually under tillage, and 452,415 acres are uncultivable and waste. The total population of the district, according to the census of 1868 , amounts to 1,035,488 sonls, divided into the following classes:Hindus, 689,333; Mahometans, 286,874; Sikhs, 56,440; others, 2841. The males numbered 567,930 , and the females 467,558 ; the proportion of males to the total population being 54.84 per cent. The principal tribes and castes in point of numbers aro-(1.) Játs, viz., Hindus and Sikhs, 161,967 ; Mahometans, 13,368 : total, 175,335 . (2.) Chámárs (Hindus), 125,638. (3.) Rájputs-viz., Hindus and Sikhs, 20,121; Mahometans, 62,866: total, 82,987. (4.) Bráhmans, 63,744. (5.) Gujjars-viz., Hindua and Sikhs, 24,500 ; Mahometans, 24,195 total 48,695 . (6.) Banifa (Hindua), 39,053 . The total agricultural population was 501,056 . Taking the population as compared with the area, the result gives 1.62 acres per head of the population, or 3.35 acres per head of the agricultural population. Putting aside the uncultivable and waste land, there are 1.18 acres of cultivated or cultivable land per head of the population, or 2.45 acres per bead of the agricultural population. Taking only the area under actual cultivation, there are 91 acres per head of population, or 1.88 acres per head of the agricultural ponulation. With ono small exception, the whole district consiste of a level alluvial plain, sloping away gradually from the foot of the Himalayas, and lying between the rivers Jamna and Satlej. These rivers do not materially affect the district, which has a drainage system of its own, consisting of the numerous torrents and water-courses which pour down upon it from the hills. In the southern portion of the district these torrents run in broad sandy beds scarcely below the surfaco of the country, and rary from 200 yards to a mile in width, until, at a distance of 20 or 30 miles from the hills, ther assume the form of comparatively docile streams, with well-defined clay banks. Towerds tho northern portion of the district the torrents run in deep beds from the point where they debouch from the hills; they also differ from the streams of the southern tract in'being freo from sand. The principal of these northern streams is the Ghaggar, into which all the other minor streams sooner or later empty themselves, some within and some beyond the limits of the district. Whatever surplus water of this river is not swallowed up by irrigation passes on through Patiála state and Sirsá, and is finally lost in the eands of Rájputáná. The Ghaggar is the only perennial etream within the district, and even it dwindles down to a tiny rivulet in the dry weather, and .disappears altogether beyond the border of the district.

The Simel, Tanjab, and Dehli railsas passes through the centre of the district from south-east to north-west. The other principal land routes are two main lines of road, one passing through the district farallel to the line of railway, and the other coming from Debli and

Karnal, entenng it on the nonth, and ranning northrard till the two roads meet at Ambálá city. A less important road runs northward from this town to tho fout of the IIimalayas, and forms the route to the hill station of Simle. Tha principal agricultural products of Ambala district are wheat, grain, and barley for the spring harvest, and rice, joúr (spiked millet), and Indian corn in the autumn. Tbe total area under cultivation in 1871-72 was, for the spring harreat 437,377 acres, and for the sutumn crop 496,542 acres. The land settlement of the aouthern portion of the district was completed in 1853, and that of the northern part in 1855. Both will expire in 1880. The following eight towns ara returned as containing a population of upwards of 5000 souls, the first-named acven being also municipalities ; Ambálá, population, 50,662 aoula ; Sháhábád. 11,678; Jagádlırí, 11,678; Sadhaurá, 11,198: Rúpar, 8700; Búnhí 8351; Tháneswar, 7929; Mani Majrí' 5989. A municipal incoma is also raised from the following aeven towns:- Nharar, Siswan, Morindah, Pihewah, Rádaur, Ladwah, and Khiziríbád. All tha municipalities derive their rdrenuo from a system of octroi dutiea. The total revcrue of Ambaladistrict for 1871 weas $£ 101,362$, of which $7 \pm$ per cent., or $£ 74,446$, was derived from the land. The other principal items of revenue were aa follows:-Distilleries, £3594, 14s. ; drugs and opium, £3181, 4s. ; income-tax, £2709, 14s.; staraps, $£ 9308$, 14 s. ; local rates levied under Act $x \mathrm{x}$. of 1871 , - $27653,18 \mathrm{~s}$. Ambald is one of the territories previously held by a Sikh Sardár which lapsed to the East India Company in default of rightful heirs. The district was seized by Ranjit Singh during one of his marading expeditions. This aggression caused the moventent of British troops in 1809 which resulted in the treaty with Ranjit Singh by which he was required to withdraw his army from tho left bank of the Satlej, and to relinquish his recent conquests in Sirhind.

Ambiud City, the capital of the district of the same name, is situated in $30^{\circ} 24^{\prime} \mathrm{N}$. lat., and $76^{\circ} 49^{\prime} \mathrm{E}$. long. It forms a large and important station on the Sind, Panjâh, and Dehli railway. The military station and cantouments lie a few miles sonth-east of the town. Ambala is a large walled tomn, situated in a level and highly-cultivated country, well supplied with water, and capable of furnishing abundant supplies. The houses are built of burnt brick, and the streets are very narrow. The town population is returned at 50,662 souls, but this probably includes the English station. The population within municipal limits numbers 24,040, divided as follows:-Agriculturists, 3226 ; non-agriculturists, 20,814 . The town has been constituted a second-class municipality, the affairs of which are conducted by a committee consisting of six official and five non-official members. The municipal income is derived from an octroi duty, and the revenue has increased from £836, '16s. in 1867-68, to £1520 in 1871-72. The average incidence of municipal taxation in the latter year was 1 s . $3 \frac{1}{8} \mathrm{~d}$. per head of the population within municipal limits.
ambarvalia, or Ambarvale Sacrum (ambio and arvum, to go round the field), an annual festival celebrated in ancient Rome on three days during the month of May. The private ambarvalia is to be distinguished from the sacrificium dece dice celebrated by the twelve fratres arvales, though the two festivals were coincident in point of time and had a common object, namely, to obtain from the gods a favourable harvest. The sacrificium was offered up on bchalf of the entire state; the ambarvalia was celebrated by each proprietor for himself. The rictims were a sow, a sheep, and a bull, and were called by the combined name suovetaurilia. Previous to the sacrifice these were led round the fields, while the peasants sang hymns to Ceres. The form of prayer used (carmen ambarvale) is preserved in an insuription of the date of the Emperor Elagabalus (218 A.r), which was discorered in 1777. The same inscription gives an interesting account of the entire cermony. (See Marini's Gli Atti c Monumenti de - Fratelli Arvali, Rome, 1793.) The Christian festival that scems to have taken tho place of the ambarvalia is the Rogation or Gang Week of the Roman Catholic Church, for which the perambulation of the parish boundarics was substituted at the Reformation.

AMBASSADOR, a word introduced into the English language from the Fr. ambassadeur, the Ital. ambasciatore, or the Span. embaxador, which Wiequefort derives, perhaps without sufficient authority, from the Span. embiar, to send. The word denotes a public minister of the highest rank, accredited and sent by the head of a sovereign state to a foreign court or country, with power to represent the person of the savereign by whom he is sent, to negotiate with a foreign government, and to watch over the interests of his own nation abroad. The power thas conferred is contained in the credentials or letters of credence of which the ambassador is the bearer, and in the inscructions under the sign-manual delivered to himself. The credentials consist in a sealed letter addressed by the sovercign in person whose representative he is, to the sovereign to whom be is sent, and they contain a general assurance that the sovereign by whom he is despatched will approve and confirm whatever is done by the ambassador in his name. In England these letters of credence are under the signmanual of the Queen, and are not countersigned by the Secretary of State. On special occasions, as for the negotiation of treaties, additional an express powers are given to an ambassador under the great seal, and sometimes (but very rarely) full general powers to treat on all subjects. Lord Clarendon held such powers at the congress of Paris in 1856

Diplomatic envoys are of three ranks, as was finally determined by a common agreement of all the powers which was annexed to the final aet of the treàty of Vienna in $1815:-1$. Ambassadors; the ambassador of the pope being called a nuncio, and the ambassador of the Emperor of Austria to the Sublime Porte being called his inter-nuncio. These only have representative rank. 2. Envoys extraordinary or ministers plenipotentiary, accredited to sovereigns (aupres des sozverains). 3. Chargés d'affaires, who are only entitled to transact business with the Minister of Foreign Affairs. We shall confine ourselves in this article to the diplomatic officers of the first rank. The relative number of ambassadors, as distinguished from ministers, has of late years been considerably increased. The Emperor Nicholas refused for many years to send an ambassador to the court of France, and he therefore suppressed the grade for a time altagether. His example was imitated by other powers. But the old practice has now been reverted to. The Queen of England has embassies at Paris, Constantinople, Vienna, St Petersburg, and Berlin. The number of British ministers plenipotentiary is twenty-three, and three chargés d'affaires; but these numbers vary.
From the 15th century, when the practice of sending resident embassies may be said to have commenced in Europe, down to the close of the 18th century, these missions were surrounded with a prodigious amount of splendour, ceremonial, and contentious dignity. British ambassadors were commonly sent out till within the last thirty years in ships of war. The ambassador represented a monarch, and was to play the part of one. The memoirs of those ages are full of the magnificence and profuse display which marked their progress-lacqueys, liveries, state coaches, led horses, and all the pageantry of state. Fierce disputes frequently arose between rival ambassadors for precedence ; sometimes these disputcs even extended to the courts and ministers to whom these envoys were despatched as messengers of peace, and a vast deal of time was lost (espccially at the Congress of Münster) in adjisting them. On the part of the sovereign to whom they were to present their credentials the same display was made. The nerw ambassador was fetched by tire master of the ceremonies in the king's coaches and feasted at the kiug's expense. The solemn entry and the public andience, as they were termed, were an essential part of the mission.

The ambassador had the right to stand covered in the presence- of rojalty. At Venice the doge placed Sir Harry Vane, covered and seated, on his right hand in the Council of Ten. A speceh was then delivered, in which the ambassador declared the friendly sentiments of his own sovereign, and bis own humble desire to give effect to them. Modern simplicity and the facility of intercourse has swept away many of these formalities. Traces of them survive at the courts of Berlin and Vienna, but elsewhere an ambassador is presented with little more than the customary ceremony of a court. It has long been held that every state is at liberty to receive ambassadors with or without ceremony, just as it pleases, provided they are all treated alike. Formalities of this kind are, however, still of moment in dealing with Oriental states, where ceremony is the language of power. Perhaps it is nowhere carried to higher perfection than at the court of Japan. The knotty question of precedence was also settled at the Congress of Vienna by an agreement that precedency should be regulated by seniority, dating from the notification of the arrival of the envoy. In foreign countries the senior ambassador is known as the dean or doyen of the diplomatic body; but in England the diplomatic body has no general mouthpiece or representative.

Every state or sovereign bas the right, if it thinks fit, to refuse to receive a particular person as an ambassador, or even to receive any ambassador at all. It is therefore customary to ascertain beforehand whether the person desig. nated for an embassy is favourably regarded, and will be well received. There have been instances, not very remote, of unfa vourable answers or refusals to receive given individuals:
The rank of an ambassador, as regards the society of the nation to which he is accredited, places him immediately after the princes of the blood royal, because he represents a sovereign power, and this rank is universally conceded to him. The rank of a minister plenipotentiary is rather more dubious, but by a rule laid down by Her Majesty for the court of St James they follow dukes and precede marquises. An ambassador or minister not actually accredited to this court has of course no official rank at all, and must take his personal rank. No distinctioñ is made between the ambassadors of monarchies and of republics. The Venetian ambassadors held in their time a very prominent rank in Europe; so in our day do the ministers of the United States; but the United States have never sent any ambassador to Europe-their representatives therefore rank in the second class of public ministers

We shall now proceed briefly to enumerate that which constitutes the essential dignity and utility of au ambassador -on the one hand his rights and privileges, on the other his duties.
A. The first right of an ambassador is that of personal audience of the sovereign. His credentials must invariably be presented to the sovereign in person, and he may ask for an audience on any fitting occasion. In England, however, the sovereign does not officially receive an ambassador except in the presence of one or more of the ministers of the crown. Ir Canning complained bitterly of the influence of Prince Lieven and Prince Esterhazy over George IV., who lived on intimate terms with these ambassadors, and used to say " his father would never have done so." In England the right of audience is now generally limited to the presentation of some congratulatory letter; but at Contincntal courts it is not mithout considerablo utility and importance, as was shown by the memo:able conversation of Sir Hamilton Segmiour with tia Emperor Nicholas, and the personal interviews of Lord Cowley and Lord Clarendon with the Emperor Napoleon III.
In all ages the perfect personal security of persons inrested with high diplomatic functions, as the representar
tives of a foreign power, has beeu an essential and furdamontal principle of the law of nations. Indeed it qoas the law of nations when there was no other. Alexander the Great destroyed Tyre for an insult offered to his ambassador; and it stands recorded in the Roman law, "Si quis legatum hostium pulsasset, contra jus gentium id commissuis cese existimatur, quia sancti haventur legati" (Dig. L. Tit. ${ }^{\text {vii }}$ § 17). In moments of excessive excitement or revolutionary frenzy even this principle has been violated, as in the murder of Dr Dorislaus at the Hague (1649), and of the French envoys at Rastadt (1799); but such acts leave an indelible disgrace on those who hare committed them. For it is the interest of all mankind that ambassadors and envoys should have absolute security to perform their missions with freedom of speech and the liberty "eundi et recleundi" undisturbed, insomuch that to intercept or refuse passage to an ambassador, even through the territory of a third party, is justly regarded as a base action, though probably the leave of the third party to grant the passage ought to bo asked. It was the barbarous custom of Turkey to send an ambassador to tho Seven Towers on a declaration of war, and detain him there as long as the war lasted; but the Porte formally relinquished and abandoned this practice on the breaking out of war with Russia in 1827. To secure this immunity from all interference, an accredited ambassador or envoy is wholly free from the jurisdiction of the courts of law, or of any other authority in the country in which he is sent to reside. This constitutes the doctrine of extraterritoriality. His house is as sacred as his person. It is supposed, like a ship at sca, to form part of the territory represented by the flag which he may hoist over it. All the members of the embassy, and even the scrvants of the ambassador, share the same inviolability. They cannot even he arrested and prosecuted for offences without his consent. Hence, as the courts of justice have no jurisdiction over them, and indeed would have no means of enforcing an adverse decision cither by distress or imprisonment, these diplomatic agents cannot be impleaded or sued. The ouly means of obtaining redress for an injury or breach of contract is an appeal to the head of the mission, or a further appeal to the government which he represents, which, it must be presumed, will not allow a wrong to be committed with impunity under the shelter of privilege. In England, by the statute 7 Anne, c. 12 , it is expressly enacted that any process against foreign ambassadors or ministcrs, or their goods and chattels, shall be altogether void. This Act was passed in consequence of an attempt, made in 1708, to arrest an ambassador of Peter the Great in London for a debt of $£ 50$, and it is still law; but in fact it is only declaratory, and in confirmation of the common law and the law of nations.
An ambassador or envoy pays no taxes or contributions to the public revenue of the country in which he resides, and on this principle he is entitled to receive commodities from abroad free of customs duties. But he is not exempted from the payment of local rates,-though, indeed, if he were to decline to pay them, no process could issue against him for the purpose of levying them. He also pays the ordinary rates of postage, but he has the privilege of sending his own couriers carrying sealed despatches, which excmpts him from the monopoly of the post office. These cuariers, and their despatches or mails, are also regarded by common consent as inviolable messengers, unless they chance in time of war to fall into the hands of a hostile belligerent. In some countries ambassadors and their couriers have been allowed to have a prior claim for post horses over private travellers.

Another of the important privileges of an ambassador or envoy is the free exercise of the religion or form of worship
to which he adheres; but it is laid down by the best writers on tho subject that a forcign minister has not the right of maintaining a chapel or chaplain within his hotel, under the law of nations; hence the liberty of religious worshin for the ambassador and his suite was made a matter of treaty engagement between Catholics and Protestants, and between Christians and Mussulmans. By courtesy, though not of strict right, the usage of ambassadors' chapels has, however, become general; and it had a real importance in countries where the free cyercise of different forms of belief was not tolcrated by law. Thus, at the tine when the rites of the Church of Rome were forbidden in England, the Spanish and Bavarian chapels in London were free; and they have remained in existence till our own days, although the enlarged tolcrance of the present age has remored in every civilised country those barriers. In China and Japan the free exercise of the Christian religion by the Christian embassies is formally secured by treaty.
B. We now pass to the duties of an ambassador, and we place at the head of them that of keeping his own sovereign well informed of all that may concern his interests in foreign countries. He is the eje of the government he serves, specially directed tr a part.cular spot, and he ought to be thoroughly acquainted with the course of policy, the movements of parties, the character and disposition of individual statesmen, and the material and commercial resources of the country in which he resides. His public despatches, and his private earrespondence with the Minister of Foreign Affairs unde: whom he serves, ought to be a record of all that can interest or concern the state which he represents. In this sense the diplomatic reports of the ambassadors of former times are invaluable matcrials for history. His next duty is to protect and defend, if necessary, the persons end interests of his fellow-countrymen abroad; and this is of especial moment in the case of a British ambassador, whose countrymen are to be met with as travellers, navigators, or merchants in all parts of tha globe. To them the presence and influence of the diplomatic representatives of their country is of incalculable valuc, and nothing can be more ill-judged than the proposals that have been made to cut down and contract our foreign embassies and missions. A third, but not less important, duty of an ambassador is to maintain the most amicable relations with the sovereign to whom ho is accredited, and with his ministers, and to observe towards them the strictest respect, veracity, and good-will. It has been said in joke that the first duty of an ambassador is to kecp a good cook; but if this implies that he is to exercise a liberal hospitality and to make his house agreeable, those no doubt are means which may powerfully assist him in the objects of his mission. In former times it was considered to be essential to good diplomacy to act as a spy upon the motires and conduct of foreign statesmen, to cheat without being cheated, to use clandestine means to obtain information, to endeavour to form a party in foreign states favourable to the ambassudor's own national interests, to observe and resist with the ntmost jealousy the demeanour of other forcign cnvoys, and to carry on a species of warfare under the mask of courtesy and good-breeding. These practices have given diplomacy and the functions of ambassadors a bad name, but it must be said that they are repudiated by the principles and practice of the present time, and more espccially by the foreign policy of this country. Down to a recent period, these struggles for ascendancy in foreign countries were carricd on with great eagerness, and they led to unfortunate results. In Spain, for example, the untoward marriage of Queen Isabella was notoriously brought about by the violent and arbitrary interference of the French ambassador: and in 1848. when Lord Palmerston insuructed

Sir Henry Bulwer to represent to the Spanish minister that they 7ould do well to adopt a more liberal and constitutional system of government, General Narvaez immediately sent the British envoy out of the country. This was the exercise of an extreme right, for which the British government could claim no redress. So, again, when in the course of the Russian war (1855) it appeared to the American government that the British envoy in Washington had infringed the neutrality laws of the United States by endeavouring to enlist recruits for the service of Her Majesty, he was compelled to leave the country, and Great Britain had no just cause of complaint. These modern cases are important, because they prove that no stafe which respects itself will tolerate, on the part of a foreign envoy, a direct interference in the internal affairs of government or an infraction of its own laws. Hence arises the great principle on which our modern practice is founded, namely, that it is the duty of an ambassador to observe a strict neutrality between contending parties in the state to which he is accredited; to accept the governmeat de facto with which he communicates as the government and sovereign of the nation; to pay implicit obedience to the laws of that state, whatever they be; and to abstain as much as possible from all intervention in its internal affairs. These doctrines are comparatively new, but they are sound, and they may be said to have received the assent and the approval of the most'enlightened governments of Europe. Great changes have occurred within the last few years in France, Germany, Austria, Italy, and Spain; but they bave all the distinguishing mark that they are wholly independent of foreign diplomatic infloeuce. The first, perhaps we ought to say the sole duty, of an ambassador is to protect his omn national interests and to promote the most friendly relations with the sovereign to whom he is accredited; and experience has proved that these objects are best secured by confining himself to the principal objects of his mission, and by relying on no arts but those of sincerity, forbearance, and truth. (E. ․)
AMBATO, or AsIENTo D'Anrbato, a town of Ecuador, on the northern slope of Chimborazo, about 65 miles sonth of Quinto, 8859 feet above the sea. It was destroyed by an eruption of Cotopaxi in 1698, but was soon rebuilt, and now carries on a flourishing trade in grain, sugar, and cochineal. Population, 12,000.

AMBER (Gr. *H λ ккт $\rho \circ$; Lat. Succinum, Electrum; Fr. Succin, Ambre; Ger. Bernstein) is a hard, brittle substance with a resinous lustre, sometimes found perfectly transparent, but more usually of varying degrees of translucency, and possessing a prevailing yellow colour, passing from a pale straw tint to a deep orange. It occurs in irregular masses, and has neither taste nor, at ordinary temperatures, odour. It develops electrical phenomena by friction, a property which doubtless early drew attention to amber, and invested it with the romantic interest which attached to it in ancient times. The popular regard for the substance among the nations of antiquity was further maintained by the fabulous tales of the manner in which amber was formed and the mystery connected with its occurrence.
The earliest notice of amber me find occurs in the Odyssey of Homer, where in the list of jewels offered by Phoenician traders to the Queen of Syra ocrurs "the gold necklace hung with bits of amber" (Od. xv. 460). Thales of Miletus, 600 b.c., noticed that anber when rubbed attracted light bodies, and that remote and simple observation is the foundation of the modern science of electricity,
 fables purporting to account for the origin of amber, it is narrated that the Heliadæ, on sceing their brother Phæthon hurled by the lightzing of Jove into the Eridanus, were
by the pitying gods transformed into poplar trees, and ths tears they shed were dropped as amber on the shores of the river. Hence arose the Greek term for amber, "H λ exтшp being one of the names of the sun god. A less poetical theory of its origin states that it was formed from the condensed urine of the lynx inhabiting northern Italy, the pale varieties being produced by the females, while the deeper tints were attributed to males. In such repute was amber in Rome in the time of Pliny that he sarcastically remarks, "the price of a small figure in it, however diminutive, exceeds that of a living healthy slave." Besides its application to jewellery and carved ornaments, and its use, partly decorative and partly prophylactic, as necklaces, peculiar virtues were attributed to it. Pliny observes-" True it is that a collar of amber beads worn about the necks of young infants is a singular preservative to them against secret poisen, and a counter-charna for witchcraft and sorceries." As an article of personal ornamentation, the same authority states that amber was used to produce imitations of precious stones by artificial staining, a use to which it was peculiarly adapted owing to its brilliant lustre combined with the ease with which it could be worked and polished.
The great source of supply of amber in all ages appears to have been the Baltic coasts, from which the supplies of commerce still continue to be drawn. During the reign of Nero an expedition was sent from Rome to explore the amber-producing country, and so successful was the party that a present of $13,000 \mathrm{Ib}$ of amber was brought back to the emperor, including a piece weighing $13^{\circ} \mathrm{tb}$. It occurs in regular veins along the Baltic coast, but in greatest abundance between Pillau and Grosz Hubenicken, on the Prussian coast. Professor Phillips thus describes the mines :-
"Near the sea-coast in Prussia there are regular mines for the
working of amber: under a stratum of sand and clay, about 20 feet
thick, a stratum of bituminous wood occurs, from 40 to 50 feet
thick, of a blackish brown colour, and inpregated with pyrites.
Parts of these trees are.impregaated with amber, which sometimes
is found in etalactites depending from them. Under the tratum
of trees were found pyrites, sulphate of iron, and coarse sand, in
which were rounded masses of amber. The mine is worked to the
depth of 100 feet, end from the circumstances under which the
amber is found it seems plain that it originates from vegetable
juices." juices.'
After heavy storms large quantities are usually found thrown up on the coast-at the localities where it is regularly excavated, and the assumption is, that amberifer ous deposits crop up in the shallow waters near the shores, from which pieces become detached during the violent commotion of the water. It is further sparingly cast on the Swedish and Danish coasts, and occasionally pieces are picked up along the shores of Norfolk, Essex, and Sussex in England. It occurs at numerous localities inland throughout Europe, among which may be noted the neighbourhood of Basle in Switzerland, the departments of Aisne, Loire, Gard, and Bas Rhin in France, and in the Paris clay it is associated with-bituminous deposits. In England it has been found in the sandy deposits of the London clay at Kensington. The coasts of Sicily and the Adriatic likerise afford amber. The most beautiful specimens are perhaps those which are found at Catania They often possess a beautiful play of colour, approaching to purple, not to be observed in the product of other places. Frofessor Dana gives the following note on its occurrence in America :-

[^78]It is said to be taken in large quantities from tho north of Burmah to the markets of China, where it is highly prized.

The appearance of cuclosed foreion bodies. such as insects, leaves, twirs, dc., which amber very often presents. and the anarkings on its surface, very early led to correct inferences as to its origiu. Pling states that " amber is an exudation from trees of the pine family, like gum from the cherry and resin from the ordinary pine; and in nccordanco with this opinion is its Latin name succinum, tho gum-stone. Tho opinion expressed by Pliny is that which at tho present day may be fairly held as established; but of courso amber differs from other resins owing to changes induced by its fossilised condition. Sir David Brerrster has pointed out that in optical properties it agrees with other resinous exudations. The insects found coclosed in amber aro for the most part of extinet species, and so also are the remains of plants. A species of conifer has been established provisionally as the amber-yielding tree, Pintes succinijer, but Göppert has shown that many trees may have yielded tho exudation, and these not all necessarily belonging to the pine order.

The close relation of amber to ordinary resins is further brought out by its chemical properties and composition. According to Berzelius, it consists mainly of a resin, succinite, insoluble in alcohol, in combination with small proportions of two others, isomeric with the first, but solublo in alcohol and ether. By dry distillation it gives off at a low temperature water, succinic acid, and oil of amber, which last substance was formerly used in medicino in combination with alcohol and ammonia under the name of eau de luce; but now amber and all its products have disappeared from the standard pharmacopœias. Its composition is, according to Schrötter-

rbon	94
Hydragen	10.5
Oxygen	$0 \cdot 5$

and mineralogically it belongs to Dana's elass of oxygenated h_{5} drocarbons. It burns with a pale yellow flame, with a good deal of black smoke, evolvin:: an agrecable odour, and leaving a shining black carbonaccous residue.

It is said that by exprosing amber covered with sand iu an iron pot to the influence of heat for forty hours, or boiling it for trenty bours in rape oil, it will become transparent, and pieces will cement and mould together. The great sizo of vessels of amber which have come down from ancient times suggests the probability of some such art being practised in remote periods. It is now applied to few useful purposes among western nations beyond forming tho mouthpieces for tobacco-pipes and cigar-holders. Fino pieces aro in some demand for public collections and for the purposes of the carrer. In the East, besides its being highly prized for ornamental purposes, a feeling of veneration for its mystic properties still enLances its value. The Turks esteem it highly as a monthpiece for tobacco pipes, and believe that it resists the transmission of infection. The principal demand for the amber of commerce is among the Armenians, through Whom it is conveyed to Egypt, Persia, China, and Japan; and a great quantity is purchased to be consmmed at tho shrine of Mahomet by the pilgrims bound to Mecca. The value of amber depends upon its colonr, its lustre, and its size. In 1576 is mass weighing 11 B was found in Prussia, and deemed worthy of being presented to the c-arer; later, a mass of 13 ft was found, for which it is said 5000 dollars were refused. In the royal cabinet at Derlin a piece is shown weighing 18 Hb ; but such masses are of very great rarity.

AMBERG, a walled town of Bavana, furmerly the capital of the Upier Palatinate, and at present the scat of the appeal coart for the district, is situated on both sides
of the Vils. 3.5 miles cast of Nusenber.5. It is a mellbuilt town, and has a library, a gymmasium, a lyceum, elementary sehools. an arsenal, and several ehurches, tho finest of wheln is St Martin's, with nany fine paintings, and a tower 300 feet high The principal manufactures are fire-arms, irunmongery, carthenware, woollen cloth, beer, and salt; in the neighbourhood are iron and coal mines. The French uuder Jourdan were defeated by the Austrians near Amberg in 1796. Population in 1871, 11,688.

AMBERGi:IS (Ambra grisea, Antre gris, or Grey Amber) is a solid, fatty, inflammablo substance of a dull grey or blackish colour, the shades being variegated liko marble, possessing a peculiar swect earthy odour. It is now known to bo a morbid secretion formed in tho intestiues of the spermaceti whale (P hyseter nacrocephatus), and is found floating upon the sea, on the sea-coast, or in the sand near the sea-coast. It is met with in the Atlantic Ocean, on tho coasts of Brazil and Madagnscar; also on the coast of Africa, of tho East Indies, Chima, Japan, and tho Molucea Islands; but most of the ambergris which is brought to England comes from the Habama Islands, Providence, de. It is also sometimes found in the abdomen of whales, almays in lumps in various shapes and sizes, weighing from $\frac{1}{2}$ oz to 100 or more lb . . A piece which the Dutch East Iudia Cumpany bouclit from the King of Tydore weighed 182 k . An American fisherman from Antigua found, inside a whale, about 52 leagues sonth-east from the Windward Islands, a piece of ambergris which weighed about 130 lb , and sold for $£ 500$ sterling. Like many other substances regarding the origin of which there existed some obscurity or mystery, ambergris in former times possessed a value, and had properties attributed to it, more on account of the sourco from which it was drawn than from its inherent qualities. Many ridiculous hypotheses were started to account for its origin, and among others it was conjectured to be the solidified foam of the sea, a fungoid growth in the ocean similar to the fungi which form on trees, the excreta of sea-birds, de. The true source und character of ambergris was first satisfactorily established by Dr Strediaur in a communication to the lioyal Socicty (Philosophical Transactions, vol. Ixxiii.) It was found by Dr Swediaur that ambergris very frequently coutained the horny mandibles or beaks of the squid (Sepia noschata), on which speraı whales are known to feed. That observation, in connection with the fact of ambergris being frequently taken from the intestines of the sperm whate, sufficiently proved that it was formed within that creature, and not an extraneous substance swallowed by the whale. It was further observed that the whales in which ambergris was fonnd were cither dead or much wasted and evidently in a sickly condition. From this it was inferred that ambergris was in some way connected with a morbid condition of the sperm whale. Ambergris, when taken from the intestiaal caual of the sperm whale, is of a deep grey culour, soft consistence, and a disagreable smell. On exposure to the air it gradually hardeus, becomes pale, and develops its peculiur street earthy odour. In that condition its specific gravity ranges from 0.780 to 0.926 . It melts at a temperature of about 145° Falr. into a fatty yellow resinous-like liquid; and at 212° it is rolatilised into a white vapour. It is soluble in eilher, volatile and fixed oils, but only fecbly acted on by acids. By digesting in hot alcohol, a peculiar substauce termed ambrein is obtained, which deposits in brilliant white crystals as the solution couls. In chemical constitution ambrein very closely resembles cholesterin, a principle fond abundantly in biliary calculi. It is therefore more than proballe that ambergris, from the position in which it is found and its chemical constitution, is a biliary concre. tion analogous to what is formed in other mammals. The
ase of ambergris in Europe is now entirely confined to perfumery, though it formerly occupied no inconsiderable place in medicine. As a material of perfumery its price varies from 15 s . to 25 s . per ounce; and in minute quantities its alcoholic solution is much used for giving a "floral" fragrance to bouquets, washes, and other preparations of the perfumer. It occupies a very important place in the perfumery of the East, and there it is also used in pharmacy, and as a flavouring material in cookery. The high price it commands makes it peculiarly liable to adulteration, but its genuineness is easily tested by its solubility in hot alcohol, its fragrant odour, and its uniform fatty consistence on being penetrated by a hot wire.
AMBERT, chief town of an arrondissement of the same name in the department of Puy de Dôme, France, situated on the Dore, 35 miles from Clermont. Its chief manufactures are paper, linen, lace, ribands, and pins; it has also an extensive trade in che'se of a very fine quality. Population in 1872, 7625.

AMBLESIDE, a small market town in Westmoreland, situated about a mile from the head of Lake Windermere, and 14 miles from Kendal. During the summer it is much frequented by tourists on account of its beautiful situation. In its vicinity is Rydal Mount, for many years the residence of the poet Wordsworth. Some indistinct remains of Roman fortifications, in which coins, uras, and other relics have been frequently discovered, exist in the neighbourhood. Coarse woollen cloths are manufactured at Ambleside. Population in 1871, 1988.

AMBLETEUSE, a seaport town of France, in the department of the Pas de Calais, on the English Channel, 6 miles north of Boulogne. From the accumulation of sand in its harbour it has lost its importance as a seaport, and the town is now almost deserted. It possesses an historical interest as the landing-place of James Π I. after his abdication in 1688; and Napoleon I. in 1804 attempted to improve the harbour for the flat-bottomed boats by means of which he was to invade England. Near Ambleteuse is the column which he erected to the grand army in 1S05. Population, about 700.

AMBO, or Ambon (Gr. ä $\mu \beta \omega v$, from ávaßaiv $)$, a read-ing-desk or pulpit in early Christian churches which was placed in the middle of the nave. It was ascended by a flight of steps on both the east and west sides, and was in some cases so large as to accommodate fifty persons. From it the lessons were read, and hence it was sometimes called suggestus lectorum and $\beta \hat{\eta} \mu a$ т $̀ v$ divayvoorôv. It was also oecasionally used by the preacher. Two movable ambos may be seen in the church of St John Lateran at liome. The purposes of the ambo were served in medirval churches by the rood-loft, a gallery across the chancel-arch, and in modern churches it has given place to the lectern and the pulpit.

AMBOISE, a town situated in a rich wine-producing district in the department of Indre-et-Loire, France, on the left bank of the Loire, 14 miles east of Tours. Its chief manufactures are cloth and files. At Amboise the French Protestants were first called Huguenots, and 1200 of them were massacred there in 1560 on the discovery of their conspiracy against the Guises. The ancient castle, which is situated on a height above the town, was a seat of the French kings, and it was set apart as a residence for the Arab chief Abd-el-Kader during his captivity in France. Population, 4570.

AMBOYNA, one of the Moluccas or Spice Islands, belonging to the Dutch, lying south-west of Ceram, in 3° $41^{\prime} \mathrm{S}$. lat. and $128^{\circ} 10^{\prime} \mathrm{E}$. long. It is 32 miles in length, with an area of about 280 square miles, and is of very irregular figure, being almost divided into tro. The southeastern and smaller portion (called Leitimor) is united to
the northern (known as Hitoe) by a neck of land about a mile broad. The island is mountainous, but is for the most part fertile and well-watered. Large tracts are covered with rich tropical forests, which embrace a great variety of trees, although ordinary building timber is scarce. The climate is comparatively pleasant and healthy; the average temperature is 80° Fabr., rarely sinking below 72°. The rainfall, however, after the eastern monsoons, is very heary, and the island is liable to violent hurricanes and carthquakes. Amboyna produces most of the common tropical fruits and regetables, including the sago-palm, bread-fruit, cocoa-nut, sugar-cane, maize, coffee, pepper, and cotton. Cloves, however, form its chief product, and the only one that is of any real commercial importance. The Dutch have done much to foster the cultivation of this article in the island, and at one time prohibited the rearing of the clove-tree in all the other islands subject to their rule; in order to secure the monopoly to Amboyna Each tree yields annually from 2 to 5 ib of cloves, and sometimes even more; while the total annual quantity produced probably averages about $500,000 \mathrm{fl}$. The auimal kingdom is poorly represented. Indigenous mammals are feeble in species as well as few in number; birds are more abundant, but of no greater variety. The entomology of the island is, however, very rich, particularly among the Lepir doptera. The aborigines of Amboyna are a race called Horaforas, but Malays constitute the main body of the population; there are also Chinese, Dutch, and a few Portuguese. The Malays in most points resemble those of Java. They are naturally lazy and effeminate, but when properly trained make good soldiers. The inhabitants are mostly Christians or Mahometans. Amboyna is the chief island of the Dutch residence of the Moluccas, which comprises, in addition, the islands of Boeroe, Amblauw, Ceram, Manipa, Kilang, Bonoe, Haroekoe, Honimoa or Saparoa, Noesa-laut, and Hila. The Portuguese were the first European nation to risit Amboyna (1512). They established a factory there in 1521, but did not obtain peaceable possession of it till 1580, and were dispossessed by the Dutch in 1605 . About the year 1615 the British formed a settlement in the island, at Cambello, which they retained until 1623, when it was destroyed by the Dutch, and frightful tortures inflicted on the unfortunate persons connected with it. In 1654, after many fruitless negotiations, Cromwell compelled the United Provinces to give the sum of $£ 300,000$, together with a small island, as compensation to the descendants of those who suffered in the "Amboyna massacre." In 1796 the British, under Admiral Rainier, captured Amboyna, but restored it to the Dutch at the peace of Amiens in 1802. It was recaptured by the British in 1810, but once more restored to the Dutch in 1S14. Population, about 50,000. See Moluccas.

Amboyna, the chief town of the above island; and also of the Dutch Moluccas, is situated towards the north-west of the peninsula of Iceitimor. The strects are broad and unpaved, running at right angles to one another, and intersected by numerous rivulets. The houses are of wood, roofed with palm leaves, and mostly of one storey, on account of the frequent earthquakes. An esplanade of 250 yards reaches from Fort Victoria to the town, and is terminated by a handsome range of houses. The tornhouse is a neat structure of two storeys; and among the other buildings are two Protestant churches and a hospital The government offices are in Fort Victoria. The roadstead of Amboyna is safe and commodious. Population, about 13,000 .

AMBRACLA, or Ampracia, an important city of ancient Epirus, situated on the castern bank of the river Arachthus, about seven milcs from the Ambracian Gulf

According to tradition, it was originally a Thesprotian tom, founded by Ambrax, son of Thesprotus, or by Ambracia, danghter of Augeas. About 635 r.c. it was colonised by Curinthians, and so became a Greek .city. Its porer increased rapidly until the time of the Pcloponnesian war, when it commanded the whole of Amphilochia, including the town of Argos, from which tho original inhabitants wero expelled. In 432 b.c. the expelled citizens, with the assistance of the Athenians under Phormion, retook Argos. In 430 the Ambracians made an unsuccessful attempt to recover the torn, and a second attack in 426 resulted in a still more disastrous failure. The power of Ambracia now declined as rapidly as it had grown. In 338-7 it was compelled to submit to Philip of Macedonia, and it remained subject to that kingdom until it was ceded by Alexander V. to Pyrrhus of Epirus about 295. The latter made it his eapital, and enriched it with numerous works of art. It subsequently came under the power of the Etolian League (239), and sustained a memorable siege in the war between the latter and Rome (189). In the end the city opened its gates to the enemy, who remored many of its most valuable works of art to Rome. In 31 B.c. the inhabitants of Ambracia were removed by Augustus to Nicopolis, the town he had founded in commemoration of the victory of Actium. The site of Ambracia is occupied by the modern Arta, near which remains of the ancient fortifications may be seen.

Ambrose of Alexandria lived in the beginuing of the third century. Jerome and Eusebius differ in the account they give of him, the one ealling him a Marcionite, the other a Valentinian; but they agree in alleging that ho was converted to the orthodox faith by the preaching of Origen. Origen dedicated many of his works, among others his book On Martyrdom, to Ambrose, at whoso desire and expense they were published, and the two lived on terms of the most intimate friendship. Aecording to some, Ambrose died a martyr in the persecution under Maximin, about the year 236; but the dedication of Origen's Eight Books against Celsus proves that he lived to the year 250 , or near that period. - Origen speaks of him as a man of sincere piety, and much devoted to the etudy of the Scriptures.
AMBROSE, Saint, Bishop of Milan, was one of tho most eminent fathers of the church in the fourth century. He was a citizen of Rome, born in Gaul,-according to some historians, in the year $33 \pm$, but according to others in 340 . At the period of his birth his father was protorian prefect of Gallia Narbonensis; and upon his death the widow repaired to Rome with her family. Ambrose received a religious education, and was reared in habits of virtue by his mother, an accomplished woman, and eminent for her picty. The names of his instructore in the rudiments of Greek and Roman literature have not been transmitted to posterity; but in these branches he mado early proficiency, and having directed his attention to the law, he employed his cloquence with such reputation in the prextorian court of Anicius Probus, that he was soon deemed worthy of a place in the council. After he had continued in this station for some time, Probas appointed him consular prefect of Liguria and Amilia, comprehending the territories of Milan, Liguria, Turin, Genoa, and Bologna. Milan was chosen as the place of his residence; and, by the prudent and gentle use of his power, ho conducted the affairs of the province with general approbation and growing popularity.

The death of Aurentius, bishop of Milan, in the year 374, made a sudden change in the fortune and literary pursuits of Ainbrose. At that perior the tide of religious contention ran ligh between the orthodox and the Arians, and a vinlent conicut arose concerning the choice of a successor
to Auxentins. When the people were assembled in the church to elect the new bishop, Ambrose, in the character of governor of the place, presented himself to the assembly, and in a grave, cloquent, and pathetic address, admonished the multitude to lay aside their contentions, and proceed to the election in the spirit of religious meckness. It is reported that when Ambrose had finished his address, a child eried out, "Ambrose is bishop," and that the agitated multitude, regarding this as a miraculous intimation, unanimously elected Ambrose bishop of Milan. Some suppose that this was entirely a device of Ambrose or his friends; others ascribe it to mere accident. Ambrose professed strong reluctance, and even fled, or pretended to fly, from tho eity in order to avoid tho intended honour. The place of his concealment, however, was soou discovered ; the emperor's confirmation of his election was mado known to him; and after being baptized, he was ordained bishop of Milan, about the end of tho year 374. Whatever we may think of the singular conduct of Ambrose in accepting an offico for which be was certainly unqualified in respect of previous studics, habits, and employments, it must be admitted that he immediately betools himself to the necessary studies, and acquitted himself in his new elevation with ability, boldness, and integrity. Haring apportioned his money among the poor, and settled his lands upon tho church, with the exception of making his sister tenant during life, and having committed the care of his family to his brother, he entered upon a regular courso of theological study, under the care of Simplician, a presbyter of Rome, and devoted himself to the labours of the church.
The irruption of the Goths and the northern barbarians, who rushed down upon the Roman empire at this time, spreading terror and desolation all around, compelled Ambrose, along with several others, to retire to Illyricum but his exile was of short duration, for the northern in. vaders were quickly defeated by the forces of the emperor, and driven back with considerable loss into their own territorics.

The eloquence of Ambrose soon found ample scope in the dispute hetween the Arians and the orthodos. About this cra the doctrine of Arius concerning the person of Christ had been extcnsively received, and had many powerful defenders both among the clergy and the common peoplc. Ambrose esponsed the cause of the Catholics. Gratian, the son of the clder Valentinian, took the same side ; but the younger Valentinian, who had now become his colleaguo in the empire, adopted the opinions of the Arians; and all the arguments and eloquence of Ambrose were insufficient to reclaim the young prince to the orthodox faith. Theodosins, the emperor of the East, also professed the orthodox belief; but thero were many adherents of Arius scattered throughout his dominions. In this distracted state of religious opinion, two leaders of tho Arians, Palladius and Secundianus, confident of numbers, prevailed upon Gratian to call a general council from all parts of that empire. This request appeared so equitable that he complied without hesitation; but Ambrose, foreseeing the consequence, prevailed upon the cmperor to have the matter determined by a council of the Western bishops. A synod, composed of thirty-two bishops, was accordingly held at Aquileia in the year 381. Ambrose was elected president; and Palladius being called upon to defend his opinions, declined, insisting that the meeting was a partial one, and that the whole bishops of the empire not being present, the sense of the Christian ehurch concerning the question in dispute could not be obtained. A vote was then taken, when Palladius and his associato Secundianus were doposed from the episcopal office.
Ambrose was ecually zealous in combating tho heathers
superstitions Upon the accession of Valentinian II., many of the senators who remained attached to the pagan idulatry made a vigorous effort to restore the worship of the heathen deities. Symmachus, a very opulent man and a great orator, who was at that time prefect of the city, was intrusted with the management of the pagan cause, and drew up a forcible petition, praying for the restoration of the altar of Victory to its ancient station.in the hall of the senate, the proper support of seven vestal virgins, and the regular observance of the other pagan ceremonies. In the petition he argued that this form of religion had long been profitable to the Roman state, and reminded the emperor howmuch Rome had been indebted to Victory, and that it had been the uniform custom of ihe senators to swear fidelity to the government upon that altar. He likewise adduced many facts to prove the advantages accruing to the state from its ancient religious institutions, and pleaded that, as it was one divinity that all men worshipped under different forms, ancient practice should not be rashly laid aside. He even proceeded so far as to assert the justice of increasing the public revenue by robbing the church, and attributed the late famine which had overtaken the empire to the neglect of the ancient worship. To this petition Ambrose replied in a letter to Valentinian, arguing that the devoted worshippers of idols had often been forsaken by their deities; that the native valour of the Roman soldiers had gained their victories, and not the pretended influence of pagan priests; that these idolatrous worshippers requested for themselves what they refused to Christians; that voluntary was more honourable than constrained virginity ; that as the Christian ministers declined to receive temporal emoluments, they should also be denied to pagan priests; that it was absurd to suppose that God would inflict a famine upon the empire for neglecting to support a religious system contrary to His will as revealed in the Scriptures; that the whole process of nature encouraged innovations, and that all nations had permitted them, even in religion; that heathen sacrifices were offensive to Christians; and that it was the duty of a Christian prince to suppress pagan ceremonies. In the epistles of Symmachus and of Ambrose both the petition and the reply are preserved, in which sophistry, superstition, sound sense, and solid argument are strangely blended. It is scarcely neressary to add that the petition was unsuccessful.
The increasing strength of the Arians proved too formidable for Ambrose. In 384 the young emperor and his mother Justina, along with a considerable number of clergy and laity professing the Arian faith, requested from the bishop the use of two churches, one in the city, the other in the suburbs of Milan. The prelate believing the bishops to be the guardians both of the temporal and spiritual interests of the church, and regarding the religious edifices as the unquestionable property of the church, positively refused to deliver up the temples of the Lord into the impious hands of heretics. Filled with indignation, Justina resolved to employ the imperial authority of her son in procuring by force what she could not obtain by persuasion. Ambrose was required to answer for bis conduct before the council. He went, attended by a numerous crowd of people, whose impetuous zeal so overawed the ministers of Valentinian that he was permitted to retire without making the surrender of the churches. The day following, when he was performing divine service in the Basilica, the prefect of the city came to persuade him to give up at least the Portian church in the suburbs. As he still continued obstinate, the court proceeded to violent measures : the officers of the houschold were commanded to prepare the Basilica and the Portian churches to celebrate divine service upon the arrival of the emperor and his mother at the ensuing festival of Easter. Perceiving
the growing strength of the prelate's interest, the court deemed it prudent to restrict its demand to the use of one of the churches. But all entreaties proved in vain, and drew forth the following characteristic declaration from the bishop :-" If you demand my person, I am ready to submit : carry me to prison or to death, I will not resist; but I will never betray the church of Christ. I will not call upon the people to succour me; I will die at the foot of the altar rather than desert it. The tumult of the peoplo I will not encourage; but God alone can appease it."

Many circumstances in the history of Ambrose are strongly characteristic of the general spirit of the times. The chief causes of his victory over his opponents wero his great popularity and the superstitious reverence paid to the episcopal character at that period. But it must also be noted that he used several indirect means to obtain and suppart his authority with the people. He was liberal to the poor; it was his custom to comment severely in his preaching on the public characters of his times; and he introduced popular reforms in the order and manner of public worship. It is alleged, too, that at a time when the influence of Ambrose required vigorous support, he was admonished in a dream to search for, and found under the pavement of the church, the remains of two martyrs, Gerrasius and Protasins. The vulgar crowded to hehold these venerable relics, and, according to report, a number of sick persons were lealed by touching the bones. Ambrose exulted in these miracles, and appealed to them in his eloquent sermons; while the conrt derided and called in question their existence. It is remarkable that these and many other miracles obtained current credit among the Christian historians of the second, third, and fourth centuries; and Dr Cave, in speaking of them, says-_" I make no doubt but God suffered them to be wrought at this time on purpose to confront the Arian impieties."

Although the conrt was displeased with the religious principles and conduct of Ambrose, it respected his great political talents; and when necessity required, his aid was solicited and generously granted. When Maximus usurped the supreme power in Gaul, and was meditating a descent upon Italy, Valentinian sent Ambrose to dissuade him from the undertaking; and the embassy was successful. On a second attempt of the same kind Ambrose was again employed; and although he was unsuccessful, it cannot be doubted that, if his advice had been followed, the schemes of the usurper would have proved abortive ; but the enemy was permitted to enter Italy, and Milan was taken. Justina and her son fled; but Ambrose remained at his post, and did good service to many of the sufferers by causing the plate of the church to be melted for their relief. Theodosius, the emperor of the East, espoused the cause of Justina, and regained the kingdom.

In the year 390 a tumult happened at Thessalonica, in which Botheric, one of the imperial officers, was slain. Theodosius was so enraged at this that he issued a royal mandate for the promiscuous massacre of the inhabitants of the place, and about 7000 persons were butchered without distinction or mercy. The deed called forth a severe rebukc from Ambrose, who charged the emperor not to approach the holy communion with his hands stained with innocent blood. The emperor reminded him that David had been guilty of murder and of adnltery. The bishop replicd, "You hate imitated Darid in his guilt; go and imitate him in his repentance." The prince obeyed, and after a course of eight months' penance he was absolved, ou condition that in future an interval of thirty days should intervene before any sentence of death or confiscation was executed.

The generosity of Ambrose was favouraoly exhibited in
tho year 392, after the assassination of Valentinian and tho usurpation of Eugenius. Rather than join tho standard of the nsurper, he flod from Milan; but when Theodosius was eventually victorious, he supplicated the emperor for the pardon of those who had supported Eugenius. Soon after acquiring the undisputed possession of the Roman empire, Theodosius dicd at Milan (395). Bishop Ambroso did not long survive him, having died in the year 397.

On many accounts the character of the bishop of Milan stands high-among the fathers of the ancient church. With unvarying steadiness he delivered his religious sentiments on all occasions; whth unwearied assiduity he discharged the duties of his office; with unabated zeal and boldness he defended the orthodox cause in opposition to the Arians; with a liberal hand he fed the numcrous poor who flocked to his dwelling; with uncommon generosity he manifested kindness to his adversaries; and with Christian affection he sought tho happiness of all men. Ilis general disposition and habits were amiable and virtuous, and his powers of mind vigorous and persevering. Ambition and bigotry were the chief blemishes in his character.

The writings of Ambrose are voluminous, but many of them are little more than reproductions of the works of Origen and other Greck fathers. The great design of them was to defend and propagate the Catholic faith. His expositions of Scripture contain many extreme examples of allegorical and mystical interpretation. Modern readers will regard much in the writings of Ambrose as trivial, and even as ludicrous; but his style is vigorous, and tho sentiment is often weighty. Gibbon's judgment appears to be too severe: "Ambrose could act better than he could mrite; his compositions are destitute of taste or genius, without the spirit of Tertullian, the copious elegance of Lactantius, the lively wit of Jerome, or the grave energy of Augustin." His exegetical writings include an exposition of the Gospel of St Luke, and conmmentaries on certain Psalms. His Hexaëmeron is a homiletical treatise on the history of the creation. "The Hymns of St Ambrose have exercised a powerful influence on Christendom. They were designed by him to be a preventive against the errors of Arianism, and to confirm the professors of the true faith in the doctrines of the Trinity and the divinity of Christ.
. Very many of them have found a place in the liturgies of the western Church. On account of the celebrity of St Ambrose, many hymns have been attributed to him which are not his; and, on the other hand, some critics have gone into the oppositc extreme, and have deprived him of his property. In the Benedictine edition of his works only twelve hymns are admitted; and Dom. Biraghi [of the Ambrosian Library, who has endeavoured, in bis Inni Sinceri di Sant' Ambrogio, to restore the hymns to their primitive form] shows reason for believing that only seven of these are genuino" (Journal of a Tour in Italy, by Chr. Wordsworth, D.D., 1863.) The most accurate and complete edition of his works is that published by the Benedictines, printed at Paris in 1686 and 1690, in two volumes folio.

A liturgical form, the Ambrosian Ritual, which is still in use in the arch-diocese of Milan, has been traditionally ascribed to Saint Ambrose. Several attempts were made, in particular by the Emperor Charlemagne and Pope Nicolas II., to secure uniformity by enforcing the adoption of the Roman breviary throughout the Western Church, but the clergy of Milan refused to yield. The ritual of Ambrose is included in the Liturgia Latinorum of Pamelius (Cologne, 1571-6). "Full information concerning its history will be fonad in the Ceremoniale Ambrostano, by Dom. Gioranni Dozio, published at Milan, 1853" (Wordsworth's Tour, 1863).

For a description of the famous churoh of St Ambrose,
founded by him at Milan 387 a.d., sce Milan. For the Ambrosian Library, ece Lidraries. Notices of bis Liturgy and Hrans will be found under these headings.

AMbROSE, Isaac, \& Puritan divine. Formerly the practical and derotional writings of this eminent Noneonformist rivalled John Bunyan's in popularity, and his Looking to Jesus holds its own even now. Prominent namo as his was in his generation, very scanty are the personal memorials of him. His own "Media," under the head of "Experiences," yields a few incidents of his life. According to Anthony a Wood, he was a minister's son, descending from those of the name living at Lowick, and they from the Ambroses of Ambrose Hall in Lapcashire. It is probable that his father was Richard Ambrose, vicar of Ormskirk, who was succeeded by another son, Henry. It seems improbable that any of his line could descend of the Lowick Ambroses, inasmuch as they were the most "persistent Catholics of Lancashire;" and there is the additional consideration that, while in our worthy's writings there are many references to the Papists, he makes not the slightest allusion to his conversion from Popery, or to any Catholic relatives or associations. He entered Brazenose college, Oxford, in 1621, in the Eeventeenth year of his age, and must therefore have been born in I603-4. Having procceded M.A. and been ordained, he received at the outset a little cure in Derbyshire, which was at that time and onward to Puritanism what Goshen was to Egypt and Isracl. By the infuence of the Earl of Bedford, he was appointed one of the king's itinerant preachers in Lancashirc. Having later served for a time a curacy in Garstang, he was selected by the Lady Margaret Hoghton as vicar of Preston. He was on the celcbrated committee for the ejection of "scandalous and ignorant ministers and schoolmasters" during the Commonwealth. So long as ámbrose continued at Preston he was favoured with the warm friendship of the Hoghton family, as was John Howe,-their ancestral woods and the tower near to Blackburn affording him sequestered places for those devout meditations and "experiences" that give such a charm to his diary. The immense auditory of his sermon at the funeral of Lady Hoghton is a living tradition still all over the county. For some reason which is unknown, perhaps failing strength for eo onerous a charge, Ambrose left his great church of Preston, and became minister of Garstang, where before he had been curate. He was nicar of Garstang when the Act of Uniformity was passed. Ho could have conscientiously complied with many of its requirements, for he was willing to use the Prayer-book, and did not atickle at things whereat other tender consciences did; but the enforcement was so absolute, not to say brutal, that he found himself constrained to form one of the Two Thousand. His after years wére passed among old friends at Preston. He spent a great part of his time every summer in Widdicre wood, where, eeldom seen by any except on the Sabbath, he communed with his own heart and his God. The last time he was seen alive was by some friends from Garstang, of whom he is said to have taken leave with unusual affection and gravity. Immediately after they left him he retired to his wonted place of meditation, where he was found by an attendant in articalis mortis. He died in 1664 at the age of sixty-one. Calamy says he was seventy-two, but his college entry shows he was mistaken. As a religious writer, Ambrose has a viridness and freshness of imagination possessed by scarcely any of the Puritan Nonconformists. He is plaintive as Flavel and as intense as :Baxter. Many who have no love for Puritan doctrine, nor aympathy with Puritan experience, have appreciated the pathos and beauty of his writings, which have never been out of print from their original issue until now.
(A. B. G.)

AMBROSIUS, Aureliants, a leader of the Britons during the 5th century. He is said, on somewhat doubtful authority, to have been a son of Constantine, who was elected emperor by the Roman army in Britain in 407. The usually received account of his life, based chiefly npon the history of Geoffrey of Monmouth, contsins much that is evidently fabulons. It seems probable that he was educated at the court of Aldroën, king of Armorica, who sent him over with a strong force to assist his countrymen against the Saxons, whom Vortigern had invited to Britain. There is also little doubt that, having defested Vortigern, he was chosen to succeed him as king of Britain. Geoffrey also states that he built Stonehenge (see Stonehenge), that he defeated Hengist, and that he compelled the Saxons to surrender at York; but these stories are inhe rently improbsble. The circumstances of his death are involved in equal obscurity. According to Geoffrey's account, he died of poison at Winchester; but others state that he was killed in a bsttle with Cerdic the Saxon in 508.

AMBULANCE, the French ambulance, hôpital ambulant, derived from the Latin ambulare, to move from place to place.

Ambulances, in military phraseology, are hospital establishments moving with armies in the field, and organised for providing early surgical assistance to the wounded after battles. They are only prepsred for affording help of a more or less temporary kind, and they are thns distinguished from the stationary or fixed hospitals, in which sick and wounded soldiers. receive care and treatment of a permanent character. The term. is not unfrequently misapplied in common speech in England to the ambulance waggons, or other conveyances by which the wounded are carried from the field to the ambulances and fixed hospitals. Such vehicles form part of the ambulance equipment, and will be noticed presently.

The constitution of an ambulance includes (1) a certain stsff of officers and subordinstes, and (2) a certain equipnent. The equipment naturally divides itself into (a) the medicsl and surgical equipment, and (b) the equipment forming the mesns of transport for the wounded. But the constitution would hardly be understood without a general comprehension of the system on which the functions of ambulances are discharged, or, in other words, the plan of administering surgical assistance in the field to the wounded of armies. Ambulance administration will therefore be first noticed, keeping in view the circumstances of armies operating in Europe, and the ambulance staff and equipment subsequently.

Ambolance Administration.-The origin of the ambulance system which now prevails in all civilised armies, though variously modified among them in particular details, only dates from the last decade of the last century. Before thst time no ambulance establishments had been organised for effecting the removal of the wounded, or for giving the requisite surgical attention to them, while battles were in progress. Soldiers mounded in the ranks were either carried to the rear by comrades, or were left to lie exposed to all risks, and unheeded, until after the fighting had ceased. The means of surgical assistance did not reach the battle-field till the day after the engagement, or often later, and to a large proportion of the wounded it was then of no avail. In 1792 Larrey 'introduced his system of ambulances volantes, or flying field hospitals, establishments capable of moving from place to place with speed, like the flying artillery of the time. They were adapted both for giving the necessary primary surgical help, and also for removing the wounded quickly out of the sphere of fighting. The first Napoleon warmly supported Larrey in his endeavours to introduce and perfect the new system of surgical aid to the wounded
in battle; and, being received with much favour by the troops, the plan obtained a firm footing, and was subsequently brought to a high state of perfection. About the same time another distinguished surgeon of high position in the French army, Baron Percy, introduced and developed a corps of brawcardiers, or stretcher-bearers. These consisted of soldiers trained and regularly equipped for the duty of collecting the wounded while a battle was in progress, and carrying them on stretchers to places where means of surgical aid were provided.

From the period when these improvements were iutroduced most civilised armies have had ambulance establishments formed for giving surgical help near to the combatants. . It is only, however, during the last twenty jears that ambulances have acquired the completeness of orgsnisation which they have now attained in some armies, especially in those of Germany. In the armies of the United States of America, during the late great civil wer, the ambulance system attained a very complete organisation, particularly from March 1864, when an Act was passed by Congress, entitled "An Act to establish a uniform system of Ambulances in the United States." This lav fixed a definite and single system of ambulance arrangements for all the armies of the United States at that time in the field.

The ambulance arrangements of the British army have never reached the degree of completeness which they have reached in Continental armies. During the Peninsular war the want of a trained ambulance corps, and of properlyconstructed sick-transport carriages, formed a theme of constant complaint. For the former, soldiers from the ranks were substituted-a double evil, as they were unsuited for the work, while their employment lessened ihe fighting strength; for the latter, commissariat waggons, or the agricultural carts of the country in which the troops were operating. It was not from want of attention being called to the subject, as the writings of Sir J. M'Grigor, Hennen, Millingen, and other Peninsular surgeons sufficiently testify. The last-named military surgeon published a very complete scheme of an ambulance establishment shortly after the war was concluded, approaching closely in its principles to those put into practice of late years in the armies of Germany. There is reason for believing that had the operations of the British troops on the Continent not been discontinued, some plan of the kind would have been introduced. As it was, subsequently to 1815 , so far as army hospitals were concerned, administrative attention was chiefly given to improving those for the accommodation of the sick in peace time. The wars thst British troops were engaged in in India, China, the south of Africa, and elsewhere, did not lead to improvements like those which have been made in Continental armies; for either the habits of the natives of the respective countries, or the nsture of the climate, or the state of the country, necessitsted special arrangements for the care of the sick and wounded unsuited for meeting the circumstances of European warfare. Thus, when the Crimean war broke out the English army was still without an ambulance corps, or an ambulance establishment of matériel. An ambulance corps of military pensioners was hastily raised, but failed from the habits and enfeebled constitutions of the men. They were succeeded by a corps formed of civilians,' unused to the discipline and habits of military life, which likewise failed. Several forms of sick-transport vehicles were tried, but only indifferently answered their intended purposes. Fortunately, as the troops were for the most part stationary during the war, the want of thoroughly organised ambulances was not felt to the same extent as it mould have been had the operations been extended far into the interior of the country. The expurience of the Crimenn war led to efforts to repair the
defects which were then made manifest. Since that time a trained army hospital corps has been coustituted, and much of the ambulance equipment has been revised.

One serious impediment to perfecting an ambulance gsstem is the costliness of maintaining, in time of peace, establishments which will only be required for use in time of war. All that can be done is to form n nucreus which can be expanded according to need when war breaks out. But even in Continental armies, witn frequent wars pressing upon them, the urgency of giving close attention to the subject, and in countries where the existence of conseription furnishes a greater supply of men at less cost than in England, the deficiencies of the ambulance establishments hase hitherto been so great in respect to the numbers and necessities of the wounded on occasions of great battles, that an exteusive volunteer organisation, with national societies in every country of Europe, has sprung up for giring additional assistance. This is not the place to discuss the advantages of such volunteer aid; bne, if accepted, all who have considered the subject well have admitted the necessity for its being placed under military authority, and under distinct regulations, in order to secure maintenance of order and discipline. It is also generally admitted that volunteer aid to wounded soldiers is out of place in the ambulances, and can best be employed in the fixed hospitals; by which means some of the regular military personnel may be set free for work in the field.

One important step, taken a ferw years since, towards the amelioration of the condition of the wounded of armies in the field must be just mentioned. This was the European Consention signed at Geneva in 1864, by the terms. of which, subject to certain regulations, not only the wounded themselves, but the offcial staff of ambulances and their equipment have been rendered neutral; the former, therefore, not being liable to be retained as prisoners of war, nor the latter to be taken as prize of war. This convention has greatly favoured the development of ambulance establishments

The conditions of modern warfare have led to the need of army aubulances being arranged on printiples different from what were applicable only a few years ago. The immensely increased range of rifles and artillery in the present day, the consequent extension of the arcal over which fire is maintained, the suddenness with which armies can be brought into the field from increased facilities of locomotion, the rapidity of their movements, the shortened duration of campaigns, the large numbers of wonnded which have to be dealt with, not merely from the destructive qualities of the fire-arms, but from the rast forces collected on occasions of important battles, the increased proportion of severe wounds,-are all circumstances which have entailed need for revision of ambulances and their administration. The ambulances must be so organised as to be able to keep up with the troops, and so disposed as in no way to interfere with their movements. They must be capable of meeting the wants of a partial or general engagement at any moment, and if the troops adrance, must be prepared to accompany them, so as to be ready to meet future wants.

Whatever the details of organisation may be when an important battle is fought, the ambulanee system must admit of three help stations at least being established in rear of the combatants. There must be a station of limitted character immediately in rear of the troops for attention to such wounds as entail speedy loss of life if no assistance be rendered; a seenad station, more remote, where temporary assistance of a more general nature can be afforded; a third, where more thorough attention can be given, and where the wounded can receive food and protection until there are means of sending them away. Recently, in some
armies, the ambulance arrangements have been calculated for furnishing aid at four stations; and, indeed, owing to the increased range of fire, and the consequent distance between the belp stations when only three are formed, the fatigue thrown on the bearers is so great, and the time the wounded are left without belp so long, that the division of the ambulances into four stations has become almost essential. If this arrangement be followed, there will be -lst, the field station, for help of prime urgency; 2d, the transfer station, where the wounded will be transferred from the hand conveyances to wheeled vehieles; 3d, the dressing station, where the provisional dressings will be applied ; and 4th, the field hosyital station, where definitive treatment will be adopted.

The disposition and distances of these four ambulance sections must vary according to the nature of the battle, the configuration of the terrain, and other circumstances, but in a general way will be as follows :-lst, the field station, in the immediate rear of the troops, moving with them, and therefore under fire ; 2d, the transfer station, clear of the enemy's rifle fire, but not too far for the bearers, and at a place practicable for waggons, frem 800 to 900 yards behind the troops engaged ; 3d, the dressing station, beyond range of artillery fire, at a spot easily reached by the ambulance waggons, and on the way to the fourtir station, with a running stream or well at hand if possible, from 800 to 1000 yards in rear of No. 2; and 4th, the field hospital station, at a place free from risk of being brought within the sphers of fighting, from 2 to 4 miles in rear of the combatants. This last station may be at a farm or country house, or in a rillage, but should not be in a place of strategical importance, or in one likely to be blocked by the general transport of the army. When the four stations are in working order, as men fall badly wounded, those within reach will be placed on stretebers by the men told off for duty as bearers, and, after hasty inspection by the field surgeon, and, as far as practicable, receiving such help as is of vital importance, they will be borne to the second or transfer station, and placed in ambulance waggons, or on wheeled stretchers if they are in use. The bearers, then taking racant stretchers, will return to the field station for more wounded. The wounded who havo been transferred to the wheeled convegances will be driven by the men of the ambulanee train to the third or dressing station, and there receive whatever prorisional dressing may be necessary before being sent on to the fourth or field hospital station, where definitive treatment will be adopted, and any surgical operations performed that may be required.

It is obvious that such a system of help can only be carried out, with any approach to regularity and requisite speed, with ambulance establishments proportionate to the number of troops in the field, each ambulance being well organised, provided with a sufficient staff and complete equipment, and aeting under the general supervision or an experienced direetor, whose duty it is to watch the varying events of the contest while it. is in progress, and to order changes in the ambulanee arrangemerits according as the troops advance, retire, or othervise change position. Even with these advartages, the difficulties of adequately meeting the wants of the wounded must always be very great, owing to the rapid manceurres of the troops, the varying features of the ground over which battles are extended, and the rapidity with which the wonnded fall; but without a proper organisation arranged beforehand, the difficulties are insuperable, and no help of much value can be afforded until all fighting has ceased.

Ambulance arrangements have to be modified to scit particular militity operations, such as when troops disembark on a hostile shore, on ociasion of sieges, \&c.

Ambulance Staff.-The scheme of ambulance administration and action just described involves the necessity of a staff comprising the following personnel, viz. :-1. Bearers of wounded; 2. Surgeons and attendants; 3. Ambulance train.personnel; 4. Ambulance police; ${ }^{-5}$. Servants to officers.

Bearers of Wounded. - These are soldiers specially trained and told off for the duty of pieking up and carry. ing the badly wounded on stretchers. In Continental armies special provision is made to meet this particular want, but under different systems in different armies. In the Prussian army companies of bearers, distinguished by a particular uniform, and denominated "sanitäts-detachements," have the duty assigned to them of gathering the wounded during battles, and carrying them to the dressing and field hospital stations. Each of these bearer columns consists of a military staff of officers for discipline and direction, non-commissioned offeers, buglers, and a large number of bearers; a special medical staff, with assistanta and dressers; a transport staff of non-commissioned officers and drivers, with a certain number of stretehers, wheeled stretcher supports, sick transport waggons, and store waggons for the carriage of instruments, dressings, and other necessary materials. Separate establishments exist for the field hospitals. In addition to these sanitary detachments, auxiliary sick-bearers (Hilfs-hrarkenträoer) are provided for service on occasions of great battles. To form these auriliaries, four men in each company of every battalion of the army are practised at regular periods with the sanitary detachments in time of peace in the modes of picking up, temporarily attending to, and carrying wounded. These auxiliary bearers wear the uniform of their regiments, of which they perform the ordinary duties, but have a distinguishing badge on the left arm when serving as bearers. When a battle is imminent, the auxiliary bearers fall out, are provided with stretchers and other needful appliances from the ambulance waggons, and act under the orders of the officers of the divisional sanitary detachments. The system in the Austrian army is very like that in the Prussian. In the British army no corresponding establishment exists. The hospital attendants belonging to the Army Hospital Corps are trained in all that refers to the care of wounded men, but in time of war they will be too urgently needed for their duties in the field and fixed hospitals to be spared for duty as bearers of the wounded from the field to the dressing stations. The regimental bandsmen are generally regarded as available for these duties in the British service; but though the army regulations order that bandsmen are liable to serve in the ranks on an emergency, they nowhere constitute them bearers of wounded, nor do bandsmen receive the necessary training to fit them for the duties. As it is understood that the ambulance arrangements of the British army are at present under consideration, this, with other details, will probably be shortly placea on a settled basis.

Surgical Staff. - This section embraces the medical officers (administrative and executive), the dispensers of medieine, and the officers, non-commissioned officers, and men of the Army Hospital Corps. The last-named corps includes the dressers, nurses, cooks, and all the hospital subordinates who are required for the care, dieting, watching, and protection of the patients, for the hospital-correspondence, \&c. The men act proiessionally under the directions of the surgeons ; in respect of other matters, under their own offeers. The constitution and duties of the several divisions and grades of the army medical department are shown in a special code of instructions known as the "Army Medical Regulations."

Ambulance. Train.-On the officers and men of the
ambulance train devolve the duties of conducting the wheeled transport, and the mule litters and cacolets when such conveyances are used. In the British servico theso duties are entrusted to the ordinary transport branch of the Control department. It has been recommended that the afficers and men to whom these duties are entrusted should be specially selected and trained, as well as familiarised, to co-operate with the bearers and ambulance corps. They would thus form an ambulance train somewhat like that which exists in the sanitary detachmenta of the Prussian army.

Military Servants.-Orderlies are required as servants to the ambulance surgeons and other officers, in order that they may give their time fully to the concerns of the sick and wounded. When special orderlies are not provided, men of the Army Hospital Corps usually act as servante to officers, - a bad systom, for the whole time and services of these trained men should be devoted to their legitimate functions.

Ambulance Police-Many irregularities are liable to oceur in the rear of troops engaged in a general action; not so much from aets of the troops themselves as from camp followers, hired drivers, and others. The officers charged with the military discipline of the bearer, train, and hospital corps hare other pressing duties to engage them on such occasions. In the British army it devolves on the provost-marshal to arrange for this service.

Ambulance Equipment.-As before mentioned, ambulance equipment divides itsolf into two categories:-l. The medical and surgical equipment; 2. The equipment for the transport of wounded. These divisions will therefore be notieed separately, and the description will be confined to the equipment supplied in the British army for service in Europe. In India and in tropical countries epecial ambulanee equipments are rendered necessary.

Medical and Surgical Equipment.-This portion of ambulance equipment consists of the articles necessary for the service of the wounded in the field itself, at the dressing stations, and in the field hospitals. It has to be distributed in forms such that it may be readily conreyed to the places where it is required, and such also as will admit of its being hastily packed up and removed should the circumstances of the field operations require it. At the same time, these forms must be, adapted for use at all seasons of the year, for passage over all deseriptions of ground that troops can march over, and must be protected against the effects of exposure to all rarieties of weather.

It would occupy too much space to name the articles comprising this equipment. The special forms under which it is issued will be mentioned, and a brief explanation of them and the nature of their contents be added.

The equipment is distributed as follows:-Supplies of instruments, dressings, medicines, and restoratives, of first necessity, in small cases named "medical feld companions," and in large cases named "field panniers;" of cooking utensils and other articles for field hospital service in "canteens;" of articles of light nourishment, stimulants, \&c., in "medical comfort boxes;" of hospital tents, bedding, and the bulkier articles of surgieal equipment, in ambulance equipment carts or store waggons. In addition, every soldier on taking the field is supplied with a "field dressing;" each surgeon carrics a pouch-belt, arranged both for distinguishing his functions and at the same time carrying his "pocket case" of instruments; and each Army Hospital Corps man has his "onderly's dressing-case." Every wounded man has therefore on his person the means of a first dressing for his wound, every surgcon has at hand instruments for affording surgical aid, and every ambulance and field hospital attendant the
means of assistung the surgeon in his duties. Moreover, wherevor tho soldier can go, there the first two forms of the surgical equipment-the medicas field companion and the field paniers-can also be taken. The articles for use in the field hospitals, being carried in wheeled vehicles, can only move where tho other transport of the army can be taken.

Medical Fiell Companions.-These are small cases carried by men of the Army Hospital Corps selected to accompany surgeons. They consist of two pouches and a vallet, worn nearly in the same way as the pouches and belt-bag in which anmunition is carried by combatant troops. The two pouches, carried on the waist-belt, contain small supplies of essential medicines and styptics; the surgical wallet, also carried on the waist-belt, and supported by valise straps, contains materials for surgical dressings and other articles. As theso attendants are not armed with rifles, they can carry their valises and the medical field compauions at the same time without inconvenience. With each medical feld companion is carried, by a shoulder-strap, a water-bottle and a drinking-cup.

Field Panniers.-These are tough wicker baskets covered with hide, each being 2 feet 2 inches in length, by 1 foot $2 \frac{1}{2}$ inches in breadth, and 1 foot $4 \frac{1}{2}$ inches in depth. They are supplied in pairs, and are arranged for being attached to a pack-saddle and carried on a bât-pony or mule. They are capable of being opened while on the animal in such a way that all the contents can be readily got at. The field panuiers contain instruments for important surgical operations, chloroform, surgical materials (such as splints, bandages, plaisters, \&c.), a lamp, supplies of wax candles, resteratives, and medical comforts in concentrated forms, and other articles necessary for urgent cases at the dressing stations and field hospitals. Each pannier has a double lid, and the four lids of the two panniers, when they are laid on the ground, can be connected so as to form a substitute for an operating table.

Ficld. Hospital Canteens.-These are also supplied in pairs, and are distinguished as Λ and B canteens. They are wooden boxes nearly similar in size to the field pauniers, so that, although usually carried in the equipment vehicles, they can, in case of need, be carried on the backs of battanimals. Their contents consist of camp-kettles and other utensils for cooking purposes; tin plates, drinking-cups, and other such requisites; sets of measures and weights; a lantern of coloured glass for indicating the field hospital at night; together with rarious articles required for the service of patients in a tent or other field hospital.

Medical Confort Boxes.-These also are supplied in pairs, and resemble the canteens in shape and dimensions. The contents of the two are different, and they are therefore marked No. 1 znd No. 2 respectively. Each box is partitioned and fited with cases or bottles with labels indicating their coutents. These principally consist of essence of becf, groceries, arrowroot, preserved vegetables, brandy, wine, and sundry accessory articles. The wounded are supplied with the same rations as the healthy troops, and they are turned to the best account available for their nutriment, supplemented by such medical comferts as are named above.

Ambulance Equipment Traggons.-In these vehicles are carried the tents for forming the field hospital in case of no building being arailable, with a supply of blankets, waterproof covers, and other articles of bedding for the patients. The canteens and medical comfort boxes are also married in these vehicles. Certain implements, as reaping-hooks, spades, pickares, saws, which are constantly required when men aro thrown so much on their own resources as they must be in campaimniug, are also carried in the equipment nagovul.

Ambulance Equipment for lle Transport of Wounded Troups.- The aubulance conteyances authorised for use in the lritish army are of four kinds. They are the fol-lowing:-1. Conveyances carried by the hands of bearers, called stretchers; 2. Conveyances wheeled by men, wheeled stietchers; 3. Conveyances borne by mules, mule litters and mule cacolets; and 4. Whecled conveyances drawn by horses, ambulance waggons. The forms of all these conreyances have been lately revised by a committee which was appointed in 1868 by Sir J. Pakington, then Seeretary of State for War, to inquire into the genesal question of ambulance and hospital conreyances for the arny, and the new pattern vehicles havo now been authorised for use.
(т. L.)
amelot de la houssaye, Abratam Nicolas, historian and publicist, was born at Orleans in February 1634, and dier. 20^{*} Paris 8th December 1706. Little is known of his puisonal history beyond the fact that he was secretary to an embassy from the French court to the republic of Venice. At a later period he was imprisoned in tho Bastile by order of Louis XIV. In 1676 he published at Amsterdam his Histoire du Gouvernement de Venise, in three volumes. Under the assumed name of De ia Mothe Josseval, he published in 1683 a translation of Fra Paolo Sarpi's History of the Council of Trent. This work, and especially certain notes added by the translator, gave great ofience to the adrocates of the unlimited authority of the pope, and three separate memorials were presented to have it repressed. Amelot also published translations of Machiavel's Prince, and of the Annals of Tacitus, besides several other works.

AMELOTTE, Denis, a French ecclesiastic and author, was born at Saintes in Saintonge in 1606, and died October 7, 1678. Soon after recciving priest's orders he became a member of the congregation of the oratory of St Philip Neri. In 1643 he puolisbed a Life of Charles de Goudren, second superior of the congregation, which by some of its remarks on the famous abbot of St Cytan, gave great offence to the Port Royalists. Another work, containing a wehement attack on the doctrines of the Janscnists, still further embittered the feclings of the partv towards him, and clicited from Nicole a severely satirical reply entitled Idée Gónérale de l'Esprit et du Livre du P. Amelotte. Amelotte in revenge availed himself of his influcnce with the chancellor to prevent the publication of the newly - completed Port Rujablist translation of the New Testament, which had therefore to be issued at Mons in Flanders. He thus secured a free ficld for a translation of his own with annotations, which appeared in 4 vols. octaro in 1666-8. The dedication to the archbishop of Paris contained another abusive denunciation of the Jansenists.

AMENTIFERA, or AMENtaces. Under this name are

Betula alba (the coramor birch), an amedtifcroos tree, the male fowers, a, are produced in ecaly catkins, and so are the fcmalo catkins,
fowers, b. included apetalous uniscxual plants bearing their flowers in catkins (amenta). This group of plants includes trees and shrubs chicfly of temperate climates. It is divided into the following orders :- Salicacea, willuws and poplars ; Corylacea or Cupulifera, hazel, oak, heech, chestnut, hornbeam, dc. ; Betulacee, birch, alder; Casuarinacea, Casuarina (beefwood); Altingiacece or Balsamifuce, liquidambar; Platanacea, the plane; Juglandacea, walnut; Gurivacu Carrya; Myricacec, bog myrtle.

A M ERICA

0UR object in this article is to take a comprehensive survey of the American continent in its physical. moral, and political relations. In attempting this, we shall dwell at some leagth upon those great features and pecutiarities which belong to it as a whole, or facts which can be most advantageously considered in connection with one another. The new contineut may be styled emphatically "a land of promise." The present there derives its greatest importance from the germs it contains of a mighty future. It is this prospective greatness which lends an interest to the Western continent similar to that which the Eastern derives from its historical associations. But the Western continent also has its past, which abounds in points of interest relating to both the historic and prehistoric periods. Facts show that although America may be called the New World in consequence of its hariug been the last to come under the general knowledge of geographers, it is from most other points of view an old world. It abounds in the oldest known strata; it has yielded some of the oldest known remains of man, indicating that he has long been a denizen there ; and it has afforded evidences of a civilised era, which may even have preceded that of Western Europe.

The new continent, when compared with the old, enjoys three important advantages. First, it is free from such vast deserts as cover a large part of the surface of Asia and Africa, and which not only withdraw a great proportion of the soil from the use of man, but are obstacles to communication between the settled districts, and generate that excessive hear whica is often injurious to health, and always destructive to industry. Secondly, no part of its soil is so far from the ocean as the central regions of Asia and Africa. Thirdly, the interior of America is penetrated by majestic rivers, the Mlississippi, Amazon, and Plata, greatly surpassing those of the old continent in magnitude, and still more in the facilities they present for enabling the remotest inland districts to communicate with the sea.
in the physical formation of North and South America there is a remarkable resemblance. Both are very broad in the north, and gradually contract towards the south till they end, the one in a narrow isthmus, and the other in a narrow promontory. Each has a lofty chain of mountains near its western coast, abounding in volcanoes, with a lower ridge on the opposite side, destitute of any recent trace of internal fire ; and each has one great central plain declining to the south and the north, and watered by two gigantic streams, the Mississippi, corresponding to the Plata, and the St Lawrence to the Amazon. In their climate, vegetable productions, and aninial tribes, the two regions are tery dissimilar.

The extent of the American continent and the islands connected with it is as follows:-

North America.	are Eng. miles. . 400,000
South America.	6,500,000
Islands.	150,000
Greenland; and the islands connected with it lyin	ng \} 900,000

14,950,000
The American continent, thercfore, with its dependent islands, is four times as large as Europe, and about onethird larger than Africa, but somewhat less than Asia, while it is nearly five times the size of the Australian continent. It constitutes about three-tenths of the dry land on the surface of the globe. It is characterised by haring a greater length from N. to S. than any other continent; and by the northern aud sorthern portions being connected by a
comparatively narrow strip of land. South America hes ${ }^{\text {a }}$ more regular forn. and as a mass is situated much farther east than North America. In South America the most central point lies in about $58^{\circ} \mathrm{W}$.; but in North America the most central point would be in about $100^{\circ} \mathrm{W}$.

Sketch Map of America
As regards continuity of land, America comprises some islands at the southern end ; a main continental portion, including South America, Central America, and North America; some islands of the north shore, and many other islauds along the east and west coasts, those on the east being the most important. The most northern point of the mainland is that of Boothia Felir, in Bellot Strait, $71^{\circ} 55^{\prime}$ $\mathrm{N} ., 92^{\circ} 25^{\prime} \mathrm{W}$. The islands to the north extend beyond $82^{\circ} 16^{\prime} \mathrm{N} .65^{\circ} \mathrm{W}$., which point was reached by the "Polaris" in August 1871. The southernmost point of the mainland is Cape Froward, which lies close to $54^{\circ} \mathrm{S}$., $\overline{\mathrm{I}} 1^{\circ} \mathrm{W}$; ; while Cape Horn, the most southern point of the islands, isin $56^{\circ} \mathrm{S}$., $67^{\circ} 20^{\prime} \mathrm{W}$. The extreme points traced are consequcntly 138^{6} apart ; and the contiuental part stretches over about 126 degrees of latitude. This corresponds to lengths of S2S0 and 7560 geographical miles respectively. The extreme east points of the contineut are Cape St Roque, in $5^{\circ} 28^{\prime} \mathrm{S} ., 35^{\circ} 40^{\prime}$ W., in South America, and Cape St Charles, in $53^{\circ} 17^{\prime} \mathrm{N}$., $55^{\circ} 35^{\prime} \mathrm{W}$., in North America. The most western point of South America is Point Parina, in $4^{\circ} 40^{\prime} \mathrm{S} ., 81^{\circ} 10^{\prime} \mathrm{W}$.; and of North America, Prince of Wales Cape, in $65^{\circ} 30^{\prime}$ N., $167^{\circ} \mathrm{W}$. The greatest breadth of North Americs is
between Cape Lisburne and Melville Peninsula; and of South America, between Pernambuco and Point Aguja. The narrowest part is 28 miles, at the isthmus of Panama. The nearest approach to the Old World is at Behring Strait, which is 48 miles across, and shallow. On the east side the nearest point to the Old World is Cape St Roque, which is opposite the projecting part of the African coast at Sierra Leone. Greenland is separated from the archipelago of Aretic America by a deep and for the most part broad sea, and seems naturally to belong to the European rather than the American area.

North America, with the general form of a triangle, naturally divides itself into five physicalregions: 1. The table-land of Mexico, with the strip of low country on its eastern and western shores; 2. The platean lying between the Rocky Mountains and the Pacific Ocean, a country mith a nild and humid atmosphere as far north as the 55th parallel, but inhospitable and barren beyond this boundary; 3. The great central valley of the Mississippi, rich and well wooded on the east side ; bare but not unfertile in the middle; dry, sandy, ond almost a desert on the west; 4. The eastern declivities of the Alleghany Mountains, a region of natural forests, and of mixed but rather poor soil; 5 . The great northern plain beyond the 50 th parallel, four-fifths of which is a bleak and bare waste, overspread with innumerable lakes, and resembling Siberia both in the physical character of its surface and the rigour of its climate.

South America is a peniusula likewise of triangular form. Its greatest length from north to south is 4550 miles; its greatest breadth 3200 ; and it covers an area, as already mentioned, of $6,500,000$ square English miles, about three-fourths of which lie between the tropics, and the other fourth in the temperate zone. From the configuration of its surface, this peninsula also may be divided into five physical regions1. The low country skirting the shores of the Pacific Ocean, from 50 to 150 miles in breadth, and 4000 in length. The two extremities of this territory are fertile, the middle a sandy desert. 2. The basin of the Orinoco, a country conaisting of extensive plains or steppes, called Llanos, either destitute of mood or merely dotted with trees, but covered with a very tall herbage during a part of the year. During the dry season the heat is intense here, and the parched soil opens into long fissures, in which lizards and serpents lie in a state of torpor. 3. The basin of the Amazon, a vast plain, embracing a surface of more than two millions of square miles, possessing a rich soil and a humid climate. It is covered almost everywhere with dense forests, which harbour innumerable tribes of wild animals, and are thinly inhabited by savages, who live by hunting and fishing. 4. The great southern plain, watered by the Plata and the numerous streams descending from the eastern summits of the Cordirieras. Open steppes, which are here cailed Pampas, occupy the greater proportion of this region, which is dry, and in some parts barren, but in general is covered with a strong growt h of weeds and tall grass, which feeds prodigious berds of horses and cattle, and affords shelter to a few wild animals. 5. The country of Brazil, eastward of the Parana and Uruguay, presentingalternate ridges and valleys, thickly covered with rood on the side next the Itlantic, and opening into steppes or pastures in the interior.

In our more particular description of the physical conformation, the geological structure, the mountains, rivers, and forests, and the climates of America, we shall first deal with the southern peninsula, as having the more strongly marked conditions.

The mountain areas of South America are, as a general rule, those which have received the thickest accumulations of sedimentary matter, and this thickness is nearly proportinalal to their beight. Durug the periods of the furmation of such deposits, these areas were to a great
extent areas of subsidence, and since thoso beds which once formed the sea bottoms now constitute the highest peaks, these areas must have been subjected to subsequent upheaval. Vertical movements of this kind have occurred again and again, indicating that these areas are specially liable to disturbance, either from comparative weakness or from the greater comparative power of the moving forces. The history of the movntain chains is almost coextensive with that of the continent itself. In the sea the beds were deposited borizontally, or nearly so; and at certain intervals the deposition was arrested, in conseqnence of the beds being uplifted above the sea. Each successive submergence and emergence occupied a long period of time, during which the rocks were at one time faulted, folded, and metamorphosed, and at other times denuded both by the sea and by meteoric agents. As a general rule, the strike or line of direction of the strata ran approximately parallel to the trend of the shore line on the large scale, and the dip was at right angles to their direction. During each elevation the land was uplifted in a broad band, the axis of which ran parallel to the shore of the sea in which the beds were formed. The axes of the principal folds and faults usually run parallel to the stratigraphical axis or strike. The principal ridges formed during the same period usually coincide in direction with the stratigraphical striko of the bed forming them. In the mountains of South America, and especially in the Andes, several of these groups of ridges, formed at different periods, combine to mako up a single system of mountains. The high range of mountains which extends from the most southern parts of South America, and runs approximately on the same meridian of 72° to the isthmus of Panama, forms the Andes. Theso consist of a vast rampart, having an average height of some 11,000 or 12,000 feet, and a width varying from 20 to 300 or 400 miles. In most places the chain rises to heights of sereral thousand fect, and upon this chain rest two or three principal ridges of mountains, enclosing lofty plains or valleys, separated one from another by mountain knots, which mark the spots where ridges belonging to different systems intersect. In one sense, the lofty plains of tho Desaguadero, Quito, and others, are valleys, since they are encompassed by mountains; but in a certain senso they are plateaus, since they form the broad summit of the range or platform on which the bounding ridges themselves stand. Further details respecting the Andes are given under Andes, and in the geological remarks of this article.

Three branches or transverso chains proceed from the Andes, nearly at rigl.t angles to the direction of the principal chain, and pass eastward across the continent, about the parallels of 18° of S . and 4° and 9° of N . latitude, thus forming the three natural areas of the Orinoco Amazon, and La Plata river basins. The most northern of these is "the Cordillera of the coast," which parts from the main trunk near the south extremity of the lako Maracaybo, reaches the sea at Puerto Cabello, and then passes eastward through Caraccas to the Gulf of Paria. Its length is about 700 miles, and its medium height from 4000 to 5000 feet; but the Silla de Caraccas, one of its summits, has an elevation of about 8632 fect; and its western part, which is at some distance from the sea, contains the Sierra of Merida, 15,000 feet in height. The sccoud transrerse chain is connected with the Andes at the parallels of 3° and 4° north, and passing eastward, terminates in French Guiana, at no great distance from the mouth of tho Amazon. It consists properly of a succession of chains nearly parallel to the coast, and is sometimes called the Cordillera of Farine, bat is named by Humboldt the "Cordillera of the Cataracts of the Orinoen," because this river, which flows amidst its ridees in the
upper parts of its course, forms the cataracts of Maypure at the point where it descends into the plains. Its mean height is estimated at 4000 feut above the level of the sea; bnt at about 70° and $75^{\circ} \mathrm{W}$. longitude, it sinks to less than 1000 feet, and at other points rises to 10,000 . This chain divides the waters of the Orinoco and the rivers of Guiana from the basin of the Amazon, and is covered with magnificent forests. Its breadth is supposed to be from 200 to 400 miles, and it encloses amidst its ridges the great lake Parimé, in longitude 60°, and several of smaller size. At the Caratal gold-field, which lies south of Angostura, the range is about 60 miles scross, and the watershed sbout 1100 feet above the sea. On a table-land forming part of it , about the 67 th degree of longitude, the Cassiquiari forms an intermediate channel which coninects the rivers Orinoco and Negro, so that, during the annual floods, a part of the waters of the former flows into the letter. This singular phenomenon was made known long aso by the Spanish missionaries, but was thought to be a feble till the truth was ascertained by Humboldt. The length of this chain is about 1500 miles. The third transverse chain leaves the main trunk near $17^{\circ} 25^{\prime} \mathrm{S}$., snd extends almost as far as Santa Criuz, near the river Mamore. Some of the mountains in the western part are of considerable height. South of this range are a number of ridges having an east and west direction, an average height of about 10,000 feet, and terminating in the plains near the Paraguay.' This country, which divides the waters of the Amazon from those of the Plata, is a broad plateau of elevated land, rather than e distinct mountainous ridge, and consists of low hills or uneven plains, with very little wood, presenting in some places extensive pastures, and in others tracts of a poor sandy soil. Its average height probably does not exceed 2000 or 3000 feet sbove the level of the sea.

The mountains of Brazil, which are of moderate height, and occupy a great breadth of country, form an irregular plateau, bristled with sharp ridges running in a direction approximately parallel to the eastern coast, connected by offsets running in a more or less east and west direction. They extend from 5° to 25° of south latitude, and their extreme breadth may be about 1000 miles. Between Victoria on the nerth and Morro de St Martha on the south, e, range with numerous curves lies a little way back from the coast, and is, for the greater part of its length, known as the Sierra do Mar; somewhat farther inland is a higher range, the different parts of which have different names, but it is best known as the Sierra de Mantiqueira. It contains the highest peaks in Brazil, amongst which may be mentioned Mount Itacolumi, famous for the gold and diamond yielding strata in its vicinity; the Pico dos Orgaos, which is 7700 feet high; and Itambe, 8426 feet. Some of the peaks are believed to be even higher. West of this the uplands of Brazil stretch far into the interior, and at length sink into the great central plain through which flows the Paragusy and its tributaries.

Although large areas of South America remain as yet unexplored by geologists, the researches of D'Orbigny, Humboldt, Boussingault, Darwin, Forbes, Agassiz, and many other travellers, suffice to give an approximately correct general view. This is mainly oring to the simplicity of the stratigraphy of the country. The same groups of rocks spread orer such extensive areas, that, from what is seen in the areas which have been examined, we can safely infer the general condition of those which have not been explored. The gencral disposition of the rocks is as fol-lows:-The oldest rocks, which are Pre-Silurian, possibly Laurentian, form the outermost rim of the continent, of which the N.E. and S.E. corners have probably been swept away. These corners now correspond with the mouns
of the Orinoco, the Amazon, and the Le Plata rivers. Within this basin, and followng close npon these old rocks, are schists and quartzites, which are in all proba. bility of Silurian age. These enter largely into the transverse ranges by which the central hollow is subdivided into three basins. Within this again are sandstones and limestones, usually referred to the Carboniferous period, which also form part of the transverse ridges. A band of rocks of eccondary age follow, some of which are believed to be Triassic, while others are identified as Cretaceous. Tertiary beds, some of Miocene date, together with Post-Tertiary beds, cover the largest part of the sreas of the great river basins and the hollows in the mountain range, and also occur on the sear ward flanks of the principal chains.
By following the development of these beds, we shall be able to give e brief account of the growth of the present coatinent. In the Argentine Confederation a few bosses of gneiss protrude through the more recent beds constituting the Pampas. Granite, supporting gneiss snd quartzite, occurs along the coast of Chili In Bolivia we find a range of granitic monntains which bave a general direction somewhat to the E. of N., and which sre flanked on either side by zones of gneiss and quartzite. The gneiss also prevails along the shores of Peru, Ecuador, and Nesp Granada, or, to call it by the name which it received in 1861, Columbia The gneiss is again seen at the eastern base of the Andes, in the last-mentioned State, associated with quartzites, and both these can be traced along the Venezuelan coast. Gneiss is largely developed near Angostura, and has a strike spproaching E. snd W. At Limones, which is near the Caratal gold-field, the country consists largely of granite and gneiss, which latter lies here a little to the E. or to the W. of N. In Brazil the gneiss forms a long band from Bahia to the southorn portion of the province of Santa Catharina. Near the coast it rests apon and apparently passes into granite; but towards the west, as far as the Mantiqneira chain, it gradually becomes more and more schistoid. Gneiss, again, is mot with in the mountains which stretch throngh the Bolivian provinces of Moxos and Chiquitos. It has not been ascertained if these older rocks appeared above the waters before the deposition of those which follow, and which will next be noticed.
In Chili the succeeding rocks are slaty schists. In Bolivia the mountainous district-crossing the country is largely composed of talcose schists, which, where exposed to the weather, have formed by their decomposition a layer of clay; in sdvancing from the east tewards the west the schists become more and more crystalline, and are at last replaced by gneiss. This, as has already been stated, rests against granite, on the west side of which gneiss is again brought in by an anticlinal arrangement of the beds, and dips beneath a thick mass of achists, which constitute the great bulk of the Andes in this district. In this mountain range the lower portion of the formation is mainly siliceous schist, alternating with beds of compact quartz; above this come talc-bearing quartrites, alternating with slaty schists, which latter become more snd more prevalent as we ascend in the strata, and at last constitute the predominating rock. They form, indeed, the crest of the range; the thickness of the formation may be roughly estimated at 10,000 feet. These rocks are ranch disturbed and faulted sgainst other and probably newer rocks, which with them constitute the great builk of the lofty eminences in the range of which Mount Illimani forms so conspicuous e.feature. The lower argillaceous schist, which is associated with gueiss all along the Pacific coast from lower Peru to Panama, possibly belongs to this group of rocks. In the high ralleys of Ecnador the oldest rocks visible are granite, gneiss, and schists, which are froquentiy in a vertical pasition. The schistose group appears
to be absent on the east side of tho Andes in Columbia, as also along the coast of Venezuela. In the mountain range south of the Orinoco, hornblende, talcose, and mica schists sgain appear on a largo scale, more especially in the Caratal distriet, where auriferous veins occur. In Brazil the micaceous and talcoso schists enter into the composition of the Mantiqueira chain and of the uplands to the west; they probably pass beneath tho valley of the Panama, sinco they occur to the west of it, and extend through the prorinces of Goyaz and Matto Grosso; so as to approach within a moderate distance of the similar strata in Bolivia. They are associated with tale-bearing quartzites, which are famous for the diamonds and auriferous partieles they have yielded in tho district around Mount Itacolumi. The soil is usually a clay, such as would result from the decomposition of talcose sehist; but we shall have occasion to refer to tho soil of South America subsequently. Some of these rocks in various parts of the continent have yielded Silurian fossils. Facts are not sufficient yet to warrant the correlation of these strata with thoso of other corntries, or to settle how far thoy belons to distinct geological periods. The prevalent strike of the rocks is abort east and west, but sometimes the strike approaches to a north and south direction. At any rate, the rocks which overlio them do so unconformably, indicating that, prior to the deposition of these newer rocks, land had appeared at least once on arcas now constituting part of South America. At this early date the continent was represented by a fer islands only; one corresponded with part of Brazil, another with parts of Venezuela and Columbia; perhaps a third more or less with Peru, Bolivia, Ecuador, and Chili; while a few small islands appeared where now we have the Pampas. These were the nuelei around which the present land has accumulated, and already wo see faint indications of the existing outline and broad geographic features of the future continent.

The next group of rocks are always in stratigraphical discordance with those bencath them; and, in consequence of the highly metamorphosed condition of those on the west side of the continent, it is difficult to correlate them with the rocks of Brazil. In the Andes of Chili they are represented by enormous stratificd masses of quartzose porphyries, which thero is good reason to beliere are metamorphosed argillaceous schists aud felspathic sandstones, into which rocks they have been seen gradually to pass. These porphyries not ouly form the great bulk of the principal chain of the Andes, but also the smaller chain on the west, the interval between them being formed by the longitudinal rallcy of Chili. Further west they rest on syenitic rocks, beyond which come the older rocks already noticed. On passiug into Bolivia, we find that to the west of the great fault developed there, the beds consist of micaceous sandstones and dark bituminous schists, which aro believed to bo the equivalents of the porphyrics of Chili. Such formations constitute the rest slope of tho Andes from Sorata to Illimani, and also form two bands, oae stretching from Hlimani to Cochabamba, the other between Calamarca and Chayanta. Towards the west they dip beneath black bituminous and siliceous limestones, which are well developed near Tiahuanae:. Carboniferous strata with seams of coal occur near Pisco und Arequipa in Peru. In Brazil tho beds which succeed those previously mentioned aro quartzites, rich in mica and magnetic oxide of iron; taleoso schists; and crystallino limestones, containing e great deal of talc. These rocks form the lighest regions and loftiest peaks in Brazil. Unconformably upon these rest micaceons sandstones and argillaceous schists, which occupy the western part of St Paul prorince betweea Itu 3ad tho banks of the Parana. In Mount Arasogaba and some other places, a carboniferous limestone succeeds and
is overlan by a thick whito or yellowish sandstone, siliceous limestones, and bituminous schists. The limestoaes occupy most of the area between the Uruguay and the Parana. In the Diamantina district the carboniferous limestono is overlain by red sandstone, which belongs to the succeeding group of beds. Tho beds in Brazil appear to be fuller than those on the west side of the continent, and represent probably both tho Devonian and Carboniferous periods. Rocks of this ago aro also exposed in a narrow band round portions of the basin of the river Amazon. The strata ncxt in succession aro of secondary age. The lowest formation is a red sandstone, which is spread over a very extensiva ares It is remarkably well developed in Chili, where, together with more recent beds, it is a marked feature in the crest of the Andes. In the small chain to the west it is associated with conglomerates. In the small chain of Colorado, near Tiahuanaco, a thick conglomerato rests on the older limestones, and supports red sandstones and conglomerates dipping west beneath marls. Tho red sandstone extends across the province of Carangas, and uninterruptedly over both slopes of tho westera Cordillera. In the desert of Atacama the red sandstone, with the overlying marls, forms a number of parallel chains directed north and south. Red sandstones and conglomerates form the base of the Cordilleras of Quito; they stretch north into the basins of the Magdalena and Cauca rivers, and east over the basin of the Orinoco. In the province of Bahia, and far away to the north, there is a great development of red sandstone. The age of these sandstones has been variously stated; their stratigraphical positioa would indicate a secondary age. and possibly they may be Triassic. After their deposition, and prior to that of the marls, syenitic rocks wero introduced amongst the strata in the Andes, causing the red sandstones, as also the older sandstones and schists, to be converted into porphyries. This eruption was also accompanied by, and probably connected with, the formation of auriferous veins, the elevation of the strata, and the faulting of the rocks. The strike of tho strata, as also of the faults, was about 8° to the E. of N., but subsequent movements hare modified the direction in places. The red sandstone has a similar strike from Venezucla in the north to Magalhaens Strait on the south, and this farours tho idea that all are of the same age. Scveral of tho ranges in the Andes bave a corresponding direction. As the sandstone is believed to underlie the basins of the grcat rivers, it appears that during its depositiou South America was still represented by a few large islands only. Its eleration gave rise to north and south trending mountains, whereby these scattered portions were connected, and tho Andes received their first developmento The great features of the continent were then first dis tinctly marked out, and only a few gaps remained to ba filled up. Tho next succeeding period, represented by strata, is characterised by saliferous and gypseous marls, which rest unconformably on the rocks beneath. In Chili they occur in the lower plains, or abut against the western spurs of the Andes; but they have been largely denuded, so that they now occur in isolated plateaux or basins, and there is a patch capping tho lofty Aconcagua. It is stated. that in Chili the marls, or at least some of them, are Liassic In Bolivia, also, they form plateaus betreen Saa Andre and the mountains of Tarija. Here they consist of alter. nations of greenish marls and wine-coloured beds support ing limestones, with interstratified beds of gJpsum and saiiferous clay. There are beds of gypsum and limeston ϵ in the Orinoco plains. Marls are associated with marly sandstones in the Gulf of Bahia and in the plains of Reconcavo. These beds are arranged along strikes which are approximately cast and west, and their elecation is apparently connected with the formation of chains running
in the same direction, as, for instance, most of the lateral spurs from the Andes. Some geologists think it is also connected with the east and west faults, through which, in the Andes, labradorite and hypersthenite rocks have been erupted. This eruption, it is said, has caused the metamorphism of the calcareous rocks into crystalline limestones, marls into jaspers, and red sandstones into porphyries; and has also given rise to the copper-bearing veins. Calcareous beds occupy large areas in Venezuela, Columbia, and other parts of the continent. Miocene strata occur in Venezuela, and probably in other districts. Finally, there are deposits of Post-Xiocene date, which chiefty belong to the Post-Pliocene and recent periods, and which cover most of the lower lands along the coasts and in the interior of the continent. In Chili they occur in the valleys, and fill up the gulfs in the old granite range near the coast. Here the succession is a calcareous sandstone abounding in marine shells and beds of lignite; above this is a pumiceous conglomerate, which passes in places into a pebbly conglomerate, and then follow the marine sands which stretch from Coquimbo across the desert of Atacama. The most recent formation is drift, which occurs in patches and sheets. In the valley plains of the Desaguadero there are clays and s2ady marls overlain by pumiceous conglomerates, which near La Paz are surmounted by drift. Near this place the drift is many hundred feet thick, and formed of large blocks; but, on receding from the mountains, it passes into a sand which encircles the plains of the Desaguadero, which are chiefly formed by limestone deposits, such as concretionary limestone, which abounds in the fossil remains of plants and fresh water shells. The lacustrine beds approximate in age to the marine tertiary beds near the coast. In Peru the pumiceous conglomerate is overlain by drift. Tertiary beds occur at Guayaquil in Ecuador, while in the valley of Quito there are enormous layers of pumice, scorix, and drift, which last has yielded the remains of varions Post-Pliocene mammals and terrestrial shells. Drift with similar remains occurs in the lower grounds of Columbia In the Gulf of Bahia there are recent beds; and near St Paul, as also in many other parts of Brazil, there are patches of lacustrine deposits. On the west side of the continent the pumiceous conglomerate is.intimately connected with trachytes, and indeed is formed from them. It is intermediate in age between the lacustrine beds, the marine deposits near the shore, and the drift, which is in its turn covered by the more recent lava overflows; and it is in this intermediate age that the upheaval of the principal chain of the Andes occurred. The ranges and faults which are assigned to this period, probably Pliocene or Post-Pliocene, run very nearly north and south This elcration did not materially alter the extent of land west of the Andes, its general effect being to add a strip about thirty miles in width. On he east the change was great, since the larger proportion of the great central plain then emergod, and thus connected the high lands on the east, wcst, and north into one great continent. The eruption of the trachytes, which furm so marked a feature in the Andes, was accompanied by a metamorphism distinct in character from those of earlier ages. The rocks were then subjected not only to heat and water, but also to acid rapours, which changed the felspar into sulphates of alumina and iron, salt into anhydrous sulphate of soda; and, probably, by freeing the chlorine and iodine, originated the chlorides and iodides which are ε abundant in the argentiferous veins. Since the drift there has been a slight elevation along a meridional axis.
Such is a brief account of the growth of South America. We must, however, mention that Professor Agassiz and hi= coadjutors believe that the red soil and immediately underlying beds, seeu near Rio Janeiro and in the valley of
the Amazon, are true glacial formations, and infer that the similar beds which are spread over such an enormous area in South America have been formed under similar conditions. Professor Agassiz has found moraines and ice-transported boulders in various places in the mountains of Brazil, as also indications of valley glaciers. Professor Orton has found marine shells in these beds at Pebas in Ecuador.

The foregoing sketch indicates that there have been several periods of volcanic activity; and that, so far as our present knowledge goes, such activity has only been manifested along the line of the Andes. Volcanic rocks have rarely been observed on the east side of the continent, but some of the Tertiary and Post-Tertiary beds of the plains contain matter which has been showered upon them during erup: tions, and which now forms a portion of the Pampean deposits. At one period or other the whole system of the Andes has been subjected to volcanic disturbance, but at the present time the active volcanoes occur in groups more or less midely separated. The most southern active volcano is Corcorado, in $43^{\circ} 10^{\prime} \mathrm{S}$. There are, besides, some twenty or more volcanic cones, of which about a dozen are known to be active. Bolivia has one or tro active vents, and Peru several; but it is in Ecuador, with its dozen ignivomous vents, that have occurred the grandest and most frequent displays. Columbia has four or five volcances. With the exception of the Moluccas, no country in the world has had so many and so destructive earthquake shocks as South America But these are concentrated, both as regards frequency and strength, along the Andes, and more particularly their western slope. Comparatively few are felt in the plains to the east of them; but occasionally it happens that shocks are felt at points on the opposite slopes of this great range without being perceived in the intermediate higher regions. Peru seems to be the principal focus of action; and next to it in importance as a seismic area comes Chili; but although some earthquake shocks spread over both these areas, there does not seem to be the community of action which we should expect between the two areas. In Peru the maxima of seismic intensity were in the decades ending 1590, 1610, 1660, 1690, 1710 , $1720,1730,1750,1770,1790,1840,1870$. In Chili they occurred in the decades ending $1580,1640,1650,1660$, $1690,1730,1780,1800,1820,1840,1850$. Nearly every other portion of the continent is subject to earthquakes. Bolivia, which lies between Peru and Chili, is compara tively free from them, as also are Brazi, Patagonia, and the Argentine Confederation, but they are more frequent in Ecuador, Columbia, Venezuela, and the three Guianas.

The mountains of North and Central America will not detain us long. The ranges of Central America have no relation to the Andes, differing from them both as regards age and direction, which is generally N. $55^{\circ} \mathrm{W}$., and being separated from them by gaps only a few hundred feet above the sea, and uprards of 100 miles wide. During the Tertiary period the mountains of N, and S. America had still less connection than at present, ior where the isthmus now forms a bridge of land there was a broad strait, which lasted up to the end of the Pliocene, or beginning of the Post-Pliocene period. Volcanoes are frequent in Central America; and basalt and other volcanic products cover a large portion of the country. The large derelopment of trachytes indicates an earlier period of volcanic activity, during which most of the Tertiary strata were metamorphosed into porphyries. At any rate these rest upon cretaceous limestones. In many places the clays and sandstones of the Cretaceous age have been metamorphosed into granite rocks. From Puebla to Durango the Mexican moantains no longer present the appearance of a chain, but spread out tw a tableland or clevated plain, from 5000
to 9000 feet in height, and from 100 to 300 miles in breadth. Acruss this plain, close to the 19 th parallel, six volcanoes are distributed in a line running east and west, as if a vast rent, extending from tho Atlantic to tho Pacific, had opened a passage for the internal fires of the globo at this spot. L'wo of those on tho east side of the continent, with a group of four or firo other cones lying between Jalapa and Curdoba, have an elevation exceeding 17,000 fest, and are tho only mountains in New Spain that rise to the region of perpetual suow, which commences hero at 15,000 feet abore tho level of the sea. Jorullo, the lowest of the six volcanoes, rose suddenly in the middlo of a plain, in Scptember 1759, after ftarful concussions of the ground, which continued for fifty or sixty days. Near the tropic the Mexican Cordillera divides into threo parts. Ono runs parallel to the eastern coast at the distance of thirty or forty leagues, and terminates in New Leon. Another proceeds in a north-western direction, and sinks gradually as it approaches the Californian Gulf in Sonora. Tho third or central Cordillera traverses Durango and New Mexico, divides the sources of the Rio Gila from the Rio Bravo del Norte, and dies out before reaching the Rocky Mountains.

In a recent scientific survey of tho Rocky Mountains, conducted by Professor Hayden of Yale College, a higher peak has been discovered than mas formerly known. Holy Cross mountain was computed to reach 17,000 feet above the sea, or 2000 feet higher than Big Horm $(15,000)$, which has hitherto been supposed to be the highest of the chain. The greatest alfitudes on the North American continent are now said to be the following-St Elias $(17,850)$ in Alaska, Popocatepetl (17,884) in Mexico, Orizaba $(17,337)$ in Mexico, Holy Cross (17,000), Rocky Mountains, Big Horn (15,000), and Mount Lincoln (14,300), both in the same chain. The Great Salt Lake of Utah is in $41^{\circ} \mathrm{N}$. and 112° W., and has intensely salt waters. It is nearly 300 miles in circumference, and its shores, for a breadth of several miles, are covered with an incrustation of very pure salt. It lies in a basin, which measures about 500 miles each way, and contains much fertile soil.

If we run a lise westward across the continent of North America at the latitude of Delarraro Bay $\left(38^{\circ}\right)$, the geologieal formations present themselves in the following order: -1. Tertiary and Cretaceous strata on the shores of the Atlantic; 2. Gnciss underlying these strata, and presenting itself on the eastern slopo of the Allegtany or Appalachian mountains, but covered in parts by New Red Sandstone; 3. Palrozoic rocks, consisting of Silurian, Devonian, and Carboniferous strata, curiously bent into parallel foldings, with synclinal and anticlinal axes, the crests of the latter forming the ridges of the Alleghany Mountains, which in this region rise to the height of 2500 fect. Upon these Palrozoic rocks rest three great coal-fields-the Appalachian, that of Illinois, and that of Nichigan, covering a large portion of the space between the Alleghanies and the Mississippi, snd embracing collectively an area equal to the surface of Great Britain. From the Mississippi westward to Utalı the Palroozoic rocks occur in great folds, between which are extensive areas of Triassic, Oolitic, Cretaceous, and Tertiary beds. In California the rocks are chiefly metamorphosed secondary strata on which lie patches of Tertiary sediments. In British America thero is an enormous development of the Laurentian and Iuronian rocks, which Ere the oldest yet discovered, and occupy most of the country immediately north of the large lakes. Newfoundland and the neighbouring British territories consist of Pre-Silurian, Silurian, Devonian, Carboniferous (which Encludes coal-fields of considerable extent), and Triassic rocks. The arca north of abont $40^{\circ} \mathrm{N}$. is also corered and strewed with glacial drift and boulders.

The Ozark Mountains resemble the Alleghanies in their
mineml structure, containing the same rocks from the granite to tho carboniferous, and probably upwards to the clalk.

In no single circumstaneo is the superiority of America orer the old world so conspicuous, as in the number and magnitude of its navigable rivers. The Amazon alone dis. clarges as greater quantity of water than the cight priscipal rivers of Asia, the Yenesei, Indus, Ganges, Oby, Lena, Anoor, and the Hoang-ho and Yang-tse of China. The Mississippi, with its branches, afords a greater arnount of inland navigation than all tho streams, great and small, which irrigate Liurope; and tho Plata, in this respect, may probably claim a superiority over the collective water of Arrica. But tho American rivers not only surpass those of the Old TVorld in length and volume of water,-they are so placed as to penetrate everywhere to the heart of the continent. By the Amazon, a person living at the eastern foot of the Andes, 2000 miles of direct distance from the Atlantic, may convey himself or his property to the shores of that sea in forty-five days, almost without effort, by confiding his bark to the gliding current. If he wish to return, he has but to spread his sails to the eastern breeze, which blows perennially against the streare. The navigation is not interrupted by a singlo cataract or rapid, from the Atlantic to Jacn, in west longitude 78° where the surface of tho stream is only 1240 feet above the level of its estuary at Para. The part of North America most remote from the sea is the great interior plain extending from tho Rocky Mountains to the Alleghanies and the lakes, between the parallels of 40° and 50°; but the Mississippi, Missouri, and St Lawrence, with their branches, are wonderfully ramified over this region, and the Dissouri is in some degree navigableto the centro of the continent. It is only necessary to cast, the eye over a map of South America, to see that all the most sequestered parts of the interior are visited by branches of the Plata and the Amazon. These streams, having their courses in general remarkably level, and seldom intorrupted by cataracts, may bo considered, without a figure of speech, as a vast system of natural canals, terminating in two main trunks, which communicato with the occen at tho equator and the 35 th degree of sonth latitude. Since the invention of steam navigation, rivers are, in the truest sense of the term, Nature's highways, especially for infant communities, where the people aro too poor, and live too widely dispersed, to bear the expense of constructing roads. There is littlo risk in predicting, that in two or three centuries the Dississippi, the Amazon, and tho Plata, will be the scenes of an active inland commerce, far surpassing in magnitude anything at present known on the surface of the globe. The Mississippi is narigable for boats from the sea to the falls of its principal branch the Missouri, 1700 miles from tho Mexican Gulf in a direct line, or 3900 by tho stream; and the whole amount of boat narigation afforded by the system of rivers, of which the Mississippi is the main trunk, has beell estimated as equal to 40,000 miles in kength, spread over a surface of $1,350,000$ squaro miles. This, horrever, is perhaps an cxaggeration; a navigable length of 35,000 miles may be nearer the truth.
The Amazon contains many islands, is broad, and in the upper part so decp, that on one occasion Condamine found no bottom with a line 620 fect long. At its mouth, two days before and after the full moon, the phenomenon called a Bore occurs in a very formidable shape. It is a bigh upright wave of water rushing from the sea, which no small ressel can encounter without certain destraction.

The estuaries of all these great American rivers open to the eastward: and thus Providence seems to have plainly
indicated that the most intimate commercial relations of the inhabitants of America should be with the western shores of the Old World. It should at the same time be observed, that this position of the great rivers of America is but one example of a physical arrangement which is common to the whole globe; for it is remarkable that, in the Old World as well as in the New, no river of the first class flows to the westward. Some, as the Nile, the Lena, and the Oby, flow to the north; others, as the Indus and. the rivers of Ava, to the south; but the largest, as the Volga, the Ganges, the Yang-tse, the Hoang-ho, the Euphrates, and the Amoor, have thcir courses to the east or south-east. This arrangement is not accidental, but depends most probably on the inclination of the primary rocks, which, in all cases where their direction approaches to the south and north, seem to have their steepest sides to the west and the longest declivities to the east. We have examples in the Scandinavian Alps, the mountains of Britain, the Ghauts of India, the Andes, and the Rocky Mountains.

The following table exhibits the lengths, size of the basins, and probable extent of the navigable waters of the greater rivers of America.

Tabie of Principal American Rivers.

	$\begin{gathered} \text { Length, } \\ \text { mailes, } \end{gathered}$	Area of basin, eq, miles	Navigable Waters, miles.
$\left.\begin{array}{l}\text { Mississippi to source of } \\ \text { Missouri }\end{array}\right\}$	4300	1,850,000	85,000
St Lavrence throngh the lake	2200	600,000	4,000
Orinoco.	1800	400,000	8,000
Amazon, not including Araguay.	4000	2,100,000	50,000
Plata, including Uruguay...	2400	1,200,000	20,000

The latitude and elevation of the land in each country, its position in reference to the sea, and the direction of the prevailing winds, are the chief circumstances which determine the nature of the climate. We have already mentioned that three-fourths of South America lie within the tropics, and the remaining fourth in the temperate zone; but, in both divisions, it might be naturally inferred that a huge wall like the Andes, rising into the atmosphere to the height of two or three miles, and running across the course of the tropical and extra-tropical winds, would excrt a powerful influence on the temperature, the humidity, añ the distribution of the seasons. This is actually the case; and it is this vast chain of mountains, with its prolongation in North America, which affords a ley to the most remarkable peculiarities in the climate of the whole continent. The subject, which has been frequently misunderstood, admits of being cxplained in a very simple manner.

The trade-winds blowing from the east occupy a zone 60 degrees in breadth, extending from 30° of N . to 30° of S. latitude. Beyond these limits are variable winds; but the prevailing direction in the open sea, where no accidental causes operate, is well known by navigators to bo from the west. Now these winds are thic agents which transport the equable temperature of the occan, and the moisture cxhaled from its surface, to the interior of the great continents, where it is precipitated in the shape of rain, dew, or snow. Mountains receive the moisture which floats in the atmosphere; they obstruct and lift the aerial currents, and by causing a reduction of temperature, favour precipitation. Rain, accordingly, in all countries fails most abundantly on the elevated land. Let us convider, then, what will be the effect of a mural ridge like the Andes in the situation which it occupies. In the region within the 30 th parallel, the moisture swept up by
the trade-wind from the Atlantic will be precipitated in part upon the mountains of Brazil, which are but low, and so distributed as to extend far into the interior. The portion which remains will be borne westward, and, losing is little as it proceeds, will be arrested by the Andes, and fall down in showers on their slopes. The aerial current will now be deprived of all the humidity which it can part with, and arrive in a state of complete exsiccation at Peru, where no rain will consequently fall. That even a much lower ridge than the Andes may intercopt the whole moisture of the atmosphere, is proved by a well-known phenomenon in India, where the Ghauts, a chain only 3000 or 4000 feet high, divide summer from winter, as it is called, that is, they have copious rains on their windward side, while on the other the weather remains clear and dry; and the rains regularly change from the west side to the east, and vice versa, with the monsoons. In the region beyond the 30 th parallel this effect will be reversed. The Anded will in this case serve as a screen to intercept the mois ${ }^{3}$ ture brought by the prevailing west winds from the Pacifis Ocean; rains will be copious on their slopes, and in Chili on their western declivities, but none will fall on the plains to the eastward, except occasionally, when the winds. blow from the Atlantic. The phenomena of the weather correspond in a remarkable manner with this hypothesis. On the shore of the Pacific, from Coquimbo, at the 30th parallel, to Amatapu, at the 5th of south latitude, no rain falls; and the whole of this tract is a sandy desert, except the narrow strips of land skirting the streams that descend from the Andes, where the soil is rendered productive by irrigation. From the 30 th parallel southward the scene changes. Rains are frequent; vegetation appears on the surface, and grows more vigórous as we advance southward. "At Conception," says Captain Hall, "the eye was delighted with the ricliest and most luxuriant foliage; at Valparaiso the hills were poorly clad with a stunted brushwood and a poor attempt at grass, the ground looking starved and naked; at Coquimbo the brushwood was gone, with nothing in its place but a vile sort of prickly pear bush, and a thin sprinkling of gray wiry grass; at Huasco (latitude $28 \frac{1}{2}^{\circ}$) there was not a trace of vegetation, and the hills were covered with bare sand." 1 It follows from the principle we have laid down, that in this southern part of the continent the dry tract should be fonnd on the eas: side of the mountains, and such is the fact. At Mendoza, in latitude 32°, rain scarccly ever falls, and the district along the east foot of the Andes is known to consist chiefly of parched sands, on which a few stunted shrubs grow, and in which many of the streams that descend from the mountains are absorbed before they reach the sea. The whole country, indeed, south of the Plata, suffers from drought; but ou the eastern side this is remedied to some extent by winds from the east or south-east, which bring occasional rains to refresh the soil. From Amatapu nerthward, on the other hand, the west coast is mell watered and fruitful; and this is casily accounted for. The line of the coast here changes its direction, and trends to the north-east as far as the isthmus of Panama, where the mountains sink to a ferv hundred feet in height, and leave a free passage to the trade-wind, which here often assumes a direction from the north-east, or even the north. The exhalations of the Atlantic are thus brought in abundance to the coast of Quito, which is in consequence well watered; while the neighbouring district of Peru suffers from perpetual aridity.

Our principle applies equally to the explanation of some peculiar facts connected with the climate of North America. The western coast of Mexico, as far as St Blas or

1' Hall's Extracto from a Journal, vol ii. p. 12.

Man:itlan, in latitude $23^{\circ} \mathrm{N}$., is well watered, because, first, the continent here is narrow; secondly, the tableland of Mexico, which is much lower than the Andes of Chili, is not so effectual a screcn to intercept the moisture; and, thirdly, there is reason to believe that a branch of the trade-wind, which crosscs the low part of the continent at l'anama and Nicaragua, sweeps along the west coast during part of the year, and transports humidity with it. But beyond the point we have mentioned drought premils. Sonora, though visited occasionally by rains, consists of sandy plains without herbage, where the streams lose themselves in the parched soil without reaching the sea; and even Old California, which has the occan on one side, and a broad gulf on the other, and ought apparently to be cxcessively humid, is covered with sterile rocks and sandy hills, where the regetation is scanty, and no timber is seen except brushwood. This dry region extends as far as 33° or $34^{\circ} \mathrm{N}$.; but immediately beyond this we have another change of scene. Nerr California is in all respects a contrast to the Old. It is rich, fertile, and humid, abounding in luxuriant forests and fine pastures; and the other American possessions to the northward preserve the same character. How can we account for this singalar diversity of climate, except upon the principle which has been explained, namcly, that in all regions where ranges of mountains intersect the course of the constant or predominant winds, the country on the windward side of the mountains will be moist, and that on the leeward dry; and hence parched deserts will generally be found on the west eide of countries mithin the tropics, and on the cast side of those beyond them? Our hypothesis applies equally to the country east of the Rocky Mountains. For the space of about 3000 miles along the foot of this chain the surfaco consists of dry sands or gravel, sometimes covered with saline incrustations, almost destitute of trees and herbage, and watered by streams flowing from the mountains, which aro sometimes entircly absorbed by the arid soil. The central and eastern part of the basin of the Mississippi would in all probability have been equally barren had the configuration of the land been a little different in the eouth. A tract of country extremely low and level extends along both sides of this river; and a portion of the tradewind blowing from the Mexican Gulf, finding its motion westward obstructed by the high tabie-land of the Cordillera, is deflected to the right, and ascends the valley of the Mississippi and Ohio. This wind, whose course was first traced by Volney, bears with it the humidity of the torrid sene, and scatters fertility over a wide region that would ctherwise be a barren waste.

The views on the subject of climate we have been unfolding will enable us to throw some light on an interesting point-the distribution of forests. We are induced to think, that in all countries having a summer heat exceeding 70°, the presence or absence of natural woods, and their greater or less luxuriance, may be taken as a measure of the amount of humidity, and of the fertility of the soil. Short and heavy rains in a warm country will produce grass, which, having its roots near the surface, springs up in a few days, and withers when the moisture is exhausted; but transitory rains, however heary; will not nourish trees, because after the surface is saturated with water, the rest runs off, and the moisture lodged in the soil neither sinks deep enough, nor is in sulficient quantity to furnish the giants of the ferest with the necessary sustenance. It may be assumed that 20 inches of rain falling moderately, or at intervals, will leave a greater permanent supply in the soil than 40 inches falling, as it sometimes does in the torrid zone, in as many hours. It is only necessary to qualify this conclusion by stating, that something depends on the sabsoil. If that is gravel, or a rock full of fissures, the
water imbedded will soon drain off if it is clay or a compact rock, the water will remain in the soil. It mast be remembered, also, that both heat and moisture diminishas wo ascend in the atmosphere, while evaporation increases; and hence that trees will not grow on very high ground, though its position in reference to the sea and the prevailing winds should be favourable in other respects. In speaking of the region of forests, we neither restrict the term to those districts where the natural woods present an unbroken continuity, nor extend it to every place where a few trees grow in open plains.

Sketch Map showing the Farest Regions of America.

It is not easy to give a definition that will be always appropriate; but in using the expression, we wish to be understood as applying it to ground where the natural woods cover more than one-fourth of the surface.

The small map of America prefixed will enablo the reader to follow our statements with ease. The long black lines show the positions of the chains of mountains; the shading represents the regions of forests; the dense foreste being marked by the double shading, and the thinner ones by the open lines. The white spaces represent the lands on which little or no wood grows. The equator and the parallel of 30° on each side are indicated by the horizontal lines marked 0 and 30. The arrows show the direction of the prevailing winds; but it must bo remembered that, though the intertropical wind is assumed to have its course right from the east; this is only true at the equater, its direction inclining to north-east as we approach the northern tropic, and to the south east as we approach the southern. In North America A is the woody region on the west coast, extending from latitude 35° to abont 58°, and of unknown breadth. B, the region on the cast side of the Rocky Mountains, partly a bare desert, partly covered with grass and dotted with trees. C, the forcsts of the Alleghany chain, thick on the dast and seuth, and thin on the west; bounded by a curred line passing from St Luis, in Mexico, through Lake Huron, to the mouth of the St Lawrence, in latitude $50^{\circ} \mathrm{N}$. The arrov at M points out the direction of the wind, which ascends the valley of the Mississippi, and nourishes the western part of these forests; and the arrow at R that which blows across the isthmus of Panama. D is the table-land of Mexico, graduating on the northwest into the dry plains of Sonora and Californih, all bare, or nearly bare, of wood. E is the Llanos or bare plains of Caraccas, nearly fenced round with mountains. F G is the long strip of bare dry sands on the west side of the Andes which constitutes Lower Peru and the north part of Chili; and N is Amatapu, its northern boundary. H is the great region of forests which constitutes the basin of the Amazon, and occupies all the rest of Brazil. Near tho equator the moisture is so excessive, that after 150 or 200 inches of rain have fallen on the east coast, there is still sufficient humidity in the atmosphere to afford copious showers to all the country up to the Andes. Elere. there.
fore, the woods reach from side to side of the continent. But as we recede from the equator the numidity diminishes rapidly; and though the continent becomes narrower towards the south, the supply of rain falls off in a still greater proportion, and the forests extend over a much smaller space. At the foot of the Andes the forests extend to 16° or 18° of S . latitude; on the east coast to 25° or probably 30°. K L are the Pampas or open lands of Buenos Ayres, extending on the east side of the Andes from Cape Horn to the latitudes just mentioned. If we divide this region into three parts, the most easterly, refreshed by occasional rains from the Atlantic, is covered with a strong nutritive herbage ; the second, which is drier, displays a thin coarse wiry grass; and the third portion, which extends to the Andes, receiving little or no rain, is nearly a desert : all the three are destitute of timber, but the surface of the third is dotted with dwarfish shrubs. I is the southern part of Chili. Here the prevailing winds, which are from the west, coming loaded with the moisture of the Pacific Ocean, produce copious rains to nourish the herbage and the forests. This applies, however, chiefly to the country south of the 35 th parallel. From that to Coquimbo, in latitude 30°, the wood is scanty. Beyond 50° on the east coast of North America, and 55° or 58° on the west, very little wood grows, in cousequence of the rigour of the climate.
Great misappreheusions have arisen with regard to the climate of America, from comparisons being drawn between the east side of the new continent and the west side of the old. We have already pointed out the influence of winds blowing from the sea in modifying the state of the atmosphere over the land, both as to heat and humidity. When this circumstance is attended to, and when the east and west sides of the old and the new continents are respectively compared with one another, the difference is found to be small, and easily accounted for. In the torrid zone, and on the sea-shore, the temperature of both continents is found to be the same, viz., 82°; but in the interior the difference is rather in favour of America. There is no counterpart in the New World to the burning heats felt in the plains of Arabia and N. Africa. Evien in the western and warmest riart of the parched steppes of Caraccas, the hottest known region in America, the temperature of the air during the day is only 98° in the shade, which rises to 112° in the eandy descrts which surround the Red Sea. At Calabozo, farther east in the Llanos, the common temperature of the day is only from 88° to 90°; and at sunrise the thermometer sinks to 80°. The basin of the Amazon is shaded with lofty woods; and a cool breeze from the east, a minor branch of the trade wind, ascends the channel of the stream, following all its windings, almost to the foot of the Andes. Hence this region, though under the equator, and risited with almost constant rains, is neither excessively hot nor unhealthy. Brazil, and the vast country extending westward from it between the Plata and the Amazon, is an uneven table-land, blest with an equable climate. At Rio Janeiro, which stands low, and is exposed to a heat comparatively great, thd temperature in summer varies from 68° to 82° Fahr., and the mean is only about 74°. Farther north, and in the interior, the Indians find it necessary to keep fires in teieir hats; and in the country near the sources of the Paraguay, hoar-frost is seen on the hills during the colder months, and the mean temperature of the year falls below 65° or 67°. On the declivities of the Andes, and on the high plains of Upper Peru, the heats are so moderate that the plants of Italy, France, and Germany come to maturity. Lower Peru, though a sandy desert, enjoys a wonderful degree of coolness, owing to the fogs which intercept the solar rays. At Lima, which is 540 feet above the sea, the temperature varies from 53° to 82°, but the mean for the whole year is
only 72°. In the plains c La Plata the mean temperature of the year is very nearly the same as at the corresponding north latitudes on the east side of the Atlantic. At Buenos Ayres, for instance, the mean annual heat is $19^{\circ} 7$ of the centigrade thermometer (68° Fahr.), while that of places on the same parallel in the Old World is $19^{\circ} 8$. The range of temperature is probably greater in the basin of the Plata; but as we advance southwards, the diminishing breadth of the continent makes the climate approximate to that of an island, and the extremes of course approach each other. In the Strait of Magalhaens the temperature of the warmest month does not exceed 43° or 46°; and snow falls almost daily in the middle of winter, though the latitude corresponds with that of England. But the inference drawn from this, that the climate is unmatched for severity, is by no means just, for the winter at Staten Island is milder than in London. In point of fact, the climate of Patagonia is absolutely colder than that of places in the same latitude in Europe; but the difference lies chiefly in the very low temperature of the summer. This peculiarity no doubt results chiefly from the greater coolness of the sea in the southern hemisphere; for beyond the parallel of 48°, the difference of temperature in the North and South Atlantic amounts, according to Humboldt, to 10° or 12° of Fahrenheit's scale. If we push our researches a step farther, and inquire what is the cause of the great warmth of the Northern Sea, we shall be forced to admit that a very satisfactory answer cannot be given. Sormething may be due to the influence of the Gulf Stream, a minute branch of which is supposed to carry the waters of the torrid zone to the shores of Shetland and Norway; but such an agent seems too trifling to account for the phenomenon. The sum, then, of the peculiar qualities which distinguish the climate of South America may be brielly stated. Near the equator the new continent is perhaps more humid than the old; and within the tropics generally, owing to its rast forests, the absence of sandy deserts, and the elevation of the soil, it is cooler. Beyond the tropics the heat is nearly the same in the south temperate zone of America and the northern one of the old continent, till we ascend to the latitude of Cape Horn, where we have cold summers and a very limited range of the thermometer.

The mountain ranges of North America form two widely Highand distant highland regions, separated from each other by the of N . tast interior plain, which contains. in its southern slope, Americe the Mississippi with all its tributaries, and the other rivers flowing into the Gulf of Mexico, while its northern part contains the great fresh-water lakes, and many rivers taking a northward course to Hudson's Bay or to the Arctic seas. The watershed of this plain, diriding the streams that rin into the Missouri and Mississippi from those communicating with the Saskatcherwan, with Lake Winmpeg, and with Lake Superior, is along a line from west to east nearly coinciding with the 4 Sth parallel of latitude, and has a mean eleration of 1500 feet.

Along the whole of the western side, from near the mouth of the Mackenzie in the Arctic Ocean, and from Alaska on the Pacific shore, to the Isthmus of Nicaragua and Panama, that is, across 60° of latitude from nortia to south, extends with a grand double curve the continuous length of the Rocky Mountains, and others which prolons the line, having a position in North America similar to that of the Andes in South America, and shutting off, in some parts, a comparatively narrow portion of the continent, with the Pacific shore, from the great central plain. But several minor ranges, branching off or confronting the principal mountain-ridge or backbone of North America, enclose large spaces of a table-land, traversed by the Columbia, the Fraser, and the Colorado rivers, with those which join them, and holding the ('great Salt Lake of

Utah in its central basin. The Cascade Mountains of Washington and Orcgon, the Sierra Nevada of California, and tho Coast Rango prolonged through tho Californian peninsula, have a general direction from nerth to south; while the Wahsatch, the Humboldt, the Bluo Mountains, tho Salmon River, and other ranges, stand rather across the table-land, or obliquely, from west to cast. It may be convenient to speak of tho former serics, regarded altogether, as the gencral Pacific Coast lange, which wo also observe to be continued northward, with some intervals, beyond latitude $60^{\circ} \mathrm{N}$. to the peninsula of Alaska, presenting summits of inereased height, that of Mount St Elias being above 17,000 fect, and Mount Fairreather nearly 15,000 foct. In the Caseade Range are Mount St Eelens, north of the Columbia River, attaining an eleva tion of 15,750 fect; Mount Hood and Mount Jefferson, abont 15,500 fcet. Tho Sierra Nevada, at its northern extremity, where it forms an acnte angle with the coast range, displays the lofty terminal peak of Mount Shasta, having an altitude of $1,4,400$ feet. The minor Californian Coast Range nowbere rises to 4000 feet. The main Cordillera or spine of Western North Ameriea, which in tho British Dominion and in the United States' territory is called the Rocky Mountains, but which takes the name of the Sierra Madre in Mexico, and in tho isthmus, farther soutb, is split into two lower groups of a voleanic claraeter, attains the height of 16,000 feet in Mount Brown, and 15,100 feet in Mount Hooker, both near the 54th degree of latitude, above the source of the Saskatchewan river; but Fremont, in the Wind Fiver group, between Oregon and Nebraska, is 13,560 feet hight, and there are peaks of 10,000 feet or 12,000 feet in Uthh and Ners Mexico. The higbest mountains, however, in North America, excelling even Mount St Elias, belong to a volcanic series which crosses the table-land of southern Mexico from west to east, and of which the culminating poiuts aro Popocatepetl, 17,88. fect, and Orizaba, 17,373 feet; while Agua, in Guatemala, rises to 13,000 fect. Thus wo may remark, at each extremity of the Cordillera, at its north end, towards Alaska, and at its south end, in Central America, it is encountered by a eluster of volcanocs, Mount St Ilias being one of this description, which excecd the height of the Rocky Mountains. The spaces enclosed between the main trunk and brancbes of this immense system of mountains are scveral hundred miles wide, and their surface is clevated 5000 fect or 6000 feet above the Bea-lerel, as in the Utah lake-basin, the Nevada territory, and the plateau of Anahuac, or southern Mexico, which last has an clevation of 6000 fect to 8000 feet, and has therefore a temperate climate within the tropies.

An outline merely has been given of the western highland region of North America. The eastern highlands of this continent are mainly constituted by the Alleghanies or Appalaclian system of mountains, with their dependencics, which are of no great height, the Black Kountain, or Mount Guyot, in North Carolina, being the highest, at $64 i 6$ feet; but they extend nearly 2000 miles, from the Gulf of St Lawrence to the Gulf of Mexico, haring a general direction from north-cast to south-west. The strip of land, one or two hurdred miles wide, betwecn these mountains and the dtlantic coast, is of the groatest bistorical interest, as it includes the seats of all the older English s.ttlements on this continent, which seems destined for the grandest dweling.place of our nation. North of the Gulf of St Lawreiee, through the peninsula that terminates with Labrador between the Atlintic and Hudson's Bay, the Appalachian syster of mountains is continued, or resumed, in a range called the Watclish, only 1500 fect hish, but in the severe climate of that region covered with perpetual snow. The i lleghanies, south of the St Law-
rence, including the Grecn Mountains of Vermont and the Whito Mountains of ${ }^{\prime} \mathrm{c} \mathrm{cw}$ Hampshire, are not so much a chain of mountains as a long plateau, crested by several different ridges, and intersected by mide valleys of considerable clevation, but altogether on a much smaller scalo than the lighlands of Western America. East of tho river Hudson the mountains are chiefly granitic, with rounded summits, often covered with turi or moss to tho top; they assume a more regular formation in Pennsylvania, Tirginia, and North Carolina, but again decline and break into detached groups in approaching their southern extremity in Alabama. Next to the summit in North Carolina, which is uamed above, Alount Washington in New lHanpshire stands pre-eminent, with an altitude of 6428 feet. The scenery of these "White Mountains" is very strilking, especially where tho Saco river cleaves its way through the barrier of granite by a cutting two miles long, in ono place only 22 foct wide, between lofty preeipitous walls. It is in the "Green Xountains," succeeding these to the west, and giving their name in French to the neighbouring State, that the prevalent form becomes that of round humps on a broad base, with firs or shrubs growing on the slopes, and with scanty grass or lichens on the summits. Both these two contrastel groups of New England mountains enter the State of Massachusctts from the north; the Hoosac and Taconic extensions of the Green Mountains rise on the west side, while the Whitc Mountains are continued by those of which Mount Holyoke and Wachusett are the most conspicuons; and between their parallel ranges is the Connectieut river, with the Housatonic, Mount Tom, and Blue Hills to overlook its lotrer course. These features of the country, though of far less physical importance than the toweriug peaks of Colorado and California, will always be associated with the genuine traditions of English rural, domestic, and social life, transplanted to the New World in the 17 th century, and defended by a long struggle against stern nature and savage men in the early age of the American colonies. Tho natural boundary separating New England from the great and more modern State.of Nerw York is that noble river the Hudson, rising in the Adirondaek Mountains, near Lako Champlain and the waters of the St Lawrence, but pouring its beautiful and useful stream directly south, to the greatest of American commercial ports and cities. This river passes close by the Catskill and Sharrangunk Mountains, from which is continued the general distribution of the castern American highlands along the Atlantic statos, but with a more westerly declination from the coast, ruaniag through T'consylvania, West Virginia, the borders of Tennessee, and North Carolina, the upper parts of Georgia and Alabama. It is in Virginia that the Alleghanies bave their greatest breadth, which is about 150 miles. They risc highest in North Carolina and Tennessee, and subsequently keep up a distinct line of position, zeross the cotton-growing States, between those of tho Atlantic seaboard and those of the Lower Mississippi This circumstance, it may be romarked, has had most important effects on the political and military events of late years, in the results of the attempted sceession of the slaveholding States from the Uniou. Another feature of pbysical geography, which probably conditioned the earlier stages of that momentous civil struggle, in the disputes relating to the Jissouri compromise and to the admission of Kansas as a free-soil State, is the existence of the Ozark range of mountains. These stand in the middle of the great Mississippi valley, stretching across from northern Texas to Arkansas and the conflucnee of the Missouri with the Mississippi Dy the elevation they give to the soil, in latitudes between 30° and 40°, as well as by the raised table-land of New Mexico and Arizona farther west, the
area of United States' terntory suitable for cotton plantations and for slave labour was so far limited, and cunfined to the shores of the Gulf of Mexico and the Atlantic seaboard. At the same time, in the latitudes north of these, between 40° and 50°, the whole vast prairie region from the Ohio to the Rocky Mountains was adapted to the growth of corn, while it had such continuity and uniformity of surface, and was so pervarled by the grand riversystem of this middle plain of North America, that it could not well undergo political division. The entire West being thus secured to the Union, and the better part of the South being thus rescued from the curse of Negro slavcry, by the moulding hand of nature in planning the distribution of mountain ranges and the level ground all orer this continent, we may cons:der that the political and social destinies of the great English Republic, rindicated in the civil war from 1861 to 1865 , were predetermined in the formation of the land.

The North American continent affords an interesting study of the geological changes and adjustments, by which the mighty work of preparation for what promises to be a noble development of humanity was slowly effected in the remote epochs of the rast. The oldest sedimentary rocks anywhere found on the globe are those which underlie the whole of Canada, Now Brunswick, and Newfoundland, the Labrador peninsula, and the country north of Lake Superior, perhaps also the less explored regions of the far north-west towards the Arctic Sea. This series, named the Laurentian, from the St Lawrence river, is perceived to exist in Europe only in a few scattered instances, in the Hebrides, and in Norway or Sweden. In North America it occupies the most extensive areas; the thickness of its beds is estimated by Sir William Logan at 30,000 feet; it rises to hills or mountains 4000 feet high, and in the deep gorge of the Sagnenay river, forms perpendicular cliffs of 1500 feet. Only one fossil animal, which has been called the Eozoon Canadense, has been discovered to have left its trace in this most ancient bottom of the primeval ocean; it was one of the Foraminifera, which covered its gelatinous body with a thin crust of carbonate of lime, having numerous holes or pores for the emission of its filament-members, with which to feel and to feed ontside. Next to the Laurentian, but with a vast unknown interval of time, comes the Huronian or Lower Cambrian series. It is suggested by geologists that, as the rast, level bed of the Laurentian sea was cracked by internal changes of the earth's density, those cracks threw up certain ridges along the surface of the present continent, which laid a foundation for the principal mountain ranges we have described. At the borders and extremities of these mountain ranges, it is evident that there were intense volcanic cruptions, producing great quantities of lava and conglomerate, basalt, greenstone, and other formations resulting from igncous action. The northern shores of Lakes Huron and Superior exhibit results of this lind; but it is in the table-lands between the Rocky Mountains and tho west coast ranges, as in the singular lava beds near the Klamath, on the fronticr of Orcgon and North California, that volcanic forecs have mado their strongest marks on the earth. On the eastern side also of the grand Cordillera, betwecn the sources of the Dlissouri and of the Yellowstone rivers, is a monderful region of boiling springs or geysers, of sulphur beds and other natural curiosities, which have recently been described by Dr Hayden, of the United States' Government Survey. To speak more generally of tho local arrangement of different geological formations, it may be remarked that crystalline rocks are spread over the western parts of North America, from Alaska to Nicaragua, and over the most northern narts, also including Greenland; but some of
later date are found in the eastern or Appalachian range, consisting of felspathic gneiss and quartz rocks, mingled with talcose and chloritic schists. The Palæozoic forms. tions occupy that middle part of the continent which lies between the Rocky Mountains and the great lakes, as well as the shores of Iludson's Lay, and some portions of the Atlantic coasts. With reference to the Lower Silurian or Silura-Cambrian period, it is abundantly illustrated by the Trenton and associated limestones, which can be traced over 40° of longitude, their beds consisting entirely of debris of coral, shells, and crinoids, from the shallor inland sca, teeming with animal life, that once fillod the whole level space between the Alleghanics and the Rocky Mountains, separated by these ridges from the Atlantic and Pacific Oceans, and sheltered from the cold Arctic currents by the northern Laurentian highlands. This space, which is now the central plain of North America. comprising the prairies and the lississippi raller, was then a coral sea with archipelagos of rolcanic isles, resembling that of Australasia in the South Pacific. The next forma tion succeeding the Silurian presents inmense deposits of sandstone and shale from the muddy waters troubled by subterranean motions; this is the Devonian formation, which in America has been called the Erian, on account of the great development of such beds south of Lake Erie. The deposits of this period in the western continent are stated to be 15,000 feet in thickness. They include the cliff limestones, studded with calcareous corals of great size and beauty of shape, noticed by Sir Charles Lyell at the falls of the Ohio, near Louisville; these limestones are estimated to extend, as an ancient coral recf, over 500,000 square miles of the American middle plain. In the Stata of New York and in Western Canada there is the corniferous limestone, in which the imbedded corals bave heen replaced, in the cavities they once filled, by flinty hornstones which present the perfect coral forms, as though cast in a mould. In the Carboniferous age the great internal sea of the contiment was slowly changed into swampy flats and shallow lakes or creeks, and gradually filled with a rank vegetable gromth, afterwards buried under later marine deposits and pressed into the existing coal-beds. Of this period there are very, extensive developments throughout the eastcen half of the great middle plain to the Alleghanies. This portion of Amcrica scems to have been land, covered with the forests of that period, while the western half of the middle plain, a northward extension of the Gulf of Mexico, was still under -water. As the eastern half of North America, between the DI: sissippi and the Atlantic, was thus in the Carhoniferouㅇ cra well raised out of the sea, it exhibits no traces of the succeeding Permian age, such as we find in Europe. The earliest periods also of Mesozoic time lave failed to leave any record here, but their formations appear towards the westeru rango of mountains in what was the bed of a Mcditerrancan Sca. It is, however, the Cretaceons system, with its characteristic greensand, its sands, clajs, maris, and soft grey linestones, that occupies most space in Western America, between the meridians of 97° and 112°. Theso strata, overlaid sometimes ly those of the Tertiary periods, extend through the country up the Wissouri, the Platte, the Arkansas, and the Red River, to the Rocky Mountains; they also form parts of the plains enclosed by different mountain ranges beyond the Cordillera. Along the eastern side of the Appalachians there is a broad belt of the Cretaccous formation, stretching from the Delarare across the upper parts of Virginia, Carolina, Gcorgia, and Alabama. Among the fossil animal remains discovered in this formation in North America, which are enumerated in a separate list, one of the most remarkable is that of the Mosasaurus, a combination of tho serpent with the lizard
form, sometimes 80 feet in length, and of aquatic Labits. The Tertiary deposits, ineluding the boulder elay, prevail chiclly along the scaward districts, from Long Island, above New York, to the peninsula of Florida, aud around the shores of the Mexican Gulf, and likewiso on the Pacific shore from Loreer California to Vancouver Island, also in some detached instances, as in Nebraska, in the midst of the interior plain. The newer Pliocene is met with in the southern part of Maine, and on the shores of Lake Champlain. The drift formation lies mostly north of 40° latitude. Alluvial deposits are of great amount from the largo rivers and lakes, especially in the delta of the Mississippi, which has an area of 13,600 square miles, and must, by Sir Charles Lyell's reckoning, have taken 67,000 years for its composition, at the rate of the bringing down of solid matter by that mighty river.

The mineral products of North America are of unequalled richness and rariety. Gold is abundant, to a proverb, in California, and likewise in Nevada and Montana. It is also found in British Columbia, Mexico, Central America, and Canada, and sparingly in Virginia and South Carolina. Silver is obtained from Mexico in larger quantities than from any other country; it is supplied also by California and by Honduras, and a vein of this metal is worked in Newfoundland. Great masses of almost pure copper are found in the Huroninn rock strata, the north and east shores of Lake Superior being the richest of copper-mining regions: while Now York State and Indiana possess a share of the same metal, and it is found among the westera mountains in different countries from British Columbia to the istbmus. The iron ores of Pennsylvania, and thoso of Canada, including New Brunswiek, are of the greatest importanee; the former are rendered more available by their occurring close to the beds of bituminous coal, giving materials for the manufacturing industry of Pittsburg; while anthracite coal is obtained from the eastern districts of Pennsylrania. It is estimated that one-third of the total area of this State is occupied by coal-fields, which can scareely be exhausted. Lead is found in Wisconsin, Illinois, and Missouri, in New York State, in Canada, in California, and in Central America, as well as quicksilver; white zinc is got from Arkansas and New Jersey; both Canada and Mexico produce tin. lieverting to the subject of coal, as having an intimato economic connection with all metallic wealth, it should bo observed that the united area of all the coal-fields in the United States is estimated at 190,000 square miles, exceeding twent yfold those of Europe. The chief of these coal-fields are, first, the Appalachian, extending from the Susquehanna, in Pennsylvania, to the Tuscaloosa, in Alabama, along the west side of the Alleghany Mountains; the area of this coal-field is 70,000 square miles, and its greatest thickness 2500 feet ; secondly, the coal-field of Michigan, abour the centre of that State; thirdly, the extensire coal-field between the Ohio and the Mississippi, across the States of Indiana and Illinois; lastly, the Iowa and Missouri coal-field, which occupies a large space in the very centre of the continent. Coal is found also in Nora Scotia, in British Columbia, and Vancouver Island, and wherever the Upper Paleozoic strata prevail is the geological structure. But in the vast extent of British American territory north-west of Lake Superior, around Lake Winnipeg and up the Saskatchewan river, even as far as the Peace river, in latitude $56^{\circ} \mathrm{N}$., it may be expected that inanufacturing as well as agricultural prospenty will result from the use of immense stores of aatural wealth existing in the soil of that long-neglected land, which is now proved to have a elimate not more severe than the inhabited provinces of Canada The iron and coppor, more especially of the Canadian Dominion, pols enploy and enrich, in all probability, at some future
period, a nation that may becomo greater in inaterial resources than tho nost powerful kingdoms of Europo. In view of these prospects from the working of tho useful metals, by tho aid of that most useful product of the earth which supplies heat and meehanical force to the service of human industry, we may regard the Californian gold-fields as a matter of secondary importance. They lave indeed been surpassed by the productiveness of thuso in Australia and Now Zealand.

Nine-tenths of North America lying under the temperato zone, the climate follows a different law from what is observed in the southeru peninsula, and presents more striking contrasts with that of the best known parts of tho Old World. The long narrow region now denominated Central America, Which connects tho two great divisions of the continent, stretehing from Panama to Tehuantepec, has iu general a very humid atmosphere; but, for a tropical country, it must be only moderately hot, as every part of it is within a small distance of the sea. At Vera l'az the rains fall during nine months of the year. Mexico is hot, moist, and unhealthy on the low consts; but tro-thirds of its area, comprising all the populous districts, consist of table-land, from 5000 to 9000 feet in beight. In consequence of this singular configuration of its surface, Mexico, though chiefly within the torrid zone, enjoys a temperate and equable climate. The mean heat. at tho capital, which is 7400 feet above the sea, is $62 \frac{1}{2}^{\circ}$, and the difference between the warmest and coldest months, which exceeds 30° at London, is hero ouly about 12°; but the atmosphere is defieient in moisture, and the country suffers from drought. Beyond the parallel of $24^{\circ} \mathrm{N}$. the western shores are hot and arid.

In the extensive region lying between the parallels of 30° and $50^{\circ} \mathrm{N}$., which compreheuds three-fourths of the useful soil of North America, we have threo well-marked varieties of climate, that of the east coast, the west coast, and the basin of the Mississippi. On the east coast, fronn Georgia to Lower Canada, the mean temperature of the year is lower than in Europe by 9° at the latitude of 40°, and by $12 \frac{1}{2}^{\circ}$ at the latitude of 50°, aceording to Humboldt's calculation. In the next place, the range of the thermometer is much greater than in Europe, the summer beng much hotter and the winter much colder. At Quebee the temperature of the warmest month execeds that of the coldest by no less than $60 \frac{1}{2}^{\circ}$ of Fahr.; while at Paris, which is nearly under the same latitude, the difference is only 31°. In the third place, the climate undergoes a more rapid change in America as we proceed from south to north, a degrec of latitude in the middle of the temperate zono producing a deerease of annual temperature of $1^{\circ} \cdot 13$ Fahr. in Europe, and of $1^{\circ} .57$ Fabr. in America. The romparison is greatly to the disadvantage of America when made in this form; but when the east coasts of the two continents are compared, the case is altered; the Old World is fonnd to have no superiority over the New, for Pekin has still colder winters and warmer summers than Philadelphia, which is under tho same latitude. It is the west coast of the new continent which ought to exhibit the elimate of Europe ; and from the observations made, we have reason to believe that it is quite as mild and equable. At the mouth of Columbia river, in latitude $46 \frac{1}{2}^{\circ} \mathrm{N}$., it appears that the mean heat of the warmest month was about 62° Fahr., of the coldest about 36°, and of the whole year 51°. Now the place is under the same latitude with Quebec, where the saow lies five months, and the mean temperature during the three winter months is 18° below tho freezing point. This single circumstance marks emphatically the contrast in the climate of the east and west coasts of North America. But the mouth of Columbia river is also under the same parallel with Nantes at the mouth of tho Loire; and we have, therefore, good grounds to conclude that the west
coast of America, in the middle latitudes, has nearly as mild and equable a climate as the west coast of Europe. The climate of the great central valley, or basin of the Mississippi, has a considerable affinity to that of the east coast. It was long a matter of dispute in what the diffcrence between the two consists, but this seems at last to have been clearly settled by the meteorological registers kept at the military posts of the United States. From a comparison of four of these registers, from posts near the centre of this great ralley, with others kept on the Atlantic coast in the same latitudes, it appears that the extrenes of heat and cold in the basin of the Mississippi are from 5° to 6° higher and lower than on the coasts of New England. The proportion of fair weather to cloudy is as 5 to 1 in favour of the east coast. The climate of the interior, therefore, exhibits in still greater excess those extremes of temperature which distinguish the eastern coast of this continent from the western, and from the shores of Europe. The fourth region of extra-tropical America includes the parts beyond Mount St Elias on the west coast, and, in the interior, the plains extending from the 50 th parallel to the Pola: Seas. The intensity of the cold in this tract of country is scarcely equalled by anything that is known under the same parallels in Northern Asia. The northernmost spot in America where grain is raised is at Lord Selkirk's colony, on Red River, in latitude 50°. Wheat, and also maize, which requires a high summer heat, are cultivated here. Barley would certainly grow as far north as Fort Chippewyan, in latitude $58 \frac{3}{4}^{\circ}$, where the heat of the four summer months was found by Captain Franklin to be 4° higher than at Edinburgh. There is even reason to beliere, that both this species of grain and potatoes might thrive as far north as Slave Lake, since the spruce ir attains the height of 50 feet three degrees farther north, at Fort Franklin, in latitude 65°. These, howerer, are low and sheltered spots; but in this dreary waste generally, it will not be found practicable, we suspect, to carry the arts of civilised life beyond the 60th parallel; and the desirable country, capable of supporting a large population, and meriting the name of temperate, can scarcely be said to extend beyond the 52 d parallel. At 65° the snow covers the ground in winter to the depth of only two feet, but small lakes continue frozen for eight months. The sea is open only for a few weeks, fogs darken the surface, and the thermometer in February descended in one instance to minus 58°, or 90° below the freezing point. At Melville Island, under the 75th parallel, such is the frightful rigour of the climate, that the temperature of the year falls 1° or 2° below the zero of Fahrenheit's scale. It is a peculiarity in the climate of America, that beyond the parallel of 50° or 52°, it scems to become suddenly serere at both extremities. At the one, summer disappears from the circle of the seasons; at the other, winter is armed with double terrors.

The zoology of America is especially interesting, on account of the contrast which exists between the faunas of the north and south portions of the continent-a contrast which is cspecially exhibited in the case of the Mammalia The zoological province which naturalists mark off as constituted by South America and part of Central America has been termed the neotropical region, and the area which has the nearest relationship to this is the Indian region. As regards South America, the Andes hare the highest value asi zoologicai boundaries; next to then in importance are the rivers, and then the confines of the forest region. The Quadrumana are well represented, and are especially characteristic of the forest region which principally prevails in the western half of the continent. None are known to occur on the west side of the Andes south of Guagaquil The sub-order Platgrhina is
peculiar to South America, and so far as research has yet extended, it is not known even to have existed on any other area. On the other hand, no catarhine or lemurine Quadrumana have jet been found in South America. Some of the lower forms of monkey appear to have some affinity with the Lemuridx, which uccur in India, Africa, and Madagascar. There are two families, viz., the Cebidæ and Hapalidæ, all the members of which are strictly arboreal in habits. Some of these monkeys are the most highly dereloped tree-climbers known, and in many cases theyrarely if ever descend to the ground; and since the monkers of South America have never been seen to smim, it might be expected that the broad streams of the continent effectually limit the distribution of certain monkess. The largest species is Lajothrix Humboldtii, so that as a whole the A merican monkeys are smaller than those of Asia and Africa, As they are the most porterful of arboreal Mammalia, they rule the forests, and this may in part-account for the scarcity of squirrels in this region. The Cebidx have a wide range, extending from the south of Mexico to the Uruguay. They include the highcst forms of American monkey, and its most specialised representatives are those which have the best adaptation for life in trees, as may be exemplified by Ateles, with its long limbs and prehensile tail. This latter organ serves all the purposes of a fifth hand; the under surface is bare and provided with tactile papille, so that a monkey not only holds by, but also feels with it. It is as mobile and flexible, and in its way as uscful to this genus of monkey as is the trunk to the elephant. The genus includes numerous species, the estimate of different naturalists varying from 8 to 40 , but about 10 species have been well established. Most of them occur in Brazil and the Guianas; bnt each species generally has circumscribed limits. Thus A. paniscus occurs in the north-east corner of the continent, between the Rio Negro and the Amazon. On the south side of the Amazon its place is taken by another species, A. marginatus. A. Bartlettii occurs on the Upper Amazon. Brachyteles is represented by a single species in South-East Brazil. Several species of Lagothrix have been described, although perhaps all are but rarieties of but one species. L. Humboldtii is confincd to the Upper Amazon, west of the Rio Negro, and in some of the contiguous valleys of the Orinoco basin. Mycetes has six species, ranging from Guatemala to South Brazil. Nr. senicuius occurs on the north side of the Lower Amazon; M. caraya on the Upper Amazon; and Mf. beliebuth is the species which occurs near Para, and south of the Lower Amazon. All the above genera have prehensile tails, with bare under surfaces. Nyctipithecus, with three or fourspecies, occurs in the upper portions of the Rio Negro, Amazon, and Orinoco basins. Callithrix ranges over the same ground, butalso extends into South-East Brazil. Curysothrix occurs throughout the northern part of the region. The genus Pithecia (including Brachyurus) is represented by about 12 species in the Amazon basin. P. irrorata is confined to the south bank of the Upper Amazon; another species only occurs on the north side to the west of the Rio Negro. P. satanas is the species east of the Rio Negro, and there is a species limited to the south side of the Uppor Amazon. The family Hapalidæ, or marmosets, has about 30 species, belonging to the genera Hapale and Midas, which range throughout the forests of South America. One species, H.ædipus, occurs in Costa Rica, but this is the northernmost limit of the family. It seems that the distribution of the monkeys is restricted to the areas elad with continuous forests, so that the absence of monkeys in the Pampean, Andisian, and Perurian sub-regions is mainly due to the absence of continuous forests. It is also noticeable that the sub-orders, families, and geners extend over the greater portion of the Erazilian sub-region; wheress is
many instances this sub-recrion is parcelled out into districts by the larger struams, which are characterised by disti.ict species. Hence it is probable that the continuousness of the forest area has lasted thronghout the duration of those species, but not so long as the genera have existed; and that those species which oceur on both sides of the Amazon, Rio Ner,ro, and other large rivers, originated at an earlier period than thosn restrieted to one side. The want of means of eommunication with North America would account for the absence of monkeys in that region. Our space wi!? not allow of our dwelling so fully on the other orders, 'sut we may notice that the arborcal habit is strongly marked in many, and that the strictly arboreal groups are frequently represented in river-bounded areas by distinet species. It often happens that genera, both of vertebrates and invertebrates, which are elsewhere terrestrial, are represented in tho Amazonian forests by arboreal species.
The Carnivora do not present so marked a feature as regards distribution as the munkeys. The families Felidx, Canidx, Mustelidx, and Ursidx are represented ; but the Hyænidx and Viverrida are absent, unless Bassaris of Mexico be referred to the latter family. The Felide comprise tro grouns, one formed of species which are uniformly coloured, the other of those which are striped or spotted. Felis onca, the jaguar, is the largest feline animal of this region, and ranges from La Plata to Louisiana, and on both sides of the Peruvian Andes. The puma or F. concolor is known everywhere from Patagonia to as far as 50° or $60^{\circ} \mathrm{N}$., a range from north to sonth of about 110°, which is probably greater than that of any other mammal. Ir paycros occurs on all the pampas of tho southern portion of South America. $I \prime$ mitis and I : macrura belong to South-East Brazil ; F. tigrina and celidogaster to tho Amazon basin; while F : pardalis, F. eyra, and F. yagonaroundi range from Brazil to Texas. . The Canidæ family is represented by the genera Icticyon and Canis. The former comprises but one species, which is confined to Brazil, viz., I. venaticus, which is an nberrant form between dogs and badgers. The dogs comprise C. jubatus, C. cancrivorus, C. vetulus, C. fulvicaudus, C. azara, C. magellanicus, and one or two other species. Tho Mustelide are not abundant, there being only a few species of each of the sub-families Mustelince, Lutrina, and Mrelince; and among others Mustela frenata; two species of Galictis, a genus only found in this region; Lutra chilcnsis and braziliensis; and several species of Mephitis belonging to the sub-genus Thiosmus. Of Urside there oceur Uisus ornatus in Peru, and perhaps Ursus frugilegus; Procyon cancrivorus, Nasua, and Cercoleptes. The last two genera are elaracteristic of Sonth America. In this order the species, with the exception of a few which range into North Ameriea, aro restricted to this area; but only four of tho eleven genera are peculiar, the others ranging not only into North America, but also into the Old World. The latter genera do not form a prominent feature in tho fauna, and the species have probably migrated from North America in comparatively reeent times from a geologieal point of view.

Ia the order Artiodactyla the sub-order Fuminantia is represented by a fow species only of Cervas, belonging to the neotropical sub-genera Furcifer, Coassus, and Blastocerus, and even these only occur spariagly in the open tracts. There is nothing to represent the enormaus herds of Antelupes and Bovidx, which are so characteristic of North America and portions of the Old World. Auchenia, however, is a characteristic genus frequenting the Andes, and is interesting on account of its being the only genus of liumiants which is confincel to South America. It is isulated and far distant from the other members of the family Camelidic, which are now special to Asia; but, as we shall presently find, the gap in distribution and structure is supplied by the cxtiact species of North America. The
characteristic genus Dicotyles is the sole representative in South America of the sub-order Omnivora and of the family Suide, a family which is restricted (naturally) to the Neotropical, Ethiopian, and Indian regions. Another remarkable genus is Tapirus, which represents in this region the elephants and rhinoccroses of the Old World. Until recently, the tapirs of Sumatra and tho Malay Arehipelago were cousidered to belong to tho samo genns, but Dr Gmy lias proposed tinat the latter be ranked in a distinet genus, lihinochorus. There are several species of South American tapirs, viz., T. antericanus, T. villosus, T. Laurillardii, T' Roulinii, and perhaps ono or two others not determined. An allied form exists in the isthmus of I'anama, namely Elasmognathus Bairdii, which is considered as the type of a distinet sub-family. There are no true Proboscideans in this region. Tho order Sirenia is represented by the genus Manatus, of which three or four species occur in the Amazor and other large rivers. This genus is remarkable for its distribution, since species belonging to it frequent the freshwater streams of the opposite eoast of Afriea. Several species of dolphins and porpoises oceur in tho larger rivers; some of them rango up almost to their sources, and are strictly river speeies, being unknown in the adjoining seas. The presence of these cetaccans, together with the distance of the shores (several miles) and the high waves, impart to some portions of these rivers a more or less occanic aspect. The order Bruta is abundantly represented in this region, of the fauna of which it constitutes the most marked peeuliarity. Marsupialism is not a prominent feature in this region, but its presence is important, because it norw occurs nowhere else out of the Australian region. It should be obserred that the connection is stronger with the extinet marsupial fauna ot l'alrarctic regions than with the living one of Australia.

The fossil and living mammalia of this region seem to indicate that at present our knowledge of the extinct fannas is very fragmentary. This is shown in various ways. Nono of the remains ean be definitely assigned to an older period than the Post-Plioeene. The region was essentially the same as at present, zoologically, the same characteristic groups of platyrhine apes, rodents, cats, dogs, edentates, and opossums being represented; while the catarhine apes, insectivora, oxen, rhinoceroses, and other groups were excluded, or at any rate are not known to liave existed in it, so that its isolation from the other zoologieal regions must have commenced before the l'ost-l'liocene period. The extraordinary development of large forms allied to the sloths and ant-eaters; the restriction of the Toxodontia amongst the Post-Pliocene mammals, and of the subungulated liodents among the living mammals to this region,- these and other facts would lead the palæontologist to believe that the area must have been inhabited by hammals during the periods which preceded the Post-Pliocene, as far back, perhaps, as the Miocene or Eocene. The Toxodontia includo the forms of Pachyderms most nearly nllied to the Rodents, while the subungulated Rodents are those of the order which aproacls nearest to the Pachyderms. As both these groups occur liore, and hero only, we may reasonably expect to find genera partaking of the general features of both orders in beds of an carlier geological age in Suuth America. The principal genera and species found fossil in this region are the following. In the Argentine Confederation we havo-

Macrauchenia patachonica.
Clyptodon spinicaudus
clavipes.
tuberculatus.
pumilio.
clavicandatus.
clavatus.
asper.
elongatus.
Machairodus neugxus.

I clis longifrons.
 Canis protalopex.
 avus.

15ephitis primeva Ulsus bontcrensis. Myopotanus bonerensi. antiquus. Ctenomys bonarensis. lagostonus anglutidins. Cavia Lreviglicata.
thegrthcrium americanum
Myludon giganteus.
gracilis.
robustus.
darwinii.
Scelidotherium leptocephalum. cuvieri.

Megalonyx meridionalis jeffersoni.
 Equus curvidens devillei.
 Toxodon burmeisteri.) oweni. Mastodon humboldtii.'

Some of these also occur in Brazil, where species have also been found belonging to the genera Callithrix, Cebus, Protopithecus, Chlamydotherium, Ccelogenys, Colodon, Dasypus, Equus neogoexs, Equus principalis, Euryidon, Ueterodon, Hoplophorus, Myrmecophaga, Nesodon, Pachycherium, and Xenurus. Remains of many of these genera Lave also been found on the banks of the Rio Negro in Uruguay, and those of some, such as Mastodon, Equus, Auchenia, \&c., in Ecuador. As space forbids our dwelling upon the points of interest which these fossil forms present, we pass "on to the lists of the extinct faunas of North America.

The oldest species yet found in North America belongs to Dromatherium, and was found in the Triassic beds of Virginia. Then nothing is known until we come to the Tertiary deposits which were formed in lakes along the base and in the midst of the Rocky Mountains and neighbouring ranges, and in the marine beds which lie nearer the present sea margin. The following lists are given by Dr Leidy, ${ }^{1}$ who considers the oldest beds in Nebraska, which rest on the Cretaceous series, as of Miocene age. They contain Titanotherium prouti, Lophiodons, and several other forms which would induce us to regard them as Eocenc. I Iowever, we follow his lists. The Miocene species are-

Curnipors.	Artiodactyla.
Canids.	Suidx.
Ainphicyon vetus,	Elotherium ingens.
	super bum.
Hyrnodontidæ. Hyænodon horridus.	Perchorus lerobus,
cruentus.	Perchœrus probus. Leptochorus spectabilis.
crucians.	Leptochoerus spectab
Felidx.	Anthracotheridx.
Drepanodon (Machairodus)	Hyopotamus amcricanus
primxus.	Anoplotheridx.
(Mrchairodus)	Titanotherium prouti.
Dinictis felina occidentalis.	Perissodactyla.
C.aminantia.	Rhinocerotide
Oreodontidæ.	Hyrocodon.
Oreodon culbertso	Tapiride
graeilis.	Lophiodon.
гахјог.	Solidungula.
affinis	Anchitheriidæ.
hybridus.	Anchitherium
oullatus.	Anchippus.
Merycochorus proprius	Hypohippus.
Leptauchenia major.	Parahippus.
десога.	Anchippodus.
Ágriocheridx. nitida.	Rodentia.
Agriocloerus antiquus. major.	Palmolagus Laydeni.
major.	Castoridæ.
Camelide.	Muridx.
Poebrotherium wilsoni.	Eumys elegans.
Protomeryx halli.	Insectivora.
Moschidae.	Erinacidie.
Leptoucryx evansi.	Leptictis haydeni.
Artiodactyla.	1ctops dakotensis.
Suidx.	Omomys carteri.
Elotherium mortoni,	

Since this list was published numerous genera and species have been discovered in Wyoming and other districts in the far west from what appear to be the older or Eocene group of beds. Amongst these the most remarkable is the large Dinoceras mirabilis, an animal which had three pairs of horns, aud which was intermediate in character between thic Prohoscileans and the Perissodactyles. There are also
several generalised forms in the forcgoing lists, which present a fauna with numerous remarkable features, which we can only briefly allude to. It is quite distinct in character from the present South American fauna, and yet, like it, it has a strong Asiatie facies; at the same time it resembles in many points the older Tertiary fauna of Europe. The occurrence of rhinoceroses, camels, and musk-deer, is noticoable; but its great feature is the abundance of oreodunts (which family is not known elsewhere) and of equine forms. The Pliocene fauna consists of the following genera and species:-
Carnivora.
Canidæ.
Canis serus. temerariu vafer. haydeni.
Fclidæ. Pseudxlurus intrepidus. Elurodon ferox.
Ursidx.
Leptarctus primus.
Ruminantia.
Oreodontidx.
Merychyus clegans. medius. major.
Camolidx.
Procamelus robustus. occidentalis. gracilis.
Homocamelus caninus.
Megalomeryx niobrarensis.
Merycodus necatus.
Cervidx.
Ruminantia.
Antilopidx. Cosoryx furcutus
Artiodactyla.
Suidæ。 Dicotyles
Perissodactyla.
Rhinocerotidæ Rhinoceros.
Proboscideæ. Mastodon. Elephas.
Solidungula.
Equidæ. Hipparion. Protohippas Merychippus, Equus.
Rodentia.
Castoridx. Castor.
Mystricide. Hystrix Cervas warreni.
The Post-Pliocene forms are-

Carnivora.
Canidæ.
Canis
Felidx.
Felis,
Ursidæ.
Procyon lotor.
priscus.
Ursus americanus
amplidens.
Arctodon pristinus.
Mustelidæ.
Galera macrodon.
Tuminantia.
Camelidæ.
Camelops kansanus
Cervidæ.
Cervus nrginianns. canadensis. tarandus. americanus.
Capridæ.
Ovis mammillaris.
Ovibos moschatus.
bombifrons savifrons.
Bovidx.
Bison amcricanus.
latifrons.
antiquus.
priscus.
Artiodactyla.
Suidæ.
Dicotyles nasutus.
Platygonus compressus.
Perissodactyla.
Tapiridæ.
'apirus americanus. haysii

Perissodactrlice
Prohoscider. Mastodon. Elephas.
Solidungula.
Equidæ.
Hipparion venustum.
Equus major.
fraternas.
pacificus.
conversidens.
tau.
fossilis.
Rodentia.
Leporidæ.
Lepus sylvatica
Sciuridx. Arctomys monax. Sciurus.
Cnstoride. Castor canadensis. Castoroides ohiocnsis,
Cavila.
Hydrochoerus æsopi.
Chinchillide.
Amblythiza inundats
Muride.
Nicotoma magister.
Marsupinlia. Didelphys virginiana
Edentata.
Megatherium mirahile. Megalonyx jeffersoni.
dissimilis.
ralidus.
Megalocinus rodens.
Ereptodon priscus.
Mylodon harlani.

Here it is observablo that, while this fauna has a general resemblance to that of the preceding period, most of the genera are distinct. Scveral existing genera make their appearance, as also a number of forms which appear to have migrated from South America, and after a tempomaj estah.

Lishment to hare disappeared. Ono remarkable feature is the abundance of horses, which is such that North America may be regarded as the land of horses during the Plioceno and Post-Plioceno period.

Tho existing mammals of North America must now be considered. We can only refer to a few of the more conspicuots species here. South Ameriea has numerous familics peculiar to itself, but North America lias none which are not also represented in Suuth America. There are numerous representatives of the Canide or dog family, such as the prairfe, Mexican, and maned wolves, and sevcral foxes, of which the Arctic, common American, cross, and silver foxes are of high commercial value on account of their furs. Amongst the cats are three or four species of lynx, which afford valuable furs. The beaver, though abundant in some places, is, like the bison, fast diminishing before the encroaching stens of the colonists. The grizaly, the black, and the polar bears are common in the more mountainous and colder regions of the continent, and are much bunted by the fur traders. Iacoons and Virginian opossums are prevalent in the south portion of the United States. The liocky Moustain goat reigns supreme amidst the rocks in inacecssible fastnesses of the Rocky Mountain range; while the rein-decr, the elk, and the mapiti give a character to the mammalian fauna of the more level districts. Further details respecting the mammals of North America will be found under tho names of the eeparate countries; and those who wish for still fuller information may consult the works of Lord, Small, Müller, Harlan, and Allen on the mammals of various regions, The Quadrupeds of North America by Audubon and Bachman, the articles by Gilpin in the publications of the Institute of Natural Science at Halifax; Adams' Field and Forest Rambles, The North-1Fest Passage by Viscount Milton and Dr Cheadle, Morgan's work on the Beaver, and the numerous reports issued by cxploration expeditions.

The birds of America are very numerous in almost every great family. The researches of Wilson, Charles Lucien Bonaparte, Audubon, Richardson, Dekay, Blakiston, Cassin, Gundlach, Lord Laurence, Sclater, Salvin, and Baird, lave leautifully illustrated the ornithology of North America; while those of Azara, Hu•ทboldt, Swainson, Waterton, Edmonstone, Darwin, Landbeck, Philippi, Cassin, \&c., have thrown great light on that of Sonth America. The North American species of birds already described amount to nearly 700 ; the species of South America are over 2300 ; so that we may fairly estimate the ornithology of America to include upwards of 3000 species. The fossil remains deserve particular notice. It is very probable that the footprints on the older secondary rocks of North America aro those of birds. A large number of remarkable genera found in the Cretaccous rocks bave recently been described by Professor Marsh and others.

The serpents of America are very numerous, and include amongst others, the following genera:-Tortrix, Calamaria, Coronella, Xenodon, Heterudon, Lycodon, Coluber, Herpetodryas, Psammophis, Dendrophis, Dryophis, Dipsas, Tropidowotus, Homalopsis, Boa, Elaps, 'Trigonocephalus, Crotalus.

Of these the genera Ieterodon and Crotalus or rattlesnake are entircly peculiar to America, and the latter are by far the most deadly of serpents. The reptilia of North America have been well described by Dekay and Holbrooke.

The North American saurians belong to the genera Crocodile, Alligator, Anolis, Skink, Agama, Tropidolepis, Ophisaurus, Leptophis. Of the Ranidæ there are Rana, Bufo, and Hyla.

The North Amcrican and A siatic regions form a zoological kingdom, according to Dr Strauch, which is characterised
by the prevalence of Emydes and by the preseace of Trionychides. In the Nortli American region there are 44 species distributed over four sub-regions-viz., the corthwest part, which lies west of the Tocky Mountains; the north-east part, which lies east of them; the south-east part and tho south-west part, which embraces Central America South America and Australia together form another king. doni, characterised by the prevalence of Chelydes, and the total abeence of Trionychides. There are about 35 species in the South American region.

The multitude of fishes in South America is extmordinary, and still more so is the marvellous variety of form which they exhibit. A large number of species have very circunscribed ranges, so that not only does cach rivur basin have a distinct fauna, but a number of distinct faunas occupy different portions of the same river, as is well exemplified in tho Amazons, Tocantins, lio Negro, and other rivers, where most of the fishes at stations a few lundred miles apart are for the most part specifically distinct. Professor Agassiz, in his scientific journey through Brazil, collected about 2000 species from the Ansazon basin only. In fishes, as in other classes, there is a remarkable difference between the faunas of North and South America, and in this class also Nortlu America has much in common with Europe and North Asia. The sturgeons abound in North America, but are absent in South America, where the corresponding group is the Goniodonts; the Siluroids are abundant in both portions of the continent; the perches are numerous throughout North America, but none occur in South America; where, however, they are represented by the Chromids. The Cyprinoids are abundant in North America, but absent in South America, where we have the allied group of Cyprinodonts. The Characines of South America represent the Salmonide of North America, each group being confined to its own portion of the contineyt. . There are several other small families present in Soull America, such as tho Erythrinoids, Gymnotines, and otliers.

In the meagre outline of American vegetation which it Botany, is possible to attempt here, we slall more or less strictly adhere to the principle laid down by Schonw, viz, that in constituting a botanical region, at least one-half of the species and one-fourth of the genera should be peculiar to it. We shall therefore divide the horizontal range of the rast continent into zones, commencing with the Arctic, and procecding towards the Antarctic Circle.

In the Aretic Region or Region of Saxifragacere, as near to the Pole as man has yet penetrated, is found the red snow plant (Protococcus nivalis), penctrating the snow itsclf, sometimes to the depth of 12 fect, and covering for miles with its crimson tints the cliffs and ice-floes of the Polar Sea. Greenland is betanically distinguishable from Arctic America proper, inasmuch as it produces beath (Calluna vulgaris), which, it is somewhat remark. able, is nowhere to be found on the continent.

The most remarkable of tho sub-aretic lichens is that known as Tripe de Roche, which has often preserved tho lives of famished "trappers," who, but for its sustenance, must have perisbed of hunger. Tho Saxifrages which distinguish this region vary in species, and sometines in genera, from thoso of Europe, but, generally speaking, there is a strong resemblance, which amounts almost to identity, as the Arctic shores are approached.

Emerging from the region of Saxifragaccor, we find ourselves in that of the Asters and Solidagos, extending to the parallel of $36^{\circ} \mathrm{N}$. This region not only produces many species of aster and solidago, but also a great varicty of oaks and firs, and numerous species of Vaccinium. Among the oaks of Canada and the United States arc, the lime oak (Quercus virens), the laurel oak (Quercus laurifolia), the black oak (Quercus tinctoria), the white or iron oate
(Quercus aioa and Quercus obiusiloba), and the scarlet oas (Quercus coccinea). None of these, in regard to the quality of their timber, can stand comparison with the British oak, though some of them are rery valuable.
The western or Californian and Oregon districts of this region are in many respects distinct in character. Polemoniacee abound; also Eschscholtia californica, species of Platystemon, Nemophila, Gilia, Collinsia, Clarkia, Bartonia, and Eutocha. Conifere also exist in abundance, some of them possessing great botanical interest, such as Abies Douglasii, Pattoniana, nobilis, amabilis, grandis, lasiocarpa, Pinus Lambertiana, Sabiniana, insignis, Jeffeyi, ponderosa, monticola, calijornica, Fremontiana, Conlleri, Jlexilis, Thuja gigantea, Sesquoia gigantea, Juniperus dealbata and occidentalis, and Castanea chrysophylta. Pinus ponderosa predominates in the forests of Upper Oregon, and aloug with it occur Abies balsamea, canadensis, Dorglasii, nobilis, and alba. Vivid colours mark the basaltic region of Upper Oregon. Rhododendron macrophyllum is found in Tancourer Island. Barley, oats, rye, wheat, buckwheat, and maize, along with the common fruit-trees and culinary vegetables of the temperate regions, are cultirated.
The region of Magnolias lies between parallels 30° and 36°, embracing the southern portion of North America. Nearly serenty species are known to exist. Cycadacece, Anonacees, Sapindaceer, Zingiberacere, Melastomacex, Cactacese, and numerous other tropical forms, show themselves.
The forest trees display either broad shining foliage like the Liriodendron and Esculus, or pinnated leaves like the Acacia and Fobinia. They are, moreover, decked with magnificent blossoms. Rice, sugar-cane, and cotton are the special objects of culture in this region.
The region of Cactuses and Peppers inclodes Mexico, Guatemala, and South America to the Amazon (to an elevation of 5000 feet above the sea-level), as also Guiana, certain parts of Peru, and New Granada. The leaves of the plants of the isthmus of Panama are covered with hair and tomentum, while greenish and yellow flowers predominate. The incladed portion of South America produces Mauritia flexuosa, the Murichi or Ita Palm, and Fictoria regia. The vegetable-ivory palm (Phytelephas macrocarpa) is a native of Columbia and Peru. Fams, plantains, chocolate, sugar, coffee, cocoo-nut, de., are cultivated in this region.
The Mexican highlands, rising over 5500 feet above the sca-level, produce Pinus religiosa, Pinus apulcensis, Pinus Hartwegii, Pinus Hontezumce, and Taxodiurt distichum. European grains are cultivated with success.
The region of medicinal bark t.ees (Cinchonas) embraces the Cordilleras between parallels $5^{\circ} \mathrm{N}$. and $20^{\circ} \mathrm{S}$., where the elevation ranges between 5000 and 9600 feet. In the lower parts of this region coffee, maize, and potato are cultivated.
The region of Calceolarias and Escallonias is, geverally speaking, coestensive with the preceding, but at an elevation greater than 9600.
The West Indian region is marked by the prealence of ferns and orchids, and has a regetation intermediate between that of Mexico and the north of South America.

We next come to the region of Palms and Melastomas, which lies to the east of the Andes, between the Equator and the Tropic of Capricorn. Here the luxuriance of regetable life is almost startling to European eyes. The forest trees of Brazil tower to an almost incredible height, while the very undertrood is composed of Paims, Melastomaceex, Myrtaceæ, Crotons, and Tree Ferns. In the treeless belts are found Heli :onias, Dorstenias, and tall grasses. Immense Composita, Vernonias, arborescent Solanums, and pecies of Fuchsia, Solandra, Lasiandra, Laurus, Ficus, and.Cassia abound. The treer are covered, stem and branch.
with Ferns, Aracex, Tillandrias, Orchids, Cactuses, Peperomias, Gesneras,-and innumerable other epiphytic plants.

The region of arborescent Composita, extending from the Tropic of Capricorn to lat. $40^{\circ} \mathrm{S}$., embraces Southern Brazil, La Plata, and Chili. The distinctive features of the Opper Cordilleras reappear here; Calceolarias and Escallonias abound. Thuja tetragona, Pنdocarpus chiliana, Thuja chilensis, and Chili pine (Araucaria imbricata), are native to this region, the last-named being a hardy conifer, extend ing along the Chilian Andes from 31° to $40^{\circ} \mathrm{S}$. In the neighbourhood of Rio Janeiro is found Araucaria braiiliana. Wheat, rine, peach, and many European planta are cultirated to great perfection in this region.
The Antarctic region comprehends the Strait of Mayalhaens, Tierra del Fuego, and the Falkland Islands. Many' European, and more especially British, genera appear in this region, and species of Saxifraga, Gentiaua, Arbutus, Primula, and other Arctic and North Temperate forms are common. In Fuegia the evergreen beech (Fagns Forsteri), the deciduous beech (Fagus antartica), and Drymis Trinteri, correspond to the birch, oak, and mountain ash of Scotland. The Fuchsia is a native of Fuegia: Among' shrubs may be mentioned Chiliotricum amelloides, Feronica elliptica and decussata, Enzpetrum rubrum, and Pernettya empetrijolia; among ferns, Lomaria alpina and Magellanica; and among lichens, Usnea melaxantha.

Northern America, though its rast forests have nom Chief in been exposed for centuries to the axe of civilised man, is dizenous still one of the best wooded regions of the world. Anong prodactse the principal forest-trees are the pine, oak, ash, hickory, can cone red-beech, Canadian poplar, chestnut, black walnut, maple, tinent tulip-tree, and white cedar.

Central America produces estensively mahogany, pimento, sarsaparilla, ranilla, Peruvian balsam, and many other raluable moods and drugs.

Nearly tro-thirds of the surface of South America are still covered with gigantic forests, which must ultimately disappear, like many of those in the north, before the combined efforts and necessities of commerce and agriculture. The most distinctive and valuable forest-trees of South America are the greenheart and the mora. The cow-tree, which yields a juice rery like milk in its properties, is also a remarkable product of this region.

Maize is by far the most important farinaceous product of the New World. It was the only grain which the earliest European settlcrs found cultirated, to some extent, by the natives. For nutrition it is inferior to wheat, but it is much more prolific, and is suited to a greater variety of soils. Tobacco is also-indigenous to Anerica, whenco its use has extended over the whole world. Among roots. the potato, which we also orre to America, is mithout a rival. Nillet, tapioca, arror-root, cocoa, copaira, curchona, jalap, sassafras, nux-romica, the cochineal plant, the agave or American aloe, and the pine-apple are also indigenous to the continent.

It is impossible here to do more than touch on the vast subject of the botany and the indigenous regctable products of the New World. For fuller infuruation, in addition to that contaived in articles in the present work that treat of the gcograplical distributiou of plants, the reader is referred to the numerous valuable American works of such authors as Eeck, Ligeluw, Breckenridge, Brown, Carson (Medical Dotany), Darby, Darlington (Agricultural Botany), Asa Gray, Harvey (Algæ), Ravenel, Spraguc, Strong, Torrey, isc. An extended description of the forest trees of North America will be found in the great work of Michaux and Nuttall, The North American Sylva.

The origin, history, lauguages, and coudition of tho American nations present ample materials for speculatiou; but before touching on these subiects, the qucstion prccsuts
itself, What is the total of the indigenous population? llumboldt, in 1823, estimated the number of Indians at 8,610,000. Wollaert estimated the number existing in 1863 as fullows:-

Pexico	00,000
Yera.	1,600,000
Dolivia	1,400,000
Central Ameri	1,000,000
J'smonay	700,000
Ecundor	500,000
United States.	500,000
Other counts	1,314,7

Total.
.11,014,110
It is mrobable that theso numbers hara been diminished: the latest official returns for the Uuited States, in 187., estimate the Inclian population at 300,000 . (See Inbass.)

The indigenous propulation of Ameriea presents man under many aspects, and society in various stages, from tho regular but limited civilisation of Mexico and Peru, to sarage life in its most brutal state of alasement. At one extremity of the country we find the pigmy Esquimaux of four feet and a half in height, and at the other the Patagonian standing abore six feet. In complexion the variety is great, and may be said to embrace almost every hue known elscwhere on the face of the cartl. cxcept the pitchy black of the Negro. About one-half of all the known languages belong to America; and if we consider every little wandering lorde a distinct community, we hare a greater number of nations here than in all the rest of the world. Amidst all this diversity philosophers have thought they were able to discover certain general chameters, sulliciently marked to distinguish the Anerican nations from those of the old continent. "It is fureign to our purpose to inquire whether the varieties of form, stature, and complexion, in the homan species, are modifications produced by external causes operating differently on distinet portions of the progeny of one primitive pair, or whether several races wero originally created, and havo given birth, by their mixfure, to the amazing varieties we witness. We assume the former opinion as true, because the probabilities seem to bo in its farour; but the phenomena present themselves to us in the same light in whichever way they originated.
Physiologists are not at one in their accounts of the characteristics of the aborigines of the new world, nor are ihey agreed as to whether they should be considered one race or several. Elumenbach places them all under one class, except the Esquimaux. Bory St Vincent divides them into four races, or five if we inelude the Esquimaux, under the following designations:-1. The rolombian, which comprehends the tribes formerly inhabiting the Alleghany Mountains, Carada, Florida, the eastern coasts of Mexico, and Central America; and the Caribs, who occupied thic West India Islands and Guiana. 2. The A merican, embracing the tribes which occupy all the other parts of South America cast of the Andes, except Patagonia. 3. The Pategonian race, inhabiting the southern extremity of the continent. 4. The Neptunian, inhabiting the western consts of both divisions of the continent, from California to Cape Horn, and which he considers as essenthin y the same with the race spread over the Malay Peninsul and the Indian Archipelago. With this race are classed the $\operatorname{llexicans}$ and Peruvians. By another writer the species are reduced to two, the Celomlian and the American; the former including all the North American tribes, with the Caribs, the Mexicans, and Perurians, and other inhabitants of the Cordillera; and the latter the Brazilian lodians and Patagonians. Neither of these systems, when tested by facts, is rery satisfactory. Dr Prichard thinks that the mutnal resemblance amons the American nations bas been cangererated by some writers; yet it is certain
that there is more of a common family character in their organisation than in that of tho indigenous population of Asia or Africa. "The Indinns of New Spain," says Ilumboldt, "bear a gencral resemblance to those who inhabit Canada, Florida, Peru, and lirazil. Wैe have the same swarthy and cupper colonr, straight and smoath hair, small beard, squat body, long eye, with the corner directer. upwards towards the temples, prominent cheek-bones, thicilips, and expression of gentleness in the mouth, stronfory contrasted with a gloomy and severe look. Orer a miliien and a half of square leagues, from Cape Ilorn to the river St Lawrence and Behring's Straits, we are struck at the first glance with the general resemblance in the features of the inkabitants. We think wo perceive them all to be descendel from tho same stock, notrithstanding the prodigious diversity of their languages. In the portrait drann by Volncy of the Canadian Indians, we recognisn the tribes scattered over the saranuahs of the Apure and the Corony. The same style of features exists in both Americas."

On the autherity of Dr Morton, the most natural division of the Americans is into two families, the Tollecan and the Anerisan; the former of which bears ovidenco of centuries of Lalf-civilisation, while the latter cmbraces all the barbarous nations of the New World, with the exception of the Polar tribes, which are cvidently of Mlongolian origin. In each of these, however, there are several subordinate groups, which may be distinguished as the Appalachian, the Brazilian, the Putagonian, and the Fuegian. The Appa lachian branch ineludes all the mations of North America, except the Mexicans, together with the tribes of South America north of the river Amazon and east of the Andes. In this race the head is rounded, the nose large, salient, and aquiline; the cyes dark brown, with littlo or no obliquity of position ; the month large and straight; the tecth nearly vertical ; and the whole face triangular. The neck is long, the chest broad but rarely deep, the body and limbs muscular, and seldom disposed to fatness. In character these nations aro warlike, crucl, and morgiving; they turn with aversion from the restraints of civilised life, and have mado but little progress in mental culture or the uscful arts. The Erazilian branch is spread orer a great part of South Ameriea, east of the Andes, including the whole of Brazil and Paraguay, between the River Amazon and 35° S. latitudo. Their physical characteristics differ but little from those of the Appalachian branch; they possess, perlaps, a larger and more expanded nose, with larger mouths and lips. The eyes are small, more or less oblique, and far asunder; the neck short and thick; the body and limbs stout and full, even to clumsiness. In character, also, they differ little. None of the Americans are less suscepuible of cultivation; and what they are taught by compulsion seldom exceeds the humblest elements of knowledge. The Patagonian branch includes the nations to the south of the Plato, as far as the Strait of Magalhaens, including also the mountain tribes of Chili. They are chicfly distinguished by their tall stature, handsome forms, and indomitable courage. The Fuegians, who call themselves Yacannacunnce, rove over the sterilo wastes of Tierra del Fnego, which is computed to ho half the size of Ireland, and yet their whole number has been compated as not excueding, 2000. The physical aspect of the Fuegians is altogether repulsive. 'They are of low stature, with large heads, broad faces, and small cyes. Their chests are large, thcir bodies clumsy, with large kuees, and ill-shaped legs. Their hair is lank, black, and coarse, and their complesion a decided brown, like that of tho more northern tribes. Their expression of face is racant, and their mental operations are to tho last degree slow and stupid ; they are almost destitute of the usual curiosity of sare ges, earing little for anything that does not minister in their present mauts.

The American race is distinguished by the form of the skull, which, except in its greater length, resembles the Mongol type. The cheek-bones are prominent, but not so angular, as in the Mongol head; the occiput is rather flat, the cavity for lodging the cerebellum. small, the orbits large and deep. The nose is generally aquiline, but in some tribes flat, and the nasal cavities are large. Compared with the head of the Negro, that of the American is broader, and the teeth are less prominent: when placed by the side of the Caucasian head, it is seen to be smaller in size, less rounded and symmetrical, and less developed in the part before the ear. The skull is generally thin and light. There are, however, many deviatiors from this typical form. The Carib skull and the Araucanian are large; the Peruvian small, and singularly flattened behind, so as to oresent a short line from the forehead to the occiput.

The colour of the Americans, though it includes a considerable diversity of shade, is more uniferm than that of the inhabitants of Asia or Africa ; and, what is moro remarkable, its varieties do not bear any visible relation to the temperature of the climate. A brownish yellow, or copper coloqur, as it has been called, pervades irearly all the numerous tribes from the Arctic Ocean to Cape Horn, but still with many different degrees of intensity. The eastern nations of Chili have but a slight tinge of the brown colour, and the Boroancs are still whiter. On the north-west coast, from latitude 43° to 60°, there are tribes who, thongh embrowned with soot and mud, were found, when their skins were washed, to have the brilliant white and red which is the characteristic of the Caucasian race. But within the tropics, the 'Malayoques in Brazil, the Guaranis in Paragnay, the Guiacas of Guiana, the Scheries of La Plata, have tolerably fair complexions, sometimes united with blue eyes and auburn hair; and, in the hot country watered by the Orincco, Humboldt found tribes of a dark, and others of a light hue, living almost in juxtaposition. It is remarkable, too, that the nations whose colcur approaches nearest to black are found in the temperate zone namely, the Charmas of the Banda Oriental, in latitude $33^{\circ} \mathrm{S}$ aud tho Cochimies, Pericns, and Guaycurus, spread over the peninsula of California. These people have skins of a very deep hue, lout are not absolutely black; and they have neither the woolly hair of the Negroes, nor their social and geed-humoured disposition. The Charruas, especially, are distinguished by a high derree of that austerity and stern fortitnde which are common to the Ameriean nations. The Caribs and some Brazilian tribes have the yellowish hue of the Chinese, and the same cast of features. Among the nations dwelling on the west side of the Alleghanies, and near the northern lakes, there is also a considerable variety of complexion; but the brown or.copper shade is found more or less in them all. It may be said, then, of the American nations, tha+; with the exception of two or three tribes on the north-west coast, who probably arrived from Asia at a later period than tlea others, the two extremes of complexion, the white of Northern Europe and the black of Ethiopia, are unknown amongst them; and that, when compared with the Moors, Abyssinians, and other swarthy nations of the Old World, their colour inclines less to the yellow, and more to the reddish brown.

Long, black, lank hair is common to all the American tribes, among which no traces of the frizzled locks of the Pulynesian, or the woolly texture of the African Negro have ever been observed. The beard is very deficient, and the little that nature gives them they assidnously root out. A copper-coloured skin has been also assumed by most writers as a characteristic distinction of the Americans; but their real solour is in general brown, of the hue most nearly resembling that of cimamon; and Dr Merton coincides in opinion with Dr M'Culloch, that no epithet derivable from the colonr
of the skin so correctly designates the Anericans as that of the brown race. There are, however, among them occasiovel and very remarkable deriations, including all the varicties of tint from a decided white to an unequirocally blacks skin. That climate has a very subordinate inluence in producing these different huss must be inferred from the fact that the tribes which wander in the equinoctial regions are not darker than the mountaineers of the temperate zonc. The Puelches, and other tribes of the Magellanic regions, beyond $55^{\circ} \mathrm{S}$. latitude, are darker than the Abipones, Mocobies, and Tobas, who are many degrees nearer the equator; and the Botocudos are of a clear brown colour, soinetimes approaching mearly to white, at no great distance from the tropic; while the Guiacas under the line are characterised by a fair complexion ; the Charruas, who are almost black, live at the 30th degree of S. latitude ; and the still blacker Californians are 25° north of the equator. , Everjwhere, indecd, it is found that the colour of the American depends very little on the local situation which he actually occupies; and never, in the same individual, are those parts of the body which are constantly covered of a fairer colour than those which are exposed to a hot and moist atmospleere. Children are never white when they are born, as is the case among even the darkest of the Caucasian races; and the Indian caciques, who enjoy a considerable degree of luxury, and keep themselves constantly dressed, have all parts of their body, except the palms of the hands and the soles of the feet, of the same brownish-red or copper colnur. These differenees of complexion are, however, extremely partial, forming mere exceptions to the general tint which characterises all the Americans, from Cape Horn to Canada. The cause of such anomalies is not casily ascertained; that it is not climate is sufficiently obvious; but whether or not it arises from partial immigrations from other countries remains yet to be decided.

The Amoricans of indigenous races might also be divided into three great classes distinguished by the pursuits on which they depend for subsistonce, namely, hunt ing, fishing, and agriculture. The greater number of them are devoted to hunting; the fishing tribes are not numerous, and are wholly destitute of the spirit of maritince adventure, and even of fondness for the sea. A few tribes wero strictly agricaltural before the arrival of Europeans, but a much greater number have becormo so since. Nany tribes regularly resort to all these modes of subsistence, according to the seasous; emploring the spring in fishing, the summer in agriculture, and the autumn and winter in hunting.

The intellectual faculties of this great family appear to be decidedly inferior, when compared with those of the Cancasian or Mongolian race. The Amcricans are not only averse to the restraints of eduention, but are for the most part incapable of a continued process of reasoning ou abstract subjects. Their minds seize. with avidity on simple traths, but reject whatever requires investigation and analysis. Their proximity for more than two centuries to European institutions has made scarecly any perceptible change in their mode of thinking or their manuer of life; aud, as to their own secial condition, they are probably in most respects exactly as they were at the carliest period of their national existence, They have made fer or no improvements in constructing tlıeir houses or their boats ; their inventive and imitative foculties appear to be of very humble capacity, nor have they the smallest taste for the arts and sciences. One of the nost remarkable of their intellectual defeets is the great diffeculty they find in comprehending the relations of numbers; and Mr Schoolcraft, the United States Indian agent, assurcd Dr Morton that this deficiency was one cause of most of the misunderstanding in respect to treaties entered into between the United States Goverament and the
native fribes. The natives sell their land for a sum of money, withont having any conecption of the amount; and it is only when the proceeds come to be divided that each man becomes acquainted with his own interest in the transaction. Then disappointment and murmurs invarially ensue.
Every unsritten tongue is snbject to continnal fluctuations, which will be numerous and rapid in propertion as the tribe using it is exposed to frequent ricissitudes of fortune, and the individuals composing it have little intercourse with one another. When the population of one of these societies in. ereases, it splits into several branches; and if these have little intercourse, the original language divides by degrees into as many dialects. 'These smaller' societies subdivide in their turn mith the same effects; and, in such continual subdivisions, the dialects of the extreme branches deviate farther and farther from one another, and from the parent tongue, till time, aided by migrations and wars, producing mixtures of different hordes, obliterates all distinct traces of a common origin. The ciuse of these changes becomes more obvious when we reflect on the principles which give stability to a language. These are-1. The abundant use of writing; 2. The teaching of a language as a branch of education ; 3 . Frequeney of intercourse among all the people speaking it ; 4. The existence of an order of men, such as priests or lawyers, who employ it for professional purposes; 5. Stability of condition in the people, or exemption from vicissitudes and revolutions; 6. A large stock of popular poetry, which, if universally diffused, may almost becomo a substitute for writing. All these conditions were wanting (with some trifing exeeptions) in the whole of the mandering tribes of Ameriea. The great multiplication of languages, therefore, prores tro things-first, that the people are in a low state of sarage life; and, sceondly, that they have been for many ages in this condition; for time is a necessary element in the process of splitting human speech into so many varieties.
Among the seven or eight millions of American aborigines, it is estimated that there are as many languages spuken as among the seven or eight hundred million inhabitants of the Old World. Just as there is a marked physiological resemblance attaehing to all the New World tribes, so judged by the evidence of language, the native American is sui generis, having no connection, except the most remote, with the rest of the human family. The few corresponding words in Old and New World languages, which are not of an imitative character, bear the stamp of fortuitons coincidence rather than that of common origin. Vater, in his Linguarum Totius Orlis Index, estimated the number of American aboriginal languages at about 500 , and Balbi at 423, of which 211 lelonged to North, 44 to Central, and 158 to South America. In the absence of certi in data, it may be safe to set down the number of native American languages at about 450 .

Throughout the whole of these runs a thread of connection. They are all characterised by polysynthesis, as Duponceau calls it, or holophrasm, to adopt the phraseology of Dr Lieber. Holophrasm is a process more or less common to every language at a particular stage of its development. We have glimpses of it in most of the Taranian group of languages, and it appears, in a faint degree, in the Basque; but it belongs to a very large proportion of the languages of America, so extremely numerous, and many of which have nothing else in common. This diffusion of a peculiar and ermmon character over materials so dissimilar has been plaasibly accounted for by the supposition of a. community of origin in the tribes, whether few or many, which peopled the continent. As no person has the full command of all the vocables in his native lan-
guage, indiridual terms must be contmually dropping ont of dialeets preserved by oral commmication; and new ones will be introdnced as new wants and new objects solicit attention. But during the gradual change which thus takes place, the new words will be combined and modified according to the rules which belong to the genius of the spoken dialect with which théy are incorporated; and thus it may happen that the grammatical forms of an ancient language may live, while its materials perish. The changes of structure which nresent themselves in tho history of Enropean languages, it must be remembered, took place in piogressive communities. Among nations like the American Indians, whose harharism, we may suppose, remained almost stationary, the forms of specel might bo more permanent, though its substance was in a state of slow but constant mutation. But even were this community of origin admitted, it caunot be looked on as entire and absolute among the American nations.

Analysis and generalisation are processes that dustinguisls the languages of reflective and civilised races. "Nothing," says Schooleraft, "could apparently be further remored from the analytical class of languages than the various dialects spoken by the Indians of America, who invariably express their ideas of objects and actions precisely as they are presented to their eyes and cars, i.e., in all their componnd associations." To "encapsulate" words, as Dr Lieber expresses it, " is the striking feature of all these languagen, and hence a word will consist sometimes of seven or cight syllables, each one conreying one individual idea, like a set of boxes cach one contained in the other." This common feature of American languages is both psychologically and philologically of the greatest interest. Of all the groups of American languages, the various dialects of the Algonquin stock furnish the most inviting field for the philologist. It is from the Algonquin, therefore, that we draw the follow ing examples of the process of syllabical agglatination :-

Thus, waub is the root of the verb to see, and of the word light. Waubun is the east or sunlight, and inferentially place of light. Aub is the eye-ball; hence, aiauh = to see, to eye. Waub itself appears to be a compound of aub and the letter v, which is tho sign of the third person. Waubuno is a member of a society of men who continue their orgies till daylight. The simplest conerete forms of the verb to see are as follow :-

> Ne waub $=$ I see.
> IVe waub $=$ Thou seest.
> O waub $=$ He or she sees.

But all this is vague to the Indian mind until the verb is made transitive, and the class of objects acted on is thereby shown. The Indian order of thought, moreover, requires that the object should generally precede the verb, e.g-

Inine ne wau bum au=man, I see him. Wak kic-gun ne ne wau bun daun = honse, I see it.

Such examples show the tendency of these languages to aecretion. The verb is made to include within itself, as it were, the noun, pronoun, and adjective. "Dcelension, cascs, articles, are deficient," says Baneroft, "but everything is conjugated. The adjective assumes a verbal termination, and is conjugated as a verb; the idea expressed by a noun is clotlied in verbal forms, and at once does wie office of a verb. Then, since the Indian verb includes within itself the agent and the object, it may puss through as many transitions as the persons and numbers of the pronouns will admit of different combinations; and each of these combinations may be used positively or negatively, with a reflex or a cansitive signification. In this manner changes are so multiplied, that the number of possible forms of a Chippisa
verb is sard to amount to five or six thousand: in other words, the umber of possible variations is indefinite." The fornidable array of syllables arises partly from the fact, that there are some sixten modes of forming the plural of nouns represented in the verh by sixteen corresponding modifications. Nouns are divided, as in the Dravidian languages of South India, unto aninate and unanimate.

The best account of those peculiarıtes, as well as the best general distribution of the Amemean languages, are given by Professor Whituey of Yale College, in his work on Langunge and the Stuly of Lanyuage. Pp. 346-351:-
"The conditions of the linguistic problem presented by the Asmerican languages are exceedingly perplexing, for the same reasoo as those presented by the Polynesiau and African dialects, and in t jet higher dcgree. The number, variety, and changeableness of the different tongues is monderful. Dialectic division is carried to its extreme among them; the isolating and diversifying teodencies have had full course, with little connteraction fron tlie coaserving and assimilating forces. The contioent seems ever to have been yeopled by a congerics of petty tribes, incessautly at warfare, or standing off from one another in jealous and snspicious seclusion. Certain striking excentions, it is true, are present to the mind of every one. Mexico, Central Anerica, and Peru, at the time of the Spanish discovery and conquest, were the seat of empires possessing an organised system of government, with national creeds and institutions, with modes of writing and styles of architec.ure, and other appliances of a considerably developed culture, of indigenous origin. Such relics, too, as the great mounds which are scattered so widely throngh our western country, and the ancient workings upon the veins and ledges of native copper along the soutnern shore of Lake Superior, show tbat other large portions of the aorthern continent bad not always been in the same savage coodition as that in which onr ancestors found them. Yet these were exceptions only, not changing the general rule; aud there is reason to believe that, as the civilisation of the Mississippi valley bad been extinguished by the incursion aud conquest of more barbarous tribes, so a similar fate was threatening that of the sonthern peoples: that, in fact, American culture was on its way to destruction even without European interference, as European culture for a time had seemed to be during the Dark Ages which attended the downfall of the Roman empire. If the differentiation of American language had been thas unchecked by the influence of culture, it has been also favoured by the iofluence of the variety of climate and mode of life. While the other great families occupy, for the most part, one region or one zone, the American tribes have been exposed to all the difference of circumstances which can find place between the Arctic and the Antarctic oceans, amid ice-fields, mountains, valleys, on dry tablelands, and in reeking river-basins, along shores of every clime. Dloreover, these languages bave shorn themselves to possess a peculiar mobility and changeableness of material. There are groups of kindred tribes whose separation is known to be of not very loog standing, but in whose speech the correspondences are almost overwhelmed and hiddea from sight by the discordaoces which have sprung ap. In more than ors tongue it has been remarked that hooks of instruction prepared by missionaries have become antiquated and almost unintelligible in three or four generations. Add to all this, that our knowledge of the family begins in the most recent period, less than four hundred years ago; that, though it bas been since penctrated and pressed on every side by cultivated nations, the efforts made to collect and preserve information respect ing it bave been only spasmodic and fragmentary; that it is almost wholly destitute of literature, and even of traditions of any authority and value; and that great numbers of its constituent members bave perished, in the wasting away of the tribes by mutual rarfare, by pestileace and famine, and by the encroach. ments of more powerful races-and it will be clearly seen that the comprehensive comparative study of American languages is beset with very great difficulties.
"Yet it is the confident opinion of linguistic scaolars that a fundamental unity lies at the base of all these iafinitely varying forms of speech; that they may be, and probably are, all descended from a single parent lagguage. For, whatever their differences of material, there is a single type or plan unon which their forms are developed and their constructions made, from the Arctic Ocean to Capa Horn, and one sufficiently peculiar and distinctive to conatitute a genuine indication of relationship. This type is called the incorporative or polysynthetic. It tends to the cxcessive and abnermal agglomeration of distioct significant elements in its words; whereby, on the one hand, cumbrous compounds are formed as the names of objects, and a character of tedious and time-wasting polysyllabism is given to the language-see, for example, the three to tun-sylabled numeral and pronominal words of our Festcra ludian
 literally "head-tree (hom1)- lip' hair (bearil), or 'the horned and bearded one'-and, on the otjer hand, and n hat is of $5 \cdot \mathrm{t}$ more importance, an unvieldy egarromtian, verkinl or quersi-verbnl, is aubstituted for the phrnse or sentense, with its distinct and balaneed meolbers. Thus, the Mexienn s:rys, '1-flesh-cat,' ns a single word, compounder of three elements; or if, for cmplinsis, the object is left to atand scparate, it is at least first represented lyy a prononn in the verbal compound; 2s, 'l-it-eat, the flesh;' or, 'J-it-hinn-gives the bread, my son,' for 'l give my son the bread.'
'The incorporative type is not wholly peculiar to the ancmares of our cootinent. A trace of it (im tho insertion, among the verbal forms, of an oljeetive as well as a suhjective pronominal cndingl is Jound even in one of the Utrian dialects of the Scytlian family, the Hangarian; and the Basque, of which we shall presently aly:ak more pasticularly, exhilits it in a very notable measure. It is fonud, too, in cousiderably varying degree and style of derclopment in the dillerent brauches of the American family. But its geueral elfect is still such that the liomist is able to claim that the languages to which it belongs are, in virtue of their structurc, akin with one another, and distinguished from all other koowu tongues.

Not only do the subjective aud objective pronouns thus enter into the substance of the verb, but also a great varicty of momlifiers of the verbal action, alverbs, in the form of particles aud from. ments of rords ; thus, almost everything which belps to nake expression forms a part of verbal conjugation, aud the verhal parailimn becomes well-nigh interoniuable. An extreme instance of excessive synthesis is afforded in the Cherokec word-phrase wi-ni-lano-li-gr-gi-na-li-skano-lung-ta-naro-ne-li-ti-se-sti, "they will by that tinne have nearly finished granting [favours] from a distance to thee and mc.
"Other comnon traits, which help to strengthen our conclusioo that these langsages are ultimately related, are not nantiog. © Such are, for example, the habit of conbining words by fragmeats, by one or two representative syllables; the direct conversion of nouns, substantive aad adjective, into verbs, end their conjugation as such; peculiarities of generic distinction-miny languages dividiog auimate from inanimate beings (somewhat as we do by the use of who and what), with arbitrary and fanciful df.tails of classification, like those exhibited by the Indo-European languages in their separation of masculine and feminine; the possession of a rery peculiar scheme for denotiog the degrees of family relationship; and so on.

As regards their material constitution, their assimument of certain sounds to represent certain ideas, our Indion dialects shor, as already remarked, a very great discordance. It has been claioner! that there are not lcss than a liunlred languatres or groupa unon the continent, between whose words are discoverable no correspoodences Which might not be sufficiently explaincl as the result of accident. Doubtless a more thorougb and sharpsighted iovestigation, a more penetratiag linguistic analysis and comp arison-though, under existing circumstances, any even distant approximatiou to the actual beginning may be hopeless-mould consilerably reduce this uumber; yet there might still remain as many unconncetod groups as are to le found in all Europe and Asia. It is necdless to undentake licre an enumeration of the divisions of Jndiau speech: We will but uotice a few of the most important groups occupying our nkil nortion of the continent.
"Ia the extreme north, along the whole shore of the Arctic Ocenn, are the Eskimo dralects, with which is nearly allied the Greenlandish. Below them is spread our, on the west, the great Athaphskan EToul. On the east, and as far south as the liue oi Tennessee and Forth Carolina, stret"hes the immense regionon upied by the numcrous dialects of the Algonquin or Delaware stock; within it, however, is eoclosed the distiact braoch of Iroquois languages. Our sonth. eastern states were in possession of the Florida gloup, comprising the Creek, Choctaw, and Cherokee. The great nation of the Sioux or Dakotas gives its aame to the branch หhich occupicil the Mis souri valley and parts of lhe lower Mississippi. Annther widespreid sub-family, including the S!-oshonce aud Comanclae, 1angent from that shores of Texas north-westuaril to the borders of Califonia and the Erritory of the Athapaskas; aud the Pacific coast was occupied by a medley of trihes. Dexico and Central America, finally, were the bome of a great varicty of tongmes, lhat of the cultivated Aztecs, with its kindred, baving the widest range."

For further information regarding the aboriginal languages of America, the reader is referred to the researches of Balbi, Gallatin, Vater, and Schoolcraft; to Lemis H. Morgan's Tables, with accompanying text and furms, rol. xvii. of the Smithsonian Contributions to linowledge (18il), entitled "Systems of Consanguinity and Affinity of the Human Family," and to an invaluable work, The Literature of American Aboriginal Languages, by Dr Ludewig, edited by Nicolas Trübner, 1858.

Though any attempt to reduce the American populstion under \& few general classcs, either on physical or
ethnographical grounds, would be irkle, we may notice one or two cit the most remarkuble nations or familics.

- All the northern cuast of tho continent is tenanted by the Esquimanx, a dwarfish race, rarely cxeceding five fee in beight. Their territories commence near Mackenzie's Liver, in $6 S^{\circ}$ N. lat., and extend to the Aretic Ocean. Thes occupy all the northern Archipelago, the shores of Indson's and Datin's Ihys, of Labradur, and of Liussian America round by Behring's Straits, to the peninsula of 11 . aska. They live entirely by fishing, the whale and the seal being their mot common food; they inhabit skin tents during their short stumer, and in winter caves or houses buitt with snow in the shapo of domes, within which a single nude lamp is liept perpetually birning. They are crafty an I dinty, but appeared to Captain Franklin more intelligent and provilene than the northern Indians. There is a wide dirersity in their dialects, whech still display decided marks of iicntity in their roots.

The north-west coast of Alaslia, from Cook's Inlet to the 4 Sth parallel, is inhabited by four tribes, of whom the Kaluschi are the most remarkable. Theso people are distinguished from all the native races of America by having as fair a complexion when their skins are washed as the inhabitants of Europe; and this distinction, aecompanied sometines with auburn bair, has been considered as indicating an origin different from that of the coppercoloured tribes who people all the rest of the continent.

Indian

 Tribes.exctions in war or tac chase, out has an uncolnquerable aversion to remular labour. Ie is extrenely improvident; cats enormously while be has abundance of food, without thinking of the funine which may follow; nud, when liquors are supplied to him, will continue drunk for days.

Most of the Indians of North America belicse in the existence of a supreme being, whom they call the Grent S_{1} irit; and of a subordinate one, whose nature is evil and lostile to man. To the latter their wurship is [nincipally addressed; the Good Spirit, in their opinion, needing no prayers to induce him to aid and protect his rreatures. 'Ihey genemally beliere in a fnture state, in which the souls of brave warriors and claste mives enjoy a tramquil and haply existence with their ancestors and friende, spending their time in those exereises in which they delighterl when on the earth. The Dakotas beliere that the road to these "rillages of the dead" leads orer a rock with an edge as sharp as a knife, on which only the good are ablo to kecp their footing. The wicked fall off, and descend to the region of the Evil Spirit, where they are hard workel, and often flogged by their relentless master.

Pulvemmy is allorred; and a number of wives is con Customs sidered as adding to a man's consequence. Marriage cus. toms differ in different tribes, but in erery case the presenting of gifts to the father of the intended wife is an essential featuro of the transaction, and shows that the wife is considered as procured by purchase. Deformed children, and lame or decrepit old persons, are destroyed sometimes; but the practice is uncommon. Incest and unnatural vices are fractised in some tribes, but they are always victred as matters of reproach. The Indian funerals are conducted with much decorum. Tho deccased is dressed in lis best clothes, and laid in a grave, in a verti. cal, horiznotal, or inclined position, according to his own previons directions, with his moccasins, knife, money, and silver ormaments beside him, and a small quantity of food near his head. It is usual to mark the graves with a post, on which figures aro carved expressive of tho nature of the pursuits and achievements of the deceased.

Some nations of Indians wear little or no clothing; but Clothes, tue general dress of tho men in the temperate and cold lioses, and parts of the conntry, prerions to the arriral of the Euro. peans, consisted of three articles: a cloak of buffalo-skin hanging from the shoulders, a piece of skin used as an apron, and a pair of moccasins or loose boots, made of undressed skin also. The women wore a long robe of the same material, which was fastened round tho waist ; but among the tribes living near the whites, coarso woollens are now frequently substitnted for the lides of wild animals, except for the moccasins. The babitations of the Indians are huts or cabins, gencrally of a circular form and small size, but sometimes of 30 or 40 feet in diameter, formed by states fixed in tho ground, and covered with the bark of trecs. Sometimes the spaces between the stakes are fillod up with twigs, grass, and mud, and the roof is covered ncarly in the same way. A hole in the top serves fur the escapa of the smoke, and the skins of wild beasts form the beds and seats. When they go to a distance to hunt, they crect for tempomary use large tents, which are covered with skins. On the west side of the Mississippi, where the ground is open, many of the tribes make uso of horses, which are seldom emHloyed amidst the woods covering the territorics east of that river. The custom of painting their bodies is nearly universal. They introduce the colours by making punctures on their skin; and the extent of surface which this ormament corers is proportioned to the expluits they have performed. Some paint only their arms, others both their arms and legs, others again their thighs; while those who have attained the summit of warlike
ienorn have their bodies painted from the waist npwards. This is the heraldry of the Indians, the devices of which are probably more exactly adjusted to the merits of the persons who bear them than those of more ciriliscd countries. Besides these ormaments, the warriors also carry plumes of feathers on their beads, their arms, or ancles. Their arms were the tomahawk, the war-club, knife, the bow and arrow, but now they have muskets.

Each tribe is governed by a chief and council. who are eloctive ; but in matters of importance the whole warriors are consulted; and Mr Keating informs us that questious are not decided by the rotes of a majority, but the resolution adopted must hare the consent of erery iudividual warrior. Their assemblies are conducted with much fornality and decormm. The eldest chief commences the debate, whicl is often carried ou by set speeches, abounding in bold figures and metaphors, and bursts of a mode but impassioned eloquence. The joung are permitted to be present and to express their approbatiou by cries, but not to speak. In their wars the object commonly is, to secure the right of hunting within particular limits, to maintain the liberty of passing through their accustomed tracts, and to guard from infringement those lands which they consider as their own tenure. War is deelared by sending a slave with a hatchet, the bandl? of which is painted red, to the nation they intend to break with. They generally take the field in sinall numbers. Each warrior, besides his weapons, carries a mat, and supports limself till he is ncar the enemy by killing game. From the time they enter the enemy's country, no game is killed, no fires lighted, or shouting heard, and their vigilance and caution are extreme. They are not eren permitted to speak, but must communicate by signs and motions. . Having discorered the objects of their hostility, they first reconuoitre them, then Lold a council ; and they generally make their attack just before daybreak, that they may surprise their enemies while asleep. They will lie the whole night flat on their faces mithout stirring, and, at the fit moment for action, will creep on their hands and feet till ther hare got within a bor-shot of those they have doomed to destruction. On a signal given by the chief warrior, which is answered by the jells. of the whole party, they start up, and,: after discharging their arrows, they rush upon their adversaries, without giving them time to recover from their confusion, with their war-c!nbs and tomahawks. If they succeed, the scene of liorror which follows baffles descrintion. The sarage fury of the conquerors, the desneration of the conquered, the horrid yells of both, and troir grim figures besmeared with paint and blond, form an assemblage of objects worthy of pandemonium. When the victory is secured, they select a certain number of their prisouers to carry home: they kill the rest in cold blood, take their scalps, and then march off with the spoil. The prisoners destined to death are soon led to the place of execution, where they are stripped, have their bodies blackened, and are bound to a stake. In this situation, while the burning faggots embrace his limbs, and the knives of his revengeful enemies.are indicting a thousand tortures, it is common for the warrior to recount his exploits, boast of the cruclties he has committed upon his enemies, and to irritate and insult his tormenters in erery way. Sometimes it happens that this has the effect of provoking one of the spectators to dispatch him with a club or tomahark. Sometines the malc adult prisoners are given as slares to women who lave lost their husbands in the nar, aud by whom they are often married. The women taken are distributed among the warriors; the boys and girls we considered as slares.

Neaty all the Iudian tribos mise maize, beans, and
pumpkins, by the isuour 0 a their momers, but only to a small extent, and as a resource against faminc, their chicf reliance being upon the chase. The buffaloes which wander over the prairies of the west, in herds of tens of thousands, are their great support; but decr, bears, and in time of need otters, beavers, foxes, squirrels, and ercn reptiles, are devoured.

The Toltecan family enibraced the cirilised uations of Mexico, Peru, and Eogota, exteuding from the Rio Gila in $33^{\circ} \mathrm{N}$. latitude along the western shore of the continent to the frontiers of Chili ; and on the eastern coast, along the Gulf of Mexico, in North America. In South America, on the contrary, this family chiefly occuried a narrow strip of land between the Andes and the Pacific Ocean, bounded on the south by the great desert of Atacama. Farther north, however, in New Granada, mere the Rucrotese, a people whose civilisation, like their geographical position, was intermediate betweeu that of the Pemvians and the Mexicans. But, eren before the Spanish conquest, the Toltecan family were not the exclusive possessors of the regions which we have assigned to them; they were only the dominant race or caste, wbile other tribes of the American race always coustituted a large mass of the population. The arrival of the Spaniards reduced both classes alike to rassalage ; and three centuries of slarery and oppression have left few traces of Mexican and Peruvian civilisation, except what may be gleaned from their history and antiquities. These nations can no longer be identified in existing communities; and the mixed and motley races which now respectively bear the name, are as unlike their predecessors in moral and intellectual character, as the degraded Copts are unlike the ancient Egyptians. It is in the intellectual faculties that the great difference between the Toltecan and the American families consists. In the arts and sciences of the former we see the evidences of an adranced civilisation ; their architectural remains everywhere surprise the traveller and confound the antiquary. Among these are pytamids, temples, grottoes, bas-reliefs, and arabesques; while their roads, aqueducts, and fortifications, and the traces of their mining operations, sufficiently attest their attaimments in the practical arts of life.
The origin of the populations of America is a problem, which has yet to be solred. It is known that in Europe, man was in existence at a very remote period; and there. are facts which lend some support to the riew that man las also been a denizen of America for ages. Thus there have been found portions of the human skeleton and fragments of human handiwork, associated with the bones of mammals which now have no existence, under circumstances which imply great antiquits. In most instances, however, it is not certain that such relics are of the age of the deposit in which they have been found. Human skeletons and bones in a fossilised state, or associated with bones of extinct mammals, have been found at Guadaloupe, in Missouri, near Natchez, at New Orleans, in the coral reef of Florida, near Charleston, in California, in Orehilla, at Petit Anse, and in Kansas. Some of these are referred to a rery distant period. Thus the conglomerate in which the remains occur in the Florida reef is estimated by Agassiz to be 10,000 years old; but, what is still more amazing, the sleeleton found by Dr Dowler bencath four buricd forests in the delta ncar New Orleans, is said tu be 50,000 years old, and the remains from California rere found in a deposit bencath Table Mountain, which deposit was formed in an old river of the Post-Pliocene, or Pliocen period. At any rate, when this deposit was formed there was a river ralley hore, down whieh an orerflow of volcanic matter mas poured. Since that time denudation has been so great, and the rolcanic matter so hard, that the sides of the ralley have been swent away. learing the valley bottom with its oro-
tecting eover standiug up far above the level of the neighbouring country. Articles mado by man also occur under conditiuns indicating great antiquity. Thus along the coast of Ecuador there are volcanic deposits which belong to the period of voleauic activity preceding the present. which may probably be referred to the Post-Pliocene period. This matter is arranged in terraces. and in one of these terraces, now 24 miles from the coast and 150 fect above the sea, Mr Wilson has found beneath the vegetable mould, lecds of clay wirli sand and gravel which contain fragments of pottery. Theso beds, it is belicved. were deposited beneath the sea. implying an clevation of 150 feet since their formation. On the coast there is a pottery-containing stratum, which has been followed for 80 miles, and patchos of a similar bed occur over a further distance of 200 miles. These facts taken in conjunction with what we learn from the traditions and histories of nomerous mations, as also the characters of the present natives, render it highly probable that man existed in Anerica long before the origin or arrival of the civilised commmities to which allusion will be presently made. The histories of these communities generally agree that civilisation was introduced by persons who first appeared as strangers amidst the peonle already in possession of the country. Ifence the question has a twofold aspect, viz., the origin of the carliest uncivilised as well as that of the carliest civilised tribes. It is possible, as the traditions suggest, that people have arrived from various quarters and at various times. As yet we have hittle positive evidence to rely upon, and caution is required in drawing conclusions from rescmblances in customs or religion. For instanec, to take one remarkable case. Amongst tribes living high up the Amazon basin there are customs which correspond with those in Bornco. In both areas we find blow-pipes for discharging arrows; large houscs inhabited by scveral families and similarly constructed; baskets and bamboo boxes of almost identical form and construction; and the smoke-dried heads of enemies hung up in the houscs. In one tribe on the Amazon the throwing-stick is used, and not the blow-pipe, which is employed by all the surrounding tribes; the throwing-stick is also used by the Esquimaux, the Andaman Islanders, and the Australians. On the Amazon an acrow or spear is used for catching turtlc, which has the barb loosely attached to the shaft, so that when the turtle disappears the shaft floats on the surface and indicates its movements and position. The Australians catch turtle in preciscly the same way. Again, many other customs are common to the Americans and tribes living in areas far remote from them, with which they have no apparent direct relationship. If these anaiogics were always proufs of affinities, then wo might infer, as has been done, that America was first peopled by cmigrants froin the opposite shores of Africa, W. Europe, E. Asia, and Polynesia.

In the great valley of the Mississippi and its mighty tributaries, the Ohio and Missouri, are the remains of the works of an extinct race of men, 'who seem to have made advances in civilisation far beyond the races of red men discovered there lyy the first European adrenturers. These remains consist chicfly of tumuli and ramparts of earth, enclosing areas of great extent and much regularity of form. Some of them recall the barrows of Europe and of Asia, or the hage mounds and ramparts of Mesopotamia, as displayed at Babylon and Nineveh; while others remind us of the muined hippodromes and amphitheatres of the Grecks and Fomans. In that part of North America the barrows are usually t uncated cones; but in advancing farther south, they oftel assume the figure of four-sided pyramids in successive staces, with flattened tops, like the Teocallis, or temples of Mexico and Yucatan. They have been accurately reseribed and many of then delineated in the Smithsonion

Contrilutions to Finouledg?, from the researches of Messrs Squier and Davis.

The barrows and mmparts are constructed of mingled earth and stones ; and from their solidity and extent, must have required the labour of a numerous population, with leisure and skill suflicient to undertake combined and vast operations. The barrows often contain human bones, and the smaller tumuli appear to have been tombs; but the larger, especially the quadrangular mounds, would seem to have served as temples tu the carly inbabitants. These barrows vary in size, from a few feet in circumference and elevation, to structures with a basal circumference of 1000 or 2000 fect, and an altitude of from 60 to 90 feet, resem. bling, In dimensions, the vast tumulus of Alyattes near Sardis. One in Mississippi is said to corer a base of sis acres. The ramparts also vary in thickness, and in height from 6 to 30 fect, and usually enclose areas tarying from 100 to 200 acres. Some contain 400 ; and one on the Mis: souri has an arca of 600 aeres. Tho enclosures generally are very exact circles or squares, sometimes a union of both ; occasionally they form rarallelograms, or follow the sinuosities of a hill ; and in one district, that of Wisconsin, they assume the fanciful shape of men, quadrupeds, birds, or serpents, delineated with sume ingenuity, on the surface of undulating plains or wide savannahs:

These ramparts are usually placed on elevations or hills, or on the banks of streams, so as to show that they were erected for defensive purposes, and their sites are judiciously chosen for this end. The area enclosed, therefore, bears no proportion to the relative labour bestowed on such ramparts : thus, in Ohio, an area of not more than 40 acres is enclosed by mounds of a mile and a half in circumference; and on the Little Miami, in the same state, is found an enclosure fully four miles round, that contains an area of about 100 acres. These remains are not solitary and few, for in the state of Ohio they amount to at least 10,000 .
The enclosures in the form of animals are more rare than those now noticed, and seem nearly coufued to Wiscorsin. One of these represents a gigantic man with two heads, the size of which may bo estimated, by the body being 50 feet long, and 25 feet across the breast. Another on a slope near Brush Creek, represents a tolerably designed snake, with an oval ball in its mouth; the undulating folds of its body and spiral of its tail extendiog to a length of 700 feet. The forms of quadrupeds and birds are akso characteristically represented in these works. Those that hare been explored rarely contain human bones; though the Indians deposit their dead within them ocensionally, they have no tradition of their having belonged to their ancestors. The most probable supposition respecting them is that of MrR. C. Taylor, that cach was the scpulchral monument of a different tribe, who have all disappeared from America.

The question immediately suggests itsclf, to what peoplo must we ascribe those vast works? They can scarcely bo the works of the ancestors of tho red men discovered by Europeans in North America. Neither can wo ascribe them to the early Greculand and Iccland colonists, who seem never to bave passed westward of the Alleghanies: We can scarcely attribute them to the somewhat apucryphal advent of the Wclsh Madoc. Can their authors be the people obscurcly mentioncd in the Icelandic sagas, as the inhabitants of New Iccland?

A curiou's tradition of the present Iroquois records, "that When the Lerni Lenapi, the common ancestors of the Iroquois and other tribes, whose language is still widely spread among the Indians, adwanced from the north-west to the Mississippi, they found on its castern side a great nation more civilised than themselves, who lived in fortified towns and cultivated the ground. This people at first granted the Lenni Lenapi leave to pass through their territuries to sem
an eastward settlement, but treacherously attacked them while crossing the river. This conduct gave rise to inveterate hostilities, that terminated in the extermination or subjugation of their opponents, ind the establishment of the red men in those regions. This not improbable, though imperfect, account of such rude communities, where neither letters not lieroglyphics existed, is probably all that we shall ever learn of the people who executed those works that now excite our surprise.

As we advance southward we find proofs' of still greater refinement on the table-land of Anahuac or Mexico ; and on descending into the humid valleys of Central America, the peninsula of Yucatan, and the shores of Honduras, we find striking remains of the semi-civilisation of the races that inhabited those countries before the Spanish invasion. The barbarous policy of Cortez and other invaders was to eradicate every trace of the former grandeur of the native races, and thereby to inure them to a degrading servitude. The systcmatic destruction of the native works of art and gorgeous buildings in Mexico was relentlessly carried on for ages, to the infinite regret of the modern ethnographical inquirer. Little positive information on these subjects can be gleaned from the early Spanish historians of the conquest ; and it was not until the publication of Humboldt's Researches that Europe knew anything of the state of the Great Mexican pyramid, or of the wonderful remains of Palenque and Papantla.

In the middle of the last century, however, some Spanish adventurers penetrated with difficulty the dense forests of the Mexican province of Chiapas, in which they discovered the remains of an ancient city, of which all memory had been lost, and to which they gave the name of Palenede, from a poor adjacent village. Stimulated by their report, the Spanish Government some years afterwards despatched two intelligent travellers to explore those wilds; but the report of Del Rio and Du Paix, from the commotions that agitated Europe and convulsed Spain, remained unpublished vintil a.few years ago. It has since appeared, with very interesting designs of the ruins they explored. Our knowLedge of such remains, however, has been greatly enlarged by the labours of an enterprising North American traveller, Mr Stephens, given to the world in four volumes, entitled Incidents of Travel in Central Ameriea, Chiapas,- and Yucatan, 1838, and Incidents of Travel in Yucatan, 1842. This gentleman discovered, in the almost impenetrable Forests of those regions, the remains of no less than 44 towns, some of them with extensive and highly decorated structures. These exhibit walls of hewn stone, admirably put together with mortar, often enriched by sculptures in bold relief, and hieroglyphical inscriptions, exactly resembling the Aztec MSS. in the museums of Europe, and in the publications of Humboldt; well executed vaulted roofs, and obelisks covered with mythic figures and pictorial or hieroglyphical inscriptions. These curious remains have been concealed for ages by a luxuriant tropical vegetation, so dense that they seem to have been unknown to people living within half a mile of their site.

The most conspicuous ruins are those of temples and palaces, which almost invariably have a pyramidal form, in several stages, with wide intervening terraces, the ascent to which is by grand flights of steps. The chambers in those buildings have generally a length disproportioned to their width, they have no windows, but receive their light from the doors, just as the rooms do at this day in Barbary and some other castern countries. The apartments are in two parallel rows, a narrow corridor or series of chambers runs along the front, and the apartments behind this receive their light only from the front rooms into which they open. Yet these interior apartments are often richly decorated with
sculptures, ornamented with stuccos, and gaily painted red, yellow, white, and black.

The ruins of Palenque, as may be seen in the researches of Humboldt, have the characters just mentioned. They are covered with hieroglyphics, and sculptures in relief, with ornamental cornices. The largest building stands on a terrace, faced with stone, measuring 310 by 260 feet; the building itself is 200 by 180 feet; its walls are 25 feet high. The stone has been originally covered with painted stucco; fronts the east, and contains 14 doors, separated by piers ornamented with stucco figures. In this building some of the figures are erect, while others sit cross-legged, in what we term the oriental fashion; one statue, $10 \frac{1}{2}$ feet high, was found at Palenque; and troo fragments of two torsus and a head were also discovered that exhibited a severe but fair style of sculpture, that recalls something of the early style of Greek art.

The ruins at Copan, in Honduras, are of rast extent. Here a pyramidal structure remains, with an elevation of 150 fect measured along its slope, and this appcars to be a principal temple, included with several smaller structures within a sacred enclosure, in the manner of the temples of ancient Egypt. On its walls are many skulls of a quadrumanous animal, well executed in high relief; a large figure of a baboon was discovered among the ruins, bearing no inconsiderable resemblance to the cynocephalus of the Egyptians. Here also several sculptured obelisks occur, from 11 to 13 feet in height, and from 3 to 4 feet wide, which, as well as the walls of the temple, were highly ornamented with sculptures in bold relief.

The similarity between the ruins at Copan and Palenque, and the identity of the hieroglyphic tablets in hoth, show that the former inhabitants of Chiapas and Honduras had the same written language, though the present Indians of those provinces do not understand each other.

At several places, but more especially at Uxmal, in Yucatan, are very magnificent ruins of the same kind. Here are found sculptured obelisks, bearing on their principal face the figure, probakly, of some deity, with a benignant countenance represented in full, and the hands applied to the breast. The other sides of the obelisks are covered with hieroglyphical tablets, proving that the same race once inhabited the plains of Honduras and the tableland of Anahuac. The principal building at Uxmal seems to have been a rery magnificent pyramid in three stages or terraces, faced with hewn stone, and neatly rounded at the angles. The first terrace is 575 feet long, 15 feet broad, and 3 feet high, serving as a sort of plinth to the whole : the second terrace is 545 feet long, 250 feet wide, and 20 feet high; the third terrace is 360 feet long, by 30 feet wide, and 19 feet in height. From the centre of the second terrace, the upper part is gained by a vast-flight of wellconstructed steps 130 feet wide. This leads to the temple, the fargade of which is no less than 322 feet long, but has not had a greater clevation than 25 feet; yet its grandeur is enhanced by the rich sculpture that covers the upper part above a fillet, or cornice, that surrounds the whole building at about half its elevation. The interior consists of two parallel ranges of chambers, 11 in each row. The front apartments are entered by 11 doorways, enriched with sculpture, which gives sufficient light to those rooms; but the posterior row receives no light except what enters by their doors from the exterior rooms. The roofs here, unlike those of Palenque and Copan, are not stone'arches, but are supported on bearcrs of a very hard wood, that must have been brought from a distance of some hundred miles, and thess beams too are covercd with hieroglyphics. The flat roof of this building has been externally covered with a hard cement. In a building placed on a lower level is a rectangular court, which has been ouce wholly paved with well-
carved figures of tortoises in demi-relief. These are arranged in groupa of four, with their heads placed together ; and from the dimensions of the court, this sala de las Tortugas must have required 43,660 of such carred stoncs for its parement.

The ruins of Chichen, also in Yucatan, extend over an area of two miles in circumference. One of the best preserved buildings with an ambit of 638 feet, is constructod in three terraces, which gavo it an apparent altitude of 65 feet. The buildings here, on the sccond terrace, have the façades highly sculptured, both above and below the horizontal fillet; and the doorways are enriched with mouldings, and Iruss-liko ornaments supporting a drip-stone. The stairease here is 56 fect wide. The front apartments are 47 feet long and only 9 wide. There are threo doors in the front, and in the central apartinent are nine niches. The roofs are stone arches; and all has been once painted of various colours. A curious adjoining structure consists of two parallel stone walls, 274 fect long, and 30 feet apart. The walls are 30 feet thick. It has been conjectured to havo been connceted with the celebration of some public games, liko the palastree of the Greeks.
In several of the ruins now noticed are found buildings to whieh there is no access. They have doorways, but these seem to have been walled upwhen the buildingswere erected. Their use is unknown ; they aro named casas cerradas, or "shut up houses." Their interior does not differ from the other apartments above described.

It is worthy of notice, that the builders of those citics took great pains to supply them with one of the primo essentials of human comfort-abundance of good water, by means of wells and cisterns of excellent construction.

The remains in all the 44 ancient towns visited by Stephens have a similar character; so that we can have no hesitation to ascribe them to the same nation, or to kindred races of men, who had certainly attained no inconsiderable civilisation, although unaequainted with the use of iron, or oven of bronze. Many of these towns are repeatedly referred to in the native histories, and it is almost certain that a largo proportion of them were founded and inhabited by the Tutul-Xius, Nahoas, and other tribes speaking the Nahuatl tongue. In not a few instances the dates and the aames of the founders have been preserved.

It has been generally admilted by physiologists, that the temperate regions of the globe are best fitted to develope all the powers of our nature; and it is a fact in aecordance with this apinion, that among the aborigines of America, civilisation sollowed rery closcly tho chain of the Andes, and was found either upon their sides or the table-land of their summits, where the elevation of the ground moderates the heat of the tropical sun, and produces a clinato analogous to that of Central and Southern Europe. This civilisation did not exist merely at the two distant and isulated points of Mexico and Peru, but presented itself at intermediate places, and may be said to have formed a continuous line from lat. $35^{\circ} \mathrm{N}$. to lat. $35^{\circ} \mathrm{S}$, with fow interruptions, except at those parts where the mountainous chain disappears, or sinks down to a trifing elevation. Some large buildings near the Rio Gila, in lat. $33^{\circ} \mathrm{N}$., with fragments of porcelain, indicate the existence of a people there who had some knowledge of the arts. These were most probably a branch of the Aztecs or Toltees, who afterwards occupied Mexico, as the annals of that country tell. Though some pursued their march southward, it may bo reasonably sunposed that a part remained in the district; and the Indians living here, who cultivate corn, weavo eloth, and live in villages consisting of houses built of solid materials, sometimes two stories ia height, may elther be their deseendants, or have borrored from them the iroprotements they possess. Next
in order as we proceed southward, are the various natiens of Mcxico, of whose condition we shall speak by and by. In Chiapa were the Zapotecs, in lucatan the Mayas, in Guatemals the Quiches and Kiachiquels, all nearly as much advanced in civilisation as the Mexicans, and probably of the eame primitive stock. From this point, where the Andes lose their elevation, or break into isolated cones, no distinct traces of eivilisation appear till wo enter the southern continent. Here were found the Muyseas or Moscas, on the table-land of Bogota, a nation consisting of several tribes, who worshipped the sun and practised some of the uscful arts. To these succeeded the rations of Peru, living under the Incas, whose dominion extended from the equator to the 35 th degree of S . latitudu. Beyond this boundary were the Clilian tribes, who, though inferior to the Peruvians, had made some advances beyoud the rudeness of the savage state. It is proper to mention that some of the nations named were extinct before the arrival of the Spaniards; but the degree of civilisation thes had attained is attested by the monuments they havo left behind them. There were no other tribes in the pen continent which had made any progress in social improve. ment. Wo would not except the Guaranis of Brazil, and a few others, who derived their subsistence chiefly from agriculture, but were in other respects savages. We place among the exceptions, however, the extinct race of the Allegewis, or whatever was the name of the people, who erected the military works existing between the Ohio and the northern lakes; but they also, it must be remembered, inhabited a temperate elimate, though not a mountainous country. It may bo affirmed, then, as a general proposition, that from 35° of N . to 35° of S . latitude, the sides aud summits of the Andes were tho exelusive seats of American civilisation. We arlmit that some of the tribes in Chiapa, Oaxaca, and Yucatar, inhabited low districts; but they were still near the Cordillera, and may be fairly considered as offsets from the nations dwelling upon it. The fact is important, as marking the effect of climato on the active energies of our specics. There is no doubt that, with the improved arts of modern times, civilisation can subsist under the burning sky of the torrid zone, but net in such vigour as in countries which enjoy a more moderate temperature. Perhaps it will be found that the moral and physical powers of man attain their highest perfection in those regions where be is accompanied by wheat and tho vine. The zone occupied by tho former extends from the 30th to the 57th or 58 th parallel ; and within the tropics the corresponding elimate is found on the flarks or summits of mountains, from 4500 to 10,000 feet above the lerel of the sca.

It is remarkable that the Mexican annals reach to a Mexico very remote date, although they wero preserved merel by picture-writing. Wo do not pretend to enter into the question as to the authenticity of tho records themselves, and their correctness. It is enough that they have received credit from Humboldt, Vater, and other men of learrimg and judgment. Trom the annals thus preseryed, of which further details will bo subsequently given, we learn that at the earliest dawn of history the Quinames were in possessiod of the country, that civilisation was introduced by strangers coming from the cast, and that several nations belonging to one race migrated in succession from the north.west, and settled in Analuac or Mexico. The Joltecs, it is stated, left their original seat, far to the west, in 544 of our era, and after a long journey invaded Mexico, then occupied by wandering hordes, in G.48. This people, who penetrated to Nicaragua, if not to South America, were nearly destroyed after the lapso of some centuries; but wese followed by the Chichimees, a half savage tribe, about 1120, and these a few jears aftervards by th. Anahautlols.
or seren tribes, including the A coltmans, the Thascalters; and the Aztecs or proper Ifexicans. All these poople spoke dialects of one language, and had similar arts, customs, and institutions. The town of Mexico or Tenochtitlan was founded in 1325, and the series of Mexican kings which commenced in 1352 mas continued through eight monarchs to Montezuma. The monarclyy was small at first, nond passed throngh many ricissitudes; but it was gradually enlarged, especially by the policy and enterprise of the later princes of the line. When Cortes arrived. it embrared what are now the provinces of Yera Cruz, Oaxaca. Puebla, Hexico, and part of Yalladolid: a surface of 130.000 square miles; but within this were comprehended three small independent states, Tlascala, Cholullan, and Zapeaca. The pastoral state. which forms the intermediate stage betreen sarage and ciriliscd life, lad never existed in Mexico; for the native wild ox had not been tamed, and the use of milk as food was unknown. The Mexican nations derived their in the rudest manner, with very imperfect instruments. They cultivated maize, potatocs, plantains, and various other esculent vegetables. 'They raised cotton, and understood the art of spinning and weaving it into cloth, of a texture which excited the admiration of the Spaniards. They had no iron, but showed considerable skill in fashioning the gold, silver, and copper, found in a native state, into domestic utensils and ormancntal articies. In some of their buildings the stones were Lewn into regular forms, and accumtely joined; and from the ruins of the palace of Mitha, in Caxaca, still existing, it appears that they had the art of designing ornaments like arabesqucs, in paste, with great neatness, and attaching them to the walls; but solid structures of masonry evincing any considerable skill are extromely rare in the comery. Their carvings in wood trere tolerably well execnted, but the figures were disproportioned and uncouth. The same remark applies to their hieroglyphical dramings, which were far inferior in taste and design to those of the Hindoos, Japanese, and Thibetians. For paper they employed sometimes the large leares of the aloe, sometimes cotton cloth, or the skins of deer dressed. Their books consisted of strips or webs of such materials, composed of pieces neatly jeined, one or tro feet broad and twenty or thinty long, which were divided into pages by folding them in a zig-zag manner; and two pieces of thin deal attached to the outermost folds aerved as boards, and gave these manuscripts, when closed, an appearance sery much like our old folios in wooden binding. The written language of Mexico contained a few real hieroglyphics or sjmbols, purely conventional, to designate such objects as mater, earth, air, day, night, speech, and also for numbers; but it was essentially a system of picture-writing in which objects were represented by coloured figures laving a resemblance more or less exact to themselres. With all its neccssary imperfections, this instrument was familiarly cmployed to a prodigions extent in creeds and instruments for effecting the transmission and sale of property. The gorernment kept couriers for conreying intelligence from all parts of the empire; and the capital was matched and cleaned by a sort of police establishment. This is the bright side of Mexican cirilisation. On the other hand, it must be kept in riere, that the Mexicans had no tame animals, no made roads, no money to serye as a universal medium of exchange in comnercial transactions. The governmeut was origiwally a perfect feudal monarely, in which all power was monopolised by a numerous nobility and the priesthood. The great mass of the people wero scrfs, attached to the soil, and transferred with it from owner to owner by descent or purchase. (The peasants or slawes of a nobleman were allowed a certrin portion of land. which they cultivated in common
for their subsistence: the rest of their laboar belonged to their lord. 'the country swarmed with Leggas's, and thousands were swept off every few years by farmine. As among the ancient Egrptians and the Chinese, inmutablo custom, regulating erery act of civil and common life, chainer up the course of inprovement. and spread a languid monotony over socicty. The crown was elcctive, and the pnwers of the monarch small, till the privileges of the nobles were destroyed by the pulicy and ambition of Monteanma. The religion of the Mexicans breathed a savage sprit, which degradcd then, in a moral point of view, far bclor the hordes of wandering Iudians. Their deitics, reprosented by mis-shapen images of serpents and other lideous animals, were the creation of the darkest passions of the human breast, of terror, lantred, cruelty, and revenge. They delighted in blood, and thonsands of hmman sarrifices were anuually offered at their shrines. The places of worship, called Tcocallis, were pyramids composed of terraces placed one above another, like the temple of Delus at Babylon. These were built of clay, or of alternate layers of clay and nnburnt bricks, but in some cases faced with slabs of polished stone, on which figures of animals are sculptured in relief. ${ }^{2}$ One or two small chapels stood upon the summit, enclosing images of the deity. The largest known, which is composed of four storics or terraces, has a breadth of 4S0 yards at the base, and a height of 55 . These structures served as temples, tombs, and observatories; and it is rcmarkable that their sides are always placed exactly in the dircction of the meridian. This leads us to the most in-Calendar teresting fact connected with Mesican cirilisation, we mean the perfection of their calendar. The civil year mas composed of 365 days, divided into 18 months of 20 days, and 5 supplementary days. The Mexicans had besides a ritual or religions year for the rezulation of their festivals; and, by means of a cycle of 52 years, and a rery complicated method of computation, the religious and civil periods were connected with one another, and the civil year was made to correspond with the natural by the inter. calation of 13 days at the cud of the cycle. The month Fas divided into four weeks of five days, but each day of the month had a distinct name ; and Humboldt has given strong rcasous for beliering that these uanes were borrowed from an ancient zodiac formed of 27 or $2 S$ lunar honses, which was made use of from the remotest anti. quity in Tartary, Thibet, and India. The calendar of the Xexicans bespcaks a degree of scientific skill, and an accuracy of obserration, which are not easily reconciled with their semi-barbarous habits, their general ignorance in other things, and the recent date of their civilisation according to their orn account. It is here, indecd, and not in their language, that we find distinct traces of their counection with Asiatic nations. The character of the Mexicans is probably the same at this day as before the conquest, which, we are disposed to think, made loss clange in the situation of the people than is often supposed, though it annilidated the rank and privileges of the nobles. The Mexican Indian is grave, suspicious, and taciturn ; quict and placid in his external deportment, but rancorous in his spirit; submissive to his superiors, harsh and crucl to those bencath him. His intellect is limited, and chiclly developes itself in imitatire labours and mochanical arts. Slow, cautious, and persevering, he loves, both in bis acts and thoughts, to travel in a beaten track. The people, though speaking many different languages, hare nearly the same physical character. The Mexicaus have olive complexions, narrow forcheads, black

[^79]eyes, coarso glossy black hair, and thin beards. They are of the middle size, and well-proportioned in their limbs. A person with any defect or deformity is rarely seen amongst them. They are bealthy, and live to an advanced age, when life is not shortened by drunkenness. Tho Toltec and Aztec races, when they established themselves in the country, diffused their own language lartially from the Lake of Nicaragua to the 37 th parallel. They reclaimed, by degrees, many of the neighbouring sarage tribes to a settled mode of life, and spread a feeble degree of civilisation over a mixed mass of mations, speaking, according to Clavigero, 35 languages, of which 1Inmboldt tells us that 20 still exist. The Aztec language is one of the most copions and polished of the Ameriean tongnes, and abounds in words of the immoderate lensth of 12 or 15 syllables. It is uncertain what was the nmmber of subjects over whom Montezmma ruled. The rains in the valley of Tenochtitlan, on which the capital stands, show that it must have been more populous before the conquest than now ; but the popnlation at present is diffused over an incomparably wider space; and, upon the whole, there are no good grounds for believing that the number of civilised Indians was much greater when Cortes lauded, than in 1803, when it amounted to $2,000,000$.
The cinilisation of Mexico, as well as of Peru, owed its existence to a single cause, -the patient, submissive, and superstitions character of the people, which fitted them to be beasts of burden, under an aristocracy of priests and nobles, who were led, perhaps, partly by influences from abroad, partly by the instinci of self-interest, to devise means for holding the inass of the community in subjection. Many of the nations which continned savage, such as the Algonquins and Iroquois, were probably equal to the Mexicans in intellect; but their propensity to superstition was less, and their energy of character was too great to permit of their being enslaved by their chicfs. It is chiefly in the variety of their primitive character that we must seek for the canse of the diversity of manners and institutions we find among the American nations.
The ancient empire of Peru, more extensive than that of Mexico, embraced the whole sea-coast from Pastos to the river Maule, a line of 2500 miles in length. Its breadth is uncertain; but as it included both declivities of the Andes, it must have extended in some cases to 500 miles, and the entire surface of the empire probably exceeded 500,000 square miles. It is plain, however, from the imperfect history of the Incas which has been preserved, that within this space there were many districts where their authority was feeble, and others inhabited by tribes which were entirely independent. One part of the country, besid 3 , consisted of a sandy desert, while the most elevated tracts were uninhabitable from cold. It must not therefore be supposed that the capacity of the country to support population was commensurate with the extent of its surface. Still the magnitude of the Peruvian empire, in the midst of an immense multituce of independent savage communities, so extremely minute, that a hundred of them might hare been planted without crowding in one of its provinces, is an extraordinary phenomenon. - The creating and maintaining of such an empire is a proof that the Perurians had made no trifling progress in the useful arts and in the science of government. To keep in subjection so many remote provinces, there must have been an efficient military force, rapid means of communication, considerable revenues, and an organised magistracy capable of understanding and executing the plans of rulers, who had sufficient political skill and knowledge of human nature to adapt their institutions and arrancements to the wants. habits and character of a great
variety of dissimilar nations, spread over a territory reaching as far as from Lisbon to the banks of the Volga. It is clear that the ruling tribe, which was able to extend its dominion, and to a considerable extent its language, over a space of 2500 miles, must have possessed à marked superiority of some kind over the bordes that surrounded it. We must remember, besides, that the Peruvians lay under the disadvantage of being destitute of even such an imprefect instrument of communication as the hicroglyphic langlage of the Dlexicans, and that they were extremely deficient in military spirit. Indeed, it is one of the most singular facts connected with the history of America, that by far the largest empire it contained was formed by the most untrarlike people in it. The dnminion of the Incas was founded entirely on policy, superstition, and the arts. It could only be by the intelligence and skill which civilisation developes, that the l'eruvians conquered tribes superior to themselves in courage; and it was by policy and superstition that the Ineas tamed the rudeness of savage tribes, and held distant conntries in snbjection. Robertson justly observes, that the leruvians "had advanced far beyond the Mexicans, both in the necessary arts of life, and in sucl as had some titlo to the name of clegant." In two points only were they inferior; in their calendar or mode of computing time, and in their want of such a substitute for writing as the Aztecs possessed in their hieroglyphics.

Agriculture was conducted with greater cars and suc cess in Peru than in IIcxico. The lands capable of cultivation were divided into three shares. Ono was consecrated to the service of religion, the erection of temples, and the maintenanee of priests; the second was set apart as a provision for the support of the government; and the third and largest share, which was reserved for the people, was parcelled out, not among individuals, but among the hamlets and villages, according to the number and rank of the inhabitants; and a new division was made every year to meet any change that might arise in the circumstances of the parties. The members of each little community went to the fields under overseers, and cultivated the land by their joint labour. The prodnce was distributed among the families and individuals accord ing to their wants, while the cvils of famine were provided against by storing up the corn in granaries. The Peruvians haring no draught animals, and no ploughs, turned up the earth with wooden mattocks; but their skill and care were exemplified in irrigation, which they practised extensively, and in their employing as manure guano, or the dung of sea. birds, which abounds on the islands near the eoast. Their masonry was snperion to that of the Mexicans. Like the ancient Egyptians, they understood mechanics sufficiently to more stones of rast size, even of 30 feet in length, of which specimens are still existing in the walls of the fortress of Cuzco. They had the art of squaring and cutting blocks for building with great accuracy; and they did not effect their purpose, as Robertson supposes, merely by chip ping the stones, or rubbing them together so as to fit the surface of the one to that of the other, without regard to symmetry of form. It is now known that they had hard chisels, made of copper, with a mixture of 6 per cent. of tin,-a proof of considerable skill in the work; ing of metals. With these they hewed the stones into parallelopipeds, whichswere disposed in "courses as regular," says Humboldt, "as those of Roman workmanship." They are joined with such nicety, that the line which divides the blocks can searcely be perceived; and the outer surface is in some cases covered with carving. The palaces or lodges of the Incas, of which there are many remains, had doors with slanting sides like the

Egyptian; sloping roofs, which, it is supposed, were covered with rushes or stone slabs; no windows, but niches symmetrically distributed. ${ }^{1}$. Ancient stone structures, which are so rare in Mexico, are pretty abundant in Peru, -a fact for whieh we can only account hy the difficulty with which the Mexicans erected buildings, in consequence of their inferiority in the art of masonry. The architecture of the Peruvians, like everything else connected with their social state, displays a remarkable uniformity, not only of style, but of plan. "It is impossible," says Humboldt, "to examine a single edifice of the time of the Incas, without recognising the same tyle in all the others which cover the ridge of the Andes, along an extent of 450 leagues."

The ancient prblic roads of Peru are justly considered as striking monuments of the political genins of the government. One of these extended along the sides of the Andes from Quito to Cuzco, a distance of 1500 miles. It is about forty feet broad, and paved with the earth and stones which were turned up from the soil; but in some marshy places it is formed, ilike the old Roman roads, of a compact body of solid masonry. A tolerably level line is preserved, by filling up hollows, cutting down small eminences, and winding reund the sides of large ones. At proper distances tambos or storehouses were erected, for the accommodation of the Inca and his messengers. A similar road was made along the coast in the low country. Fissures a few yards in breadth were passed by bridges formed of beams laid horizontally ; and an invention, at once bold and ingenious, afforded the means of crossing deep rarines, or the channels of rivers, which happened to intersect the route. This consisted of a suspension bridge, perfectly analogous in its principle to those with which we are familiar. It was formed of balf a dozen of cables of twisted osiers, passed over wooden supports, and stretched from bank to bank; then bound together with smaller ropes, and covered with bamboos. Humboldt passed over one of these pendulous bridges, of 120 feet span ; and 1 Ir Miers crossed one of 225 feet span, over which loaded animals might travel. In low grounds the rivers were crossed on rafts with a mast and sail, which, by a particular contrivance, could be made to tack and veer. In this respect the Peruvians were a stage in advance of all the other American races, who had nothing superior to the canoe with paddles. The Peruvians manufactured a rude species of pottery: they understood the art of spinning, and, in an imperfect dcgree, that of weaving. They procured native gold by washing the gravel of rivers; and silver, and perhaps copper, by workng veins downward from the outcrop. They knew how to smelt and refine the silver ore; and they possessed the secret of giving great hardness and durability to copper by mixing it with tin. Their utensils and trinkets of gold and silver are said to hare been fashioned with neatness and even taste. On the other hand, they had no money, no knowledge of iron or glass; and they were ignorant of the mode of mortising or joining beams, and of casting arches. They had no animals fitted for draught ; but the llama, a small species of camel, which they had tamed, was employed to some extent as a beast of burden.

The political organisation of Peru, which was artificial in a high degree, reminds one, in some of its features, of the old system of the Saxons in England, but bears a more general resemblance to that of the ancient Egyptians. The mass of the people were in a state of servitude, except a small number, who were frce; above these in rank were the Curacas, or chiefs of districts, who formed

[^80]a sort of nobility; and above the whole, the family of the Incas, the members of which, by intermarrying only with themsclves, formed a numerons and distinct castc. For the purposes of police and civil jurisdiction, the people were divided into partic:s of ten families, like the tithings of Alfred, over cach of which was an officcr. A second class of officers had coutrol over five or ten tithings, a third class over fifty or a hundred. These last rendered account to the Incas, who exercised a vigilant superintendence over the whole, and employed inspectors to visit the provinces as a check upon maladministration. Each of thesc officers, down to the lowest, judged, without appeal, in all differences that arose within his division, and enforced the laws of the empire, among which were some for punishing idleness, and compelling every one to labour. It is probable that the tithings and hundreds, as in England, would lose their numerical signification in coursc of time, and become mere local allotments. In the hamlets and villages a person mounted a torwer every evening, and announced where and how the inhabitants were to be employed next day. The taxes were paid in the produce of the fields, and magazines for recciving them were established in every district. Such is the account given by Acosta and Garcilasso of the civil institutions of Pern, which may be correct with regard to the oldest possessions of the Incas near Cuzco, where their power lad been long established; but it is not probable that such a complicated system was ever fully in operation in the more distant narts of the empire.

The government of Peru was a theocracy.- The Inca Governwas at once the temporal sovereign and the supreme nentand pontiff. He was regarded as the descendant and repre Religion sentative of the great deity the sun, who was supposed tn inspire his counsels, and speak tlirough his orders and decrees. Hence even slight offences wert purished with death, becanse they were regarded as insults offered to the divinity. The race of the Incas was held sacred. To support its pretensions, it was very desirable that it should be kept pure and distinct from the people; but human passions are often too strong for the dictates of policy; and though the marriages of the family were confined to their own race, the emperor, as well as the othe: males of the blood royal, kept large harems stocked with beauties drawn from all parts of the empire, and multiplied a spurious progeny, in whom the blood of the "children of the sun" was blended with that of the "children of the earth." Among a simple-minded and credulous people the claims of the Incas to a celestial origin seem to have been implicitly believed. They were blindly, obeyed, and treated with a respect bordering on adoration, by the nobles as well as the common people. The Peruvians worshipped the sun, the moon, the evening star, the spirit of thunder, and the rainborr, and had crected temples in Cuzco to all these deities. That of the sun, which was the most magnificent, had its ralls covered with plates of gold. The saerifices consisted of the objects most prized by the pcople, of grain and fruits, of a few animals, and of the productions of their own industry. Sabianism, as it is the most rational of all the furms of idolatry, is also gencrally the most mild; and doubtless this results from the tendency which it has to fix the thoughts on the narks of bencficence and wisdom which are displayed in the works of nature. The Perurian temples were accordingly never polluted, like those of Mexico, with the blood of human victims; and the Incas even went farther, and signalised their zeal against such horrid rites, by suppressing them in all the countriea they conquercd. Though their history exhibits some blsody decds, the gencral charicter of their geicrnment
was the reverse of cruel. The severe punishments prescribed by their laws wero rarely inflicted, and rebellion was scarcely linorn in their dominions. The Inca not only assumed the title of the father of his people, but the vices as well as the merits of his government sprung partly from the attempt medo to construct the government on the model of patarnal authority, and partly from the blending of moral anct religious injunctions with civil duties. Hence the idle pretension of the state to reward sirtuous conduct, as well as to punish crimes; hence too tho plan of labouring in common, the extinction of individual property, tho absurdities of eating, drinting, sleening, tilling, building, according to fixed universn! rules; in fine, that minute and rexatious reculation of all tho acts of ordinary life, which converted the people into mere machines in the hands of an immense corps of ciril and religious officers. Such a system may have serred to reclaim some tribes from the sarago state; but it must lave stifled the seeds of improvement, and left the mass of the people more stupid and imbecile than it found them. The government was as pure a despotism, probably, as ever existed; but its theocratic character, no doubt, helped to mitigate the ferocity of its spirit. Superstition and force are the tro bases on which tgrauny rests in all countries; and in proportion as it is firmly bated on the one, it stands less in need of the support of the otber. The Inca had so completely enslaved the minds of his subjects, and the apparatus he wielded for oiructire and controlling their acts was so perfect, that be was able in a great measure to dispense mith those terrific examples of cruelty and bloodshed, by which the pure military despot operates on the fears of those who live ander his authority.

This aystem of the Peruvian monarchs, by which the pecilo mere kept in a state of perpetual tutelace, merits the greater attention, because it is precisely that which the Jesuits employed, in Paraguay and other districts, to reduce tho natives to a settled mode of life; and it seems, in fact, to be the only method by which a semblance of civilisation can be introduced amongst wae American nations. Tro things must be supposed to account for its prevalenco: first, a certain amount of timidity, passiveness, and superstition, in the body of the people, implying reak passions, but not necessarily smallness of intellect; and, secondly, a ferr minds of a hicher class, to give an impulse to the rest, and to control and regulate their acts. In the caso of Pern, did these ruling intellects spring from the body of the people, arui, after striking out new lights in morals and legislation for themselves, deviso a complex and artificial system for establishing their power over the minds of the rest, by the help of superstition and forco? or were they strangers from another country, and imbued with the principles of a higher civilisation? If we may believe tho Peruvian annals, the latter was the case. About the year 1000 of our era, or perhaps a century later, Manco Capac, mith lis wife and sister Mama Ocello, appeared as strangere on the banks of the lake Fiticaca. They were persons of majestic appeamnce, and announced themselres as "chililien of the sun," sent by their beneficent parent to reclaim the tribes living there from the miseries of savage lice. Their injunctions, addressed to a people who probably worshipped the god of day, were listened to by a few, who settled around them, and founded Cuzco. By degrees, other tribes were induced to renounce their wandering habits. Manco Capac mstructed the men in agrienlture and the arts, and Mama Ocello tauglat the women to spin and to weare. Laws, institutions, and religious rites, were added. The form of a civilised society arose, which was gradually extended by ocrsuasion or conquest.-the Incns having alrays planted
their arts and religion wherever they estabushed their authority. Huayna Capac, the twelfth in succession irom the founder of the dymasty; occupied the throwe when tho first party of Spaniards visited Peru in 1527 , and the erapire was then still in a state of progress. There is, however, fittle doultt that some adrance in civilisation had been made in times before the Incas.
Such is the account which the Pernvians give of the origin of their civilisation, which we should be disposed to reject as a fahle, if there were not peculiar circumstances which rive it some credibility. First, their instituions, takeu in the mass, do not present what may be called tho Awericau type. The mild and patermal character which they disply", the injunction to "love onc another" raised to the rank of a pusitive precept, the preference of the useful arts to war, all breathe a spirit, not only foreign to the genius of the American triber, but exactly opposed in character to anything whicis a matire self-tanght, legislator was likely to produce. Secondly, the artificia! and systematic form of the Peruvian institutious renders ${ }^{\circ}$ it improlable that they were developed by the natural action of political causes, but strongly favours the idea, that they trere framed by a few designing leads, as an instrument to tame and govern a patient, focble, and credulous people of rudo or sarage labits. A small number of Jesuits were led, by a sagacious study of the savage character, to devise a system extremely similar in its nature, whicl worked admitably. Theso missionaries were the Manco Capacs of Paraguay ; aud, like the Incas, might, in the course of two or three centuries, have extended their theocracy over as large a space as l'eru, if theis situation had permitted them to employ force. Thirdly, a million of native Peruvians yet survive, the living descen dants of those who built the temples of Cuzeo; and thei extremo stolidity, apathy, and fecbleness of character sufficiently testify that the chances were nearly as grea against a legislator like Manco Capac arising amongs them, as against the Jews in the time of Augustus produeing a being like Jesus Clurist. They lave the weak ness and passiveness which fit them to receive an impression from superior directing minds; but they discover no trace of the intelligence, energy, and originality which must have been united in the persons mho llanned and carried into effect the politieal system of the Incas. Wo admit that appression may hare destaded their character. but it cannot lave entirely changed it.

If, then, the civilisation of Peru was exotic, whence was it derived ? To us it appears most probable, that the legislators of Peru were either Chinese, or persons who had received at second-hand a knowledge of the arts and institutions of China; and our opinion is grounded on traits of rescmblance in the manners, laws, arts, and institutions of the tro nations, which, in our opinion, aro too numo rous, striling, and peculiar, to be tho effect of chance. We Ela'? mention عome of the most prominent.

1. The first and most obrious resemblance is in tho singtidarly artifcial frame of society in both countries. In China, as in Pern, the legislation is directive as well as punitive, and is distinguished by that minute and elaborato system of regulation, inspection, and control, which interferes with the most trifling actions of ordinary life, and reduces the mass of the people to the condition of automata, moved and guided in everything by the rulers. China, says Mr Barrow, is a great school, in which the magistrates are the masters, and the people the scholars. It might be more correctly compared to a largo monastio establishment, in which each person has his place and his dnty assigned to him, and all his acts directed by suporiors, whose wisdom and authority he is not permitted to question. The Chinese have the same immense multitude
of civil officers which the Peruvians had, and the same chaiu of subordination from the cmperor down to the petty constable. In China this system was undoubtedly the growth of many centuries; but it was too artificial to occur to the thoughts of a cacique, educatcd amongst a tribe of savages on the sides of the Andes. 2. In China as in Peru, the emperor assumes the title of the "father of his people;" aud his government is modelled upon this figure of speech. He affects to be sprung fiom progenitors whe descended from heaven like the children of the sun, and he unites the character of supreme pontiff with that of temporal prince. There are vestiges, too, of the worship of the heavenly bodies in China. ${ }^{1}$ 3. The Chineso emperor extends on ostentatious patronage to agriculture, by celebrating an annual festival in its honour, on which occasion he proceeds to the field in great pomp, and takes a part in the labour of cultivating the ground with his own hands. This singular custom existed in Peru, where the Incas went through an annual ceremony perfectly similar. How foreign was such an institution to the spirit of the American tribes I 4. In China agriculture is in a rude state, and exhibits proofs of intelligence and skill only in two things-the use of manures, and a laborious system of irrigation. Precisely the same circumstances characterised the agriculture of Peru. 5. The internal taxes of China, like those oi Peru, are paid in kind (maize, rice, silk, cotton, \&c.), and stored in public magazines or granaries. 6. The Chinese government maintained public roads, even in those provinces where neither carriages nor beasts of burden were used, of course for the use of pedestrians, and storehouses or places of refreshment were built upon them at proper distances. The Peruvians constructed roads on precisely the same plan, and for the same purposes; and this was done by no other people in America. 7. The Chinese do not inter the bodies of the slead, but lay them on the ground and raise a tumalus or conical heap of earth over them. Such was also the practice in Peru. The only barbarously cruel rite practised in Peru, that of immolating the Inca's domestics at the obsequics of their master, was brought into China by the Tartars. Its existence is an anomaly in each case, for the genius of both nations was peaceful and mild. 8. The architècture of the Chinese displays little taste, but is distinguished by two peculiarities-the power shown of cutting and moving immense masses of stone, and the uniformity of style which pervades their structures, of every size and description. "All the buildings," says 3 Ir Barrow, "from the meanest hut to the viceroy's palace, are upon one plan." Humboldt remarks the same adherence to a single model among the Peruvians, and the walls of Cuzeo show that they were acquainted with the method of moring stones of prodigious size. The Chinese were fond of covering their walls with carving, and cxamples of the same practie occur in Peru. If any of the Peruvian buildings had remained entire with their roofs on, it would perhaps have been found, thet the type or primary architectural form employed in the two countries was not very dissinilar, and some allowance should be made for the circumstance, that Peru must have borrowed her models from China too or perhaps 1000 years ago. 9. The Perurians mado coarse pottery, and all the world knows that this is an art in which the Chinese excel. The Peruvians were the only American nation who had made any progress in the art of fusing and alloying metals, in which the Chinese lave long been distinguished by their skill. 10. The
${ }^{2}$ See accounts of the temples at Pckin dedicated to the heavons, the north star, the moon, tho earth, \&e., and of the festival kept at the summer solstice, like the Erand solur festival in Peru.

Peruvians had dramas and dramatic spectacles. Whenee could a people so uninventive have derived the idea of such entertainments, if not from China, where they have been long familiar to the people? There were mimics and buffoons in Mexico, but nothing, we believe, to which the term drama could be applied. 11. But perhaps the most remarkable coineidence is found in on invention entirely confined to the two countries. We lave deseribed the suspensiou bridges made of ropes, employed by the Peruvians in crossing deep ravines, Now, it is singular that bridges of the very same deseription; some of chains, and some of ropes, are found in the sonth of CLina, aud nowhere else except in Thibet, which has interohanged arts and customs with China from time immemorial,. This single fact we would consider as a proof of communication between the two countries. The Peruvians made their ropes of twisted osiers, and the Chinese had ropes also of this description. 12. From what people nearer than the Chinese could the Peruvians borrow the idea of rafts with a mast and sail? These rafts, supporting covered huts, may be considered as literal copies of scme that are used in China; and the peculiar mechanism employed in lieu of a rudder is no doubt borrowed from the paddles attached to the Chinese boats, fore and aft. 13. The Chincse in ancient times made use of quipus or knotted cords to facilitate calculation. Is it not probable that this invention had passed from them to the Peruviaus, the Mexicans, the Kaluschi, and other American nations who employed it 3 It would be easy to trace similar analogies in many other customs, laws, and institutions of the two nations. Both had nunneries or religious societies of women, who lived under a vow of celibacy; both had a class of literary men (the Haravees anad Amautas, or poets and philosephers, in Peru), patronised by the government; both divided the year into twelve months, and placed the beginning of it in Jannary (a coincidence the more remarkable, as the year of the Méxicans and other northern nations consisted of 18 months); both were strangers to the uso of milk, chcese, and butter. ${ }^{2}$ These facts may suffice, for we have not room for lengthened inquiries, neither are we anxious to press our argument beyond its proper limits. Our position is, not that the Peruvians are descended from the Chinese, but simply that Peru had been inoculated with civilisation by persons who derived their ideas from China. If it be asked why these persons did not import from China the use of letters, the method of casting arches, and many other arts practised there, our answer is, that no individual, and still less any casual assemblage of individuals such as the purposes of trade or navigation might bring together, possesses a knowledge of every art and science which exiuts in his country. How many men arc there in England at this day, who could not even carry the lenowledge of the alphabet to another country? We must remember, too, that all the arts existing in China do not exist in every province of it, and have not always existed in those provinces where wo now find them. ${ }^{9}$ As to the means of communieation, it is evident that the tradewind renders Peru almost unapproaclable from Eastern Asia, between the parallels of $30^{\circ} \mathrm{N}$. and 30° S. latitude.

[^81]But beyond these limits tho west winds prevail, and hence China, in point of facility of access, is uenrer to I'eru than the Society or Marquesas Islauds. 'ithe Chinese have long exposed themselves to the casualties of a maritime life, in vessels of large size, provisioned for many months; and at this day they perform voyages of 3000 or 4000 miles, to Ceylou and Polynesia.
The Quichua language, or that of Pcru, was spreand, by the care of the Incas, over all the countrics which they conquered, so far at least as to bo understood, if not spoken, by the great variety of tribes subject to their sway. It is understood at present as far as Santiago del Estero, 1200 miles of direct distance south-east from Cuzeo. This single fact proves both the long duration of their power, and the effieiency of their internal administration. It is said to be the most riel, polished, and harmonious of the South American languages, abounding in vowel sounds, but wanting those corresponding to the Spanish consonants b, d, f, g, l, x, v. Like all the other American torgues, it wants terms for abstract and universal ideas, such as tinne, space, being, substance, matter, dody, and even such as virtue, justice, liberty, gratitude. There are fire dialects of the Quichua, which are spoken in Peru proper, and in Quito, New Granada, and a considerable part of La Plata, and not only by the aborigines, but by many Spaniards of the higher classes. The Perurians had no alphabetic writing. They possessed a very rude species of hieroglyphies, of which little use was made, and the quipus or knotted cords of various colours, which last were originally employed simply as aids to calculation, but latterly as records of faets, laws, \&c. Each quipu required a verbal commentary. Abont ten years ago a cony of an old MS. was discovered, which contained an account of tho Maya alphabet of Yucatan L-the only alphabet yet known to bave existed in America.
The Peruvians of the aboriginal Quichua race are of a The people. copper colour, with a small forehead, the hair growing on each side from the extremities of the eye-brows; they have small black efes, a small nose, a moderately sized mouth, with beautiful teeth ; beardless chin (except in old age), and a round face. Their hair is black, coarse, and sleek, the body well proportioned, the feet small, the stature rather diminutive. Their intelleetual qualities, according to M. Ulloa, are of the lowest order. The most prominent trait in their character is an imperturbable and incurable apathy. Though half-naked, they are as conNanners. tented as the Spaniard in his most splendid raiment. Gold and silver have so little influence over them, that the greatest recompense will not induce them to perform the slightest service voluntarily. Neither power nor dignity moves them, and they receive with the same indifference the office of alcalde and that of executioner. They are habitually slow in their motions, and extremely indolent. When emplojed at any picce of labour, if the master withdraws his eye for a moment, they cease to mork. They are timid, shy, secretive, and always grave, even in the dances, which are their favourite pastime. The love of intoxicating liquors is deeply footed in their nature. They prepare a fermented beverage called chicha from maize, by a process known to them before the conquest, and at their festivals drink till their senses fail them, day after day. This vicious habit, however, is common to all the American nations, and is confined to the men, for the women are in general strietly sober. The Perurians are a gentle and mild people; they are fond of their dogs, and breed up hogs, geese, and chickens, for which they have so tender a regard, thrat they will often neither kill nor sell them. Their huts, says Mr Stevenson, consist of stones laid upon one another without any cement or .mortar, thatched over with long grass or straw, affording
no defence from either the wind or the rain. One small room contains the whole family; their bed a sheep-skin or two ; their furniture one or two earthen puts. The principal food of the Peruvians is maize ; but they raisc also potatoes, wheat, beans, tomatos, yucas, pumplkins, and other vegetables. Christianity, imposed upon then dogmatically, by priests who take no pains to enlighten them, las scarcely gained admission to their understandings, and has no hold on their affections. They attend divine service from the dread of chastisement, and give an ontward assent to whatever they are taught, bit without any real religious impression being made ujon their minds They meet death with the same stupid indifference as the ordinary accidents of life, and rather decline than seek the assistance of a priest in their last bours. It onght not to le forgoten, however, that the intellectual torpor which the Peruvians display may be attributed in part to the deadening and lebasing effects of three centuries of brutal oppression. They still cherish in secret a strung veneration for their ancient faith and their mative goverument, whieh displays itself even in the large towns. |The story of Manco Capac (whom, since numbers of our comintrymen appeared in l'eru, they affect to call an Englishman) and Dlama Ocello, the wealth, power, and beneficence of the Incas, are 'still fresh in their memories, and are handed down from father to son with a degree of fond admiration which three centuries of huniliation and misfortune seem only to have rendered more intense. The barbarous murder of the Inca Atahualpa by Pizarro is annually represented in the form of a tragedy. "In this performance," says Mr Sterenson, "the grief of the Indians is so matural, though exeessive, their songs so plaintive, and the whole is such a seene of distress, that I never witnessed it without mingling my tears with theirs. The Spanish anthorities have endeavoured to prevent this exhibition, but without effect. The Indians in the territory of Quito wear black elothes, and affirm that it is mourning for their Incas, of whom they nerer speak but in a doleful tone."

The oppression of the mita, or forced labour in the Poptatetl mines, with the introduction of the small-pox and the use of spirituous liquors, has destroyed prodigiuus multitudes of the Indians since the conquest. What their number was before that event it is impossible to tell ; but, judging from the extent of the Inca's dominions, he probably had not less than three or four millions of subjects. A pretended Spanish account, assigning a population of eight millions to Peru shortly after the conquest, is known to be fictitious. An official estimate in 1862 made the number of Indians in Peru amount to $1,600,000$, being threefourths of the entire population. ${ }^{1}$

In Chili there were sereral tribes who possessed nearly Cbill all the arts known to the Peruvians, but were distingrished from them by a finer physical constitution and an unconquerable spirit. When the Spaniards arrived, Chili, according to Molina, was inhabited by fifteen tribes independent of each other, who were spread over the country on both sides of the Andes, from latitude 30° to the Strait of Magalhaens. They all spoke dialects of one language, which is described as rich, harmonious, abounding in compound words, and haring, like the other American tongues, very complicated grammatical forms. It has no affinity to the Quichua or Peruvinn. The inhatitants of the plains are a stout people, of middle stature; those

[^82]of the mountains are tall ; and one tribe, the Tehuels or Patagonians, surpass in size every other nation in the world. All the tribes inhabiting the plains, except those of the extreme sonth, now make use of horses. The complexion of the Chilian tribes is, like that of the other American nations, a reddish brown; but one tribe is said to be of a clear red and white. They do not paint their bodies. The Chilians lived partly by hunting, but chiefly by agriculture, before they had any intercourse with Europeans. They cultivated maize, magu, guegen, tuca, quinoa, the potato, pumpkins, and some species of pulse; and to these they added, as food, the flesh of the wizcacho, and of the llama or Araucanian camel, of whose wool they are said to have manufactured cloth. Like the Peruvians, they understood the use of manure, practised irrigation with considerable skill, and turned up the ground with a wooden spade or mattock. They boiled their grain in earthen pots, or brayed it into meal after roasting it in hot sand ; of the meal they made puddings or bread, which they knew how to leaven, and various species of fermented drink. They had gold, silver, copper, tin, andlead, procured probably by washing; but they seem to have had few or no edge-tools of metal, those found being allmost always of basalt. They made baskets and mats, extracted salt from sea-water, and were able to give various dyes to their cloths. They ased quipus or knotted cords for calculation, and, according to Mr Stevenson, for the transmission of intclligence and for recording events. They lived in villages formed of houses standing at a distance from one another, under hereditary chiefs, but whose power was limited. It is remarkable that the Chinese mode of catching wild ducks on the rivers, by covering the fisher's head with a gourd, was practised in Chili.
The Araucanians, the most intelligent, improved, and warlike of the Chilian tribes, occupy about 200 miles of the sea-coast, between the 37 th and 39 th parallels. They are of ordinary stature, but vigorously formed; bold, hardy, hospitable, faithful to their engagements, generous to a fallen enemy, ardent, intrepid, and enthusiastic lovers of liberty. Their vices are drunkenness, and a contempt of other nations, springing from pride. Their goverṇment, in the regularity of its form and its sub-division of authority, has an outward resemblance to the Peruvian; but the spirit of the two systems differs as widely as the genius of the two nations. Araucania contains four tetrarchies, under four toquis or princes, who are independent of one another, but confederated for their joint security against foreign enemies. Each tetrarchy is divided into five provinces, ruled by five chiefs called apoulmen; and each province into nine districts, governed by as many ulmen, who are subject to the apo-ulmen, as the latter are to the toquis. These varions chiefs (who all bear the title of ulmen, as our nobility of all orders are barons) compose the aristocracy of the country "hey hold their dignities by hereditary descent in the male line, and in the order of primogeniture. The supreme power of each tetrarchy resides in a diet or great council of the ulmen, who assemble annually in a large plain, like the Poles and Germans in old times; but as the people are all armed, and have a high love of liberty, no resolution of the diet is of any avail if it has not their hearty concurreuce. The chiefs, indecd, are little more than leaders in war; for the right of private revenge, which is fully admitted, limits their authority in judicial matters; and they receive no taxes. Their laws are merely primeval usages. The Araucanianz can raise altogether 6000 or 7000 men, besides a body of reserve. When war is declared by the great council, messengers bearing "arrows dipt in blood "are sent to all parts of the countiy
to summon the men to arms. Uulike many barbarous nations, which are immovably attached to their ancient oustoms, the Araucanians were not slow in copying the military arts and tactics of the Spaniards. Their troops now consist of infantry and cavalry; the former armed with pikes or clubs, the latter with swords and lances. Tho infantry are formed into regiments of ten companies, each company containing a hundred men. When they take the field, they carry parched meal with them for provisions; they station sentinels, send out sconts, and have advanced guards preceding their main body. When necessary for their security, they dig ditches, and plant stakes along their sides, and throw up mounds of earth. They advance to battle in lines, well formed, and fight with intrepidity. Their history affords a brilliant example of what a, brave nation, animated by an enthusiastic love of liberty, can accomplish under the greatest disadvantages. After re sisting the best troops and the best generals of Spain for two hundred years, they at last compelled their proud enemies to acknowledge their independence. The Arancanians were indebted for their success to a deliberate species of courage, to which even the bravest of the North American tribes are strangers; and they combined with it a degree of sagacity and intelligence which led them to adapt their mode of fighting to the new circumstances in which they were placed. Experience having taught them the ineffioiency of their old missiles when opposed to musket balls, they soon laid aside their bows, and armed themselves with spears, swords, or other weapons fitted for close combat. Their practice was to advance rapidly within such a distance of the Spaniards as would not leave them time to reload after firing. Here they received without shrinking a volley, which was certain to destroy a number of them, and then rushing forward in- a close column, fought their enemies hand to hand. In this way they gained many victories, and impressed the Spaniards with such a respect for their courage that an individual of that nation made their achievements the subject of an epic poem. Combining the moral, intellectual, and physical qualities of the Araucanians, they were certainly the finest native race in the New World. They had nearly all the germs of civilisation which belonged to the Mexicans and Peruvians, without the ferocity of the former, the apathy of the latter, or the slarish habits common to both; and without having their minds stupified by that grovelling superstition which the rulers of these two nations seem to have considered as the only secure foundation of their authority. In true courage, in manliness and energy of character, they take precedence of all the American nations.

The Araucanians believe in a supreme being, and in many subordinate spirits, good and bad. They belicve also in omens and-divination, but they have neither temples nor idols, nor religious rites; and discover npons the whole so little aptitude for the reception of religious ideas that the Cativlic missionaries who have settled among them have had very little success in imbuing their minds with a knowledge of Christianity. They believe in a future state, and hare a confused tradition respecting a delnge, from which some persons were saved on a high mountain. They divide the jear iuto twelve months of 30 days, which have significant names, and add five days by intercalation. They esteem poetry and eloquence, but can scarcoly be induced to learn reading or writing. Chess, a game of oriental origin, is said to have been known among them from time immemorial; and it may be further observed, that the numbers 5 and 9 , employed in their geographical and civil divisions, are favourite numbers in China.
The other Chilian tribes are all much behind the Arau-
ranians in civilisation; but some, as the Puelches and the 'Ichucls, surpass them in strength and stature. Part of them livo on horso flesh, part by keeping sheep and cattle, and part by huuting. Some of theso tribes paint their faces. With regard to the height of the I'atagoniaus, M. Lesson, an eminent French naturalist, has collected the authorities on tho subject in a noto published by Balbi in his Ethnograplical Atlas; and they appar to us to remove cvery rationa! doubt as to the fact of a race of men existing there whose average stature is about six feet, and among whom men seven fect high are perhaps moro frequently to bo met with than amoner an equal number of men in any other country. They have largo heads, but their hands and feet aro small, and they are not strong in proportion to their tall stature. They ride on horseback, and hut tho huanaco or the ostrich with a sling, which they cast so as to entangle the animal's legs. They dwell in tents, and lead a wandering life.

Of the numerous nations that inhabited Brazil there is only one to which we can afford any special notice in this article. Tho Guaranis have at onc time formed a numerous people, which seems to have been spread over a larger surface than any other now existing in America. Tribes, or remnauts of tribes, whose relationship to the Cuaranis is attested by the strong evidence of their language, are found diffused over the wide space between the Orinoco and the embouchure of the Plata, or more than the half of South America. They are met with among the Andes of Peru, in the province of Chiquitos, in Matto Grosso, in Paraguay, in Minas Geraes ; and the Omaguas, in the republic of Ecuador, who, from their nautical habits, and the influcuce they obtained on the upper part of the Amazon, have been called the Phonicians of the new world, are believed to be of the same race. They constituted the bulk of the native population of Brazil when the Portuguese gained possession of it, but were divided into many distinct tribes, quite independent of one another, and living, not in contiguity, but mixed with other nations. They are of low stature, two inches shorter than the Spaniards, according to Azara; of a squaro form, fleshy, and ugly. Their colour has a strong shado of the copper red, while that of the other Brazilian tribes inclines gencrally to the tawny or black. Their character, like their physical form, resembles that of the Peruvians. They are patient, torpid, silent, downeast in their mien, mild, and passionless. Nearly all tho Indians whom tho Portuguese have civilised or couverted belong to this race. It is difficult to account for their dissemination through the southern continent, amidst nations much moro brave and powerful than themselves. Nay we suppose that, like the subjects of the Incas, they had been at one time the dominant tribo of an exteusive empire, which derived its force from union and civilisation? But if such a state did exist, its date cannot be very ancient ; for the identity or close resemblance of the dialects spoken by the scattered portions of the Guaranis shows that their dispersion from a common point did not happen at a very remoto period. ${ }^{1}$. Yet no memorial of its existenco survives, either in traditions or monuments. The supposition, therefore, that the Guarani tribes ate the remnants of a once powerful and united people, is scarcely admissible; and Azara thinks it more probable that they have crept gradually from north to suuth. Their dispersion is the more remarkable, as they are not a wandering but an agricultural people. They live in the woods, or in small open spaces in the forestg; cultivate inaize, beans, gourds, yams, mandioc; and eat also wild honey, and the flesh of monkeys and mrious small quadrupeds.
'Tho Indians whom the Jesuits civilised and collected into communities in the celebrated settlements of Paraguay belonged chiully to the mation of the Guaranis. These missionarics are said to havo borrowed tho plan of tho theocracy which they established hero from that which tho lucas lad introduced into leru. There is no doubt that tho spirit of their system was tho same; and, considering that they were precluded frum any other means of extending and suphorting their authority than persupsion, their success was remarkable. The settlements wero commenced about 1610 , and were gradually extended orer tho country watered liy the I'arana and Uruguay; between the 27 th and 30 th degrees of soutls latitude, till the order of tho Jesuits was suppressed in 1767. The plan of tho govermment may be called paroclial, for it was administered entirely by tho parochial elergy. Tho Indiaus were collected into villages. Eac! village had its church and its curate, who was assisted by one, two, or more priests, according to the number of Indians under his charge. Tho curato and assistant priests wero nominated, not by the Spanish nuthoritics, but by the father superior, also a Jesuit, who exereised a vigilart superintendence over the whole. Indians wero appointed in each village with the titles of regidors and alcaldes; but they wero merely instruments in the hands of the rurate and his assistants, in whom all power was lodged. The curato gave his whole attention to religions offices, saying mass in the church, and visiting the sick; while the assistant priests managed all secular matters, directing tho labour of the Indiaus who cultivated the ground, and tmining others to the crafts of the weaver, mason, carpenter, goldsmith, painter, and sculptor; for tho fine arts wero by no means neglected. Private property did not exist. The produce of the labour of the community was stored in nagazimes, from which each family was sulplied according to its wants, special provision being mado, for aged persons, widows, and orphans. The surplus was sold by agents at luenos Ayres, and the procecds employed in paying the taxes to the king, in procuring ornaments for the churclies, and various articles which the colonists could not manufacture for themselves. The religious instruction was of the most simple kind; but tho service of the church was conducted with a well-trained choir, a pompous ceremonial, and every accessory calculatel to strike tho senses. Tho punishments were mild; and they wero always accompanied with such admonitions as a parent would address to a child whom he was chastising. Crimes, in truth, were rare. The Indians, who regarled their spiritual chiefs with the veneration due to beneficen beings of a superior order, scarcely felt humbled iu coufes ing their misdeeds; and offeuders may have sulicited correc tion, as Raynal says, for the quieting of their consciences. The incursions of the Portuguese compelled the Jesuits to take means for repelling forco by force. All the male Indians of the proper ago were accordingly armed with muskets, and disciplined as a militia. In 1732, according to Dobrizhoffer, the thirty villages or parishes under the care of the missionaries contained a population of 141,000 souls. Tho Jesuits hai another establishment of the samo kind among the Chirimuas, a brancli of the Guaranis, in the province of Chiquitos, containing 30,000 or 40,000 Indians ; a third, of smaller size, in the province of Moxos; a fourth in California; and probably others. After the suppression of tho order, all these were committed to the care of friars of other descriptions; and wo believe they have universally fallen into a state of decay. The social system established in Paraguay was tho most effectual ever contrived for reclaiming the Indians frem their savage mode of life; but even its success shows how bupeless the attembt is to raise the American tribes to
the rank of thoroughly civilised nations. The Jesuits were able to introduce settled habits and a slight knowrledge of religion and the arts among the Indians only by means of the personal ascendancy they acquired over them. It was a few superior minds gaining the respect and confidence of a horde of savages, then employing the influence they acquired to lead them as children; giving them such portions of instruction as taught them to trust implicitly in their guides, working alternately on their fears, their pride, their kind affections, but never fully revealing to them the springs of the machinery by which they were governed. The incurable indolence of the savages rendered it necossary to prescribe the labour as task-work, and to carry it on under the constant inspection of the missionaries. The plan of cultivating the ground in common, and of storing the produce in magazines, out of which the wants of each family were snpplied, was resorted to as a check upon their improvident habits. In short, the ege and the hand of the missionaries were everywhere ; and the social system was held together entirely by their knowledge and address. When these were withdrawn, the fabric soon fell into ruins, and the Indians relapsed into their idolatry and savage habits.

To complete our general view of the aboriginal races, a iew particulars remain to be mentioned Many of the tribes who inhabit the Pampas of South America make use of horses. Dobrizhoffer enumerates eight equestrian tribes in the province of Chaco, on the west side of the river Paraguay, who are generally distinguished by tall and vigorous forms, and a bold and active character. The Abipones and Mbayas are the most celebrated of these. The woods of Brazil are too dense for equestrians; but horses are used by a few hordes in the great plain of. the Mississippi and in the north of Mexico. The American tribes in general either lill their prisoners or adopt them; but a few retain them as slaves, and compel them to work. The Guaycurus of Brazil are an example. The food of different tribes is extromel; various. Maize, beans, pumpkins, and mandioc are raised in small quantities by some; natural fruits, berries, bulbous roots, and bananas are gathered by others. Those who dwell on the sides of rivers live greatly on fish; in the plains, buffaloes, horses, and sheep are killed. In the forests of Brazil, monkeys, pigs, armadillos, pacas, agoutis, and tapirs are the favourite food; but birds, turtles, deer, and the coati are also taken; and in an emergency the Indians do not scruple to feed on serpents, toads, and lizards, the larvo of insects, and other disgusting substances. Salt is used where it can be easily obtained, and some seasor their food with capsicum. Some roast their meat, others boil it; and not only screral savage tribes, but even the civilised Peruvians, ate thcir flesh raw. The Ottomaques, a tribe near the Orinoco, cat a species of unctuons clay; this strange dict, which no doubt owed its introduction to the stern monitor famine, is not extremcly rare in Irazil, and Captain Franklin found the same food in use among an Indian tribe near the Frozen Ocean. The clay is stated by that traveller to have a milky and not disagrecable taste. A great proportion of the tribes in Brazil and the basin of tho Orinoco, and some in other parts of Amcrica, irdulge in the horrid banquet of human flegh. Shame, in our sense of the term, is nearly a stranger to the breasts of these savages. In the warm regions of Brazil men and women go eutirely naked, except in the ncighbourhood of the Portuguese settlements, where some wear a band of cloth round the loins. In such situations, whero the want of shelter is little felt, their dwellings are often nothing more than a sort of arbour formed by interlacing the open
ing it with leaves so as to form a sereet on the windward side, while it is left entirely open on the other. The manufacture of bows and arrows, war-clubs, baskets, mats (which, swung from a tree, serve them both as seats and hammocks), and in some cases a coarse pottery, comprises the sum of their practical skill in the arts. It has long been the practice of Nands of Portuguese, consisting chiefly of outlaws and ragabonds, to make marauding expeditions among the Indians living near the great rivers, and to carry them off and sell them clandestinely for slaves. This infamous trade is carried on in despite of the orders of the government, which has issued many decrees for the protection of the Indians, and, besides employing missionaries to convert them, enjoined the governors of provinces to furnish them with hoes and other agricultural implements. Wherever the negroes are introduced in great numbers, as in the Capitanias of Santo Paulo and Rio Janeiro, and in the whole of the West India islands, the aborigines rapidly disappear, the former being more intclligent, more tractable in their habits, and more active and industrious. The negroes are indeed a superior race to the Indians; aud the existence of one or two hundred blacks, as slares, among some thousands of the Cherokees, does not detract from the accuracy of this opinion. Missions for the conversion of the Indians have been supported for more than two centuries by the governments of Spain and Portugal. They are thinly spread over those parts of Mexico, La Plata, Peru, Brazil, and Colombia, which are still occupied by the savages; but there are extensive districts in all these provinces in which they have never been established, owing to the fierce character of the tribes, or the remote aud inaccessible nature of the country. A mission consists in general of one or two friars or priests, who settle among the savages, learn their language, and, besides teaching them the elements of Christianity, always endeavour to instruct them in the more simple and useful arts, and to train thom to settled habits. We believe that many of these establishments have been abandonsd, owing to the failure of the funds with which they were supported; and that the success of the others has been extremely trifling. The late revolutions in those countries, by liberating the Indians from their ancient state of tutelage under the whites, have in many cases broken up the little settlements which the missionaries had formed. This has been the result even in Brazil, where the political changes have been least felt.

Owing to the fanaticism of the Spaniards a large proportion of the manuscripts of the natives mere destrojed, se that now we are unable to acquire so full and accurate a history of the more civilised nations as we might otherwise have done. The literature which still exists, together with the numerous remains of citics, temples, roads, bridges, and other works of art, testify to the general truth of the historical narratives. However obscure they may now be, ol however difficult the reconciliation of statements, it seems clear they have been founded on facts. As in the case of other histories, there is much crror aud tradition, mingled with truth, which renders " "cir correct interpretation diffcult. Amongst some of the nations we know that historians were appointed by the government, and that such historians were severely punished if they rentured to tamper with the trath wilfully. Tho best connected account of these histories, so far as concerns the uations of Central America, is that given by the Abbe Brasseur de Bourbourg. ${ }^{1}$. If we eredit the native accounts, the earliest traces of civilisation originated in Facatan and the neighbouring districts, 8 region which is amongst the most fertile in the New World
${ }^{1}$ IIistoire des Nalions civilisées du Mexique el de l'A merique centrale, durant les sisiles anterieurs à Christophe Columb. 4 tumes 8 vo 1857-59.

It is stated tlat many centuries before the Christian era, Fotan, the oldest of the American legislators, established himself in the region watered by the rivers Tabasco and Usumasinta. It is near the sources of this latter river, in the highlands of Vera Paz, that cities of civilised Indians still exist, according to travellers who have recently visited the aujoining districts. However this may be, this river was the principal highway into the interior of Central America for the carliest civilised tribes, as it is now for the existing natives. Near the muthes of the rivers mentioned the ground is searcely abore the level of the sea, and is fon the most part a recent alluvial formation. During the rainy season it is covered with water, and all intercourso between village and village takes place by water. Just Where the land acquires a slight rise, Palenque, said to be the oldest city in Central America, was founded. At this time, according to the tradition, the low land was occupied by a lake. Votan, it seems, came from some foreign land, and found the whole of the country from Darien to California occupied by a barbarous people, who used the skins of wild beasts for clothing, caverns and huts made with branches for shelter, and wild fruits and roots, with raw flesh, for food. Votan annonnced to these people a knowledge of the Supreme Deity, who was at first worshipped as the God "of all truth." At first no temples or altars were dedicated to him, and it was not until long after that Nezahualcoyotl erected a teocalli, or "house of God," as it means in the Mexican language, and dedicated it "to the unknown God." At a later period the religious ideas were considerahly debased. In Votan's time there scems to have been but one language prevalent over a large area, and this language was probably the Maya, which is the stock of many of the languages formerly in use among the natives, and is still the language of Iucatan. The people apparently formed tribes differing somewhat in manners, the most prominent of which tribes are referred to as the Quinames or giants. Votan and his companions arrived in large ships, woro long flowing garments, and spoke the Nahuatl language. These strangers married the daughters of the country, and established a settled form of government. According to one document, the year 955 b.c. is assigned to these events; but it is quite impracticable to give any trustworthy fixed date. Yotan, it is said, wrote an account of the origin of the Indians, and of their immigration into America. He attempted to prove that they were the descendants of Imos, of the race of Chan, or the serpent. Votan made four voyages to his original country, and described the route he followed. On onc of these voyages he visited the dwelling of the thirteen serpents, as also the ruins of an old building which had been erected by men for tho purpose of reaching hearen. The people who lived in its vicinity told him it was-the place where God had given to each famly its particular language. Allusion is also made by him to certain mysteries like those of Egypt and Greeee, of which traces were still discoverable amongst the civilised nations of America. On returning from l is first voyage to his native country he found the pecple at Palenque had attempted to usurp his authority and overturn his power. Theroupon he parted lis monarchy into four divisions. One of these had for its capital the town of Tulha, the ruins of which may be sec a near Ocosngo in Chiapa. Votan also is the reputed founder of Tsequil, which was afterwards called Ghowel, and the site of which is now occupied by a suburb of Ciudad Real. Some time, yossibly not many years, after Votan, Zamna appeared in Yucatan. He introduced the Maya civilisation, founded the town of Mayapan, and called the country Manyha, or land without water, a tern well applied to the extremity of the peninsu a of Yucatan, where rivers are almost absent.

Mayapan was once the capital of Iucatan, and in Zamma's time tho sea covered the country to within a short distance of it. IIe lived to a great age, and during the later years of his life dwelt on the sca-coast, and was buried at this place. The spot became the site of a large teniple erected to his honour, which was visited by pilgrims from great distanecs. A tuwn sprung up aronind it called Itzamal, which is believed to currespond with the modern Isamal, now about 30 miles distant from the sea. The region to seaward is reported to be geologically very recent as land, and the remarkable absence of names of any antiquity in a country where almost every lucality has its appellation is some confirmation of the traditions. The arehitectural character of the oldest towns also lends some support to the considerable antiquity elainued for them. The forest-covered ruins of Mexico and Central America present so many different architectural styles that it seems very probable they were built at difierent periuds and by different people. Those which appear to be the oldest, and which are most uniform in style, are the substructures in Mayapan, some of the buildings in Tulha, many of thoso in Palenque, and others which occur in the country of tho Lacandons.

The mames of the successors to Votan are mentioned, but witbout details. One of the last of the dynasty was Chinax, in whose reign mention is made of the Nahnatl people. Not long after his death, this people, who were called Nahoas or Toltecs, obtained the dominion of the cumutry, and the throne was uccupied by Nahoa princes. They originally came from Huchuc-Tlapallan (but where this country was situated is not known), haring been induced to leave it in conscquence of a rerulution. This event seems to have occurred siortly before the Christian cra. . The journey to America from their native country was a long and painful one, and indicates that seas and lands intervened between them. The traditions report it to be in the far cast, and that the first comers filled seveu ships and disembarked at Tampico, near the mouth of the Panuco. The leader of the band bore the title of Quetzalcohuat!, and was the first known by that name. They then coasted along the shore as far as Tamoanclia, which place was evidently somewhere near the mouth of the Tabaseo. In this district there was a tradition in the time of the Spaniards that twenty illustrious chiefs from the cast landed there many centuries before, who had long flowing garments and large beards, of whom the principal was Cukulcan, a name which has the same meaning as Quctzalcohuatl. Quetzalcohuatl and his comrades soon obtained possession of the capital of the country, Xibalba, which is believed to be the same as Palenquc. Their success induced others of the Nahua nation to join the first colonists, and their power gradually spread over a large portion of Central Anerica. The strangers, however, met with considerable resistance from the prinees of Xibalba, who compelled the Nahoa to leave their country and disperse themselves over the surrounding region. This dispersion is stated to have oceurred in A.D. 174. Before this date, the lunar calendar, so prevalent among the civilised nations of America, was introduced. It was one of these parties of Nalioa that established itself in Mexico, and founded many of the more important cities. They were called Olmeques, and were led by Olmecatl and Xiclhua. The latter was one of Quetzalcohuatl's companions, aud was once shipwrecked along with hin. In-order to commenorate his delivery he erected the greas pyramid of Cholullan. Before the arrival of the Olmeques he valley of Mexico was inhabited by the Quinames or giants, and they coutinued to dwell in the mountains arounc for centuries after they had been driven from their native valley. The Totunacs, Mixteca, and Othumis were the contempuraries, or jossilly the
predecessors, of the Olmeques. The first mentioned people erected the pyramids of the Teotihuocan, or the City of the Gods, near Mexico. These tribes spoke a language quite distinct from the Nahuatl. The Totonacs placed the cradle of their race at Chicomoztoc, which was said to be far to the north ; but the Othomis seem to have been in possession of the land from time immemorial. According to the traditions of the Quiches and other nations of North America, they originally came from Tulan. They allude ts several places of this name. One was in the region of the setting sin and beyond the sea; and another, from which the Quiches came, was also in the direction of the setting sun and was apparently situated in California. In the descriptions given of the migrations frorn the more distant Tulan, which seem to have occurred at frequent intervals, each migration consisting of a moderate number of people, the difficulties and hardships are prominently noticed. They pointedly allude to the intense cold, to the long dark night, and to the sterility of the country, which allusions seem to point to travels in Arctic regions. The travellers were reduced to such extremities as to be obliged to suck juicy woods in order to sustain life. The name Chichimecs, which means suckers of maguey, given to the invading hordes from the north, may have some connection with this traditional fact. Chicomoztoc has been identified by some with the extensive ruins near the Rio Gila, in California. The history of these early nations is somewhat obscure, but it may be gathered from the preserved records that the worship of the sun and the practice of human sacrifice had niearly or wholly superseded the earlier and purer religions. Towards the end of the 7th century we first hear of the Chichimecs invading Mexico from the north. This name is a general one given to all invading hordes from the north, and is similar to that of barbarians applied to the people who invaded the Roman empire. The first invasion was by the Chichimecs-Culhuas, headed by Mixcohuatl Mazatzm. They commenced their march, or rather progress, from Chicomoztoc about 635, and seached the valley of Mexico about 40 years after. After :nany years ${ }^{\text {f }}$ fighting the Toltec empire was established in about 686; and from this period we enter upon more detailed and trustworthy historical ground. At first the government of the Toltecs was republican and theocratical, out it soon became monarchical, and Nauhyotzin was elected the first king. The most illustrious of his successors was Topiltzin Ceacatl Quctzalcohuatl, during whose reign the Toltec empire arrived at its most flourishing condition. According to tradition, the Toltecs were taller and of larger build than the existing Indians, were great runners, and were as white as Europeans. They carried many of the arts to a high state of perfection, such as weaving, building, jewelling, and making ornaments with the feathers of birds. There were astrologers and poets, sorccrers and philosophers and orators. They were well acquainted with the medical properties of plants, and were in the habit of recording in books their observations on discases. Quetzalcohuatl's reign was for the most part one of prolonged peace, but this peace was disturbed by the religious party who adrocated human sacrifice, a practice which he used ceery effort to abolish. The rebellion becoming very formidable, Quetzalcohuatl left the country with a few chosen attendants, and founded a new Toltec empire on the plain of Huitzilapan, which corresponds with the one on which La Piebla now stands. This occurred in 895. The tomn of La Puebla stands on the site of the old Huitzilapan, and at the time of Quetzalcohuatl's arrival it was said that the pyramids of Cholullan had existed from timo immemorial, and bad been built by tho giants. According to this legend, the country was inhabited by giants, all but seven of thom were cither destroyed by a
great inundation or turned into fishes. These seren took refuge in a cave, and when the waters abated, one of there named Xelhua, went to Cholullan, and built the famous pyramid to commemorate his escape. Quetzalcohuatl built a temple here, which he dedicated to the "creator of light," and around this temple sprang up Cholullan, or the "town of the exile." His disciples carried the Toltec civilisation into Oazaca. After having reigned at Cholullan about ten years, during which period his subjects erijoyed all the blessings of peace, he was attacked by enemies again. Huemac had asconded the throne which he had vacated, and being jealous of Quetzalcohuatl's power and prosperity, he suddenly resolved to march with his army agaiust Cholullan. In order that the town might be spared the horrors of a siege, Quetzalcohuatl informed his priests of his intention to leave the place and to visit other countries. Accordingly he proceeded to the mouth of the Coatzocualco river, then entered a boat with four companions, and nothing more was heard of him. Huemac finding his enemy had escaped, wreaked his vengeance on Cholullan, and took up his residence there with a view to subjugating the surrounding districts. He also re-established the practice of human sacrifice. During Huemac's absence from his kingdom of Tulan, Nauhyotl was elected king in his stead. A battle took place between the rivals, which resulted in the defeat and subsequent death of Huemac and the establishment of Nauhyotl's power. His reign lasted for fifteen years, and as he was one of Quetzalcohuatl's disciples, he governed according to similar principles, so that the reign was a prosperous one. His death occurred in 945 . After this a series of disasters broke over the country, and these, with constant civil war, weakened the power of the empire in Anahuac. This soon became known to other nations, and led to the Chichimecs-Teotenancas leaving their homes in Texas and New Mexico to make an irruption upon the valley of Mexico. This occurred between 1041 and 1047. The internal discord continued, and the disorder was increased by the uprising of the sect of Ixcuinames, the devotees of which practised the most abominable rites. In the midst of this corruption another horde of. barbarians, the Teo-Chichimecs, poured down from the north, and took possession of the country. The Toltec power rapidly declined, and the last king of the empire was Huemac Atecpanecatl, who after his dethronement lived for some years at Chapultepec, and died there in 1070.

According to the Guatemalian traditions, four incividuals of the Tutul-Xius, a nation speaking a Nahuatl lanscage, left their country of Tulapan, to the west of Zuyna, in A.D. 174, and arrived the same year at Chacnouitan, which seems to be the name for some place in Xucatan. In 258 another migration of Tutul-Xius occurred, the new colony being established in the province of Zyan-Caan, which is believod to be the district around Chetumal Bay. About thė end of the 10th century, it is stated that a renerable personage arrived in Yucatan, called Cukulcan, who retrieved the falling fortunes of the Tutul-Xius. - According to the Abbe Brasseur de Bourbourg, this personage was no other than the. Ceacatl Quetzalcohnatl whose departure from the Coatzocoalco river has already been mentioned. After reigning here ten years, he voluntarily abdicated the throne and left the country. According to a Mexican legend be went to Tlapallan, and died there. His successor transferred the capital of the Tutul-Xius from Mayapan to Usmal, a town which seems to have been founded some centuries before, but which first rose to importance at this period, or near the end of the 10 th century. Numerous temples and public buildings were erected, the ruins of which are now so abundantly met with in Yucatan. Artificial ponds or zonotes were constructed; and the number and magnitude of these indicate a large number of
towns as well as a thickly-populated country. At the present day they have all the appearance of being natural ponds, and indeed were long considered to bo such, notwithstauding the repeated assertions of the Indians that they bad been built by their aucestors, until chance led to the discovery that the muddy floor of one was cotirely composed of flat stones, the interstices between which were stopped with a kind of clay not known in the neighbourhood. The centre was oceupied by four artificial wells, the walls of which were formed of polished stones. Further research led to the discovery of numerous other zonotes. After the final fall of the Toltec empire there commenced the great movement of the northern tribes towards the sonth, a movement which continued throughout the 11th, 12th, and 13th centurics. The movernent consisted of a succession of migrations, aud its starting-point appears to have been in New Mexico and California, which region was evidently the seat of a semi-civilised empire. Amongst these invading tribes was one which subsequently rose to high importance. The Aztecs, or Mexicans proper, wero living at Atzlan in the llth century, a country which was surrounded by water, and where their usual occupation was as boatmen and carriers of wood. Other tribes also lived in this region, which is belicved to be that of Lower California. The Aztecs commenced their journey towards Mexico in 1090. In 1116 they reached Chicomoztoc, and in 1177 they entered Anahuac. Settlements were gradually established in the vallcy, towards which peoples of various nations converged from the south as woll as the north. The numbers of the Aztecs were slowly augmented by fresh arrivals; but it was not until 1325 that they were able to lay the foundations of Mexico-Tenochtitlan, and thus to inaugurate their assumption of power. In 1464 the empire of the Tutul-Xius was overthrown. The Mexican empire bad, however, acquired large proportions, and was conducted with a magnificence and splendour scarcely equalled by any other court in America, and this empire continued up to the time of the Spanish conquest.

The discovery of a continent so large that it may be said to have doubled the habitable world, is an event so much the more grand and interesting that nothing parallel to it can ever occur again in the history of mankind. America had of course been known to the barbarous tribes of eastern Asia for thousands of years ; but it is singular that it should have been visited by one of the most enterprising nations of Europe five centuries before the time of Columbus without awakening the attention of either statesmen or philosophers. Iceland was discovered about 860, and colonised by the Norwegians in 874 . Ahout 50 , or, according to other accounts, 100 years later, the same people planted colonies in Greenland. Into the disputes respecting the situation of these colonics we have not room to enter. Sir Charles Giesceke, a good authority, states that their ruins exist near the southern point of the peninsula. It is obvions that the same adventurons spirit which enabled these northern mariners to discover the southern extremity of the country, would not permit them to stop short without visiting what is now known to be the most habitable part of it-the western coast ; and the fact has been established by an inscription in menic characters found on a stono four miles beyond Upernavik, at the 73 d parallel, intimating that " Erling the son of Sigrat, and Enrido Oddsoon, had cleared that place and raised a hillock on the Friday after Rogation day." The marking of the date is indistinct, but it is supposed by Prefessor Rask, the translator, to be cither 1135 or 1170 ; and the runic chameters show at any rate that it was anterior to the Reformastion, when this mode of writing was prohibited. ${ }^{1}$ Whoever louks at the map of Greenlaud, and reflects on the fact

[^83]that the Norweginns must have been ascondug th:ough Davis' Straits as high as the latitude hentioned, aunuallyf perhaps for two or three centmries, will edmit that, with half the spirit of enterprise which had carried them so far, the discovery of some portion of the west coast of these straito was almost unavoidable. Now, the position and direction of this coast once known, it required no great cffort to trace it southwards to Labrador and Newfoundland. We mention these particulars because Mr Murray, one of the few who have denied the discovery of America by the Norwegians, grounded his disbelief chicfly on the hypothesis that the colonies and the navigation of that people at the period alluded to were confined to tho east coast of Greenland.

Iu 1001 an Icclander, sailing to Greenland, was driven away by a tempest far to tho south-west, where he saw a' lerel country covered with wood. The wind abating, he turned his course homeward, and on his arrival gave snch a flattering account of the conntry he had seen as induced Lief, the son of the founder of the Greenland colony, to undertake a voyage thither. Lief and Bjorn, who saided together, first reached a rocky island, to which they gave the name of Hclluland; then a low country, thickly wooded, which they called Markland; and some days afterwards they found trees loaded with fruits on the banks of a river. They spent the winter in the country ; and one of them, who was a German, having found wild vines growing, they called it Vinland. They had some intercourse and traded for furs with a people who came in leatheru boats, and were called Shrolings, from their dwarfish size. A colony was planted, and remained for many years in the country, the situation of which is indicated by a fact casually mentioned, that the sun remained nine hours above the horizon at the shortest day. This indicates the 41st parallel of latitude;:and tho actual latitudo of Rhode Island, the country which every collateral circumstance would lead us to fix upon as the seat of the colony, is from 41° to 42°. The Skrolings were of course the Esquimaux. ${ }^{2}$ The vine appears to be the fox grape (Fitis vulpina), which grows wild in that part of America. Only a ferv unimportant particulars respecting the settle ment are preserved; but it was prebably abandoned on destrojed, like the Greenland celonies, of which it was an offset. The account, though meagre, is distinct and consis. tent. Its authenticity can scareely be disputed; and it is almost equally obvious that the country it refers to undes the name of Vinland is in the vicinity of Rhode Island. A conclusion resting on such strong grounds scarcely requires to be supported by the high authority of Humboldt and Malte-Brua. That the colony disappeared, and that the discoveries wade were not prosecuted farther, are not circumstances which will shake the credit of the narrative in tho minds of those who know the numerous reverses which befell the early colonics in New England and other parts of America. The bostilitics of the Skralings was no doubt the principal cause of the abandonment of the colony. The Norsemen describe Vinland as a rich country, with a delightful climate. Helluland, Markland, and Vinland, were no doubt regarded as countries either connceted with or similar to Greenland, tho flattering deseriptions of which, given by the first discoverers were sadly belied by later experience. ${ }^{3}$ The interest excited by the obscure accounts
${ }^{2}$ Sce the curious work of Torfeus called Vinlandia Antiqua, Mafn, 1705; and the valuable Antrquilates A mericana, published at Copenharen in 1837. Also Ilumboldt's Cosmos, vol. ii. p. 233, Sabiuc's traasl. 1819.
${ }^{3}$ M. Pafa, a Dane, who was much engaged io rescarches respecting these carly yoyages, annouaced that he had ascertained, from original documents, various facts previonsly unknown; among others, that America (first discovered in 935) was repeatedly visitod by the Icelanders in the $11 \mathrm{th}, 12 \mathrm{th}$, and 13 th centuries ; that the emhonchure of the St Lawrence, and in particular the bay of Gaspe, was their priucipal station; that they had penetrated along the coast ay far south as Carolins: and that they introduced a knowlorge of Chrie
of these countries was probably such as the announcement of a new island eastward of Spitzbergen would produce at the present day. No reasonable doubt can exist, however, that the north-eastern portions of America (considering Greenland as a distinct country) were familiarly known to the Norwegians in the eleventh century.

The obscure allusions of Aristotle, Plato, and Seneca, to a countre hid in the Western Ocean, must have derived fresh importance from the diseovery of the Canary Isles, Madeira, and the Azores in the early part of the fifteenth century. The love of maritime adventure was excited by these events; and among the active spirits who were attracted to nautical life by the career of distinction which was then opened up, was Christopher Columbus. Our limits do not permit us to enter into details respecting this great man, an outline of whose life will be found under the proper heading. He had received a learned education, and the study of the geographical systems then in vogue impressed him with a strong eonviction that a voyage to India by a course directly westward was quite practicable with the degree of nautical science which his contemporaries possessed. From the old and imperfect maps of Ptolemy he was led to believe that the parts of the globe known to the ancients embraced 15 hours, or 225 degrees of longitude, which exceeds the truth by more than one-third. The discovery of the Azores on the west side had lengthened the space by one hour; and the accounts gleaned by Marco Polo in Asia induced him to think that the isles connected with this continent stretched out so far to the eastward that their distance from Europe could not be great. Columbus was, however, without the fortune necessary to fit out ships; and when he attempted to in terest some of the princes of those times in lis project, he encountered neglects and difficulties which would have exhausted the patience of any mind less ardent than his own. At length, after many delays and discouragements, Ferdinand and Isabella of Spain supplied lim with three small vessels, two of them only half-decked; and in this little armament, accompanied by 120 men, he set sail from the port of Palos on the 3d of August 1492. He proceeded first to the Canary Isles, where he was detained three weeks in repairing one of his vessels. On leaving these isles he entered on a region of ocean where all was mystery. The trade-wind, however, bore him steadily along, and the labour of the ships proceeded cheerfully, till the increasing length of the voyage, the failure of prognosties which had from time to time kept alive the hopes of the crew, and various circumstances interpreted by their superstition as evil omens, produced a mutinous spirit, whick all the address and authority of Co_{0} lumbus would not have been able to quell had the discovery of land happened one day later than it did. Columbus, says Humboldt, on sailing westward of the meridian of the Azores, through an unexplored sea, songht the east of Asia by the western route, not as an adventurer, but according to a pre-conceived and steadfastly-pursued plan. He had on board the sea-clart which the Florentine astronomer Toscanelli had sent him in 1477. If he had followed the chart, he would have held a more northern course, along a parallel of latitude from Lisbon. Instead of this, in the hope of reaching Zipangu (Japan), he sailed for half the distance in the latitude of Gomcra, one of the Canary Islands. Uneasy at not having discovered Zipangu, which, according to his reekoning, he should hare met with 216 nautical miles more to the east, he after a long debate yielded to the

[^84]opinion of Martin Alonzo Pinzon, and steered to the south. west. The effect of this change in his course cajously ex: emplifies the influence of small and apparently tri inal evento on the morld's history. If Columbus, resistion the counsel. of Pinzon, had kept his original route, he wouid have entered the warm current of the Gulf Stream, have reached Florida, and thence perhaps been carried to Cape Hatteras and Virginia. The result would probably have been to give the present United States a Roman Catholic Spanish population, instead of a Protestant English one, a circumstance of immeasurable importance. Pinzon was guided in forminghis opinion by a flight of parrots towards the south-west. Never, says the Prussian philosopher, had the fight of birds more important consequences. It may be said to have determined the first settlements on the new continent, andita distribution between the Latin and Germanic races. It was. on the 12 th of October that the western world revealed itself to the wondering eyes of Columbus and his compamions: What a triumph for this extraordinary man, who had treasured in his breast for twenty years, amidst neglect, discouragement, end ridicule, the grand truth which his own incomparable skill, wisdom, and firmness had now demoni strated in the eyes of an incredulous world! The spot which: he first touched was Guanahani, or Watling Island, as weas suggested by Muñoz in 1793, and proved by Mr, R. . Major in 1870. After spending nearly three months. in. visiting Cuba, Hispaniola, and other isles, be retormed to Spain. He made three other vojages, and in the second coasted along a part of South America, which be rightly judged to be a continent from the volume of water poured into the sea by the Orinoco. But he died ignorant of the: real extent and grandeur of his discoveries, still believing that the countries be bad made known to Europe bo longed to that part of Eastern Asia which the ancients ealled India. Hence the name of West Indies which. the tropical islands and part of the continent hare ever since received.

We should extend this article to an unreasanable length Progrea were we to describe in detail the discoreries and settlements discovery made by the several nations of Europe in America. Wesation. shall therefore confine ourselves to a rery brief chronologi. cal notice of the more important events.
1495. The first ploce in which the Spaniards establisheć their power was the large island of Hayti or Hispaniola, which was inhabited by a nunerous race of Indians of a mild and gentle character, a third part of whom are said to have yerished withis two or three vears after the Spaniards conquered them.
1497. John Cabut discovered Newfoundland June 24th, and coasted along the shores of North America to Florida 1498. Columbus first saw the mainland, May 30.
1500. Cabral, a Purtugucse, visited the coast of Brazil, and discorered the mouth of the Ammzon. It was probably colonised before 1515. In 1500, too, Cortereal touched at Labrador.
1508. Vincent Pinzon is said to have entered the Rio de. la Plata. It was in the same year that the Spaniards, finding the aborigincs too weak for the labour of the mines in Hayti, first imported negroes from Guinea, and thus laid the foundation of a trafic which continued to disgrace the civilisation of Europe for three centuries.
1511. Diego Columbus conquered the island of Cuba. with 300 soldiers, of whom he did not lose one.
1513. Balboa erossed the Isthmus of Darien with 290 men, and discorered the Sonth Sea.
1519. Hernando Cortes sailed from Cuba with 11 ships and 550 men, and landed on tho coast of Mexico, which had been discovered in the previous year. The conquest of the empire was finished in 1521 by 950 Spaniards, assisted by. a vast number of the Indians of Tlascala.
1531. Peru invaded by Pizarro, and conquered in little more than one year, with a force of 1000 men.
1535. Jacques Cartier, a Frenchman, discovers the Gulf of St Lawtence.
1535. Mendoza, a Spaniard, with 2000 followers, founds Buenos Ayres, and conquers all tho country as far as Potosi, at which silver mines were discovered nine years after.
1537. Cortes discovers California.
1541. Chili conquered; Santiago founded; Orellana sails from the sources of the Rio Napo down tho Amazon to the Atlantic.
1578. New Albion, on the north-west coast of America, discovered by Sir Francis Drake.
1586. Tho Spaniards found St Thomas' Island, in Guiana.
1587. Davis' Straits and Cumberland Islands discovered by John Davis.
1604. De Monts, a Frenchman, founded the first settlement in Nova Scotia, then called Acadie.
1607. After many ineffectual attompts during more than twenty years, tho first permanent settlement of the English in North America was made this year. on the banks of the James River, in Virginia.
1608. Quebee founded by the French, who had had a small neglected colony in Canada from 1542.
1611. Newfoundland colonised by the English : a Dutch colony established at Hudson's River.
1614. New York founded.
1618. Baffin penetrates to the 78th degree of latitude, in the bay which bears his name.
1620. The first English colony established in New England at Plymouth. It was in 1619 that the first negroes were amported into Virginia. They were brought by a Dutch vessel.
1635. A Freneh colony established in Guiana.
1655. Jamaica conquered by tho English.
1664. The Dutch colonies on Hudson's River capitutate to the English.
1666. The Buccaneers berin their depredations on the Spanish colonies.
1682. William Penn establishes a colony in Peansylvania. La Salle takes possession of Louisiana in the name of the French king.
1698. A colony of 1200 Scots planted at Darien. In the following year the settlement was attacked by the Suaniards, and abandoned.
1733. Georgia colonised by the English.
1760. Canada and all the other French settlements in North America conquered by the English.

We must pause at this point to give a very short acoount of the colonial system introduced by the principal European nations who occupied extensive tiacts of the new world. The English settlements extended from the 31 st to the 50th degree on the east const, and were divided into 15 or 16 provinces. The colonists had carried the love of liberty characteristic of their countrymen with them ; and after many struggles with their British rulers, all the provinces, with one or two exceptions, wero permitted to enjoy a form of government extremely popular. The executive power was vested in a governor appointed by tho king. He was assisted by a conncil, which sometimes conjoined the functions of a Privy Council and a House of Peers. Tho people were represented by a House of Assembly, consisting of persons chosen by the freeholders in the country parts, and the householders or corporatious of towns. The governor could lovy no money without, the consent of the House of Assembly: the British parliament, however, claimed, but scarcely ever oxercised, the privilege of imposing taxes upor the colonists
without consulting them. Against this assumption of power the local legislatures always protested as an infringement of their rights. The vessels of forcign states were not permitted to trade with the colonies; but the colonists were allowed to trade in their own ships with one another, with the mother country, and, to a limited extent, with foreign states. Their taxes, which wero always small, were all consumed in defraying interni expenses; and, compared with any other people in the new world, they enjoyed an urexampled degree of commer. cial and political liberty. It was the growing prosperity of the colonies and the increasing debt of the mother country; which induced the British ministers, for the first time, in 1764, to attempt raising a revenue in America, for purposes not colonial. The experiment was mado by imposing a stamp-duty on newspapers and commercial writings. The sum was trifling; but the Americans, far-sighted and jealous of their rights, saw in it the introduction of a principle which deprived them of all security for their property. The people declared themselves agninst it as one man, in local assemblies, and by petitions and publi cations of all kinds. The ministers became uneasy, and repealed the tax; but, as a salve to the pride of the mother country, a declaratury Act was passed, asserting hei right "to bind the colonies in all cases whatsoever." The idea of raising a revenue in America, was not renounced, but another mode was to bo tried. Duties were laid on glass, colours, paper, and tea, and were met by an opposition in the culunies still more zealous and determined. The British ministers, irritated, but wavering. in their purpose, dropped all the taxes but that on tea, and cominenced at the samo time a series of alarming innovations. They closed the port of Bostun, changed the charter of the province, placed judges and juries on a footing to render them more subservient to the views of the government, and introduced a strong military foree to overawe the people. On the other side, the colonists passed resolutions nut to import or consume any British goods, and hastened to supply themselves with powden and arms. Blood was at length shed in April 1775, al the villago of Lexington; and in the following year the American Congress published their celebrated declaration of independence. We shall not enter into the details of the war, which was elosed in 1782. Suffice it to say that, on the part of the Americans, it rested on high grounds; it was a war to vindicate a principle-for tha practical grievance mas adnitted to be slight ; and it was conducted with a regard to humanity of which there are few examples in history.

The Sprnish possessions in America before the revolu- Spanist tion iormed nine distinet governments, all constructed colonas on the same plan and independent of one another. Four of these, of the first rank, were vice-royalties, viz., Mexico, Peru, La Plata, and New Granada; and five were captaingeneralships, viz., Yueatan, Guatemala, Chili, Venezuela, and tho island of Cuba. The government was vested in the viceroy or captain-general, who was held to represent the king, and to enjoy all his prerogatives within the eolony. But in these countrics, as in others where the supremo power is apparently unlimited, it was indirectly restrained by the influence of the courts of justice, corporations, and other public bodies. The royal audiencias or supreme courts, composed of Spaniards nominated by the crown, had extensive judicial powers, and were independent of the viceroys. The eabildos or municipalities, and the fueros or corporations (similar to our guilds), also possessed considerable privileges, which derived security and importance from long preseription. Lastly, the clergy, who wero numerous and rich, necessarily possessed great infuence among a supersti-
tions people. The rices naturally inherent in the colonial system existed in full force in the Spanish American dominions. There was tolerable security for all classes except the miserable Indians, who were regarded and treated precisely as beasts of burden, out of whose toil and sufferings a provision as ample as possible was to be extracted, first to supply the wants of the royal treasury, and nest to provide for and satisfy the cupidity of a shoal of do-nothing public officers and priests. Edicts were indeed issucd for the protection of the Indians, and persons appointed to enforce them; but these were feeble correctives of the evils rooted in the system, and not unfrequently increased their weight. The Indians, after the conquest, were at first slaves; they paid a capitation tax to the crown, and their labour was entirely at the disposal of their lord. This system was modified from time to time; but all the changes introduced down to the revolution did not release them from their state of passalage. They still continued liable, in a less or greater degree, to the performance of compulsory labour, under the orders of persons against whom they had no protection, This was an enormous grievance; but, what was equally bad, being held incompetent in law to buy or sell, or enter into any pecuniary engagement beyond the value of a few shillings, without the agency of white men, the swarm of public functionaries had an unlimited power of interfcring in their concerns, of vexing, harassing, and plundering them, under the forms of law. The memoir of Ulloa, long buried amidst the Spanish archives, with various other documents published since the revolution, depicts acts of extortion, perfidy, cruclty, and oppression practised upon the Indians which have rarely been paralleled. Men rose to affluence in offices without salaries; and the priests rivalled the laymen in the art of extracting money from those whom they ought to have protected. As the sole aim of the Spaniards in the colonies was to enrich themselves, so the government at home made all its acts and regulations subordinate to the grand object of raising a revenue. Spain retained in her hands the whole trade of the colonies, and guarded her monopoly with the most severe penaltics. The price of all European commoditics was enhanced three, four, or six fold, in America. The colonists were not allowed to manufacture or raise any article which the mother country could supply; they were compelled to root up their vines and olives; and for a long period one colony was not even permitted to send a ship to another. To support such a system it was necessary to keep the people in profound ignorance, and to cherish prejudices and superstition. The schools were extremely few, and permission to establish them was often refused, even in towns where the Spaniards and Creoles were numerons. The importation of books, except books of Catholic devotion, was rigorously prohibited. Even the more grave and dry sciences, such as botany, clemistry, and geometry, were objeats of suspicion. And the more effectually to crush all mental activity, natives of Amcrica could rarely obtain leave to go abroad, to scek in foreign countries what was denied them in their own. On the other hand, the priests, sharing in the spoil, filled the minds of the people with childish superstitions, as a means of confirming their own power, and employed the terrors of religion to teach them patience under oppression. To create a race of servants devoted to its purposes, the court bestowed all offices, from the highest to the lorrest, on natives of the peninsula exclusively. The wisdom of the plan seems questionable, but that it was adhered to with wonderful pertinacity is certain. "It was tho darling policy of Spain," says Mr Ward, "to disseminate through her American dominions a class of men distinct from the people in feelings, habits, and iuterests,
tanght to consider themselves as a privileged caste, and to regard their own existence as intimately connected with that of the system of which they were the principal sup. port." With all those means and appliances, it is extra ordinary that Spain should have been able to uphold fos threc centuries a system in which the interests of su many millions of human beings were so habitually and unrelentingly sacrificed. It was the course of events, much more than its own inhereut weakness, which ultimately caused its subversion.

After the seizure of Ferdinand and the elevation of Joseph Buonaparte to the throne of Spain, orders were dis. patched to all the colonies with the view of securing their obedience to the new dynasty. The men in office were generally disposed to submit, but the treacherous conduct of the French excited a universal hatred of their cause among the people; and when the regency established in Spain presented the semblance of a patriot goverament, the loyalty of the Americans blazed forth, and poured large contributions of money into the hands of Ferdinand's adherents. The weak and suspicious conduct of the regency, however, and its subscrviency to the grasping spirit of the merchants of Cadiz, at length alienated the colonists, and roused them to take measures for their own security. But the diversity of views and interests among the colonists rendered the course to be adopted a matter of some delicacy. Ferdinand, being a prisoner, was, politically speaking, a nonentity. Napoleon's brother was clearly an usurper, odious to, and rejected by, the mass of the Spanish people. The regency, shot up in Cadiz, without troops or revenue, was but a phantom; and the little power it had was so employed as to raise doubts whether its members were not secretly in leagiae with tho enemy. In these circumstances, when the only government to which the colonists orred allegiance had fallen into abeyance, the wisest course they could have parsucd was to declare themselves independent. This would at once put a stop to the machinations of France, which they dreaded, and prevent the regency from compromising or sacrificing their interests by its weakness or treachery.' The Spaniards, however, who occupied all public situations, were averse to a change which they foresaw must lead to the domufall of their power. This was perfectly understood by the other classes; and in the first movements which took place in the different colonies nothing was said derogatory to the supremacy of Spain, though independence pas clearly aimed at. By spontaneous efforts of the people "juntas of government" were formed, at Caraccas in April 1809, at La Paz in Upper Peru Chili and in July, at Quito in August, at Santa Fe and at Bue- Peru. nos Ayres in May 1810, and at Santiago in Chili in September the same year. In 1810 , also, the first insurrection broke out in Mexico. The colonists unluckily had been too long the slares of superstition and tyranny to be fit for conducting so bold an experiment ; and after a struggle, which was generally short, but almost every. where bloody, the juntas were all pnt down except in Colombia and Buenos Ayres. But in the stir and tumult of the contest old prejudices had received a shock, and the seeds of political clange had struck their roots tos deep in the soil to be eradicated. A desultory war was carried on for six years between Buenos Ayres and Upper Peru, with little advantage on either side. At length, in 1817, the former state, which had assumed the style of an independent republic four years before, sent an army across the Andes to Chili, under General San Martin, and defcated the Spaniards at Chacabuco. A second victory, gained at Maipo in April 1818, led to the entire subversion of the Spanish power in this colony. The war was now transferred to Peru, where the Spaniards continued
\$0 loso ground, till tho decisive battle of Ayacueho put ran end to their power in December 1824. Rodil and - Olaveta, with the obstinacy of their nation, held out for somo months longer, when every chance of success was sgone ; but after the surrender of Callao in January 1826 1.the Spanish flag no longer waved on any spot in the land tof the Ineas.

In New Gramada and Venezuela the struggle was more bloody, wariable, and protracted than in. any other part of South America. As this portion of the dominions of Spain was comparatively ensy of access, and from ins central prosition was in some measure the key to the whole, she made immense efforts for its preservation. No less than ten thousand tronps were sent out to it within the course of one year. The patriots, on the other hand, pos:sessed advantages here, in the greater intelligence of the population, and the easy intercourse with tho West Ladies. From 1809, when juntas were established in Caraccas and Quito, to the surrender of Porto Cabello in. 1823, the vicissitudes of the war were numerous and :estraordinary. The patriots were repeatedly on the evo of a complete triumph, and as often the state of their affairs ceemed nearly hopeless. But the spirit of resistance never was entirely subdued. The cause was rooted in the hearts of the people, and was insersibly gaining ground even during its reverses. To attempt tho faintest outline of the military operations would lead us heyond our proper limits. It is enough to state that the decisive victory of Carabobo, gained by the patriots in 1819, gavo them an aseendancy which they never afterwards lost; but the Spaniards, according to their custom, continued to mainthin the contest as long as they had a foot of land in the country, and were only finally expelled in 1823.

In Mexico the revolutionary movement hegan at Dolores in 1810, and soon wore a very prosperous appearance; but the weakness or false pride of the Creoles, who were cajoled into the ranks of their oppressors the old Spaniards, armed against the patriots those who should have been their firmest supporters, and by one or two mischances tho. force of the independent party was ruined in November 1815, when Morelos, their able leader, Whas taken prisoner and executed. For six years ofter this period many guerilla bands maintained themselves in the provinces, and greatly annoyed the Spaniards; but they did not act in concert, and no concress or junta professing to represent the Mexican people existed. Even during this interpal the desire for independence was making great progress among the population; but the establishment of a constitutional government in Spain in 1820 , and its extension to the colonies, gave a new aspect to the affairs of Mexico. The viecroy Apodaca, while outwardly yielding obedience to the new system, was allently taking measures to effect its overthrow; but he mistook the character of the agent he employed. This person, the celebrated Iturbide, turned his own arms against lim, proclaimed a constitution under the name of "the three guarantees," and put an end to the dominion of Spain in 1821, almost without bloodshed. Iturbide, who had nothing in view lint his own aggrandisement, called a congress, which he soon dissolved after getting himself proclaimed emperor. His usurpation kindled a spirit of resistance. He was exiled in 1823 , made a new attenpt on the liberties of his country in \}824, was taken prisoner, and expiated his crimes ly a military death within a few weeks after he landed.

Guatemala was the last portion of the Ameriean continent which threw off the Spanish yoke. In 1821 the persons in office assembled and formed a junta. Divisions arose, which were fomented by the intrusion of a Mexican armay sent by Iturbide. This force, however,
was beaten, and an electivo assembly called, which de clared the country independent, and established a consti tution in July 1823. Spain now retains none of her possessions in the new world but Cuba and Porto Rico.

- The govermment of Brazil was conducted by the Portugueso on a system extremely similar to that of the Portinga Spanish colonies. The monopoly which the mother country retained of the cummerce of the colony was equally rigorous; the restrietions on its intermal industry as su vere; and the same monns were employed to keep the people in a state of pupilage and ignorance. Down to 1806 a single printing-press had never existed in Brazil. In 1807, when the enuperor Napoleon had resnlved to possess himself of Portugal, and if possible to get the royal family into his power, the king, secing no othes means of eseaping from the clutches of his enemy, ernbarked with his suite in several ships, and saited for Brazil, where he arrived in Jamary 1808. He was received with joy by the colonists, who anticipated great benefits from his residence, of which they were not disappointed. One by one the fetters of colonial dependenco fell off. Within a few months printing-presses and newspapers were established, the ports were opened to the trade of all nations, and the poople were invited and encouraged to prosecute all those brauches of internal industry from which they had till now been interdicted. To crown and securo these advantages, Brazil was declared an index pendent kingdom in 1815, subject to the crown of Portugal, but entitled to its separate administration and its own laws. The revolutionary spirit pervading the Spanish colonies now found its way into Brazil, and produced an insurrection at Pernambuco in 1817. It was soon subdued, but received a new impulse from the constitutional systems suddenly introduced into Spain and Portugal in 1820. To quiet the popular feeling, it was announced that the Portuguese constitution would be extended to Brazil. Before this had been done, however, the old king had sailed for Europe, leaving his son Dom Pedro to rulo in his alsence. The people now discovered, or believed, that the object of the king was to degrade Brazil again to the rank of a colony, and to restore the old system in all its rigour. Nectings were held, and resolutions adopted to maintain the independence of the country at all hazards; and the patriots, gaining confidence by degrees, called loudly for the establishment of a lemislature, and besought Dom Pedro to put himself at the head of the independent government. Ambition or policy indured Empire of Pedro to listen to the solicitation: in 1822 he was pro- Brazil' claimed emperur, and bad his own title and the independence of Brazil acknowledged by his father three years afterwards. A representative system was at the same time introduced. An unlucky war now arose with Buenos Ayres, which weakened hoth countries; but it was at length terminated in 1823 by the recognition of the disputed territory es an independent state under the title of the Banda Oriental.

Having finished this brief notice of the series of revolutions which broke the fetters of Ameriea, we sball now give a very short sketels of tho new political order of things which has arisen out of these changes, referring for a detailed aecourt of the several states to the articles appropriated to them ir the different volumes of the pret sent work.

America, with its islands, embraees at present (1874) iwenty-one independent states, and various colonies belonging to six European powers. The former are-1. The United States of North Anerica; 2. Brazil ; 3. Mexico; 4. Venezuela; 5. Colombia; 6. Ecuador or Quito ; 7. Peru ; 8. Bolivia or Upper Pern ; 9. Chili ; 10. La Plata; or the Argentine Republic; 11. Uruguay; 12. l'araguny,
13. Patagonáa; 14. Custa Licet, 15. Mosquitia; 1ڭ. Curtemala; 17. Ilonduras; 18. Nicaragua ; 19. Sun Salvador ; 20. Hayti; 21. San Domingo. 'The colouics belong to Britain, Denmark, Sweden, Holland, France, and Spriu. Patagonia is merely the gcograpbical name of a district of Chili, occupied by independent tribes of Indians; Dlosquitia, or the Mosquito coast, is a small Indian state ruled by a native king ; and Hayti is a negro republic proclaimed in 1867. For detailed accounts of these varions states and colonies we refer to the articles muter the proper heads. At present we must confino ourselves to a brief notice of the more important ones.

The United States were colonised a century later than Spanish America; but their brilliant and rapid progress shows in a striking light how much more the prosperity of nations depends on moral than on physical advantages. The North Americans had no gold mines, and a territory of only indifferent fertility, covered with impenetrable woods; but they brought with them intelligence, industry, a love of freedom, habits of order, and a pure and severe morality. Armed with these gifts of the soul, they have converted the wilderness into a land tecming with life and smiling with plenty; and they have built up a social system so pre-eminently calculated to promote the happiness and moral inprovement of mankind, that it has truly become the "enty of nations." The republic is bounded on the north by Canada, on the south-wcst by Mexico, and on the other sides by the sea. At present (1874) it consists of thirtyseven states, with one disitrict and eleven territories, which latter will be converted into states as soon as each acquires a sufficient population. The extent of the country, including the Indian lands stretching west to the Facific Ocean, over which it claims a right of pre-cmption, embraces $3,603,844$ square miles of land. The agriculture of the United States partakes to some extent of a tropical character. The sugarcane is cultivated in Lomisiana, Florida, and other states as far north as the latitude of $31 \frac{1}{2}^{\circ}$. Cutton is raised in all the south-cast states S . of the 37 th paralkel, and tobacco chiefly in the middle states. Wheat succeeds in the middle and northern states, and maize thrives in every part of the Union. Agriculture is conducted with considerable skill; but the "high farming" practised in England would not pay in America, where money is of much value and land of little. Scarcely any portion of the soil is rented in the United States: the farmers are almost universally proprictors; and when their property is extensive, which rarely happens, it is soon broken into small occupancies under the law of equal division. The advance the Americans have made in manufactures may be judged of from the fact that in 1870, according to the census then taken, there were upwards of 35,000 operatives employed in 969 cotton factories, and 77,870 in 1938 manufactories of woollen geods. The iron industrics gave employment to upwards of 140,000 hands, the iron produced in the country reaching nearly two millions of tons. In the useful arts gencrally America is on a level with France and England. The internal commerce of the United States is conducted with extraordinary spirit. The amount of capital expended on roads, canals, harbours, bridges, and other public works, is very great. The lengtly of the lines of railway open for traffle now exceeds 70,000 miles, and is rapidly increasing. The extent of the foreign trade of the country, and the amount of its shipping, place it next to Great Britain in the list of commercial nations.

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { The population of the United States in } 1850 \text { was } \\
\text { by census... }
\end{array}\right\} \\
& 38,558,371 \\
& \text { Is } 1800 \text { it was } \\
& \text { 5,308,483 } \\
& \text { Incrense in } 70 \text { years........ } \overline{33,249,5 \$ 3}
\end{aligned}
$$

Since .1800 the rate of increase has been remarkably n:wform at nearly $3 \frac{1}{2}$ per cent. per aumum. In 1871 the
number of inunigrants was 346,938 , of whom 198,843 nigrated from the British Isles, 107,201 from Germany, 6030 from China, and the scmainder from British North America, Sweden, Norway, France, Austria, ltaly, Switzerland, Denmark, and Russia.

Slaves were first introdnced in 1619. In 1775 slavery was ibolished in Rhode Island; in 1780 Massachusetts abolusined it; then numerous northern states followed. and in December 1865 slavery was abolished throughout the United States. By subsequent amendment of the constitution all negroes were admitted to all the privileces of citizenship. Thus it was enacted on March 30, 1870, that "no discrimination should be made in the Uaitcd States among the citizens of the United States in the exercise of their elective franchise, or in the right to hold office in any state, on account of race, colour, nativity, property, education, or creed." Every person born or naturalised in the United States is recognised to be a citizcu thercof.

The American government is a pure representative domocracy in which the people are recognised as the fountain of all power ; and the sole object of all its mechanism is to give effect to their deliberate opinions. The federal government and the governments of the separate states are constituted on the same plan. The legislature consists in every case of two boclies, a House of Representatives chosen for one or tro years, and a Senate for a period varying from two years to six-all chosen by popular election, except in the case of the Federal Senate, which is elected by the legislatures of the thirty-seven states. The President holds his office for four years, but is occasionally re-elected for four years more.

The claracteristic facts in the condition of Amcrica aro the non-existence of titles, of privileged classes, of corporations in our sense of the term, of a landed aristocracy, of mendicity except to a very limited extent, and of an endowed church; the cheapness and efficiency of its government, the universality of education, the omnipresence of its periodical press, the high feeling of self-respect which exisis in the very bumblest classes, and the boundless spirit of enterprise which pervades all classes of society. The higher elasses are less polished than in England, the middle are perhaps less carefully instructed; but the American people, taken collectively, are at least as well educated and have as much intelligence and manliness of character as ang other nation in the world.

In 1867 the territory formerly known as Russian America was purchased by the United States, and called Alaska. It occupies the north-west corner of the continent, and extends along the coast as far south as Mount Elias, where it is bounded by British Columbia and the southern end of Prince of Walcs Island, in $54^{\circ} 40^{\circ} \mathrm{N}$. It cumprises an area of abont 570,390 square miles. Furs and fish aro the most valuable commoditics. Sitka is the capital. It is situated on an island in $57^{\circ} 2^{\prime} 45^{\prime \prime} \mathrm{N}$. and $135^{\circ} 11^{\prime} 10^{\prime \prime}$ W. It has a population of over 2000 persons. The Yukon river, which is about 2000 miles long, flows through the territory.

British North America is bounded on the south by the Uuited States, on the north by the Arctic Ocean, and or the west by Alaska. In 1867 the provinces of Ontario (formerly Üpper isuada), Quebec (formerly Lower Canada), Nosa Scotia, New Brunswick, Manitoba (formerly Mudson's Bay Territory), and British Columbia, were united under the title of "The Dominion of Canada," while Newfound: land and J'rince Edward Island still remained indenendent. The caccutive power is rested in the sovercign of the British empire, but is carricd out by a Covernor-General and Privy Council. The Parliament consists of a Scnate ard a llouse of Commons. The senators are nominated for life
by the Governor-Gencral, and are $\overline{75}$ in number. The members of the House of Commons are elccted by the people in the proportion of one member for each 17,000 souls. The scat is retainable for five jears, and each member is allowed a salary and travelling expenses. Ottawa is the capital of the Dominion. According to the latest census, taken on April 3, 1871, the area and population of the sevcral provinces are as under:-

	Area, sqeare milea.	Popalation
Ontario	121,269	1,620,842
Quebec.	210,020	1,191,505
Nopa Scotin	18,660	287,500
New Branswick	27,105	285,777
Manitoba.	2,881,734	111,963
British Columbia.	213,000	50,000
	3,481,779	3,647,887
Newfoundland (1869)	. 40,200	146,536
Prince Edwards Island	1871) 2,173	94,021

In 1871 the Dominion had 2854 miles of railway open, 1173 miles in preparation, and 3000 miles for which concessions had been granted by the government. A line has been projected to extend from Lake Superior to the Pacific Ozean.
Brazil is the largest state in South Amcrica, and enjoys the greatest combination of natural advantages. It is bounded on the south, west, and corth, by La Plata, Paraguay, Uruguay, Bolivia, Peru, Ecuador, Colombia, Venezuela, and Guiana. Embracing an area of $3,100,000$ English miles; it is nearly as large as Europe, and is capable of supporting a much greater popolation. Its climate is probably cooler and more salubrious than that of any other extensive tropical country; and every part of its soil is rich and fruitful, as its magnificent forests and the exuberance and boundless variety of its vegetable productions attest. Its commerical advantages are admirable. No country in the new world has the same facilities for carrying on intercourse with Europe and with all its neighbours. The Amazon, with its numerous branches, the Parana, the To cantins, the St Francisco, and other streams, supply the most remote parts of the interior with easy means of communication with the sea Brazil possesses iron, copper, and probably all the other metals; but ber mines of gold and diamonds are remarkably rich. Her most valuable productions for exportation are cotton, sugar, coffee, hides, tobacco, vanilla, dyerroods, aromatic plants, timber, \&c. Her commeree is much greater than that of all the Spanish colonies put together. The Brazilians are lively, irritable, hospitable, but ignorant, superstitious, and rather inclined to indolence. Their acquisition of independence in 1822, however, worked like a cliarm, and produced an extraordinary changa in their industry, opinions, and modes of thinking. There sre numerous schools, but although the education is gratuitous, they are not well attended. The advance literan ture has made will be allowed to-be great when it is remembered that printing was unknown in the country in 1807. According to the constitution introduced by Dum Pedro, the legislature consists of a Senate of 52 members, who hold their flaces for life, and a House of Congress of 107, elected by the people for four years; upon the acts of both of which bodies the emperor has a negative. The members of the lower house are chosen by elections of two stages. Tha bouseholders of a parish meet and appoint one elector for every thirty of their number, and the blectors thus chosen meet in districts and choose the deputies. The members of both housea receive salaries. The execotive power is invested in the emperor assisted by a ministry and a courcil of state.

The population of Brazil amounted to $3,671,558$, according to retarns published in 1818, and procured probably for the purpose of taxation. This was exclusive of the wander-
ing Indiuns. In 1823 it was estimated at $4,000,000$ by Humboldt. M. Scheffer carries it to $5,700,000$, and an estimate for 1867 makes it $9,858,000$, comprising $8,148,000$ free persons, and $1,674,000$ slaves. The census taken in 1872 gives a population of $10,095,978$, including 1,683,864 slaves

Brazil, unlike the Spanish American provinces, has remained, subject to its ancient sovereign; and its government, from being colonial, has become imperial and independent, without any violent revolution. The result has been greatly in favour of the peace and prosperity of the country. See Brazil.

The portion of South America next to the isthmus includes the states of Venezucla, Colombia, and Ecuador. From 1820 till 1831, when a separation took place, it formed one state under the name of Colombia; which namo has recently been assumed by the republic long known as New Granada. The territories of these three states are bounded on the south by Peru, on the south-east and east by Brazil and Guiana, on the other sides by the sea, and embrace an area of $1,020,000$ square English miles. The soil is fruitful and the climate salubrious, except along the coast and in a form other low situations. The eastern part consists chiefly of the llanos or steppes of the Orinoco, which are tery hot; the western, of the mountain ridges of the Andes, which support tracts of table-land where the blessings of a temperate climate are enjoyed, and the cerealia of Europe can be successfully cultivated. The tropical vegetation extends to the height of 4000 feet; from 4000 to 9000 is the region where wheat; barley, and leguminous plants thrive. Abovo the level of 9000 feet the climate becomes severe ; and at 15,700 feet vegetation ceases. Tha situation of Colombia is highly favourable for commerce. It has excellent ports on both seas; and being mistress of the isthmus of Panama, it has superior facilities for establishing a communication from the one to the other. The Orinoco and the Amazon afford the inmost districts of Venezuela and Ecuador the edvantages of water carriage to the ocean. The Cassiquiari, an intermediate channel, by which the Orinoco bifurcates or connects with the Amazon "(a remarkabl9 hydrogranhical phenomenon), is within the limits of Venezuela. The territory contains much gold and silver-the former in allhurial deposits : it has mines of copper and mercury also, with platinum, iron, and coal. Its tropical productions are similar to those cf Brazil; but it has as jet cultivated few articles for foreign markets, and its exports are inconsiderable. The civilised population of this country is chiefly located in the cistricts near the coast, and in the high valieys or table-land of the Andes. Its amount, according to the Statesman's YearBook, is-

$$
\begin{aligned}
& \text { Venezuela...1,584, 438 } \\
& \text { Colombis ..., } 2,74,473 \\
& \text { Ecuador } \\
& \text { 1,300,000 } \\
& 5,658,906
\end{aligned}
$$

It is always of importance to know in what proportions the different races are blended, but on-this subject we have only approximate data. In Colombia the whites form about half of the population, the Indians about one-third, and the negroes about one-tenth, the remainder being of mixed blood. In Venczuela the whites form about one-third, the Indians about one-thirtieth, and Zamboes (from Indians and negroes) about one-half. In Ecuador the proportions are, roughly-whites one-sixth, Indians nearly one-half. negroes one-thirteenth.

All the three states are republican. See Venezurla, Coloybia, and Ectador.
The Argentine Republic, or La Plata, is, in point of natural advantages, the second state of importance in South

America. It is bounded on the rest by Chili ; on the north by Bolivia; on the east by Paraguay, Brazil, Uruguay, and the sea; and on the south by Patagonia. It embraces an area of 515,000 square miles if we include Tucuman, Salta, Santiago del Estero, and Jujay, which scarcely acknowledge its authority. Nearly the whole territory of this republic consists of open plains destitute of timber, called pampas, extending from the Atlantic and the river Paraguay to the Andes. The eastern part of these plains exhibits a vigorous growth of herbage, intermixed with a forest of gigantic plants, 9 or 10 feet high, which have been called thistles, but are now known to be artichokes; in the middle they are covered with grass; and the western division, which extends to the foot of the Andes, consists of barren sandy plains, thinly sprinkled with shrubs and thorny trees. The openness and dryness of the country, however, render it healthy; and by the Parana, the Paraguay, and their branches, it possesses a great extent of natural inland navigation. It bas mines of gold, silver, copper, lead, and probably iron; but its mineral riches have been greatly diminished by the separation of Potosi, Cochabamba, La Paz, and other provinces now forming part of Bolivia. The force of this republic lies almost entirely in the wealth, intelligence, and commercial spirit of its capital, Buenos Ayres, which contains 150,000 souls, including a large proportion of foreigners. A small number of cstancias, or grazing farms, are sparingly diffused over its boundless plains, the proprictors of which keep multitudes of horses and mules, Hocks of shecp, and vast herds of cattle; the latter being chiefly valued for their skins. These people are a bold, frank, hardy, balf-civilised race, who live isolated in the wilderness, and scarcely acknowledge any government. The census of 1869 gives a total population of $1,736,922$. See Argentine Republic; and for the two small states formed out of the north-castern portion of its territory, see Paraguay and Uruguay. Entre Rios, formerly a separate state, is now a province of La Plata.

Chili extends along the coast of the Pacific from 24° to 56° of south latitude : its length is 2270 miles; its breadth varies from 40 to 200 ; and its surface, exclusive of Araucania, which has an area of $88,000 \mathrm{sq}$. miles, is estimated at 130,977 Englsh square miles. The country consists properly of the western slope or declivity of the Andes, for the branches of the mountans running out in tortuous directions from the main trunk reach to the sea-shore. It enjoys an excellent and healthful climate ; severe cold is unknown in the inhabited parts, and the heat is seldom excessive. The useful soil bears a small proportion to the entire surface of the country, consisting merely of the bottom of the valleys. It has rich mines of gold, silver, and copper in the northern provinces ; but very few of them can be worked in consequence of the absolute sterility of the adjacent country. Its two uorthern provinces, occupying 450 miles of the coast, are nearly perfect deserts. The soil continues ${ }^{9 x t r e m e l y}$ dry, and yields nothing without irrigation, till we reach the latitude of 35°; a ad it is believed that not onefiftieth part of the country is fit for cultivation. But south of the river Maule the land :s covered with fine timber, and bears crops of wheat and other grain without the aid of any other moisture than what is supplied by the atmosphere. This is in truth the fine and fruitful part of Chili; and the project was once entertained of selecting its chief tuwn, Conception, fur the seat of the governmeut. 'Chili has no manufacturea, and is unfarourably situated for commerce. It has no narigable rivers, while its mountainous surface is an obstacle to the formation of roads; but nevertheless it has now uprards of 500 miles of railway opened. A representative constitution was established in Chili in 1833. An enumeration dated 1869 makes the population, exclusive of Araucania (with 70.000 aborigines), $1,938,861$. See Ceill.

Peru may be regarded as a continuation of Chili, consisting of the western declivities of the Andes, from the 4 th to the 22 d degree of south latitude, with the addition of a considerable tract on the east side of the mountains, between the 4th and 15th parallels. There are few countries in the world which have a more singular physical character than the mestern part of Peru. It is a belt or zone of sands, 1240 miles in length and from 70 to 600 in breadth, with inequalities of surface which might be called mountains if they were not seen in connection with the stupendous background of the Andes. This long line of desert is intersected by rivers and streams, which are seldom less than 20 or more than 80 miles apart, and on the sides of which narrow strips of productive soil are created by means of irrigation. These isolated valleys form the whole habitable country. Some of the large rivers reach the sea; the smaller are either consumed in irrigating the patches of cultivated land or absorbed by the encompassing desert, where it never rains, where neither beast nor bird lives, and a blade of vegetation never grew. No stranger can travel from one of these valleys to another without a guide, for the desert is trackless; and the only indications of a route are an occasional cluster of bones, the remains of beasts of burden fhat have perished. Even experienced guides, who regulate their course by the stars, the sun, or the direction of the wind, sometimes lose their path, and they almost inevitably perish. Of a party of 300 soldjers thrown ashore by a shipwreck in 1823 on one of these desert spaces, nearly a hundred expired before :Ley reached the nearest valley. Ignoranee and wonder have been busy with this singular region: legends are eurrent, which tell that descendants of the ancient Peruvians have lived in some of these mysterious valleys, hid from the knowledge of their merciless invaders, since the days of the Incas. We have no reason to believe that more than one acre in a bundred of maritime Peru will ever be available for the sustenance of mankind. The country has two ad-vantages-its mines of the precious metals, and a temperate and delightful climate, in consequence of the absence of rain and the fogs which intercept the solar heat. It can nevep be rich in the proper sense of the term, or make much progress in the improvements which depend upon a dense population. Like Chili, it has no navigable rivers-and nature has deprived it of the means of forming gond roads. TViero are indeed few countries in the world whose natural adrantages have been so much overrated as Peru'; and it requires little sagacity to discover that its future career casnct ccrrespond with its past celebrity. The districts east of the Andes, which have a hot climate accompanied with a rich soil, will ultimately be the most valuable part of the ccurtry; but their secluded situation and want of commuuication with other countries inust keep them long in a backward state. The government is republican. Peru compreheide a surface of 502,760 square miles; the capital, Lima, contained in 1862 a population of 121,370 . In that ycar a rough calculation was made which gave $3,199,000$ as the entire population of the republic. It was also estimated that the proportions of races were :-

Bolivia, or Upper Peru, lies eastward of Lower Peru, and is bounded on the south by the Argentine Republic, and on the north and east by Brazil. It is of an irregular form, and comprel ands a spacc of 473,300 square miles. The climate is pleasa .t and bealthful, the soil is generally dry, and in the eastern parts, as vell as the elevated table-land, its aridity produces birrenness. Nature, however, as a compensation for its other disadrantages, has bestored upon it some of the richest mincs in the world. The country was erected
intu an independent state only in 1826, and named Bolivia in bonour of its lilecrator Bolivar. It has a small strip of barren territory on the she"es of tho Pacific Ocean, between tho 22d and 25th parallel ; but it is, properly speaking, entirely 37 inland country, and more deficient in the means of communicating with foreign nations than any other state in America. See Bolivia.

Guatemala or "Central Anerica" originally occupied all the narrow part of the continent from tho 83 d to the 94 th degree of west longitude, extending 800 miles in length, and covering a space of 130,000 square miles. The surface of the country is hilly, and in most parts mountainous; the climate wamn and very moist. The mineral wealth of the country is not great ; but this is compensated by the richness of its soil and its excellent commercial position. It was a fedcral republic, but its fire provinces hare now become indcpendent states. Humboldt estimated the population of the fire states at $1,600,000$. According to a statement furnished to Mr Thomson, a former British envoy by the government, it was $2,000,000$; while the most recent of the estimates made by the resident officials give a total of $2,335,019$, viz. :-

Guatemala (1865)..	1,180,000
St Salvador (1870)	434,520
Honduras.	250,000
Nicaracua.	350,000
Costa Rica	120,499
	2,335,019

The proportions of the different races have been estimated as follows .-

	Humboldt	Thomson
Whites and Crcoles..	20 per cent.	20 per cent
Mixed classes.	28	40
Indians..	52	40

Merico. Mexico is the most populous and porrerful of all the new states erected in America since the commencement of the present century. Previous to the war whth the United States it embraced an area of $1,600,000$ square miles, which was reduced to $1,030,442$ by the cession of the nurthern provinces in 1848. About threc-fourths of the surface consists euther of mountans or table-land, rased from 5000 to 10,000 feet above the sea. Owing to this extraordinary elevation, even those parts of the country which lic within the torrid zone (the low ground on the coast excepted) enjoy a dry, cool, and salubrious atmosphere; but this advantage is counterbalanced by the insutficient supply of mossture and the rapid evaporation rcsulting from the same cause, which render the soil generally rather arid, and in many parts absolutcly barren; by the smallness of the rivers and the almost entire absence of inland navigation; and by the obstacles which the steep and rugged ascents from the coast presnt: to land-carriage. The republic is, besides, almost destitute of ports on the Atlantic side. Mexico is extremely rich in the precious metals; and there are few regions upon which nature has lavished so great a variety of vegetable productions, or where plants fitted to the collest and the hottest climates may be seen so nearly in juxtaposition. The low ground on the cast coast is admirably adapted for raising sugar; and no country is more farourably situated for growing the other great articles of West India produce-coffee, cotton, cocoa, indigo, and tobacco. The raising of bread-stutis-as they are termed by the Anglo-Americans-wheat, msize, and barlcy, with potatoes, the cassava root, beans, pumpkins, fruit, \&c.-for domestic consumption, will necessarily be the chief branch of industry on the table-lands. The mines have never employed above 30,000 labpurers; and their superior productiveness depends chiefly on two circumstances-the great abundance of the ore, which is only of poor quality, and the cornparative facility with
which they can be worked owing to their being generally situated in fertile districts, where provisions, wood, and all matcrials can be casily procured.

Mexico has had her full share of the ignorance and superstition which belonged to Spain; and theso evils, with her internal dissensions and her rapacious, immoral, and intolerant clergy, are great obstacles to her improvement. That excessive inequality of fortuno which corrupts both extremes of socicty has been nowhere in the world more prevalent than in Mexico. Individual proprictors possessed immense tracts of land and boundless wealth, while all the great towns swarmed with beggars, and thousands fell a sacrifice to famine from time to time. The Mexican constitution, which is federal and almost a literal copy of that of the United States, was established in 1824. The distinction uf castes, which was maintained in the greatest rigour under the colonial system, has now disappeared, and power and office aro open, not only legally but practically, to men of all colours. The African blacks formed an extremely small pro;ortion of the Mcxican population at all times; and since the revolution slavery has ceased. The number of inhabitanis was cetimated at $6,800,000$ by Humboldt in 1823 , and classed as follows:-

	Numbers.	Proportiona
Whites	1,230,000	19 per cont.
Mixed races..	1,860,000	27 "
Indians...	.3,710,000	54

Mr Ward states that very few of the whites, so called, are free from a mixture of Indian blood and now when the odious distinctions founded on complexion are abolished, they readuly acknowledge it. Mr Ward estimated the population at $8,000,000$ in 1827 . In 1869 that of Mexico with its present boundaries was stated to be 9,176,082. See Mexico.

Hayti, called formely Hispaniola and St Domingo, was Hayti a colony belonging partly to France and partly to Spain till 1791 , when the blacks rose in arms, killed a number of whites, and cxpelled the rest. The attempts of England in 1793, and of France in 1801, to conquer the island, both fanled, and Hayti has at length been acknowledged as an independent state by all the great powers, including France. The island, which contains about 28,000 square miles, is remarkably fertile; but its climate, like that of the West Indies generally, is rather unhealthy. The population, which before the revolution was estimated at 600,000 , is now said to amount to 900,000 or $1,000,000$, and it is almost entirely composed of blacks and mulattoes. The island formed one state till 1844, when the eastcrn or Spazish portion revolted, and established its independence. It is now the republic of "Dominica", ruled by a president, while the western portion, retaining the name of Hayti, was formed into an empire under Faustin I.; but in 1867 a republican constitution was proclaimed. Aftcr long negotiations, the French government agreed in 1838 to acknowledge the independence of Hayti on condition of the latter paying $60,000,000$ of francs by small annual instalments continued for 30 years. The money was destined chicfly to indemnify the French proprietors who were chased from tho island in 1791. Nothing has been paid of late years.

The multifarious nature of the subject prevents us from attempting any description of the West India colonies, insular and continental. The islands have been variously denominated, bat the most convenient division seems to us the following:-1. The Great Antilles, comprehending Cuba, Hayti, Jamaica, and Porto Rico; 2. The Small Antilles, extending in a semicircle from Porto Rico to the coast of Guiana; 3. The Bahama Isles, about 500 in num. ber, of which, however, only a small number are inhabited.

The British colonies are 18 in number, viz, 16 insularJamaica, Antigua, Barbadoes, Dominica, Grenada, Mont scrrat, Nevis. St Kitts, St Lucia. St Vincent, Tobago,

Tortola, Trinidad, Bahamas, Bermuda, Falkland Island; and 2 continental-British Guiana and Honduraa. The coloniea contained a population of $1,228,967$ in 1871, of whom probably four-fifths were persons of colour.

The Spanish colonies are Cuba and Porto Rico. Cuba haa an area of 45,883 square miles, and in 1867 the population was $1,414,508$. Porto Rico has an area of 3530 square miles, and in 1866 a population of 646,362 persons. In 1867 there were upwards of 700,000 slavea in these two colonies.

Ir August 1872 the Spanish government issucd a decree ordering that arrangementa should be made for the gradual emancipation of the slaves; and in December 1872 a bill was laid before the Spanish Cortes for the abolition of slavery in Porto Rico in 1873 ; so that probably slavery will soon be extinct throughout the whole of America.

The French colonies in the West Indiea include Martinique, Guadaloupe, and some smaller isles; and on the continent, Guiana. According to a recent authority the population of these colonies was 318,934 .

The Dutch have Surinam on the continent, with the islands of Curaçoa, St Eustatius, and St Martin.

In 1870 the population of the islands was 35,482 , and of Surinam 59,885 , occupying an area of 2812 geographical square miles. Slavery has ceased since July 1863, when the Dutch government compensated the owners for 44,645 slaves.

The Danes have the smal! islands of Santa Cruz and St John, containing a population of 24,698 in 1860, of whom most are freed slaves, and St Thomas, which had in the same year a population of 13,463 . St Bartholomew, another of the Lesser Autilles, belongs to Sweden.

The problem of making a grand highway for travel and traffic from the Atlantic to the Pacific, either across the breadth of the American continent or by taking advantage of the narrow isthmus that joins ita northern to its southern portion, has been the subject of many schemes since its western as well as ita eastern shores have been inhabited by enterprising nations, skilled in commerce and in mechanical arts. It is interesting to remark that, whereas the hope of sailing to India by a westward route was the motive which guided the navigators of the 15 th century to the discovery of America, the means of internal communication for this part of the earth, and the geographical exploration of its.remote extremities, have been more recently advanced by the desire of finding a path in this direction to the Asiatic resorta of mercantile activity. Arctic voyagers were at first invited to the icy seas of high latitudes by the dream of a north-west passage to China and the East Indies. It was a passage by sea from the Atlantic to the Pacific which Sir John Franklin went to seek in his last expedition in 1845, but which Captain Maclure effceted in 1856, though by an opposite course from Behringa Strait to Baffin'a Bay. But it is scarcely possible that thia route along the north coasts of America should ever be habitually frequented by mariners going to and fro between the two oceans. At the opposite extremity of the continent arrangements have lately been made to substitute a shortcr way to the Pacific for that round Cape Horn by improving the navigation of the Strait of Nagalhaens, which separates Tierra del Fuego from the sonth portion of the mainland. The project of cutting a canal throngh the central American isthmus has often been discussed. There can be no doubt of the practicability of a system of inland navigation from the Atlantic coast by the river San Juan to Lake Nicaragua, and thence by a canal to the neighbouring Lake Managua or Leon, with a short artificial channel of exit to the Pacific. A different route, of combined river and canal navigation, has more recently been proposed, which would cat off the whole of the isthmus from the body of South America-entering the uppermost part of that mainland
by the river Atrato from the Gulf of Darien, asceuding this river 150 miles, then following up the course of the Napipi or the Bajaya, tributaries of the Atrato-crossing the coast range of hills by a canal with several locks, and descending to the Pacific either in Limon Bay or in the Gulf of Cupica. But these projects could be adapted only to the admission of vessels of smaller size than such as in the present day are commonly cmployed for commercial traffic between distant regiuna of the world. In spite of the grand example of the Suez Canal, it seems likely that, in a country tolerably productive of wealth and capable of supporting population, the more profitable means of providing for a through traffic will bo found in railroads, which serve also for the accommodation of intermediate districts. In this class of undertakings North America has of late years displayed a wonderful degree of active enterprise. The line of 60 miles from Aspinwall, near Chagres, across the neck of land, which is there so narrow, to Panama, on the Pacific side, though situated in the territory of a Spanish republic, was constructed by citizens of the United States, expressly for the traffic between New York and San Francisco. But since that first opening of a gateway of communication with California, Australia, or Chiwa, for the travellers and merchandise of the Atlantic states or of Europe, the whole breadth of the continent where it midens, in latitudes between 35° and $45^{\circ} \mathrm{N}$., all belonging to the United States, has been traversed by a continuous railroad system. The middle link of this system is the Union Pacific Railway, 1600 miles long, from Omaha, on the Missouri, in the state of Nebraska, through that state, up the course of the Platte river, and through Wyoming, Idaho, Utah, and Nevada, crossing the summits of three great mountain ranges from 7000 feet to 8250 feet high, and meeting the Central Pacific Railway of Californiz: This line was through a barren desert for several hundred miles, in the arid uplands of Idaho and the salt plaina of Utah; but its construction has served to bring the commercial cities of the Atlantic and of the Pacific within six or seven days' journey of each other. Three or four rimal projecta of railways across the width of the United States, or extensions of the existing railway system westward from the Mississippi and Missouri, have been taken up with some promise of their realisation. The one which offers the greatest advantages is that designed to ascend the long and broed valley of the Arkansas river, and to cross the Rocky Mountaina with a southerly inclination into New, Mexico, opening up the Rio Grande and San Juan country, which is said to be very rich, and thence passing on to the Grand Cañon of the Colorado, and to the Nerada mining district. Near the northern frontier of the United States territory, where it borders on the British Dominion of Canada, another continental line from east to west is now in progress-that is, from the western extremity of Lake. Superior, through Minnesota, Dakotah, and Washington, to Puget Sound, just below Vancouver Island. But the work of this kind that will be most interesting to many of our readera is that undertaken in 1871 by the government of the Canadian Dominion. By the extension of the Dominion: beyond the Rocky Mountaius to include British Columbia; and the incorporation of ths vast territories of the Hudson's. Bay Company, nearly the whole of North America above the 49 th parallel is united in one grand British colonial province, and the Canadian Pacific Railway mill do much to promote a compact union between the widely-scattered communities of Her Majesty's subjects on this great continent. The line will proceed from a port on the northern: shore of Lake Superior, westward to the Red River settlement, near Lake Winnipeg, now forming the province of Manitobs; and will thence be conducted up the ralley

Monntains, whicn it will cross by the Yellowhead Pass, to descend along the Thomson and Fraser rivers, in British Columbia, till it finally reaches the coast of the Pacific Occan, possibly connecting Vancouver Island with the mainland by a bridge over the narrowest part of the straits. In connection with the Grand Trunk and other railways of Canada, supplemented by the Intercolonial Inailway between Lower Canada, New Brunswick, and Nova Scotia, this new western line will afford the most direct and expeditious means of transit across North America, and will probably become the favourite route for mails and passengers and light trafic from Europe to China. It ${ }^{\bullet}$ will open a country which abounds in mincral wealth, especially of iron, coal, and copper; while the Saskatelicwan valley, and the belt of fertile soil lying at the base of the Rocky Mountains (where the climate, as far north as Fort Dunvegan on the Peace river, is not more severe than that of Toronto, though in latitudes beyond $56^{\circ} \mathrm{N}$., nearly thirteen degrees above that place), are capable of sustaining an agricultural population. The progress of railroad construction in North America, stimulating and assisting the development of industrial resources with amazing rapidity, is a feature of high importance in the most recent phases of the world's civilisation. Its average rate of advance in the United States alone, during the five years preceding January 1873 , was nearly 6000 miles annually of new railway; and the aggregate length of railway lines in the Union, all completed and in actual working, was then computed at 71,000 miles. Eritish America, as we have seen, will not be left deficient of similar appliances for its internal improvement.
A great auriferous deposit was discovered in Upper California in the end of 1847, just before its formal cession to the United States. It is situated in the valley of the Sacramento river, and its principal branch the Joaquin, and is believed to extead over a range of country 200 miles in length, or more. The gold is found in its virgin state in small grains in three different situations-first, in sand and gravel beds; secondly, among decomposed or disintegrated granite ; and thirdly, intermixed with a friable talcose slate standing in vertical strata, and containing white quartz, interlaminated or in veins. The largest pieces of gold are found in and near the talcose slate rocks, over which the streams flow; but the finer particles and scales have been carried down by the water to the lowest part of the valleys. It was known before that gold existed in the country; but the wonderful richness of the deposit was only discovered in 1847, in making a mill-race on American Fork, a small branch of the Sacramento. It soon became widely known, and attracted multitudes of persons, first from the neighbouring districts, and by and by from all parts of the world. The population, which was estimated at 15,000 in 1848, had increased to 92,000 in 1850 , and in 1870 was found to be 560,247 .

Humboldt gave the following estimate of the entire population of America in 1823:-

What will be the number of the inkabitants of the new continent two or three centurics hence, and of what races will it consist ? Setting aside the negroes, to simplify the question, and the Indians, who will gradually disappear, it is evident that the soil of America is destined to be occupied by two races, who may be designated as the Anglo-Saxon and the Spanish-Indian. In the latter the Indian blood greatly predominates, for the Creoles or pure progeny of the Spaniards probably do not constitute more than 20 per cent. of the population, while the civilised Indians may amount to 50 , and the Mestizoes to 30 .
The whites in the United States werc in 1850
19,500,000
The population of British America
2,500,000
22,000,000
The perrs tion of Spanish and Portugucse America,
$20,000,000$
The Anglo-Saxon population in America increases at 3 per cent, annually, and doubles its numbers in 25 years.

Its amou	22,000,000
In 1875 it	44,000,000
In 1900.	88,000,000

A population of $176,000,000$ spread over the tcritories of the United States and Canada would only afford an average of 40 persons to each square mile, about 1-7th part of the density which England now exhibits, and could occasion no pressure. But let us suppose the rate of increase after 1925 to fall to 2 percent., the period of doubling will then be 35 ycars.
In 1060 the number will be \qquad .352,000,000
In 1995 do. da
$704,000,000$

Suppose the rate again to decline to $1 \frac{1}{2}$ per cent., which scarcely exceeds that of England aud Prussia, the period of doubling will then be 50 years.

$$
\begin{aligned}
& \text { In } 2045 \text { the number will be.........1,408,000,000 } \\
& \text { In } 2095 \text { do. do.2,816,000,000 }
\end{aligned}
$$

Let us now compare with this the growth of the SpanisaIndian population, doubling its numbers in 75 years.

It hence appears that, supposing both races to have free Prospecto space for expansion, the Anglo-Saxon population in 220 of Amence ycars from the present time will amount to 2816 millions, while the Spanish-Indian population will only have multiplied to 200 millions, or one-fourteenth part of the other. It will be shown by and by, on probable grounds, that the new continent, if fully peopled, could support 3600 milliuns, and there would consequently be room enough for both; but long before this density is attaind the two races will inevitably come into collision. In new settlements, where the best lands are invariably first occupied and the inferior neglected, the population is always thinly diffused. The Anglo-Saxons will thercfore crowd to the richer ficlds of the south, whilc millions of acres of their own poorer lands are still untenanted ; for we may rest assured that before cultivation is extended to the third-rate soils on the north side of the boundary, means will be found to appropriate the first-rate soils on the south side. Thesc may be acquired by purchase like the lands of Louisiana, or by conquest like those of New Mexico and California, but in one way or another they will be acquired. Nearly forty years ago M. de Torqueville calculated that along the great space from the Gulf of Mexico to the Canadian lakes the whices were advancing over the wilderness at an azerage rate of 17 miles per annum, and that enlightened observer was powerfully impressed by the grandeur and solemnity of this deluge of men, for ever swelling and flowing onward,
to the west, the south; and the north, as "driven by the hand of God." Since he wrote the rate of progress has perhaps doubled, and every ycer will quicken its pace. If, then, we take a glance at the state of America at any future period, say 220 years hence (A.D. 2095), we must take the ratio of increase of the two civilised races as the prime element of our calculation. We may assume that the whole continent, from Behring's Straits and Hudson's Bay to Cape Horn, will be divided between the two races in some such proportion as their rate of growth indicates-it may be 10,15 , or 20 to 1 . Supposing them to maintain a separate existence, the weaker race will probably be driven, like the Welsh before the English, into the mountainous and inhospitable regions. On the other hand, it is possible, and not improbable, that the smaller population may be absorbed into the mass of the greater, be incorporated with it, and adopt its language. The result, like other things in the womb of time, may be modified by canses yet unseen; but in whatever shape it may present itself, there is little risk in predicting that the Anglo-Saxon race is destined by its superior intelligence and energy torrule the New World from end to end. American statesmen now speak of the whole continent as the heritage of their people.

Paradoxical as the fact may appear, we are satisfied that
square miles; and this, deducted from $13,900,000$, leaves $10,000,000$ square miles as the quantity of useful soil in the New World.

The productive powcrs of the soil depend on two circumstances, heat and moisture; and these increase as we approach the equator. Now, it appears that the productive or rather nutritive powers of the soil will be pretty correctly indicated by combining the ratios of the heat and the moisture, expressing the former of these in degrees of the centigrade scale. Something, we know, depends on the distribution of the herr through the different scasons; but as we do not aim at minute accuracy, this may be overlooked.

Lattitade.	Incbes of Rala.	Mean Hest.	Prodnct.	Ratlo.
60	16	7	112	4
45	29	14	406	15
0	96	28	2688	100

Thus, if the description of food were a matter of indifference, the same extent of ground which supports four persons at the latitude of 60°, would support 15 at the latitude of 45°, and 100 at the equator. But the food preferred will not always be that which the land yields in greatest abundance; and another most important qualifying circumstance must be considered-it is labour which renders the ground fruitful, and the power of the human frame to sustain labour is greatly diminished in hot climates. We shall therefore consider the capacity of the land to support population as proportional to the third power of the cosine (or radius of gyration) of the latitude. It will therefore stand thus in round numbers:-

$$
\begin{array}{llllll}
\text { Latitude, } & 0^{\circ} & 15^{\circ} & 30^{\circ} & 45^{\circ} & 60^{\circ} \\
\text { Productiveness, } 100 & 90 & 65 & 35 & 12 \frac{1}{3}
\end{array}
$$

In England the density of population is about 389 per- Increas sons per square mile; but England is in some measure the of popus workshop of the world, and supports, by her foreign trade, a greater population than her soil can nourish. "In France the density of population is about 1.77 ; in Germany it varies from 100 to 200. On these grounds, we may assume that the number of persons which a square mile can properly sustain without generating the pressure of a redundant population is 150 at the latitude of 50°, and 26 is the sum which expresses the productiveness of this parallel. Then taking, for the sake of simplicity, 35 as the index of the productiveness of the useful soil beyond 30° in America, and 85 as that of the country within the parallel of $30^{\circ} \mathrm{o}$ each side of the eqnator, we have about $4,000,000$ square miles, each capable of supporting 200 persons, and $5,700,000$ square miles, each capable of supporting 490 person. It follows that if the natural resources of America were fully developed it would afford sustenance to $3,600,000,000$ of inhabitants, a number nearly five times as great as the entire mass of human beings now existing upon the globe!

Alpiabetical Contente.

Aborigiaes, 686.

Alaske, 111.
Amazon, 674.
Anglo-Saxoo race, 716. Antiquities, 692. Andes, 670. Araucanians, 701. Area, 669. Argentine Repabllc, 713 Aztecs, 695. Barrows, 692. Birda, 6St. Bolivia, 713. Botany, 684. Brazil emplre, 710, 712 . Indians 702. Canada ill. Carnivora, S. A, 682. Central America, ancleat, 703.

Chili, 709, 713.
Climate, C. A., 690; N. A. 676, 680; S. A., GTS. Colombla, 712. Colonisation, 708 Columbus 707. Discovery, Earopesn, 706. Ecuador, 712.

Patagonians, 702. Peru, sacient, 696; Span15h, 709. 713. Physical regiona, 670. Plateanx, 677 Population, 716, 717. Prodactiveness 717. 681 livers 674 Rocky moantains 654 Rocky moantaing 674 Ruminantio, S. A. 682 Russian Americs, 711. Serpents. 6ct. Spanish eerlementa, 707. Spanish-lndian race, 716. Spates 710. Tuble-land 677 Toltec empire j 0 s. Toitecans 691. Trade niads 6:5. United Sistes 711. Veqeznelan 712. Volcaudes, Mexico, TETS S. A. 673. Votan, 704,
West nudies, 714. Whitney, Professora 6S9 Zoology, 681

A MERICAN LITERATURE

1.-Lntrodectory.

The literature of the United States, while still half our own, is pervaded, to a degree not easily estimated, by a foreign element. The relationship between Englishmen and Americans, making them ignorant of their mutual ignorance, operates sgainst the soundness of their judgment on each other's work. Community of speech, which sughs to be a bond of union, is often a medium of offence; tor it dispenses with a study of the language, and in studying a language wo learn something also of the habits and social histories which are reflected in, and serre to interpret, distinctly alien literatures. Facility of trarel, making it casy to acquire first impressions, is a temptation to such hasty estimates as many of the most accompuished Americans have formed of England, and many of the most accomplished Englishmen have formed of America. The least satisfactory works of some of their foremost writers, as Mr Hawthorne's Old Hcme and Mr Emerson's English Traits, are those associatell with their transatlantic experiences. But of the mistakes on both sides, ludicrous and grave, we hare had perhaps the larger share. Few Americans have ever so misconceived a British statesman as we misconceived Mr Lincoln, or gone so far astray in regard to any crisis of our history as we did in reference to the moving springs and results of their Civil TVar. The source of this greater igmorance lies not so much in greater indifference as in greater difficulty. England is one, compact and stable. The United States are many, vast, various, and in perpetual motion. An old country is a study, but a new country is a problem. Antiquity is brought to our firesides in the clissies, till Athens and Kome

"To us are nothing norel, nothing strange."

We are more familiar with the Acropolis than with the Western Capitol-with Mt. Soracte than with the Catskills. Our scholars know more about Babylon than about Chicago. Dante immortalises for us the Middle Age; Plantagenet England is revived in Chaucer ; the inner life of modern England has a voice in Tennyson and the Brownings. Where is the poet who will reveal to us "the secrets of a land," in some respects indeed like our own, but separated in other respects by differences which the distance of 3000 miles of ocean only half represents; which, starting on another basis, has developed itself with energies hitherto unknown in directions hitherto unimagined? Who will become the interpreter of a race which has in two centuries diffused itself over a continent, the resources of which are not more than half discovered, and which has to absorb mithin itself and harmonise the discordant elements of other races for whom the resources of the Old World are well-nigh exhausted? Caret vate sacro; but it does not want poetical aspirations as well as practical daring:

> "This land o' ourn I tell ye's gut to bo A better country than man ever see; I feel my sperit swellin' writh a ery That seems to say, 'Break forth and prophesy." O strange New World, thet yet wast never young, Whose youth from thee by gripin' want was wrung, Brown foundlin o' the roods, whose baby bed Was prowled round by the Injun's eracklin' tread, An' who grew'st strong thru' shifts an' Tants an' pains Nursed by stern men with empires in their brains."

IL-Comditions and Cearacteristics of American Literature
The number of writers who have acquired some amount
of well-founded reputation in the United States is startling. The mere roll of their names would absorb a great part of the space here available for an estimate of the works which best represent them. Mr Griss old informs us that he has in his own library more than 700 volumes of native novels and tales; his list of "remarkable men" is like Homer's catalogue of ships. Almost every Iankee town has indeed its local representatives of literature, reflecting in prose or verse the impulses and tendencies of the time. But while America has given birth to mure than a fair proportion of eminent theologians, jurists, economists, and naturalists, hardly any great modern country, excepting Russia, has in the same number of years produced fewer Works of general interest likely to become classical ; and Bishop Berkeley's prophecy of another golden ago of arts in the Empire of the West still awaits fulfilment. This fact, mainly attributable to obrious historie causes, is frankly recognised by her own best authors, one of whom has confessed-"From Washington, proverbially the city of magnifieent distances, through ali its cities, states, and territories, ours is a country of beginniags, of projects, of designs, of expectations." Tho conditions under which the communities of the New World were established, and the terms on which they have litherto existed, have been unfavourable to Art. The religious and commercial enthusiasms of the first adventurers to her shores, supplying themes for the romancers of a later age, were themselves antagonistic to romance. The spirit which tore down the aisles of St Regulus, and was revived in England in a reaction against music, painting, and poetry, the Pilgrim Fathers bore with them in the "Maytower," and planted across the seas. The life of the early colonists left no leisure for refinement. They had to conquer nature before admiring it, to feed and clothe before analysing themselves. The ordinary cares of existence beset them to the exclusion of its embellishments. While Dryden, Pope, and Addison were polishing stanzas and adding grace to English prose, they were felling trees, navigating rivers, and fertilising ralleys. We had time, amid our wars, to form new measures, to balance canons of criticism, to discuss systems of philosophy; with them

> " The need that pressed sorest
> Was to vanquish the seasons, the ocean, the foresto"

The struggle for independence, absorbing the whole energies of the nation, developed military genius, statesmanship, and oratory, but was hostile to what is called polite literature. The people of the United States have had to act their Iliad, and they hare not had time to sing it. They have had to piece together the disjecta membra of various races, sects, and parties, in a ravtomédcov mo入ıtctūv. Their genius is an unwedded Vulcan, melting down all the elements of civilisation in a gigantic furnace. An enlightened people in a new land, "where almost everyone has facilities elsewhere unknown for making his fortune," it is not to be wondered that the pursuit of wealth has been their leading impulse; nor is it perhapa to be regretted that much of their originality has been expended upon inventing machines instead of manufactur. ing verses, or that their religiou itself has taken a practical turn. One of their own authors confesses that the "common New England life is still a lean impoverished life, in distinction from a rich and suggestive one;" but it is there alone that the speculative and artistic tendencies of recent jears have found room and occasion for development. Our travellers find a peculiar charm in the manly force and rough adventurous spirit of the Far West. but
the poetry of the pioneer ie unconscious. Bret Hart, Hay, and Joaquin Miller have caught the spirit of the new and energetic West, and have embalmed instirring lyrics the heroic age of the pioneer and the miner. The literature of the South, on the other hand, is the fruit rather of leisure and of culture than the rugged development of a stern struggle with natural forces. Some of the sweetest poetry ever written hae been traced by Southern pens, and the most distinctively American writer whom we can call to mind-preëminent alike in fiction and in poetry-Edgar Allan Poe, was educated in and spent the greater part of his too brief life in the South, his productions appearing almost exclusively in Southern magazines. In the higher branches of culture the South long reigned supreme, and from her soil sprang the authors of the organic law, the immortal Declaration of Independence, the state papers which have become embodied in the history of the land. Her sons, isheriting great names and placed above the need of continued literary labor for the supply of their daily needs, devoted themselves to the cultivation of oratory and the art of government, and for three quarters of a century practieally controlled the executive, the judicial, and the legislative branches of the government. The new South of to-day gives every assurance of a rapid and gratifying development of literary production distipctively American, and presenting a faithful portraiture of life and manvers which we would not rillingly see pass away uncecorded, and which is full of interest to American readers. The names of George W. Cable, Opie Read and others will serve to illustrate this agreeable fact.

When we remember that the Romans lived under the sky of Italy, that the character of the modern Swiss is like that of the modern Dutch, we shall be on our guard against attributing too much to the influence of external nature. Another race than the Anglo Saxon would doubtless have made another America; but we cannot avoid the belief that the climate and soil of America have had something to do in moulding the Anglo-Saron race, in making its features approximate to those of the Red Indian, and stamping it with a new character. An electric atmosphere, and a temperature rauging at some seasons from 50° to 100° in twenty. four hours, have contributed largely to engender that restlessness which is so conspicuous "a note" of the the people. A territory which seems boundless as the ocean has been a material agent in fostering an ambition unbridled by traditionary restraints. When European poets and essayists write of nature, it is to contrast her permanence with the mutability of human life. We talk of the everlasting hills, the perennial fountains, the ever-recurring seasons. "Damna tamen celeres reparant colestia lunæ-nos ubi decidimus' In the same spirit Byron contemplates the sea and Tennyson a running stream. In America, on the other hand, it is the extent of nature that is dwelt uponthe infinity of space, rather than the infinity of time, is opposed to the limited rather than to the transient existence of mau. Nothing strikes a traveler in that country so much as this feature of magmitude. The rivers like rolling lakes, the lakes which are inland seas, the forests, the plains, Niagara itself, with its world of waters, owe their maguificence to their immensity: and by a transierence, not unnatural although fallacious, the Americans generally have modeled their ideas of art after the same standard of size. Their wars, their hotels, their language, are pitehed on the huge scale of their distances. "Orphaned of the solems iuspiration of antiquity," they gain in surface what they have lost in age; in hope, what they have lost in melwory.
"-That untravelled world whose margin fades
For ever and for over when they move."
is all their own and they have the arena and the expectations of a continent to set against the culture and
the ancestral voices of a thousand years. Where Encs lishmen remember, Americans anticipate. In thought and action they are ever rushing into emply spaces. Exeept in a few of the older States, a family mansion is rarely rooted to the same town or district; and the tie which uvites one generation with another being easily broken, the want of continuity in life breeds a want of continuity in ideas. The American mind delights in speculative and practical, social and political experiments, as Shakerism, Mormonism, Panta. gamy; and a host of authors, from Emerson to Walt Whitman, have tried to glorify every mode of human life from the transcendental to the brutish. The habit of instability, fostered by the rapid vicissitudes of their commercial life and the melting of ove class into another, drifts away all landmariss but that of a temporary public opinion; and where there is little time for verification and the study of details, men satisfy their curiosity with crude generalisations. The great literary fault of the A coericans thus comes to be impatience. The majority of them have never learnt that "raw haste is half-sister to delay;" that " works done least rapidly, art most cherishes." The makeshifte which were at first a necessity with the Northero settlers have grown into a custom. They adopt ted halt measures iostead of one whole one; and, beginning gravely, like the grandiloquent preambles to their Constitution, end sometimes in the sublime, sometimes in the ridiculous.
Many of the artistic as well as many of the social peculiarities of the United States may doubtless be traced to their form of government. After the most obvious swants of life are provided for, Democracy stimulates the production of literature. When the hereditary privileges of rank have ceased to be recognised, the utility, if not the beauty, of knowledge becomes conspicuons. The intellectual world is spurred into activity; there is a race in which the prize is to the swift. Everyone tries to draw the eyes of others by innumerable imperfect efforts with a large insigniticant sum lotal. Art is abundant and inferior: whitewashed wood and brick pass for marble, and rhythmical spasms for poetry. It is acknowledged that the prevailing defect of Aristocratic literatures is formality; they are apt to be precise and restricted. A Demcratic literature runs the risk of lawlessness, inaccuracy, and irreverence. From both these extremes the Athenian, the Florentive, and the Elizabethan classics were preserved by the artistic inspirations of a flesible tradition. The one is esemplified in the so-called Aug, ustan ages of letters, in the France of Louis XIV. and the England of Queen Anne, when men of genius, caring more to perfect their style than to establish truth, more to captirate the taste thau to stir the passions, moved with clipt wings in a charmed circle of thought. The other has its best illustration in the leaders of our own romantic schools, but its most conspicuous development in America; a country which is nut only democratic but youthful without the modesty of youth, unmellowed by the past and untrammelled by authority, where the spirit of adventure is unrestrained by feelings of personal loyalty-where order and regularity of all kinds are apt to be misnamed subserviencewhere vehemence, vigour, and wit are common, good taste, profundity, and imagination rare;-a country whose untamed inaterial iufects the people, and diverts them from the task of civilization to the clesire of conquest.

American literature is cramped on another side by the spirit of imitation. It has beeu in great measure an offshoot or prolongation of our own. As English sculptors study at Fome and Naples, the most prominent Western artists in every department have almost invariably inaugurated their careers by traveling in Europe, and writing descriptions of the foreign lands where they have found their richest intel-
lectual culture. They haro sought the sources, the themes, the rules, snd the sanctions of their art in the Old World, and their highest ambition, like that of all colonists, has hitherto been to reccive a favourable verdict, not from the country of their birth, but from that of their ancestors. Even Franklin-in somo respects an Amcrican of the Americans-was in philosoplyy a practical disciple of Locko, as Jefferson was of tho French Iicrolution. "The literary genius of Great Britain," says Do Tocqueville, "still darts its rays into the recesses of tho West. . . . The small number of men who write aro English in substance, and still more in form." Of tho great number of men who have written in America since the date of this criticism, only a fav have written much to cunfute it. Washington Irving, who, in the course of four distinct visits, spent much of his life in Europe, only escapes from the influcnce of Addison in his Knickerbocker and Dutch sketches. On land st least, Cooper-though in many respects an original writer-everywhere remembers Scott. As in the works of the Seotch novelist, the semi-barbarous feudal spirit is repreeented in conflict with modern law, in those of the American the enterprise of New Englánd is struggling against the ruggedness of nature and a savage lifc. The writers of the last thirty years have becn making strenuous, sometimes spasmodic, efforts after originality, but they, are still affected by transstlantic associations. - In the style of Mr Motley we cannot help observing the stamp of Carlyle. The Transcendental movement begun by Emerson is admitted to have derived its first impulso from Sartor Resartus; and among the eccentricities that maria its followers none is more remarkable than their mania for German and Oriental quotations. The tyranny which five centuries' load of classics, in the same tongue, exercises over the mind of a nation not yet a century old is rery much strengthened by the non-existence of an international copyright, which leads to the intellestual market being glatted with stolen goods. As long as a publisher in Boston or New York can.republish a good book written in Edinburgh or London without paying for it, he is likely to prefer an undertaking which involves yo risk and comparatively no outlay, to another which involves both; that is, the republication of the English to the first publication of an American book; for the English book has already attained its reputation, and its popularity in America is secured, while the Amcrican book; for the copyright of which he has to pay, has, except in the case of a few authors, etill to win its spurs. If the people of the United States had spoken a language of their own, it is probabie they would have gained in originality; as it is, they are only now beginning to sign their intcllectual declaration of independence, \longrightarrow fact confessed among the latest words of their own greatest prose artist:-" Bred in English habits of thought as most of us are, we have not yet modifed our instincts to the necessities of our new modes of lifc. Our philosophers have not yet taught us what is best, nor have our poets sung to us what is most beautiful in the kind of life that wo must lead, and therefore we still read the old English wisdom, and harp upon the ancient strings."

III-Earlier Amtratcay Literature.

We may trace the influence of the foregoing controlling lacts or tendencies, subject to various phases of personal power, throngh the three great periods under which AngloAmerican history obviously falls:-The Colonial, the Revolutionary, and that of the 19 th Century.

1. The Colonial Period.-Little of interest in the world of letters has come down to us from the 17 th century in the Wcst. Sandrs's Ouid, translated on the banks of the Jamos River, dedicatod to Charles L, and publishod 1626,
is worthy of note as the first contributien te English literature frci America. About the same date the Welish Puritan Vaughan sent home his Golden Flece from New. foundland, and Captain Smith gave to the world his descriptions of Virginia. But the earliest verse that has a real claim to be regarded as American is a dnggerel list, by an unonymous author, of Netv England's annoysnees, which, if wo remember the date-a generation after Spenscr lad celcbrated "the Indian Peru" in his Faery Queen-will confirm our view of tho backwoodsman's want of leisure for "polishing his stanza:"-
"Tho place where we live is a wilderness wood, Where grass is much wanting that's fruitful aud good If fresh meat be wanting to fill up our dish,
We have carrots and pumpkins, and turnips and fish; We have pumpkins at moruing and pumpkins at noon, If it was not for pumpkins we should be undone."
A little later we have a Puritan rersion of the Psalms, the worst of many bad; and about 1650 the pocms of Anne Bradstrect and Benjamin Thomson, morthy of mention, but scarcely readable. In prose are relics of the sermons and controversies of Roger Williams and John Cotton and Eliot, the apostle of the Indians, with the ponderous Magnalia and witch denunciations of Cotton Mather. The main literary cvent of the century was the foundetion (1636) of Harvard Calversity. Yale College followed at a long interval, and subsecjuently Princeton College, and Brown University (Rhode Island). In all new countries industrial and commercial interests are at first the strongest. The febrile activity produced by fear of a sterile future loaves little room for speculative imagination. But in the New World, colonised in part by adventurers, in part by religious refugees and enthusiasts, another influence was from the first at work. When her solitudes began to give place to cities, the brains of her people were expended on the farm or the exchango with a zeal materially modified by the apirit and formulo of the faith which led the founders of the Northern States across the sea, and continued to infuse a religious element into their enterprises. This element, which elevated the settlers of New England abovo ordinary emigrants, adding to their strength and giving a faster dye to their morality, was yet, in its original form, no more favoursble to freedom or variety of thought than tho industrialism by which it was surrounded. But it begat and fostered the Puritan theological literature which was concentrated in the massive yet incisive treatises and discussions of Jonathan Edwards of Connecticut-(1703-Edwands 1758)-who, if not, as asserted by American panegyrists, "the first man of the world during the second quarter of tho 18th century," was yet, by the clear vigour of his thought and the force of its expression, one of the foremost figures of that era. An estimate of his rank as a theologian belongs to a distinet branch of the history of American literature. It is enough here to refor to the testimony of all competent judges as to tho aingular lucidity of his style, snd to that of his contemporaries as to the fervour of his eloquence and the modest simplieity of his life. Passages of his occasional writings, as the description of his future wife, evince a grace and sweetness of temper not always associsted with the views of which he was and remains the most salient English advocatc. A slightly junior contemporary of Edwards, the exponent кат' $\epsilon \xi 0 \chi \eta \dot{\eta} v$ of the other-that is, the secular side of early Amcrican life-was destined to see the end of one and play a prominent part in opening another era of his country's history. Benjamin Franklin, as long. as Utili tarian philosophy endures, will be a name to conjure with. It is clarum et venerabile, though its owner was endowed with as little as possible for a great man of the "faculty divine." Franklin's autobiography, the details of which
need not find place here, is as remantic as the life of an anromantic person can be. The incidents of the young candle-moulder - the printer's apprentice - the balladmonger wisely discouraged by the wise paternal criticism, "Versemakers are generally beggars"-the runaway, eating rolls on the Philadelphia street-his struggling life in Londen with Ralph of the Dunciad-his return, "correcting the erratum". of his infidelities by marriage with his old Pennsylvanian friend-his success as a printer, economist, statesman, and diplomatist-his triumphs in natural and political philosophy, clenched in Turgot's line, adapted from Manilius-

"Eripuit czelo fulmen, sceptramque tyrannis"-

his examination before the House of Commons, resulting in the repeal of the Stamp Act, when Lord Chatham spoke of him as one who was "an honour not to England only, but to human nature"-his signatnre of the Declaration of Independence-his ministry in France and popular triumph with Voltaire, who said, "Je n'ai pu résister au désir de parler un moment la langue de Franklin"-the acclamations of shouting multitudes on his return home-Mirabeau's announcement of his death (in 1790, in his eighty-fourth year) to the Assembly-"the genius which has freed America, and poured a flood of light over Euroye, has returned to the bosom of the divinity "-are elementary facts of schoolboy history. They are the records of the successive stages of the greatest snccess achieved in modern times by the genius of common-sense, integrity, and industry indomitable. Franklin's experiments and physical discoveries form a chapter in the history of science; but half of his fame even in this feld is due to the precision and clearness of the manner in which they are announced. "The most profound observations," says Lord Jeffrey, "are suggested by him as if they were the most obvious and natural way of accounting for phenomena." The same literary merit characterises the financial pamphlets and treatises which first brought him into celebrity. Both are marked by the same spirit,-the love of the Useful, which was his passion through life. Franklin follows Bacon, to an extreme opposed to that of the Platonists, in decrying abstractions. Archytas is said to have apologised for inventing the arch. Franklin is ashamed to have wasted time over pure mathematics in his "magical squares." His aim is everywhere to bring down philosophy, like the lightning, from leaven to earth, "illustrans cammoda vitce." His ethics-those of Confucius or the Seven Sages, modified by the experience and the circumstances of a later age-are embodied in the most famous of popular annuals, Poor Richard's Almanack, in which for twenty-six years he taught his readers (rising to the number of 10,000) "the way to be healthy and wealthy and wise," by following simple utilitarian rules, set forth in plain incisive prose and rhyme, rendered attractive by a vein of quaint humeur and the homely illustrations always acceptable to his countrymen. The same train of thought appears in the "Whistle," among the letters from Passy, where his persistent deification of thrift appears side by side with graceful compliments to. Mesdames Helvctius and Brillon, זecords of the aftermath of sentiment that often marks a green old age. Franklin remains the most practical of philnsophers in perbaps the most practical of nations.
2. The Revolution Period.-It has been often remarked tbat periods of political national crisis are more favourable to the preparation than to the actual production of literature. Wordswerth's assertion, that poetry is the outcome of emotion recollected in tranquillity, applies with slight modification also to artistic prose. The demands of instant action cast the reflective powers into abeyance, but a
storiny era is the seed-tume of a later harvest. There is only one exercise of the imagination that it directly stimu-lates-that of the orator; and the conditions of his success, save in a few instances, make a drain on his posthumous reputation. In reading even the greatest, speeches of the past, divested of the living presence which gave them colour and force, we find it difficult to account for the effect which they are known to have produced. They are the ashes or the fossils of genius. Little that is of permanent literary value is left us of the harangues that were the trumpet-calls of patriotism during the American Revolutionary War. The triumphs of Patrick Henry, who "wielded at will that young democraty," are commemorated in the judicious biography of Wirt, but few of his orations are accurately preserved ; and of the speeches of James Otis, which were compared to "flames of fire," w9 bave mainly a tradition. His pamphlet (1762), entitled A Vindication of the conduct of the House of Representatives, is considered to contain the germ of the Declaration of Independence. Among other considerable efforts of eloquence, those of Fisher Ames are worthy of note as being directed in great measure against the excesses of democracy. The master-minds of the era were the states- Statesmen. men and jurists, who fought for the free soil, sunk the deep foundations, and reared the superstructure of the new Commonwealth. The history of American law is a distinct theme. It must suffice here to mention, as claiming recognition in the field of letters, Washington himself, in his Washing. clear and incisive though seldom highly-polished corre- ton. spondence ; his biographer John Marshall, chief justice of Marshall the supreme court from 1801 to 1835, one of the early pilots of the state, who left behind him a noble and stainless name, and laid down the first principles of that international code afterwards elaborated by Wheaton; Madison, John Jay, the elder Adams, and Alexander Hamilton, during the war Washington's "most confiden- Hamilton tial aid," afterwards the presiding genius of the movement represented by the Federalist, the organ of the antidemecratic party. To this he contributed three-fourths of the material, marked, as are all his papers and speeches, by originality of thought, breadth of view, and purity of style. As secretary of the treasury, he became.perhaps the greatest of financiers. The general judgment of his countrymen acquiesces in the terms of the tribute paid to his memory by Guizot. "He must be classed among the men whe have best known the vital principles and fundamental conditions of a gevernment worthy of its name and mission." Of Hamilton's numerous historical sketches, the most celebrated is his letter to Colonel Laurens giving an account of the fate of Majer André, in which refinement of feeling and inflexible impartiality of view are alike conspictous. The great and unhappily the bitter anta-Jeferson gonist of the Federalists is one of the most conspicuous figures in the history of A.merican thought. Thomas Jefferson (1743-1826), President from 1801 to 1809, is the representative in chief of the revolutionary spirit of his age and country. While his riral compeers stood firmly on the defensive against the encroachments of an arbitrary government, his desire was, in politics as in speculatior generally, to break with the past. Inspired with patriotic zeal by Patrick Henry's denunciations of the Stamp Act, he came forward preminently in 1769 as a member of the Colonial Assembly of Virginia. In 1776 the main part of the responsibility of draming up the Declaration of Independence fcli upon him. In 1784 he was appointed minister of the congress in Paris, where be spent the greater part of six years, and brought back an admiration for those phases of the French Revolution from which the more temperate judgments of Hamilton and Fisher Ames had recoiled. He threw himself heart and soul into
the arms of the Demoerulic party, and in the constitutional struggle that ensued his licener scnso of tho direction in which popular sympathies wero tending, with tho weight of his half plysical energies, gavo him the ascendancy over tho wider knowledge and more far-sceing intellects of his adrersaries. Jefterson might be termed the Danton of the West, but his forte lay not so mnnch in oratory as in political management and incisive vivacity. Moro perhaps than any other, great statesman of his age, he aspired to bo an anthor, to which title the best passages in his Noles on Virginia, his Aulobiography, and Corrcepondence, give him a fair claim. His descriptions of scenery in the first aro always pleasing and generally graphic. Ilis sketches of Continental society are lively, and lis oceasional flights of fancy, as the dialogue between the head ant heart, at least ingenious. His religion and ethics wers those of his frisnd Diom Talio and tho Encyclopédie.

Ninor riters.

The age of the Titans in tramsatlantic listory abounds in minor literati, whose light effusions, mairly satirical or deseriptive sketches in prose and verse, throw a somewhat dim and ragged lustre orer its graver page. The bulk of theso obvious reflections of the manner and thought of Buther, Pope, and Swift, or of Gay, Prior, and Shenstone, are a penance to wade through, and searce claim remembrance for their authors. A fer stand out conspicaously by tbe celebrity of the names with which they are associated, or a certain raciness and approach to originality in their style. Of these the chief are:-The social carieatures of Judge Brackenridge (who, though born in Scatland, lived in America from infaney), and his doggerel but vigorons lines on Bunker's llill; the once popular humorous lyric ensitled M^{c} Fingal, by J. Trumbull, also the anthor of The Progress of Dulness, in the lludibrastic metre which aeems to have been used by iuitators to show how intolerable it is in any but the original hands; the more llowing but on the whale commonplace odes of Philip Freneal, including his patriotic hymns to Washington, with the more musieallyriesthe "Wild Honeysuckle" and the "Iadian Death Song," and his prosecotitled Adviceto Authors; the political satires of Merey Warren, authoress of Things necessary to a Woman (the ohvious inodel of the more modern squib, Nolling to Wear), and of a History of the Revolution, remembered only as being the first in date ; the patriotic rhapsodies of l'hillis Wheatley, interesting as the production of a yoing negress brought from Africa in 1761, and soon afterwards sold in Boston to the mistress from whom she took her name; Francis Ilapkinson's Dalte of the Kegs and his Prelty Siory-a burlesriue closely fashioned after Arbathnot's John Bull-his Nivo Roof, meaning the American constitution, and his satire on the pedantry of the seiences entitled the Salt Box; Joel Barlow's Misty rudding; the humorous Wants of Man, by Quiney Adams, more proninent as a statesman than as a poet; aud on a similar but higher platform the best of too large a valume of verses, in wbich the "Triumph of lnfidelity" (after the manner of Comper), the "Conquest of Canaan," and "Columhia," are the leading pieces, by the amiable theolomian Dr Timothy Dwight. Dwight's prose descriptions, as that of the Notch of the White Mountains and the evening on Lake George, are superior in grace to his efforts in rhyme.

The ballad literature of the revolution days is said to have attracted the attention of Lord Chatham, less probably from its intrinsic merit than from its faithful though rough cmbodiment of the sentiment that not only moved orer the surface, but penetrated the depths of the national life. The anonymons popular literature of a country is the best "abstract and bricf cluronicle of the time" in which it is produced. The songs current in America during this era, inspired by the same spirit and pitehed in the same key, are historically interesting and artistically monotonous. They celibrate in rade rerse the achievements of native herocs, like " Boh! Ilawthorne ;" or ridieule, like "Jack Brag," the l3ritish lion, or, like the "Fate of Burgoyne," the overthrow of raulting ambition; or, as in "Wroming Massacre," bewail the fate of the fallen; or, as in "Free America," celebrate with sehoolboy luzzabs the triumph of the rood cause. Among the rery rude national anthems of the West, "Yankee Doodie" is remarkable as having been an ald Dutch catch adapted into an English satirical chant, and adopted, with anoncious or unconscions irony, by the Ameriean troops. "Mail Columbin," which as a peetical production takes even a lower rank than "Rule Britannia," was a somewhat later production by Joseph Hopkinson (1798) ; and the "Star-Spangled Banner" of Francis S. Key is essociated with the traditions of the second British wer. As inspired with the spirit of the 18 th, though belonging in date to the early years of the 19th century, wa may mention in advance the "Pilgrim Fathers" of J. Pierpont, Wead. worth's "Oll Oaken Bucket," "MIome, Swect Hame," by J. H. Parne; the humarous burlesque of ,I. G. Saxe. "Miss Macl'́ride:"
and the verses of the great painter and creditable romancer Weshington Allston, with the refrain "We are one."

English philology and literature were during this period represcnterl by the famous Lindley Murray, and Noah Webster (1758-18.13), the anthor of the best dictionary of our language that has appeared since Joluson's. In natural scieace, the two Bertrams; Aleaiander Wilson tho ormithologist; and Audubon, the literary glory of Louisiana, whose descriptions of anmate nature rival those of Buffon, aro illustrious names.

IV.-Tie Literature of the Nineteenta Centiry. Prose Trilings.

1. In a rapid estimate of the literature of this prolifie age wo can only signalise its contributions to the several brancles of plysical and mental science. The United States lave during the last two generations been justly prond of the names of Morton and Schooleraft in ethnology, of Lowditch in mathematics, of Sullivan and Dana in chemistry and mineralogy. Their classical scholarship, which hardly competes with that of England, has yet been fairly mainlained by Fwerett, Felton, Woolsey, Anthon, and Tobinson. Dr Marsh is an accomplished English scholar, while Professor Whitney is a learned and accurato philologist, whose researches in Sanscrit aro well known and appreciated by European Orientalists. The melaphysical schools of Locke and Reid aro nowlere better represented than in America by Dr Bowen and Dr N. Portcr. The place of Marshall as a jurist has been worthily filled by Chief-Jnstice Kent and Judge Story; the latter of whom ranks, by virtue of his essay on classical studies and his graceful deseriptions of natural scencry, among the most accomplisted of the numerous professional men who have in the New World devoted their leisuro hours to lighter literature.

The inhabitants of the United States have always been Oraton. noted for renarkable fluency, sometimes a super-thency of speech. The carly years of the century were illustrated by the fiery zeal of Randolph and the practical force and occasional impassioned eloquence of IIcnry Clay. The great political controversies inherited from the preceding age found their most conspicuous popular exponents in two leading minds laying claim to diverse kinds of grentness, and deslined to be in almost incessant antagonism. John C. Calhoun, the most illustrious representative of Calhoun the Soulhern States, of whose rights, real or imaginary, ho was during lis life the foremost champion, was by cducation and choico a professional statesman. Secretary of War in 1817, and Vice-President of the Commonwealth in 1825 , he resigned the latter office on occasion of tho disputc about the tariff law in 1532 , to become the leader of the Opposition ; and in vindicating the attilude of South Carolina was the first to lay the strands of the futuro Secession war. The most accomplished modern apologist for slavery, it is probable that he only hastened the conflict between opposing principles which was sooner or later inevitable. Calhoun's eloquence, as attested by his auditors and the numerous speecbes and papers preserved in the six volumes of his published works, was notable for its carnestness and gravity, the terse polish of its manner, for philosophic genemlisations and analytical dialcetic. His prevailing sincerity and candour have made his memory respected by those farthest removed from bim in sentiment and opinion. Danicl Webster, on the whole the grandest Webet orator of tho New World, was daring the greater part of his carecr the champion of Massachusetts and the assertor of her policy. His defenco of that State in the Senate (1830) aramst General Hayne of Carolina, and his oratoricas duel with Calhoun (1838), resulting in the temporary overthrow of the doctrine of nullification, are among the most
remarkable triumphs of delate in history. Sunt of his pleadings on criminal trials have an almest terrible power. But his literary genius and richness of illustration found freer scope in his famous appeal for the Greeks in 1824, his great speech (1820) on the second centennial anuiversary of the landing of the Pilgrims, or his address (1825) on laying the corner-stone of Bunker Hill monument. Webster's eloquence, everywhere solid, massive, and on great occasions glowing with a lurid light, is not the mere record of half-forgotten strifes; it is "vital in every part," and belongs to the permanent literature of his country, in whose political arcaa be was during his life perbaps the most porferful actor. The art of making commemorative speeches, teclnically called "orations," has been cultirated in North America to excess. The great master in this species of composition was Edward Everett, distinguished by his early association with Lord Byron in Greece, the high dignities-governor of Massachusetts, minister to the court of St James's, and president of Harvard-to which he attained, and by the variety of his accomplisuments. Mr Everett was for ten years a useful member of Congress. In his literary work he displayed an almost fatal fluency, having contributed to the "North American Review," of which he was for some time editor, upwards of a hundred articles in the space of a few years. These articles are inevitably of unequal merit, but they everywhere evince the ripe scholarship of a highly cultivated mind. The volume by which be is best remembered-twenty-seven Orations-published in 1836 , is marked by the same characteristics. Discoursing on a wide range of subjects-among which the refrains are America and Greece, the "Mayllotrer," the Progress of Discovery, Patriotism, Reform, the Republic, Concord, Lexington, and the ineritable Bunker Hill-these speeches are always able, but seldom inspiring: carefully elaborated and richly adorned, they are the production of the first of rhetoricians rather than a genuine orator.

Among the remaining lawyers and statesmen, remarkably numerous in the States, who have in the course of their professional careers made highly creditable contributions to literature, it may suffice to mention H. Swinton Legaré of Charleston, at one time a student of law at Edinburgh, a prominent speaker in the House of Representatives, afterwards President Tyler's attorney general, who published in the Southerre Quarterly and New York Neviews a series of masterly criticismas mainly relating to Greek and Roman literatare; J. P. Kennedy of Baltimore, a snccessful barrister and Congressman, also a vigorous essayist and author of some remarkably Lively sketches of country life and mauners in the Old Dominion; Richard H. Vilde, of Georgia, in which State, after surmounting unusual difficulties with remarkable perseverance, he rose at the har to be attorney-general, auther of the song entitled the "Jament of the Captire," and of a Life of Tasso, displaying great research and occasionally subtle criticism, written after, two years' residence in Europe ; and, taking higher rank as an author, lichard Dana, a barrister of the early years of the century, and adherent in politics of the old Federalist party in the state. Duna became linown in the world of letters as the auther of a Fourth of July Oration in 1814, and somewhat later as the contributor to the North American Invicw of appreciative and discriminating criticisms of the English lake poets. In 1827 he published his fantastic ghoststory of the "Buccaneer" and other poems, to whicn he continued to add at intervals. Many of his minor verses are characterised by remarkable grace, hut they want original force. Among contemperary politicians, Mr Wendell Phillips is the ouly one who can be called a great orator; the ease and encrgy of his style at its best being rarely surpassed. 'But the speeches of Mr Sumner are eloquent, and his arrangement of facts converging to clench his arcument is often masterly.
2. History, as the reflection of philosophy on the statesmanship and the struggles of the past, selunm comes very early in national literature. The 18th century in America supplied, in letters, journals, and contemporary chronicles, material for more elaborate and comprehensive treatment in the 19th at the hands of George Bancroft, a leading Democrat, who held the post of representative of his country in Great Britain from 1846 to 1849. His great work-
three rolunes of which are deruted to the Colonisation and seven to the Revolutionary period-published at in. tervals betreen 1834 and 1874 , has been generally accepted as the standard history of the United States ap to this time. The book is written for the most part in a sufficiently vigorous style; somewhat defective, however, in elegance, and characterised by a certain monotony and want of ease, which detracts from the pleasure of the reader. Bancroft's statements of matters of fact are generally reliable; but his comments are moulded esen more than is usual by the foremone theories of a political partisan. The rival history of Richard Hildreth, which appeared in six volumes, issued in rapid succession (1849-53), while marked by the same Puritan tone, is even more serere in its judgments. The style is more animated, but more prone to the torva voluptas of false rhetoric. The keynote of the sentiment which pervades Mr Hildreth's book is to be found in his keen abolitionist riews, previously expressed in a juvenile work of the author, The White Slave. One of its merits is its appreciation of the Federalists, and especially of the genius and character of their leader, Hamilton. Of the host of national biographies in which the West abounds, Sanderson's Lives of the Signers, the historical sketches of G. C. Verplanck, Wirt's Patrick Henry, and the stupendous series edited and largely vritten by Jared Sparks, may be signalised. Nearly one-balf of the morks of the most classic American prose writers of the generations previous to our own are historical or biographical. Washington Irring's Conquest Irving of Granada, and his lives of Columbus, the Followers of Mahomet, Goldsnith, and Washington, if not the most original, are among the most interesting of his morks-accurate in their leading estimates, and marked by the nsual smoothness and eren flow of his style. Irving contemplated a continuation of the record of the early relations of Spain to the New World, but, with his wonted generosity, abandoned the theme on hearing that the task had been assumed by worthy bands. The works of William H. Prescott Prescott, the most artistic historian to whom the United States have hitherto given birth, are remarkable from the
 deserved success which they hare achiered. This success is due in part to the genius and indomitable industry of the writer, in part to the steady concentration of his porers on the arauous undertaking of which he had at an early age formed a just estimate. In a diary of 1819 (that is in his twenty-third year) he allors ten years for preliminary studies and ien more for the exccution of his task-a notable example to his countrymen, nine-tenths of whose literary performances will prove ephemeral, less from lack of ability in the writers than from an utterly inadequate sense of the time and toil that every true Muse demands of her votaries. Ferdinand and Isabella, given to the world in 1838, was written while Mr Prescott was, owing to an accident at collcge, almost wholly deprived of his sight. His authorities, in a foreign tongue, were read to him by an assistant, and by aid of a writing-case for the blind he scrawled the pages of his great work. It soon attained a European as well as an American fame, aud superseded all other records of the period of which it treats. No such comprehensive vien of Spain at the zenith of her greatness has ever appeared in English. The proportion of its parts and the justice of its estimates are universally acknowledged; while hypercriticism of the style-graceful, correct, and sufficiently varied-can only point to the occasional possibility of greater condensation. Among the most notable of the descriptions, which can seldom be detached from the whole into which they are moven, we may refcr to the return of Columbus and the contrasted characters of Queen Isabella and Elizabeth. The Conquest of Mexico,
written with somewhat improred sight, followed in 1843 ; that of Peru in 1847. These have attained an even wider popularity than their precursor, owing to the more condensed romance and greater norelty of their themes. They aro "open sesames" to an old world of wonders, real, and yet from its strangeness invested with half the charms of fairyland. Few passages of fiction are so enthralling to the jouthful. reader as the story of Nezahualcoyotl, king of Tezcuco, the life and exploits of Montezuma, the night retreat from the Aztcc capital, or the account of the sun-worshippers in the Golden City. Both works are dramas in which our sympathy is divided between the chivalry of Spain in her bey-day and the poetral traditions and innocent patriotism of a ranished race. But their author has never, in the midst of his "Claude-like descriptions" and charmingly vivid narratives, allowed himself to forget that he is writing history. Boys read his Mexico and Pern as they read the Arabian Nights; critics can point to few flaws in the accuracy of the author's judgment. Philip II., Mr Prescott's latest work, has similar excellencies in dcaling with a less attractive theme. John Lothrop Motley, a distinguished ambassador in foreign courts, and author of the best existing history of Holland, is Mr Prescott's only more recent rival. Less faultless, he is more strikingly original ; and the greater complexity of the theme, which he has made his own, calls for the cxercise of even higher powers. The Dutch Republic, which appeared in 1856, at once arrested attention by its evidence of careful and long research, comprehensive grasp, rich pictorial power, and the enthusiasm which, only here and there interfering with the impartial judgment of the author, gives colour and life to the work. Mr Motley's style, even to minute turns in his sentences, bears the impress of the influence of Carlyle. The very titles of his chapters, especially in the first volume, seem transferred from the French Revolution. Such are "Sowing the Wind," "The Harrest Ripening," "The First Whirlwind," "The Taciturn egainst King, Cardinal, and Elector," \&c. From the same soarce be may have caught some of his hero-worship, which, however, by the choice of a worthy ubject, he has done much to vindicate. The Dutch Republic, preluded by the overture of a masterly and vivid historical survey, is a drama, which facts bave made highly sensational, of the most terrific struggle against temporal and spiritual despotism that, within the same space of years, modern times have seen. It is divided, not inappropriately, though perhaps with some regard for effect, into a prologue and five acts, to each of which in succession the name of the Spanish governor for the time is attached. The portraits of those emissaries, particularly those of Granvelle of Arras and Duchess Margaret of Alva, Don John of Lepanto, and Alexander of Parma, are drawn with bold strokes and in lasting colours. Behind the scenes, director of the assailing forces, is the evil genius Philip himself, to whose ghastly figure, writing letters in the Escurial, our attention is called with a wearisome, if not affected, iteration of phrass; while the prescnce of the great champion, like that of Achilles in the Iliad, is felt at every crisis retricring the retreat and urging on the victory. The most horrible chapter of modern history-that of the Inquisition -is unfolded with a power that brands its records into the memory of the reader; and nuid a throng of scenes of pageantry and pathos we may refer to those of the resignation of Charles V., Egmont's triumph at St Quentin and his death, the miscry of Mook Heath, the siega of Leyden, and the hero's death. The United Netherlands (1867-69) Is a coutinuation of the same history in the same spirit; but, as regards stylc, a somewhat calmer and more matured composition. The most thrilling chapters in those four
later volumes are the siege of Antrerp-which compares with that of Syracuse in Thucydides-and that on the wreck of the Armada, unsurpassed in rividncss and vigour by either Froude or Kingsley; to which wo should add the episodes of the battle of Irry and the skirmish at Zutphen, with one of the most eloquent tributes ever paid to the genius and character of Sir Philip Sidncy. Of the other full-!ength pictures, which, with the campaigns of Parma, Spinola, and Maurice, and the intrigues of England and France, divide the interest of the book, are those of Queen Elizabeth (whose habitual treachery, real meanness, and shallow pretences to magnanimity are exposed, as afterwards by Mr Froude), Henry of Navarre, St Aldegonde, the Earl of Leicester, and the great Barneveld, who, with the Prince of Nassau, divides our sympathy at the close of the book. Since the death of Lord Macaulay no equally solid and valuable contribution has been made to historical literature. As supplementary in some measure Tickno to the volumes of Mr Prescott, we may mention here the Mistory of Spanish Literature by his coadjutor Geo. Ticknor, incomparably the best, the most comprehensive, most criti cal, and most intcresting work which exists on the subject.
Of other contribntions to literary criticism, from which, owing to their superabundance, it is hard to select, those of George S. Hillard, one of the most highly cultured writers in New England; of Henry T. Tuckermann, author of Thoughts on the Poets, an elegant bat sentimental essayist ; of E. P. Whipple, a critic who, according to Mr Griswold, combines "the etrength of the Areopagitica with the liveliness of the Spectator" (!) ; of SIargaret Fuller D'Ossoli, a prococious linguist, translator of Eckermann's Conversations ' wieth Gocthe, herself a brilliant conversationalist and somewhat clondy transcendentalist and adrocate of the superiority of women to men; the almays lively reriems of Mr Lowell, with numerous papers in the North American and Allantic Revicus, - may be referred to. To these we should add the diacriminating " Essaya on recent Englind Poots " contributed to Seribner's Monlhly by E. C. Stedman.
3. Politr Literature, of any excellence, in the lighter branches is, in the West, almost wholly a growth of the present century. , The most widely and justly celebrated of transatlantic authors in this field, during its earlier half. was the amiable nnd versatile Washington Irving. Of his Irvina numerous writings, we have referred in last section to those which are directly historical. The rest fall under two beads, according as they are. concerned mainly'with American or with European themes. On the same principle on which Agassiz, and Follen, nod Paine, even Berkeley and Prestley, have been claimed by the United States, Irving is associated with the progress of English literature; for in virtue of his Scotch parentage, and in the course of four distinct and extended visits to Europe-1803-6, 1815-20, 1827-32, and 1841-46-be may bo said to have become half an Englishman. His style is in the main that of the essayists of Queen Anne, modified by the humour of Charles Lamb; and many of his most effective sketches of life, manners, and society relate to the eastern hemisphere. Such are his Histories, the Tales of a Travel: ler, Bracebridge Hall, Newstead and Abbotsford, the Alhambra, and half of the Sketch Book. In reference to those works-the best passages of which are classical-a French critic bas said that Irving describes all countries but his own in the style of Addison. In others, however, and these the earliest and latest of his morks, he treats of national legend and scenery in a manner peculiar to himself. His first literary efforts, which rosulted in the series of papers entitled Salmagundi, were gently satirical descriptions of the features of suciety in American cities. The Mistory of New York, by "Diedrich Knickerbocker," in point of pure originality his masterpiece, is one of the richest farragoes of fact, fancy, and rony that have evier issued from the press. In latsr life, his Tour of the Prairies - The Adventures of Bonneville, and Astoria, are instinct with the spirit of western discovery and adventure.

A MERICANLITERATURE

In this, as in other points of view, versatility and grace are his prevailing characteristics. He belonged historically to both worlds, and was equally at home in each; he reflected the quiet philosophy of the Tatler and Spectator, adding to it the pathos which dims the eye of the reader orer bis "Wife," and "Widow and Son," and "Broken Heart," and "Pride of the Village." He started the vein of burlesque that has run through his country's literature, but under the restraints of taste and temperance that have unfortunately been often discarded. The even grace of his manner oiten leads hasty critics to do scant justice to the range of his sympathy. His manly but gentle style is at home in Spanish history, English.essay, and American legend; in the Alhambra and among the slopes of "Sleepy Hollow," where, as in the famous "Rip Van Winkle," we have some of the earliest models of amusement with grave faces and the melancholy parties of pleasure that are, under various forms of buffoonery, still typical of American humour. Associated with Irving in his Salmagundi, the name of J. K. Paulding deserves a distinct place for the humorous vigour of his character aketches, and his rivid pictures of early colonial life, in the Dutchman's Fireside and Westraard $H_{0} /$ where the features of the contest between the new settlers and the aborigines are brought before us in clear relief. His apologue of "Bull and Jonathan," and the thirteen good farms over which they squabbled-founded on Swift's Tale of a Tub-presents us, in a satire which lies on the border of irony and a rougher form of wit, with an early American view of the relations between his own and the mother country. Some of the same themes have been handled with superior richness of illustration and force by the greatest, with one exception, of transatlantic novelists-J. Fenimore Cooper (1789-1851)-a man remarkable no less for the somewhat defiant independence of his character, which led him to defend his countrymen in Europe, where he travelled from 1827-33, and to assail their foibles in America, than by the marked originality of his genius. His frst considerable work, The Spy, appeared in 1821, and from its fresh treatment of a patriotic theme obtained a European reputation. His second, The Pioneers (1823), with a vivid representation of the scenery of the author's early life, introdncing for the first-time his ever-recurring hero the famous Natty Bumpo, or Leather-Stocking, established his place as a new actor on a crowded stage. Then followed the Pilot, in which he first asserted his claim to an empire since indisputably made his own among novelists-that of the sea; and somewhat later The Last of the Mohicans and The Prairie, in which he asserted a similar sway over the "gardens of the desert" and the hills of the remoter West. While abroad he wrote his Red Rover and The Bravo-a graphic tale of Venice, and flung on the aspersors of his country the American in Europe. Shortly after his return he issued his satirical assault on newspaper editors and other delinquents - his Homeraard Bound, which led him into several actions for libel, in which he claims to have been almost invariably successful-The Pathfinder, and The Deerslayer ($1840-41$). The latter, perhaps the best of the Leather-Stocking series, completes the list of his great novels; to which must be added another important work-The History of the American Navy-published in 1839. There is a certain severity about Cooper's genius, showing itself in a hardness in his style, which restricts the range of his readers. He wastes perhaps too many words on descriptions, is exhaustive where he might have been suggestive, and his plots are apt to be deficient in interest -The Red Rover conspicuously excepted. But, deducting the echoes of Scott, to which we have referred, he is American to the core; he needs no slang or affectation to establish his originality, but mores on his own way with
something like disdain of comment. His best descriptions -as, for example, those of the prairie on fire, of the "Ariel" among the shoals, of the capture of the whale and the panther in The Pioneers, of the last see-fight in The Rover, of the regatta in The Bravo-are unsurpassed His ahips move over the seas like things of life. His hunters traverse the prairies with a sense of possession. His best characters are fow; but Natty Bumpo, Bob Yarn, Nightingale, Long Tom Coffin, Hetty Huster, and Brand Merideth are undying creations. The earliest American romancer of note, Charles Brockden Brown (1771-1810), who came before the world (1797) in Alcuin, a Dialogue on the Nights of Women (first of a mob of tracts on the same theme), set the example on his side of the Atlantic of that love of the anomalous, fantastic, and horrible, represented on our own by Beckford, Walpole, and Godwin, and later by Mrs Radcliffe and Mrs Shelley. His main works-Wieland, Ormond, Arthur Mervyn, and Edgar Huntly-are unmistakably the productions of a man of genius. None are wanting in passages of thrilling interest, striking situations, and subtle analysis of character. But they dwell too prevailingly on the night-side of natureon such themes as insanity and somnambulism, and all the repulsive anatomy of mental disease. Brown's account of the yellow fever in Arthur Mervyn may be compared with the corresponding narratives in Thucydides, Lucretius, and Defoe; and Wieland'a confession of the murder of his wife (a favourite subject of Western fiction) is hideously vivid; but the author's plots as a whole are wanting in method, his bursts of passion are dulled by intervening tediousness, and his style deformed by pedantic circumlocutions. Brown must be credited with considerable originality of conception, and blamed for introducing a morbid vein of thought. His influence is apparent in two novels of Richard Dana-to whom we have before referred-Torn Thornton and Paul Felton, in which a mote graceful style is employed with almost equal vigour to illustrate similar monstrosities of character on the basis of incidents almost equally unnatural. Of the same school are many of the sketches of Charles F . Hoffmann, as "Ben Blower'a Story" Hotruse of being immured in a steam-boiler, and the "Flying Head ;" but alongside of these are others, as his "Winter in the West," "Romance of the Mohawks," and "Adirondacks," that are steeped in the fresh atmosphere of the green fields and hills. Hoffmann is also the author of three deservedly popular songs, "Myrtle and Steel," "Sparkling and Bright," and "Rosalie Clare." The influence of those writers, along with that of a profounder analyst, the French Balzac, is apparent in the works of the most morbid genius the modern world of letters has known. In the regions of the strangely terrible, remotely phantastic, and ghastly, Edgar Allan Poe reigns supreme. For clearness of style, aptness of illustration, and subtilty of thought, he distances in this field all his predecessora except Balzac, who in the mental dissecting-room is his only master. But while the 'Frenchman deals with anomalous realities, the power of the American consists in making unrealities appear natural One of his great charms is his perpetual interest. Confining his imagination within limited bounds of space, he is never dull, save in his acridly jealous criticisms and miserable attempts at humour. Criticism would hardly strike a line from the longest and perhaps the most thrilling of his narratives, that of "Arthur Gordon Pym." In fictitious verisimilitude it is only equalled by De Quincey's "Flight of the Kalmuck Tartars." With the "Adventure of Hans Pfaall" in his balloon, and the "Desceat into the Maelstrom," it is the obvious source of the ingenious pseudo-scientific romances of Jules Verne, which have lately attained so wide a popularity. Poe's most hideous talcs, as "Thoil art the

Mrnn," "The Black Cat," "The Premature Burial," "The Pit end the Pendulum," " The Cask of Amontillado," "The Tell-Tale Heart," are redeemed by their literary merits and their reference, under the form of grotesque circumstances, to dominant fears and passions of mankind. In the "Fall of the House of Usher," "The Domain of Arnheim," "William Wilson," ard "Ligcia," a more purcly poctic or decply psychological element is added to the horror. In the " Mrurders of the Rine Morgue," "The Mystery of Marie Roget," "The Purloined Letter," and "The Gold Bug," he is on the border-land between romance and reality, and scems to prove himself in potentiality the prince of all detectives. We shall have to refer to him again as a poct. The super-subtilty of Balzac and Poc appears with higher qualitics in the works of the greatest of New Engiand romancers, on the whole the most artistic of American prose mriters, Nathaniel Hawthorne. Of his style it is impossible to speak too highly; for without any of the defects often found in the writings of his countrymen, it has a healthy ilavour of nationality. It is accurate and strong, terse and yet full, rich and yet simple, harmonious, varied, and saggestive. Theso excellencies of form give a fascination to his most ordinary themes as to his descriptions of scenery and works of art. The only modern pictures of Italy comparable to those of Rome and her sculptures in Transformation are Ruskin's Venice and the finest stanzas in the fourth canto of Childe Harold. But Hawthorne's acenery can seldom be disentangled from the mood of mind in which be vicws it, aud which constantly associates it with some remoter purpose or underlying allegory. Amid the din of voices in the Custom-house or half-buried in the mosses of his Manse, walking along the Appian Way or gliding down the Assabeth, he dwells among strange visions. The sea-shore tells him secrets of the past, and the prattling village is full of a present sympathy. But the features of nature, and life, and character which he loves to draw are peculiar. They are for the most part sombre and mysterious; not with the sort of mystery that attends unprecedented events and unnatural marvels, but with the mysterv which he finds underneath the current of common lives. One of his prevailing thoughts is, things are not what they seem-he is so fond of pecring bencath the. surface of existence, that in his pages it almost loses its ordinary reality ; he tries so constantly to look through life that he scarcely takes time to look at it. The highest art of all is that which comprehends both aspects, and, seeing the face of nature as it is, also penctrates to its bidden meanings. Hawthorne, on the other hand, weaves his fictions, to borrow a plrase from bimself, in "the moonlight of romance ;" and while he admits that materials for a better book than he has written "lie scattered on the page of life open before him, he has seldom stooped to gather them."
"Moonlight," he repeats in nis preface to the Scarlet Lefler, "moonlight in a familiar room, falling so white upon the carpet and showing all its figures so distinctly, making every object so distinctly visible, yet so unlike a morming or noontide visibility, is a medium the most suitable for a remarice writer to get acquainted with his illusive guests. The room becomes a neutral territery, somewhere between the real world and fairpland, where the actual and imaginary may meet, and each imbue itsclf with the nature of the other."

Hawthorne has sometimes abandoned this neutral territory, and given us a few short sketches which show that he is eminently capable, when he chooses, of illustrating and characterising common things; such, among his minor tales, are "The Old Apple Dealer," "Little Annie's Ramble," "A Rill from the Town Pump," "Sights from a Steeple," "The Village Uncle," that well-named "Buds and Bird Voices," end "The Seven Vagabonds," the most humorous and gewial of his lighter pieces. His prevailing
themes are drawn on a border-land or twilight between two worlds, half real and half ideal ; fairy tales, in which buman beings are the fairies, and are inade to point morals of their own histories. He haunts us, as be himself was haunted, by problems. Of the five volumes of his minor sketches, three at least are filled with allegorics-riddles, some of them hard to read, and open to doubtful because double interpretations. "The Great Stone Face" is a noble piece of writing, apart from the lesson it is intended to convey. "Drowne's Wooden Image" and "The Artist of the Beautiful "arc in theinselves "beautiful exceedingly." The exquisite pathos of "Lily's Guest" and "Edward Fanc's Rosebud" lies on the surface. "Lady Eleanor's Mantle" tells its own story in a parable of the Nemesis of pride ; but in "Roger Malvin's Burial," "The Wedding Kincll,"'"Young Goodman Brown," and othcrs, the meaning is either more intricate or more remote. Hawthorne's longer works are all conceived in the same spirit. Their incidents are comparatively few, and might have easily been condensed iato one of his shorter tales; which in their turn might casily have been expanded into elaborate romances-what a consummate story, for instance, might have been reared on the basis of "Rappacini's Daughter!" His forte lies in the analysis of character and situations, ratizer than the dramatic arrangement of events. "To live in other lives, and to endeavour to learn the secret which was hidden even fron themselves," is the purpose sct before himself by a character which in one of those romances nearly represents the author. Everywhere he scems to be carrying out this purpose, operating upon some thice or four characters, and removing them-as he tells us in the introduction to Blithedale-a little from the highway of ordinary travel to a theatre where these creatures of bis brain may play their phantasmagorical antics without exposing them to too cluse a comparison with the actual events of real lives. A small group of figures is thus made to work out some problem. of life, or at least to throw by their ideal actions a light on some puzzle in the autlurr's mind. The great question over which, in one form or other, he perpetually broods, is the nature of evil-the cffect of sin and error on the souland their relation to virtue and human progress. In the Blithedale Fiomance, for instance, his theme is that the exaggeration of good may turn to evil. This almost painfully minute anatomy of four lives, reliceed by passages of delicate description and a few scenes of thrilling power, is designed to show the blighting effects of a one-sided idea, even though it assumes the guise of a bencrolent impulse, when it overrides private and personal claims. In Transformation, or the Romance of Monte Beni, a conception in some respects the converse of this, is wrought out of richer materials; aud we are taught to appreciate the possibilitics of good that there may be in evil, by the effect which an impulsive crime has in inspiring a simple instinctive nature with a stronger life. The Searlet Letter, which is at once the most solid and the subtlest of the author's works, illustrates the fatal influence which a single- sin exerts on all the persons whom it involves; but unlike the Blithedale Romance, which is a dismal tragedy, it ends with a magnifcent triumph of expiation. The Scarlet Letter appears to us to be the best analytical novel of this century, the nearest spproach to it in artistic finish and pyschological penetration being Goethe's Elective Affinities. The House of the Seven Gables has more variety, and mixes humour with its pathos ; but the web of this last romance, which has for its moral the malign influences which may be transmitted from one generation to another, is woven of thinncr threads. Hawthorne's Protean genius is a power in Americas thought. His influence as a teacher and an artist is still crescent among the contemporaries from
whom he has lately passed. His symbolic yet real cha-ractern-Hester and Pearl by the forest brook; Dimmesdale by the scaffold, with the red morning upon his brow; the dead Judge sitting with his watch; the Cleopatra of Brook Farm plunging in the pool; Miriam and Hilda, and Donatello the Faun-are stamped in letters of Gue gold on the pages of his country's literature, and the music of his quiet sentences yet lingers on the car of strangers as of friends. But his name remains as a warning as well as an oxample. In one sense he was a patriot, glorying in the great deeds of his country's past. Of this feeling the "Gray Champion" and "Howe's Masquerade" give sufficient evidence. At the close of the last he writes, as we may fancy with a grim Puritan smile: "On the anniversary night of Britain's discomfiture the ghosts of the ancient governors of Massachusetts still glide through the portals of the Province Housc.". But as a politician he wrecked himself with the democratic party. He looked upon slavery as " one of those evils which Providence does not leave to be remedied by human contrivances." He had no sympathy with the abolitionists, and at least a half sympathy with the planters. "As regards human progress," he wrote, "let them believe it who can;" and in the preface to his last completed work, as his excuse for laying the scene in Italy,-" There is in our country no shadow, a.) ambiguity, no mystery, no picturesque and gloomy wrong." "Romance and poetry, ivy, lichens, and wallflowers, need ruin to make them grow." Hawthorne lived to see the beginning of what he could only regard as ruin: he did not live to see his country rising stronger after a great struggle with a gloomy wrong.
Oliver Wendell Holmes, the accomplished physician of Harvard, better known as a humourist and author of occasional verses, has contributed to psychological romance two remarkable volumes: Elsie Venner and The Guardian Angel. The former, and more striking of the two, is a weird tale of destiny, dwelling upon the idea of transmitted qualities in: a manner which suggests comparison with The House of the Seven Gables; but Holmes's story has a more incredible plot, the chief character being a sort of sprite, having mysterious relations to the animal world, a snakecharmer, herself half a snake (as Donatello in Transformation is half a faun), like the Lamia of tradition and Keats, but endowed with the graces of Undine. The vigorous sketch of the hero Langdon, with which the book opens, is impaired by the somewhat obtrusive manner in which he is vaunted as a type of the blue-blooded or Brahmin caste of New England. The same pathological treatment of human nature pervades The Guardian Angel, which turns partly on mysterious physical and psychical afinities. The Mrargaret of Sylvester Judd, a Unitarian clergyman of Maine, belongs, by virtue of some of the problems with which it deals, to the category of metaphysical novels. This work of decided genius, to which a just tribute is paid by Mr Lowell in his Fable for Critics, has hardly attained the popularity it merits, owing to the slender character of the plot, and the frequency of the dissertations by which the author endeavours to impress his own views of society, art, and religion. But it is a powerful picture of the more ideal sides of New England life; the character of Margaret and Chilion are permanent types, and the whole book is extremely fresh and original. The most genuine successor of Hawthorne is Theodore Winthrop, who left a counting-house in New York for an adventurous life, and fell at Great Bethel in 1861 in his thirty-third year. His best novel, Cecil Dreeme, teems with life-like charactcrisation, bathed in a poetic element of mystery; and John Brent, the next in merit, is a graphic sketch of romantic incidents in the Far West, drawn from his own experienco.

Of tales evincing talent there is a pletho.s; they lio on the shelves of the libraries "thick as the leaves on Vallombross." Among those worthy of note ars the pictures of Sonthern society by W. G. Simms, whose fertile brain is said to have prodnced fifty volumes in twenty years; The Bee Hunler, and other narratives of the south-west, by T. B. Thorpe of Baton Rouge ; John Neal'a Rachel Dyer and Ruth Elder; the classical romances of Ware, Zenobia and Probus and Julian; Mrs E. O. Smith's Indian Remiriscences; The Linwoods, Hope Leslie, and other philanthrophic tales of New England, by Miss Sedgwick; Mrs Lydis Child's Hobomok, and her Philothea, a romance of Pericles and Aspasia, somewhat too sentimental in its style, and not free from anachronisms ; with the anti-slavery pictures represented by Mrs Stowe's Uncle Tom, a book which, inspired by ordinary ts'ent and written in an earnest spirit, owed its success to the air of simple narration which pervades it, and its having the aggressive strength of a political pamphlet appearing at the right time in harmony witr the passion on one side of an impending struggle. The light by graceful and often incisive sketches of N. P. Willis take a somewhat higher rank. A rapid writer, but at his best a brilliant colourist, his fertile fancy has been emplojed in almost all the countries of Europe, and in his own, in prose and versc, with more than average success. His Pencillings by the Way and People I have Bfet are among the most agreeahle of books for a leisure hour; his descriptions are always interesting as well as accurste, snd his characters, grave and gay, are generally life-like. His picture of the lndian girl, Nunu, in the Inklings of Adveneure, is fascinating and vivacious enough to be worthy of a higher artist.
Books of Travel, among which those of Mr Willis hold a 'rrave!e respectable place, superabound in the literature of the West. Nine-tenths of the literary men of America have crossed the Atlantic, and nine-tenths of those who have done so have published their impressions of the Old World, with every variety of good and bad taste, from the Old Home to the Innocents Abroad. After that of his birth, an American author's travels are the first essential of his being. We may next predict his praise of Italy, his half satirical half curious view of England, and his wonder at the Pyramids. Of the multifarious descriptions of Europe to which this habit has given birth, the worthiest of note are those of Hawthorne and Emerson, of Story and Cheerer, and Curtis's Nile Notes. In the "Lotus Eating" of the last named we hare pleasing reminiscences of the wateringplaces of his own country. But the most interesting records of western scenery are those of Fremont; Winthrop's Canoe and Saddle, and Life in the Open Air; and the numerous remarkable "Excursions" of Emerson's leading pupil, H. D. Thoreau-his "Maine Woods," "Cape Cod," and "Merrimack;" with the racation rojage to Cuba of the younger Dana.
4. A leading feature of transatiantic literature is its Huaoce Humour is a word of many meanings: it begins on the loiv level of any laughter-proroking absurdity, and rises, as in the speeches of Lear's Fool, to a tragic height. In the Greck classics it. shows itself in the Rabelaisian exuberance of Aristophanes 0- in the Socratic irony: in the English we have an even more subtle sppreciation of the curiosities of character, and a deeper sense of the contradiction or conflict between the higher and lower phases of human nature. In Sterne and Fielding, as in Ben Jonson, we have every man in his humour. As developed in America, this quality of the mind seldom penetrates to the under-currents of life; its insight is clear but not profound; it relies mainly on exaggeration, and a blending of jest and earnest which has the effect of singing comic words to a sad tune, or telling a preposterous story with a grave face. Mr Lowell makes us laugh by his description of a negro "so black that charcoal made a chalk mark upon him," and of a wooden shingle "painted so like marble that it sank in the mater." Mr Bromne (Artemus Ward) excitcd the same sort of laughter by his remark in pointing to a hill daubed on his canvas, " the highest part of this mountain is the top." In both cases there is a surprise, excited in the one by a falsehood plausibly pretending to be the truth, in the other by a truism asserting
itself as a novelty. Similarly, when the latter writer, among his ancedotes of tho conscription, tells us that "one young man who was drawn claimed to bo exempt because he was the only son of a widowed mother-who supported him," the amuscment is all in the unexpected turn of the last three words. In contradistinction to this, the humour of Don Quixote, of Falstaff, of Uncle Toby, of Major Bath, of the Vicar of Wakefield and Sir Roger de Coverley, of Major Pendennis and Bishop Blougram, consists in its truth. What these people do or say never surprises us. It is absurd as a great part of human life is absurd, and, laughing at them, we feel we are laughing at something in ourselves. The best recent instances of this higher kind of "humour which American literature affords are to bo found in Washington Irving, in Mr Lowell's Biglow Papers (to which, as a considerable national poem, we sball have to revert), in passages of Mr Longfellow's Kavanagh, in Mr Hawthorne's Seven Galles and Seven Fagabonds, and in the prose and verse of Dr Holmes. In his three pleasant volumes, The Autocrat, The Projessor, and The Poet at the Breakfast Table, there is much that might have been omitted, more that should have been compressed. They contain too many jokes, good, bad, and indifferent, and are tainted here and there with what we must be excused for regarding as New England slang. But they are pervaded by a genial glow of kindly sympathy, and they exhibit, with a quaint mannerism-not without its attractions-personages, and situations, and sentiments which we recognise as at once odd and real. Dr Holmes's works have frequent reflections of Montaigne and Burton, and the Noctes Ambrosiance; be mixes pathos and whimsicality after the manner of Lanb and Sterne. His humorous verses, the best known of which, "Daily Trials," " Evening, by a Tailor," and the "Musie-grinders," inevitably recall the drolleries of Hood. His genius has, nevertheless, an original rein, less mellow, but at its best as genuine as that of his older masicrs. Several of the miscellancous papers, essays, and peaiocicals belonging to the earlier years of the century, as Salmagundi, The Talisman of Bryant and Verplanch, The Olipodiana of W. G. Clarke, and the Sparmo Grass Papers, are frequently enlivened by sparkles of wit and evidences of keen discrimination. In others wo trace the germs of a vicious style which threatens to degrade the lighter literature of the States. The Charcoal Shetches of Joseph Neal -which might be entitled Comicalities of the Mississippi -are among the earliest examples of the habit of playing with slang terms characteristic of his successors. An author who relies for effect on giving his imaginary personages such nicknames as "Darrson Dawdlc," "Peter Ploddy," "Tippleton Tipps," and "Shiverton Shanks," is more likely to be the cause of wit in others than the source of humour himself. During the last gencration in America the anxiety to be national has led many of her minor authors to make themselves ridiculous. To avoid walking like Englishmen, they have gone on all-fours; to escapo the imputation of Anglo-Saron features, they have painted their faces with ochre and put ear-rings through their nostrils; forsaking the speech of Addison and Steele, they have expressed themselves in an unsecmly jargon of strange tongues. Of this mocking-bird bumour the most legitimate form is that of the Biglozo Papers, whero the New England dialect is employed with effect to givo voice to the sentiments of that district of the country during the national struggle, on one side of which it took the lead. A similar justification may be put forward in behalf of the Californian peculiarities, which are perhaps not too prominent in the often really humorous pieces of Bret Harte. Tho mixture of two dialects in the Breitmann Ballads is a bolder licence, though for the best of these Mr Leland
may plead the wide-spread use of the nongrel speech, and the original success of a drollery which has only become tiresome from his not knowing when his readers have had more than enough of it. The parodies of Mr Browne (Artemus Ward) are open to the same criticism. The writer was a mau of wit-and talent, and therefore his writings aro amusing. They are good specimens of tho worst style of satire: for the wit that relies on bad spelling is almost as false as that which consists in bad language. In rindication of the "Showman," it must, however, be observed that his sarcasm is generally directed against mean or ridiculous things. Dut his examplo has paved, for those who have caught the trick of his phrase ano who aro unrestrained by his good feeling and good sense, an easy descent to tho lowest form of light literaturethat which panders. to the vice of moral scopticism and thrives on the buffoonery of making great and noble things appear mean or ridiculous. The names of those who habitually feed on mental garbage should be left to sink into the oblivion from which they have unfortunately emerged. It is painful but necessary to observe that some of the more considerable writers and thinkers of the New World are apt to coudescend on oceasion to this burlesque way of writing. American light literature bristles in puns which are at best the "a-b abs" of wit. Of these, Mr Lowell (a severe critic of everything English) has made the worst-" Milton is the only man who has got much poetry out of a cataract-and that was a cataract in his cye." Mr Leland, the next worst, in his book of travels-" If a thing of beauty be a jaw for ever, as the American said of his handsome, scolding wife, then the donkey boys of Cairo are the most jaw-ous and beautiful creatures; for the sound of their voices drieth not up." Eccentricities of this sort, with the graver irreverences which intrude themselves even into the pulpits of the West, should be universally discredited as blasphemies against the first principles of taste. They are as "flat, stale, and unprofitable" as the contortions of a wearied clown. True humour-as ever in our classics -must go hand-in-hand with seriousncss; it must never forget that behind the comic there is a tragic element in human life. The mere "farco" is contemptible, because it is as unnatural as the expression of a countenance distorted by a continual grin. In forgetfulness of this hes tho greatest danger of the recent literature of America, and wo can only trust to the higher intellectual instincts and tendencies of the age to detect and resist it.
5. Ned England Transcendentalism.-Religion, the Theology first motive power of thought in America, has continucd to flow, both in its old channel-that of the orthodox Puritanism which came down from Eliot and Edwards through Dwight to Hudge and the Princeton Essays-and in another, that of the new forms of faith adrocated by W. E. Channing, and with gravely heterodox modifica- Channag. tions by Theodore Parker. Criticism of Channing's theological position is apart from our purpose here. He claims notice in a review of literature by the vigour of his conceptions and his graceful and correct expression of them. His carliest considerable essay, the Moral Argument against Calvinism, one of the best known of his numerous controversial works, indicates by its title his prevailing attitudc. He relied through life on a priori moral arguments, and employed them as his engines of attack against all persons, institutions, or practices that offended his rigid sense of justice or his enthusiastic bencvolence-e.g., Napoleon I., War, and Slavery. A gencrous indignation against wrong, and keen practical genso of the duties of life are more conspicuous in his writings than speculative power; but his insight into the political position of parties and the probability of future
contlicts is remarkable. Though at variance with the older creeds of Christendom, Channing's writings are everywhere marked by a reverential spirit, and not unfrequently by a touch of asceticism inherited from the Puritan days, whose abstract doctrines alone he proposed to modify. On the other hand, he admired the higher forms of Art, and in his eloquent essays on Self-culture anticipated much that has been said more recently by Emerson. He loved beauty as well as virtue for itself, and his style, except on rare occasions, is free from the defects of taste so frequent in the writings of his contemporaries. His reviews of Milton and Fenelon ahound in passages-as the picture of religious peace in the latter -which exhibit the delicacy and the breadth of his sympathies. Theodore Parker-unlike Channing-assails the whole basis of the old theulogy, and frequently errs from arrogance and impetuosity. He had, perhaps, a more powerful but a less highly cultivated mind. He was a pupil of the transcendental movement of New England, to which, because of its influence on literature and its association with the most original thinker of the New World, we must accord some space.
In the early years of this century the mental philosophy of the West, beyond that which was a handmaid to the Calvinistic theology, was limited to commentaries on Locke and Brown and the eclecticism of Cousin, when the republication of Sartor Resartus, and the works of the German idealists which it introduced, gave life and roice to a new intellectual world. Ideas which filter slowly into English soil and abide there for a generation, flash like comets through the electric atmosphere of America. Coleridge and Carlyle were hailed as prophets in Boston while their own countrymen were still examining their credentials. The rate of this transformation was surpassed by its thoroughness. The converts put their teachers to the blush; and in recoil from solid Scotch psychology and practical materialism, rushed to the outer verges of idealism, mysticism, and pantheism. Their quarterly magazine, the Dial, during the space of four years represented their vicws throughout four volumes of miscellaneous merit. The Dial is a pantheon from which only Calvinists and Utilitarians are excluded, where the worshippers, Parker, Fuller, Alcott, and a host, x reet and sing hymns to Confucius, Zoroaster, Socrates, Goethe, Tieck, and Richter, set to German music; and pass from antiquated laudations of Homer and Shakespeare to friendly recognitions of new heresies; from thoughts on labour to puffis of poetasters; from Hindoo mythology and Chinese ethics to 19th century truisms about progress and union, prudence and humanity; from soaring among the heights of a modern religion of beauty to raking among the tangled roots and dead leaves of a second-hand Orientalism. But those vapours of idealism might have soon faded into the light of common day, had not all their best aspirations been concentrated ano vitalised by Mr R. W. Emerson. His first oration, delivered at Cambridge thirty-five years ago-the refrain of which is the independence of American literature-is referred to by recent critics as a landmark in the annals of their country. In this discourse-as in the six volumes through which the author enforces the same conceptions-there is scarce anything of which, taken separately, we need fail to trace the pedigree. Fichte had many years before spoken in the same strain of the rocation and nature of the scholar; the view of science comes from Swedenborg and Schelling; and the dignity of labour from Carlyle. The uriginality, as is the case with the author's whole system of thought, is in the combination-which, it may be, is the only kind of originality now possible. His position, as far as, it is tenable, illustrates the fact that the divisions of philosophy are being continually altered as old systems form affinitics with new
beliefs and hastorical conditions. Mysticism in the New World has been combined with the opposite extravagances of Mount Lebanon and Oneida Creek, but it has been distinguished from idealism proper by its exaltation of emotion above reasoning. Mr Emerson, defining transcendentalism as "the saturnalia of faith," differs from the older mystics in his absolute rejection of all external authority, his almost arrogant confidence in the sufficiency of the inner light, and his new American preference for the active to the passive sides of life. He has an historical sympathy with the unsatisfied aspirations of all ages, with the day-dreams of restlessness in search of rest that inspired the quest of the Sangreal, and led the monks to Christianise the eastern Nirvana; that-laid out Brook Farm in Massachusetts, and gave Novalis and Neyman back to the fold of Rome: but he will not be drawn by them into any church with walls. All religions are to him "the same wine poured into different glasses." He drinks the wine, and tries to shatter the glasscs. His unflinching scepticism pierces the armour of all definite dogmas, while he entrenches himself behiud an optimism like that of Spinoza. Mysticism has in the main been fatalistic. As a developed system, its natural home is in the East; where the influence of great uniformities of soil and climate have only in recent years been partially counteracted by the conquering activities of an energetic race. Beneath her. burning sun and surrounded by her tropic vegetation, the mass of men were overwhelmed by a sense of their insignificance, and this feeling of subjugation was intensified by absolute forms of government. The same listlessness which permitted a secular and priestly despotism, led its victims to welcome the idea of a final absorption of their individuality. Their philosophical ambition was to pass into the framework of a gigantic nature, to be "rolled round the earth's diurnal course with rocks and stones and trees." There is a relic of this spirit
 once of the Epicurean and Stoic systems; but the doctrines of passive obedience had been banished from Greece as early as the overthrow of the Pythagorean institute. They revived in the dark and middle ages, when the church took upon itself the task of legislating for the intellect; and even the precursors of the Reformation were possessed with an almost oppressive sentiment of resignation. The reproduction of the Oriental spirit in America, in so far as it is genuine and not the mere expression of a love of far-fetched quotations, may be attributed to external influences in some respects comparable to those which weighed on the inhabitants of ancient India. In the Western, as formerly in the Eastern World, nature still struggles to assert her old supremacy, and threatens to domineer over men's minds by the vastness of her empire. But in other respects the conditions are reversed. In place of stagnation and uniform although magnificent decay, we have to deal with the manifold progress of 19th century civilisation in a land where every one is more or less inspired by the resolve of the modern mariner with an ancient name to "sail beyond the sunset" in pursuit of fresh adventures; where the energies of the individual are in constant, and in the long run triumphant, struggle with all that tends to restrict the full sweep of his arm or to retard the frecst activities of his mind. Where every moon sees new forests felled, new rivers crossed, new fleets built, new tribcs amalgamated, new discussions raised, and new problems solved, mysticism, if it exist at all, must take on a form very different from that handed down from the East of 3000 years ago to the Alexandrians, and transmitted to the European ages of implicit faith by the pseudo Dionysius. Mr Emerson strikes the key-note of the difference when he writes, "Feudalism and orientalism had long enough thougltt it majestic to do nothing; the modern
majesty consists in work." Retaining from the mystics his belief in the supremacy of tho higher emotions, he substitutes for a religious creed an idealised view of modern physical science. His combination of stern practical rectitude with an ideal standard is his point of contact-with Puritanism. A chivalric nobility, in which beauty and goodness are blended, is at once the goal, the sanction, and the motive of his ethical system. Praise of the virtue which, transcending all prudence and disdaining all consequences, is its own reward, is the refrain of his moral monologue. His severo censure of Gocthe's artistic indifferentism recalls the age when the Bible and theological commentaries were regarded as the sum of honest literature. Ho writes of our great dramatist in the spirit of the men who closed the theatres: "He was the master of the revels to mankind"-a sentenco far removed from the spirit of modern art-worship. But those which follow, protesting against tho opposite extremes of austerity, indicato his divergence on the other side from the old faith of New England.

Mr Emerson is, we believe, most widely known in this country by his Representative Mren: by no means the most satisfactory of his works. A series of generally acute criticisms, pervaded by no well-marked ethical idea, it leaves on the mind a somewhat indefinite impression. Its categories are not exhaustive, and at is difficult to determine on what principle they are chosen: but it serves as an interesting point of comparison with the corresponding lectures of the great English advocato of hero-worship, to the suggestiona of which it probably owes its existence. Mr Carlyle, whose whole faith is centred in strong individualities, adopts tho view of history which practically resolves it into a series of biographies. Mr Buckle, caring little for persons, and confiding rather in general laws, resolves biography into history. Mr Emerson on this question steers a middle course. He believes in great men, "to educate whom the state exists, with tho appearance of whom the state expires;" but he regards them as inspired mouthpieces of nniversal or national ideas rather than as controlling forees. Their mission is not so much to regulate our action as to "fortify our hopes." Possessed of a larger share of the Over Soul which " makes tho whole world kin," they apprehend and explain phenomena which have hitherto passed unheeded; but their indirect services are the best. Their examples, more weighty than their acts or discoveries, are perpetual encouragerments. The great man is an encyelopxdia of fact and thought; the belief born in his brain spreads like a current over humanity, and he becomes for a time the golden key to the ill-defined ideal of the multitude. But his carcer should rouse us to a like assertion of our liberties. We ought not to obey, but to follow sometimes by not obeying him. Our author accepts the position upheld by Aristotlo and popularised by Macaulay, that different forms of government are adapted to different social conditions; but maintains that the tendency of modern simes, attaching moro weight to the equality of persons and less to the inequalities of property, is towards Democracy, With which and the industrialism of his age he has in the main a cordial sympathy. He believes in collective wisdom as the best cheek on collective folly, and, allowing that the otate exists for its members, he thinks they can aet best in union when all are subject to the fewest external restraints. He differs from Thoreau and others of his disciples in having no share in their selfish izolation. His best essays, woven of two curiously intersecting threads, present us with a unique conjunction of sbrewdness and idealism. There never was a mystic with so much of the spirit of the good farmer, the inventor, or the enterprising merchant.

As regards form, Mr Enerson is the most unsystematic of writers. The concentration of his style resembles that
of a classic, but, as with others who have adopted the aphoristic modo of conveying their thoughts, he everywhere sacrifices unity to riches of detail. His essays are bundles of loose ideas tacked together by a common titlo, handfuls of scraps tossed down before his audience liko the contents of a conjuror's hat. He delights in proverbs and apt quotations; be exaggerates like an American, loves a contradiction for itself, and prefers a surpriso to an argument Ilis epigrams are electric shocks He sacrifices everything to directness. Iis terse refinement of phrase and trenchant illustrations are his charm. His ideas are on the scalo of a continent; his sentences are adapted for a cabinet of curiosities-bits of mosaic work, sweeping generalisations given in essences. His style, armed with points like tho bristles of a hedgehog, wants repose. This feature is conspicuous in the English Traits, where his estimates of men and things, frequentiy felicitous and generally racy, are often marred by an unpruned violence. His eyo is keen, but its range is narrow, and ho is ignorant of the fact. Unconsciously infected by the haste which ho condemns, he looks at other nations through the folding telescope of a tourist. His representations of our leading writers and statesmen seldom rise above the level of Mr Willis's Pencillings by the Way. His taste is constantly at fault, and an inceseant straining aftor mots often leads him into caricature. His judgments of those whose lives and writings do not square with his theories are valueless; and in dealing with foreign languages he betrays the weakness of his scholarship.

One qualification for a good critic is a well-defined artistic standard, another is the dramatio capacity of placing himself for the time in tho position of the person who is being criticised. Mr. Emersou has neither of these. With the spirit of a fearless inquirer, ho unfortunately blends so much presumption as to feel an absolute indifference regarding the opinions of others; and this in excess constitutes a moral as well as an artistic defect. Thought is free, and the expression of it ought to be so; but when our thought wanders very far from that of the majority of the wise and good, we are bound to watch it, to sift its conclusions, and to state them moderately. Mr Emerson's thought does wander far, and it runs fast; he does not know what moderation in expression means, and his almost childish love of contradiction perpetually, and often justly, provokes offence. He rides rough-shod over the most cherished convictions, or waves them aside with a complacent smile and a sort of divine impudence. Every claim of authority he receives as a challenge to his personal rights, and he stabs the bull Apis, in utter disregard of the listorian's warning. His impatient anticipationes nature detract from his reliability in matters of detail, while by a similar carclessness he repeats and contradicts hinself with equal frequency. His soundest judgments relate to the men around him, of whom he is at once the panegyrist and the censor. All that is weak and foolish in their mode of life he condemns, all that is noblest and most lopeful he applauds.

Mr Emerson has left his mark on the century; to use a favourite phrase of his own, "be cannot be skipped." Even where bis results are least satisfactory, his intense suggestiveness is the cause of thought in others; and as one of the "genetic" powers of modern literature, his fertilising influence will survive his inconclusive speculations. His faults are manifest: a petulant irreverence, frequent superficiality, a rash bravery, an inadequate solution of diffcultics decming itself adequate, are among the chicf. But he is oniginal, natural, attractive, and direct-limpid in phrase and pure in fancy. His best eloquence flows as easily as a stream. In an era of excessive reticenco and cautious hypocrisy he lives within a case of crystal where
there are no concealments. We never suspect him of withholding half of what he knows, or of formularising for our satisfaction a belief which he does not sincerely hold. He is transparently honest and honourable. His courage has no limits. Isolated by force of character, there is no weakness in his solitude. He leads us into a region where wo escape at once from deserts and from noisy cities; for he rises above without depreciating ordinary philanthropy, and his philosophy at least endeavours to meet our daily wants. In every social and political controversy he has thrown his weight into the seale of justice, on the side of a rational and progressive liberty; and his lack of sympathy with merely personal emotions is recompensed by a veneration for the ideal of the race which recalls the beautiful sentiment of Malebranche: "When I touch a human hand I touch beaven."

Poetry.

Half the literary men and all the literary women of this century in America have written verses; most of them are respectable and many are excellent. But a brief review of the poetry of the West must dwell on the works of four or five authors who most clearly and saliently express the main tendencies of their nation. It must suffice here to name as familiar, or worthy to be so, the graceful vers de :ociété of Holmes, especially his "Punch Bowl" and "Old Ironsides ${ }^{\prime \prime}$ the patriotie chants of James Percival ; the sparkling fancies of J. R. Drako's "Culprit Fay;" the fashionable satires of Halleek; the lyries and romances of the great traveller and prolifie author, J. Bayard Taylor; the well-balanced stanzas of Hillhouse; the plays of Conrad and Bird: "Woodman, spare that Tree" and the "Whip-poor-Will." by G. P. Morris; A. B. Street's "Settler," and "Forest Walk;" and, pre-cminent among female minstrels, Mrs Sigourney, whose blank verse descriptions of nature approach those of Bryant; the youthful prodigies, Lueretia and Maria Davidson; and Maria Brooks, authoress of the richly imaginative southern romance of Zopliel, whom Southey, her friend and admirer, pronounced to be "the must impassioned of poctesses." We proceed to review the position of the really great poets of the United States, as representing somewhat different mannersand modes of thought.

1. The European School. -Of these, in our judgment, Mr Longfellow is still the first. His works are free from the defects that stamp the national literature of his country. He has none of the uncouth power and spasmodic exaggeration of his contemporaries. He is all grace, polish, and sweetness. His prose masterpiece, "Hyperion," is the key-note of his minor poems. The source of their inspiration is "Outre Mer" among feudal towers, Flemish towns, and Alpine passes. Like Irving in the variety of his cuiture and superior in genius, his imagination is Teutonic rather than American. He lingers in Nuremberg, Bruges, and Prague; and chooses for his emblem of life's river, not the Ohio, nor the Hudson, nor the Assabeth, but the "Moldau's rushing stream." His "New England Tragedies" are perhaps his least successful efforts, partly because dramatic literature has seldom yet flourished in American soil, and partly because his sympathy with the ruder age is not keen enough to enable him to vitalise it. Mr Longfellow has given us the best translations in the world from Swedish, Germau, Spanish, and Italian authors, and many of his best verses are avowedly suggested by proverbs or sentences, or bits of old romance. Λ few words from an old French author give him the burden of the "Old Clock on the Stairs;" a leaf out of Mather's Magnalia Christi is rhymed into the "Phantom Ship;" the ballad of the Count Arnaldos sets hin dreaming over the seeret of the sea; a verse of Euripides is the key-note to his "Voices of the Night;" a few lines from Goetio gather
up the essence of the "Psalm of Life." In the New World, but not of it, he dwells with almost wearisome fondness on the word "old." Volumes of old days, old associations that we caunot buy with gold, quaint old cities, old poets and painters, sweet old songs, old haunted houses, dear old friends, the grey old manse, Nature the dear old nurse, dear old England,-on phrases and thonghts like these his fancy broods. American verse is frequently rough-hewn and audacious, sometimes obscure aud pedantic; its novelty is often wore striking than its truth. Every sentence that Longfellow has penned is as clear as crystal and as pure as snow. He wears his weight of learning lightly as a flower; and though he cannot create, he cannot touch without adorning. Ho seldom gives us thoughts absolutely new, but he puts our best thoughts in the best language. Critics react against his popularity, and complain of his want of concentration and the conventionality of his epithets (a fault more rare in his later volumes); but his place as the laureate of women and children and gentle men is unassailable; and there are seasons when we-prefer his company to that of the grand old masters, when we seek an arodyne rather than a stimulant-

> " His congs have power to quiet
> The restless pulse of care."

Longfellow's command of verse alone proves him to be a genuine poet. There are passages in the "Arsenal," the "Occultation of Orion," the "Building of the Ship," and the "Household Poems" unsurpassed in melody by any in contemporary English verse. The introduction to "Hiawatha," the closing lines of "Evangeline," and some of the character. sketches which preface the "Tales of the Wayside Inn," have a music equally attractive and more decidedly original. The highest flights of Longfellow's imagination are in the strangely-confused old-world story of the "Golden Legend;" but the work on which his fame most securely rests is "Hiawatha." This poem, in which a series of idylls are strung together on the thread of an idea common to Indian and Scandinavian legend, has that exhilarating flavour of nationality wanting in many of the author's works, and it yields to none of them in artistic finish. The monotony of the verse is like that of a bird's song which has only two or three notes, and yet from its everlasting freshness never palls upon the ear. Most modern attempts to reproduce old ballads put new wine into old bottles; but the American poet has thrown himself as completely into the spirit of aboriginal western life as be has into that of Gothic paganism in the "Challenge of Ther." Like Chibiabos the musician he is at home among the pine-groves and the prairies and "the great lakes of the Northland;" and

> "All the many sounds of Nature
> Borror sweetness from his singing."

Longfellow's deseriptions charm us more than they astonish. Inferior in lusuriance to those of "Enoch Arden," in intensity to those of "Locksley Hall", in subtilty to Brorsn. ing's Italian pictures, they are superior in simplicity. If they do not adorn Nature as a mistress with the subjective fancies of a lover, they bring her before us as a faithful nurse, careful for her children. In "Evangeline" the poct follows the wheels of the emigrant's waggon orer

" Billowy bays of grass, ever ro'ling in sunshine and shadow ;" and
 "Orer thent mander the buffalo herds and the elk and the roebuck."

Iliarratha speaks of Nature with the familiarity of an inhabitant; there is no trace of the grandiose style of the tourist. In the best episodes of the volume-as tho account of the hero's childhood and his friends-of the wooing of Jinnchaba-of the son of the evening star-of
the ghosts and the famino-the parable of human life, with its incidents of birth, lore, and death - of cirilisation and decay-is told in a narrative of child-like tenderness as well as masculine grasp. He whe runs may read it, and yet the whole is lit up by an imagination like an aurora borealis. A recent New York critic ridicules the European view of "Hiawatha" as an American poem. It is true that the feverish ardour of Wall Street has no place in its pages; but it is none the less manifestly transatlantic and sui generis. In celcbrating Red Indian life, it inevitably discleses some of the features of the race which has come into close contact with that life. The New Zealand myth about the strength of the dead enemy passing into his conqueror applies here. Mr Dixon has dwelt very justly on the extent to which the aborigines of America have communicated their spirit to the pioneers before whom they have given way. Hiawatha sings of the decadence of a primitive people in strains that recall by their pathos the old British legends of the death of Arthur, but has also a prephetic side; from the meeting-point of two races it looks before as well as after.

More devoid of national sentiment and local colouring are the remarkable verses of Edgar Allan Poe, to whom we have before referred as a romancer. If the aim of poetry be to astonish or to fascinate, Poe takes a high rank among poets. According to Wordsworth's definition of the art, he has hardly a place among them at all. He teaches nothing, and living in one world writes in another. All we know of the personality of most of the authors we have named adds to the charm of their works. Regarding Poo's career it is othermise. The vain and captious jealousy of his criticism is as repulsive as his graver defects. It has been said that he is the greatest of American writers in verse. This is an exaggeration of his powers only surpassed by his own exaggeration of them. It is true, however, that by pure intensity of deliriums he now and then takes a flight beyond that of any other Wcstern poet. His "Politian" is perhaps the stupidest fragment of a play that exists. But in his lyrics the fervour of his sympathy with himself makes artistic recompense for his want of sympathy for others. The passion of "Annabel Lee" is at a white heat, and is pervaded by a true pathos. The class finish of the best of his verses is unsurpassed, and his musical cadences give a charm even to those which are comparatively meaningless. The "Raven" is at the worst a marrellous piece of mechanism; and the same delicacy of touch is everywhere visible in the rushing lincs of "Annie," "Eulalie," "Ulalume," "Lenere," and the "City in the Sea" The purity of those poems is one of their most remarkable features. By the side of the auther's life, they are like nuns in the convent of a disorderly city; but they are at the same disadvantage-their iselation gives them an air of unreality. The "banners, yellow, glorious, golden," of his fancy "float and flow" on the roof of an imaginary palace.
2. School of American Scenery and Adventure. The French critic M. De Tocquerille remarks that, in democratic communities, where men are all socially insignificant, poetry will be less apt to celebrate individuals, but will incline to dwell on external nature or on the ideas which concern mankind in general. It will be either descriptive or abstract The works of Mr Bryant, the earliest considerable American poet, help to vindicate the generalisation His "Thanatopsis," written in his 19th year, is perhap $\overline{3}$ the masterpiece of his sombre conteraplative imagination The reason why the author has never eurpassed this effort of his youth is be found dartly in the cast of his mind, characterised lis a narrow greatness, and partly in the fact that, during the major part of his life he has been constrained to "scrawl strange werds with the barbarous pen" as the cditor of a daily newspaper: a fact
to which, at the close of his "Green River," he makes a touching reference. Mr Bryant has lived in thronging cities, an honest and energetic politician; but in his leisure hours his fancy has roamed to breezy hills and ralleys and the undulating sea of the prairies. The perpetual auturn of his writings is peculiar. He has written smoothly in various measures; but he is nefcr lively. An American Alastor, he loves "the air that cools the twilight of the sultry day" better than morning "clad in russet vest." In the bcautiful verses on the "Death of the Flowers" his ear catches a dirge in the wind
> "The south wind searches for the flowers whose fragrance late he bore,
> And sighs to find them in the wood and by the stream no more."

The high rank grass of the meadow is to his eye the garniture of the graves of a race represented by his "Disinterred Warrior." His "Evening Wind," "Forrst Hymn," "Monument Mountain," "The Burial Place," and "Tli:s Past," are set to the same slow music, and pervaded by the thought of life as the avenue of death. If we compare his "Address to a Waterfowl" with Wordsworth's or Shelley's "Skylark," we appreciate the monotony of his mind, which is like that of Cowper witheut Cowper's occasional vivacity. Mr Bryant stands on a high leved, but the space he covers is limited; he has.no touch of humour, and only the distant pathos of prevailing melancholy. Master of his position where he is at home in the woods, he loses his inspiration when he draws near his own cities. His nature-worship has a parallel in the feeling which animates some of the most graphic passages in Nerv England prose; as when Emerson writes-
"At the gates of the forest, the sarprised man of the world is forced to leave his city estimates of great and small, wise and foolish. The knapsack of custom falls off his back with the first step be makes into these precincts. Here is sanctity which shames our religions, and reality which discredits our heroes. ... We have crept out of our crowded honses into the night and morning.

The incommunicable trees berin to persuade us to live with ibem, and quit our life of solemn triffes. Here no history or church or state is interpolated on the divine sky and the imraortal year."
The whole life and writings of the morbidly eccentric genius H. D. Thoreau are a comment on the results of this one-sided spirit. It pervades half the volumes of Theodore Winthrop, a manlier though less ariginal mind. It has taken possession of the poetic adrocate of Far Western and wild Indian life, Joaquin Miller, whose "Songs of the Sierras" in their best passages add to Bryant's descriptive power more of the fire of adventure, finding expression in the quicker pulse of the verse. But the lyrics of this writer, though the vehicle of national thought, bear the mark of forcign influence. Their cadences are echoes of Mr Swinburne. The impulse which made captive the "Schotar Gipsy," Which the hero of "Locksley Hall" welcomes and then rejects, is a leading feature of Western literature. Imaginative and ardent minds, oppressed by what Mr Arnold calls "this strange disease of modern life," try to escape from the region of the real drama into that of the ideal lyric,-"arva, beata petamus arva, divites ct insulas," -and have now and then endeavoured to convert it into an actual idyll, as when Thoreau buried himself in a \log hut by Walden lake, or Theodere Winthrop, learing his ledgers in New York, scoured over the crags of Oregon; or Hórne, with his "Orion" still unsold, was found mining in a quarry of New South Wales. But this emigré spirit, When put into practice, ultimately cures itself: a poet soon tires of working with his hands for a livelihood. The aspirations of Clough's "Bothie" are stifled by the vitiose cura of 'a hard life, or terminate in the catastrophes of a fanaticism, such as Hawthorne has branded with his genius in the Blithedale Romance. The philosophical refugees
and that the solitude they desired charms only by its contrast with the civilisation they have left; as the beauty of the sea is its contrast with the shore. But this wandering impulse, strong in the ancient Greek and the modern English race, has colonised and civilised the world: it is especially atrong in the Anglo-American. The very restlessness which makes his cities so noisy bid hir long for a remoter rest, and this longing acts in conjunction with more material demands to drive him across the Mississippi, and pioneer the way to the Pacific.
3. Transcendental and Eccentrio School. - The freshness which breathes through Mr Emerson's essays reappears in his poems: but they are seldom so successful as his prose. Apart from the obscurity of their matter, which is great-for he has chosen verse as the vehicle of his remoter mysticism-they are defaced by frequent mannerisms and incongruities: most of them are wanting in melody, many in syntax. The writer seems to trust to providence for his rhymes, and changes his metres at will. Nevertheless, his genius has a lyric side, and the imaginative sympathy with nature which makes his prose poetical; prevents his verse, even when awkward, from becoming prosaic. The rippling of rivers, the sough of the pine, the murmur of the harvest, and the whirr of insects pervade and give life to his descriptions. A morning light is thrown over his happiest pages, and some of his quieter reflective pictures are not unworthy of the author of the "Excursion." Interleaved between the gold-dust of Alexandrian rhapsody there are pieces that speak of a love that is neither "initial," "dæmonic," nor "celestial," but human. Of these, "The Dirge," "In Memoriam," "The Farewell," the lines "To J. W.," "To Ellen," and the "Threnody," are the most conspicuous. The prevailing tone of the greater part of Emerson's poetry is cheerful. Unlike those of Bryant, his "woodnotes" are those of the spring.

> "Thousand minstrels wake within me,

Our music's on the bills,"
is the perpetual refrain of the exulting worshipper of nature. His lines entitled "Good-bye, proud World," breathe the hermit-like spirit of Quarles or Andrew Marvell; but the Puritanism of older days has here assumed another shape. There are other pieces relating to the intercourse of men with each other showing a keen observation of common life and sound worldly wisdom, in neat quatrains and a few vigorous political songs. The "Hymn on Consord Monument" is strong and dignificd, while the verses relating to the civil war address the nation in forcible terms both of warning and encouragement. Those practical manifestoes are the more striking from the fact that they are printed by the side of others proclaiming in transcendental enigmas the emptiness of transitory things, the fixity of fate, and the doctrine of the absorption of the individual in the infinite.

Mr Emerson was one of the first to praise the extraordinary rhapsodies of Mr Walt Whitman, which have since attracted too much attention to be passed without notice. But although this author on varicus occasions displays an uncouth power, his success is in the main owing to the love of novelty, wilduess, aud even of absurdity, which has infected a considerable class of critics and readers on both sides of the Atlantic. Mr Whitman does not write in verse; he discards not only rhyme, but all ordinary rhythm. What there is of the latter seems to come by accident in lines of various length, and arranged either on no principle or on one which we have failed to discover. "The Leaves of Grass" is redecmed by a few grand descriptive passages from absolute barbarism both of manner and matter. It is a glorification of nature in her most unabashed forms, an audacious protest against all that cirvilisation has done to raise men abuve the savage
state. The "Drum Taps," a set of generally vigorous picturea of the war, are less objectionable; the dirge on Lincoln in particular has many qualities of a noble elegy,the imagery is rich though aometimes fantastic, and there is hc:e and there a wild music in the composition, -but it is still defaced by pedantic words and unjustifiable, because unnecessary, novelties of phrase.
4. Patriotio and Polittcal Poetry.-The assertion of Henri Beyle, that politics are like a stone tied round the neck of literature, must be accepted with a reservation; for if the songs make the laws, tive battles often make the angs of a nation. The growth of a history on their own soil is, in the minds of most Americans, a requisite to the full development of national art. English history inadequately supplies the desired background, for they cannot associate it with what they see around them. Memories of the Revolution war have, during this century, been recalled in some stirring verses, as "Paul Revere's Ride," in Mr Longfellow's "Wayside Inn;" but the most effective national poetry has been suggested by more recent e7ents. The "Biglow Papers," a series of metrical pamphlets, born Lowel . of the last great social and political struggle of the New World, are among the most original contributions to its literature. Mr James Russell Lowell is the author of several volumes of miscellaneous verse. His earlier efforts, buoyant and vigorous, but-bearing the marks of haste, display more impetuosity than power. His geniu's everywhere appears in contrast to Bryant's. Far from shrinking into solitary places, he loves great cities and their cries, and sets them to rhyme with hearty good-will. When he goes into the country, it is on a "day in June," to have his blood sent faster through his veins by the spring morning, and not to dream among the autumn woods of "Thanatopsis." His "Allegra," "Fountain," and "Indian Summer Reverie," are marked by the same jubilant energy and the same apparent carelessness. Mr Lowell's diffuseness is only half redeemed by his fluencty. He writes currente calamo; and, unchecked by any spirit of reverence, contemns what he is pleased to call "the blaspheming past" and the "dotard Orient." In dealing with the forms of nature around him, he shows a keen eye and a fine sense of analogies: his images drawn from history are less successful. Fev Americans know how to use the classics with reticence, and Mr Lowell's pages are infected with schoolboy commonplaces. His "Ode to Freedom," "The Present Crisis," with other semi-political and social pieces, are noble and stirring platform verse, but they will not bear analysis. His "Irene," "Requiem," and "Beg. gar Bard" are marked by genuine sentiment and true pathos. But the prevailing flaw of his earlier and later scrious poems-as "The Cathedral," and "Under tho Willows," is the confusion of inspiration with aspiration. In the "Fable for Critics," which may be compated with Leigh Hunt's "Feast of the Poets," he breaks ground on the field in which he has found his harvest. The merit of this piece lies in its candour and the general fairness of its criticisms, in the course of which "the whole tuneful herd" of American authors are reviewed with good-humoured banter. In several instances, as in the following, he shows himself alive to the defects which he shares with the majority of his countrymen-
> "Neal wants balance; be throws his mind always too far
> And whisks out flocks of comets and never a star:
> He has so much muscle, and longs so to show it,
> 'That he strips himself naked to prove he's a poct.'

The author's style is rapid and sparkling; his points follow onc another like the sparks from a Leyden jar; his love of freedom and truth and detestation of pretence are always admirable; but his ea:lier pooms are constant'y defaced by violences.

Mr Lowell informs us that the Mexican war, which he regarded as a crime perpetrated in behalf of slavery, led to the publication, in 1846, of -the first of his series of "Biglow Papers." After an interval of thirteen years, the second began to appear in 1861, and closed with the war in 1865. In his preface to those remarkable productions the author makes a successful defence of the language in which they are written. The more bomely standards of the present as compared with those of the last century give countenance to his mottoes-" Unser Sprach ist auch ein Sprach," and "Vim rebus aliquando ipsa verborum humilitas affert." The essential to the use of a patois is that it be natural to the writer. Mr Lowell has taken pains to show that the peculiarities of the Yankee dialect are not indigenous; that the pronunciation and meanings given to familiar words, and the employment of words now unknown in Eagland, are authorised by the example of our clder classics. We are more coacerned to know that he has been happy in his use of the words and phrases in question. The popularity of hiswork is in this respect a voucher for his success. The rural dialect seems to suit his genius better than the English of his university. The quasi-dramatic form he has adopted confines within limits a too discursive fancy. The letters of Mr Sawin are excellent exanples of the form of satire in which contemptible qualities are stripped of their varnish by the sheer effroatery of the wearer. The style of the book is more treachant and better matured than that of Lowell's other works, and it is really humorous. The humour of the "Biglow Papers" is broad and obvious. They derive their force from the incisive expression given to the sentiments shared by the author with a large section of his countrymen; and the lines most frequently quoted owe everything to a startling directness, something bordering on irreverence. Mr Lowell's poetical powers are set oa fire by political zeal, and his animosity sharpens the edge of his most effective verse. The satiric scorn of the lines put into the mouth of Calhoun, with the speeches of Garrison, Phillips, and Sumner, helped to hastea the irrepressible conflict of the contending forces in the Westera Continent. The second series of the "Biglow Papers" are animated by the spirit of an uncompromising Unionist as well as that of an Abolitionist. In these the poet's patriotism glows with a deeper fervour, and his songs rise out of the battlefield "like rockets druv' by their own burnin'." The graver poetry of this volume reaches a higher standard than the author has elsewhere attained. The short rural romance eatitled "The Courtin"" is oae of the freshest bits of pastoral in the language. The stanzas beginniag "Under the yallar pines I house," and ending "A nation saved, a race delivered," are his masterpieces.

Mr John Greenleaf Whittier is the political lyrist par excellence of America; and the best of his lyrics have a verve, swing, end fire that inpart to the reader a share of the writer's enthusiasm. His verse, rapid as a torrent, is perpetually overflowing its banks. No one stands more in need of the advice once given to Southey, "squceze out the whey;" and to no works more than to his is the maxim тлєóv $̄ \mu$ иov π avtós more applicable. There aro few more graceful tales in verso than those of his "Tent on the Beach." They are remarkable for their smoothness and quiet beauty of sentiment. The music of "Rivermouth Rocks," "Revisited," and the "Grave by the Lake" recalls that of Longfellow's best ballads. The most striking is the "Brother of Mercy," Piero Luca, who, like Abu Ben Adhem, loves his fellow-men. The same trust in the divine leve which is the sum of Whittier's ardent faith, appears in the beautiful verses entitled "The Eternal Goodness" and "Our Master." The strongest lines in the book, addressed is "Thoursc Sezr ising," have the rare
merit of condensation. Of Whittier's national lyriex, the most powerful is "Laus Deo," the burst of acclamation suggested by the passing of Lincoln's constitutional amendment. His narrative power is best illustrated in "Maud Muller," an origiaal and more innocent version of Browning's "Statue and the Bust," springing up in an American meadow.

V.-Sumarar.

The crities of one nation must, to a certain extent, regard the werks of another from an outside point of view. Few are able to divest themselves wholly of tho influence of local standards; and this is pre-eminently the case when the carly efforts of a young country are submitted to the judgment of an older country, strong ia its prescriptive rights, and intelcrant of changes the drift of which it is unable or unwilling to sppreciate English critics are apt to bear down on the writers and thinkers of the New World with a sort of aristocratic hauteur; they are perpetually reminding them of their immaturity and their disregard of the golden mean. Americans, on the other hand, are impossible to please. Ordinary men among them are as sensitive to foreign, and above all to British, censure, as the ir.itabile genus of other lands. Mr Emerson is pormitted to impress home truths on-his countrymen, as "Your American eagle is very well; but beware of the American peacock." Such remarks are not permitted to Eaglishmen: if they point to any flaws in transatlantio manners or ways of thinking with an effort after politeness, it is "the good-natured cynicism of well-to-do age;" if they commend transatlantic institutions or achievements, it is, acoording to Mr Lowell, "with that pleasant European air of self-compliment in condescending to be pleased by American merit which we find so concliating." Now that the United States have reached their full majority, it is time that England should ceaso to assume the attitude of their guardian, and time that they should cease to be on the alert to resent the assumption. Foremost among the more attractive features of transatlantic literature is its freshness. The authority which is the guide of old nations constantly threatens to become tyrannical: they wenr their traditions like a chain; and, in the canonisation of laws of taste, the creative - powers are depressed. Even in England we write under fixed conditions; with the fear of critics before our cyes, we are all bound to cast our ideas into similar moulds, and the name of "free-thtnker" has grown into a term of reproach. Bunyan's Pilgrim's Progress is perhaps the last English book written without a theught of being reviewed. There is a gain in the habit of self-restraint fostered by this state of things; but there is a luss in the consequent lack of spontaneity; aud we may learn something from a literature which is ever ready for adventurcs. In America the love of uniformity gives place to impetuous impulses: the most extreme sentiments are made audible, the most noxious " have their day, and cease to be;" and truth being left to vindicate itself, the overthrow of error, though more gradual, may at last prove more complete. A New England peet can write with confideace of his country as the land

> "Where no one suffers loss or bleeds For thoughts that men call beresies."

Another feature of American. literature is its somprehen siveness: What it has lost in depth it has gained in breadth. Addressing a vast audience, it appeals to universal sympataics. In the Northern States, where comparatively few have leisure to write well, almost every man, woman, and child can read and does read. Books are to be found in every \log-hut, and public questions are discussed by
every scavenger. Nuring the war, when the Lowcll factory girls were writing verses, the "Biglow Papers" were being recited in every smithy. The consequence is, that (setting aside the newspapers) there is little that is sectional in' the popular religion or literature; it exalts and despises ño class, and almost wholly ignores the lines that in other countries divide the upper ten thousand and the lower ten million. Where manners make men the people are proud of their peerage, but they blush for their boors. In the New World there are no "Grand Seigniors," and no human vegetables; and if there are fewer giants, there ars also fewer mannikins. American poete recognise no eseential distinction between the "Village Blacksmith" and the "caste of Vere de Vere." Burns speaks for the one; Byron and Tennyson for the other; Longfellow, to the extent of his geuius, for both. The same spirit which glorifies labour denounces every form of despotism but that of the multitude. American slavery, being an anachron-
ism based on the antipathies of racc, was worse than Athenian slavery. But there is no song of an Athenian slave. When the ancients were unjust to their inferiors, they were so without moral disquietude: the lis had got into the soul. Christianity, which substituted the word "brother" for " barbarian," first gave meaning to the word " humanity." But the feudalism of the Middle Ages long contended successfully against the higher precepts of tho church: the teaching of Froissart held its ground agaiust that of Langland. The hero-worship of our greatest living author is apt to degenerate into a reassertion of the feudal spirit. The aspirations of our descendants in the West point, on the other hand, to a freedom which is in danger of being corrupted by licence. But if the vulgarism of demagogic excess is restrained and overcome by the good taste and culture of her nobler minds, we may anticipate for the litcrature of America, under the mellowing indu. ences of time an illustrious future.
(J. N.)

AMERIGO VESPUCCI. See Vespucct.

AMERSFOORT, a town of Holland, in the province of Utrecht, situated 12 miles E.N.E. of the city of that name, on the Eem, which here is navigable. It contains a townhouse, several churches-Protestant and Roman Catholic -a court of primary jurisdiction, a Janscnist college, an industrial and several other schools. Woollen goods, cotton, silk, glass, and brandy are the chief manufactures, and there is a large trade in corn, tobacco, and dried herrings. Amersfoort received its municipal privileges in 1249. It was taken by the Archduke Marimilian in 1483 , and by the French in 1672 and in 1795. Population, 13,200 .

AMERSHAM, or AGMONDESHAM, an old market town in Buckinghamshire, pleasantly situated in the valley of the Misbourn, a small tributary of the Colne, 32 miles from Buckingham, and 26 from London. It consists chiefly of a main street crossed by a smaller one; and possesses a handsome church, containing some beautiful monuments, several dissenting places of worship, a townhall, built in 1642 by Sir William Drake, and a grammar school. It has manufactures of black lace, cotton, strawplait, wooden chairs, flour, and beer. Edmund Waller, the poet, was born near Amersham, and sat for the borough, which sent two members to parliament until 1832. Population of parish in 1871, 3259.

AMES, Fisher, an eminent American statesman and political writer, son of Nathaniel Ames, a physician, was born at Dedham, in Massachusetts, on 9th April 1758. He studied at Harvard college, where he graduated in 1774. After practising the law for some little time, be abandoned that profession for the riore congenial pursuit of politics, and in 1788 became a momber of the Massachusetts convention for ratifying the constitution. In this assembly he bore a conspicuous part, and in the next jear, having passed to the house of representatires in the state legislature, he distinguished himself greatly by his eloquence and sprightliness and readiness in dobate. During the eight years of Washington's administration he took a prominent part in the national councils; and on Washington's retirement, he returned to his residence at Dedham to resume the practice of the law, which the state of his health after a few years obliged him to relinquish. He still continued his literary labours, and published numerous essays, chiefly in relation to the contest between Great Britain and revolutionary France, as it might affect the liberty and prosperity of America. Four years before his death he was chosen president of Harvard college, an honour which his broken state of health obliged him to
decline. He died on the 4th July 1808, admired and respected by his countrymen from the brilliancy of his talents and bis private virtues. His writings, which abound in sparkling passages, displaying great fertility of imagination, were collected and published, with a memoir of the author, in 1809, by the Rey. Dr Kirkland, in one large actavo volume. A more complete edition in two volumes was published by his son, Seth Ames, in 1854.

AMES, JOSEPE, author of a valuable work on the progress of printing in England, called Typographical Anti quities (1749), which is often quoted by bibliographers. He was born in 1689, and died in 1759. The best editions of his work are those published with the additions of Herbert (1785-90), and of Dibdin (1810-16). These both include a life of Ames written by Mr Gough.

AMES, William, D.D. In the Latinised form of Amesius this distinguished English theolbgian is now better known on the Continent than in our own country, through worls that were a power in their day, and are not jet spent of their force. He was born at Ipswich, Suffolk, in 1576. He received an excellent education at the grammar achool of Ipswich; and proceeded next to the university of Cambridge, where he was entered of Christ's college. From the outset, as to the latest, he was an omnivorous student. Entering half-carelessly into.the church where the great Master William Perkins was the preacher, be was, under the sermon, roused and alarmed in such fashion as was not rare under so burning and intense an orator as Perkins. Like'another Nicodemus he visited the venerable preacher, and was taught and comforted so as never through life to forget his interviews with the "old man eloquent." Ferkins haring died at a ripe old age, was succceded by one of kindred intellect and fervour, Paul Baync, and his friendship also was gained by Ames. He proceeded B.A. and M.A. in due course, and was chosen to a fellowship in Christ's collere. He was unirersally beloved in the university. His own college (Christ's) would have chosen him for the mastership; but a party-opposition led to the election of a Dr Carey, who at once sought a quarrel by arraigning Ames for disapproving of the surplice and other outward symbols. Not succeeding by threats of expulsion, which were illegal and powerless, the master resortcd to transparent flattery. Ames stood firm, was led to re-examine former opinions, and the result was that more absolutcly than ever he decided against conformity. Nevertheless, he preached in season and out of season, and always with profound impression. One sermon became historical in the Puritan controversies. It was delivered on St Thomas' day, before the feast of Christ's
netivity, and in to ho rebuked aharply Lusory Lotts and the "heathenish debauchery" of the students during the twelve daye ensuing. His exposures and acathing denunciations won thunders of applause, but there were shesthed in them lightnings of wrath among the High Church party. He was summened before the vice-chancellor and whele senate of the university. Ho appeared, and in presence of as brilliant an assembly as ever met in tho congregationhouse, defended himself triumphantly. Nonconformity, admittedly in lesser things, was regarded as excluding him from the Church of England. He left the university, snd would have accepted the great church of Colchester in Essex, but the relentless bishop of London refused to grant institution and induction. Like furtive persecution awaited nim elsewhere, and at last he passed over to Holland. To leave England was not so simple or easy a thing then, and Ames had to disguise himself for safety. His disguise was singularly timed, for it produced an incident that has long been worked into the very fabric of chareh history in England and Holland. Coineident with his arrival at Rotterdam a congress of theologians-Remonstrant and non-Remon-etrant-was being held. Ames went into the meeting in his " habit of a fisherman, with his canvas slops about his body, and a red cap on his head." As the debate proceeded, the English visitor rose and craved permission to oppose Grevinchovius-a theologian long since in oblivion, but a tower of strength in heresy at that day-in Latin. The Remenstrant champion was rather taken aback at first; tut jeered and flouted the plain countryman, "like another Goliath scorning David." The question was the ofdnew one of the "self-dctermining perwer of the human will to spiritual good, without any need of the previous efficacieus operstions of divine grace." Ames' bere his opponent's gibes at his dress, and overwhelmed him with his logical reasoning from Phil. ii. 13, "It is God that worketh in us both to will and to do." The fisherman-controversialist made a great stir, and from that day became known and honoured in the Low Countries. Subsequently Ames entered into a controversy in print with Grevinchovius on universal redemption and election, and cognate problems. He brought together all he had maintained in his Coronis ad Collationem Hagiensem-his most masterful book, which figures largely in Dutch charch history. At Leyden, Ames became intimate with the venerable Mr Goodyear, pastor of the English church there. Whilo thus resident in comparative privacy he was sent for to the Hague by Sir Horatio Vere, whe appointed him a minister in the army of the states-general, and of the English soldiers in their service, a post held by some of the greatest of Eugland's exiled Puritans. He married at the Hague e daughter of Dr Burgess, whe was domestic pastor of Vere. On his father-in-law's return to England, Ames succeeded to his place. It was at this time he began his memorable contruversj with Episcopius, whe, in attacking the Coronis, railed ayminst the author as having been "a disturber of the public peace in his native country, so that the English magistrates had banished him thence; and now, by his late printed Coronis, be was raising new 'disturbances in the peaceable Netherlands." It was a miserable libel. Mr Goodyear being present in the lecture-room when Episcopius rented his malico, thero and then rebutted his charge against his absent friend. None the less did the controversy proceed. Ultimately Amcs reduced the Remonstrants to silence. Tho Coronis had becn primarily prepared for the Synod of Dort, which sat from November 1618 until May 1619. At this celebrated synod the position of Dr Ames, if ar extrenely honourable, was a peculiar one. The High Church party in England had induced the king to interfere and bring about his remoral from the Hague, on the ground of his nonconformity; but
he was still beld, deservedly, in such reverence that it was arranged he should attend the synod informally. Throughout its sittings Dr Ames appears to have been the most active and influential of the foreign divines. It is a sorrowful fact that, from 1611-12 onward, Ames was interfered with harassingly by the High Church party in England. Twice over, when chosen professor, the most envenomed opposition was led from England. Ho was kept from the university of Leyden; and when later in. vited by the state of Fricsland to a professoriate at Franeker, the persecution was renewed, but this time abortively. He was installed at Francker on 7th May 1622, and delivered a most learned discourse on the occasion on "Urim, and Thummim." He soon brought renown to Francker as' professor, preacher, pastor, and theological writer. He prepared his Medulla Theologica for his students. His Casus Conscientice followed. Both these treatises left their mark on the thought of the century. His "Cases of Con. science" was a new thing in Protestantism. The work shows much insight into human nature, and may be favourably compared with the bulkier Ductor Dubitantium. Having continued twelve years at Franeker, his health gave way, and he contemplated removal to New England. But another door was opened for him. His English heart yearned for more frequent opportunities of preaching the gospel to his fellow-countrymen, a a an invitation to Rotterdam gave him such opportunity. His friends at Franeker wero passionately opposcd to the transference, but ultimstely acquiesced. At Rotterdam he drew all hearts to him by his eloquence and fervour in the pulpit, and his irrepressible activity as a pastor. Home-controversy engaged him again, and he prepared his Fresh Suit against Ceremoniesextrinsically having the distinction of being the book which made Richard Baxter a Nonconformist. It was posthumously published. Ho did not long survive his removal to Rotterdam. Having caught a cold from a flood which drenched his house, be died in November 1633; in his fifty-seventh year.
Few Englishmen have exercised so formative and controlling ar, influence on continental thought and opinion as Dr Ames. He was a mastor in theological controversy, ehuaning not to cross awords with the formidahle Bellarmine. He was a scholar among scholars, being furnished with extraordinary resourcos of learning. His works, which even the Biographia Britanrica (1778) testifies, were famous over Europe, were collected at Amsterdam in 5 vols sto. Only a very small proportion were tramslated into his mother tongue. His Leciones in omnes Psalmos Davidis (1635) is exceedingly suggestive and terse in its atyle, reminding of Bengel's Gnomon, ay does also his Commentarius utriusque Epist. S. Petri. His "Replies" to Bishop Morton and Dr Burgess on "Ceremonies" tell us that ercn kinship could not prevent him from "contending earnestly for the faith." (John Quick's MS. Icones Sacra Anglicance, who gives the fisherman anecdote on the personal authority of one who was present; Brook's Puritans, vol. iii. pp. 405-8; Winwood's Mcmorials, vol. iii. pp. 346-7; Neal's Purilans; Fuller's Cambridge (Christ's College); Sylvester's Life of Baxler, part i. pp. 13, 14; Biogr. Brit., vol. i. Pp. 172-3; MIsther's Neio England, book iii. ; Palmer'e Nonconf. Memorial. ; Mosheim's Eccles. Hist,, who mistakenly calls him a Scotsman; Hanburg, s.v. ; Collections of the Massachusells Historical Sociely, vol. vi., fourth series, 1863, pp. 576-7.)
(A. B. G.)

AMESBURY, an old town in Wiltshire, on the Avon, 8 miles north of Salisbury, and 78 west of London. It is an ill-built place, with little trade. It contains an old parish church, which probably belonged to an abbey, a chapel for the Weslcyan Methodists, and a beantiful house erected by Inigo Jones for the Duke of Queensberry. Near Amcsbury are Stonehenge, and Milston, where Addjson was born. Population, 1169.

AMETHYST, properly, is only a variety of quartz or rock-crystal distinguished by its fine violet-bluc or purple coluur. This tint seems to be caused by a minute mizture of the peroxide either of iron or of manganese, and is lost when the stone is exposed to the action of the fire It
then changes through gellow and green io colourless; end in this condition is often sold for the aquamarine or inpaz Amecthyst is generally found in thick columnar masses, of ehort hexagonal prisms terminating in pyramids The faces, especially in Brazilian specimens, are often marked by zig-zar or undulating lines, and the colour in many is smilarly disposed, showing a peculiar internal itructure in the stone. It has been proposed to name all varieties of quartz, whether coloured or uncoloured, showing this peculiarity, amethyst, but without sufficient reason. Amethyst, according to Pliny, got its name, á á'tvoros, from its supposed power of preventing drunkenness. Though not a true gem, it was formerly much valued as an ornamental stoure, but has greatly declined in value in the prosent century, being obtained in great abundance from Brazil. There it is often white or yellow, and named topaz. The finest blue stones are found in Ceylon and Siberia; and less remarkable ones in many places in Europe, India, and Australia. Amethysts may be counterfeited by glasses, to which the proper colour or stain is given by mineral matter. There were fine ones made in France about the year 1690, which even.imposed on connoisseurs, but with the decrease in price there is now less danger of such deceptions.

AMHERST, a district and city within the Tenasserim division of British Burmah, and within the jurisdiction of the chief commissioner of that province. The District forms a narrow strip of land between the Indian Ocean and the mountains which separate it from the independent kingdom of Siarn. It lies in $16^{\circ} \mathrm{N}$. lat., $98^{\circ} \mathrm{E}$. long, anci consists partly of fertile valleys formed by spurs of the mountain system which divides it from Siam, and partly of a rich alluvial tract created by the great rivers which issue from them. The most important of these are the Salween river and the Houng-da-raw Khyoung. The river highways bring down inexhaustible supplies of rice to Maulmain, the chief town of the district, as also of the province of Tenasserim, and the second city in British Durmah. The district comprises an area of 15,144 square miles, of which 346 are cultivated, 4889 are capable of being brought under cultivation, and the remaining 9909 square miles are returned as uncultivable. The population in 1872 numbered 235,738 souls, occupying 38,945 houses, and consisting of 203,774 Buddhists, 15,598 Hindus, 12,279 Mahometans, and 4081 Christians. The town of Maulmain contains 53,653 inhabitants. The rainfall is rery heary, $245 \cdot 85$ inches being registered in 1871-72. The temperature is uniform, but not excessive, and averaged 83° at 2 p.m. throughout the month of May 1871, 80° at 2 P.Mr. throughout July, and the same at 2 P.s. throughout December 1871.
Amherst Town, situated in the district of the same aame, ubout 30 miles south of Marlmain. It was founded by the English in 1826 on the restoration of the town of Martaban to the Burmese, and named in complinent to the Governor-General of India who projected it. The proclamation inviting she natives to people the town was well adapted to the character and capacities of those whom it addressed. "The inhabitants of the towns and villages who wish to come shall be free from molestation, extortion, and oppression. They shall be free to worship as usual, temples, monasteries, priests, and holy men. The people shall go and come, buy and sell, do and live as they please, conforming to the law's. In regard to slavery, since all men, common people or cliefs, are by nature equal, there shall be under the English government no slaves. Whoever desires to come to the new town may come from all parts and live happy, and those who do not wish to remain may go whe:e they please without hindrance." Shortly after its settement the number of
houses amounted to 230 , and the population to 1200. Large teals forests abound in its neighbourhood, and the timber is exnorted in considerable quantities. The harbonr, thougn latge and capable of aceommodating ships of any burden, is difficult of access, and dangerous during the south-west monsnnn A ninerst town has been eclipsed by the rapidy nsing crly of Maulmain, which has absorbed to itself the trade and mercantile enterprise alike of Amherst district and of the Tenasserim province.

AMHERST, a post tamnship of Hampshire county Massachusetts, United States. It is a picturesque rillage intersected by two branches of the Connecticut river. Its water-power is utilised for manufactories of machinery, edge tools, cotton goods, paper, \&̊c.; but it is principally 1 nown as the seat of Amherst college, a valuable institution founded in 1821, mainly for the purpose of educating poor and pious young men for the ministry. The charity fund is large, and pays the tuition fees of forty or fifty students. The faculty of the college consists of eighteen professors, beside the president. The number of students in 1873 was 261. The buildings of Amherst college aro situated on a hill at the southern extremity of the rillage. An octagonal building in adrance of the line of college halls is devoted to the purposes of a museum. Some of the collections are of great value, especially those in the palæontological department. The Massachusetts Agricultural school, founded in 1863, has also its seat at Amberst. Its handsome buildings are on the edge of a rich plain from which fine views are obtained of the mountains on the west and south. There is a large farm for experiment attached to the school, which is esteemed ono of the best in America The population of Amherst in 1870 was 4035.

AMHERST, Earl (William Pitt Amherst), born in 1773, was the nephew of Jeffery Amherst, who, for his services in America, where he was commander-in-chief at the time of the conquest of Canada, was raised to the peerage as Baron Amherst in 1776. The patent of nobility was renewed in 1788 with remainder to the subject of this notice, who succeeded to the title in 1797. In 1816 he was sent as ambassador extraordinary to the court of China, with the riem of establishing more satisfactory commercial relations between that country and Great Britain. On arriving in the Peiho, he was given to understand that he could only be admitted to the emperor's presence on condition of performing the ko-tos, a ceremony which Western nations have always considered degrading, and which is, indeed, a homage exacted by the Chinese sovereign from his tributaries. This Lord Amherst, f.fllowing the advice of Sir George T. Staunton, who accompanied him as second commissioner, refused to consent to, as Lord Macartney had done in 1793, unless the admission was made that his sovereign was entitled to the same show of reverence from a mandarin of his rank. In consequence of this he was not allowed to enter Peking, and the object of his mission was frustrated: His ship, the "Alceste," after a cruise along the coast of Corea and to the Loo-Choo Islands, on proceeding homewards was totally wrccked on a sunken rock in Gaspar Strait. Lord Amherst and part of his shipntecked companions escaped in the ship's boats to Bataria, whence relief was sent to the rest. The ship in which he returned to England in 1817 haring touclied at St Helcna, he had several interviews with the Emporor Napoleon (Ellis's Procedings of the Late Embassy to China, 1817; M'Leod's Narrative of a Voyage in II.M.S. "Alceste," 1817). Lord Amherst held the office of governor-general of Indis from August 1823 to February 182S. The principal event of his government was the Burmese war, resulting in the cession of Aracan and Tenasserim to Great Britain Eio was created Earl Amherst of Aracan in 1826. On his
renurn to lagland he lired in retirement till his death in March 1857.
AMFIURST, Nicnolas, an English poct and political sriter of the 18 th ceutury, was born at Marden in Kent, and entered (1716) at St Joln's college, Oxford, from mhich he was expelled, ostensibly for libertinism and irregula conduct, lint really, according to his own statement, on account of the liberality of his opinions. lietaining great resentment against the university on this account, ho gree expression to his fecling in a poem published in 152t, called Ovulus livitannia, and in a book entitled Trwce I'ilius. ILe published a Miscellany of Poems, sacred and profane; and The Comvocation, a pacm in five cantos, which was a satire on the bishop of Eangor's antagonists. Jut he is best lnown for the share ine lad in the political paper called The Craftsman, which he conducted for sereral years. It attained a circulation of 10,000 or 12,000 copies, and had very considerablo influence in inflaming popular opinion against Sir lobert Walpole, and in bringing about the political change of 1742 . Amhurst's party made no provision for him, however, on their accession to power, and their neglect is supposed to bave hastened bis death, which occurred at Twickenham on the 27 th April 1742.

AMIANTHUS (unstaned, from a privative, and μ aive, to stain), the best known and most beautiful of the asbestos class of substances. Sce Asbestos.

AMICL, Giovanxi Buttista, a celebrated designer and cunstructor of optical instruments, was born at Modena in 1784. While studying mathematics at Bologna, be acrguired a taste for astronomical science, and devoted himself carly iat life to the improvement of astronomical instrmments with great ingenuity and success. For the specula of his reflecting telescopes he prepared a sery hard alloy, capable of recciving and retaining a fine polish, and to prevent splecrical aberration he wrought the specula into an clliptical form. Abnut 1812 be undertook the constraction of a telescope with a fire-foot speculum, and the gun-foundry at Pavia was put at his disposal for this purpose by the war minister of Italy, but the project was broken off, owing apparently to political complications. Amici is still better known from his microscopes. His reflecting microscopes, with ellipsoidal specula, were an improvenent on all that lad preceded them, and be attained still greater success in the construction of compound achromatic object-glasses. His compound microscope was the first that could be used either in a vertical or in a borizontal position. His prism, too, for the oblique illumination of objects of microscopical observation is much commended Aunici was a very diligent and skilful obserser ; and his intimate acquaintance with the principles of optical science enabled him to arrange his apparatus to the rery best advanta.e. Various papers recording the restilts of his obscrvations, which he read before learned sucieties, were published in scientific journals. They treat of the measurenent of the diamelers of the sun (by means of it micrometer bo invented) and other astronomical subjects, the cirenlation of the sap in plants, the fructification of plants, infusoria, de. After holdiñ for some time a professorship of mathematies in Modena, he was in 1831 appointed inspectorgeneral of studies in the duchy. A few ymars later be was entrusted with the charge of the observatory at Florence, where he also delivered lectures as professor of matbematics at the muscum of natural bistory. He died is April 1863.

AMIENS, an ancient city of France, capital of the department of Somme, and formerly of the old province of Pieardy, situated on the Somme, about 40 miles from its mouth, and 71 milcs N . of Paris. It was once a place of great strength. and atill unssesses a difadel, but the ramnarts
wheln survemuled it havo heen replaced by beautiful boulevards. The new part of the town is well built, but the strects of the old quarter are narrow and irregular, and are so cut up by the eleven capals into which the Somme is hero divided, that Louis XI. is said to havo called the tom "little Venice." 'The most interesting object in Amiens is its magnificent cathedral, one of the finest in Europe, commenced in the year 1220 and finishel in 1288, although additions to it were afterwards made. Among the uther important public buildings are the lôtel de Ville, the Chateau d'Ean, the 1leatre, the muscum, the hospital, and several churches. The town is the seat of a bishop, of a prefect, and of tho deparmental courts of justice; and possesses a library containing more than 50,000 volumes, besides manuscripts, an academy of sciences, various other learned societies, a theological seminary, a lycemm, and several ordinary schools. It has many important manufactures, the chicf being cotton velvets, berseymeres, woollen and linen cloths, flax, beetroot sugar, soap, leather, and paper. Amiens occupies the site of the ancicut Scmarobriva, capital of tho Ambiani, from whom it probably derives its name. After the dissolution of the empire of the wast it repeatedly changed owners, becoming for the flret time a dependency of the French crown in 1185 , when Plrillp of Alsace czded it to Philip Augustus; and since that date it has more than once passed out of tho porer of the French kings.; The famons treaty between Great Britain, France, Spain, and Holland, which took its name from this eity, was signed in the Hotel do Ville on March 25 th, 1802 . During the recent war between France and Germany Amiens fell into the hands of the Prussians on the 28 th of November 1870 . General Manteuffel was operating against the French army of the north, which had been formed with the view of helping the armies of Paris and of the Loire to effect a junction, and thus raise tho sicge of the capital. The Prench, however, were defeated in a battle in front of Amiens, which was funght on tho 27 th of November, along a line stretching froms Saleux to Marcelcane, and extending, it is said, more than tour leagucs. They retreated northward in the direction of Arras, and Amiens surrendered on the following day, after a very slight demonstration of force on the part of the Prussians. Peter the IIermit was born at Amens aboar 1050 Population (1872), 63,7!7.

AMIOT, Pere Josepir, a learned Jesuit missionary to China, was born at Toulon in 1718. In 1750 he arrived. along with two others of his order, at Macao, from which. on a favourable answer to a petition being received from the emperor Kien-Lung, he removed to Peking in tho autumn of the following jear. He continued to reside in the capital until his death in 1794, devoting bimsclf almost exclusively to the study of Chinese and ManchesTatar literature. The results of his labours were ecremunicated at frequent intervals to Europe in works which did more than lad ever been done before to make knom to the Western world the thonght and life of the farthest East. Many of his statements, however, are not trustworthy, and his works are practically superseded by thos 3 of others who entered the field later. His Dictionncirs Tatarmantchou-Français (Paris, 1783) was a work of great value, the language having been previously quite unknown in Europe. His other writings are to be found chietly in the Mémoires concernant l'IIistoire, les Sciences, et les Arts de .Chinois (15 vols. 4to, Paris, 1776-91). The Vie de Confucius, which occupies the twelfth volume of that collection, is very complete and accurate.

AILJWCII, a town of Anglesey, North Wales, situated on a rising ground on tho north coast of the island, 15 miles from Beaumaris. It owes its importance almost entircly to the copper mines of the Parys Mountain: before
the discovery of the ore in 1768 it was a small hamlet of some six houses. At one time the mines produced 3000 tons of reetal annually, but in recent years the quantity has greatly diminished. The harbour has been eut out of rock at eonsiderable expense, and is 1 rotected by a breakwater. A branch of the Chester and Holyhead Railway terminates in the town. Amlwch, which is associated with Beaumaris, Holyhead, and Llangefni, in returniug one member to parliament, had a population of 2068 in 1871.
amman, Jomany Conrad, a physician, and one of the carliest writers on the instruction of the dcaf and dumb, was born at Schaffhausen, in Switzerland, in 1669. In 1687 he graduated at Basle, and commenced the practice of his profession at Amsterdan, to which he had to flee on acconnt of his religions views. He first called the attention of the public to his nuthod of training the deaf and dumb in a paper which was inserted in the Philosophical Trensactions, and which appeared in a separate form in the year 1692, under the title Surdus Loquens. It was again issued, with much alditional matter, in 1702 and 1728, unler the title Dissertatio de Loquela. In this work, which Haller terins "vere aureum," he develops, with great ability, the mecharism of vocal utterance, and describes the process which he employed in teaching its use. This consisted principally in exciting the attention of his pupils to the motions of his lips and laryns while he spoke, and then inducing them by gentle means to imitate these movements, till he brought them to repeat distinetly letters, syllables, and words. As his metlood was.excellent, we may readily give him creait for the all but universal success to which he laid claim. The edition of C'elius Aurelianus, which was undertaken by the Wetsteins in 1709 , and still ranks as one of the best editions of that author, was superintended by Amman. He died about 1730 .

AMMAN, Jost, an artist celebrated chicfly for his engravings on wood, was born at Zurich in June 1539. Of his personal history little is known beyond the fact that be removed in 1560 to Nuremberg, where he continued to reside until his death in March 1591. His productiveness was very remarkable, as may be gathered from the statement of one of his pupils, that the drawings he made during a period of 1 uur years would have filled a haywaggon. A large number of his original drawings are contained in the Berlin collection of engravings. The genuineness of not a few of the specimens to be seen elsewhere is at least questionable. A series of copperplate engravings by Amman of the kings of France, with short biographies, appeared at Frankfort in 1576. He also executed many of the woodent illustrations for the Dible published at Frankfort by Feierabend. Another serial work, the Panoplia Omnium Liberalium Mechanicarum et Sedentariarum Artium Genera Continens, containing 115 plates, is of great value. Amman's drawing is correct and spirited, and his delineation of the details of costume, \&c., is minute and accurate. He executed too much, however, to permit of his reaching the highest style of art. Paintings in oil and on glass are attributed to him, but no specimen of these is known to exist.

AMMAN, PaUl, a physician and botanist, was born at Breslau on the 30th August 1634. In 1662 he received the degree of doctor of plysic from the university of Leipsie, and in 1664 was admitted a member of the society Naturce Curiosorum, under the name of Dryander. Shortly afterwards he was chosen extraordinary professor of medicine in the above-mentioned university; and in 1674 he was promoted to the botanical chair, which he again in 1682 exchanged for the physiological He dicd on the 4th February 1691. Paul Amman seems to have
been a man of acute mind and extensive learring; but a restless and irritable disposition led him to engage too much in controversy, and to indulge in raillery in his writings to a degree which the nature of the subjects hardly warranted.

Anwan's principal works were- Iredicina Civitica, seat Centuria C'asuun io Facultatc Lipsicusircsolutorumvariis Discurvilus aucta: Parcenesis ad Docentcs occupata circa Instilutionum Medicarun Emendationem; Ircnicum Nume Pompilii cum Hippocrate; Supellex Botanicu, et Manuchuctio ad Dulcrian Stcdicam; and Charactor Valuralis Plantaracm.

AMMANATI, Bartoloneo, a celubrated Florentine architect and sculptor, was born in 1511, and died in 1592. He studied uncler Bandinelli aud Sansorius, and closely imitated the style of Michael Augelo. He wad more distinguished is architecture than in sculpture. Hu designed mazy buildings in Rome, Lucca, and Elorence, an addition to the Pitti lalace in the last-named city beirg one of his nost celebrated works. He also planned the beantiful bridge over the Arno, known as Ponte dell,', Trinita-one of his celebrated works. The three arches azo elliptie, and though very light and elegant, have resisted the fury of the river, which has swept away several nther bridges at different times. Ammanati's wife, daughter of Giov. Antonio Battiferii, an elegant and accomplished woman, published a volume of poems of considerable merit.
amilianus, Marceilinus, a Roraanobistorian of the 4th ceutury, was born in the city of Anticch, in Syria. In his youth he was enrolled anong the protectores domestici, or houselold guards, which proves him to have been of noble birth. In the year 350 he entered the service of Constantius, the emperor of the East, and, under the command of Ursicinus, a yeneral of the horse, he served during several expeditions. According to his own modest account, it appears that he acquired considerable military fame, and that he deserved well of his sovereign. He attended the Emperor Julian in his expedition into Persia, but it is not known that he obtained any higher military promotion than that which has already been mentioned. He was either in the city or in the vicinity of Antioch when the conspiracy of Theodorus was discovered, in the reign of Valens, and was an eye-witness of the serere tortures to which many persons were subjected by the emperor on that account. But his lasting reputation was not to be acquired from military service. He left the army and retired to Rome, where he employed himself in writing a history of the Roman empire, comprising a period of 282 years. Though a Greek by birth, he wrote in the Lotint language ; but, according to the remark of Vossius, his Latin shows that he was a Greek, and also a soldier. His history extended from the accession of Nerva to the death of Valens ; and the work was originally divided into thirtyone books. Of these the first thirteen bave perished, and the eighteen which remain commence with the seventeenth year of the reign of Constantius, and terninate at the year 378. But there are several faets mentioned in the history which prove that the author was alive in the jear 380 . Of this number are the accession of Theodosius to the Eastern empire, the claracter of Gratian, and the consulate of Neothorius. The style is harsh and redundant, as was to be expected from the anthor's edueation and military life; but the work is valuable as a source of information for the period of which it treats. Gibbon appears to give a correct estimate when he says that Ammianns is "an accurate and faithful guide, who composed the history of his own times without indulging the prejudices and pas sions which usually affect the mind of a contemporary. From the respectful manner in which he speaks of Fagan deities, and of the adrantage of heathen auguries in fore. telling future events, it is evident that Ammianus was
heathen. The favourable account which he gives of the religion, manuers, and fortitude of Christians, is the result of his candour and impartiality as an historian. The work of Ammianus has passed through several editions, of which the best are the Leyden edition of 1693, by Gronovius, and those of Leipsic, published in 1773 and 1803. The latter was edited by Wagner and Erfardt.

AMMIRATO, Scipio, an Italian historian, born at Lecce, in the kingdom of Naples, on the 27th September 1531. Ilis father intending kim for the profession of law, sent him to study at Naples, but his own decided preference for literature prevented hin from fulfilling his father's wishes. Entering the church, he resided for a time at Venice, and afterwards engaged in the service of Pope Pins IV. In 1569 he went to Florence, where he was fortunate in sccuring the patronage and support of lluke Cosmo I. It was at the suggestion of this prince that he wrote the work by which he is best known, his Istorie Fiorentine (1600). In 1595 he was made a canon of the cathedral of Florence. He died in 1601. Among the other works of Ammirato, some of which were first published after his death, may be mentioned discourses on Tacitus and histories of tho families of Naples and Florence.

AMMON, the name of an Egyptian deity, called by the ancient Egyptians Amen or Amun, and one of the chief gods of the country. His namo meant the hidden or conccaled god, and in this respect was analogous to תapi or Apis, which conveyed the same idea. Ile was tho local deity of Thebes or Diospolis, and supposed by the Greeks to be the same as Zens or Jupiter. His type was that of a man wearing on his head the red crown teshr, emblem of dominion over the lower world or hemisphere, surmounted by the sun's dise to indicate his solar nature, flanked by tro tail feathers of a hawk, also symbolical of his relation to the gods of light. Aminon was not one of the oldest deities of Egypt, for his form and name do not appear till the eleventh or Diospolitan dynasty, when the kings of that line assumed his name, and built a sanctuary to him at Medinat Habu. From this period the monarchs of Thebes. introduced his name into their titles, and the worship of Amen became the predominant one of ancient Egypt; and the embellishment of his shrine and enrichment of his treasury π ere the chief object of the policy of the Pharaohs. Vietory and conquest were the chief gifts he offered to his adorers; and he is often seen leadingupthe conquered nations of the north and south to the monarchs whom ho endors with power and victory. In this character Amen is often represented holding the Egyptian scimitar khepsh. In his celestial character his flesh was coloured blue, that of the hearen. He is said to have been called on some monuments the son of Hapimaa (or the Nile); but in the hymas addressed to him the title of self-engendered is applied to lim, and he was one of the self-existent deities. His principal titles are-lord of the heaven, king of the gods, substance of the world, and resident on the thrones of the world, eternal ruler,-appellatives of his celestial and terrestrial functions. IIe was also lord of heaven and earth, streams and hills, and as a decaiurgos, the creator of beings. The hymns addressed to him designate him as tha sole or only god, in terms applicable to one god who alone exists, who moulds and governs the world. At one time an attempt was made to identify him with the solar orb. Considered as the active, intelligent, and pervading spirit of the universe, be transfuses the breath of life into the nostrils of kings and other persons. In his solar characters, Ammon was allied with Ra, and called Amen Ra, or Amen Ra Harmachis, or "the sun in the horizen," Amen being considered one of the forms of the sun itself. The rorship of the colestial Ammon prevailed chiefly at Thebes, where,
with the Mut, or "mother" goddess, and his son lihonsu or Chons, be formed the Theban triad, and the sacred name of Thebes was "the abodo of Amen." Besides Thebes, his worship has been found at Siuah in Lybia, at Beit Oually, and at Meree in Ethionia, marked respect being shown to his worship by the later Ethiopian monarchs. At Phile and Debud his name also appears as one of the dominant deities. In the representations at Hermonthis he assists at the birth of IIar-pa-Ra; and in the scenes of the passago of Ra, or the sun, through the hours of the night, the gigantic arin of Amen strangles the serpent Apophis, "the great dragon" of Egyptian mythology, the spirit of darkness, who warred against the gods of light. Another of the types of Amen represents him as the repreductive power of nature, still in the hmman form, but mummied, and bolding-instead of the usual sceptre, uasm, or socalled kukupha sceptre-the whip nelkelk. In this type he was supposed to be Amen the father and Horus tho child of the triad, which then consisted of Amen, Ament, or the female Ammon, and Harka His titles in this character are Amen-ka-mut-f,-Amen, "the husband of his mother," considered as the final avatar of the god, the alpha and omega, tho oldest and youngest of created beings. He is, considered in his youthful character, ealled Ilarnekht, or "the powerful Horus," and identified with Whons, the local god of Chemmo or Panopolis. As Horus ho is called the "son of Isis," but this is clearly a later fusion of the two myths. In the inscriptions it is said "he has tall plumes," and in the esoterical explanations of the seventeenth chapter of tho Ritual, these plumes are explained by "his tro eyes," or Isis and Nephthys, who are seen accompayying Horus in certain scenes. This type of Amen was not usually exhibited, but brought out on the occasion of his festival, called the manifestation of Khem, ono of the oldest fêtes of Egypt. This type of Amen is principally found at the Ruan, or valley of E! Hammamat, on tho way to Coptos; and at Wady Halfa, where a temple was erected to him by Amenophis III. As the god of the reproductive powers of nature, the Lings of Egypt are seen hoeing the ground before him, or offering various coloured calves and gazelles to him. A great festival in his honour is represented at Medinat Habu, where his statue is carried by twenty priests, and Rameses IlI. cuts down before him the corn which has just ripened for the sickle. The negreses of Arabia, or else the Regio Barbarica of later geographers, appear as assistants at this festival. Another type of Amen connected him with the god Khnum or Chnonmis, the spirit of the waters. In this relation he has the head of a ram instead of the nsnal human one. Khnum was one of the demiurgi, and creator of mankind, whom he had made as a potter out of clay on the wheel, as also Osiris and Horus. Sometimes the typo of Khnum bears the namo of Amen; and with the ram's head ho was worshipped in the Oasis of Ammon, as also up the Nile at the cataracts, Syene, Elephantine, Beghe, Beit Onally, and Meroe. It is this type of Amen with which the later Greck and Toman writers were most familiar; and Rameses II., as the son of Amen, assumes the ram's horn, which Alexander the Great adopted at a later date. The frorship of Kbnum was older than that of Amen, as it appears on the Pyramids and at the Wady Magaresh, but became less important, and finally fused into that of Amen. Although it has been supposed that the rorship of Amen came from Meroe, it is now known that the Ethiopian civilisation was comparatively of much more recent date than the Egyptian, and that it was implanted in Ethiopia by the conquests of the Pharaohs, and subsequently adopted by the later rulers of Meroe; and that the statements of Herodotus, that it was brought from thence to the Oasis of Ammon are incorrect, the existing temple ai the Oasis
not being older than the Persian rulers of Egypt, while the worship of the god at Thebes dates from a much older epoch. The later chapters of the Ritual, added at the time of the twentieth dynasty, which contain the mystic names and appellatives of the god in the language of the negroes of Punt, are also of too late a date to throw any light on the origin of Amen, which appears prior to the Hykshos, when the Egyptian princes were driven to the south. The sheep was sacred to the god, and the inhabitants of Thebes in consequence abstained from it; but it is said they annually sacrificed a ram to Amen, and dressed the figure of the god in the hide of the animal. The reasons assigned by classical authorities for this action, as. well as for the astronomical meaning of his horns, are ritt coufirmed by monumental evidence. On the conquest of Egypt Alexander the Great called himself the son of Ammou, and his portraits wear the ram's horn. In this he had only imitated the Pharaohs of the nineteenth dynasty. Amen is only mentioned by the Hebrew prophets in speaking of Diospolis as the city of No or No Amon.
Jablonski, Panth. EEgypt., i. 160-184; Birch, Gallery of Antiq., pt. i. 1; Wilkinson, Manners and Customs, iii 313, iv. 246, ff.; Goodwin, Trans. Soc. Bibl. Arch., ii. pp. 353-9 ; Herodotus, ii. 42, 54; Diodorus, iii. 72; Jer. xlvi. 25; Nah. iii. 8 .
(s. B.)
ammon, Christoph Friedrich.von, a distinguished theological writer and preacher, was born at Baireuth in January 1766, studied at Erlangen, held various professorships in the philosophical and theological faculties of Erlangen and Göttingen, succeeded Reinhard in 1813 as court preacher and counsellor at Dresden, retired from these offices'in 1849, and died May 21, 1850. He sought to establish for himself a middle position between rationalism and supernaturalism, inclining, however, decidedly to the former. He declared for a "rational supernaturalism," and contended that there must be a gradual development of Christian doctrine corresponding to the advance of knowledge and science. He was a man of great versatility and extensive learning, and a very voluminous author, his principal work being the Fortbildung des Christenthums zur Weltreligion, in 4 vols. (Leipsic, 1833-40). Entworrf einer rein biblischen Theologie appeared in 1792 (second edition, 1801), and Summa-Theologica in 1803 (other editions, 1808, 1816, 1830). Von Ammon's style in preaching was terse aud lively, and some of his discourses are regarded as models of pulpit treatment of political questions.

AMMONLA $\left(\mathrm{NH}_{3}\right)$, sometimes called the Volatile alkali, or Alkaline air, was known to the alchemists in aqueaus solution. Priestley first separated it in the gaseous state in 1774. Schetle in 1777 discovered that it contained nitrogen, and its true composition was ascertained by Berthollet about 1785. Ammonia occurs in the atmosphere as carbonate and nitrate, in sea-water, and in many mineral springs. Iron ores and many clayey soils contain it in small quantity, and sal-ammoniac and ammonia alum are found as minerals in volcanic districts. Carbonate of ammonia is obtained in large quantity by the putrefaction of the urine of animals, or the dry distillation of animal matter. Ammonia is obtained from its salts by the acting of slaked lime or solutions of potash or soda, and is freed from water by passing over quicklime or solid potash, and finally collected over mercury. It is a colourless gas, of a pungent smell, and alkaline taste and reaction. It does not support combustion or respiration, and is feebly combustible. It is remarkably solublo in water, 1 volume dissolving nearly 700 of the gas. It may by the action of a low temperature and great pressure be changed into tho liquid or solid state. ©The gas is easily decomposed into its elements by a succession of electric sparks, or by passing it over red-
hot iron or platinum wire. The aqueous solution in pro sence of finely divided platinum and atmospheric air is converted into nitrite of ammonia? and conversely, the oxides of nitrogen, mixed with excéss of hydrogen and passed over platinised asbestos, are changed into ammonia Nitrogen and hydrogen have not by any proccss been induced to combine so as to yield this compound directly, unless in very small quantity. For theoretical relations of ammonia, salts, \&c., see Cuenistry.

AMMONIAC, SAL ($\left.\mathrm{NH}_{4} \mathrm{Cl}\right)$, the earliest knorn salt of ammonia, now named chloride of ammonium, formerls much used in dyeing and metallurgic operations.

The name Hammoniacus sal occurs in Pliny (Nat. Hist. xxxi. 39), whò relates that it was applied to a kind of fossil salt found below the sand, in a district of Cyrenaica. It was similar in appearance to the alumen scissile, and had a disagreeable taste, but was useful in medicinc. The general opinion is, that the sal-ammoniac of the ancients was the same as that of the moderns; but the imperfect description of Pliny is far from being sufficieut to decide the point. The native sal-ammonace of Bucharia. described by Model and Karsten, and analysed by Klaproth, has no resemblance to the salt described by Pliny. The same remark applies to the sal-ammoniac of volcanoes. Dioscorides (v. 126), in mentioning sal-ammoniac, makcs use of a phrase quite irreconcilable with the description of Pliny, and rather applicable to rock-salt than to our salammoniac. Sal-ammoniac, he says, is peculiarly prized if it can be easily split into rectangular fragments. Finally; we have no proof whatever that sal-ammoniac occurs at present, either near the temple of Jupiter Ammon, or i: any part of Cyrenaica. These circumstances induce us to conclude that the term sal-ammoniac was applied as indefinitely by the ancients as most of their other chemical terms. It may have been given to the same salt which is known to the moderns by that appellation, but was nut confined to it.

Some derive the name sal-ammoniac from Jupiter Ammon, uear whose temple it is alleged to have been found; others from a district of Cyrenaica called Ammonia Pliny's derivation is from the sand (ä $\mu \mu \sigma s$) in which it occurred.

Whether our sal-ammoniac was known to the ancients or'not, there can be no doubt that it was well known to the alchemists as early as the 13th century. Albertus Magnus, in his treatise De Alchymia, informs us that there were two kinds of sal-ammouiac, a natural and an artificial. The natural was sometimes white, and some times red ; the artificial was more useful to the chemist. He does not tell us how it was prepared, but be describes the method of subliming it, which can leave no doubt that it was real sal-ammoniac. In the Opera Mineralia of Isaac Hollandus the elder, there is likewise a description of the mode of subliming sal-ammoniac. Basil Valentinc, in his Currus Triumphalis Antimonii, describes some of the peculiar properties of sal-ammoniac in, if possible. a still less equirocal manner.
Egypt is the country where sal-ammoniac was fint manufactured, and from which Europe for many years was supplied with it. This commerce was first carried on by the Venetians, and afterwards by the Dutch. Nothing was known about the method employed by the Egyptians till the year 1719. In 1716 the younger Geoffroy read a paper to the French Academy, showing that sal-ammoniac must bo formed by sublimation; but his opinion was opposed so violently by Homberg and Lemery, that the paper was not printed. In 1719 M . Lemaire, tho Frengh consul at Cairo, sent the Academy an account of the mode of manufacturing sal-ammoniac in Esypt. The salt, it appeared, was obtained by simple sublimation from soot In the year 1760 Linnxus communicated to the Royal

Socicty a coriect detail of tho whole process, which ho had received from Dr. Hasselquist, who had trarelled in that country as a naturalist. This account is pnblished in the 51 st volume of the Philusophical Transactions, $1760, \mathrm{p}$. 501. Alnost the only fucl used in Egypt is the dung of cattle. The dung of black cattle, horses, sheep, goats, \&c. which contains the sal-ammoniae ready formed, is collected curing the first four months of the year, when the animals foed on the spring grass, a lind of clover. It is dried, end sold to the commou people as fucl. The soot from this fued is carefully collected and sold to the sal-ammoniac takers, who work only during the months of March and April, for it is only at that season of the jear that the cung is fit for their purpose.

The composition of this salt seems to hare been first discovered by Tourmefort in 1700 . The experinents of the younger Geoffroy in 1716 and 1723 were still more decisive, and thoso of Duhamel, in 1735 , left no duebt upon the suliject. Dr Thomson first pointed out a process by synthesis, which has the advantage of being very simple, and at the same time rigidly accurate, resulting from his ubservation that when muriatic gas and ammoniacal gas, both as dry as possible, are brought in contact with each other, they always combine in equal volumes.

The first attempt to manufacture sal-ammoniac in Europe was made, about the beginning of tho. I8th century, by Mr Goodwin, a cliemist of Loudon, who appears to hare used the mother ley of common salt and putrid urine as ingredients. The first successful manufacturo of salanmoniac in this country was established in Edinbnrogh by Dr Hutton and Mr Davy, abont the year 1760. It was first manufactured in France about the same time by Haumé. Manufactories of it were afterwards established in Germany, Holland, and Flanders.

Chloride of ammonia is now manufactured in large quanlity from the crude carbonate of ammouia obtained in gasworks, or from the destructive distillation of animal matter. This salt is changed into chloride by the addition of hydrochloric acid or the mother liquor of salt-works, called bittern, containing the chlorides of calcium and magnesium. When hydrochlitic acid is not easily got for neutralisation, the crude gas liquor is trausformed into sulphate, and this is mixed with an equiralent quantity of common salt. During the subsequent evaporation the sulphate of soda separates in hard granular crystals, which are apt to adhere to the sides of the boiler. The liquor is agitated to prevent this adhesion taking. place, and assist in the separation of the sulphate of soda. The sulphate of soda is removed by drainers as it is formed, and the mother liquor boiled up to the crystallising point, and run off into coolers. The crystals of impure muriate of ammoma are dried carcfully and subsequently sublimed.

Sal-ammoniac occurs usually in the form of a hard, white cake, opaque, or only slightly translucent. Its taste is cooling, salinc, and rather disagrecable. It dissolves in 2.72 parts of water at $18^{\circ} 7 \mathrm{C}$. with great reduction of temperature, and in about an eqnal weight of water at the boiling-point. The feathery crystals it forms are found on microscopic eamanation ito be masses of cubcs or oatabedrons; their specific gravity is about $1 \cdot 5$. When exposed to a moist atmosphere, the salt gradually absorbs water, and deliquesces, thongh very slowly, becoming slizhtly acid. When heated, it sublimes nnaltered in a white smoke, having a peculiar smell, very characteristic of ad-ammoniac. If a cold body be presented to this smoke, the sal-ammoniac condenses on it, and forms a white crust. When thus sublimed, it has the property of carrying along vith it various bodies, which, when heated by themselves, aro perfectly fixed.

For the other anmoniacal salts see Chemistry.

AMMONIACUM, or AMmoniac, a gum-resinous cxudation from the stem of a perennial herb (Dorema ammonia. cum) belonging to the natural order Umbellifere. The plant grows to the height of 8 or 9 fect, and its whole stem is pervaded with a milky juice, which oozes out on an incision being made at any part. This juice quickly hardens into round tcars, forming tho "tear ammoniacum " of commerce. Lump amuoniacum, the other form in which the substance is imported, consists of aggregations of tears, frequently incorporating large quantities of the fruits of the plant itscif, as woll as other foreign bodies. In order to free lump ammoniacim from these impurities, it has to be inelted and strained, operations which depreciate its therapeutical ralue. Ammoniacum has a faintly foetil unpleasant odour, which becomes more distinct on beating; externally it possesscs a reddish ycllow appearance, and when the tears or lumps are freshly fractured they exhibit an opalescent lustre. It is chiefly collected in the province of Irak in Persio; but somo quantity is also produced in the l'unjab, and comes to the Enropean market ly way of Pombay. Its composition, according to Hagen, is-resin, 68.0 ; gum, 19.3 ; gluten, $5 \cdot 1$; volatilo oil and watcr, 2.8 ; extractive, de., 3.9 . Ammoniacum is closely related to assafoctida, not only in the plant yielding it, but also in its therapeutical effects. It may be used as a substitute for assafoctida, although, containing a much smaller proportion of volatile oil, its cffect is less powerful. Internally it is used in conjunction with squills in bronchial affections; and in asthma and chronic colds it is found useful. It is, however, more used externally in the form of plasters, as a discutient or resolrent application in indolent tumours, affections of the joins, \&c.

African ammoniacum is a totally different substance, thougl often confounded with the real gum-resin, which is produced only in the East. It is the product of an unknown plant growing in North Arica, and occasionally shipped to our markets from Marocco. It is a dark. coloured gunn-resin, possessed of a very weak odour and a persistent acrid taste. A considerable commerce in it is carried on between Mogador and Alexandria, where it is in demand for purposes of fumigation.

AMMONITES, called also very frequently the chitdren of Ammon, a people allied by descent to the Israclites, and living in their vicinity, sprung from Lot, Abraham's nephew, by the younger of bis daughters, as the immediately adjoining people, the Moabites, were by the elder (Gen. xis. $37-38$). Both peoples are sunctimes spoken of under the common name of the children of Lot (Eelut. ii. 19; l's. lxxxiii. 8); and the whole history shows that they preserved throughout the course of their nationa] existence a scnso of the closest brotherhood. The original territory of the two tribes was the country lying immediately on the cast of the Dead Sca and of the lower half of the Jordan, having the Jabbok for its northern boundary; and of this tract the Ammonites laid clein to the nortbern portion, the "half mount Gilead" (Dcut. iii. 12), lyiu" between the Arnon and the Jabbok, out of which they had expelled the Kamzummin (Judg. xi. 13; Dent. ii. 20, 21; of. Gen. xiv. 5), though apparently it had been held, in part at least, conjointly with the Moabites, or perhaly nuder there supremacy (Num. zxi. 26, xxii. 1; Josh. xiii. 32). From this their original territory they had been in their turn expelled by the Amorites, who were found by the Israclites after their deliverance from Egypt is possession of both Gilcad and Eashan, that is, of the whole country on the left bank of the Jordan, lying to the north of the Arnon (Num. xxi 13). By this Amorite invasion, as the Moabites were driven to the south of the Arnon, which formed their northern boundary from that time so the Ammonites were driven out of Gilead
across the upper waters of the Jabbok where it flows from south to north, which henceforth continued to be their western boundary (Num. xxi. 24; Deut. ii. 37, iii. 16). The other limits of the Ammonitis, or country of the
 means of exactly defining. On the south it probably adjoined the land of Moab (but cf. E:rald, Gesch. Israels, ii. 266); on the north' it may have met that of the king of Geshur (2 Sam. xiii. 37); and on the east it probably melted away into the desert peopled by Amalekites and other nomadic races.

The chief city of the country, called Rabbah, or Rabbath of the children of Ammon, i.c., the metropolis of the Ammorites (Deut. iii. 11), and Rabbathammann by the later Greeks (Polyb. จ. 7, 4), whose zatne was changed into Philadelphla by Ptolemy Philadelphus, a large and strong eity with on acropolis, was situated on both aides of a branch of tho Jabiok, bearing at the present day the name of Bloiet or Nahr Amman, the water or river of Ammon, whence the designation "city of traters" (2 Sam. xii. 27; f. Burckhardt, Syria, p. 361). The ruins called Amman by the natives are extensive and imposing. The country to the south and east of Amman is distinguished by its fertility; and ruined towns are scattered thickly over it, attesting that it ras once occupied by a population which, however fierce, was settled and industrious (see Burekhardt, op. cit., 357, ef. Lindsay, Holy Land, 5th ed., p. 279), a fact indicated also by the tribute of corn paid annually to Jotham (2 Cbron. xxvii. 5). r'be Israelites on their journey ont of Lgypt to the land of promise were forbidden to meddle with the territory of Animon as of - Moab (Deut. ii. 19) ; and it scems to indicate that friendly relations subsisted at first between this people and the chosen nation, tbat after the latter had conquered and slain Og , the giant king of Bashan, the enemy of both, his bedstead was placed in Rabbab (Deut. iii. 11). Like Dloab, however, the Ammonites beheld with jealousy the rising greatness of Israel. They joined the former in hiring Balaam to curse them (Deut xxiii. 4); and thenceforward their history, so far as known, reveals a spirit of bitter hostility against the people of Jehovah-shown in inyasions repeated and violent, and crueltics the most outrageous and unsparing (Judg. x. 8 ; Amos i. 13). They could not forget that the Gileadite portion of the inberitance of fsrael had once been their possession, nor cease to press their claim for its recovery (Judg. xi. 13). We find them joined first with Moab (Judg. iii. 12), and then with the Philistines (Judg. X. 7, 8), in the invasion and oppression for lengthened periods of the land of their enemies.' Subdued by tha prowess of Jephthah, they began again to act on the offensive in the days of Saul, laying siege to Jabesh-Gilead (1 Sam. xi. 1). David offered his friendship to the king of Ammon, but his offer was rejected with contumely and outrage, for which a terrible vengennce was exacted in the capture and orerthrow of their metropolis, and the deliberate slaughter of the people (2 Sam. x.) They were united with Moab arrainst Judah in the days of Jehoshaphat (2 Chron. xx. 1); they paid tribute to Uzziah and Jotham (2 Chron. xxvi. 8, xxvii. 5) ; and with the neighbouring tribes belped the Chaldean monarch against Jchoiakim (2 Kings xxiv. 2). When, after the destruction of Jerusalem, the poor remnants of the Israelites were gathered together under the protectorate of Nebuchadnezzar, it was by the instigation of a king of Ammon that Gedaliah, the ruler appointed over them, was murdered, and new calamities were incurred (Jer. xii. 14); and when Jerusalem was to be rebuilt, the foremost in opposing the patrietie Jerse were a Meabite and an Immonite (Neh. ii. 10, 19; iv. 1-3). Truo to their antecedents, the Ammonites, with some of the neighbouring tribes, did their utmost to resist and check the reviral of the Jewish power under Judas Maecabæus (1 Mace. v. 6 ; ef. Jos. Ant. Jud. xiii. 8, 1). The last historical notice of them is in Justin Martyr (Dial. cum Tryph. §119), where it is affirmed that they were atill a numerous people. Tho Ammonitcs are repeatedly mentioued under the form Bit-Amman, i.e., house of Amman, in the inscriptions of Nineveh among tho tributaries of the kings of Assyria (Schrader, Écilinschriftch aud d. A. T. 52). The vames of their kings, so far as known, - in Scripture, Nahasb, Ilanun, Baalis, or Baalim (2 Sam. x. 2 ; Jer. .1. 14) ; in Assyrian, Puduilu (cf. Pedrhel (Num. xxxiv. 28), Basa (cf. Baasha, I Kings xy. 33), and Sanibi (of less obvious analogy), -testify, in harmony with other considerations, that their language was Scmitic, closely allied to the Ifebrew; and this fact is now placed beyond question by the dis. covery of the Mesha-stele, presenting the language of the Doabites, and doubtless that also of the brother tribe (see Moabites). Their national deity, Moloch or Nilcom (ses MoLocम), was warshipped with eruel rites, - e circumstance tenling to foster that fierecness of character which distinguished this people throughout their history.

AMMONIUS, surnamed Hermie, or the son of Hermias, studied at Alesandria. along with his brother Heliodorus,
under the neo-Platonist Procius during the latter part of the 5 th century A.D. He was afterwards the head of a school for philosophy; and among his scholars wero Asclepias, John Philoponus, Damascius, and Simplicius. Although a neo-Platonist, Ammonius appears to have deroted most of his attention to the works of Aristotle. Commentaries on some of these are all that remains of his, reputedly numerous writings. Of the commentaries we have-1. One on the Isagoge of Porphyry, published at Venice, 1500 , fol.; 2. One on the Cutegories, Venice, 1503, fol., the authenticity of which is doubted by Brandis; 3. One on the De Interpretatione, Yenice, 1503, fol. Of each of the conmentaries there are several Latin transla tions, and the three have been published in a collected form, with a Latin translation, Venice, 1ū 46,3 vols. 8 vo. They are also printed in Brandis' Scholia to Aristotle, forming the fourth volume of the Berlin Avistotle. Tho special section on fate has been published separately by Orelli, Alex. Aphrod. Anmonii et all. de Falo que supersunt, Zurich, 1824. A life of Aristotle, generally ascribed to Ammonius, but with more accuracy to John PLiloponns, is often prefixed to editions of Aristotle. It has been printed separately, with Latin trauslation and Scholia, at Leyden, 1621, and again at Helinstädt, 1666. Other cominentaries on the Topics and the first six books of tho Metaphysics still exist in manuscript. Of the value of the logical writings of Ammonins there are various opinions. Pranth, perhalis the highest recent authority, speaks of them with great but hardly merited contempt (Geschichee der Logik, i. 642). (For list of his works, see Fabricins, Bibliotheca Graca, จ. 704-707; and also Brandis, Memoirs of the Berlin Actdemy, 1833.)

AMMONIUS, surnamed Saccas, or "The Sack Carrier," from the fact of his having been obliged in the early part of his life to gain his livelihood by acting as a porter in the market, lived at Alexandria during the $2 d$ century A.D., and died there 241 A.D. Very little is known of thi events of his life. He is said by Porpliyry to have been born of Christian parents, and to have belonged originally to their faith, from which he afterwards apostatised. Eusebius (Chursh History, vi. 19) denies this apostasy; and affirms that Ammonius continued a Christian to the end of his life. It is clear, howerer, that Eusebius is referring to another Ammonius, a Christian who lived at Alexandria during the 3 d century A.D. Ammonius, after long study and meditation, opened a school for philosophy in Alexandria. Among his pupils were Herennius, the two Origens, Long̣inus, and, most distinguished of all, Plotinus, who in his search for true wisdom found himself irresistibly attracted by Ammonius, remained his close companion for cleven years, and in all his later philoso, hy professed to bo the mere exponent of his great maser. Ammonius himself designedly wrote nothing, and the doctrines taught in his school were, at least during Lis life, kept secret, after the fashion of the old Pythagereas society. Thus, while all the later derelopments of neoPlatonism are in a geueral way refcred to him as their originator, little is known of his special tenets. Prom tle notices of Hierocles, a scholar of Plutarch, in the cari's part of the 5^{5} th century A.D., preserred in Plotius, $\pi \theta$ learn that his fundamental doctrine was an cclecticiom, or union of Plato and Aristotle. He attempted to show that a system of philosophy, common to both and bigher tha: their special views, was contained in their writings. He thus, according to his admirers, put an end to the intir. minable disputcs of the rival schools. What other elements Ammonius included in his eclectic system, and in particular how he stood related to the Jewish and Christian theosophies, are points on which no information can ba procured. Ferr direct references to him exist, and ceej
theso are not of unquestionable authority. He undoubtedly originated the neo-Platonic morement, but it cannot be determined to what extent that philosophy, as known to us through Plotinus and Proclus, represents his ideas. Eusebius (Church History, vi. 19) mentions some Christian works by Ammonius. As Porphyry expressly tells us that Ammonius the philosopher wrote nothing, Eusebius must be referring to the later Christian of the same name. To this later Ammonius belongs the Diatessaron, or IIarmony of the Four Gospels, sometimes ascribed to the philosopher. (See Fabricius, Bibliotheca Graca, v. 701, 713 ; and Zeller, Phil. d. Griechen, 2d ed., iii. 2, 398 , note 6.) On Ammonius the philosopher, besides general works on the Alexandrian school and the history of philosophy, see Rüsler, De Commentitiis Philosophice Ammoniacce I'raudibus et Noxis, Tübingen, 1786; and Dehaut, Essai Mistorique sur la Vie el la Doctrine d'Ammnnius Saccas, Brussels, 1836.

AMIIUNITION in its general sense comprises not only tho powder and projectiles employed in guns of all classes, but also all stores directly connected with artillery fire, such as friction-tubes, fuses, pereussion-eaps, and rockets.

Gunpowder, as manufactured in England, consists of 75 parts of saltpetre, 15 parts of charcoal, and 10 parts of sulphur, reduced to a fine powder and mechanically mixed tugether, pressed into a cale, and gramulated to a size varying aecording to the purpose which it is designed to fultil. In cannon, a large grain is necessary for regular and thorough burning, a fine porder choking up the interstices, and so preventing the flame from finding its way through the entire clarge. On the other band, a large grain is blown out of a small piece before it is burnt to the centre. For the rery heavy guns recently introduced into the British service powder formed into "pellets" or "pebbles" has been adopted, by which the pressure of the gas is kept up till the shell leaves the muzzle, without being at any instant excessive and likely to injure the gun. Modified forms of powder and gun-cotton bare been cimployed experimentally as the charges of guns.

For heavy guns or cannon the charge is carefully weighed and made up in a serge cartridge sewn with worsted, which entirely consumes in fring-any residue left ignited in the bore being liable to cause explosion when the cartridge of the succeeding round is rammed down on it, and so to blow off the arms of the gunner using the sponge stave. The shell or other projectile employed is forced lione on the cartridge (vide fig. 1) in muzzle-loading guns. In breech-loaders the shell is introduced first, and pressed into the shot ehamber, bejond which it can only pass by the "lands" of the rilling cutting into the lead coat, which is effected by the explosion of the charge. The cartridge is pressed forward against the base of the projectile.

Riffed guns - that is, guns constructed to impart rotation to the projectiles they discharge-hare superseded smoothbored cannon in the armaments of all civilised nations; elongated projectiles, which are impeded by the resistance of the air much less than spherical ones, being in all cases employed. Fig. 1 shows a section of the bore of the

Tha L-1, 1, wroughe-1rom colls; 2, steel; 8, copper studs; 4, worsled bralds muzzle-loading gun, whose projectiles are made to rotate
by means of gun-metal studs which fit in the spiral grooves of the bore. The following kinds of projectiles aro fired from rifled camnon in the British service:-Common shell, Shrapnel shell, Palliser shell and shot, and case-shot. Light balls, carcasses, and spherical shells are discharged from smooth-bored mortars. The two last mentioned, as well as spherieal Shrapnel, round shot, grape, and case, are fired from smooth-bored guns.

Common shell for ritled guns are simply hollow elongated projectiles filled with powder, which is fired by the action of a fuse, and bursts the slell with great violence, acting in walls or earth into which it has penetrated like a smali mine, the largest shells, which are twelve inches in diameter, containing nearly 37 Bb . of powder. Gun cotton, nitroglycerine, aud other substances, have been tried for bursting purposes, but it has been found very difficult to prevent premature explosion from the sudden shock of discbarge of the gun. Picrate of potash, or " picric powder," has been recommended as stronger than gunpowder and quite safe, but it is not as yet adopted. Common shells are generally fired at earthworks, buildings, and wooden ships. When carried, as in English men-of-war, filled and fused with percussion fuses, they can be discharged as rapidly as shot. The most terrible instance of their use in history is tho entire destruction of the Turkish frigates by tho lussian fleet at Simope on Novemter 30th, 1853. At the battle of Sedan in 1870 the Prussians made such havoe among the crowded French troops that the ground becante covered with "heaps of flesh and rags;" and a similar result was produced by the fire of mortars concentrated on the Russian troops in the Redan at the termination of the siege of Sebastopol. The slaughter in the tro last named instances is, however, to be attributed to the concentration of fire on masses of men rather than to the description of shell used, for the showers of bullets ejected by Shrapnel shell would hare struck many more men, although the ghastly spectacle of disnembered human bodies would not have been exhibited.

Shrapnel shell are hollow projectiles containing bullets and a very small bursting charge. Fic. 2 exhibits the construction of the Boxer Shrapnel shell for the 40 -pounder breech-loading Armstrong gun, and is a good specimen of this class of projectile. The shell follows the usual course of fight up to within about 100 yards of the object, when the time fuse, if properly set, fires the bursting charge, and opens the shell by splitting it along certain grooves forming lines of least resistance. The bullets and fragments then continue their course in the form of a shower of missiles. This class of shell was designed for smooth-bore guns by General Sbrapnel. It was used with great effect during the Peninsular war, especially in clearing the breach and ramparts of St Sebastian of defenders, over the heads of the English storming party, who drew back into the diteh for a time. The projectile has never been understood and thoroughly taken up by foreign powers, and bas nerer been used to full advantage on service. In skilful, hands it is

Fig. 2. 2,2 . copper parta; 8. 3, gun metal: 4,4, wronght lron or mildsteel ; 5 , lead: 6, paper. capable of producing results far bevond auy that have as jet been achieved.

The Armstrong segment shell fulfils the same general purpose, - that is to say, it is designed to sweed down bodice
of troops, but it opens rather more suadenly, segments of irun taking the place of lead and antimony bullets, which segmeuts bcing built up in a ring with the bursting charge in the centre, are dispersed more widely when the shell opens than the bullets of the Shrapnel. The segment shell consequently is rather suited for the action of a percussion fuse on striking the head of a column of men, or the ground close in front of it. In this way results have been obtained which are out of all proportion to anything that has ever occurred in actual service. At Dartmoor in 1869 the average number of hits for every segment shell fired during the serics of experiments, including failures of all kinds, was $17 \cdot 1$. The meaning of this estimate may be appreciated by applying it to some action. For example, at Waterloo the English artillery fired 9167 rounds. On the Bartmoor scale this would give 161,885 casualties. This result shows that after making the most liberal deductions for the peculiar circumstances of war, appalling effects might be produced by modern aitillery with segment or Shrapnel shells.
Palliser shell and shot are projectiles made with specially thand and rigid heads, with the object of piercing the sides of armour-clad vessels. The form of the head, which is termed "ogival," is seen inside the gum in Fig. 1. A point of this shape causes the resistance of the plate to fall on the skell as an increasing pressure, acting inwards towards points distributed along the axis, rather than as the full sedden blow that would be experienced by a round shot. TEis enables chilled iron to be used, which has great hardness and crushing strength, but is very brittle. Sir W. Pailiser first proposed chilled projectiles; subsequently mottled iron projectiles with chilled heads have been used. Sir J. Whitworth has obtained great results with flat-headed projectiles of a special quality of steel, which have been made to penetrate iron plates at an angle even more oblique than 45°. Solid and hollow shot, as well as shell, have been eraployed against plates. The shot, having thicker sides or walls, have some advantage in penstration. Shells, by their explosion, destroy wood backing better than shot, when the front plating is not too thick for them to penetrate. They are charged with powder through a filling hole in the base of the shell, closed with a strong screw plug. No fuse is required, impact against thick iron being sufficient to explode the bursting charge of a shell without any fuse. The greatest peuetration that has yet been obtained in armour was achiered by the 35 -ton Woolwich gun (termed the Woolvich "infant"), at Shoeburyness on June 20th, 1872, the head of a Palliser projectile passing entirely through $18 \frac{1}{2}$ inches of iron and 18 of teak, a thicknass of armour exceeding that of any iron-clad vessel afloat.
Solid shot have gradually disappeared since the introduction of rifled guns, and the reasons are obvious. A round thot fired from a smooth-bored gun, after its first graze, continued to ricochet in a straight line; it produced, therefore, a considerable moral effect, aud on smooth ground was actually formidable. A rifled shot, on the other hand, is violently defected after each graze, from the fact that it is rotating rapidly as it touches the ground, and this, coupled with its liability to bury itself, detracts greatly from its efficiency. Shells for any rifled gun may be mado of such length as to bring them to the same areight as the corresponding shot, which was not the case with smoothbore projectiles, they being all of one size instead of one weight. In short, Palliser shell with thick walls (fired as holiow shot) excepted, the only projectiles of the shot class now employed with rifled guns are case shot. Owing, however, to the fact that the charge of a rifled gun varies from $\frac{1}{8}$ th to $\frac{1}{t}$ th the weight of the projectile, while in smoothbrrod guns it-was sometimes as great as $\frac{1}{3} d$ that of the shot, the effect of rifled cass is comparatively weak. At any time
the range of case shot hardly eseceds 300 yards, while its efficiency depends on the ground along which it bounds being hard and level. Each shot consists of a number of balls enclosed in a thin metal cylinder, which breaks up in the gun, the balls scattering from the muzze, but sweeping the ground with great effect under favourable circumstances. Grape differs only in the balls being larger. At the battle of Friedland, at the bridge of Lodi, and at Sebastopol, grape and case were fired with great effect.

Tine and percussion fuses have been mentioned. Time fuses are those which open a shell at any given time, whether in the air or during penetration. Fig. 2 shors the "Boxer 9-second fuse" for breech-loading guns, fixed in the shcll. On the shell moving, the hammer in the head, by its inertia, shears a copper wire, fires a detonating patch of connosition beneath it, and lights the fuse composition. This burns until it reaches the point at which a hole is bored in the fuse, when it flashes down the channel shown on the left side of the cut, and fires the powder primer and bursting charge of loose powder. The action of this fuse therefore depends on its correct boring and regular barning. A percussion fuse is one that acts on impact or graze. Fig. 3 shows the Pettman general service fuse. On the first movement of the shell, the detonating ball A , and the plugs above and below it, by their inertia, crush the lead eap C, and shear the copper pin above F. During flight the ball becomes detached from the upper or steady plug B, and on impact is fired by its momentum agaiust the part in front of it. The steady plug itself has also a ring of detonating composition, DD, which, should the plug fail to escape from the detonating
 ball, and so hold against it, is thrown Fio. 8.-1. conper parts; 3 against the little plain ball E . The gun-metal; 3 , lead. flash in either case acts down the tube F , and fires the bursting charge of the shell. This fuse is made not to explode against a wave, beíng chiefly used for sea service. It acts both with smooth-bored and rifled guns. For land service more sensitive ones are employed to explode on graze.
Friction tubes are copper tubes driven with mealed powder, and pierced from end to end. A friction bar is the head is rubbed against patches of detonating composition by pulling a lanyard, which hooks into a loop at the end of it. The tube is entered in the vent of a gun, which is thus fired by pulling the lanyard.

For mitrailleuses and breech-loading small arms, lead bullets or lead and tin bullcts, fixed in central-fire cartridges, are used. The cases are made of sheet brass, with a thick base disc containing a cap chamber, cap, and anvil. Fig. 4 shows the Boxer-Henry ammunition for the Martini-Henry rifle. These metal-cased cartridges are not liable to explode in store, even from the firing of a small charge of powder confined inside the samie packing-case with them. They admit of a very rapid rate of firing. The Gatling mitrailleuse has discharged 657 rounds in two minutes at Shoeburyness. Th3 MartiniHenry rifle has fircd 25 rounds in a minnte.

Rockets are projectiles containing composition which, as it burns, generates sufficient gas to drive formatd the rocket by an action resembling that of the recoil of a gun. Of rockets there are three kinds: first, war rockets, with iron cascs, introduced by Sir W. Congreve, and snbsequentiy

Drougnt by Mr Male to the form shomn in Fig. 5. Congreve rockets were kept point first by sticks screwed into their bases, which acted on the principle of the feathers of an arrow. The Hale rocket is kept point first by rotation, caused by the gas escaping from the vents pressing ugainst the curred shields. The sccond class of rockets are signal rockets, made of paper, and containing stars, which throw a bright light in falling. The third class are the rockets used to carry a line and establish communication between a wreeked ressel and the sea-shore.
(c. o. B.)

AMNESTY (ám \quad चनтía, oblirion), an act of grace by which the supreme power in a state

Fic. 5. restores those who may have heen guilty of anyoffence against it to the position of innocent persons. It includes more than pardon, inasmuch as it obliterates all legal remembrance of the offence. It is chiefly exercised towards associntions of political criminals, and is sometimes granted absolutely, though more frequently there are certain specified exceptions. Thus in the case of the earliest recorded amnesty, that of Thrasybulus at Athens, the thirty tyrants and a fer others were expressly excluded from its operation; and the amnesty proclaimed on the restoration of Charles II. did not extend to those who had taken part in the execntion of his father. Other celebrated amnesties are that proclaimed by Napoleon on 13 th Marclı 1815, from which thirteen eminent persons, including Tallcyrand, were excepted; the Prussian amnesty of 10th August 1840; and the general amnesty proclaimed by the Einfieror Francis Joseph of Austria in 1857. The last Act of anmesty passed in Great Britain is 20 Gco. II., c. 52, which prociamed a pardon to those who had taken part in the second Jacobite rebellion.

AMOL, or AMUL, a town of Persia, in the prorince of Mazanderan, about 12 miles abore the mouth of the lieraz, a river which flows into the Caspian Sea. It is not walled, and is now a place of no great importance, but in and around it there are ruins and ancient buildings which bear witness to its former greatness. Of these the most conspiouous is the magnificent mansoleum of Seyed Quam-u-deen, king of Sari and 1 mol , who died in 1378. At Amol there is a bridge of twelve arches orer the Heraz, and the bazaars of the town are large and well supplied. The population is about 40,000 , but a great number of these leave the city in summer to tend their flocks.
AMONTONS, Guillaume, a celebrited lienely experimental philosopher, was the son of an adrocate who had left his native province of Normandy and established bimself at Paris, where the subject of this notice was born on the 31st August 1663. The exertions of genius frequently take a particular direction from accidental circumstances. A severe illness with which Amontons was afficted in his early youth had the effect of rendering him almost entircly deaf, and consequently of secluding him in a great measure from the ordinary intercourse of society. Peing compelled by this accident to depead for his enjoyments on the resources of his orm mind, he began to take great pleasure in the construction of machines of various kinds, and in the study of the laws of mechanics, a path of inquiry which he pursued through life with unremitting ardour and distinguished success. One of the first objects rihich engaged his attention was the discovery of the perpetual motion,--in attempt which, though necessarily unsuccessful, was productive of greater advantage to him than it has usuully been to those who have pursued that rain chimera. Amontons deroted himself particularly to the improvement of instruments employed in physical experiments, a subject which requires the finest applica-
tions of mechanical principles, and which till that time had not met with á due share of attention. In 1687, before he liad attained his 2th year, lie presented to the Academy of Seiences an hygrometer of his own invention, which was received with approbition by that learned body. In 1695 he published the only worle which he has given to the world. It was dedicated to the Academy, and entitled Remarques et Expériences I'hysiques sur la Construction d'un S'ouvel Clepsydre, sur les Baromitres, les Thermomitres, et les IIygromètres. After Huyghens's beautiful application of the pendulum to the regulation of the motion of clocks, any attempt to revire the clepsydra, an incommodious instrument, and not susceptible of much accuracy, might secm to subject its nuthor to the imputation of not sufficiently appreciating the great importance of a discovery mhich has so completely changed the face of astronomical seienco; but the object of Amontons was to produce an instrument capablo of measuring timo on board ship, in circumstances where the motion of the vessel rendered such timekeepers as were then known useless. The machine which he constructed is said to bave been extremely ingenious, and probably differed cutirely from those of the ancients, among whom the clepsydra was in common use. In 1689 Amontons was admitted into the Academy of Sciences, tho Memuirs of which he enriched with many important contributions. The first papel which ho presented after his admission was one oll the theory of friction, a subject then involved in great obscurity, and on which his inquiries tended to throw considerable light. After that appeared in succession deseriptions of a new thermometer, and of numerous experiments made with the barometer relative to the rature and properties of air,-a detailed account of all which is given in the history of the Academy. In the course of these investigations he found that the boiling point of watel varies with tho pressure of the atmosphere, a discovery made almost contemporancously in England by Dr Hallcy. By his countrymen he is generally regarded as the inventor of the telegraph; and he lad the honour of exhibiting the methods by which he proposed to accomplish the object in vicw before some members of the royal family. It appears, however, from a paper read by Dr Hooke to the liojal Socicty in 1684, that that ingenious philosopher lad brought the telegraph, in theory at least, to a state of far greater maturity than Amontons, and mearly 20 years earlier. The experiments of the latter were made about the year 1702. It may be regarded as a curious fact in the history of inventions, that although the great importance of telegraphic communication is obrious, and the method of accomplishing it was clearly explained ly Hooke, and its practicability demonstrated by Λ montons, it continued to be regarded as of no practical value, and was not regularly applied to useful purposes till nearly a century afterwards, at the time of the French Revolution. Amontons died in 1705, aged 42.

AMOOR, Arour, or Asut, a large and important river of eastern Λ sia, formed by the confuence of the Argun and the Shilka, at a place called Ust Strelkoi, in $53^{\circ} 19^{\circ} \mathrm{M}$. lat. and $121^{\circ} 50^{\prime} \mathrm{E}$. long. Both these rivers come irom the south-west: the Argun, or Kerulen as it is called above Lake Fulon, through which it flows about helf-way betreen its souree and Ust Strelkoi, rises near Mount Kentei, in 49° N. lat. and 109° E. long.; tho Shilka is formed by the union of the Onon and tho Ingoda, both of which rise in the Kingan mountains, not far from the source of the Argun. The Amoor proper flows at first in a sonth-casterly direction for about 800 miles, as far as $47^{\circ} 42^{\prime}$ lat. ; it then turns to the north-cast, and after a total course of ores 1600 miles disclarges itself into the Sea of Olshotsk, ognosite to the ieland of Saghalien. Its principal tribu-
taries from the south are the Songari, which the Chinese consider to be the true head river of the Amoor, and the Ussuri; from the north it receives the Zeya, the Bureia, the Gyrin, and the Omogun. The climate of the valley of the Amoor varies very much in different parts: in the upper portion of its course there are long and cold winters and short summers; as the river descends into more southern latitudes the rigour of the climate relaxes, and the heat becomes almost tropical ; the vegetation is rich and luxuriant, and large forests of oaks, limes, and elms replace barren larches and firs; while on the lower Amoor the cold again to a certain extent prevails, and at the mouth the river is ice-bound for more than half the year, a circumstance which greatly impairs its otherwise admirable facilities for navigation. The river is abundantly stocked with fish, and the mountains near it are believed to contain iron and gold. The Amoor became known to the Russians in 1639, and they resolved to annex it to their empire along with the territory through which it flows. In 1651 a party of Cossacks, under a bold leader named Khabaroff, built a fort at Albazin, about 100 miles below Ust Strelkoi. Many sanguinary conflicts between the Chinese and the Russians followed. Albazin more than once changed owners; bat at last, in 1689, a treaty was concluded, by which the river Goroiza or Kerbeche became the easterly limit of the Russian empire on the Amoor, the boundary stretching from the source of the Gorbiza, along the Yablonnoi mountains, to the Sea of Okhotsk. This state of matters continued till 1847, when the Russians again began to make preparations for the conquest of the Amoor valley. In 1850 and the three succeeding jears, expeditions were sent up the river, and the towns of Nikolaersk, Marinsk, and Blagovchenk were founded ; in 1854 a powerful flotilla sailed down from. Ust Strelkoi to the mouth of the river. A large and very important tract was added to the Russian empire by the cession in 1858 of the whole left bank of the Amoor and the right bank below the Ussuri, and the further cession in 1860 of all the territory between the Ussuri and the Eastern Sea.

AMORITES, a powerful people, widely spread through the Promised Land before the settlement of the Israelites, belonging to the Canaanitic stock, according to Gen. x. 16, though some think they belong rather to the pre-Canaanitic inhabitants of the Jordan basin (see Knobel, Völkertafel, 201, sq., who refers them to the Shemitic race of Lud). In all probability there were incorporated among them the remnants of the older tribe of the Rephaim. Their name, "the high ones," has by Ewald (Gesch. Israels, i. 315), after Simonis (Onomasticon, s.v.) been interpreted highlanders, or inhabitants of the heights, as Canannites is supposcd to mean lowlanders, or inhabitants of the plains (cf. Num. xiii. 29 ; Deut. i. 44 ; Josh. $\mathrm{\nabla} .1$, x. 6). Others call this in question; and find an explanation-rather in the tallness of stature by which they seem to have been distinguished (Num. xiii. 32, 33; Amos ii. 9, cf. Kurtz, Gesch. d. Alt. Bundes, i. § 45 ; Pusey, Dinor Prophets, 174, n.)

That this people had a certain preponderance among the CansanItic tribes is shown by their name often standing in Scriptare for Canaanites in general (Gen. xv. 16 ; Joslı xxiv. 18 ; Jud. vi. 10). Their principal seat on the west of the Jordan was the mountains of Judah and their southern slopes, - to the whole of which mowntainous rcgion, indeed, the name the Mount of the Amorites is applied (Gen. xiv. 7, 13 ; N゙uca. xiii. 29 ; Deut. i. 7, 20, 44; Josh. גi. 3; Jud. i. 36). We hear of them also at Gibeon, north-west of Jerusalem (2 Sam. xxi. 2), at Aijalon, west of Gihcon, and in the northern part of the Philistine plain (Jud. i. 34, 3i), and in the land of Ephraim (Gen. xlviii. 22). On the cast of Jordan, after bavinc driven back the Ammonites and Moabites, they occapicd the whole of Gilead and Bashan, from the Arnon, the northern limit of Moab, as far as Mount Hermon, forming in this region at the epoch of Moses two powerful kingdoms,-that of Sihon, whose capital was Heshbon, the more southerly; and that of OE, whose copital was Ashtaroth, the more northerly (Num. Exi. 21-86": Dcutu
iii. 8,10 ; iv. 48). It was with this east-Jordanic section of the Amorites that the Israelites first came into conflict. After these had been subdued, and after the Israelites had crossed toe Jor lan and had begun to capture the Canaanitish towns, fre of the rnost powerful of the Aroorite kings of the Festern section formed a confederacy to oppose the advancing host (Josh. x. 5, sq.) When this combination had been overthrown, a final attempt at resistance was made by the more northerly portion of the Canaanites, under the auspices of Jabin, king of Hazor; and in the united forces, which were overthrown at the waters of Derom, Amorites were included (Josh. xi. 3). Those of this and the other tribes of the Canaanites who survived the conquests of Joshua, either gradually became mingled with the Philistines and others of the neighbouring nations, or they continued to live among the Israelites in the condition of tributaries and slaves (Josh. xi. 22 ; Jud. i. 34 , 35 ; 1 Kings ix. 21 ; 2 Chron. Fiii. 8):

In old Egyptian literature inention is frequently made, from the time of Sethos I., of an Asiatic people called the Amar or Amaor, whom Egyptologers agree in identifying with the Amorites (Bursen, Egypt's Place, vol. iii. 212). There is as yet less agreement in regard to the position of their country. Brngsch is of opinion that the people in question are located in the north of Syria, on the banks of the Orontes (see his Geog. Inschriften, Bd. ii. 21 ; Hist. d'Egypte, 132, 187). The later researches of Chabas, Lowever, have rendered the interpretation on which this view depends very donbtful, and shown that in all probabilits their territors lies, in entire harmony with the representations of Scripture regardiag the Amorites, on the west of the Dead Sea and south of the land of Judah (Chabas, Etudes sur I'Anliquile, 267, f.; Recherches, 44, 107.) Among the towns of the Amaor are mentioned Dapur and Kodesh, evidently to be identifed with the scriptural Debir and Kadesh

The lariguage, \&c., of the Amorites will be more convenicatly considered under Cas゙aantres.

AMORPHISM (from a privative, and $\mu 0 p \phi \dot{\eta}$, form), a term used in chemistry and mineralogy to denote the abseace of regular structure in a body. Glass, resin, coal, albuminous substances, \&c., are amorphous, exhibiting uniformity of properties in every direction: they have no planes of cleavage, as crystals have; they conduct heat equally in all directions; and they do not show double refraction unless in a constrained state. Amorphism is not peculiar to one kind of suostances, for the same molecules may exist either in the amorphous or the crystalline state. Thus charcoal or lamp-black is the amorphous form of the diamond; sulphur and phosphorus, when slowly cooled, assume a crystalline arrangement, but when rapidly cooled are perfectly homogeneous-the suddenness of transition from the liquid or fused state giving no time for defnite arrangement of particles.

AMOS (not the same as Amoz, the father of Isaiah) was an inhabitant of the district of Tekoa, a fortifed town (2 d Chron. xi. 6) among the hills of the south of Judah, where a breed of stunted sheep and goats, prized, however, for their mool and harr, found a scanty pasturage (Amos i 1). Possibly he was a common day labourer; certainly he mas far from mealthy, as the Jowish commentators would have him; for though he is called a "nōkēd" (loc. cit.), like one of the kings of Moab (? Kings iii. 4), he tells us himself that he mas glad to wmbine this employment with that of a dresser of sycamere fruit (vii. 14). He may thas be contrasted, as the peasuat prophet, with Isaiah, the prophet of the capital and tha court. It does not, homever, fullorr that Amos mas devoid of such cultivation as could then be had. Distinctions of rank Trere not, among the primitive Semitic races, co incident with those of culture ; it is enough to refer to the pre-Mohammedan Arabs, Those poetry has been so accurately reproduced by Ruickert. And in the case of Amos there is evidence in his own works that he was well acquainted with the literature of his day. It is true that he boldly admits the irregularity, from an official point of viem, of his prophetic ministrations-" No prophet I, and no prophet's disciple I" (vii. 14); but his discourses are not only full of references (sometimes dubious) to the book of Jocl and the Pentateuch, but framod. howeres
imperfectly, on a genvine artistic plan. This is unmis. takably the case in the discourse contained in i. 3-ii. 16 ; but with greater or less correspondence to the course of thought in tho remainder of the book. Thos, according to Ewald (who aims, it is true, at an unattainable precision), chapters iii. and ir. consist of five strophes-iii. 1-8, iii. 9-15, iv. 1-3 (incomplete), iv. 5-11, iv. 12, 13 ; chapters F . and vi . of a prologuo ($\mathrm{\nabla} .1-3$) and four strophes —マ. 4-6, 8, 9 ; r. 7, 10-17; v. 18-27; vi. 1-10; with a sort of epilogue in vi. 11-14. And the great critic De Wette gocs so far as to declare that no Hebrew prophet has shown an equal regard for clearness and harmony of proportion. (Comp. Dr Puscy, Minor Prophets, p. 152.)

The date of the first public appearance of Amos cannot be ascertained. From the heading of the book (i. l), Which, though not by tho prophet himself, has.the air of a genuine tradition (Ewald, Die Propheten, i. 123), we learn that he "saw"-that is, prophesied-"two years beforo the earthquake." This exthquake is referred to again in Zech. xiv. 5, and, as some think, in passages of Joel and other prophets. It seems, therefore, to have constituted an era in popular tradition, but is of no significance for chronology, as has been well slown by Dr Pusey (Minor Prophets, P. 148). More to our purpose is the former part of the heading, which limits the prophetic career of Amos to the twenty-fivo years that Uzziah and Jeroboam II. Were contemporary-i.e., 810 - 784 , according to the common chronology; 775-750, according to the Assyrian. (Comp. Schrader, Die Keilinschriften und das Alte Testament, p. 120.) He flourished, therefore, in the greatest age of Hebrew prophecy. He scems to have been younger than Jocl, to whose prophecy he makes sereral references, and more or less senior to Hosea and Isaiah. This riev is fully borne out by the gradual emergence of the Assyrians on tho propletic horizon. Altogether absent from Joel's prophecy, they are but raguely alluded to in Amos, and first mentioned by name in Hosea and Isaiah.

It was while "following the flock" (vii. 14, 15) that Amos received a prophetic impulse to leave his home and preach in the sister country. The circumstances are on several accounts rorthy of notice. They indicate-1. A distinction between lIebrew propbecy, in its mature stage, and non-Hebrew-riz., that the former is not dependent on a special artificial traiming ; 2. That though his writings are included in the prophetic canon, Amos did not consider himself officially a prophet (which has a liearing on the great controversy of Daniel); and 3. That prophets of tho higher or spiritual order did not recognise the revolt of the first Jeroboam (comp. ix. 11 ; Hos. iii. 5). But the prophecies of Amos had a wider scope than the destiny of Israel. They show a dim presentiment of the philosophy of history, and of the reproductive power of revolutions. Accordingly, Syria, Philistia, Phœnicia, Edom, Ammon, Moab, and Judah were successively rebuked by the inspired messenger. But the chicf blame fell upon Israel, whose unparalleled prosperity under Jeroboam II. had developed the germs of vices inconsistent with the religion of Jehovab. The denunciations of Amos produced a powerfnl impression. Ho was expelled with contumely by Amaziah, a priest of the reactionary image cultus at the frontier town of Bethel (vii. 10-17).

It is not to bo supposed that the discourses of Amos were delivered exactly as they stand. This view is precluded by their elaborate litcrary character, and by the allusions to the prophet's experience in Israel in ii. 12, v. 10, 13. He probally put them together, with the addition of a grand Mossianic epilogue, after his return to Tekoa. There has never been a donbt of their genuineness. The text is good, but there are a few corrupt passages.

Some of the characteristics of Amos have been already
mentioned. The tradition that he was a stammerer (based on an absurd etymology of his mame), and the statement of Jerome that he was "imperitus sermoue (sed non scientiit)," ouly prove the incapacity of the aucients for literary criticism. The simplicity of his style is that of the highest art. He delights in abrupt short clauses, but they are linked together by the closest parallelism. And the supposed rusticity of his dialect is deduced from the spelling of only fivo words, analogies to which may be traced in the great poem of Job. All that we can admit as probable is, that the native foree and talent for observation displayed by this prophet were derived from his carly converse with uature on tho wild hills of Judah. His imagery, in fact, from its freshness and appropriatencss (comp. ii. 13 ; ii. 5,12 ; iv. 2,9 ; v. 19 ; vi. 12 ; ix. 9), almost reminds us of Dante, and eatitles him to as ligh a place in the history of literaturo as in that of theistic religion.
(т. K. с.)

AJOY, a city and seaport in the province of liokien, China, situated on the slope of a hill, on the south coast of a small and barren island of the same name, in 21° $28^{\prime} \mathrm{N}$. lat. and $118^{\circ} 10 \mathrm{E}$. long. It is a large and execedingly dirty place, abont 9 miles in circumference, and is divided into two portions, an inner and an outer town, which are separated from each other by fo ridge of bills, on which a citadel of considerable strength has been built. Each of these divisions of the city possesses a largo and commodious harbour, that of the inner town, or eity proper, being protected by strong fortifications. Amoy may be regarded as the port of the inland city of Changrolu, with which it has river communication; and its trade, both foreign and coastwise, is extensive and raluable. In 1870, 560 vessels, exclusire of Chinese junks, entered the port, of an aggregate burden of $22 \pm, 436$ tons; of these, 315 , of 150,171 tons, were British. The chief articles imported were sugar, rice, raw cotton, and opium, as well as cottun cloths, iron goods, and other European manufactures; their value mas £1,915,427. In the same year, 554 vessels, of 226,911 tons, cleared the port, including 314 British, of 150,826 tons; the chief exports were tea, porcelain, and paper, and their value was $£ 1,144,046$. It is not possible to give the statistics of the trade that is carried on by means of Chinese junks, but it is said to be large; and the native merchants are considered to be among the wealthiest and most enterprising in China. Amoy was captured by the British in 1841, after a determined resistance, and is one of the fire ports that were opened to British commerce by the treaty of 1842 ; it is now open to the ships of all nations. The population of Amoy is estimated at 250,000 .

AMPERE, ANDre-Marie, the founder of the science of electro-dynamics, was horn at Lyons in Jsmary 1775. Ho took a passionate delight in the pursuit of knowledge from his very infancy, and is reported to have worked out lengthy arithmetical sums by aneans of pebbles and biscuit-crumbs before he knew the figures. His father bergan to teact him Latin, but left this off on discovering the boy's greater inclination and aptitude for mathematical studies. Tlic young Ampère, however, soon resumed his Latin lessons, to enable him to master the works of Euler and Bernouill:. In later life ho was accustomed to say that he knew as much about mathematics when he was eighteen as ever l_{1} kuew; but his reading embraced nearly the whole round of hnorledge, -history, travels, poctry, philosophy, and the natural sciences. At this age he had read the whole of the Encyclopédie, and with such interest and attention that he could repeat passages from it fifty years after. When Lyons was taken by the army of the Conventior in 1793, the father of Arpeire, who, holding the office of juge de paix, had stood out resolutcly against the previous revolu.
tionary excesses, was at once thrown into prison, and soon after perished on the scaffold. This erent produced such an impression on the susceptible mind of Ampère, that he continued for more than a year in a state little removed from idiocy. But Reusseau's letters on botany falling into his hands, the subject engrossed him, and roused him from lis apathy. His passion for knowledge returned. From botany he turued to the study of the classic poets, and to the writing of verses himself. About this time (1796) an attachment sprang up, the progress of which he naively recorded in a jeurnal (Amorum). In 1799 he was happily inarricd to the object of his attachment. From about 1796 Ampère gave pritate lessons at Lyons in mathematics, chemistry, and languages; and in 1801 he removed to Beurg, as professer of physics and chemistry, leaving his ailing wife and infant son at Lyous. His wife died in 180t. After two ycars' absence he returned to Lyons, on lis appointmect as professor of mathematics at the Lyceum. His small treatise, Considérations sur la Théorie Mathématique du Jeu (Lyons, 1802), in which he successfully solved a problem that had occupied Buffon, Pascal, and others, and demonstrated that the chances of play are decidedly against the habitual gambler, attracted censiderable attention. It was this mork that brought him under the notice of M. Delambre, whose recommendation obtained for him the Lyons appointment, and afterwards (1805) a subordinate position in the Polytechuic School at Paris, where he was elected professor of analysis in 1809. Here he continued to prosecute his scientific researches and his multifarious studies with unabated diligence. He was admitted a member of the Institute in 1814. It is on the service that he rendered to science in establishing the relations between electricity and magnetism, and in developing the science of electro-magnetism, or, as he called it, electrodynamics, that Ampère's fame mainly rests. On the 11 th of September 1820 he heard of the discovery of Professor Oersted of Copenhagen, that a magnetic needle may be deflected by a voltaic current. On the 18 th of the same month he presented a paper to the Academy, containing a far more complete exposition of the phenomenon, which he had in the interval investigated by experiment, and showing that magnetic defects can be produced, without magnets, by aid of electricity alone. In particular he shewed that two wires connecting the opposite poles of a battery attract or repel each other according as the currents pass in the same or in opposite directions. According to the theory of magnetism• which Ampère's subsequent investigations led him to adopt, every molecule of magnetic matter is acted on by a closed electric current, and magnetisation takes place in proportion as the direction of these currents approaches parallelism. Thc whole field thus opened up he explered with characteristic industry and care. He anticipated the invention of the electric telegraph, having suggested in 1821 an apparatus of the kind with a separate wire for each letter. Late in life he prepared a remarkable work on the classificition of the sciences, which was published after his death. In addition to this and one or two works of less importance, he wrote a great number of memeirs and papers that appeared in scientific journals. He died at Marseilles in June 1836. The great amiability and child-like simplicity of Ampère's character are well brought out in his Journal et Correspondence, published by Jiadame Cherreux (Paris, 1872).

Ampere, Jeav-Jacqutes-Antoine, the only child of the preceding, was born at Lyons, August 12, 1800. He showed an early preference for literary pursuits, and this was strengthened by his intimate intercourse with the brilliant circle to whish his introduction to 'Madame Récamier's celebrated réunions admitted hinı. He began Lis literary carcer as a contributor to the Globe and Rerne

Frangaise, which Guizot conducted in opposition to the gevernment of Charles X. After spending some time in travel, he commenced a course of lectures at the Athenæum of Jarseilles in 1830, the first of which, De l'Histoire de la Poésie, he published. The revolution of July led to his return to Paris, where he lectured at the Sorbonne, till, in 1833, he succeeded Andrieux as professor of the history of French literature in the college of France. His lectures here, which were greatlyoadmired, form the basis of seteral works, particularly of his Histoire littéraire de la France avant le 12 me Siècle, 3 rols., Paris, 1839, 1810. Ampère was a constant contributer to rarious periodical publications. He wrote for the Revue des Deux MFondes siprightly accounts of his long journeys in Egypt and North Anerica, as well as in various parts of Europe, which were afterwards collected under the title, Littérature et Voyages (2 vols., 1834). His principal work is the Histoire Romaine à Rome (\pm vals., 1856-64), a scries of papers, reprinted in part from the Revue des Deux Mondes, shoming shremd sense and great and raried learning, particularly on archæological questions, and written in an attractive though often discursive style. Ampere was officer of the Legion of Honour from 1846, and in 1847 was admitted to the French Academy. Hi died March 27, $186 \pm$.

AMPHIARAUS, in Greek legend, a son of Oicles and Hypermnestra, descended on the paternal side from the kingly seer M.elampus, and, like his ancestor, endowed with the prophetic gift; but at the same time known for his valour in the great enterprises of his time-the expedition of the Argonauts and the hunt of the Calydonian boar. The expedition, however, on which the chief ercuts of his life hinge is that of the Seven against Thebes, into which he was unwillingly driveu by the treachery of his wifc, Eriphyle (Odyssey, xi. 326), a sister of Adrastus, who then ruled in Sicyon, and by whom the enterprise was plamed to restore Pelynices to the thronc ef Thebes. As priince of Argos, Amphiaraus was in a position to assist greatly; but when called upen by Adrastus to take a part, he declined, ou the ground that the cause was unholy, and would cud fatally. His marriage with Eriphyle, however, had uot only been meant to heal previous quarrels between hin and Adrastus, but was to be a bond of peace for thc future in this way, that she should always arbitrate between them. To secure her favour now, Polynices gave her the fatal necklace which Cadmus had once given to Harmenia, and, though marned of the conscquences, Eriphyle accopted it and decided against her husband. Knowing that he would never return, Amphiaraus enjoined his son Alcmreon, theu a boy, to arenge his death upon his mether; and to his children generally he gave wise counsel. As he stepped into his chariot to depart he turned with a look of anger tormards his wife, a scene which was represented on the chost of Cypselus. The assault of Thebes mas disastrous to the Seren; and Amphiaraus, pursued by Periclymenus, would have fallen by his spear had not Jupiter, at a critical moment, struck the earth with a thunderbolt, and caused it to open and swallow him with his horses, Thoas and Dias, his chariot, and lis charioteer, Baton. Jupiter and Apollo, it is said in the Odyssey (xv. 245), loved Amphiaraus dearly; yet he did not reach an old age, but fell at 'Thebos, through the gift accepted by lis wife. After death he continucl, as a deified hero, to exercise his prophetic power by giving oracles on the spot where he had sunk into the carth. In earlier times this was beliered to harc happencd at Harma, on the way from Thebes to Petnix, and it was there that the oracle of Amphiaraus was which Creesus and Mar. donius consulted (Herodotus, i. 49, 52; viii. 134). Aftcrwards this oracle yielded to that in the neighbourhood of Orepus, where was also a sanctuary to Amphiaraus (Jupiter Anylhiaraus, as he was styled), with athletic auJ
musical festivals in his honour, and witly a sacred enclosure (temenos) in which were two springs. At one of them be was thought to have risen from the lower world, and hence its water was employed for no sacred purposc. Invalids who bad been cured by oracular prescriptions threw a piece of muney in it. The rater of the other spring was cxcollent to drink and to bathe in ('A $\mu \phi$ apáou dourpá). The oracles were convejod in drcams, to ohtain which it was
necessary to fast for a time, then to offer sacrifice at the grcat altar (Pausanias, i. 34, 2), and again to sucrifice a ram and to slcep on its skin. The ruins of the temple, with inscriptions which identify them as such, exist still at Maurodilissi, in the ancient Oropia. In the derivation of his name from úpфt-ápáopat, the picty for which Amphi. araus was cclebrated is cxpressed.
(A. S. al.)

A MPIIBIA

LINNAUUS originally employed this term to denote a class of the Animal Kingdom comprising crocodiles, lizards and salamanders, suakes and Cacilice, tortoises and turtles, and frogs ; to which, in the later editions of the Systema Nature, he added some groups of fisbes. In the Tableau Elémentaire, published in 1795, Cuvicr adopts Linneus's term in its earlier sense, but uses the Erench word "Reptilcs," alrcady brought into use by lirisson, as the cquivalent of Amphitia. In addition, Curier accepts the Linnean subdivisions of Amphitialieptilia for the tortoises, lizards (including crocodiles), salamanders, and frogs ; and Amphibia-Serpentes for the snakcs, apodal lizards, and Ccecilice.

In 1799^{1} Brongniart pointed out the wide difierences which scparate the frogs and salamanders (which he terms Batrachia) from the other repiles; and in 180.4, Latreille,? rightly estimating the value of these differences, though he was not an original worker in the field of vertebrate zoology, proposed to separate Brongniart's Batrachia from the class of Reptilia proper, as a group of equal value, for which he retained the Linnæan name of Amphibia.

Cuvicr went no further than Brongniart, and, in the Regne Anintal, he dropped the term Amphibia, and substituted Reptilia for it. Meckel, ${ }^{3}$ on the other hand, while equally accepting Brongniart's classification, retained the term Amphibia in its earlier Limnæan sense; and his example has been generally followed by German writers; as, for instance, by Stannius, in that remarkable monument of accurate and extensire rescarch, the Handbuch der Zootomie (Zweite Auflage, 1856).

In 1816, De Blainville, 'adopting Latreille's view, divided the Linnæan Amphibia into Squamiféres and Nudipelliféres, or Amphibiens; thougl he offered an alternative arrangement, in which the class Repiles is preserved and divided into two sub-classes, the Ornithoides and the Ichethyoides. The latter are Brongniart's Batrachia, plus the Cacilic, whose true afnaitics had, in the meanwhile, been shown by Duméril; and, in this arrangement, the name Amplibiens is restricted to Proteus and Siren.

Merrem's Pholulota and Batrachia (1820), Leuckart's Monopnoa and Dipnoa (1821), Müller's Squamata and Nuda (I832), are merely new names for De Blainville's Orrithoides and Ichthyoides, though Müller gave far better anatomical characters of the two groups than had prefiously been put formard. Moreorcr, following the indications already given by Von Bär in $1828,{ }^{5}$ Nüller calls the attention of raturalists to the important fact, that while all the Souomata possess an amnion and an allantois, these structures are absent in the embryos of all the $N u d a$.

[^85]Muiller makes an appeal for ebserrations on the development of the Cocilic, and of those Amphibia which retain gills or gill-clefts throughout life, which has unfortunately yiclded $n o$ fruits from that time to this.

In 1825 , Latreille published a new classification of the Tertebrata, ${ }^{\text {b }}$ which are primarily divided into Hecmatherma, containing the three classes of Mammifera, Monotremata, and Aves; and Ilamacryma, also containing three classes - Rertilia, Ampluibia, and Pisces. This division of the Tertebrata into lot and cold Mooded is a curiously retrograde step, only irtelligible when we reflect that the excellent entomologist had no real comprehension of vertcbrate morphology; but he makes some atonement for the blunder by steadily upholding the class distinctuess of the A mphibia. In this he was followed by Dr J. E. Gray; but Duméril and Bibron in their great work, ${ }^{7}$ and Dr Günther in his Catalogue, in substance, adopt Brongniart's arrangement, the Datrachia being simply one of the four orders of the class Reptilia. Professor Huxley has adopted Latreille's view of tho distinctness of the Amphibia, as a class of the Vertebrata, co-ordinate with the Mammalia, Aves, Reptilia, and Pisces; and the same arrangement is accepted by Gegenbaur and Haeckel. In the Hunterian lectures delivered at the Royal College of Surgeons in 1863, Professor Huxley divided the Vertebrata into Mammals, Sauroids, and Ichthyoids, the latter division containing the Amphibia and Pisces. Suls sequently he proposed the names of Sauropsida and Ichthyopsida for the Sauroids and Ichthyoids respectively. It is proper to mention, finally, that Professor Owen, in his work on The Anatomy of Vertebrates, follows Latreille in dividing the Vertcbrata into IIcematotherma and IIamatocrya, and adopts Leuckart's term of Dimoa for the Amphibia.

The Amphilia are distinguished frem the Sauropsida and Mammalia by very important and sharply-defincd characters. The visceral arches of the embrye develop gills, which temporarily, or permanently, perform the respiratory function. There is no trace of an amnion, and it is still a qquestion whether the urinary bladder, which all Amphibia possess, answers to the allantois of the lighor Vertebrata or not. At any rate, it plays no part in the respira. tion of the embryo, nor is it an organ by which nutriment is obrained from the parcnt. There are two occipital condyles, and the basi-occipital region of the skull is eitloer very incompletely, or not at all, ossificd. There is no basisphenoidal ossification. When yonng, the Amphibia nto provided with, at fowest, threc, and msually four, cartilaginous, or more or less ossified, branchial arches. Froun Pisces, on the other hand, they are distinguishable only by the characters of their Inconotive apparatus. When they possess median fins and limbs, these never present finrays; and the limbs cxhibit, in full development, the tyle of structure which obtains among the Souropsida and Stammalia, and differ very widely from the fins of any fish at present known. This difference obtains even among

[^86]the longe extinct Amplibia of the Carboniferous epoch. In other respects, the lower Amphibia approach the Chimara, the Ganoidei, and the Dipnoi very closely; while, in their development, they present curious approximations to the LIarsipobranchii.

With respect to the primary subdivisions, or orders, of the class A mplibia, no one can doubt the propriety of the separation of the recent forms into what may be broadly - termed Nerrts (Urodela); Froys and Toads (Anura); and Cacilice (Peromela) effeeted by Dumeril ; while all that is known of the organisation of the extinct Amphibia of the newer Palæozoic, and older Mesozoic, formations tends to show that they form a fourth natural assemblage of equal value to each of the others.
The names of Urodela and Anura, given to the first two of these divisions, are undonbtedly open to criticism; but if well-understood terms, which bave acquired a defnite scientific connotation, are to be changed whenever adrancing knowledge renders them etymologically inappropriate, the nomenclature of taxonomy will before long beconie hopelessly burdened; and, to set a good example, the names of Urodela, Anura, Peromela, and Labyrinthodonta are adopted here for the four orders of the A mplizia, even although it be true that the Labyrinthodonta do not all possess the dental structure on which the name was founded; though there is reason to believe that some Labyrinthodonts were deroid of hmbs, or peromelous; that the Anura are not more tail. less than are the Peromela; and that the tails of the Urodela are not more couspicuous than were those of the Labyrinthodonts.

The Unodela are Amphibia with elongated bodies and relatively short limbs, devoid of scales or pectoral plates, with numerous pre-caudal vertebre, and with amphiccelous, or opisthoceelous, vertebral centra: The hyoidean arch reraains connected with the suspensorium thronghout life, and its cornua are large in proportion to its body. The mandible is dentigerous. There are one or two pairs of limbs, the peetoral arch and limbs being always presint. The manus never possesses more than four digits. 'The bones of the antebrachiura and of the crus remain distinct, and the tarsus is not elongated. So far as the spermatozoa are known, they are elongated filaments with a vibratile fringe. The larva develops external gills only; and, except Siren, none are known to possess, at any time, a horny masticatory apparatus. ${ }^{1}$

The Anura have relatively short and broad bodies, and hoth pairs of limbs are constantly present, the hinder being the longer and stronger. There are no seales, nor pectoral plates, but ossification sometimes occurs in the dorsal integument. The vertebre vary in character, but are usually prococlous. The pro-sacral rertebre never exceed nine in number, and the candal portion of the vertebral columa is represented by a peculiar styliform coccyx. The hyoidean arch detaches itself from the suspensorium, and almost always becomes connected with the prootic region of the skull. The cornua are usually slender, as compared with the broad bocly of the hyoid. Tho mandible is almost a!ways devoid of teeth. The bones of the antebrachium and of the crus early ankylose, and the astragalus and calcaneum are much elongated. The manus has a rudimentary fifth digit. Except in Bombinator, the spermatozoa have flagelliform appendages, like those of ordinary Vertebrata. The larve derclop first esternal, and afterwards internal, gills, and, so far as is known at present, are provided with deeiduons horny masticatory piates. The gill

1 This circumstance appears to have becn remaried only by Nuiler. Speaking of the larva of the Salamanders, he snys-"Sie lusben nicht ded Hornscbuabel der Froscblarven." - (Beitray zur Anat. der Amphi. Bien, p. 299.) Dumedril and Bibron affrm tha contrary (op. cil, th ix. p. 10).
apertures are closed by the growing over them of an opercular membrane.

The Peromela have snake-liko bodies, totally devoid of limbs and timb arches. In most, the integument is provided with transverse rows of imbedded cycloid scales, but there are no pectoral plates. The vertebre of the trunk are very numerons, and are amphiccelous; those of the caudal region are very few, and are frec. The byoidean arch is attached neither to the suspeusorium, nur to tho skull; its cornua are very slender, and no distinct body is developed; it is followed by several slender, hooplike, branchial arches. The mandible is dentigerous. Nothing is known of the early stages of development; but Müller discovered branchial clefts, with rudimentary brauchinal filaments, in young Cocilice.

The Labyrinthodonta for the most part resembled the Urodela in the proportions of the tail and limbs to the body, but some (as Opliderpeton) were serpentiform, and apparently apodal ; no raniform Labyrinthodonts have yet been discovered. The vertebre are amphicelous. The mandible is dentigerous, The boncs of the antebrachium and crus remain distinct, and the tarsus is not elongated. The manus and pes appear to have been pentadactyle. Three seulptured pecforal plates and a peculiar dernal armour of small scales, confined to the ventral face of the body, are present in many genera. Nothing is known of the early stages of development, but the young Archrgosauria appear to have possessed essified branchial arches.
In giving a sketch of the organisation of the Amplitia, it will be necessary to enter much more fully into tho characters of the skeleton than into those of the other systems of organs.

The Vertebral Column, Ribs, and Sternum.-Leaving the extinct Δ rchegosauria aside for the present, all the A mpliabis possess well-ossified vertebre, the arches of which, in the adult condition (excent, perhaps, in some Labyrinthodonts), are not separated by a neuro-entral suture from the centra. The latter may be amphiceelous, as in the lower Urodela, the Peromela, and the Labyrinthorloatta; or opisthoceelous, as in the higher Urodela and some Arura (e.y., Pipa and Bombinator); or proceclous, as in the majority of the Anura (with the exception of the eighth vertebra, which is usually ampluceelous; and of the ninth, which commonly has one convexity in front and two behind). In all the recent forms which have been exannined, the centra and intervertebral masses contain more or less distinet remains of the nutochord. The arches of the trunk rertebre are connected by zygapophyses; the spinous processes are dsually lov, but attain a great relative length in the caudal region of somo of the Labrrinthodonts (e.g. Urocordylus). Transverse processes are present in all the trunk vertebræ, except the atlas; they are shortest in the Peromela, longest in the Anura. In most U'rodela, these transverse processes, at any rate in the anterior trunk vertebre, are divided into two portions, a dorsal and a ventral, which diverge torwards their free ends; or, more strictly speaking, these processes are made up of two subequal transverse processes, a dorsal "tubercular" process, and a ventral "capitular" process. Sometimes this division prevails throughout the whole length of the trunk, but, more commonly, the two transrerse processes become fused into one, posterinly.
In the long-bodied U'rodela (Siren, Proteus, Amphiuma), only a small number of the vertebraz which succeed the atlas present traces of double transverse processes ; further back, the coalesced transverse processes form trihedral projections, their dorsal and ventral contours convergins instead of diverging, and giving a very claracteristic aspect. to these vertebra.

In some Labyrinthodonts, the capitular and tubercular processez, divergent and subequal in some (probably the anterior) vertebre, coalesce into one in other vertebro; and the capitular division being shorter than the tubercular, transverse processes, like those of the middle thoracic region of the crocodiles, are thus produced.

In the Peromela, there is a short capitular process, but the tubercular process is represented by a mere facet placed below the prezygapophysis.

In tho Anura, finally, the vertebre have ony a singlo transverse process' (possibly representing the coalcsced double transverse processes of the posterior trunk vertebra of such Urodela as Menopoma), which, in some of the vertebra, may attain a great length.

Ribs are present in a few Arura, in all Urodela, Peromela, and Labyrinthodonta; and, in the last-named and some Trodela, they attain as great relativo dimensions as in other Fertebrata. But theyare always vertebral ribs, no Amphibian being knorn to possess more than rudiments of sternal ribs The atlas is never provided with ribs. In the Peromela, ribs are borne by all the other vertebre, except the very hindmost. In the long-bodied Üroclda, on the other hand, they are restricted to a fer of the anterior vertebre. In tho other Urodela they are usually confined to tho prox-sacral and sacral vertebra; ; but, in some cascs, une or two of the anterior caudal vertebre have frec ribs. The form of the proximal end of the rib corresponds with that of the transrerse processes or process. Where this is double, the rib presents a fork, formed by the capitulum and tuberculum ; and when the capitular and tubercuiar transverse processes aro of equal length, the capitula and tubercula of the ribs are equal; but when either of the former is shorter than the other, the corresponding part of the rib is longer. The Peromela have no sternum, and that of the Laibyrinthocouta (if they posscssed any) is unknown. In the Urodela, the sternum never ossifies, and there is no trace of even as cirtiligginous sternum in Proteus. In Denobranchus, there is a very small cartilaginous sternal plate, which sends hateral prolongitions intu tro of the intermuscular ligaments, reprosenting rudimentary sternal ribs.
In the Nerts ${ }^{1}$ tho sternurn becomes a broad and stout plate of cartilage, with a median, posterior, cristate, xiphoid process, and with articular surfaces on its antero-lateral margins for the reception of the coracoids. The sternum attains its highest developuent in the raniforn Anura, the xiphoid process beconing elongated and dilated at its extremity, and more or less converted into bone, while calcifeation of the body of the sternum itself may also occur.

Pro 1.-The Arat two vcriebre of Minopoma $\left(\times \frac{3}{2}\right)$. Tbl, atles; Mr, seccad vertebra; a. Intercondyiold process of the atlin; b, tbe artlecularsarfuces for tbo occirital condyter. The rlbe of the second vertobra are not represented. A. dorisi: B_{1} ventral: C interal view.
${ }^{1}$ See Parker On the Shoulder Girdle. pp. 63. 68.

In the Urodela, the first vertebra always prisents two slightly concare articular facets, the faces of which look outwards and forwards to adapt themselves to the occipital condyles. Betreen these facets, the dorsal moicty of the anterior face of the centrum gives rise to a process, which is little more than a ridge in Proteus, but in other genera becomes very prominent, and has a curious resemblarce to the odontoid process of the axis vertebra of a bird. This "intercondyloid" process of the atlas sometimes (Amphiuma, e.g.) exhibits on each side, near its termination, an articular facet, which plays on a corresponding facet of the adjacent face of the occipital condyle.
Mayer (Analecten, p. 10) was misled by the form of this process into the supposition that the vertebra to which it belongs is not the atlas, but the odontoid, vertebra. But there is a similar process of the first vertebra in the Rays, and the relations of the vertebra to the nerres show that it is certainly not the homologue of the axis vertebra of other Vertebrates. The first spinal nerve, which has tho distribution of the hypo-glossal of the higher Vertebrata, passes out of the spinal canal, cither between the first and second vertebre, or through a foramen in the arch of the frst, in the Amphibia, which have no proper suboccipital nerrc. This is a very curious circumstance, and requircs elucidation by the study of development.

In the Anura, the atlas has the same general form, but the median process is either inconspicuous, as in Rana esculenta, or may be absent.

Among the Labyrinthodonta, the atlas of Mastodonsaurus only is known. It presents two concave facets anteriorly, separated for about half their length by a notch, which probably lodged a ligament.
The atlas of the Peromela has the two characteristic facets for the occipital condyles, but the intercondyloid process is absent, and the anterior margin of the arch of the vertebra projects formards towards the corrosponding margin of the occipital foramen (Epicrium).
In those Urodela which_possess posterior limbs(except Pro teus and Ampliuma), one vertebra, or sometimes two (Bfenopoma), are distinguished from the rest as "sacral" by having stouter ribs, the outer ends of which abut against, and are united by ligaments with, the ilia.
The Anura always possess a sacral rertebra (sometimes ankylosed with its predecessor or successor), the transverse processes of which are often endarged, and sometimes greatly expanded, at their iliac' ends. Tho characters of the sacrum of the Labyrinthodonta are not known.

In the Urodela, the anterior caudal verte-

B
 bre, except the first,
 which, like the neural which, like the neural ossified with the centra; and the same condition obtained in the caudal vertebro of the Labyrinthodonts.

In the Anura, the caudal vertebro are replaced by a long coccys, consisting of an osseous style, to the dorsal aspect of the anterior end of which two neural arches aro
ankylosed. The anterior face of the style usually presents two concavities (one in Bombinator and some other genera), which articulate with the corresponding convexities on the posterior face of the centrum of the si. cral vertebra. The number of the vertebre in the spinal column of the Urodela and Peromela varies very much. In the long-bodied Urodela and Pero- Fin. 3.-A caudal vertebra of Mfenopoma. N, neural
 very aumerous. brolarch, A, lateral; B, poaterior view.
According to Cuvier, Caccilia has 230; Siren, 99; Amphiuma, 75 ; in Menobranchus there are 18 pre-sacral and 25 caudal ; in Salamandra, 15 and 26 ; and a similar variation appears to have obtained in the Labyrinthodonts. On the other hand, in the Anura the number of vertebre (excluding the coccyx) is very constantly ninc; though this number undergoes an apparent reduction, in some cases, by the ankylosis of the first and second vertebra (Ceratophrys dorsuta, Pipa, Dactylethra, Breviceps), and in others by that of the sacral vertebra with the coccyx (Pipa, Dactylethra, Breviceps, Pelobates).
In the carboniferous Labyrinthodont, Archegosaurus, the notochord appears to have persisted throughout life, and the ossification of the centra of the vertebre to have gone no further than the development of bony rings, such as those with which the ossification of the centra of the vertebre of a tadoolo commences.

The Cranium.-The skull is always very depresseu, and is usually broad in proportion to its length, though, in this respect, there is considerable variation, the skulls of Proteus, Menobranchus, and Amphiuma being narrow, when compared with those of Siredon, Menopoma, and the Anura. The occipital foramen is situated in the middle of the posterior face of the cranium, and there are alrays two uccipital condyles. The long axis of the suspensorium, or pedicle by which the mandible is connccted with the sidewalls of the brain-case, varies much in its directionpassing obliquely downwards and forwards in the lower Ampribia and in the larval condition of all, but swinging back until it stands out at right angles to the axis of the skull, or becomes directed downwards and backwards, in the higher Amphibia. The suspensorium is almost immorable upon the skull, being clamped thereto by the squanosal bone, besides bcing, as a general rule, united with some part of the wall of the skull by synchondrosis. The "primordial skull," or chendro-cranium, usually remains, to a great extent, unossified, even in the adult. In the Urodela, the hyoidean arch is always connected by strong ligaments with the suspensorium; but, in the Anura and ill the Peromela, it becomes completcly detached from the suspensorium, and may be free (Peromela), or acquire a new attachment to the periotic region of the skull in front of the fenestra ovalis (Anura).

The bunes which are always present in the Amphibian skull are the exoccipital, pro-otic, parasphenoid, vomer, parietal, frontal, squamosal, premaxillary, palatinc, quadrate, dentary, splenial, and angular. The basi-occipital and the basisphenoid arc always abscat, or are represcnted by unere partial calcifications of the chondrocranium, There is always a fenestra ovalis closed by a stapes. The branchial arches do not exceed four pairs in number, and, in the perennibranchiate Amphibia, there are never fower than three pairs.

The skull of the Frng (Eigs. 4-7), as the most accessible
member of the group, and that, the development of woicn has been most carefully studied, may be taken as the starting-point from whence to follow the rarious modifica tions of the Amohibian skull. At the sides of the occifital forames, it presents two large exoccipıtal ossifica. tions (E.O.), which bear the prominent 00 cipital con dyles, and, in old specimens, may meet in the middle ventral line. Dorsally, how crer, they remain separated by a narrow tract of cartilage, which may become more or less calcifed. Exteral to the condylcs, are the foramina, by which the vagus and glosso-pharyngeal nerves emerge from the cranial savity; and, beyond these, the bones expand outwards and forwards, so as to embrace the posterior balf of the fenestra ovalis, while above, they enclose the greater part of the posterior vertical semicircular canal. The cartilage which incloses the summit of the arch of that canal, however, appears always to remain unossified, and its place is occupicd by a groove in the dry skull (Fig. 4, Ep.) These ossifications, tncrefore, answer primarily to the cxoccipitals, but, in addition, represent tho opistnotic and cpiotic clements. Above the fenestra ovalis, the wall of the otic capsule is produced outwards into a stout shelf, which forms the roof of the tympanic cavity, and corresponds with the tegmen tym
pani in man (t.t.) This is largely ossificd in continuity with the exoccipitall posteriorly; and the pro-otic (to which in all probalility it properly belongs) in frout. The outer extremity of the tegmen, homever, remains cartilaginous, and, in front, it passes into a curved band of cartilage, which, as it is continued backwards into the suspensorium, may be termed the "dorsal crus" of the suspensorium (Fig. 9, c.d.) The T-shaped squamosal bone (Sq.) sends a broad, flat process inwards, which rests upon the toonzen tympani, white its long descending process lies externtl to the cartilaginous suspensorium, and the posterior half of its cross-piece, or proper squamoso-zygomatic part, has the same relation to the dorsal crus of the suspensorium. 'lhe suspensorium has a second attachment to the skull, by a "ventral crus" (Fig. 9, c.v.), which diverges from the dorsal crus at the anterior extremity of the suspensorium, and is continued into two branches. One of these, passing outrards and forwards, becomes the pterygoid cartilage. The other (Fig. 9, pd.), directed backwards and intards, may be termed the "pedicle of the suspensorium ; "it becomes thickened at its inner extremity, and articulates trith a facet in front of the fenestra ovalis, and close to the attachment of the byoidean cornu. Λ thin fibrous band extends from this inferior crus to the side walls of the skull, passing between the first division of the fifth nerve in front, and the second and third divisions behind. The space between the dorsal crus of the suspeneorium and the pedicle is filled, in the fresh state, with fibrous tissue, which constitutes the anterior boundary of the tynnpanum. It is tra: arsed (as Duges long sinco pointed out) by the posterior division of the seventh nerve, which therefore lies above the pedicle. The pro-otic ossification (Pr. O.) not only walls in the anterior part of the otic capsule, but extends for a short distance forwards in the side walls of the skull. Hence, the foramen of exit for the trigeminal and portio dura (V.) is pierced in this portion of the pro-otic; and the foramen for the sixth nerve is s, n at its lower margin. In front of the pro-otic, the lateral walls of the skull remain cartilaginons for some distance, and are perforated by the large optic foramen (II.) Anteriorly to the exit of the optic nerves, the side walls of the skull are formed by elongated plates of bone, which are parts of an extensive ossification of the anterior moicty of the brain-case and the posterior part of the nasal capsules, constituting the complex structure termed by Liziter "os en ceinture," and by Duges "ethmoide." As it takes the place of the ethmoid, presp.ienoid, and orbitosphenoids, it may be termed tne sphen-ethmoid (S.e.) It may be compared to a dice-box, one-half of - hich is divided by a longitudinal partition. This half is anterior, the longitudinal partition being represented by the ossified mesethmoid; while the posterior, undivided, half lodges the anterior portion of the cerebral hemispheres and the olfactory lobes. The front wall of this posterior cavity is perforated by the olfactory foramina; while the outer'and posterior wall of each anterior, or nasal, chamber presents, where it forms the anterior and inner boundary of the orbit, a small aperture (V) through which the orbito-nasal nerve passes. The exoccipitals, pro-otics, and sphen-ethmoid are ossifications which involve the chondroctanium, though they largely consist of secondery bone. The supraoccipital is represented, if at all, by a mere calcification of the cartilage, and the like is true of the quadrate, which is an ossification of the distal end of the suspensorium. The quadrate, however, very early becomes continuous with a slender style of membrane bone, the proper jugal, which epplies itself to the inner face of the posterior end of the

[^87]maxilla, and thus gives rise to tho guadrato-jugal (Q.J.) Ligamentous fibres also connect tho anterior cud of tho zjgomatic prozess of the squamosal direetly with the pterygoid, and indireetly with the maxilla and jugal, and pass from the same prucess to the fronto-parietal bone, foming a fascia over the levators of the mandible, and encircling the orbit. A strong band is continued forwards, over tho ascendine process of the maxilla, to the alinasal cartilago of the chondrocranium.

The short premaxillx ($P_{m} x$.) are united sutumlly in tho middle line, and havo stout ascending processes, which becomo closely connected with the "Thinal processes" by means of oval nodules of cartilage adherent to their poste rior surfaces. The long maxille unite with the premaxillso in front, and with the jugals behind: each sends up a short anterior ascending process towards the alinasal cartilage, with which it is united by ligament, ${ }^{2}$ and further back, give3 off a longer ascending process which becomes connected with the nasal bencs. The palatine bones ($P l$.) are straight, slender, and flattened. They lie transversely to the axis of the skull, behind the posterior nares, closely applied to the ventral surface of the sphen-ethmoid and of the antorbital processes of the chondrocranium. Externally they come into contact with the pterygoids and maxill x; internally and anteriorly with the voners. Each pterygoid (Pt.) is a triradiate bone, with an anterior, an inner, and a posterior, or outer, ray. The first, or anterior, process of the pterygoid $\left(P_{t}\right)$ is the longest, and lies, for a considerable distance, in contact with the maxilla, reaching formard to the outer extremity of the palatine. The second $\left(P t^{2}\right)$ underlies the pedicle of the suspensorium, and comes into contact with the end of the transversely elongated, sub-auditory, portion of the yara sphenoid. The third, or posterior, process of the pterygoid ($P t^{3}$) is prolonged, in correspondence with the backward elongation of the suspensorium, along the inner side of which it lies, as far as the articulation of the mandible.

The voners (Vo.) are broad triangular plates of bone, with irregularly-notched outer edges, which are closely applied to the ventral surface of the sphen-ethmoid. Their inner edges are separated by a narrom interval, and each bears numerous iecth, set along a line which is not quite trans. rerse to the axis of the sliull. On the dorsal aspect of tho skull two elongated flattened bones, united in a median suture, represent the coalesced frontal and parictals (Fr., Pa.), which are separate in the young frog. In front of these, also mecting in the middle line, are tro triangular bones, the apices of which estend outwards to the ascending processes of the maxillx, and which roof over the nasal capsules ($N^{\gamma} \alpha$.) These cerrespond in position and relations with the nasal and so-called "prefrontal" bones of Sauropsida, and perhaps with the lachrymals: for brevity's sake. they may be termed nasals.

The parasphenoid has the form of a dagger with a very mide guard and short hamdle. The latter lies beneath the rentral junction of the exoccipitals, while the blade extends formards, and its point underlies the posterior moicty of tho sphen-ethmoid, but does not reach tho somers. The "guard" passes outwards on each side beneath the auditory capsules, and ends by an aloruptly-truncated extremity, its anterior and external angle coming into relation with the inner process of the pterygoid.

The slender, permanently cartilaginous, hyoidean cors: (IIy.) pesses into the cartilage of the auditory capsule on the ventral side, between the fenestra oralis and the articalar surface for the inferior crus of the suspensorium. 'Tha fenestra ovalis lies in a cartilaginous interspace between the exoccipital and the prootic, and is filled by the oval
${ }^{2}$ The amall ossifications in this region, termed "cornets" by Duget, were abseat in tho okull figared.
cartilaginous stapes (St.) The anterior face of this presents a concave facet, for articulation with a corresponding surface occupying the posterior half of the inner end of the columella auris (C. a.), the anterior half of which fits into a fossa in the pro-otic bone. The columella auris itself consists of three portions-a middle elongated osseons rod, an inner swollen and eularged cartilaginous part, which articulates partly with the pro-otic and partly with the stapes, and an outcr portion, which is elongated at right angles to the rest, fixed into the tympanic membranc, and attached by its dorsal end to the tegmen tympani.
The mandible presents one cartilaginous and three osseous constituents on each side. Of the latter, one, the "Mento-Meckelian" (Parker), is a short curved rod of bone, which unites with its fellow in the symphysis, and is, in fact, the ossified symphysial end of Meckel's cartilage, which extends thence through the length of the ramus, becoming thicker posteriorly, and furnishing the articular surface for the quadrate. The second, and largest, bony constituent of the mandible is a lons membrane bone, which ensheaths the inner and under region of the outer surface of Meckel's cartilage, rising at one part into a low coronoid process. It obviously represents the angular, corenary, and splenial elements, and may be termed the angulo-splenial (An.) A small dentary element, which bears no teeth, lies over the outer face of the anterior half of Meckel's cartilage.
The hyoidean apparatus of the adult frog (Fig. 8) presentst body and two slender cornua. The body consists of a broad and thin squarish plate of cartilage, produced on each side into three processes, which may be called anterior, lateral, and posterior. The anterior process (a) is slender, curves outwards, and very soon divides into two processes, one short, anterior, furming a loop by its ligamentary connection with the second, or posterior, branch, which passes into the leng and slender cornu of the lyoid. The lateral process (b) passes Fio, 8,-Ventral viem of the outwards and slightly dorsad-expanding into a broad, hatchet-shaped free extremity. The posterior pro-

to. 8.- Ventral riem of tho
 teilor yrocesass; 4 , hiyroLyals. cess (c) is a mere prolongation of the postero-lateral angles of the body of the hyoid. Finally, from the middle of the posterior margin of the hody of the hyoid there project two strong bony rods, wider at the ends than in the middle, which embrace the larynx, and have been tormed the thyro-hyals (${ }^{2}$).

The parieto-frontals, nasals, premaxillæ, maxille, squamisals, palatines, pterygoids, and parasphenoid, the dentary 2.0d angulo-opercular bones, may be removed from the frog's ELEull without injury to the chondrocranium, the structure of which then becomes apparent (Fig. 9).
It furnishes a floor, side walls; and roof to the brain cass, interrupted only by a large space (fontanelle), covered in by membrane, which lies in the interorbital region tinder the parieto-frontals; and by the foramina for the exit of the cranial nerves. It consists entirely of cartilage, except where the exoccipitals, the pro-otics, and the sohen-ethmoid invado its substance. In front of the septum of the enterior cavity of the sphen-ethmoid, it is continued forward, between the two nasal sacs, as the cartilaginous septum narium, from which are giren off, dorsally and ventrally, transterse alx of cartilage, which furnish a roof and a floor, respectively, to the nasal chamber. Of these, the floor is the wider. The dorsal and ventral alæo pass into one another where the chondrocranium ends anteriorly, and give rise to a truncated terminal face. which is wide
from side to side, narrow from above downward, and convex in the latter direction. The lateral angles of this truncated face are produced outwards and forwards into two flattened pre-nasal processcs ($p . n l$.); those widen ex. ternally, and end by free edyes, which support the adjacent portions of the premaxillæ and maxille. From the ventral face, just behind the truncated anterior end of the chondrocranium, spring two slender cartilages (r.p., r.p.), which do not seem to have been noticed hitherto. Each of these inclines towards the middle line,

F10. 9-Cbondrocraninm of Rana esculenta-rential aspect. r.p. the ihial process; $p n l$. the prepssal proccsses: a, n, the alinasal processes, shown by the removal of part of the floor of the left gasal chamber: $\Delta 0$. the antorbital process; pd.the pedicle of the suspeasoitum contiaued Into c.v. the rentral crus of the suspangorium ; c.d. its dorsal erus; t. the tegmen tymarant S. E. the spber-etbrooid: E.O. the exocciptta?s: Qu J. the quauratojugal. II, V. VI. foramina by which the optic tigeminal and portio duta and abducens nerves luse the skull. and ends against the middle of the posterior face of the ascending process of the premaxilla by a vertically elongated extremity. These may be termed the rlinal processes. An oral nodule of cartilage is attached to the posterior face of the dorsal end of the ascending process of the premaxilla, and serves to conject it with the rhital process. On the dorsal face of the chondrocranium, just above the point of attachment of the rhinal processes, the external nasal apertures are situated, and the outer and posterior margins of each of these apertures is surrounded and supported by a curious curved process of the cartilaginous ala - the alinasal process (a.n.) Where the sphenoidal and the ethmoidal portions of the sphen-cthmoid meet, a stout, transverse, partly osseous and partly cartilaginous, bar (A.O.) is given off, which is perforated, at its origin, by the canal for the orbito-nasal nerve. It then narrows, but becoming flattened from above downwards, rapidly widens again, and its axe-head-like extremity abuts against the inner face of the maxilla. The anterior angle of the axe-head is free; the posterior angle is continued back into a slender cartilaginous rod, which bifurcates posteriorly; the outer division passes into the ventral crus (c.v.) of the suspensorium. The inicr (p d.) is the pedicle of the suspeusorium already described.

Meckel's cartilage, articulated to the free end of the suspensorium, is unossified throughout the greater part of its extent, no osseous articulare being developed; but, at its symphysial end, each cartilage becomes ossified, and form? the "mento-Meckelian" element of the mandible.
The slender cornu of the hyoid passes directly into the periotic cartilage immediately in front of, though below, the fenestra oralis. It is nnossified throughout its whole length ${ }^{1}$
With many variations in detail, the skulls of the Anura in general are readily reduciblo to the type of that of tha frog. In the Aglossa, which differ so widely in many respects from the other Anura, the cranium presents some notable peculiarities.

In Dactylethra ${ }^{2}$ the skull is similar to that of the ordinary Anura in general form, but the nasal region is sma" in proportion to the orbito-temporal space. The frontoparietals are ankylosed together, and extend forwards as far as a line drawn along the anterior edge of the antorbital

[^88]processes. Here they overlap a very singular bone, consisting of two broad alx, which lie between the anterior edge of the frontal and the external nares, and of a median portion which is continued forwards, as a narrow, flat, curved process, between the nasal chambers, being received into a sort of groove of the chondrocranium. The bone is readily raised up from the subjacent chondroeranium, of which it appears to be quite independent. At the outer end of each of its alx, and between the antorbital process and the nasal capsule, is a small, transversely elongated, slender bone, loosely connected by fibrous tissue with the foregoing. The cthmoid is completely cartilaginous. The parasphenoid has the ordinary sword shape, except that the "guard" is extremely short; bat its point extends along the base of tho skull, passing between the nasal sacs, underlying their septum, and terminating close to the premaxille. Tho vomers are represented by a transversely elongated rhomboidal osspous plate, devoid of teeth, which lies between the tro posterior nasal apertures, and therefore much behind the anterior end of the parasphenoid. The side walls of the cranial cavity are ossified from the antorbital process to the anterior boundary of the foramen for the fifth nerve, just in front of which they are piereed by the optic foramen. There is no palatine bone. The pterygoid, in the main, resembles that of the ordinary frogs; but, in consequence of the shortness and little backward extension of the suspensorium, the outer process passes almost directly outwards, with hardly any backward inclination. A bony plate, which extends backwards from the posterior edge of the inner and outer branches of the pterygoid, underlies the tympanic carity and the auditory capsule, and forms the floor of the Eustachian canal. The squamosal is a short broad bone, with a long anterior process, which becomes connected, by direct articulation, with the pterygoid, and by ligament with the maxilla. The premaxillæ are small, and the maxillæ are connected merely by ligaments with the suspensorium, there being no jugal. The columella auris is remarkably strong, and is bent in the middle, so that its two balves form an obtuse angle; the anterior half lies against the inner face of the tympanic membrane. The posterior half runs parallel with the posterior edge of the tegmen tympani, towards the fenestra ovalis. Ligamentous fibres fix the columella firmly, though movably, to the superior margin of the tympanic cavity, where it is bounded by the squamosal. The stout cartilaginous byoidean cornua are attached just beneath the anterior and inferior part of the margin of the fenestra ovalis. The body of the byoid is very small, but the two "thyro-byals" are extremely lons and broad cartilages. There is no ossified "mento-Meckelian" element.
In Pipa, the skull is extraordinarily depressed and broad. The nasal bones aro wide, flat, triangular, and quite distinet from one another, a forward prolongation of tho coalesced fronto-parictals extending between the two. The parasphenoid, very broad in the greater pari of its extent, and having the guard rudimentary, sends a narrow median process forwards underneath the nasal septum, as in Dactylethra. No trace of a vomer, or palatine bone, mas to be found in the specimen examined. The pterygoid is very like that of Dactylethra, but its inner branch is greatly prolonged, and the floor sent under the Eustachian tube unites much more closely with the produced exoccipital. The squamosal is very small, and the place of its zygomatic process is taken by ligament. This ligament, however, unites with the pterygoid in the same way as the bony process which answers to it in Dactylcthra. The columella is less massive than in Dactylethra, and the end which abuts egainst the tympanic membrane is imbedded in a disk of cartilage. The occipital condyles look outwards and backwards. instead of inwards and backrards, as in Dactylethra.

The hyoidean cornua are wanting, the thyro-hyals being large, but not so large proportionally as in Dactylethra.

The skulls of the Unodela present a very interestins series of modifications, leading from a condition in which the craniun retains, throughout life, a strongly-marked embryonic character, up to a structure which closely ofproximates that found in the Anura.

In Menobranchus, for example, the chondrocraniun of the adult is in nearly tho same state as that in which it

Fig. 11.

Fig. 12.
Froa 10, 11, 12,-Laterat, dorsal, and ventral vewe of the crandum of dieno branchus lateralis. In the dorsal vlew, the bones are removed from the led half of the skall; In the rentral wiew, the parasphenold, paloto-pterycold, and vomers are given in outinc. The letters have, for the most part, the bame oignification os betore. V"ll. posterior divisinn of the seventh nerve: bll. chorda tyingani: V^{2}, V_{2}, V_{1} fist second, snd third divlslons of the trjBemlnal; s.s. /f stapedlo-suspensorial ligameat: h. s. l. hyo-suspensorinl IIgament; m. h. 2. mondlbulo hyold 11 gament ; a, asecndin\& process of the suspensorium; P. pterygo-palatine process: 8. ๆuadrate process, o, otic process; No. posterior nares; Mck. Meckel's carthage; $G 1$. (Figg. 10), tbe positlon of tho glottle Eb, Bb^{2}, basibrancblals.
exists in a young taapose or larval salamander (Figs. 10, 11, 12).

Instead of there being a well-developed cartilaginous brain-case, interrupted only by a dorsal fontanelle, as in the frog, both the floor and roof of the cramal cavity are formed by merely fibrous tissue, which underlies the frontal and parictal bones, and overlies the parasphenoid ; and only its sides and its anterior end are bounded by cartilage.

The occipital region remains membranous in the middle line, both dorsally and ventrally, and exhibits, in the latter aspect, the remains of the notochord. The cartilaginous rods ($T r_{r}$.), which bound the cranial carity laterally, and represent the trabecule of the cmbryonic vertebrate skull, are separated by a.wide oval space, which occupies the whole length of the floor of the cranial chamber. Anteriorly, they converge, and, just before they do so, give attachment to the slender antorbital processes (A.O.) which lie behind the posterior nares. Thcy then unite, and, becoming applied together, coalesce into a flattered narrow mesethmoid, to the anterior extremity of which the premaxillary bones are applied. They give off neither alinasal nor subrasal processes, and therefore furnish neither roof nor floor to the nasal chamber. Posteriorly, they become llattened from above downwards, and coalesce with the auditory capsules, and with the cartilage which extends beneath these, and gives rise to the occipital condyles ($E . O$.)

Each auditory capsule has a generally oval form, but is produced posteriorly, so as to give rise to a conical epiotic process ($E p$. O.), which projects beyond the level of the occipital condyle. Fitted into the outer wall of each is the relatively large, conical, stapes, whence strong ligamentous fibres proceed to the posterior face of the suspensorium.

Immediately in front of the anditory capsule, the suspensorium passes by a strong pedicle (shown, but not lettered in Fig. 12) into the trabecula, and then, directed outwards, downwards, and forwards, ends in the quadrate process (q), with which the dorsal end of Meckel's cartilage articulates. A large process (0) ascends from the posterior face of the suspensorium, and applies itself to the outer and anterior face of the auditory capsule. A small and hardly perceptiblo elevation (p) is seen near the quadrate process of the suspensorium. Finally, a flat process (a, Fig. 11) ascends above the pedicle, and applies itself to the dorsal face of the trabecula.

On comparing this with the suspensorium of the frog, it is clear that the rudimentary process (p) answers to the pterygoid cartilage; and that the processo (the otic process) answers to the dorsal crus of the suspensorium. In fact, tho posterior, or hyo-mandibular, branch of the seventh nerye passes back beneath this, and above the stapedial ligamert, to its distribution.

The pedicle answers to the part so named (including the rentral crus of the suspensorium) in the frog, though it retains the embryonic relations to the trabecula, such as exist in the tadpole. The ascending process (a) lies between the orbito-nasal and the other branches of the trigeminal, the orbito-masal passing between it and the trabecula. A similar process is very generally found in the Urodela (being particularly large, for example, in Meropoma), but appears to be rcpresented only by fibrous tissue in the Anura.

Mcckel's cartilage (Mck., Fig. 12) is thick and deep at its articular end, but, after furnishing a surface of attachment for the elerator muscles of the jaw, it ranidly narrows, and ends in a point, at some listance from the symphysis of the dentary bones.

The hyoidean apparatus (Fig. 2.3) is represented, on each side, $\mathrm{b} J$ a cartilaginous rod, subd vided into a short hypodyal (II. h.) and long cerato-hyal (C. b.) A strong ligantent extends from the front face of the latter, below its free summit, to the suspensorium, reaching this at the same
place as the stapedial ligament, into which it is continued From a point a little above the attachment of this ligament, another ligamentous band arises, and, crossing the former, on the iuner side of which it passes, becomes attached to the angle of the mandible. It answers to the interoperculum of a fish, and has nearly the same rclations as the stylo-maxillary ligament of the higher Vertebrata.
In the ventral median line, the hypo-hyals are connected only by fibrous tissue. Firmly united with this, however, there is a median frrst basibranchial cartilage ($B b^{2}$), succeeded by a second basibranclial (Bb²), which is ossified, and is the only bony constituent of the hyobranchial apparatus. There are only three branchial arches. The first consists of a stout and long cerato-branchial $\left(C^{1}\right)$, bearing an equally well-deve loped epibranchial (Epb1). The second is represented by a mere nodule of cartilage $\left(C b^{2}\right)$, with which the expanded

end of the second epibranchial ($E p . b^{2}$) ariculates. The third and smallest epibranchial ($E p, b^{3}$) is articulated with the step-like broad end of the second. There is no trace of any fourth branchial arch, such as exists in tadpoles and in young salamanders; and in Siredon, Siren, Amphi uma, and Menopoma.
The most curious feature in the bony skull, or osteo-cranium, of Menobranchus is the presence of the prominent conical ossifications which lie external to the exoccipitals, and occupy the place of the epiotic and opisthotic bones. In possessing these elements of the skull, in so large and distinct a form, Menobranchus differs from all Amphibia, save Proteus and the extinct Labyrinthodonts. The parietal bones are separate from the frontals, and send, as is nsual in the Urodela, a long process forwards on each side of the latter. In Menobranchus, this process is extremely long, reaching the olfactory foramen, the posterior margin of which it bounds. There are no nasal nor prefrontal bones, nor any distinct alisphenoidal, orbitasiphenoidal, or ethmoidal ossifications; of the maxilla, nothing but a rudiment appears, and this is sometimes absent. There are no jugal or quadrato-jugal ossifications. A palato-pterygoid plate, bearing teeth on its expanded palatine portion, extends from the antorbital process to the inner face of the suspensorium, which, as stated above, has a mere tebercle in the place of a pterygoid process. The vomers are long, bcar teeth along their outer edges, and diverge backwards so as to leave an interspace between their inner edges. Posteriorly, they articulatwith the anterior ends of the palato-pterygoids.
The squamosal is a long, slender, curved boue, devoid of any zygomatic process, which extends from the articular end of the suspensorium, along its outer edge, to the outer side of the cpiotic. From its posterior margin it sends down a short process over the stapedial ligament.
The parasphenoid is a broad thin plate of bone, which extends from near the junction of the vomers to the occipital foramen. The distal end of the suspensorium is incompletely ossified, as a quadrate bone; and a dentary and a splenial clement, both deatigerous lie the former
external to and below. tho latter internal to, Meckel's cartilage.

The skull of Proteus is, in ats gencral characters, similar co that of Menohranchus, but is moro catensively ossified.

In Siren, the sknll, which has tho same elongated form and forwardly dirceted suspensoria as in Menolranchus and I'roteus, possesses, in tho epiotic region, two strong erests, which project backwards beyond tho level of the oecipital condyles, but are otherwise rery different from the epiotics of the latter genera. The "exoceipitals" and prootics are completely fused together, even in half-grown specimens, a mere rim of eartilage being left aronnd the fenestra ovalis. The lateral wails of the skull present ossifications extending from the exits of theorbito-masal nerves, forwards to the mesethmoid, or internasal portion of the trabecule, and completely encircling tho olfactory foramina. Wut these ossifications remain distinct for a considerablo time, if they ever coalesce. Each, therefure, represents half of the sphen-ethmoid of the Frog.

The flat and wido parasphenoid extends forwards to the space left ly the divergenco of the romers. On the roof of the skull, each broad parietal senels forward a prolongation along the onter edge of the frontal, which reaches the antorbital process. The promaxillx have very long ascending processes, which lic upon the mesethmoid, and are received between the ends of the frontal bones. Between thinso aseendinto processes one or trio clongated ossificitions aro situated. These were termed "nasals" by Cuvier, but their position does not accord with this determination. The hurizontal, or oral, portions of the premaxillæ, on the other land, are very short and edentulous, each being coated by a thin plate of horny substance. The maxillæ are redimentary or ausent. The somers are iwo, flat, oval, bony plates, the ventral aspect of which is beset with parallel rows of teeth set in obliquely-disposed curved lines, the convexities of the enrves being turned inwards and backwards. The vomers are in contact anteriorly, but diverge posteriony: The prosterior extremity of each abuts upon a plate of similar form, but much smaller, and bearing fewer series of tecth, which lies on the ventral side of the origin of the antorbital process, and represents the patatine bone. The aperture of the posterior nares lies just opposite, and cxternal to, the junction of these two bones.

The suspensorium is short, thick, and completely cartiLerginous. Dorsally and internally, it is attached by a stout pedicle to the trabecula in front of tho auditory capsule, while its dursal and postcrior face lies against the truncated anterior face of the pro-otic. The angle formed where this face joins the onter faco represents the otic process of Menobrenchus. There is no pterygoid process, nor any trace of a ptery\%oid bone. Just above the suspensorium, and seemingly connected with it, there proceeds from the anterior face of the pro-otic region of the skull, a stronge, triar.gular, forwardly-directed cartilaginons process. Frou the free auterior cud of this, a band of filrons tissue passes, and, cucircling the oye, is attached to the antorbital process. Tho squanos:l is a slender curved bone, extending from the epiotic ril? to the articular end of the suspensorium, where it is widest. It exhilits only a rudiment of the well-marked process which extends towards the stapes in Menclranchus and Pioters. The mandible presents a dentary, an angular, ind a dentigerous splenial element; and the proximal end of Mecke!'s cartilare is ossified, giving rise to a dense nodular articulere. The dentary is toothlese, and supports the inferior horny beak.

The cornu of tho liyoid is very stout, and its rentral muiety is ussificel. The much thicker dorsal moiety is urtila ofnous, and its recurved dorsal end extends bejond
tho extremity of the skull. At a considerablo distanco below its apex, a strong short ligament procecds from its anterior face to the stapes. A broad shect of ligamentous fibres further unites the byoid with the lateral walls of tho car capsule, and with the posterior face of the suspensorium (hyo-suspensorial ligament); and a slender ligament (mandibulo-hyoid) procecds from near the insertion of the byo-stapedial ligament to the angle of the mandille. Thero are two basibranchials, both ossified, the josterior ending in short radiatiug processes; two cerato-brauchials and four ctibranchials.

In Amphiuma, the suspensoria are very little inclined formards, and their long axes make ncarly a right andlo with that of the skull. The portion of the skull which lics bohind a line joining the articular cnds of the ossa quadrate is very much shorter than the region in front of it. Morcower, although the epiotic processes aro prominent, the occipital condyles project far beyond them. Ono luno represents the cxoccipital, epiotic, and opis. thotio on each side. The prootic is large, and gives rise to the anterior moicty of a strongly-marked temporal ridge. Its exposel surface presents two 〔osse, divided by a nearly vertical linear elevation. The large parictals form the posterior portion of the temporal ridge, and diverge anteriorly, to be contimucd forwards, on each side of the frontals, to the spher-cthmoid. The frontals, in like manner, diverge in front to reccive a median ossification, which is continuous with the coalesced median lrocesses of the premaxillic. The anterior fialf of each frontal is rugose, as are the exposed surfaces of the splen-cthmoid and of tho nasal bones, and the interyment is firmly adherent to these rugosities. Tho nasals are broad and triangular. The truncated base of each lies over the nasal aperture ; the inner elge articulates with the ascending process of the premaxilla; the outer cdge joins first tho maxilla, and then the sphen-ethmoid. The premaxille are so thorouģhly ankylosed that no trace of their primitive distinctness is to be seen. The large maxillo extend back for half the length of the skull, are firmly united with the adjacent bones, and aro connected by denso ligament with the extremity of tho quadrate bone. The greatly elongated vomers diverge but little; nevertheless, they come in contact ouly by their anterior extrenitice. In the rest of their extent they are soparated, in frout, by a median ossification representiug the anterior part of the sphen-ethmoid, and, behind, by the anterior forked prolongation of the parasphenoid which embraecs this ossification. The rest of the parasplienoid is broad and tlat; it widens a little, in front of the auditory capsules, so as to form a rudiment of the "guard" in the frog's slaull.

The osscous pterygoid is a curved ptate of bone, conve:. inwards anci concave outwards, which articulates postcrionly with the quadrate, and, in front, stops shert, at little mure than half the distance from its posterior end to the internal nostrd. The cartilaginous pierygoid process of the suspensornum extends some way beyond it, and, widening, is attached by ligament to the maxilla. Posteriorly, the cartilasinous pterygoid is traceable, as a comparativcly uarrow band, on the inner side of the bony pterygoid, to the pedicle of the suspensorium, which is attached in front of the fenestra oralis, and above the rudimentary "guard" of the parasphenoid. An ascending process passes from to between the orbitonasal and the other divisions of the trigeminal. The otic process of the suspensoriun, which is articulated with the outer face of the anditory capsule, is cartilarinous; but the rest of the suspensorium is ossified as a quadrate bonc. This is, as usual, clamped to the skull by the squamosal, which is broad and expanded above, end Larruw beluw. L'chind, the suspensorium is directly articu.
lated with the styliform projection of the centre of the stapes. A very stroug hyo-suspensorial ligament passes from near the distal end of the suspensorium to the cornu of the hyoid. The mandibulo-hyoid ligament is much weaker. The hyoidean apparatus presents a median basi-hyal, connected by a rounded hypo-hyal on each side, with a leng and curved cerato-hyal, which is almost completely ossificd. The first basibranchial is elongated and cartilaginous-the second is absent. The first branchial arch is a single clongated bone, representing the similarly coalesced ceratobranchial and epibranchial in Menopoma. The second cerato-branchial is small and cartilaginous. The three posterior cpibranchials are simple curved cartlages; and the single branchial cleft is plàced between the third and fourth epibranchials.

The skulls of the four genera, Menobranchus, Proteus, Siren, and Amphiuma, now described, resemble one another, and differ from those of other Amphibia, in their elongated form ; and, especially, in the relative narrorness of the facial region in front of the orbits, which, as the case of Amphiuma shows, arises, not from any want of development of the maxillary boncs, when they exist, but from their taking a direction which but slightly diverges from parallelism with the axis of the skull. Moreover, they all possess well-marked epiotic prominences. Ampliuzma differs widely from the other three, in the .great size of its maxillary bones, in the absence of palatine bones, in the projection of the occipital condyles beyond the epiotic processes, in the ankylosis of the premaxillw, in the presence of well-developed nasal bones, in the coalescence of the first cerato-branchial with the first epibranchial. and in the transverse direction of the suspensorium.
In most of those respects, in which Ampliuma differs from Mcnobranchus, Proteus, and Siren, it approaches the Salamanders; especially if twe take such forms as Anaides into account. On the other hand, in the entire absence of a palatine bone, and in the fusion of the first cerato-brancinal with its epibranchial, it agrees with Mcnopoma and Cruptobranchus.

In Menopoma, the skull has a broadly-rounded snout, and its posterior contour slopes forwards and outwards (without being interrupted by conspicuous epiotic prominences), in the manner characteristic of the higher Urodela. The small pro-otics arc separated from the exoccipitals (which also represent the epiotics and episthotics), by a wide cartilaginous interspace, in which the fenestra oralis is situated. The parictal sends a process forwards, along the outcr cdge of the frontal, between it and the orbito-sphenoid. This meets a curved fat bone, which bounds the orbit anteriorly and internally, and articulates with an ascending process of the maxillary boze. It may thercfore be regarded as a prefronto-lachrymal. The frontals unitc in a long median suture, and then, diverging, cmbrace the nasal bones, and articulate. externally with the fore part of the ascending process of the maxillary bone, which is thus received between the frontal and the prefronto-iadrymal. The very broad parasphenoid extends from tho exoccipitals to the vomers, with which it unites by a dent:culated squamous suture. The wide vomers arc united is a median suture, and expand in front, ending in arched elges, close behind which the teeth are set. The promaxille re separate and small, articulate with the arched edges of the romers. and send up stroug asceuding processes to the dorsai face of the skull, where they firmly unite with the nasals. The squamosal is a flatteued prismatic bone, as broad at one end as at the other, which articuletes with the parietal externally, and with the quadrate iaternaly. Like tho
suspensorium, which it covers, it atands out at right angles with the axis of the skull. There is no palatine bone. The pterygoid is broader and more square than in any other Amphibian, in consequence of the great expansion of its internal process, which articulates by its whole length with the parasphcnoid. The anterior process ends in a frec pointed cartilage, directed outwards and forwards, and united with the maxilla by ligament, as in the higher Urodela. The external process extends to the articular end of the quadrate, as usual, and is continued thence along the cartilaginous suspensorium to its attached cnd.

The chondrocranium forms a cormplete ring of cartilage round the occipital foramen, continuous at the sides with the auditory capsules. From these the trabecula are continued forwards, as in Menobranchus, leaving a very wido ventral fontanelle. At the anterior end of this they unite and form the mesethmoid, from which roof and floor plates of the nasal capsules are continued. The suspensorium is connected by a pedicle with the trabecula, in front of the auditory capsule, and gives off a broad ascending process, which becomes ossified continuously with the pterygoid, over the orbito-nasal nerve. A stout otic process is articnlated with a facet on the antero-external region of the periotic capsule, and is further connected with it by liga. montous fibres. The quadrate ossification involves a small portion of the articular end of the suspensorium; it thencc cxtends upwards, on the dorsal aspect of the suspensorium, gradually becoming more slender, and nearly reaches the point at which the otic process of the suspensorium articulates with the periotic cartilage.
The osseous skull of Cruptobranchus is extremely like that of Menopoma.
In Menopoma the hyo-branchial apparatus presents the same general structure as that of Siredon, except that the second basibranchial seems to be wanting, while the first is very broad and rounded; at the same time, the epibranchial and the cerato-branchial of the first arch aro represented by only one continuous cartilage.
In Cryptobranchus, ${ }^{1}$ however, a considerable reductior has taken place, the two posterior pairs of branchial arches present in Menopoma haring disanpeared. The second arch silll presènts a division into cerato-branchial and epibranchial, but the dorsal end of the latter is closely united with that of the preceding arch. It is interesting to observe, howerer, that the modification thus effected is quite diferent from that which occurs in the Salamanders, in which, in the adult state, the first branchial arch retaino its two segments; while the second, reduced to its ceratobranchial, is applied against the first, at the junction of the cerato- and epi-branchial; and the second basibranchial persists as the ossiculum thyroidcum of Von Siebold.
Afenopoma and Cryptobranchus further differ from. the proper Salamanders in having the vomerine tecth disposed along the anterior edges of the expanded vomers. Unfortunately notling is known of the larre of these forms, but it would seem as if, in them, the primitive romers enlarge by uxtension of ossification behind. and not in front of, the criginally existent teeth.

[^89]Is a prootic, and an orbito sphenoid. The latter is sometimes unted with its fellow of the opprosite side. ${ }^{2}$ The skull is roofed in by pairs of parictal, froutal, prefroato-lachrymal, and nasal bones. The maxilla ore short, and are united with the eads of the suspensorinm only by fibrous tissuc. There is a very broad and fat para splanoid, which extends from tho inferior narem of the occinital foramea, and ends, anteriorly, by a wide, irregularly coaves edge, which does not reach the vorners. Tho latter bones are elonmated and curved, and their long axes diverge posteriorly, as in Menobranchus; but their anterior cnils are far apart, and they lie, separated by the whole breidth of the parasphenoid, and between that Lone and the premaxilla and maxilla, alherent to the ventral faco of the subnasal process of tho chondrocranium.

The short palatine bones are situated immediately behind, and on the inner side of, the posterior wares, but their somewhat tapering, external and posterior, ends do not articulate directly with tho pterygoids. Tho latter are triradiato bones, with an inner process which passes towards the lase of the skull; on outer, which rums down the suspeasorium; and a long anterior process, which gradually diminishes in breadth forwards, and is commected only hy ligament with the palatine. Three ossifications embrace Meckel's cartilage. The dentary covers its outer face tbroughout its whole length. The nngular lies on the inuer face of its posterior two thirds, and the small dentigerous splenial is also applied to its inner face between the angular and the dentary. The chondro. cranjum is in mucl tho same condition as that of Jfenopoma. There is a broad basioranial cartilago situated between the auditory capsules, and passing, at tho sides and ahove, into a compicte occipital arch. But, in front, the trabecule, though they hava increased in vertical height, remain uaited by fibrous tissue only, both is the floor and in the roof of the skull, which thus presents two great "fontanclles" when tho parasphenoid, parietals, and frontals aro removed. In front, they coalesce, cach giving off, as it does so, a flat antorbital process, which is expanded at its outer end, where it supports the maxilla. Below, this process gives attachment to the palatine. By their coaleseence, the trabecule give rise to a broad internusal septum (or mesethroid cartilage), and they expand, on each side, below, iuto subansal plates, which aro separated, anteriorly, by a wide notch in tho middlo line. Tho curved outer elges of these plates give attachment to the premaxillis and maxillæ, aud they answer to the pro-nasal processes of tho chondrocranium of tho frog. Between tho posterior edge of cach of theso and the anterior edice of the corresponding antorbital process, the posterior nostril is situated; and the inferior surface of the sulnasal plate gives attachmeat to the vomer. Superiorly, tho mesethmoid cartilage expands into a very thin (alinasal) plate, which roofs in each nasal chamber, and supports the prefromto. lachrymal and nasal bones.

The suspensorium is connected, abovo and internally, with tho trabecula of its sido by a pedicle; and it has an ascending process which lies over the orbito-nasal nerwe (which is therefore included between the pedicl and the ascending pracess) immediately after its exit from tho skull. Posteriorly and superiorly, it gives off an otic process, which is articulated with the outer and front part of the auditory capsule; while, inferiorly and externally, it furaishes an articular surface to the mandible. The pterygoid process has the form of a atyle tapering forwards, and nearly reaching the antorbital process, with which it is connected, hawever, only by liga. mentous fibres. Tho posterior moitty of Meckel's cartilage is very stout as far as the coronoid process, and then tapers rapidly to its free, pointed, symphysial extremity.

Tho hyoidean and branchial apparatus is cntirely fibrous and cartilaginons, none of its parts having undergone ossification. Each cornu of the hyoid is counected with the upper and posterior face of the auspensorium, and with the angle of the mandible, by liga. mentous fibres-tho lyosuspensorial and mandibulo-suspensorial ligaments. Tho cormua are not subdivided, and are united in the median ventral line by ligament. A triangular first basibranchial extends back from their junction, and is succeeded by a sccond, as in Menobranchus; but this second basibranchial is not ossified. Two cerato-uranchials are attached to the posterior extremity of tho first basibranchial on each side, and the anterior is, as usual, followed by a long and strong epibranchial, which supports the an. terior gill. Tho posterior cerato-branchial supports tho secood epibranchial directly, and the third and fourth epibranchials indirectly.

The interesting observations of Profossor A Duméril have ehorn that, under certain conditions, the ordinarily perenni-btanchiate Siredon passes iato the caduci-branchiate Amblystoma; and this metamorphosis is accomplaied by some very interesting modifica. tions in the structure of the cranium, esplecially in the vomerine, falatine, and pterygoid regions. Ossification extends forwards from
${ }^{1}$ See F'riedrich and Gegenbaur-" Der Schädel des Axoletl (Sireden msciformis)" io the Berichte der Finiglichen Zootomischen Anstall the tiurburg, 1819. This memoir contams excellent eccount of
the vomers beneath the prox-nasal processes, so that the ecries of tecth, which orngiually lay along the anterior margus of these bones, como to be situated at their posterior edges. At the same tims they take up a direction at right angles to the axis of tho skull, instead of being greatly inclined to that axis, as they aro in Siredon, and the two sets of vomerino teeth thus form a singlo transverse row. Dloreover, the anterior process of the pterygod moves out. wards until it comes into contact with the inner face of the maxilla. The one eud of the palatine remaining attached to the romer, the other swiags outwards, in correspondence with the change of position of the jecrygoid, and thus becomes directed transwessely to the axis of the skull, inmmediately behind the posterior nostril, its tecth continuing the transverse liae of the ectls of tho vomers. Sala. manders with the tecth thas disposed have been termed "lechriodont." The maxillary bones are larger than in Sircdon, but the jugal arch rernains ligamentous. The dorsal ends of the cornua of the hyoid retain their limamentous counection with tho suspensorium, and the veatral ends with the anterior basibranchial. The first ceratobranchial and epibranchial persist, and retain their articulation with ono another. The second cerato-branchial remains, but its dorsal or onter end becomes attached to the preced. ing, and all the three posterior epibranchials disappear. The second basibranchial becomes detacherf as a Y-shaped piece, which lita in the middle line, in front of the larynx.

In all the other Salamanders, the vomers, in tho adult, present the same chlargenent of the part in front of the tecth, at the expenso of tho region belind them, as in Amblysioma. But the teeth rarely offer the same disposition. Dlore commonly they form two series, ifclined to one another at a more or less acute angle, open forwards, aud supported upon bony plates, which appear like prolongations of the vomers, extending backwards on tho ventral face of the parasphenoid. This "mecodont" arrangement is strikingly excmplified by Salanzandra maculosa, and still nore remarkably hy Picthodon and Anaides, where theso longitudinal serjes o[teeth bencath the parasphenoid are commonly termed "sphenoidal" teeth. Duges ${ }^{2}$ and other observers, however, hare shown that, in lurval Salamandree and Tritones, the vomerine and palato-ptersgoid apparatus bave, at first, the samo disposition as in Sircdon; and Duges has described tho process by which the palatine bones, becouning detached from tho jterygoids, which rotate outwards, onkylose with the vomers, taking up a positiou beneath the parasphenoid, and more or less parallel with the axis of the skull; and it can hardly he doubted that the so-called "sphenoidal" dentigerous plates of other gewera of Salamandrida lavo the same origin. If this couclusion be correct, it indicates a very curious morphologica? difference between the "mecodont" and "lechriodont" Salaman. drula.

In all the Salamandrida tho parital bones send long processes forwands on each side of the froctals. The parasphenoid is a broad flat plate. Very often the premaxillæ are aukylosed into one Lune, and tho bones of the periotic capsule coalesce. In some cases there era epiotic processes or ridges. Jraxillio are always present, and the snout is usually broadly arched. Nasal bones, distinct from tho prefroato-lachrymals, are usually present.

In the genus Araides tho skull is comparatively long and מarrow, end tho muzzle is less arched than usual. The single premaxills, aud tho two well-developed maxille, follow the aemicir cular curve of the broad subnasal plates, to the edges of which thes aro attached. Tho hinder free extremities of the maxille are curved upwards, sud the jugal arch is represented only by ligament. Thus far the skull is salamandriae ; as it is also in the presence of dislinct nasal and prefronto-lachrymal bones, in tho disposition of the vomerino and so-ealled "sphenoidal" tecth, in the absence of na apparent palatine bone, and in the manner in which tho pterygoid is produced into a long process, which becomes connected with the inmer face of the maxilla. Eut, in the nell-marked downward and forward inclination of the suspensorimm, and in the strong crests into which the eriotic processes are developed, the skull of Anaides is very liko that of Sirer.

In the skull of Evicrium gluinosum (Fig. 14), which may bo selected as an examplo of the Peromela, tho strong occipital condyles are contioued into two ossifications, which rise on to tbe rouf of the skull, where they unite in a short suture, end, spreadiog out so as to embrace the parietals, are continued over the auditory arparatus, as far as the squamosal und the quadrate bones. Ventrally, no indication of any suture between these bones find tho broad parasphenoid is visible; laterally, they pass forward into a continuous ossification, with constitutes the side walls of the auditory calsule, and, in froat o[this, is perforated by tho wide foramen for the trigemiaxl Derve, and enters largely into the lateral wall of the cranial cavity. The perietal bone rests on tho dorsal edge of this lateral ossification, which terminates, aateriorly, by an irregularly
${ }^{3}$ Pecherches, pp. 1i̊2, 173, pl. xir. fig. 89. Ruscani, Observaliunse Anatomiques sur la Si-ine, yl. vi. Giga. 3 wnd 10.
excspated border, between which and the posterior margin of the suhen-ethmoid the cranial wall is unossified. Throughout its whole

Fio. 14.-The syull of Epicrium giutinosum. A. dorsal; B, rentral; C, lateral, view. The letters hare the same algoification as before.
extent, this large ossification, which represents the exoccipitals, the elements of the periotic capsule, and the alisphenoids, is firmly ankylosed with the parasphenoid. There is s well-developed sphenethmoid, similar in its general characters to that of the frog. It is very closely united, if not ankylosed, with the romers and premaxillæ. The roof of the skull is completed by two parietals, two frontals, snd two large nssals, which unite in a long suture, except in front, where, for a short distance, they are separated by the ascending processes of the premaxille. The dentigerous oral processes of these bones are short, and unite by suture with the maxille. Theese send up broad plates which lie in front of and below the orbit, on the sides of the face. The canal for the suborbital tentacle perforates the maxills in front of the orbit. Posteriorly, the maxilla unites with the squamosal, which is a broad plate frmly fixed to the quadrate, but sornewhat loosely united with the frontal and parietal snd with the complex occipito-otic bone. A small crescentic post-orbital bone (denoted by in Fig. 14) articulates with the maxillary and squanosal, and with another bone (2), which answers very nearly to the prefrontal of a reptile. Between the misal bone and the premaxilla, above and below, and the maxilla urhind, a small bone (3) is fitted. The quadrate bone is represented by the ossification of the distal end of the suspensorium, which is inclined a little backwards. The stapes is large and well ossified. Two distinct ossifications, an angul--articular and a dentary, are disccruible in the mandible ; and the second short rour of teath, inside those of the dentary, seems to indicate the existence of a splenial element.
In the labrrinthodorta the skull presents tho extremes of form which are met with among the Ariphibia, from the elongations obserrable in Archegosaurus, to the, short and broad forme of Metopias and Brachyops. The chief cbaracters by which the labyrinthodont cranium differs from that of its existing allies are the following:-
The occipital condyles in some gentra remsined long, if not permaneatly, cartilaginous; and ane cs two supra-occipital ossifications (probably membrane bones) very generally occur. The epiotics are prominent, and appear to remain permanently separate from the adjacent bones. In front of them, and articulated with the outer edges of the parietal and frontal, are two bones, which are commonly identified with the "squamosal" and "post-frontal" of the higher Vertebrata. The "post-Crontal" articulates anteriorly with a large "prefrontal" bone, f hich bounds the dorsal and anterior contour of the orbit. The outer edges of tho "squamosal " and "post-frontal" articulate with two bones, termed the "pustorbital "and the "supra-temporal." The post-orbital lies in frunt of the other, and contributes to the posterior margin of the orbit, the rest of the contour of which, between the post-arbital and the prefrontal, is usually completed by a large jugal., Articulated, dorsally and internally, with the "supra-temporal," and, anteriorly, with the jugal, is a "quadrato-jugal," which sometimes cxtends into the articular surface for the lower jaw, and in come cases, st any rate, overlaid a quadrate ossification. There are long paired nassls, between the anterior ends of which the ascending processcs of the premaxille are received: and between thess hones, the un-
usually long maxillæ, and the prefrontals, distinct "Lachrynal" ossifications occur.

The varners are large, meet in a long medinn suture, and bear teeth. The palatine bones, also dentigerous, bound the posterior nares in front, and are elongated antero-posteriorly.

The mandible presents a dentary (probably including a epleuial) clement, an angnlar and an articular ossification.
Those surfaces of the cramial bones which.were corcred by the skin are usuallyrngose, and sculptured much in the same way as those of the crocodiles, aut they frequently present symunctrically disposed grooves, the so-called "mucots canals," which, very probibly, lodged sensory apparatuses resembling the siuilarly-mamed structures in fishes-the homologues of wlich are found in existing Urodela.
The hyoid is unknown, and what sppears to be traces of a brancliial apparatus have been observed only in young specimens of Archego. saurus. Hence it is prolable, not only that no known Lalyrinth. odonts were perennibranchiate, but that the air-breathing coudition supervened early in the course of their developraent.

The Labyrintliodonts doultless possessed a well-dereloped chondrocranium, but such a structure would necessanily perish in the course of fossilisátion. The singular resemblance of the labyriuthadont skull to that of the Pcronela, in the arrangement of the bones which bound the cerity of the mouth, and the disposition of the teeth upon them. suggests a comparison of the otlier cranial bones in the two groups. Starting from the nasals of Epicrium, which may be saftly identified with those of the Labyrinthodents, the bone marked (2) in Epicrium corresponds very closely with than labyrintloolont "1refroutal;" and tlat numbered (1), with the "post-arbital." No. 3 in Epicruz\%, in some respects ansmers to the so-called "lachrymal" of the Labyrinthodonts; while the maxilla of the Cæcilian may be taken to represent hotlt maxills and jugal of the Labyrinthodont. But if this be so, the squamosal of Evicrium corresponds with the supra-temporal of the Labyrintla odont: and a question arises as to the true nature of the "squa. mosal" and "yost-froutal" of the latter. ${ }^{1}$

The Limbs. -The pectoral arch in the Amplition is distinguish. able into a scapular, a coracoidal, aud a præcoracoidal reation, although the extent to wlich these palts of the primitive cartilagin. ous arch become separately ossified varies rery much in the difucrit members of the greup.

In. Proteus, Menobranchus, Cryptobranchzes, and Menopoma, ossification occurs only in the scapular region. In Siren and Amphiuma an additional broad coracoidal ossification occurs, but it does not meet the scapular ossification in the glenoidal cavity. The junction, however, takes place in Sircdon and the Salamanders. In none of the Urodela does any ossification appear in or uon the precoracoidal or supra-scapular cartiage.

A supra-scapular ossification exists in all known Anura. All but Microps and Hyladactylus ${ }^{3}$ have a precoracoid, shich acquircs a sheath of bony matter. The glenoidal cavity is bounded by tlio præcoracoid, coracoid, and scanula ; and in some cases (e.g., Dacly. lethra) the ossified ends of the three unite and give rise to a triradiate suture in the glenoidal carity, just as the jubis, ischium, and ilium of most Vertebrata unite in the acetabulum. In SJsfoma gibbosum, contrary to the usual rule, the precoracoid is far broader than the coracoid (Parker).

In the higher Anura, a median piece, of very variable size, form, and consistency, extends forwards from the junction of the pre. coracoids. Dr Parker considers it to be an outgrowth from these, and terms it the omosternum.

The lang bones, both in the fore and lind limbs, consist of an axis of cartilage, sleathed in, and more or less replaced by, a diaphysis of membrane boue. The extremities of the cartilages frequently underga calcification, and are thus converted into epiphyses. A strong crest characterises thio huraerus in many male Anura. In the latter, fhe ra:lius and ulpa coalesce into ono bone, while in all other Amphibia they remain distinct.

In Siredon, Cryptotranchus, and Mcnopoma, the carpus containa eight separate cartilages, of which three-the radiale, intermedium, and ulnare-form a proximal row ; and four distalia, a distal row: Between these two scries lies a aingle centrale.

Io Menobranchus, there are only six carpal cartilaces-the ulare and intermedium, and the radiale and radial distale, respectively. having apparently, ss Gegenbaur sugin'sts, conlesced.

In Amphiuma didactylum, the number of carpal cartilinges is reducei I to four, and in Protcus to thrce. In both these casce the two largest cartilages form a proximal row.
${ }^{1}$ On the structure of the skull, as of whatever else ls known of the organisation of the Labyrinthedonts, tae reader mill fod full, excellently àranged, and we!1-digesteuf information in the " Report of the Committee of the British Associacion ou the Labyrinthodonts of the Coal Measures," dramp up Dy Mr Miall, British Association Reports, 1873.

* Parker 's the shoutder rirchle. p. EA.

The Salamandrida nsually have seren carpal elements. In the proximal row there are two--s radiale asd a coalpsced intermedium aoul ulnare. Thero is a singlo centrate sad four distalia. These aro varionaly ossified until, in Triton eristatus and alpestris, all are ossified.

No nrodele amphibian has more than four digits in the manus, and the number may ho reducel to three, or eren two (fimplizuma didactylum). When four digits are present the number of the phalsnges is usually $2,2,3,2$.

Among the Arura, Dugis and Cegenbaur have shown that Rom binator and Pilobates liavo cight distinct carpal bones-two in the proximal row (radiale, intenvedium-uluare), fro in tho distal, and ono between these two roms. 'I'lis last, which is the centrale, lies on the radial side of the manns, and articulates with the three rudial distalia, much as the mavicular bone articulates with the threo cuneiformia in the mammalian tarsus. In hane esculcnty, there are slso two hones in tho proximal row, and tho ceatrale lies no tho radial side of tho carpus. But there aro only threc bones in the cistal rows; one large, nil tho ulnar side, which bears the third. fourth, and fifth metaerpals, and two emall ossicles on the radial side, which articulate wlth the first and second metacarpals.

Thero are five digits in the manus of the Anura; but the pollex is rudimentary, being represinted only by a cartilaginous or more or less ossified style. "The second and third digits usually liave two phalanges cach, and tho fourth and fith, threo $(2,2,3,3)$.

The pectoral arel of tho Labyrinthodonts is best known in A rehegosaurus, whero it presents threo ossified clements, which probably anawer to tho coracoid, precoracoid, and scapula. The lones of tho fore-limb in the Labyrinthodonts are alrays weak relatirely co tho size of the body". There appear to have been five digita, the carpes remaining unossificd.

In Proteus, Aenobranchus, and Amphiuma, tho pelvic arch is not connected with any distinctly modified sacral vertebra, snd tho iliusa is very small. Tho pubes and ischia are represented by broal cartilaginous plates, which unite, and may becomo fused together in the midale line.

In Menobranchus, the pubic portion of the pelvis is continued forwards into a broad triangular median process. In Sircdon, Nenopoma, Cryptobranchus, and the Salsmanders, there is a sinvilar medion process, reminding one of the omosternum in the pectoral arch of the Anura. It becomes bifurcated snteriorly. Tho ilium is always ossificd; and there are ischial ossifications in all but Proteus. On the other land, the pubio recrion slways remains astilaginous in the Urodcla.

Hyrtl has shown that Crypiol ranchus las no proper knee joist, the femur being united withetho tibia and fibula by a solid fibrous mass; and that, in Menopoma, tho cavity of the knee-joint is very emall.

Tho tibia and fibula in the Urodela nre always separate, and the proximal elements of tho tarsus are not eloggated. The preatest number of tarsel elements is found in Cryptobranchus and Menopoma, which, according to IHyrtl, have three cartilages in the proximal, and fire in the distal, row, while two are central. In Siredon, the tarsus completels resembles the carpus, but thero is one more distal cartilage. Tho tarsus therefore consists of three proximal cartilsges (tibicsle, intermediam, fibulare), one central (centrale), and fire distal (distizlia). In the Salamanders, there is usually the same number and disposition of tho tarsal cartilages; but nore or fewer aro ossified, nad it is interesting to remark that the two fibular distalia sometimes become united isto a "cuboin."

Afenobranchus has two (or three) proximal, one central, and three distal tarsal cartilages ; Amphiuma, thrce proximsl and tro distal ; f'roteus, two cartilages on tho fibular, and one on the tibial sids.

Sircdon, Cryytobranchus, Menopome, and most Salamanders have firedigits in the pes; Afenobranchus, four; Amphiuma, three ; and Proteus, two. Thenumber of the phalanges in the pestadactyle foot is ususlly 2, 2, 3, 3, 2. In Siredon, Hyrtl found 1, 2, 3, 4, 2. In tho Anure, tho ilium is greatly elonmated, and tho pubes anc? ischia aro flattened, discoidal, and applied together by their inner surfaces. The ilium and the ischium, alone, becomo completely nssificd, and there is no propubic process.

The tibis and fibula coalesce into ono bonc. Tro clongated hones form a proximal row in tho tarsus, and are commonly unitel ly their epiphysial edds (c.g., Rana; they remain separate in Bamlinalor). In Itana escuicienta, tho distal confuent ends of these tones (which possibly auswer to the nstraralus and calcaucum) presezt a transversmly clonmated articular surface, which is convex from the dorsal to the plantar side. Jetryecn this and the proximal end of the scconl neid thirl metatarsals lies a discoidnl, more or less cal inied, cartilogis. The convex distal faco of this cartilage nrticulat a with these tro metatarsals. From itg fibular sido o strong limancatous band passes to the proximal end of the fifth metatarsal, and a fioronz plate to tino fibular and plantar edge of the fourth meiatarsal, on thet the band and plste are interposed betroen theso mentarsals n.d tho coalesced astragzlus and calcaneum. On the tibial side of the discoi'sl eartilage lies another, which is clongated from the dorsal to the plantar side, and concare proximally, to articnlate with thn tilin] sidn of the distal end of the coalracers.

articulales with the proximal end of the elongated first joint of the ralar. tta distal end is connected by a strongliand of limameutous fibres, within which a nolule of cartilage may wo enesosed, with the proxinal inds of tho first and sccond metatarsals. The second joint of the celcar lias the form of en ungual phalans.

In Silfor and Jombintor, accordiug to Gegenbaur, the calcar con sists of only a ainglo picce.
The pelvic arcli of tho Lalyyinthodontg appears to laro containes a well-ossilice pubic element, in which respeet it differs from that of sll other Amphitia. The hinet-limb, liko the fore-limb, was relatively we. k. The tibia and fibula aro distinct. In the few cases in whi th the fes is preserved it is pentadactyle, with a short cartilaginuus tarsus.

The Inlegimentary Orgrus. - In all recent Amplitia, the integuancont is remarkable for the great abmanace of eimile follicular glanda which are distributed thronyh it, and aro sometimes all of one kiud (c.g., Prefius), thongh in other cases two sorts of sinh clands can he distinruished (Hana). In many Anvra and Urodela, these flandular simetures attain a greater complication of atructure, especially near the angle of the jaw, and constitnte what aro termed the "pratoid" glands. In some cases, the secretion of these glands is extremely nerid and irritation. In somo Urodela (Protcus and Siredon), and in tho tadpole, the epidermis becomes modified in rulation with the turmination of sensory nerves, in the hend and along the body, in the region of the nerve of the lateral line, snd gives riso to sensory orgaus of tho camee naturo as those which are fuand in the lateral line and the so-cslicd mucous sacs and canals of lislies. ${ }^{1}$

In a few Anura, ossification takes place in the dorsal integument, and this mrocess ansy go so far as to give rise to bony plates, which may becume closely connected with the spines of the subjaccut vertebre (Bracharccphalus, Ceratophrys). In tha majority of the Feromela, oval, cycloid ecales aro imbedded in the transverse folds of the integrment, and constitute another point of resemblance be. tween the mambers of this group and the Labyrintbodonts. But the rovs of ecales are not contined to the ventral surfsce, sind the scales thenselves differ is structure from those of the Labyrinthodonts.

In tho Urodela and Anura, the elidermis jo pariodically exuri ated.

The Alimentary Organs.-The teeth of tho recent Amplitia vary a good deal in form. In the Urodela, they are usually conical and pointed; frequently more or less curved; sume times, as in Anaides, lancet-slaped. Siren has the surfaces of the romers and palatines covered with parallel series of small dents en brosse. In Ceratopkrys, the bases of the teeth are slightly grooved longitudinally. In Arehegasuurus, similar groores are more marked, and give rise tu folls of the wall of the tooth. These, extending inwards and ramifying, give rise to the complicated or "labyrinthic" structure exhibited by transverso sections of the teetli of the typical Labyrinthodonts. Very generally, the teeth become ankyloscd with the subjacent bones, and are replaced hy others dereloped at their bases. In the Laby. rinthodonts, some of the anterior tcetls frequently become much larger than tho rest. Tho Anura are remarkable for the total absenco of teetle in the mandibles, in all but one or two genera, while many have no premaxillary on maxillary teetl. The Toads have no tecth in the upper jaw. Iina is altogether edentulous. Siren alone presente Ilates of horn uporn the gingivel surfaces of the premaxilla and of the dentary elements of the mandible.

Tecth may bo dereloped upon tho premaxilix and maxille, the palatines, and tho dentary and the splenial elements of the mandible; but they do not occur else. where,-the so-called splienoidal teeth of some Salamanders being really borne, as aas ucen secn, on the peculiarly modified palatines.
The buccal cavity is usually spacious, and the widely-scparated posterior nares open into the anterior part of it. In the lower Urodela, the brauchial clefts lice at the sides of the plaryna, and the median aperture of the glottis is situsted far back. In the Urodela, and some Anura, there are no Eustachian passsges ; hut, in mosi Anurg, these passages have the form of wide recesses leading out of the plarynx. In Pipa and Dactylichra alone, the "reccsses " are converted into Eustachian "tubes," which open by 3 commer"

[^90]median aperture; tms 18 relatively wiler in Dactylethra. Two chooves in the mucous membrane of the roof of the mouth pass from tho Eustachian to the posterior nasal apertures, and enclose a byate space, in these genera.

Tho tongue is rudimentary in the lower Urodela; but, in the Salamauders, it may be free, fleshy, and even musdroom-shaped. In Piju and Dactylcthra, no trace of a tongue is to be observen. In Rana, as in most Aurra, the anterior end of the tongue is comparatively small and littla elevated above the mucous niembrane of the floor of the mouth, but the postenor end is' iroiluced into a free licshy mass, bifurcated at its extremity. It is this frce end which is thrown forvard in the act of prehension, the tongue turning on its antcrior end as on a hinge. Fifinopherymens is the only Amman in which the anterior end of the tongue alone is free.

In the males of many Anura the mucous membrane of the mouth is produccd outwards, on each side, between the mandible and the lyyoid, into a sac, which becomes lillerl with air, and gives rise to a conspicuous projection of the integument of the throat. In some cases these tro sacs coalesce into onc.

Salivary glands have not been discovered in any Amphibia.
Except in the Peruniela, the gullet is short. It passes into an elongated stomach, the long axis of which coincides with that of the body in the Urodela and Peromela, hut becomes oblique, or transverse, in the Anura. The intcstine is never very long, and, cousequently, its convciutions are few and simple. There is almays a marked distinction between the small and the large intestine. The latter opens into a cloaca, which receives the ducts of the urinary and genital apparatus. The stomach and intestire are enclosed in meritonemm, and suspended to the roof of the abulominal cavity by a mesenteric fold. The liver is always provided with a gall-bladder. It is distinctly bilobed in most Auura; and, in Pipa and Dacfylethra, the two lobes are completely separato, the gall-bladder being attached to the right lobe. In the Peromela, the liver has an exceptinnal form, being dividel into a great number of small lobes, arranged in a longitudinal series so as to overlap one another.

A pancreas is always present; but sometimes, as in Rana, it is sma!l, and its glandular substauce surrounds the hepatic duct. 'T'he spleen, enclosed in the mesentery, is elongated in the Urodela and Pcromela, roundeu in the Anura.

The Organs of Circulation.-The heart is contained within q pericardium, the walls of which generally exbibit numerous scattered pigment cells, and though delicate in the Cresh state, are apt to become tough and almost pergamentaceous in. spirit specimens. The heart (if we apply that name to the whole apparatus enclosed within the pericardium, except the veno cavæ), presents a serics of five segments, to which, enumerating them from

10. 15 - The heart of Stridon mericanus. Initeral view of the heart contained witbin the pericardium, the left Neall of the sinus venosus and of the suricles being remored: S. sinus venosus; $X . v . c$. infurior vena cava, L.s. v. C. left superior vena cava: L.A. left auricle; \boldsymbol{R}. A. right euricle; Sph. septum auriculorum ; V. ventricle; T. $a_{\text {. truncus nteriosus; }} 1,8,3$, 4 , the aortic arches. The arow traverses tho sintu-auricular aperture. The aurienlo-ventricular aperture lies to
the right of the arch formed by the irco edgo of the septum.
behind forwards, the following terms may be applied:-1, Thosinus verosis; 2 , tLo atrium; 3 , the ventriculus; 4 , the
 and 5 , the synanyium. Atrium here denotes the auricular division of the θ° heart, comprising the right and left auricles. Pylangiun and synangium, together, are the equivalents of that portion of the heart which lies between the ventricle aud the anterior wall of the pericardium, and which las been variously named bulbus, cavus, and truncus. arteriosus.

These five segments of the heart arc so arranged, that the sinus and atrium lie on the dorsal and posterior aspect of the organ, while the others occupy its ventral and anterior segion. Viawed sideways, in fact, tho hanet has the share
of a S, of which the sinus and atrium occupy the apper. and the other segments tho lower half. But it als: always presents. more or less, a lateral Hexure, between its anterior and posterior points of adherence to the middle line of the pericardium; so that, viewed from above, it. ap prozimates the form of an N , of which the right half is represented by the synangium, py-
 langium, and Ftg. 16-Vcntral view of the name heart contalned to the ventricle, and pericardium, Rs.v.e. right superior vena cava. The the left half by of valves, V / V^{2}. The commenement of the synamthe atrium and gium (Sg.), cut across.
sinus. The pylangium, in fact, always arises from the right side of the ventricle, while a large part of the atrium and of the sinus very often lies to the left of the ventricle the auriculo-ventricular aperture of the ventricle looking to the left side aud forwards.

There is an interesting difference to. be observed in the relative position of these segments of the hears in the lower and tlie ligher Amphibia. In Siredon, for example, the greater part of the simus Lies completely behind the ventricle, and the sinu-auricular
 aperture is situated.on the posterior face of the atrium, on a level with the posterion part of the ventricle; but, in the Frogs, the sinus lics altogether above the ventricle, without sensibly projectin: behind it, and the sinuauricular opening lies in the dorsal face of the atrium, in front of the level of the auriculoventricular aperture. In other words, the scg. ments of the heart have a less marked vertical flexure in the lower, than in the higher Amplilia, and more ncarly approach the condition of the embryonic heart. In correspondence with this, the superior cara traverse the pericardium to enter the sinus niear its posterior cnd in Siredon, but about its middle in the Frog.

The sinus venosus is a thin ralled sac, which is relativels largest in the lower Ampitioia and smallest in the Froes Anteriorly, it usually receives, on each side, one of the two superior vene cavæ; postcriorly, the single vena cava

A M P. HIBIA

isferios opens into it. But, in some eases (as in henobranchus and Pipa, according to Meyer) the inforior vena cava divides insotwo branches, each of which coalesces with the superior rena cava of its sidebeforeopening into the sinus. 'Thesuperior cave may open into the sinus immediately after they have traversed tho pericardium, as in Jenolranchus ; or, thoy may be short trunks, as inthe Frogs; or, as in Siredon

Fic. 10.-Tho Heart of Rana escyienla.-Latcral vew of tho heart contained withta tho pericardium. (The licart has been carefully drawn to scalc an ssfu, and the paisa shown by dissection put in as if tho organ were tranaparent.)
 suportor cava; S.e.c.r. opening of tho rime supenuis cara; P, V. pulmonary vein (uls dotted coniour is secn thraugh the left superior cava) : c, Elvie ineroduced into the puimonery yein and masior into the tcft auricles B, atylo lotroduced into tho sinil-numecilar aperture and rensing lnto tho right auricle (R.A.), mhero its end visuble to tho right of the septum, Sif. Fe rentricular cavity. T.a. 2rancos arteriosus 40 . noric arch. a ligainent passlag from tho wall of tho pericerdimin to tha reatricle
and the Salamanders, the nght cara may be long and the left short.
The sinu-auricular aperture, by which the sinus and the right auricle communicate, is small, relatively to the size of these tro cavities, and has an oval form. Its lips may be slightly prolonged towards the canty of the auricle, but do not give rise to very definite sinu-auricular valves.
'The auricular seg. ment of the heart, or atrium, is almays more or less bi-lobed, the truncus arteriosus being embraced by the two lobes, ono of which projects on its right side and the other on the left. The

septum. In the Frogs, the septum auriculorum is a complete partition, containing muscular fibres, and the septal branches, with their ganglia, of the cardiac nerves of the pneumogastric. It divides the auricnlo-ventricu lar aperture, passing from one auriculo - ventricular ralvo to the other, and ending between them by a free edge, which might almost be said to lie in the cavity of the rentricle (Fig. 23).

In Lissotriton punctatus, and in Sircdon, the septum, still complete, ends in the carity of the auricular segment by a free edge, which

10. 82-The left aoricle of the ballfrog (Rana prpiens) ladd opea in auch a manner as to ohow the aeprum With its gerves (n) and ganglis (g), and the manoe In which it descends apoo tho freo aurfacee of the auriculo-veotricular thatres, F, V'. P.v. openior of the pulmonary vein; L.s.e.c. lef auperior ven cava; V. veatricular cavity. arches over the auriculo-ventricular aperture. In Meno branchus, the septum is reduced to little mere than a wide-meshed network of branched muscular bands. and, in Proters, the existence of a septum is doubtful.

The auriculo-ventricular aperture is always situated at the left side of the posterior end of the auricular segment, where the latter joins the rentricle. In Rana esculenta and pipiens it possesses distinct, though shert, membrano ous valves, the free edges of which, directed towards the ventricular cavity, are kept down by fine tendincus flaments.
The common trunk, formed by the union of the two pulmonary reins, runs over the darsal wall of the sinus venosus, passes between the two superior cavæ, and, usually dilating, opens into the carity of the left auricle, close to the sinu-auricular aperture; and, in fact, scparated from it only by the septum, which continues the direction of the right wall of the pulmonary vein.

The ventricular segment always has thick walls and a comparatively small cavity, which lies in the anterior half or base of the ventricle, aud takes a direction from left to right, or from the auriculo-rentricular aperture to that of the truncus arteriosus. In consequence of the loose and spongy texture of the greater part of the thickness of the ventricular wall, it must be recollected that its apparent cavity by no means represents its capacity.

The truncus arteriosus of Menobranchus is subcylindrical, in that half which is nearest the rentricle, but, in the other half, has a dilated and ovoid form. The latter, in reality, consists of the origins of the acrtie arches, elosely united together (synangium), while the former subdivision is tho gateway between the ventricle and tho great ressels, or the pylangium. It presents two transrerse rows of semilunar valves, three in each row; the lower or posterior row being close to the opening of cemmunication between the pylangium and the rentricle, while the other row is near the anterior end of the prlangium.

In Siredon (Figs. 15 and I6) there is the same division into a pylangium proper and a large oval bulb-like synangium formed by the united aortic arches. Three valves in a transverse row are situated at cach end of the pylangium. An oblique ridge projects from the dorsal wall of the pylangium, beginning low on tho left side, and gradually increasing in size, until it passes into the dorsal valve of the anterior row. There is a small space in front of theanterner row of valves, into which projects the vosteries
íree end of an oblique, but nearly horizontal septum, which divides the cavity of the synangium. From this thick partition thinner septa radiate to the walls of the synangium, which they thus divide into five longitudinal canals, of which that which lies to the right is twice as large as any of the others. In fact, it also becomes subdivided, further forwards, by a longitudinal septum, and then there are six canals answering to the six aortic arches which spring from the synangium, where it reaches the anterior end of the pericardiura. According to Hyrtl's account, the pylangium of Cryptobranchus has a very similar structure; but the synangium is completely split into two trunks, each of which contains three canals.
This leads to the structure of the truncus arteriosus observed in the Frogs, which censists almost wholly of the oylangium. Three thick semilunar valves are placed at the ventricular end of this region, and three others, also of unéqual dimensions, at its synangial end. A longitudinal ridge, with a rounded, free, ventral edge, projects from the dorsal wall of the pylangium. It is thicker anteriorly than posteriorly, and is idirected obliquely, so that its anterior end passes into the right anterior valve, while its posterior extremity is close to the left posterior valve. The anterior valves of the pylangium (v^{2}) are much larger

10. 23.-The heart of Rana pipiens. The ventricle (V.), the truncos arteriosus, and the sortic tranks (10 .) are lald open from the ventral side. Spl. Iree edge of the septam auricolorum; v^{\prime}. semllunar valvea st the ventricular end of the pylanglom; v^{2}. valves at its aynangial eud; S, the septum of the pylendium; p, the aperture of the palmoosary trunsa; Cu, the p, the artures of the carotid trunks. than the posterior valves; and, of the three anterior valves, that which lies on the doisal side is the smallest. Immedately beyond it is situated the aperture (p), which leads into the pulmonary trunks. In front of the pulmonary aperture is a wide cavity, whence the two great aortic trunks ($A 0, A o^{1}$) spring. A tongue-like projection springs from the dorsal wall, and divides the cavity imperfectly. On the ventral side of the base of this tongue are the two openings ($C a$) which lead into the carotid trunks. The three trunks-carotid, aortic, and pulmonary-pass out of tho pericardium together, so closely united that they appear one. It is only at some distance beyond the pericardium that they separate,-the anterior ending in the rete miratite, which has received the name of the "carotid gland;" the middle becoming the arch of the aorta; the posterior, the pulmo-cutaneous artery. ${ }^{1}$

In the Peromela (e.g. Epcrium), the hcart presents many singular peculiarities (Fig. 24). In tho first place, it is moved back to a distance which is relatively far greater than in any other Amphibia and in most lizards. Next, it is extremely clongated, and the truncus arteriosus is relatively more prolonged than any other part of the heart. But

[^91]the relative proportions of the pylangium and synangium are the reverse of those which obtain in the Anura. The two transverse rows of valves which mark the boundarics of the pylangium are situated close to one another, near the origin of the truncus, all the rest of which is mado up of the synangium. A longitudinal partition, at first, divide: the cavity of the synangium into two unequal passages; but, towards its anterior end, it contains four equal canals. Having reached the anterior extremity of the pericardium, the synangium divides, and the two pairs of canals become independent, hut clósely united, trunks, which run, on each side of the trachea, to about the level of the glottis. Here the two trunks join, and pass into the single arch of the aorta, which turns sharply back beneath the vertebral column. The carotid artery is given off from the junction of the two trunks with the single dorsal aortic arch. Shortly before the two trunks join, that upon the dorsal side gives off the pulmonary artery. A single pulmonary vein opens into the left auricle; and it is worthy of notice, that the auricles and sinus are situated as far forwards on the dorsal aspect of the heart as in the Frogs.

As regards the number and destination of the great vessels which arise from the - synangium, great differences obtain in the different groups of the Amphibia.
In the perennibranchiata Urodela, each of the three, or four, branchial arches has its appropriate aortic trunk, which springs mediately, or immediately, from the synangium. The three anterior aortic trunks supply the gills, but are not wholly distributed to them; so that the trunks which unite to form tha dorsal aorta ara derived partly from the gills and partly come directly from the ventral aorta. The anterior aortic arch gives off, on its ventral side, a hyomandibular artery to the walls of the oral carity, which appears to represent the remains of the hyoidean and mandibular aortic arches, while, dorsally, it eupplies tha internal carotid. The pulmonary artery is given off from the fourth aortic arch, or from the common trunk, which is formed by the union of this with those which preceda it.

In Crypobranchus, according to Hyrtl, three trunks are given off on each side from the synangium. The most anterior cor responds with the hyomandibular artery of the perennibranchiate forms. The second belongs to the first branchial arch. It gives off no branch, but unites with the third and largest vessel to form a common trunk, which unites with its fellow beneath the rertebral column, and gives rise to the

10. 24.--Ventra? view of the head onl trunk of Eptcrium glufinosums Min. mandule: Hy. hyoid: $B r^{1}, B r^{3}, B r^{3}$, Drenchlal srches; Gl. plottle: Tr. traches: I.v.c. infertor vena cors: $\nabla_{\text {, }}$ ventricle: Au ourlcles: R.s.c.c. Ls.o.e. Mght ond lef anperior cavre, T.a trun cus srieriosus; Ao. left aorle srch; P.A. richs pulmonory artery. The perleardlum (1fghty phoded) cxtends as fas os the blfurcation of the oynengiars.
darsal aorta. The posterior sortic arch gives off the pulmonary artery (which supplies a branch to the alimentary caual). From the common trunk a maxillary and an internal carotid artery are sumplied ; while a third branch pesses to the ventral side of the atlas, and, turning bacl mards, passes between the transverse process of the second and succeeding fertebre as a collateral vertebral artery.
In Salamandra, there aro four aortic arches. The most anterior of these belongs to the first branchial arch. It gives off a hyomandibular branch, then breaks up into a ete mirabile, whence the internal carotid artery is continued, and is connected by a mere ductus Botalli with the second arch. The eecond and third arches giva off no branches; but, along with the slender ductus Botalis of the fourth arch, coalesce into the trunk which nnites with ita fellow to form tha dorsal aorta. The fourth arch gives off the

Pulmonary artery, and a smaller dorsal cutancous lranch (IIyatl). Tho pulmoary aitely gives twits to the stomach.
It is clear that the josterior trunk of Cryptobranchus repre. acats the sccond, third, and fouth aortic arches of Sitamandra; ant that the first aortic arch of Sulamandro angwers to the first rad second tranks which spriag fron the syuangium of Ciryptobranchus.
In the Aurra there are apparently only two eortic archey; but, as has already been observed, each of then is divided into three caaals. The anterior canal cods in a rete mirabile, whence the interaal carotid ortery procecds, and it gives off tho hyomandibular or lingual artery. It therefore answers to tho first arch of the Salamanders. The second or midde canal is tho largest, and passes into a trunk which runs along the sides of the gullet; and curving backwards, unites with that of tho opposite side in the dorsal norta. Tho third canal ends io a trunk which divides into the pulmonary and tha great cutacous arteries, which latter is distributed to thic dorsal integument. It answers to tho third and fourth arches in the Salamanders.

Gin. 25. -The heart, areat arictial tranks, and tho adjacent priacipal nerves of Rand esculenta, drawn to acale. The peattions of tive uuditory capsule (Au.), Enstachlan tube (Eu), and hyoldean cornu (K yy.), are, indicated dimgrarnunafically: L, root of tha left ling; S.V. ainus venosui: זf. ventricie, $A u$. anicle i. Th. A. truecun arterlosus; C.G. cerotld pland; lg. lingual artery : Cr. asodith artery; oph. nphibalmic artery, 2. Left arcb of the aorta, passlng through the muscular diaphragm to the anrta (Ao.) bencash; 6 . wi. the transvorse process of the third veitcbra, br. the brachal artery. 3. Pulmecutancous artery; ct. its cutaneous p. ita pulmonary dlvision. Nerves:-vi, Vz: V3, arsh aecond, and third divisiona of the trlgeminal; Vila, Vilp, anterier and posterior divislons of the portlo dura; 1 X. . ? he हiessopharyngesil: X. the cotallenua branch of tho vagua; X^{2}, the visceral trunk, giving off \boldsymbol{X}^{p}, the cardiac, \boldsymbol{X}^{5}, the pulmonic, and \boldsymbol{X}^{3}, the gnstric branclies; \boldsymbol{X}^{4}, the laryngeal branch. Sp.I. tho first aptnal (hypoglossal) nerve; Sp.II. the cut trunk of the accond aplaal nerve.

In the Peromela (Epicrium) the two aortic trunks which spring from the truncus arteriosus would scem to correspond with the second and third of the frog, the first having become absorbed into the secoad. This is a point which can be cleard up satisfactorily only by the study of devclopment; but it is obvious that the heart aad its arches have undergone greater changes in this group than in any of the others.
With respect to the venous system, it is worthy of notice that the blood returning from the hinder part of the body and the posterior extremities is, ia part, carried to the kidneys, and in part poured iato a rein which ruas in the anterior wall of the abdominal cavity, -the anterior abdominal vcin. Of the branches in which this veia terminates anteriorly, ono communicates with tho portal vein, and one is distributed to the liver directly. In the Anura, rcoous radicles in the interument coreriag the back of the hend and shoulders, unite to form a great cutancous vein, which passcs backwards, perforates the exteraal oblique muscle, and then turning abruptly forwards, eads in the aubclavian vein. This vein carries away a large part of tho blood of the cutancous artery, which accompasies it in a great part of its course.

The lymplatic system has been most carefully studied in the frog, where it consists of (1.) widely-distributed lymphatic capillaries, and sinuses which ensheath the blood-vessels; (2.) subcutaneous lymph sacs; (3.) a large subvertebral cisterna, enclosed between the diverging lamello of the mesentery, and placed in commu neation with the peritoneal cavity by minute openings or stomata; (4.) four lymph learts, two situated closo to the transverse process of tho third vertebra and tro at the sides of the coccygeal stvle. These
bearts pump the lympli into the alljacent veins. As the two pairs of lymph hearts have been discovered in Triton and Salumandice as well as in Rana, it is probable that they are present in the Urodela generally. No Amphilia rossess lymphatic glands.

The Thymus gland in the Urodela lies behind tho angle of the mandible (Triton, Salemandra), or close to tho dorsal ends of the branchial arehes (I'roleus, Menobranelus, Siredon, Ampliuma, Senopoma). In the Peromela it has the same position as in the abranchiato Crodclu. In tho tadpolo tho thymus occupies a place similar to that which it possesses in the branchiate Urodela. In the adult frog it is to be found just behind the suspensorium. The Thyroid gland, usually double, but single (according to Leydig) in Proteus, always lies in tho immediato vicinity of tho lingual ressels. ${ }^{1}$

The Respiratory Orguns.-Tho glottis in the Amphitia is situated in the middle line of the floer of the pharynx In the perennibranchiate Urodela, it is a very small longitudimal slit lcading into a narrow passage, which widens into a chamber into which the elongated pulmonary eacs open. The Urodela and the Peromela present mero cartilaginous rudiments of a larynx; but, in the Aura, this structure attains a great developinent, and becomes tho instrument of the powerful voice with which many of theso animals are provided. The larynx is lodged in the anglo between the two thyro-hyels, with which it is closely connected. The chief part of the larynx is an annular cricoid cartilage, with which two arytænoid cartilages are articulated. Membranous folds, or freely projecting cartilaginous processes of the arytzoid cartilages (Pipu), play the part of vocal ligaments. In Pipa the larynx is extensively ossified. In Proteus, the lungs are long tubes, dilated at their posterior blind ends, and fixed to the dorsal walls of the abcominal cavity by folds of the peritoneum. In Triton they are somewhat wider sacs, but, in hoth, the inner surfaccs of the pulmonary sacs are smooth. In Sircu and Salamandra, the walls of the sacs becomo cellular, and in Amphiuma, Denopoma, Cryptolranchus, and tho Anura, the cellulation acquires a considerable development.

In Ampliuma, Menopoma, Cryptobranchius, and in the Peromela, there is a distinct trachea, which is of great length in the Peromela. In Pipa and Dactylella there is no trachea, but each lung is connected with tho laryngeal cavity by a bronchus.

The Renal Organs. - The kidncy is a more or less elongated organ-longer in the Urodela and Peromela, shorter in the Anura-wbich lies on each side of the vertebral column, its posterior end being close to, or even extending back on the dorsal side of, the cloaca.

In the female the efferent ducts of each kidney unito into a longer or shorter common trunk, which appears always to open into tho cloaca by an aperture distinct from that of the oviduct, though tho contrary statement is very gencrally received. ${ }^{2}$ In Rana esculenta, there can be no doubt as to the distinctness of the minute urinary apertures from the large and conspicuous oviducal openings, close to which they are situated. Hyrtl says of Crypto-brunchus-"Ureter super latera eloacæ descendens in collum allantoidis exoneratur" (op. cit., p. 84).

In the male Amplitia, on the other hand, there is a longer or shorter duct common to both the renal and the genital products, which opens into the cloaca. In the Urodela, the duct is continued forwards along the outer side of the kidney to the anterior end of the alt

${ }^{1}$ See Leydig, Analomusch-lustologische Untersuchungen ubor Fische

 und Reptilien, 1853.${ }^{2}$ See, for example, Stanaius, Handbuch der Amphibien, pp. 250,
251. On the other side, comp. Milee-Elwards, Lecons, t. vii. p. 336
dominal cavity, and clearily represents the Wolffian duct of the embryo. Both the urinary tubuli and the vasa efferenia of the testis open into this duct. In Cryptobranchus the kidney is divided by a constriction into two portions-a slender, anterior, and a much thicker and longer, posterior, division. From the latter the efferent urinary canals proceed, and, curving outwards and backwards, join the posterior part of the Wolffian duct. The former is traversed by the vasa efferentia of the testes, which pass from its outcr edge to the anterior portion of the Wolffian duct, so that it resembles an epididymis. ${ }^{1}$

In Proteus, according to Leydis, the anterior end of the Wolffian duct is infundibuliform and open ; the vasa efferentia of the testes open into the anterior moiety of the duct, the renal ducts, into its posterior moiety. The numerous arcuated renal ducts of the Salemanders and Tritons unite together, and open into the Wolfian duct near its cloacal eud. The Wolffian duct persists in Bombinator igneus and Discoglossus pictus ${ }^{2}$; but, in most Anura, it becomes obliterated for the greater part of its extent, and the same canals acrve to convey both the urinary and the spermatic fluids to the persistent cloacal end of the Wolffian duct, which ordinarily receives the name of ureter. The urinary bladder is always large, and is often bifurcated anteriorly.

The Nervous System.-The amphibian brain is remarkable for the rudimentary condition of the cerebellum, which has the form of a mere band arching over the anterior part of the fourth ventricle. The mesencephalon is divided above, more or less distinctly, into two optic lobes. The cerebral hemispheres are alwayṣ relatively large, subcylindrical in the Urodela, but wider behind than in front in the Anura, and they are generally closely united together by their inner faces.

Pre. 28.-Diagtam of the chtef cranial nervea of Rena emmienta. II. optle; IV. psthetic; V, orhito-nasal; V^{2}, anperior maxillary: V^{3}, inferlor maxillary: Vlla. VIlp, anterior and posterior divisiona of the portio dura: IX. The glosso-phatyngeal; X the pneumogastric; $X 1$, its dorsal branch. Sp. I. The tirst spinal neive (hypoglossal). ol. olfactory nerve; Tg. tungue; $\cdot l / y$.cornu of the byoid; Πd. Maiderian gland.
Ten pairs of cranial nerves are always found-riz, 1 , The olfactory ; 2, optic; 3, oculomotor; 4, pathetic; 5, trigeminal ; 6, abducens; 7, portio dura; 8, auditory; 9 , glossopharyngeal; 10, pneumogastric. The hypoglossal is always an extra-cramial nerve.

1. The olfuctory is usually a rounded cord, not dilated at its anterior end. Fischer has observed it to arise by two roots in Pipa.
2. The optic nerves are attached, as usual, to the floor of the thalamencephalon. Fischer ${ }^{3}$ found no chiasma in Siredon or Menobranchus. Dr Humphrey found none in
[^92]Cryptolranchus; but sections of the brain are needful before the actual absence of the chiasma can be considered to be satisfactorily proved.
3.- The oculomotor nerve remains distinct from the trigeminal in most Amphibia, but its branch to the superior rectus muscle appcars to coalesce with the orbito-nasal division of the fifth in Salamandra terrestris (Fischer).
4. The pathetic nerve remains distinct in Siredon and Cryptobranchus, and in the Anura; but in Salamandra terrestris, Fischer found that tho superior oblique muscle $ए 2$ es supplied by a branch from the orbito-nasal, with which, thercfore, the pathetic had probably coalesced.
5. The trigeminal gives rise, as usual, to a Gasserian ganglion ; and this ganglion remains distinct from that of the seventh nerve in all the Urodela, though united with it by a commissural band, which appears to answer to the nervus petrosus superficialis minor of the higher Vertebrata. In the Anura, on the contrary, the two ganglia are closely approximated (Pelolates, Lombinator) ${ }^{4}$, or confounded together (Rana, IIyla, Bufo) in the adult, though they are distinct in the tadpole. The orbito-nasal, or first division of the trigeminal, is always separated from the second and third divisions by the ascending process of the suspensorium, when this structure is present. It supplies the tentacles of the Peromela. In the tadpole, and in some Urodela, a cutaneous branch to the dorsum of the head is given off from the fifth.
6. The abducens is distinct from the trigeminal in Salamandra and Bufo, but coalesces with the Gasserian gan glion in Rana, Pipa, and most Anura.

7 and 8. The portio dura and portio mollis arise by a common trunk, from which the portio dura soon separates, and either forms a distinct ganglion, as in the Urodela and Peromela, or fuses with the trigeminal.
9. The ganglion of the glossopharyngeal nerve appears to coalesce with that of the vagus, and the roots of the two nerves pass out of the same foramen in all the A mplibia except Siren, where, according to Fischer (op.cit., p.147), the nerve leaves the skull by a distinct aperture, close in front of that for the pneumogastric, and forms a ganglion of its own.
10. The vagus or pneumogastric, in the peremibranchiate Amphitia, supplies the second and third branchia, and the cucullaris muscle; gives off cutaneous, laryngeal, cardiac, pulmonic, and gastric branches, and sometimes as many as three cutaneous branches, one of which runs along the junction of the dorsal and rentral muscles to the hinder part of the body. These lateral nerres of the pnoumogastric exist also in Menopoma, Amphiuma, and Triton, and in tadpoles; but appear to be absent in Salamandra terrestris and in the adult Anura (Fischer, l.c.) Thesc, however, possess a cutaneous branch of the vagus, which accompanies the cutaneous branch of the pulmo-cutaneous artery, and is distributed more or less widely to the dorsal integument of the head and trunk.

Fischer considers that a fine nerve, arising lower down than the vagus, and distributed to the abductors of the head in Pipa, is to be regarded as an accessorius. But, sceing that, in the Amphibia generally, the motor nerres of the larynx, and, where a cucullaris exists, the nerres of that muscle also, are supplied from the pneumogastric, the question of the presence or absence of an accessorius seems to reduce itself to this: Docs the pneuniogastric receive nerve fibres arising from the sides of the medulla oblongata and spinal cord between the roots of the spinal nerres? And, as it certainly does not, tho accessorius, as it exists in the higher Fertebrata, must be admitted to be absent in Amphibia.

In most Amphibia, the first cerrical nerve has the dis-

[^93]tribation of the hytuglossal ; in Menobranchus, huwever, tho corresponding uervous supply is furnished by the second and third cervical nerves, -t the first spinal nerve, in this genus, perforating the sides of tho body of the atlas, and being distributed to a musele which passes from this vertebra to the oeciput (Fischer, l.c., p. 15S). In Pipa the hypoglossal is furnished by the second cervical nerve; in Sulamandia, by the first and second. There is no trace of any suboceipital nerve in the Amphibia; and as, in the absence of this nerve, the first spinal would appear to ans:wer to the second cervical of the Ligher Vertelrata, the fact that it takes the place of the hypoglossal becomes very perplexing.
In the Anura (Rana) the sympathetic is represented by a double chain of ganglia, situated at the sides of the aorta, and receiving branches from the anterior divisions of the spinal nerves. It appears to be continued in the skull by commissural cords which pass forwards on the inner side of the auditory capsule, and connect the ganglion of the vagus with that of the trigeminal.

The Organs of the IIigher Senses.-The nasal sacs are elongated in Protous, Menobranchus, and Siren, and not covered by nasal bones or alinasal cartilages. In the other Amphibia they are broader, and enclosed by cramal cartilages and ossifications. The olfactory mucous membrane is rariously folled; and, in Rana, some of these folds are supported by ingrowths of the anterior cartilaginous wall of the nasal chamber.
In Proteus the eye is completely hidden by the continuation of the unaltered integiment over it, and the organ of vision is almost as much obscured in the Peromela. In the other perennibranchiate Urodela, and in I'ipa, the integument covering the eye forms a transparent cornea, but there are no eyelids. The abranchiate Urodela have an upper and a lower lid; and, in the higher Anura, the lower lid becomes transparent, and is usually regarded as a membrana nictitans, as it is provided with a peculiar motor apparatus. In the Anura, the eye possesses not only the ordinary four recti museles and the two obliqui, but there is a retractor bulbi. The Frogs and probably other Anuru, possess a Harderian gland; but no lachrymal gland has been observed. The sclerotic may be chondrified, but it is not ossified. There is no pecten.

With regard to the orgau of hearing, the membranous labyrinth is enclused between the pro-otic bone, in front, and the representatives of the opisthotic and epiotic (usually confounded with the exoccipital), behind. The fenestra ovalis always occupies a space in the line of junction of the prootic with the posterior ossification, whether it be occupied by a broad unossified space, as in Menopoma, or the two bones be ankylosed together, as in Siren, Triton, and old Frogs. The stapes is more or less ossified, and its outer face is frequently provided with a styliform appendage, in the Urodela. Is the Urodela (which have no tympanic cavity), a ligament passes from the stapes to the suspensorium, and there is no columella auris. The liko absence of columella ruris and of a tympanum obtains in several Anura. Duges states that the columella is wanting in Bombinator and Pelobates ${ }^{1}$ (Recherches, p. 41), and the absence of the columella auris, as of the tympanum and Eustachian tubes, has since been noticed in Telmatobius, Phryniscus, Atelopus varius, and Brachycephalus ephippium (Stannius, op. cit., p. 61). In the higher Anura, there is a complete tym1 anum, with Eustachian tubes, and a columella auris, which extends from the stapes to the membrana tympani. The tympanic membrane is either quite similar to the rest

[^94] aurw.
of the integument or markedly different from it. In some genera (e.g. liana), the tympanic membrane is set in a frame of cartilage. In Mipa and Dactylethra, the Eustachian tubes, as already remarked, have a common opening, and the columella is rery peculiar. Recent investigations make it probable that the Amphibic possess a rudimentary cochlea. ${ }^{2}$ Whether the opening, which in the Frogs has been described as a fenestra rotunda, is really of that nature, is doubtful.

The Reproductuce Organs.-The ovaria and testes aro attached to the dorsal wall of the abdominal cavity, in the immediato vicinity of the kidness, by the mesoarial and mesorchial folds of the peritoncum, which invest them.

The oraria, when fully developed, become hollow, and in the Anura their internal cavities may be divided by septia

Tho oviducts are long, usually more or less convoluted, tubes, which opeu posteriorly into the cloaca; while, anteriorly, their funnel-shaped apertures lio in the anterior part of the abdomen, sometimes, as in tho l'rogs, as far forward as the root of the lung. Their malls are glandular, and secrete a viscid substance which invests the ova in their passago down the oviduct.

In the male Urodela, the persistent Wolftian duet, al. ready mentioned, occupies the position of the oviduct in the female, and the vasa efferentia, after traversing the kidney, open into it. This duct persists in Bombinator igneus and Discoglossus pictus; but in the male Anura, in general, the greater part of it is obbiterated, only so much remaining as plays the part of ureter and vas deferens. In the Urodcla accessory glands open into the cloaca, and in Triton there is a rudimentary copulatory papilla. Some female Urodela are provided with receptacula seminis. In the terrestrial Salamanders and in the anurous Rhinoderma Gayi the yonng are developed within the dilated uterine terminations of the oviducts. In Pipa the eggs are deposited on the back of the female, and the integument grows up round each, and encloses it in a cell, in which it undergoes its development. In some tree-frogs (Nototrema and Opisthodelphys) the eggs are received into a sort of marsupial pouch formed by an up-growth of the margins of the dorsal integument, which, when complete, has a small posterior aperture. On the other hand, it is the male Alytes obstetricans which twists the strings of eggs laid by the female round his hand-legs, and, thus cross-gartered, retires into seclusion until the young are ready to be hatched, when he resorts to the water in which the tadpoles are to perform their further metamorphoses.

Development of the Amphibia. The yelk of the ovam undergoes complets division, in which respect the Amphibia agtce with the Pharyngobranchii, Marsipobranchiz, and Mammalia, and differ from other Vertebrata; though it must be remembered that the process of yelk division in the Garoidei and Dipmoi is not yet known.
Except in some viviparons species, the embryo, when hatcked, is pisciform and apodal; and three pairs of external gills, which become more or less branched, are develoued from the frst, second, and third branchial arches. In the larval Triton a very singular elongatod appendago makes its appearance on each side of the head, in front of the branchix ; ${ }^{8}$ and in the tadpole two eminences of the ventral integument, with glandular terminal faces, are developed-one on each side of the middle line, behind the month. The larwo of Dactylethra have two long tentaeles attached ncar the angle of the mouth. An opercular fold of the integument grows baek from each Lyoidean arch, and the two are connected by a free fold of the subgular integument. The limbs make their appearance as buds from the sides of the body, the anterior pair appearing first. The anterio limhs attain a cousiderable size before the posterior pair ure developed in Triton; but, in the Frogs, the posterior limbs grow mueb faster than the anterior, which loug remain inconspienous and hidden.

In the Urodele larve, teeth are very carly developed in the premaxillary, maxillary, vomerine, palatine, splenial, and destary

[^95]regions ; and, indeed, in Triton and Siredon, the teeth precede the corresponding bones, which arise by the ossification of the macous membrane about the bases of the teeth; and there are no labial cartilages, and no horny labial papillx, or beak-like armature of the jaw. The abdomen is slender, in sccordance with the brevity of the utestine, and the little animal is altogether carnivorous.

In the Anura, on the other hand, teeth are not develoned until 3 later"stage. A pair of cartilages appear in the roof of the mouth in front of the ends of the trabecula ("rosiraux supfrieurs, Duges; "upper labials," Parker), and another pair opposite them ("rostraux infericurs," Dugès; "lower labials," Parker); snd the epithelinm of the mucous membrane covering them becomes converted into an upper and a lower brown horay toothed plate, having sime resemblance to the beaks of a Chelonisn. The curtain-like lips, which surround the oral aperture, are also beset with horny p:ipille, which call to mind the corneous teeth of the Marsipobranchii. The sbdomen is swollen and almost globular, and lodges a long and spirally-coiled intestine. The animal is herbivorous, thongh it does not despise animal food, even in the shape of the weaker members of its own family.

The space allotted to this article does not allow the details of the development of the Amphibia to be even sketched; but sttention may be directed to one or two of the more important points.

The skull presents some singular differences in the course of its. development in the Urodela (Triton, Siredon) and the Anura (Rana, $A l y t e s)$ respectively. In the former, the mandibular and trabecular arches become connected only at their dorsal ends, by the pedicle of the mandibular arch; the pterygoid arch is developed late; and the mandibular arch appears to give rise to no orbital process. In the latter, the mandibular and trabecular arches not only unito at their lorsal ends by the pedicle, but, at a very early period, the mandibular arch is united with the antorbital process of the trabecula; and the pterygoid grows pari passu with the subsequent divergence of the mandibulsr and the trabecular arches. A large orbital process is developed from the mandibular arch.

In the Urodela, the hyoidean and branchial apparatus consists, at first, of elongated cartilaginous byoidean cornua, united with a median chondrification, which represents the basihyal and basibranchial pieces, to which last two cerato-branchials are sttached. The first cerato-branchial is continued dorsally into the first epibrenchial, while the second cerato-branchial supports the other three epibranchials. As the development of the Triton proceeds, the hyoidean arch becomes connected with the suspensoriam, snd with the stapes, by ligament. The second basi-branchial ossifies, detaches itself from the first, and lies as a forked bone in front of the larynx; and only the two cerato-branchials, with the first epibranchial, remain-the rest of the branchial spparatus disappearing.

In the Anura, the hyoidean arches are, at an early period, very thick, and relatively short, snd are articulsted with the suspensoria. A relatively broad and sbort cartilage represents the basihyal and basibranchial, and st the aides of this are two very broad cartileges, which correspond with the two cerato-branchials, inasmuch as their dorsal edges bear the four epibranchial cartilages. As the tadpole grows older, the hyo-branchial apparatus becomes more like that of the Urodele larva, the hyoid arch elongating into a slender rod, and the two cerato-branchials becoming distinct. The basibranchial region of the median cartilage, which unites the cerato-branchials ventrally, becomes forked, and the processes which form the fork ossify snd become the thyro-hyals, which therefore would eeem to correspond with the os ypsiloides of the Urodela. Finally, the extreme dorsal end of the hyoidean arch detaches itself from the suspensorium, snd enters into close union with the periotic capsule, from the outer wall of which the colzmella auris is developed.'

The Distribution of the Amphibia. - Darwin has pointed ont (Origin of Species, p. 350) that Amphitia are met with on no islapns but New Zealand, New Caledonia, the Andaman Islands, and perhaps the Solomon lslands and the Seychelles. "This general sbsence of frogs, tosds, and newts in so many true oceanic islands cannot be accounted for by their physical conditions; indeed, it seepns that these are peculiarly fitted for those animals, for frogs have been introdnced into Madeira, the Azores, and Mauritius, and bave multiplied 80 ss to become s nuisance. But as these animals and their spsmn are immedistely killed (with the exception, so far 33 is known, of one Indian species) by sea-water, there would be great difficulty in their transportal across the sea, and therefore we can see why they do not exist in strictly oceanic islands."

Leaving the oceanic islands aside, the distribution of the Am-
${ }^{1}$ See the Memoirs of Duges and Parker, slready cited, for the detais of thesemetamorphoses. The sccount given hy Mr Parker of the modifications of the dorsal extremity of the hyoidean arch, however, does not accord with the results of the present writer's later investigations. No coalescence of the byoidean with the mandibular arch takes placa; and the "snpra-hyo-mandibular" has nothing to do with the columella auris.
phibia is world-wide, but the different groups are very remarkably localised.
The Urodela, for example, are limited not only to tto arctogeal province, but to the temperate parte of that province; snd, in curi. ous correspondence with the Ganoid fishes, their headqnarters are in North America. Siren, Menobranchus, Amphiuma, Menopoma, Dicamptodon, Heredia, Anaides, Desmognathus, Batrachoseps, Hemidactylus, and Plethodon are exclusive!y North American; and the majority of species of Amblystoma and Spelerpes appertain to that region, - Amblystoma being represented in North Asiz, and Spelerpes in the circum-Mediterranean srea Triton alone is epread over the whole temperate sictogæal srea. Salamandra, Pleurodeles, Bradzbates, Chioglossa, and Salamandrina are confined to Europe and North Africa. The singular Salamandra atra is limited to the Swiss and Austrian Alps, Proteus to Carniola and Carinthis. Four genera-Ellipsoglossa, Isodactylium, Onychodactylus, snd Ranodonare confined to North Asis; and Cryptobranchus, if it be a distinct genus, is limited to Japan.
lf the distribution of the Urodela calls to mind that of the Ganoid Gishes, that of the Peromela is rather comparable to the distribntion of the Tapirs. Of the four genera, Siphonops and Rhinatrema are exclusively inhabitants of the hotter part of the Austro-Columbian provinco-as are the great number of the species of Caccilin; bat the remaining species of that genus are East Indisn, and Eprocrium is confined to Java and Ceylon.

In strong contrast with the foregoing, the Anura ${ }^{2}$ are of worldwide distribution, being. abundantly represented in all the great provinces. A great preponderance of the genera and species, how. ever, are Austro Columbian, the Anura having their beadquarters in South America, as markedly as the Urodela have theirs in the northern division of that contment. North America, in fact, is poor in Anura, having only three nec liar genera, viz., Scaphiopus, Acris, and Pseudacris; while the resu जi northern Arctogea has five, viz., Pelodytes, Discoglossus, Alytes, Pelobates, snd Bombinator.

The genus Rana itself, however, is characteristically arctogæal, hsving only a single species in the Mexican border-land of Austro. Columbia, and none in Australis. Rana esculenta extends from France to China and Japan, and from North Europe to Tunis. Rana temporaria covers even a larger area, as it occurs in the British Islands snd in North Americs, as well as in North Asia and Japan.

The Austro-Columbisn region not only presents the greatest number of species, bnt smong them are some of the most singular forms, such as Pseudis, Ceratophrys, Brachycephalus, Rhinoderma, Engystoma, Otilophus, Nototrema, Opisthodelphys, Rhinophrynus, and Pipa; in which respect the South American Anura run parallel with the birds of the same region. And, as is seen in other cases, the nearest allies of many of these singular forma are to be found in Ultra-Saharal (Ethiopic) Africa, e.g., Hemisus (Brachycephalus), Breviceps (Engystoma), Dactylethra (Pipa). It is remarkable that Pseudophryne, which is closely allied with the Ethiopic Hemisus and the Austro-Columbian Brachycephalus; and Chelydobatrochus, which is similarly related to the Ethiopic Breviceps and the AustroColumbian Engystoma, are Anstralian.

The Australian region is remarkable for the absence of the geners Rana and Bujo, which occur everywhere else; and inr the occurrence of Cystignathus, which is an Austro-Columbian, North American, and Ethiopian form, bat does not occur in India. If it were not for its tree-frogs, Australia would be poorer in Anura than Europe is

These Anuтa, modified for arboreal life, or "tree-frogs," are represented in all the distribntionsl provinces-the genus Hyla haring its chief seat in Austro-Columbia, and extending thence over North America, Europe, North Africs, Western and Eastern Asia, and Australia, but not into India or Ultra-Saharal Afrlea, in which other forms of the same group are met with.

The British Islands possess the following species of $A \mathrm{mph}$ bria: - Rana temporaria, Bufo vulgaris, B. calamila, Triton cristatus, T. Bibronit, Lissotriton punctatus, L. palmipes.

Geological Distribution. - No fossil Peromela are known. Anura occar in the Miocene deposits of France and Germany. The best preserved forms belong to the geners Palaobatrachus and Latonia, and occur in the schists of FEningen along sith their tadpoles. They possess maxillary teeth, and present no important differences from existing Anura, except that, in Palaobairachus, the sacral vertebra has coalesced mith the two preceding vertebre, while, in existing forms, only one of the pre-sacral vertebre is known to become confluent with the sacral. Urodela also occar in the same Hiocene deposits. Of these the famous Andrias Scheuchzeri is rery closely allied to Mronopoma and Crypiobranchus, while other forms appear to be generically identical with Tritom and Salamandra. The singular genus Orthophysis presents a good deal of resemblance to Proteus, but sppears to have possessed no limbs.

The older Cainozoic and the upper and middle Mesozoic forme tions bsre yielded no Amphibia. A doubtful form, Rhinasaurus,

- See Dr Günther'، valuable Catatague of the Batrachia salientia
oocars in the Lias of Simbirsk. In the earliest Mesozoic deposits-the Trias, - and in the later Palæozoic-the Permian and the Carboniferous formations, Amphibiz occur, sometimes in great abundance. Io the Trias, they bavo beca found in greatest numbers in Germaoy, while the Carbooiforous formations have furarished the largest sopply ia the British lslands, Germany, sad North America. It is interesting to observe that the last-named region has recently yielded elongated apodal forms, allied to the Ophiderpeton of tho kilkenay coal arcasures.

AEtiology of the Amphibia.-In taking a gencral survey of the relations of the different great divisions of the Amphibia, the most strikidg fact is their siogular distiuctness and isolation from one another. None of the Peromela preseat the slightest indication of an approximation towards the Anura or the Urodela.
It may be suggested that the incomsleteness of the jugal arch in Rreviceps, Pipa, and Dactylethra; the absence or rudimeatary condition of the palatioe bones in Breviceps, Bomsinator, and Alytes; the rudimentary caodition of the tympaoum, and the absence, or reduction to a rudiment, of the columella auris, is so many forms ; the prosence of rudimentary ribs attached to some of the anterior vertebrie of Bombinator and Alytes; the preseace of mandibular teeth in Hemiphractus and Grypiscus; and the peculiar epcrmatozoa of Rombinator, are so many indications of an approach towards the spe of atructure observed in the higher Urodela.

But, withoat anderestimatiog the force of these considerations, it must be admitted that they count for very little, when wo take into consideration the fixity of the number of the rertebrex, and of the charactera of the pelris and of the limbs, in the Anura.

It is to be regretted that nothing is known of the development of any of the Peromola; of any of the Urodela, except Salamandra, Triton, and Siredon (Amblystoma); and of more Laan a fe's of the Anura. Among the lower forms of this division, the derelopment of Alytes and Pelobates has been studicd thoroughly by Vogt 1 and Van Bambeke; ${ }^{3}$ and the more advanced conditions of the tadpole of Dactylethra are known. So far as these observations go, however, they tend to show that the larrex of all the Anura possess the horay beak, which distinguishes them from those of the Urodela.

If we assume, as the fundamental similarities between the difercnt divisions of the Amphibia lead us to do, that they have resulted from the modificatiou of some one primitive form, the problem, at present seemingly insoluble, presents itself, whether these differ. ences ia structure and habit of the larva of the Urodela and Anura indicaté that the caudate ancestor of the Anura was already different from the ancestor of the Urodela, or whether they result from modifications which have taken place in the larve of the Anura, since that group came ioto existence.

In vier of this problem, Siren possesses a particular interest. Its horny jaw-sheaths might be compared to those of the Anuran tadpole, aod it might be regarded as showing the wry by which the Anuran became diferentiated from the caudate original stock. But the horny sheaths in Siren rest directly upon the premaxillæ and the dentaries, and not on labial cartilages ; and as to its habits of life, Siren appears to be eminently carnivorous (Duméril et Bibron, Erpetologie Générale, i. 196). As has been alresdy stated, no fossil remaine of Peromela are known, but Urodela and Anura occur in some abuodance, and, in certain cases, in an excellent atata of presertation, as far back as the middle of the Tertiary epoch. Niorr, these fossils show that the Anurnus and Urodelous types of orgasisation were, at that time, thoroughly differeatiated from one another. Pulcobrulrachus, with its three rertebre ankylosed into a sacrunl, is, is fact, a siagularly modified frog ; while smong the Uradela, the Salanandrida, the Mcnopomida, and very possibly the Proseida, are severally represented. The young of the Miocene Anura were tadpoles ao similar io form to those of tha existing frogs and tosds, that there is no rcason to doubt their resembling them in other respects.
There can be littlequestion, then, that the Anorous and the Urodelous types most hare beea represented before the Tertiary epoch; but here their history breaks off, no amphihian belonging to any living groups haring beed discorercd in Mesozoic or older strata, as far as the Lias.
From the Trias to the Carboniferous formations, inclusively, the fresh-water deposits abound in Amphibia. But all these, bo far as we have any positive knowledge, are referable to the Labyrinthodrot trpe. No Labyrinthodont presents the alightest approximation towards the Anura; but eloogated and apodal, as well as salamandroid forms occar; and in their cranial structure, do less than in the presedce of scale-like dermal ossifications, they approach the Peromela. Ia regard to their possible relations with the Urodela, it is interesting to observe that in some Labyrinthodonts, at.any

[^96]rate, ${ }^{3}$ the manius bas the five digits, one of which, at lesst, is lost in all the Urodela, and the pelvis appears to have had a diatinct and completely ossified pubic element, which has also disappeared in all existing Amphibia (Miall, Report, i.c.)
The Labyrinthodonts prescut a few charactera-such as the paired supra-occipital ossifications and the complications of the folds of their teeth-by which they approach the Ganoid fishes more than any othar V'ertebrala; and it is worthy of notice that the lowest Lahytinthodonts, such as Archegosaurus, present no spproxima tion to the cranial characters of the lower Urodela, and show ne ovidence of the largely-developed branchial npparatus which is so characteristic of the latter.
Thus, if upon soch slender evidence as existe, it is justifiable to opcculate at all concerning the "phylogeny" of the Amphibia, the most prubable conclusion appesra to be that the Labyrinehodonta, the Urodela, and the Anura diverged from one another at a very early period of geolorical history; while, possibly, the Peromela are the last remnants of the peromelous modification of the Labyrintho. dont type.

With respect to the origin of the amphibian stook itself, the following considerations appear to be of fuodamental importance:1. The early stages of development of the Amphibia do not reeemble those of any known Ganoid, Telostean, or Elasmobranch figh, and are similar to the correspondigg atages of the Marsipobranchii. 2. The akull of the lowest Urodela has, in some respects, advanced but little beyond the Marsipobranch staga. In the higher Urodela there are numerons points of resemblance with the Gsnoids. The skull of the tadpole, on the other haud, bas much in common with that of Chimara (as Muller has pointed out), and with that of th. Diproi, while the chondrocraniura of the edult frog has many singular affinities with that of the Elasmobranchii, aod particularly of the Rays. 3. The only Vertebrata, besides the Amphibia, which have transitory external gills are the Elasmobranchii, the Dipnoi, and perhape some Ganoids. 4. The only fishes in which the cere. bellum is rudimeatary are the Marsipobranchii and Ganoidei. 5. The ouly fishes in which the amphilian aud embryooic connection Letween the mala reproductive organs and the renal efferent ducts in obscrved are the Gadoids. 6. The only fiehes which have a "pylangium," with valves disposed as in the Amphibia, are the Ganoids, Elasmobranchs, and Dipnoi. 7. The only fishes which possess morphological (Polyplerus) or functional (Dipnor) lungs are the Ganoids and Dipnoi. The conclusions suggested by these facts appear to bo that the Amphibia took their origin from some primordial form common to them, the Elasmobranchii, the Ganoidei, aod the Dipnoi; and that the main distinction by which their enrliest forms were marked off from those of the other groups, was the development of that pentadactyle type of limb, which is common to all the ligher Vertebrala. And seeing that the Elasmobranch, Ganoid, and Dipuous types were fully differentiated from one another in the Devonian epoch, it is reasoosble to believe that the existence of the Amphibia, as a group, dates back at least as far as that remote period of the earth's history.

Taxomomio Sthopsis of tee Ahpilibia.

I. The Urodela
A. Branchiæ persistent throughout life. (Perennibranchiafa.)

1. Trachystomata.-Skull enngated ; premaxillæ and dentary piece of the mandible provided with horay plates; premaxillæ not-ankylosed; no oasal boaes, but ossifications between the ascending processes of the premaxillæ; maxille rudimentary or absent; palatines amall, oval, and beset with "dents en brosse;" ptery. goid absent; four persistent branchial arches; pelvi arch and limbs abseat.

Sirci.

2. Proteida. - Skull elongated; premaxille asd dentanca dertigerous; maxillie rudimeotary or absent; premaxille not ankylosed; no nasal bones; palitines bearing a single row of teeth, and coalesceat with the pterygoids ; three persistent brancluial arches; both the pectoral and the pelvio arches and limbs developed Proteus, Menobranchus.
B. Branchix caducous; pill-clefts persistent. (Derotremela.) 3. Amphiumida. Skull elongated; premaxille and dentaries dentigerous ; maxillx large; premaxille ankylosed; large nasal bones; palatines dbsent; prerygoul present, elongated; a basihyal cartilape ; four persistent branchial arches ; both the pectoral and the pelvic limbs dereloped, though very small.

> Amphiuma.

3 "Description of the Vertebrace Remaios from the Jarrow Colliery," by Prof. Huxley, F.R.S., Transactions of the Royal Irish Academy. vol sxiv. 1867, pl. xix. fige 2
4. Benopomida.-Skull broad; premaxillæ and dentaries dentigerous; maxillie large; premaxillæ not anky. loged; large nasal bones; polntines abscut; pterygoid present and very broad; a basihyal cartilage; persistent branchial arches may be reduced to the first and second; the cerato-lyal and epibranchial are confluent in the first, distinct in the second branchial arch; both pectoral and pelvic limbs well de= veloped.

Menopoma, Cryplobranchus.
C. Branchiæ caduoous, and gill-clefts closed in the adult conditioo. (Myctodera.)
8. Sulamandrida.-Skull broad; premaxillæ and dentaries dentigerous; maxillæ iarge; premaxillæ separate or ankylosed; nasal bones present, and usnally large palatines present in the young state, and situated as in the Trachystomata and Proteidea, but changing their relations in the adult; pterygnids present; the first and second brauchial amehes persistsnt,-the furst twojointed, the second a single piece.
[The latest writer on the claosification of the Urodela, Professor Strauch ("Revision der Salamandrinen-gattungen," Mém. de l'Acud. (mp. des Sciences de Sl Pctersbourg, se. vii. tome xvi.), divides the Salamardrida into two tribes, Mecodonia aod Lechriodonta; the irst comprising all those species, the vomero-palatine teeth of which are disposed along the inner edges of two backwardly diverging prosesses of the bones, and therefore form two longitudinal series divergent posteriorly; and the aecond. those which have the teeth lisposed along the posterior edges of the vomero-palatine bones, which are sometimea truncated posteriorly, sometimes produced into a longer or shorter median process, and on which, therefore, the teeth are either directed trauaversely, or form two oblique series, sore or less rapidly converging backwards.]

a. Srecodonta-
Salamandra, Pleurodeles, Bradybates, Triton, Chioglossa, Salamandrina.

2. Lechriodonta-

Ellipsoglossa, Isodactylium, Onychodactylus, Amblystoma, Ranodon, Dicamptodon, Plethodon, Desmognathus, Anaides, Hemidactylium, Heredia, Spelerpes, Baltachoseps.

I1. Tile Anuea.

[For the classification of tho Anura, consult Dr Günther's valusble Catalngue of the Batrachia salientic; Mr Cope's papers in the Fatural History Review, 1865, and in the Journal of the Academy ff Natural Science of Philadelphia, N.S., vol. vi.; and Mr Mivart's sssay "On the Classification of the Anurous Batrachians," in the Proceedings of the Zoological Society, 1869. Far more minute inrestigation of the structure of the Amura than has yet been carried ont seems to be requisite before their classification can be placed apon more than a provisional footing. The phases through which the Frog passes in the course of its derelopment, show that those Arura which are devoid of a tympanic cavity are of a more embryonic character than those which possess one. The arboreal babit is so evidently adaptive, that it can hardly be regarded as a safe basis for classification. Even Rana temporaria, at a year old, rill limb up the rertical side of a glass vessel, Hattening ont the ends of In lotes and applying its belly against the surface of the glass, like a Tree-frog.]
A. The tympanic cavity, with its Eustachian passage of communjcation with the mouth, may be present or absent. When present, the oral apertures of the Eustachian tubes are separate, and the pterygoid bones do not furnish a floor to them.
a. Nio tecth in tlıe premaxillx or maxillæ; tonguo free, either in front or behind, but usually behind.
a. No tympanic cavity. Eustachian recesses sometimes present.
Phinophrymiss (1), Phryniseus, Pseudophryme, Binchycephalus (2), Hcmisus(3), Microhyla
c. A tympanic cavity and Eustachian tubes.

Hyír, गicsa, Kalophrymus. Bufo. Olilophus, f'cilaphryme, Pwadinufo. wchismaderma, Xenorhina (4), Engystomaz (4), Dipin yelma (4), Cacopus (Systoma) (1), Gly. phoglossus (4), Callula (4), Brachymerus (4), Adenomera (4), Pachylu. trachus(?), Breviceps, Chelydobat.achus, IIypopaclius, Rhinoderma, Alelopus, Copca, Paludicnla.

[^97] sa. (4) No pracaracuilu.

AMPHICTYONY, in Greek Antrquily, was an association of several tribes for the purpose of protecting some temple corumon to them all, and for maintaining worship within it. The members were called ${ }^{\prime} \mu \phi$ кктioves or á $\mu \phi$ ккrioves, a word which means "the dwellers around." The second form of the word Benfey supposes to have arisen from a digammated $\dot{\alpha} \mu \phi$ oxtifoves. Out of the name the Athenians, aecording to their habit, easily discovered the founder of the Delplic Amphictyony, with whieh they wero connected; and bence in later times, by an inverse process, the name was derived from Amphictyon, one of the fabulous kings of Attiea.

Similar religious confederations existed in Greece nt a very early period, and there is rcason to believe that at their stated assemblies they discussed questions of international law and matters affecting their political umion as well as religious subjects. Gradually, however, the political influence of the Amphictyonies died away. As states of great power stood on an equality with insignificant tribes in the number of votes, they naturally prevented the settlement of important political matters in such an assembly. Accordingly, during the flourishing period of Greek history the Amphictyonies almost disappear. They are not mentioned in Thucydides and Xenophon. But they appear again in vigour in the time of Philip, and become engines by which political parties, under pretence of religious zeal for the interests of the gods, wreak their vengeance on their rivals and attagonists.

This is especially true of the Amphictyony of Delphi, the most important of all these associations. Though we know better about this confederation than about any other, yet many particulars are hidden in obseurity, and considerable doubts gather around others of which we know something. The Amphietyony existed in very early times, and Eschines states that it arose when the temple at Delphi was first built. It is more likely, however, that it was originally connected with Thermopylo and the temple of Demeter Amphictyonis which was there. The Amphietyony consisted of a union of twelve tribes, each of which had a right to twe votes. These tribes were for the most part Thessalian or bordering on Thessaly; and it is probable that the others, as the Dorians and Ionians, gained admission in consequence of colonies that came to them from Thessaly.

There are nine lists of the tribes that constituted the Delphic Amphictyony in the classical writers and in inberiptions. Of these only one is complete, and the rest differ from each other in some particulars. The one that is complete was found on a Delphic stone containing a decree of the Amphictyonic council in regard to money due to the Delphic treasury. On this stone are given the votes of each tribe, and the final decision of the council in harmony with the majority of votes for one of the opinions held. The list is as follows:-The Delphians, two votes; Thessalians, t wo votes; Phocians, two votes; Dorians from Metropolis, one vote; the Dorians from Peloponnesus, one vote; the Athenians, one vote; the Eubceans, one vote; the Beotians, two votes; the Achæan Phthiots, two votes; the Malians, one vote; the Eteans, one vote; the Dolopians, one vote; the Perrhæbians, one vote; the Magnetes, two votes; the Enianes, two votes; the Locri Hypocnemidii, one vote; the Locri Hesperii, one vote. The exact date of the decree recorded on the Delphic stone is matter of dispute, but the most probable conjecture places it about the year 130 b.o. We have therefore clear testimony as to the constitution of the Amphictyonic council at this date; and, starting from this, we can form some idea of the changes which took place in the members of the council. It is generally believed that no change took place in the tribes formine the lenzue till the time of the second sacred
war, 345 b.c. Of these tribes A'schines grves ns a list, with the unission of une. They are the Thessalians, Beotians, Durians, Ioniaus, Perrhwbians, Magnetes, Locri, Citeans, Phthicte, Malians, Phocians; and there can be little doubt that it is the Dulopians who have been by some mistake omitted. The confusions in some of the other lists have arisen probably from the ignorance of transcribers, who did not know that the Anianes and Eteans lived close to each other, and were often comprehended under the same name, and who made two tribes of the Achæan Phthiots, Achæans and Phthiots. Eschines says that all these tribes had equal right of voting; but the inscription on the Delphie stone shows that the two votes of one tribe might be divided among two different partions of it. At the con. clusion of the Phocian war the Phocians were excluded, and the Macedonians received their votes; and the vote of the Lacedæmonians was given to the other Doric tribes of Peloponnesus. The Delphians also obtained votes, either at this time or after the third sacred war, 338 b.c., by some of the smaller tribes that liad two votes being restricted to one. In the same way, and also by the exclusion of the Locri Ozolæ, the Attolians secured a place in the council in 338 b.c., and gradually took possession of a great number of votes. The Phocians were restored to their place in 279 B.C., on account of their gallant resistance to the Gauls. Finally, the Atolians and Maeedonians were exeluded from the council, and the constitntion of the couneil as given in the Delphic stone was formed. The last change mentioned in classical writers is detailed by Pausanias, but the passage is evidently corrupt Augustus wished to give votes to. Nicopolis, and for this purpose so altered the constitution of the council as to make-the votes thirty in number.

The objects of the league are distinctly expresṣed in the oath which the Amphictyons had to take, and which is preserved in Æschines's oration "De Falsa Legatione." This oath bound the Amphictyons not to destroy any of the Amphictyonic towns, not to turn away its running water either in time of war or in time of peace; and if any ont should attempt to rob the temple of Delphi (the common centre of the confederacy), to employ their hands, feet, tongue, and their whole power to bring him to punishment The humanising influence whieh this and other emactments of the confederacy were intended to exercise, is perceptible in the part relating to war. The framer of the law evidently regarded war only as an unavoidable means of eettling disputes between two states; but it was to be carried on only for the purpose of bringing the dispute to a decision, and not for destruction and devastation. Another enactment probably was that the inhabitants of a conquered city should not be sold as slaves. But the chief care of the Amphietyons appears to have been to watch over the temple, to punish those who were guilty of a crime against it , and to reward those who did anything to increase its splendour and glory.

There is difficulty in determining how often the Amphietyons met. But the most likely inferenco from the somewhat indefinite statements of ancient writers is, that they went twice every year both to Delphi and Thermopylx, in spring and in autumn. There is also some difficulty in determining the relative positions of the two sets of officials narned in connection with the Amphictyony, the Hieromnemones and the Pylagoroi or Pylagorai. But there can scarcely be a doubt that the Hieromnemon was the principal official. There were as many Hieromnemones as there were votes; and the Hieromnemones were alone entitled to vote. The assembly proper consisted therefore only of the Hieromnemones. It is most likely that the Hieromnemones were electcd annually by lot. In the case of the smaller statea it is probable that the right to elect
went round by turns, while the more important states sent their representatives evcry year. There might be several Pylagoroi from ench state. Eschines mentions that there were on one occasion three from Athens. They were elected by vote. Their function seems to lave been to advise with the Hieromnemon, to address the assembly when anything relating to their own state was discussed, and to bring all their influence to bear on the assembly on behalf of their uwn state. The office of Hieromnemon remaincd in high. honour till a late period. When the Dionysiac theatre in Athens was excavated in 1862, a chair of honour was found with the inscription ifpouvj$\mu \circ v o s$, and as it is certain that dramatic exhibitions took place in this theatre in the time of the Antonines, the office of Hieromnemon must have existed at that period.

The meetings, however, were attended not only by the deputies, but by thousands of others who flocked to Delphi or Thermopyla for religious and mercantile purposes, or only for the sake of amusement. This occasioned popular meetings (éккл $\bar{\sigma}$ ía) distinct from those of the regular deputies. But we cannot suppose that all the Greeks indiscriminately were allowed to take part in those popular assemblies, which must have consisted of visitors from the states which were members of the Amphictyony

Wise and humane as were the objects of the Amphictyons, yet wherever they actively interfered in the affairs of Greece during the historical period, we find that they were more powerful for evil than for good; and the holy wars which were carried on by them in the defence of the Delphic temple and the honour of its god, contributed not a little to the demoralisation of the Greeks.
The very first time that the Amphictyons interferch: $:$ the affairs of Greece we find them acting in direct opposition to the spirit of their institution. We allude to the Crissæan or first sacred war, which broke out in 594, and lasted till 585 вс. The inhabitants of Crissa (or Cirrha), on the Corinthian Gulf, were charged with extortion and violence towards the strangers who landed at their port, or passed through their territory on their way to Delphi For this the Amphictyons declared war against Crissa, and it was vigorously carried on by the Thessalians and Cleisthenes, the tyrant of Sicyon. They even pretended to have the sanction of Apollo to dedicate the Crissæans and their territory to the god, to enslave them, and make their land a waste for ever. The war is said to have been terminated by a stratagem of Solon, who poisoned the waters of the nver Pleistos, from which the town was supplied. When the town was taken, the vow of the Amphictyons was literally carried into effect: Crissa was razed to the ground, its harbour choked up, and its fertile plain changed into a wilderness. Such was the terrible vengeance taken by a body of confederates, whose ariginal object was to prevent those very things which they now perpetrated to uphold tho honour of the deity presiding over them. The second sacred war, which likewise lasted for ten years, from 355 to 346 b.c., was carried on with unparalleled exasperation for all that period, end nearly all the Greeks took part in it. The Thebans had set their hearts upon conquering Phocis, but screened their designs behind a charge preferred against the Locrians, alleging that they had robbed the temple of Delphi, because they had taken into cultivation a tract of land belonging to the Delphic temple. The Amphictyonic council, before which the charge was brought, condemned the Phocians to pay a heavy fine, and to destroy the crops of the sacred iclds. No sooner was this rerdict pronounced than the Thebans, Thessalians, Locrians, and Cteans took up arms to execute it. The Phociaus sero joined by Athens and Sparta, and took possession of the temple of Delphi and its treasures, which they were ouliged to employ in defraying
the expenses of the war. The war was carried on with unexanopled cruelty, for even the surrender of the dead for burial was refused, and all Phocian captives were put to death. This war also afforded Philip of Macedonia an opportunity to interfere in the affairs of Grecce. Being invited by the Thessalians to co-operate with them against the Phocians, Philip and his Maredonians acted as the champions of the god, and defeated the Phocians in a bloody battle near Magnesia. Three thousand captive Phocians were put to death. The latter, however, remained undaunted until at length they were compelled by treachery to surrender. The Amphictyons now excluded them for ever from the lcague, their arms and horses were to be delivcred up, their towns to be destroyed, and the people were henceforth to live in small villages, and to pay annually to the god sixty talents (about $£ 15,000$) until the temple should be completely indemnifed. Macedenian and Theban troops carried the judgment into execution; twenty-two towns disappeared from the face of the earth, and the otherwise fertile country remained for many years a wilderness. A third sacred war was decreed against the town of Amphissa, because its inhabitants had taken into cultivation the plain of Crissa; but in reality the war was brought about by the venal ice 3 tures who endeavoure? to promote the ambitic 1s schemes of Philip of Macedon, who was bent upon making himself master of Greece. This war broke nuś in 338 b.c., and its unfortunate consequences lea to the catastrophe which deprived Greece of her independence in the battle of Chæronea. Such is' a brief outline of "e history of the Delphic Amphictyony, which nct uniy itself violated its first principles, but is not known to have ever raised its voice to condemn the wanton destruction of other Amphictyonic towns, such as Platæa and Thebes.
There were many other confederations of a similar kind, some of which, however, do not bear the name of Amphictyonies in the authorities from which we derive our information regarding them. The following were among the most noted :-

1. The Amphictyony of Calauria, an isiand near Trœzen, consisted of the seren states of Herminne, Epidaurus, ※gina, Athens, Prasiæ; Nauplia, and the Minyan Orchomenos. These states took part in the sacrifices which were offered up in the temple of Poseidon, situated on the island. Sparta and Argos displaced Nauplia and Prasiæ when these lost their independence. It is difficult to see what object could unite states so widely apart. Some suppose that the tribes forming the league were originally Ionian; others, that they all were interested in the defence of seaports against inland states.
2. Amphictyony of Onchestos, in the territory of Haliartus in Bœotia, was likewise connected with the temple of Poseidon. As at all other Amphictyonies, the meetings of the members were celebrated with various religious rites, solemnities, and public games. We do not know the nations that constituted this league.
3. Amphictyony of Amarynthos, in Eubœa, connected with the temple of Artemis. We know that the two towns of Eretria and Chalcis were members of it, and that there existed an ancient treaty by which these tro cities pledged themselves not to use against each other any missiles thrown from afar.
4. Amphictyony of Delos, connected with the temple of Apollo, was a league formed among the inhabitants of the Cyclades and the Ionians in the neighbourhood. Its institution was ascribed to Theseus. The solemnities connected with its meetings gradually fell into disuse, until they were revived and increased in 426 B.c., when the island of Delos was purified by the Athenians. The Athenians, after this time, regularly sent an annual embassy to Delos, and
they also retained for themselves the superintendence of the temple and the administration of its treasures.

AMPHION, in Greek Mythology, the son of Zeus by Antiope, and the husband of Niobe, was a musician of such wonderful power, that at the sounds of his lyre the stones began to more, and formed themselves into walls around Thebes, after his conquest of that city. He was killed by Apollo for assaulting his temple; or, as some report, he destroyed himself in despair at the slaughter of his children by that god. The famous Farnese bull, discorered in 1546 , represents Amphion punishing Dirce for her treatment of his mother. There are four other mythical personages of this name.

AMPIIIOLUS, a species of fish, differing widely from all other known animals. See Lancelet.

AMPHIPOLIS, a city of Macedonia, situated on the east bank of the river Strymon, about three miles from the sea. It was originally a Thracian town, known as the 'Evia odoí (Nipe Roads), and was colonised by the Athenians in 437 B.c., two previous attempts (497 and 465 B.c.) having been unsuccessful. In 424 B.c. it surrendered to the Lacedæmonians without resistance, and the Athenians never afterwards recovered possession of it. Fer his failure to prevent this disaster Thucydides was banished from Athens. The sitc of Amphipolis is occupied by the modern Jeni Keui.

AMPHISBENA (from ćp申is, on both sides, and β aiv ω, to go), a genus of animals, found only in South America and the West Indies, which, though they have the general appearance of snakes or worms, belong to the order Lacertilfa; or Lizards. The best known species are the sooty or disky amphisbrena (A. fuliginosa), and the rarer A. alba: The body of the amphisbæna, from 18 to 24 inehes long, is of nearly the same thickness throughout. The head is small, and there can seareely bo said to be a tail, the reut being close to the extremity of the body. The animal lives mostly underground, burrowing in soft earth, and feeds on ants and other small animals. From its appearance, and the ease with which it moves backwards, the popular belicf in the countries where it prevails has been that the amphisbrena has two heads, and that when the body is cut in two the parts seek each other out and reunite. Frem this has arisen another popular error, which attributes extraordinary curative properties to its flesh when dried and pulverised.

AMPHITHEATRE (from á $\mu \phi \dot{c}_{\text {and }}$ Óáatpov) denotes a theatre in which the spectators were placed "all round" the stage. Though the word is of Greek formation, the thing itself is distinetively Roman, being designed for those cruel shows of gladiators and wild beasts in which that people took great pleasure, and which in modern times are only represented by the barbarous bull-fights still popular in Spain.

In the present article we do net enter on the consideration of the spectacles themselves, but shail confine ourselves to the buildings, which were devised to allow as large a number of spectators as possible to enjoy the sight of the show. In a dramatic representation it is necessary that the actors should be heard, and also that their faces should be seen, and the audicuce has therefore to be arianged in a semicircle in front of them; but when men fought with other men or with beasts, thev could be seen equally well from all sides.

In Italy, combats of gladiators at first took place in the forums, where temporary wooden scaffoldings were erected for the spectaters; and Vitruvius gives this as the reason why in that country the forums were in the shape of a parallologram instead of being squares as in Greece. Wild beasta were also hunted in the circus. But towards the cad of the Roman republic, when the shows increased both in frequency and in costliness as the city grew is power, special buildings began to be provided for them: aad \boldsymbol{J}^{1} ea
the consolidation of pease under the empire had secured great material prosperity for the provinces, such as they had never enjoyed when separated into emall states and often at war with ench other, the examplo of the capital was followed by many other towns in the West; 30 that nearly a hundred amphitheatres have been identified, either by the existence of their ruins or by being mentioned by old writers. There were even a fow in the East, although such cruel games were quite alien to the elegance and re fincment of the Hellenic mind.

From their being so admirably adapted for enabling the greatest possible number of people to behold a spectacle, it is natural to suppose that they would be occasionally used for purposes different from those usually intended by them; and accordingly Suetonius relates how Caligula had an inpertinent poet burnt alive in the amphitheatre, and how Titus ordered the informers, after having been whipped in the forum; to be led through the arena, apparently that they might be exposed to the execrations of the people. Criminals were also sometimes exposed in them to be do voured by wild beasts. and many of the Christian martym died in this way.

The first amphitheatre was that constructed, 59 в.c., by C. Scribonius Curio. The only author by whom it is described is Pliny, whose account of it rather taxes our credulity. He tells that Scribonius built two wooden theatres, which were placed back to hack, and that after the dramatic representations were finished, they were turned round, with all the spectators in them, so as to make one circular theatre, in the centre of which gladiators fought. And this was repeated more than once. Thirteen years later, Cæsar built (also of wood) the first regular amphitheatre, and exhibited wild beasts in it; and sixteen years after, C. Statilius 'Taurus built the first one of stone, which was burnt in the great fire of Rome during the reign of Nero. Probably the outside walls only were of stone.

Several others were constructed under the early emperors, but they were entirely superseded and eclipsed by that of Vespasian and Titus, the rast ruins of which strike the traveller with are. Set on fire by lightning under the emperor Macrinus, it was restored by Alexander Severus, the shows during the interval being held (as of old) in the circus. The latest record of its being used is in the 6th century, when Cassiodorus was present ; but Bede in the 8th century speaks of the edifice as still entire. During the Middle Ages many of the stones of this, as of many other ancient buildings, were carried away for building purposes; and among the plunderers we regret to have to reckon the great Michel Angelo, who worked up a large number of its stones into a palace for one of the Roman noble families. As, however, the Colosseum had been the scene of many of the Christian martyrdoms, Benedict XIV., whose name ought never to be mentioned without an expression of admiration and gratitude for his enlightened patronage of learning and antiquities, took advantage of this to consecrate the interior by the erection of crosses and oratories, thereby preserving it from further depredations. Of late years considerable excava tions have been made to examine its substructures. Ito name is variously written, but on the whole it would seem that the most correct orthography is Colosseum (not Coliseum), and that it is derived from its colossal size, which far surpassed any former edifice of the sort. Many of its minor arrangements are uncertain, lut the main fcatures and general plan are sufficiently intelligible.

The external elevation of the Colosseum consisted of tour stages, each adorned with engaged columas of the three orders of Greei architecture. The lowest three were arcaded, having each eighty columns and as many arches. These sf the basement story served as entrances; seventy
six being numbered and allotted to the general body of spectators, while four, at the extremities of the axes of the ollipse, were the principal entrances. The higher arcades had a low parapet with (apparently) a statue in each arch, and gave light and air to the passages which surrounded the building. The openings of the arcades above the principal entrances were larger than the rest, and were adorned with figures of chariots. The highest stage was much more solid, being composed of a continuous wall of masinry, only pierced by forty small square windows. The object of this may have been to obtain the necessary solidity and weight for steadying the poles which supported the awning, and must have had to carry a severe inward airain. The alternate arcades were ornamented with metal shields. There was also a series of brackets to support the poles on which the a maing was stretched.
The interior may be naturally divided into the arena and the cavea, with their respective appendages.

The arena was the portion assigned to the combatants, and derived its name from the sand with which it was strewn, to absorb the blood and prevent it from becoming slippery. Some of the emperors showed their prodigality by substituting precious powders, and even gold dust, for sand. The arena was generally of the same shape as the amphitheatre itself, and was separated from the spectators by a wall built perfectly smooth, that the wild beasts might not by any possibility climb it. At Rome it was faced inside with polished marble, but at Pompeii it was simply painted. For further security, it was surrounded by a metal railing or network, and the arena was sometimes surrounded also by a ditch (euripus), especially on accounit of the elephants. Connected with the arena were the dens from which the beasts came, and the rooms where the gladiators met before the show began. In spite of the excavations which have been made, it is not very easy to understand how all the effects described by ancient authors were produced; for after the regular shows were ovis, the arena was sometimes filled with water, and sea-fights were exhibited with ships.
The part assigned to the spectators was called cavea. In the different amphitheatres whose ruins have been examined, there are some differences in the arrangements, but the general features are nearly the same in all. The cavea was divided into scveral galleries, concentric with the outer walls, and therefere, like them, of an elliptic form. The plase of honour was the lowest of these, nearest to the arena, amd called the podium. The divisions in it were larger, so as to be able to contain movable seats. At Rome it was here that the emperor sat, his seat bearing the name of suggestum: The senators, principal magistrates, vestal virgins, the provider (editor) of the show, and other persons of note, occupied the rest of the
podium. At Nismes, besides the nigh officials of the town, the podium had places assigned to the principal guilds, whose names are still seen inscribed upon it, with the number of places reserved for each. In the Colosseum there were three moeniana or galleries above the podium, separated from each other by terraces (procinctiones) and walls (baltei). The lowest was appropriated to the equestrian order. . . Numerous passages (vomitoria) and small stairs gave access to them; while long covered corridors, behind and below them, served for shelter in the event of rain. At Pompeii each place was numbered, and elsewhere their extent is defined by little marks cut in the stone. The spectators were admitted by tickets (tesserac), and order ureserved by a staff of officers appointed for the purpose.

The height of the Colosseum is given as from 160 to 180 feet. The seats in the interior do not rise higher than the level of the third order of the exterior, that is, about half the entire height of the building; and this apparent excess of height beyond what was made available, has led some to suppose that there were upper seats and galleries, of which no trace now exists. The beight; however, appears to have been necessary for the ventilation of the building. When such enormous crowds were packed closely together for several hours at a time on an Italian summer day, with an awning drawn over them, the atmosphere would have become quite pestilential if there had not been a considerable space overhead, and at least one range of open arcades, unencumbered by any galleries to prevent the free circulation of air. Scented liquids were at times squirted over the spectators from concealed tubes; but no aroma would have compensated for the want of air, which the arcade all round the building, abore the highest spectators, would supply. There may also have been another series of openings serving the same purpose between the top of the wall and the edge of the awning, whicb was sapported upon poles. It has been calculated that the Colosseum contained 87,000 places, and that besides these, 15,000 more spectators could be admitted. The greatest length is about 612 feet, and the length of the shortest axis of the ellipse about 515 feet. The dimensions of the arena are variously stated by different writers, some making it 247 feet by 150 , and others 281 by 176 .

With regard to the provincial amphitheatres, Maffei, in his account of that of Verona, appears to have unduly restricted their number, with the object of exalting the honour of the one he describes. Besides the Colosseum, he would hardly allow any ruins to be entitled to this name except those at Verona and Capua."But subsequent writers have not followed him in this rigorism; and Friedländer, who is the latest and most complete authority on the subject, gives the measurements and description of fifty-two. Naturally, the early ones would be of wood, like that erected by Atilius at Fidena in the time of Tiberius, which gave way while shows were being exhibited, on which occason 50,000 persons were killed or injured. One at Placentia is also mentioned, which is said to have been the most spacious then in Italy, and to have been barned in the wars between Otho and Vitellius by the inhabitants of a neighbouring town whose enty it had excited. Such disasters, coupled with the growing scarcity of rood and the greater facilitics for quarrying stone, Fould naturally lead to the construction of more solid buildings. At the same time, the progress of this improvement must have been slow, and the building of at least the great majority of the provincial amphitheatres of stone may be ascribed to the period between the reign of Vespasian and that of Constantine, when the establish. ment of Christianity threw a discredit on the cruel and bloody shows for which these rast structures were designed. Hadrian is especially commemorated for the numerous
bnildings he caused to be erected almost everywhere, and this is mentioned in connection with games being beld.

In constructing many of the amphitheatres in the provincial towns, advantage was taken of the natural slope of a hill to lessen the labour of construction; and in some cases a narrow ravine between two bills allowed of both oides being formed on the natural slopes, and of the stream at their feet being dammed up for combats on the water. The conformation of the ground and the caprices of local authorities have produced slight minor differences of plan, but the general description of the Colosseum will suffice for all. For details regarding others the reader may consult, in addition to other authorities, the descriptions given in this work of the different towns where their remains are still found. Here it may be sufficient to name that at Pompeii, which is probably better known to most persons by the graphic description in Lord Lytton's novel than by any of the illustrated accounts that have been pnblished of that wonderful town; that-at Verona, which served as a basis to Maffei's careful investigation of the whole subject; those at Capua and Pozzuoli, which almost rival the Colosscum in dimensions; those at Nismes, Arles, and Frejus in France; that at Italica, near Scville in Spain, remarkable for the thickness of its walls and the strength of its masonry-leading Florez to remark that its ruin is due not to the injuries of time and the weather, but to the hand of man; that at the ancient Thysdrus, in the province of Carthage, now called El-Djemm, which alone resembles the Colosseum in having five galleries or corridors in the first storey; and that at Pola in Istria, whose external shell -the internal fittings, which were probably all of mood, having quite disappeared-forms a striking object as seen from the sea.

A very fair summary of the whole subject will be found in Smith's Dictionary of Classical Antiquities; and a much more minute and elaborate account, by C. Thierry, with good illustrations, in the Dictionnaire des Antiquités of Daremberg and Saglio, which has the further advantage of giving numerous references to larger works on the subject, -its chief defect being one too common in French books, the almost complete ignoring of everything published in this country, where Taylor and Cresy's Architectural Antiquities of Rome, of which a sccond edition has recently sppeared, is entitled to special mention. Nor does it notice that treasure of information about Spanish history and antiquities, the España Sagrada, where (rol xii. p. 228) will be found the most careful account of the amphitheatro at Italica, with several drawings. The following table, abridged from Friedländer's Darstellung aus der Sittengeschichte Roms (1865, 2d ed. 1867), gives the dimensions, in English feet, of a few of the principal amphitheatres that havo bcen examined :-

	Entite Badlling.		Arena.	
	Greater Axla.	Shorter Axls.	Greater Axla.	Shorter Azis.
	Feet.	Feet. 475	$\begin{aligned} & \text { Feet, } \\ & 367 \end{aligned}$	$\begin{aligned} & \text { Feet } \\ & 216 \end{aligned}$
Puzsuol, Rome (Colosseum),	616	$510 \frac{1}{2}$	231	176
Falerii,	$586 \frac{1}{2}$	348		\ldots
Capus,	557	468	250	150
Julia Casarea,	551	289	459	197
Italica (Seville),	513	4391	\cdots	$\dddot{14}$
Verons,.............	5051	403	248	1456
Tarraco,	486	390	277	181
Thysdrus,	457	392	2536	188
Pola,	452	3691	230.	147
Afles,	443	352	228	129
Pompeii,...	445	341	2181	115
Tours,....	443	3934	223	984
Nismé,	433 3	3321	227	126t

AMPHITRITE, in Greek Mythology, the supreme god. dess of the sea, and as such the wife of Poseidon (Neptune), but, unlike him, so entirely confined in her authority to the sea and the creatures in it, that not only was her name (from $\dot{d} \mu \phi i-\tau p i \omega$, the same root as tpriw) sometimes used as an equivalent for that clement, but she was never associated with her hasband either for purposes of worship or in works of art, except when he was to be distinetly rogarded as the god who controlled the sea, though generally his functions extended to the whole watery element. She was one of the nereids, and distinguishable from th', others only by her queenly attributes. It was said that Neptune saw her first dancing at Naxus among the other nereids, and carried her off. But in another version of the myth, sho then fled from him to the farthest ends of the sea, where the dolphin of Neptune found ber out. In works of art she is represented either enthroned beside him, or driving with him in a chariot drawn by bippocarms or other fabulous creatures of the deep, and attended by tritons and nercids.

AMPHORA (from ${ }^{\prime} \mu \phi \hat{i}^{\text {and }}{ }^{\phi} \dot{p} \omega$), a large vcssel used by the ancient Greeks and Romans for preserving wine, oil, fruits, de., and so named from its usually having an ear or handle on cach side of the neck, whence it was also called diota. It was commonly made of earthenware, but sometimes of stone, glass, or even more costly materials its usual form was tall and narrow, diminishing below to a point. A number of epecimens of the various kinds of amphore are to be seen in the Elgin collection in the British Museum. Homer and Sophocles mention amphorm used as cincrary urns; and a discovery mado in 1825 at Salona shows that they were sometimes used as coffins. The amphora was divided lengthwise to receive the corpse, then closed and deposited in the earth, thus preserving the skeletons entire (Steinbïchel, Alterthum, p. 67). The amphora ruas a standard measure of capacity among botb Greeks and Romans. The Attic amphora contained nearly nine gallons, and the Roman amphora about six

AMPLITUDE, in Astronomy, is the amount of deviation towards the north or sonth of a celestial object from the true east at rising, and the true west at setting. For the fixed stars it is constant; for the sun and planets it varics with the declination. At the equinoxes the sun riscs exactly in the east, and sets in the west point,--the amplitude then is zero; at the solstices it amounts at London to $39^{\circ} 44^{\prime}$.

AMPTHILL, a small neatly-built market town in Bedfordshire, situated about 8 miles south of Bedford. Besides the old parish church, it contains various dissenting chapcls, a county court-house, a savings bank, geveral schools, and an almshouse. Near the town is Ampthill house, a mansion of the late Lord Holland, containing a valuable collection of paintings, a library, and a muscum. The site of the old castle in which Catherine of Aragon resided while her divorce from Henry VIII. Was pending, is marked by a cross within the grounds. The district is chiefly agricultural, but in Ampthill there is a large brewery, and a considecable amount of straw-plaiting and lace-making. Population in 1871, 2220.

AMPULLA, a Latin word dencting a small jar or flask for holding liquids. In mediæval church Latin it usually signifies the vessels that contained the consecrated oils, of which tho three principal-for the catechumens, for the aick, and for confirmation-were hallowed by the bishop on the Thursday before Easter. The word has passed into our language in connection with the coronation of the kings of England, and occurs repericdly in the coronation service. Thus, in that used for Quren Victoria, we read:-"The anthem being concluded, the Dean of Westminster, taking the ampulla and spoon frem off the altar, holdeth thew
ready, 'pouring some of the holy oil into the spoun, and with it the archbishop anointeth the Queen in the form of a cross. Then the Dean of Westminster layeth the ampulla and spoon upon the altar." Gildas mentions its ise as established among the Britons in his tine, and St Colunber is said to have employed it in the coronation of King Aidan. The most celebrated ampulla in history is that known as la sainte ampoule at Rheims, from which the kings of France were anointed. According to the legend, which gained for itself a secure place in the national belief, it had been brought from heaven by an angel for the coronation of Clovis, and at one period the kings of France claimed precedence over all other sovereigns on account of it. It seems, however, that Pepin in the 8th century was the first French king who was anoiuted, and this in connection with his baptism rather than his coronation. (See the preface to the 3 d volume of Mansell's Monumenta Ritualia, and the authorities there referred to.)

AMRÁOTÍ, a district and city of India, in the commissionership of East Berar, within the Haidarábád assigned districts. The district lies between $20^{\circ} 23^{\prime}$ and $21^{\circ} 7^{\prime} \mathrm{N}$. lat., and between $77^{\circ} 24^{\prime}$ and $78^{\circ} 13^{\prime} \mathrm{E}$. long. It is bounded on the N. by the Elichpur district; on the E. by the Wardhá river, separating it from the central provinces; on the S. by the Básim and Wún districts; and on the W. by Akola district. The area is estimated at 2566 square miles, but the survey has not yet been completed. The population in 1867 was returned at 407,276 souls, which, taking the area as given above, would show an average density of 158 persons per square mile; number of males, 212,575; females, 194,701; the proportion of males to the total population being $52 \cdot 19$ per cent. The district consists of an extensive plain, about 800 feet above sea-level, the general flatness being only broken by a small chain of hills, running in a north-westerly direction, between Amratoti and Chándor, with an average height of from 400 to 500 feet above the level of the lowlands. Four towns are returned as containing a population exceeding 5000 souls-namely, Amráot1́, population 23,410; Karinja, a considerable commercial town, population 11,750; Badnerá, a town on the Great Indian Peninsula Railway, which intersects the district, population 6876, Kolápur, population 6169.

AMRITSAR, a division, district, and city of British India, under the jurisdiction of the Lieutenant-Governor of the Panjab. The Amritsar Division comprises the districts of Amritsar, Siálkot, and Gurdaspur. It is bounded on the N.E. by the Fimálayas; on the S.W. by the Gujránwala and Lahor districts; on the N.W. by the river Chenáb; and on the S.E. by the river Biás. The total population of the division is returned at $2,743,880$ souls, divided into the following classes:-Hindus, 659,905 ; Matiometans, $1,401,290$; Sikhs, 352,885 ; others, 329,800 . The number of males was returned at $1,512,480$, and the females at $1,231,400$, the proportion of males to the entire population of the division being 55 per cent.

Ampitucur District lies between $30^{\circ} 40^{\prime}$ and $32^{\circ} 10^{\prime}$ N. lat., and between $74^{\circ} 40^{\prime}$ and $75^{\circ} 40^{\circ} \mathrm{E}$. iong. It is honnded on the N.W. by the river Rávi, on the S.E oy the river Biás, on the N.E. by the district of Gurdispur, and on the S.W. by the district of Lahor. Amritsar district is a nearly level plain, with a very slight slope from east to west. The banks of the Biás are high, and ou this side of the district well-water is not found except at 50 feet below the surface; while torards the Rávi wells are less than 20 feet in depth. The only stream passing through the district is the Kirni or Saki, which takes its rise in a marsh in the Gurdhspur district, and after traversing part of the district empties itself intn
the Kivi. Numerous canals interscet the district, affording anıple means of irrigation. The Sind, Panjab, and Dehli lailway, and Grand Trunk Road, which runs parallel with it, afford the priscipal means of land communication and traffic. Total population of Amritsar district, 832,750, divided into the following classes:-Hindus, 138,027 ; Mahometans, 377,135; Sikhs, 223,219; uthers, 94,369. The males number 465,074 , and the femaies 367,676 ; the proportion of males to the total population being 55.84 per cent. The principal tribes and castes in point of numbers are as follow:-(1.) Jats, viz., Hindus and Sikhs, 189,065 ; Mahometans, 65,964: total, 255,029. (2.) Bráh mans, 43,846. (3.) Kshattriyas, 39,892. (4.) Káslımirís, 37,456. (5.) Aronás, 29,103. The total agricultural population is returned at 417,747. Area of the district, $2036 \cdot 23$ square miles, or $1,303,188$ acres, of which 927,730 acres are under cultivation, 178,939 acres are cultivable, but not actually under tillage, and 196,519 acres are uncultivable aod waste. This result gives 1.56 acres (of which $1 \cdot 11$ acres are cultivated and 21 cultivable) per head of the population, or $3 \cdot 12$ acres ($2 \cdot 22$ cultivated and 42 cultivable) per head of the agricultural population.
The principal agricultural products of Amritsar are wheat, barles. and grain for the spring crop; and rice, joair (spiked millet), Indian corn, moth (Phaseolus aconitifolius), sad másh (Phaseolus radialus) for the autumn crop. . The current settlement of the district expires in 1875-76. Five towns are returned as coutaining a population C^{*} upwards of 5000 eouls-namely, Amritsar, population 135,813: Jandrálá, 6975 ; Majithá, 6600 ; Rám Uás, 6855 ; Bundálá, 5287. Of the foregoing towns Amritsar has been constituted a first-clase, and Jandrálá, Majithá, and Rám Dás third-class municipalities. Besides the regularly-constituted municipalities, however, a municipal income is also realised st the following ten places:-T'arn Táraa, Fathiábád, Govindwal, Naushahrá Pannian, V゚erowal, Jaláláhád. Attarí, Chaniarí, Vanniki, and Bhallar. Municipal revenue is in all cases levied by means of octroi daties, supplentented in some instances by house rates and other direct taxation. The total revenue of Amritsar district in 1871-72 amounted to $£ 113,785$, of which $£ 85,727,189$., or 75 per cent., was derived from the land. Tho other principal items of revenue were as follows:-Distilleries, $£ 3677,14 \mathrm{~s}$. ; drugs and opium, £3548, 6s. ; income tax, £1724, 8s; stamps, $£ 13,621,18 \mathrm{~s}$. ; local rates levied under the provisions of Act 20 of $1871, £ 5208,10 \mathrm{~s}$. The staple manufacture of Amritsar is woollen shawls, in imitation of those of Kishmir. The value of this msnufacture in 1871-72 was estimated at $\pm 91,742$.

Amritgar City, the divisional headquarters and capital of the district of the same name, is situated in $31^{\circ} 40^{\prime} \mathrm{N}$. lat. and $74^{\circ} 45^{\prime} \mathrm{E}$. long. It lies at an equal distance between the Biás and Rávi rivers, is about 8 miles in circumference, and forms at once the great trading centre of the Panjab, and a celebrated seat of the Sikh religion and learning. The following description of the town is ex. tracted from Thomton's Gazetteer (ed. 1862):-

[^98]superiority over the towns of llinlustin. Besides consitterabla manufacturcs of slawls and silks in inatation of tho Káslanir fabric, Amritsar carrics on a very cxtensivo transit trade, as well as considerable monetiry transactious, with llindustán and Central Asis. Provision is mado for an ample supply of water to tho town from the lBiri loib canal. A striking oliject at Amritsar is the huge fortress of Govindgarl, built by laujit Sinh in 1009, ostensibly to protect tho pilgrims visiting tho place. lut in reality to overawo their vast and dangurous asscublitge.

Amritsar was the first missiun station of the Church of England in the Panjab. Tho census of 1868 gives a population within municipal limits of 43,931 . The total population, however, of the city and suburbs is returned at 135,813, of whom 3477 are agriculturists, the rest being engaged in trade or other non-agricultural pursuits. The town has been constituted a first-class municipality, the affairs of which are conducted by a committee of twentyeight members. The municipal income is derived from octroi duties, local taxes, house tax, \&c., and amounted in 1871-72 to $£ 19,800$, or 9 s. per head of the population within municipal limits. Since the opening of the Panjab railway Amritsar has rapidly become the great centre of trade in that province. Its position on the line and the enterprise of its merchants promise also to give it the command of the trade via Leh to Central Asia, which is now (1874) being opened up. It is the chief entrepot in the Panjáb for Manchester goods, in return for which it exports to other parts of India food-grains, the local manufactures in imitation of the Kashinir fabrics, and the costly shawls and stuffs which form the staple of the Kashmir trade.

AMRU-TBN-EL-ASS, or 'AMr, one of the most famous of the first race of Saracen leaders, was descended of Aasi, of the tribe of Roreish. In his youth he wrote satirical verses against the person and doctrine of Mahomet. His zeal-in opposing the new religion prompted him to undertake an embassy to the king of Ethiopia, in order to stimulate him against tho converts whom he had taken under his protection, but he returned a convert to the Mahometan faith, and, along with Khaled, joined the fugitive prophet at Medina. When Abu-Bekr resolved to make a new attack upon Syria, he entrusted Amru with a high command. In this he was so successful that he rose to the elerated atation of chief in Irak, when Khaled requested the attendance of all the Arabian generals before Damascus. During the caiiphate of Omar he also served in Palestine under Abu-Obeidah, taking the command in the siege of Cæsarea, which yielded to him in July 638 A.D. After the death of Obeidah, Amru assumed the chief command in Syria, in which he was confirmed by the caliph, notwithstanding the npposition of Othman. Soon afterwards (639) he led an army of 4000 Arabs into Egypt. During the progress of his march a messenger from Omar arrived with a letter containing directions to return, if he should receive this letter in the territories of Syria; but if he should receive it in those of Egypt, he might advance, and all needful assistance would be instantly sent to him. The contents of the letter were not made known to his officers until he was assured that the army was on Egyptian soil, so that the expedition might be continued under the sanction of Omar's orders. Having taken Pharma, he advanced to Misrah, the ancient Memplis, and besieged it for seven months. Although numerous reinforcements arrived, he Fould have found it very difficult to storm the place pre nous to the inundation of the Nile, but for a treacherous essening of the forces of the citadel, which was consequently aken by storm; and the Greeks who remained there were Nither made prisoners or put to the sword. On the same fpot Amri erected a city named Fostat, the ruins of which are knomn by the natre of Old Cairo. Amru pursued the Crecks to Alexandria, and after an obstinate and bloody
siege of fourteen months, the city was raken, 640 A.d. To Amru has generally been attributed the burning of the famous Alexandrian library, by command of the caliph Omar. But with this act of barbarisn, so inconsistent with the character of Omar and his general, he is for the first time charged by Abul-Faragius, a Christian writer, who lived six centuries later. It is highly probable that few of the 700,000 volumes collected by the Ptolemies remained at the time of the Arab conquest, when we consider the various calamities of Alexandria frum the time of Ciesar to those of Caracalla and Diocletian, and tho disgraceful pillage of the library in 359 A.D. under the rule of a Christiau bishop, Theophilus (see Gibbon, c. 51). Amru died 663 a.m. In a pathetic oration to his children on his death-bed he bitterly lamented his youthful offence in satirising the prophet, althongh Malnomet had forgiven him, and bad frequently affirmed that "there was no Nussulman more sincere and steadfast in the faith than Amru."

AMRU-EL-KAIS, an Arabian poet, contemparary with Mahomet. He wrote one of the scven Morllickat (Suspended), or poems, composed before the promulgation of Mahometanism, which derived their name from the fact that they were suspended in the Kaba at Mecea. He was hostile to the clains of the prophet, and wrote verses against him. Jt is said that his death was occasioned by lis wearing a poisoned shint presented to him by the Greek emperor Heraclius, to whom he had gone to ask aid against the Beni-Asad, his own tribe. The story is, however, dis. credited by Abulfeda. The Moullakat of Amru, in the original text, was published by Lette at Leyden in 1848, and an English translation by Sir William Jones appeared in 1782. The edition of Hengstenberg (Bonn, 1823) contains a Latin version. Another edition, by Arnold, appeared at Leipsic in 1850. The edition of larun MacGuckin Slame (Paris, 1837) includes the miscellaneous poems, a translation, notes, and a life of the poet.
AMSANCTL (or AMPSANCTI) VALLIS, a valley with a small sulphurcous lake and cavern in the territory of the Hirpini, or Principato Ultra (east of Naples), about four miles from the town of Frigento (Cicero, Pliny), or eight from Gesualdo. The spot can most easily be visited by railway from Ariano, on the Naples and Denevento liure It is described by Virgil (En2. vii. 563-71) as an outlet from a cave giving access to the infernal regions:-

> "Ifie specus horrendum, sxvi spiracula Ditis,
> Monstratur, ruptoque ingens Acheronte vorngo Pestiferas eperit fances; quis condita Erinnya, lnvisum numen, terras collumque levabat."

The modern name is Le Mofete, after the goddess Mephitis, who, according to Pliny (N.H. ii. !), had a temple here, of which there are no remains. The lake is considered by Dr C. T. Ramage (who made a special visit to it) as of volcanic character, and appears to lie on the edge of a crater-shaped valley. "The water," he says, "had a dark, pitchy appearance, and was throm up occasionally in several places to the height of 4 or 5 feet. At the edge (of the crater) we were possibly 40 fect above the water, and we did not dare to descend, as the exhalations of sulphur were so strong that we should have been suffocated long before we reached the water. In fact, the whole of this country scems to be volcanic, and is constantly subject to cartliqualkes." (See Nooks and Byways of Italy, by C. T. Ramage, LL.D., 1868 ; Swinburne's Travels, vol, i. , Murray's IIandbook for South Italy, 1873.)

AMSDORF, Nicolaus, a Protestant reformer of the 16th century, was born, Dec. 3, 1483, at Gross-Zschopa, near Wurzen, on the Mulde. He was cducated at Lcipsic, and then at Wittenberg, where he was one of the first who matriculated (1502) in the recently-founded university. IIe soon obtained various academical honours, and became

A M S - A M S

professor of theology in 1511. He joined Luther at the very beginning of his great struggle (1517); continued all along one of his most admiring aud determined supporters; was with him at the Leipsic conference (1519), and the Diet of Worms (1521); and was in the secret of his Wartburg seclusion. He assisted the first efforts of the Reformation at Magdeburg (1524), at Goslar (1531), and at Einbeck (1534); took an active part in the debates at Schmalkald (1537), where he defended the use of the sacrament by the unbelieving; and (1539) spoke out strongly against the bigamy of the Elector of Hesse. After the death of the Count Palatine, bishop of NaumburgZeiz, he was installed there (Jan. 20, 1542), though in opposition to the chapter, by the elcctor of Saxony and Luther. His position was a painful one, and he longed to get back to Magdeburg, but was persuaded by Luther to stay. After Luther's death (1546) and the battle of Mühlberg (1547) he had to yield to his rival Pflug, and retire to the protection of the young duke of Weimar. Here he took part in founding Jena university (1548); opposed the "Augsburg Interim" (1548); superintended the publication of the Jena edition of Luther's works; and debated on the freedom of the will, original sin, and, more noticeably, on the Christian value of good works, in regard to which he held that they were not only uscless, but prejudicial. He urged the separation of the High Lutheran party from Melanchthon (1557), got the Saxon dukes to oppose the Frankfurt Recess.(1558), and continued to Gght for the purity of Lutheran doctrine. He died at Eisenach, May 14, 1565, and was buried in the high church there, where his effgy shows a well-knit frame and sharpcht features. He was a man of strong will, of great aptitude for controversy, and considerable learning, and thus exercised a decided influence on the Reformation. Many letters and other short productions of his pen are extant in MS., especially five thick volumes of Amsdorfiana, in the Weimar library. A small sect, which adopted his opinion on good works, was called after him; but it is now of mere bistorical interest.
AMSLER, SAMOEL, one of the most distinguished of modern engravers, was born at Schinznach, in the canton of Aargau, in 1791. He studied his art under Lips and Hess, and from 1816 prrsued it in Italy, and chiefly at Rome, till in 1829 he 'bucceeded his former master Hess as professor of copper engraving in the Munich academy. The works he designed and engraved are remarkable for the grace of the figures, and for the wonderful skill with which he retains and expresses the characteristics of the original paintings and statues. He was a passionate admirer of Raphael, and had great success in reproducing his works. Amsier's principal engravings are-"The Triumphal March of Alexander the Great," and a full-length "Christ," after the sculptures of Thorwaldsen and Dannecker; the "Burial of Christ," and two "Madonnas," after the pictures of Raphael; and the "Triumph of Religion in the Arts," after Overbeck, his last work, on which he spent six years. He died May 18, 1849.
AMSTERDAM, or Amsteldam, formerly called $A m$ stelredam, capital of the Netherlands, situated in the province of North Holland, is built somewhat in the form of a halfmoon, on the Y or Jj , an arm of the Zuyder Zee, in $5 \mathrm{~s}^{\circ}$ $22^{\prime \prime}$ N. lat., and $4^{\circ} 53^{\prime}$ E. long. The name Amsterdam means "the dam or dyke of the Amstel," from a river eo called which passes in a north-easterly direction tlyrough the city,-the "dam" referring to the extensive and costly system of embankments, canals, and sluices necessary to secure this low-lying city against the encroachments of the tide. Towards the land Amsterdam was at ono time surrounded by a fosse or canal, and regularly fortified; but its ramparts have been demolished, and the twenty-cigit
bastions that formed part of the defences are now used as promenades; or covered with buildings. Within the city, four canals-the Prinsen Gracht, Keizer's Gracht, Heercu

Gracht, and the Singel-extend, in the form of polygonal crescents, nearly parallel to each other and to the former fosse; while numerous smaller canals intersect the city in every direction, dividing it into about 90 islands, with nearly 290 bridges. Some of these are of stone, but the majority are of iron and wood, and constructed so as to allow vessels for inland navigation to pass through. The site of Amsterdam was originally a peat bog, and all its buildings rest apon piles that are driven some 40 or 50 feet through a mass of loose sand and mud until they reach a solid stratum of firm clay. This foundation is perfectly secure as long as the piles remain under water. In 1822, however, an overladen corn magazine sank into the mad. The piles are liable to the ravages of wood-worms that are supposed to have been brought by vessels from foreign ports. The streets in the oldest parts of the town are narrow and irregular, but are nowhere without pavements or footways. The houses frequently present a picturesque sky-line, broken by fantastic gables, roofs, chimneys, towers, and turrets of all forms and dimensions. Four of the principal of those towers have exterior galleries very near the top, running round them, from which. an alarm used to be blown in case of fire, and a light shown to indicate the locality of the fire to the citizens, who from the age of twenty to fifty are all enrolled in the fire-brigade and civic guard. This mode of signalling is now, however, saperseded by a system of telegraphic communication embrac: ing the whole city. Westward of the Amstel, which passes almost through the centre of the city, is the more modern part, where the houses are often exceedingly handsome, and the streets broad, and planted with rows of large trees between the houses and the canals. The chief promenades are the Vondelspark, laid out and maintained by privato individuals, with the design of its being ultimately presented to the city; and the Plantaadjo or Plantation, part of which is occupied by the botanic and the zoological gardens, and which is also supported by private contribntions. Of the public buildings, the principal is the palace, an imposing structure, built in 1648 , by the architect Jacob van Kampen, and adorned with stone carvings by the celebrated artist Artus Quellinus of Antwerp. It is supported on 13,659 piles, and is 282 feet long, with a breadth of 235 feet and a height of 116, exclusive of a turreted cupola, which rises 66 feet adove the main building. It was originally tho Stadhuis, but was appropriated as a palace by King Loais Napoleon in 1808. The most mag*
aiticeut apartment in it is the great hall, measuring 120 ieet by 57 , and 90 in height, with walls incrusted with white Italian marble. On the opposite side from the palace of the square ealled the Dam, stands the Beurs or Exchange, a fine tetraprostyle Ionic building, serving as a front to a large quadrangle with a landsome peristyle of the same order. The Oudc Kerk, built about the year 1300, has some beautiful stained windows and a fine organ, as well as monuments to varicus celebrated Dutchmen, including the naval heroes Van Heemskerk and Sweerts. The Niewe lierk, a much finer edifice, where the kings of Ilolland are crowned, dating from 1408, is remarkable for the carving of its pulpit, for the elaborate bronze castings of its choir, and for the monuments to the famous Admiral De Ruyter and Holland's greatest poet, Vondel, whose statue stands in the park which bears his name. There are many other places of worship in Amsterdam, including those belonging to the Dutch Reformed Church, the English Episcopalians, the Scotch Presbyterians, the Lutherans, the Jansenists, the Roman Catholics, the Greeks, \&c., and also scveral Jewish synagogues; but, as a rule, the chureh architecture of the torn is bald and uninteresting. We may except, however, the synagogue of the Shcphardim Jews, the equal of which is only to be found at Leghorn; the Moses and Aaron's Church (R.C.) ; and the new Lutheran place of worship, which has a green copper cupola. The Palcis roor Volks. vlijt is a building of iron and glass, 440 feet long by 280 broad, with a dome 200 feet high, erected between 1855 and 1864 . It is used for industrial exhibitions, the performance of operas, \&c., and possesses a collection of pictures (copies ard some originals), as well as a fine garden. The Schreijerstoren, or "crier's tower," at the end of the Geldersche Kade, where ressels left for all parts of the globe, was built about 1482, and got its name from the taars of the sailors who kere bid their friends farcwell. The chief literary institutions of Amsterdam are the Athenæum, the socicty called "Felix Meritis," from the first words of the inscription on their place of meeting; the society " Natura Artis Magistra," to whom the zoological gardens belong; the Royal Academy of the Fine Arts, and the Seaman's Institute. The galleries of pictures in the city are of great value. The museum in the Trippenhuiscontains over 400 works, chiefly of the Flemish and Dutch schools, including the

City Arms of Amsterdam.
"Night Guard" of Rembrandt, whose statue may be sech. on the Kaasplein, opposite the house he occupied, and the "Banquet of the Civic Guard," by Van der Helst; besides nearly 4000 engravings, and a magnificent numismatic collection, considercd one of the finest in the world. Among the other collections are those in the Museum Van der Hoop and in the Fodor Museum, that belonging to the "Arti et Amirilice" Society, as well as several private galleries. Ansterdam is also remarkable for the number and high character of its benevolent institutions, which are to a large extent supported by voluntary contribations. Among others may be asentioned hospitals for the sick, the aged, the infirm, the blind, the deaf, the dumb, the insane, widows, orphans, and foundlings. There is a noble jastitution, the Society for the Public Welfare, whose object is to promote the education and improvement of all classes. It has branches
in nearly every town and village in Holland. There is also an admirable sailors' home.

Amsterdam is now capitally supplied with water for drinking and culinary purposes from the Haarlem dunea Fermerly the inlabitants were dependent on the rain-water collected in eisterns, and the supply brought from Wcesp in large flat-bottomed barges. This, added to the gencral humidity of the atmosphere caused by the canals, made Amsterdam an unpleasant place of residence in summer, but the exertions of the inhabitants have done much of late to counteract these noxious influences. The people usually have a robust appearance, and the death-rate of the city is low.
The population (1874) is estimated at 285,000 , of whom about 60,000 are Roman Catholics, and 30,000 Jews, the rest being mostly Protestants of various sects.

The aecompanying plan indicates the extent and position of the docks of Amsterdam. The arsenal and the admiralty offices are situated on the island of Kattenburg, between the Dijk Gracht and the Niewe Vaart. The approach to the city from the Zuyder Zce is intricate and dangerous, owing to the numerous shallows; and a bar at the entrance to the Y compels vessels to unload part of their cargo in the roadstcad. These delays and dangers were to a large extent provided against in 1825, by the opening of a canal across North Holland from the Nicwe Diep, opposite the Texcl, to Amsterdam; and a more direct and capacious canal to the North Sea is at present in process of construction. The following table gives the chief shipping statistics for the five ycars ending December 1870 :-

Year.	Arrivals.		Departures	
	Vessels.	Tonnage.	Vessels,	Tonnage
1866	1604	420.094	1662	423,623
1867	1468	392,975	1560	:04,717
1868	1465	430,799	1508	421,566
1869	1374	425,929	144°	448,891
1870	1297	405,109	1341	402,983

The principal imports of Amsterdam are-coffee, amount ing in 1870 to $1,147,240$ bags and 1499 casks; tea, in the same year, 79,573 chests; sugar, in the same year, $273,750,000 \mathrm{lb}$; tobacco, rice, cotton, indigo, timber, tin, hemp, and grain. The exports comprise cheese, butter, madder, clover, rape, linseed oil, gin, and other products of Holland, besides general goods and manufactures from various European countries. There is also a large export trade in the produce of the East and West Indies. There are two lincs of railway, the one connecting Amsterdam with ILaarlem, Leyden, and Rotterdam; and the other with Utrecht, Arnheim, and Piussia. Amsterdam bas sugar refincries ; soap, oil, glass, jron, dye, and chemical works; distilleries, breweries, tanneries; tobacco and sluff factories. The cutting of diamonds has long been extensively practised in the city by the Jews. Although no longer the centre of the banking transactions of the world, Amstordam is still a place of considerable importance in this respost The celebrated bank of Amsterdam, founded in 1609, was dissolved in 1796 ; and the present bank of the Netnerlands was eatablished on the model of the Bank of England in 1814.

About the year 1200 Amsterdam was a small fishing village, held in ficf by the lords of Amstel, together with the surrounding district, called Amstelland. Torrards the close of the 13 th century it reverted, in consequence of the complicity of Gysbrecht Van Amstel in the murdt.
Count Floris V., to the counts of Holland, who gave it s charter and other privileges. It was fortified in 1482, and soon rose to be the most important commercial city of the Netherlands. The early voyages to India, and the union of the seven provinces in 1579 , added greatly to the
prosperity of Amsterdau-so much so, that it excited the upidity of the earl of Leicester, who made a futile at tempt to surprise it in 1587 ; aud its position was still further improved by the peace of Westphalia in 1648, which closed the navigation of the Scheldt, and consequeutly ruined the trade of Antwerp. Two years later, the stadtholder William II. intended to surprise it, but the bold attitude of the inbabitants obliged him to give up his project. Amsterdan suffered so severely from the war in the time of Cromwell, that more than 4000 houses stood tenantless; and the French occupation during the First Empire inflicted a more permanent injury upon the city. Since 1813, however, much of its former commercial influence has returned; and the completion of the abovementioned canal will, no doubt, confirm its position as the chief commercial city of the kingdom, its secondary place as a seaport lately having been due to the difficulty of access to it from the sea. Among the many emiuent men who saw the light in Amsterdam may be mentioned the celebrated philosopher Baruch Spinosa (1632), the flower painter Van Huysum (1682), the naturalist Swammerdam (1637), and the poet Bilderdyk (1750). (See Caspar Commelins, Bescliryving van Amsterdum, and J. Wagenaar's work bearing the same title.)

AMSTERDAM, an uninhabited and almost inaccessible ssland in the Indian Ocean, in $37^{\circ} 58^{\prime} \mathrm{S}$. lat., and $70^{\circ} 34^{\prime} \mathrm{E}$. long., about 60 miles S. of St Paul's Island, and nearly midway between the Cape of Good Hope and Tasmania. It was discovered by Van Diemen in-1633.
AMULET (in late Latin amuletum, probably from the Arabic hamalet, a pendant), anything worn as a charm, generally, but not invariably, hung from the neck, to protect the wearer against witchcraft, sickness, accidents, and other evils, or to deliver him from ills under which he labours. Amulets have been of many different kinds, and formed of different substances,-stones, metals, and strips of parchment being the most common, with or withaut characters or legends engraved or written on them. Gems have often been employed and greatly prized, serving for crnaments as well as for charms. Ceriain herbs, too, and animal preparations have been used in the same way. In setting them apart to their use as amulets, great precau. tions have been taken that fitting times be selected, stellar and other magic influences propitious, and

everything avoided that might be supposed to destroy or weaken the force of the charm. From the earliest ages the Oriental races have had a firm belief in the prevalence of occult evil influences, and a superstitious trust in amulets and similar preservatives against them. There are references to, and apparently correctives of, these customs in the Mosaic injunctions to bind portions of the law upon the hand and as frontlets; between the eyes, as well as write them upon the door-posts and the gates; but, among the later Jews especially, the original design and meaning of these usages were lost sight of ; and though it has been said that the phylacteries wera not strictly amulets, there is no doubt that they were held in superstitious regard. Amulets were much used by the ancient Egyptians, and also among the Greeks and Romans. We find traces of them too in the early Christian church, in the emphatic protests of Chrysostom, Augustine, and others against them. The fish was a farourite symbol on these charms, frofon the word ixoús being the initials of 'I $\eta \sigma o \hat{u}^{\prime} \mathrm{X}$ 人poròs Ocuv̂ viòs ourip A firm fagith in amulets still prevails
widely among Asiatic nations. The accompanyng woodcut represents the boxes emp!oyed to hold written charms worn by Arab women at the present day. Talisman, also from the Arabic, is a word of similar meaning and use, but some distinguish it as importing a more jowerful charm. A talisman, whose "virtues are still applied to for stoppiny blood and in cases of canine madness," figures prominently in, and gives name to, one of Scott's Tales of the Crusaders. A measure of belief in amulets or charms exists, but appears to be diminishing, among the uneducated of our own country and time. (See Arpe, De Prodigiis Naturce et Artis Operions Talismanes et Amuleta dictis, Hamburg, 1717; Ewele, Ueber Amulete, 1827; and Kopp's Palcoographica Crittca, vols. iii. and iv., 1829.)

AMURATH or Murad L. was born in 1326 A.d. (726 A.․), succeeded his father Orkhan as sultan of the Ottoman Tur'ss in 1360, and died in 1389. He is entitled to notice as being the first who led the Turkish arms into Europe, which he quickly overran as far as the Balkan. In 1361 he made himself master of Adrianople, where be fixed his residence, built a splendid mosque, and otherwise added to the architectural adornment of the city. The first treaty of peace between a Christian people and this formiduole neighbour was struck in 1365, when the little republic of Ragusa put itself under his protection. His power becoming more and more formidable, Urban V. preached a crusade-disastrous, as it proved, for the crusaders-against him ; and John Palæologus, the Greek emperor, eutered into an alliance with him. He had several rebellions to contend against, but he was invariably successful. One of his sons persuaded a son of Palæologus, who had been sent by his father to learn the art of war under Amurath, to join him in a revolt; but the youthful conspirators were defeated. Immediate revenge was taken by the sultan on his own son, and the young Palæologus was sent back to his father with an imperious demand that he too should be punished. Like all great conquerors, Amurath was active in military reform ; he perfected the discipline of the spahis (or cavalry) and woinaks (or baggage corps), snd gave stability to the janissaries, a body of troops that had been first incorporated by his father. Of literary culture he was altogether destitute, signing bis treaties by dipping his hand in ink, and impressing the mark of three fingers together, with the thumb and fourth finger at a slight distance on each side. He lost his life at the close of a great battle at Kossova, which he had successfully fought against Lazarus, despot of Servia, and was succeeded by his son Bajazet.

AMURATH II., the tenth emperor of the Turks, was born about 1404, and died February 9, 1451. He succeeded Mohammed L. in 1422. At first he had to contend agaiust a pretender, the pseudo-Mustapha, who was supported by the Greek emperor and others; but through the assistance of an astute state prisoner, Mohammed Bey (Michael Ogli), he obtained a bloodless victory over him. He then turned his arms against the Greek emperor himself, but failed in the siege of Constantinople. Against his younger brother Mustapha ho was successful by bribes. In April 1429 he besieged and took Saloniki (Thessalonica), which was under Venetian rule, thus opening up the way for the final subjugation of Greece. He continuec almost without any reverses of fortune till 1442, wher Hunniades defeated his forces in the battle of Vasag, anc obliged him to make peace with the Christian princes The treaty was hardly concluded when his son Ala-Eddia died. In his grief he abdicated in favour of his sol Mohammed, a boy of fourteen, while he retired to Mag nesia in search of repose. But the Christian princes tool advantage of his abdication to renew their attacks, and in was called to oppose them. which he did with terrible suc
cess in the battle of Varna, Nov. 10, 1444, when the king of Hungary, Ladislaus, fell. . Having saved his country, he again gave up the reins to his son, and returned to Magnesia. But the janissaries revolted, and his presence was demanded. Again on his throne, he invaded Albania and Peloponnesus, but was repulsed by George Castriot or Scanderbeg. He retreated, however, only to gain a great rictory over his former adversary Hunniades at Cassova (Oct. 17, 1448), the battle lasting three days. Ho died at Adrianople, Feb. 11, 1451, from a stroke of apoplexy, according to the most probable account. His Mussulman biographers tell that whenever he took a town he was careful to build in it a jami (or cathedral), a mosque, an imarel, a medrésseh (or ecclesiastical school), and a than. The mosque of Adrianople is especially remarkable. He was the first Ottoman emperor who caused bridges of great length to be built; and during his reign, poctry, jurispradence, and theology began to flourish with promise of the Augustan luxuriance which they attained under his son and successor, Sultan Mohammed-Elfatyh.

AMIURATH IIL, sultan of the Turks, born about 1545 , succeeded in 1574 his father Selim II. The first pords he addressed to his courtiers were-"I am hungry: give me something to eat;" and the evil omen was fulfilied in the famines and disasters that marked his reign. In 1579 Queen Elizabeth of England managed to gain his friendship, and obtained a favourable commercial treaty for Great Britain. It was under him that the janissaries began to feel their power, and to basten the ruin of the state by their revolt. He was superstitions, feeble, and irritable, as well as extremely addicted to the pleasures of the harem. He was fond of dinciac and masic, and has left. a few literary trifles. He died Jan. 16, 1595.

AMURATH IV. was born about 1611, and succeeded his uncle Mustapha in 1623. The chief event of his reign was the recovery in 1638 , after thirty days of unremitting assoult, of the city of Baghdad which had fallen into the hands of the Persians. He disgraced his victory by revolting cruelties, slaughtering 30,000 Persians in cold blood. So numerous and horrible are the atrocities recorded of him, that he stands pre-eminent even among Turkish Neroes. Some historians ascribe this feature of his character to his almost perpetual inebriation. Be this as it may, he soon enfeebled his constitution, and falling at the same time under a superstitious anticipation of death, he died in 1640, at the early age of twenty-nine.

AMWELL, a village of Hertfordshire, in the parish of Great Amwell, on a hill overlooking the Lea, 3 miles from Hertford and 20 from London. Near it are the sources of the New River, formed between 1606 and 1612 in order to supply London with water; and on a small island in the stream there is a monument to Sir Hugh Myddleton, throngh whose exertions this work was carried out. Haileybury college, formenly the property of the Cast India Company, is also in this parish, which has a population of 2245 .

AMYMONE ('A $\mu v \mu(\dot{\omega} \eta$), in Greek Legend, a daughter of Danaüs, by whom, with her sisters, she had been sent to lock for water, the district of Argus being then parched twrough the anger of Neptune. Amymone having thrown ber spear at a stag, missed it, but hit a satyr asleep in the brake. The satyr pursued her, and she called on Neptune for help, who appeared, and for love of her beauty caused a spring to well up, which reccived her name. By Neptune she became the mother of Nauplius, the wrecker. Amymone at the spring is represented on ancient engraved gems.

AJYOT, JAcQues, a famous French writer, was born, of poor parents, at Melon, October 30, 1513; found his way - a pale-faced, bare-footed, ill-clad boy-to the "Colleqe de France" in Paris, and there picked up a know-
ledge of the elassical languages, serring some of the riches students as valet and composer of Latin, to euable hin to continue his studies. He became M.A. at Paris, and doctor of civil law at Bourges ; obtained, througb Jacques Colure (or Colin), abbot of St Ambrose in the latter city, a tutorship in the family of a secretary of state; by the secretary was recommended to the duchess of Berry, only sister of Fraucis I. ; and, through ber infuence, was made professor of Greek and Latin at Bourges. Here he translated tho Theagenes and Chariclea of Heliodorus (154\%. fol.), for which he was rewarded by Francis L with the albey of Bellozane, and thereby cnabled to go to Italy to study the Vatican text of l'lutarch, on whose Lives ha had been some time engaged. On the way he turned aside on a mission to the council of Trent. Returning home, he was selected as tutor to the sons of Henry II., by ono of whom (Charles IX.) he was afterwards made grand almoner, and by the other (Henry III.) was appointed commander of the order of the Holy Ghost Pins I. piomoted him to the bishopric of Auxerre, and here he continued to live in comparative quiet, repairing his cathedral and perfecting his trauslations, for the rest of his days, though troubled towards the close by the insubordination and revats of Lis elergy. Ho died February 6, 1593, bequeathing, it is said, 1200 crowns to the hospital a: Orleans for the twelve "deniers" be received there when "poor and naked" on his way to Paris. His famo resta on his vigorous and idiomatic version of Yiutarch's Live: (1559,2 rols.), which was translated intc English by North, and supplied Shakespeare with materials for his Roman plays. His style was greatly admired by Racine and lionsseau, and Montaigne said of hin, "I give the palm, and rightly, methinks, to Jacques Anyot over all ous French writers."

AMyRaUT, Moses, a pre-eminent French Protestant theologian and metaphysician, was born at Bourgueil, in the valley of Anjon, in 1596. His family was an aucient and illustrious one from Hagenau, Alsace. They migrator to Orleans in the 13th or 14 th centory. His father was a lawyer of local note, and designing Moses for his own profession, on the completion of his studies at Orlcans of humanity and philosophy, be sent him to the naiversity of Poictiers. It is recorded that there the youth studied fourteen hours a day, and made such swift progress that he was able to maintain theses and disputations, and to take the degree of licentiate (B.A.) of laws. On his way home from tha nuiversity he passed through Saumur, and having visited Mons. Boncherean, pastor of the Protestant church there, ho introduced him to the renowned lord of Plessis-Mornay, governor of the city. Both were struck with young Amyraut's ability and culture, and both urged Lim to change from law to theology. Plessis-Mornay, who was chary of landations, pronounced that "there was nothing above the grasp of his great parts." lieturned bome, bis father, after considerable hesitation, gave consent to the change from law to divinity, with a proviso that he shonld revise his philological and philosophical studies, and read over Mons. Calvin's Institutions, before finally determining. He did so, and, as might have been anticipated, decided for theology. He thereupon removed to Saumur -destined to be for ever associated with his name-and "sat at the fect of the great Cameron," who ultimately regarded him as his greatest. scholar. He had a brilliant course, and was in due time liceñōi da a minister of the French Protestant Church. The coutemporary civil wars and excitements hindered his advancement. His first church was in St Aignau, in the province of Maine. There be remained two years. The celebrated Daille, being then removed to Paris, advised the chureh at Saumur to securg Amyrant as his successor, praising him "as abova bimedf"

The university of Saumur at the same tume had fixed its eyes on him as professor of theology. The great churches of Paris and Rouen also contended for him, and sent their deputies to win him, to the provincial synod of Anjou. Amyraut had left the choice to the synod. He was appointed to Saumur, and to the professor's chair along with the pastorate. On the occasion of his inauguration he maintained for thesis De Sacerdotio Christi. His coprofessors were Lewis Capell and Josua de la Place, who were also Cameron's pupils. Very beautiful was the lifelong friendship of these three remarkable men. They remain associated still as the joint authors of a body of divinity eutitled Theses Salmurienses. Full of encrgy in evcry atom of him, Anlyraut devoted himself to his labour of love with a fine enthusiasm of love of lahour. He very speedily gave French Protestantism a potentiality it had never possessed before. In 1631 he published his Traité des Religions, a book that still lives; and from this year onward he was a foremost man in the church, especially at the natiunal and provincial synods. One incident in his synodical services stands out, as the like do in the story of Luther and of Jobn Knox. Chosen to represcut the provincial synod of Anjou, Touraine, and Maine at the national synod held in 1631 at Charenton, that assembly appointed him their orator to address the king, and to present to him "The Copy of their Complaints and Grievances for the Infractions and Violations of the Edict of Nantes." Previous deputies had addressed the king on their bended knees, whereas the representatives of the Roman Catholics had been permitted to stand. Amyraut consented to be orator only if the assembly authorised him to stand. There was intense resistance. Richelieu himself, preceded by lesser dignitaries, condescended to visit Amyraut privately, to draw him over to kneel; but the stout-hearted orator held resolutely to equality with the Roman Catholics, and carried his point. Standing tin the presence of king and court, he recounted the complaints and grievances of his church, and charmed even his adversaries with his mingled dignity of manner and suavity of ardress. Long afterwards Richelieu recalled the memorable incident; and the "Oration," which was immediately published in the French Nercury, remains a historic landmark in the history of French Protestantism. During his absence on this matter the assembly debated "Whether the Lutherans who desired it, might be admitted into coramunion with the Reformed Churches of France at the Lord's Table ?" It was decided in the affirmative previous to his return; but he approved with astonishing eloquence, and thereafter was ever in the front rank in maintaining intercommunication between all churches holding the main doctrines of the Reformation. His defence against many adversaries on the question was published in 1647-De Secessione ab Ecclesiâ Romanâ deque Ratione Pacis inter Evangelicos in Religionis Negotio constituendas Bayle (s.v.) recounts the title-pages of no fewer than thirty-two books of which Amyraut was the author. These show that he took part in all the great controversies on Predestination and Arminianism rrlich then so agitated and harassed all Europe. Substantially he held fast the Calvinism of bis preceptor Cameron; but, like Fichard Baxter in England, by his breadth and charity exposed himself to all manner of misconstruction from Peter du Moulin and others ultraorthodox. His La Defense de Calvin never was answered, nlthough superabundantly replied to. The university of Saumur became the university of French Protestantism. Amyraut had as many as a hundred students in attendance upon his prelections. Another historic part filled by Amyreut was in the negotiations originated with Mons. le Goux, lord of Berchere, first president of the parliament of Burgundr. when exiled to Saumur, for a reconciliation
and reunion of the Roman Catholics of France mith the French Protestants. Very large were the concessions made by Richelieu in his personal intervicws with Amyraut; but, as with the Wurcester House negotiations in England between the Church of England and Nonconformists, they inevitably fell through. On all sides the statesmanship and eloquence of Amyraut were conceded. When the king risited Saumur in 1651, Amyraut declined to close his church on the Sunday, but preached a scrmon that rang through Europe on the text, "Fear God, honour the king." Amyraut remained to the end one of the most prominent names of French Protestantism; and his De r'Elévation de la Foy et de 1 Abaissenent de la Raison en la Críance des Mysteires de la lieligion (1641) gave him early a high place as a metaphysician, which was sustained by after works. Exclusive of his controversial writings, he left behind him a very voluninous serics of practical evangelical books, which renain the fircside favourites of the peasautry of Freuch Protestantism still. His Estat des Fideles apre's la Mort has comfortcd many mouruers; his Sur l'Oraison Dominicale is striking and rich; his Du Mérite des EEvurcs and Traıté de la Justification, weighty and powerful; his Paraplrascs on Old Testa. ment and New Testament books of Holy Scripturc, judiciuus and suggestive-sometimes penetrativc. His closing years were weakened by a severe fall he met with in 1657. He died on 18th January 1664. His portrait was published by his son, but with no uame or inscriptiou underneath. (Bayle, s.v.; Biog. Univ., s.v.; John Quick's Synod. in Gall. Poform., pp. 352-7; ilid. MS. Iconce Sacree Callicance; Life of Cameron.)

ANA, a Latin plural termination appropriated to various collections of the observations and criticisnas of eminent men, delivered in conversation and recorded by their friezds, or discovered among their papere after their decease. Though the term Ana is of comparatively modern origin, the introduction of this species of composition is uot of recent date. It appears, from D'Herbelot's Billiotheque Orientale, that from the earliest periods the Eastern nations were in the habit of preserving the maxims of their sages. From them the practice passed to the Greeks and Romans. Plato and Xenophon treasured up and recorded the sayings of their master Socrates; and Arrian, in the concluding books of his Enchiridion, now lost, collected the casual observations of Epictetus. The numerous apophthegms scattered in Plutarch, Diogenes Laertius, and other writers, show that it was customary in Greece to preserve the colloquially expressed ideas of illustrious men. It appe ars that Julius Cæsar compiled a book of apophthegms, in which he related the bon mots of Cicero; and Quintilian informs as that a freedman of that celebrated wit and orator composed three books of a work entitled De Jocis Ciceronis. We are told by Suetonius that Caius Melissus, originally the slave but afterwards the freedman and libraria: of Mrecenas, collected the sayings of his master; and Aulus Gellius has filled his Noctes Atticce with anecdotes which he heard from the eminent scholars and critics whose society he frequented in Rome.

But though vestiges of Ana may be traced in the classical ages, it is only in modern times that they have come to be regarded as constituting a distinct species of composition, comprising literary anecdotes, critical réflections, and listorical incidents, mingled with the detail of bon mots and ludicrous talcs. Thic term Ana seems to have been applied to such collections as far back as the beginning of the 15 th century. Francesco Barbaro, in a letter to Porgio, says that the information and anecdotes which Poggio and Barthelemi Montepolitiano had picked up during a literary excursion through Germany will be called Ana: "Quemadnudum mala ab Appio a Claudis gente

Appiana, et pira a Mallio Malliana cognominata sunt, sic hac literarum qua vestra ope ct opera Gcrmania in Italiam deferentur, aliquando ot I'oggiana et Montepolitiana vocabuntur."

Poggio Bracciolini, to whom this letter is addressed, and to whom tho world is indebted for the preservation of so many classical remains, is the first eminent person of modern times whose jests and opinions have been transmitted to posterity. Poggio was scerctary to five succes. sive popes. During the pontificate of Martin V., who was chosen in 1417, Poggio and other members of the Roman chancery were in the habit of assembling in a common hall adjoining the Vatican, in order to converse frecly on all subjects. Being more studious of wit than of truth, they termed this apartment Buggiale, a word which Poggio himself interprets Mendaciorum Officina. Here Poggio and his friends discussed the news and scandal of the day; communicated entertaining ancedotes; sttacked what they did not approve (and they approved of little); and indulged in the utmost latitude of satiric remark, not sparing even the pope and cardinals. The jests and stories which occurred in these unrestrained conversations were collected by Poggio, and formed the chief materials of his Facetice, first printed, according to De Bure, in 1470. This collection, which forms a principal part of the Poggiana, is chiefly valuable as recording interesting ancedotes of eminent men of the 14 th and 15 th centuries. It also contains a number of quibbles or jeux de mots, and a still greater number of idle and licentious stories. Many of these are not original, some of them being taken from ancient authors, and a still greater number from the Fabliaux of the Trouveurs. On the other hand, Poggio has suggested much to succeeding writers. Prior's Hans C'arvel and several of Fontaine's fables are from stories originally related by Poggio. The Facetice forms, upon the whole, the most amusing and interesting part of the Poggiana printed at Amsterdam in 1720 ; but this collection also comprehends additional anecdotes of Poggio's life, and a few extracts from his graver compositions.

Though Poggio was the first person whose remarks and bon mots were collected under the name of Ana, the Scaligerana, which contains the opinions of Joseph Scaliger, was the first work published under that appellation, and accordingly may be regarded as having led the way to that class of publications. There are two collections of Scaligerana-the Prima and Secunda. The first was compiled by a physician named Francis Vertunien, Sieur de Lavau, who attended a family with whom Joseph Scaliger resided. He, in consequence, had frequent opportunities of meeting the celebrated critic, and was in the custom of committing to writing the observations which dropped from him in the course of conversation, to which he occasionally added remarks of his own. This collection, which was chiefly Latin, remained in manuscript many years after the death of the compiler. It was at length purchased by M. de Sigogne, who published it in 1669 , under the title of Prima Scaligerana, nusquam antehac edita, calling it prima in order to preserve its claim of priority over snother Scaligerana, which, though published three years before, had been more recently compiled. This second work, known as Secunda Scaligerana, was collected by two brothers of the name of Vassan, students of the university of Leyden, of which Scaliger was one of the professors. Being particularly recommended to Scaliger, they were received in his house, and enjoyed his conversstion. Writing down what they bad heard, particularly on historical and critical subjects, they soon made up a large manuscript volume, in which, however, thare was neither connection nor arrangement of any description. After passing through various hands, this manuscript came into the
possession of M. Dalle, whu for his own use arrangal in alphabetical order the articles which it contained. Isanc Vossius, obtaining the manuscript in losn from M. Daille. transcribed it, and afterwards published it at the Hague, under the title of Scaligerana, sive Excerpta ex Ore Josephi Scaligeri. This edition was full of inaccuracies and blunders, and a more correct impression was afterwards published by M. Daillé, with a preface complaining of the use that Vossius had made of the manuscript, which Le declares was never intended for publication, and was not of a nature to be given to the world. Indeed, most literary men in that ago conceived that the Scaligerana, particularly the second, detracted considerably from the reputation of the great bcholar. Joseph Scaliger, with more extensive erudition, but, as some think, less genius than his father Julius Cæsar Scaliger, had inherited his venity and dogmatical spirit. Conversing with two young students, he would probably be but little cautious in the opinions he expressed, as his literary errors could not be detected or exposed. Unfortunately the blind admiration of his pupils led them to regard his opinions as the responses of an oracle, and his most unmerited censures as just condemnations. The Scaligerana, accordingly, contains many falsehoods, with much unworthy personal abuse of the most distinguished characters of the age.

In imitation of the Scaligerana, a prodigious number of similar works appeared in France towerds the end of the 17 th and beginning of the 18 th century. At first these collections were confined to what had fallen from eminent men in conversation; bat thcy were afterwards made to embrace fragments found among their papers, and even passages extracted from their works and correspondence. Of those which merely record the conversations of eminent men, the best known and most valuable is the Mfenagianc. Gilles Ménage was a person of good sense, of various and extensive information, and of a most communicative dis. position. For a long period an assembly of literary men met once a week at his house; and during his lates ycars he daily received critics and scholars as visitore. Much of his time was thus spent in conversation; and his habitual associates were at pains to record his opinions, which were generally founded on a correct taste and judg. ment, and were always delivered in an interesting and lively manner. A collection of his oral opinions was published in 1693 , soon after his death; and this collection, which was entitled Menagiana, was efterwards corrected and enlarged by M. Ia Monnoye, in an edition publisbed by him in 1715.

The Perroniana, which exhibits the opinions of Cardinal du Perron, was compiled from his conversation by M. de Puy, and published by Vossius, by the same contrivance which put him in possession of the Scaligerana. Some parts of this collection are useful in illustrating the literary and ecclesiastical history of the age in which Du Pcrron lived; but it contains many puerile, imprudent, and absurd remarks, many of them the interpolations of his friends. Tho Thuana, or obserrations of the president De Thou, have usually been published along with the Perroniana. This collection is not extensive, and by no means of sucb value as might have been expected from a man so able and distinguisbed.

The Valesiana is a collection of the literary opinions of the historiographer Adrian de Valois, published by his son. M. de Valois was'a great student of history, and the Valesiana accordingly comprehends many valuable historical observations, particularly on the werks of Du Cange.

The Furcteriana (1696) contains the bon mots of M. Furetiere of the French Academy, the storics which he was in the habit of telling, and a number of aneedotes and rcmarks found in his papers after his decease. This pro-
duction, however, comprehends but few thoughts, opinions, or criticisms on books, consisting chiefly of short stories, and containing numerous allusions to a violent quarrel be bad with the French Academy, of which he was a member, concerning his Dictionnaire Universel de la Langue Français.

The Cherroana (2 vols. 8vo, 1700), so called from M. Chevreau, exhibits more research than most works of a similar description, and is probably more accurate, as it differs from the Ana proper, of which the works descrihed shove are instances, in baving been published during the life of the author, and revised by binself. Among other interesting articles, it contains a learned and ingenious commentary on the works of Malherbe, to whom the French language and puetry were greatly indebted for their perfection.

Parrhasiana (Amst., 2 vols. 8vo, 1699-1701) is the work of Jean le Clerc, a professor of Ainsterdam, who bestowed this appellation on his miscellaneous productions with the view of discussing various topics of philosophy and politics with more freedom than he could have employed under his own name. This work is not of the light and unconnected description of most of the Ana which have been above enumerated, as it contains much learned philological disquisition, and a long dissertation on poetry and eloquence. In the first volume there is a list of his published works. and a bittcr reply to all who had censured then.

The Huetiana contains the detached thoughts and criticisms of Huet, bishop of Avranches, which be himself committed to writing when he was far advanced in life. Huet was born in 1630, and in 1712 he was attacked by a malady which impaired his memory, and rendered him incapable of the sustained attention necessary for the completion of a long or laborious work. In this situation he pmployed himself in putting his detached observations on paper. These were published by the Abbe d'Olivet the year after his death (1722), under the name of Huetiana,--a work which is not, like some other Ana, a succession of bon mots or anecdotes, but forms a series of thoughts and criticisms on various topics of morals, philosophy, and literature. One of the most instructive discussions to a scholar, in this collection, is that on the Latinisation of sames and surnames. His critical judgments on Montaigne, Rochefoucauld, and Tacitus are valuable. But were there no other literary memorials of the bishop of Avranches, he certainly would not derive high reputation from the Huetiana. It was not, indeed, to be expected from the circumstances in which the articles were composed, that they should always display that correct judgment which distinguishes many of the other works of this learned \quad miter.
The Casauboniana presents us with the miscellaneous observations, chiefly philological, of the celcbrated Isaac Casaubon. During the course of a long life that cminent commentator was in the daily practice of committing to paper anything remarkable which he heard in conversation with his friends, especially if it bore on the studics in which to was engaged. He also made annotations from day to day on the works he read, with which he connected his judgments concerning the authors and their writings, This compilation, which was styled Ephemerides, together with his Adversaria, and materials amassed for a refutation of the Ecclesiastical Annals of Baronius, wero bequeathed by his son Meric Casaubon to the Bodleian library at Oxford. These were shown to Christopher Wolfius during a visit which he paid to that university; and baving been transcribed by him, were published in 1710 under the title of Casauboniana. This collection consists of opinions concerning various eminent writers. illustrations of passages
of Scripture, and philological observatiuns and animadversions on the first thirty-fuur years of the Annals of Baron ius. The materials and information which it contains are probably more accurate than is usually the case in works of the same description, as they were not reported by others, but were committed to writing by Casaubon himself while the works on which be commented remainsd fresh in his recollection.

Besides the ahove a great many works, under the title of Ana, appeared in France about the same period. Thus, the opinions and conversation of Clarpentier, Colomesius, and St Evremond were recorded in the Carpenteriana, Colomesiana, and St Evrenoniana; and those of Segrais in the Segraisiana, - a collection formed by a persun stationed behind the tapestry in a house where Segrais was accustomed to visit, of which Voltaire declared, "que de tous les Ana c'est celui qui merite le plus d'être mis au rang des mensonges imprimés, et surtout des mensonges insipides." The Ana, indeed, from the popularity which they now enjoyed, were compiled in such numbers and with so little care that they became almost proverbial for inaccuracy. About the middle of the 18th century, too, they were sometimes made the vehicles of revolutionary and heretical opinions. Thus the evil naturally began to cure itself, and by a reaction the French Ana sunk in public esteem as much below their intrinsic value as they had formerly been exalted above it.

Of the examples England has produced of this species of composition, perhaps the most interesting is the IFaipoliana, a transcript of the literary conversation of Horace Walpole, Earl of Orford. That multifarious author spent a great portion of his time in conversation, and, possessing opportunities of information enjoyed by few, was distinguished for his resources of anecdote, wit, and judicioris remark. It was suggested to him that he ought to form a collection of anecdotes and observations, but this be declined, furnishing, however, the editor of the Talpoliana with many anecdotes in his own handwriting. 'After his death several specimens of this miscellany were published in the Monthly Magazine; and being afterwards enlarged by the recollections of the editor and the communications of others, were published in two volumes under the title of Walpoliana. Most other works which in this country have been published under the name of Ana, as Baconiana, Atterburyana, \&o., are rather extracts from the writings and correspondence of eminent men than memorials of their conversation.

There are some works which, though they do not bear the title, belong more strictly to the class of Ana than many of the collections which are known under that appella. tion. Such are the Mélanges d'Histoire et de Littérature, published under the name of Vigneul Mrarville, though the work of a Bencdictine, D'Argonne; and the Locorum Communium Collectanea, ex Lectionibus Philippi Melanchthonis, -a work of considerable reputation on account of its theological learning, and the information it communicates concerning the early state of the Reformed Church. But of those productions which belong to the class, though they do not bear the name, of Ana, the most celebrated are the Colloquia Mensalia of Luther and Selden's TableTalk. The former, which comprehends the conversation of Luther with his friends and coadjutors in the great work of the Reformation, was first published in 1566. Captain Bell, who translated it into English in the time of the Commonwealth, informs us that, an edict having been promulgated commanding the works of Luther to be destroyed, it was for some time supposed that all the copies of the Colloquia Mensalia had been burned; but in 1626, on the foundation of a houso being removed, a printed copy was found lying in a deep hole, and wrapped up in a linen
cloth. The book translated by Bell, and again by the younger Hazlitt in 1847, is said to have been originally collected by Dr Anthony Lauterbach, "out of the holy mouth of Luther." It consists chiefly of observations and discussions on.idolatry, auricular confession, tho mass, excommunication, clerical jurisdiction, general councils, and all the po nts agitated by the Reformed Clurch in those early periods. The Tuble-Talk of Selden contains a more genuine and undisguised expression of the sentiments of that eminent man than we find in his more atudied productions. It was published after his death by Richard Milward, his amanuensis, who aftirms that for twenty years he enjoycd the opportunity of daily hearing bis discourse, and made it his practice faithfully to commit to writing "the excellent things that usually fell from him." 'Whe work contains, along with much of a lighter kind, unany curious facts and opinions concerning the political and ecclesiastical history of the interesting period during which Sclden lived, and in the important events of which he bore a considerable share. The style of Selden, in most of the works published under his own care, is harsh and obscure; but Clarendon describes him as "a clear discourser, possessed of the faculty of making difficult things easy, and presenting then clearly to the understanding." "I'his telent for clucidation shines chiefly in his Table-Talk, which is filled with the stores of his extensive reading, delivered without any pretensions to that order and method the want of which bas been attributed to his other productions. Many more recent works, under such titles as Literary Remains, Table-Talk, \&c., partake more or less of the nature of Ana, but do not call for scparate notice

The most remarkable collection of Ana in the English langnage-and, indeed, in any language-is to be found in a work which does not correspond to the normal type cither in name or in form. In his Life of Samuel Johnson, LL.D., Boswell relates that to his remark, a propos of French literature, "Their Ana are good," Johnson replied, "A few of them are good; but we have one book of that kind better than any of them-Selden's Table-Talk." Boswell's own work is incomparably superior to all. In worth as a book this has been rated, on the high suthority of Carlyle, beyond any other product of the 18th century, and the value it has depends mainly on its Ana. Its interest anses, not from the details it furnishes of the events of Dr Johuson's career, still less from any attempt at a discriminating estimate of his work and character, but from the graphic representation it gives of his babitual manner of life and speech. The innato greatness of Johnson appears, more than in all his writings, in his portrait, delineated with the exactness of a sharply-defined photograph, as he appeared to the eyes of his admiring biographer in his daily dishabille.

Wolfus has given a history of the Ana in a preliminary disconrse to his edition of tho Casauboniana, published in 1710. In the Repertoire de Bibliographies Spbciates, Curiouses, et Instructives, by Peignot, there is a Notice Bibtiographique of these collections; hut many of the books there enumerated consist of more extracts from the writings of popular authors.

ANABAPTISTS (re-baptisers, from ảvá and β antí ω), a name sometimes applied indiscriminately to all denominations of Christians that deny the validity of infant baptism, but restricted in general usage to certain sects which became prominent in Germany and elsewhere at the period of the Reformation. In both cases the designation originates with opponents, and is repudiated by the great majority of those to whom it is applied. Believing, as they do, that the baptism of infants is no baptism, they naturally object to a name which imples that their baptism of such persons as may bave been baptised in infancy is a second administration of the rite. It is therefore desirable to avoid the
use of the term as desenptive of those who hold what are otherwise known as antipædobaptist views. In its more limited sense the word bas been too long in use, and is too well known to bo now discarded, though it is open to the further objection, in addition to that alrcady stated, that it describee a aect by one of the least important of its distinctive doctrines and practices. The Anabaptists of Germany are historically noteworthy, not because they insisted on re-baptism as tho condition of admission to their communion, but because the enthusiasm of the Reformation manifested itself in them in a form and manner altogether peculiar. Their views as to the true constitution of the church and its relation to the state, and the efforts they made to realise these views, furnish a problem, partly theologicsl, partly historical, of which a satisfactory solution is not casy. To one who looks merely at the extravagance and lawlessness which appear on the surface, fanaticism and madness may furnish a sufficient explana tion of tho whole Anabaptist movement, but a deeper insight will find many elements in it that are quite inconsistent with the supposition of nothing more than barefaced imposture in the leaders, and blind delusion in the followers. There is an obvious genctic, though not historical connection between the Anahaptists and those earlier sects (Novatians, Donatists, Albigenses, Waldenses) which did not practise infant baptism. It is more important, however, to trace the relation between the Anabaptists and the great body of the Reformers. Anabaptism, as a system, may be defined as the Reformation doctrine carried to ito utmost limit; the Anabaptists were the extreme left in the army of the Reformers. It is true that they regarded each other as in different camps; but their mutual denunciations cannot conceal the fact that even the most peculiar doctrincs of the Anabaptists were to them only corollaries, illegitimately drawn, as the more orthodox Reformers thought, from the fundamental principle, common to both, of the independence of the individual judgment, and the supreme importance of the subjective element, personal faith, in religion. The connection of this principle with their theory of the church and its relation to the state, their doctrine of the sacraments, and even their political rising, is so obvious that it need not be dwelt upon. The history of the Anabaptist movement in its outward development is brief but eventful. In 1521 their first rising took place at Zwickau, under the leadership of Thomas Münzer, the Lutheran pastor of that place. (See Munzer) Compelled to leave Kwickau, Münzer visited Bohemia, resided two years at Altstadt and Thuringia, and in 1524 spent some time in Switzerland. During this period be proclaimed his revolutionary doctrines in religion and politics with growing vehemence, and, so far as the lower orders were concerned, with growing success. The crisis came in the socalled Peasants' War in South Germany, in 1525. In its origin a revolt against feudal oppression, it became, under the leadership of Münzer, \& war against all constituted authorities, and an sttempt to establish by force his ideal Cbristian commonwealth, with absolute equality and the community of goods. The total defeat of the insurgents at Frankeuhausen (May 15, 1525), followed as it was by the execution of Münzer and several other leaders, proved only a temporary check to tho Anabaptist movement. Here and there throughout Germany, Switzerland, and the Netherlands there were zealous propagandists, through whose teaching many were prepared to follow as soon as another leader should arise. A second and more determined attempt to establish a theocracy was mado at Münster, in Westphalia (1532-5). Hero the sect had gained considerable influence, through the adhesion of Rothmann, the Lutheran pastor, and several prominent citizens; and the leaders, Johann Matthyszoon or Matthiesen, a baker of

Haarlem, and Johann Bockhold, a tailor of Leyden, had littlo difficulty in obtaining possession of the town and dcposing the magistrates. Vigorons preparations were at unce made, not only to hold what had been gained, but to proceed from Münster as a centre to the conquest of the world. The town being besieged by Count Waldeck, its expelled bishop (April 10ut), Matthiesen, who was first in command, made a sally witn only thirty followers, under the fanatical idea that he was a second Gideon, and was cut off with his entire band. Bockhold, better known in history as John of Leyden, was now supreme. Giving himself out as the successor of David, he claimed royal honours and absolute power in the new "Zion." He justufied the most arbitrary and extravagant measures by the authority of visions from heaven, as others have done in similar circumstances. With this pretended sanction be legalised polygamy, and hiraself took four wives, one of whom he beheaded with his own hand in the market-place in a fit of frenzy. As a natural consequence of such licence, Münster was for twelve months a scene of unbridled profligacy. After an obstinate resistance the town was taken by.the besiegers on the 24th June 1535, and in January of the following year Bockhold and some of his more prominent followers, after being cruelly tortured, were executed in the market-place. The outbreak at Münster was the crisis of the Anabap,tist movement. It never again had the opportunity of assuming political importance, the civil powers naturally adopting the-most stringent measures to suppress an agitation whose avowed object was to suppress them. It is difficult to trace the subsequent history of the sect as a religious body. The fact that, after the Münster insurrection, the very name Anabaptist was proscribed in Europe, is at source of twofold confusion. Tho enforced adoption of new names makes it easy to lose the historical identity of many who really:belonged to the Münster Anabaptists, and, on the other hand; has led to the classification of many with the Münster sect who had no real connection with it. The latter mistake, it is to be noted, has been much more common than the former. The Mennunites, for example, have been identified with the earlier Anabaptists, on the ground that they included among their number many of the fanatics of Münster. But the continuity of a sect is to be traced in its principles and not in its adherents, and it must be remembered that Menno and his followers expressly repudiated the distinctive doctrines of the Munster Anabaptists. They have never aimed at any social or political revolution, and have been as remarkable for sobriety of conduct as the Münster sect was for its fanaticism. (See Menvonites.) In English history frequent reference is made to the Anabaptists during the 16 th and 17 th centuries, but there is no evidence that any considerable number of native Englishmen ever adopted the principles of the Minster sect. Many of the followers of Muinzer and Bockhold seem to have fled from persecution in Germany and the Netherlands to be subjected to a persecution scarcely less severe in England. The mildest measure adopted towards these refugees was hanishtuent from the kingdom, and a large number suffered at the stake. It has already beeu explained that the application of the term Anabaptist to those English sects that had nothing in common with the German Anabaptists except tho practice of adult baptism. is unjustifiable. (See Baptists.)

ANABASTS (áváßarts, a march into the interior ; from avaßaive, to ascend), the title given by Xenophon to his narrative of the expedition of Cyrus the jounger against his brother, Artarerxes of Persia, 401 B.c., and adopted by Arrian for his history of the expedition of Alexander the Great. (See Ainsworth's Trav. in Track of T'en Thousand Greeks: Journal of Rou. Geog. Soc. 1870. p. 463.)

ANACHARSIS, a Scythian philosopher, who lived about 600 B.c. His father was one of the chiefs of his nation, and married a woman of Greece. Instructed in the Greek language by his mother, he prevailed upon the king to intrust him with an embassy to Athens. On bis arrival in that renowned city he breame acquainted with Solon, from whom he rapidly acquired a knowledge of the wisdom and learning of Greece. By the influence of Solon he was introduced to the principal persons in Athens, and was the first stranger who received the privileges of citizenship. After he had resided several years at Athens, he travelled through different countries in quest of knowledge, and then returned home filled with the desire of instructing his countrymen in the laws and the religion of the Greeks. According to Herodotus, he was killed by his brother Saulius while he was performing sacrifice to the goddess Cybele. His simple and forcible mode of expressing himself gave birth to the proverbial expression, "Scythian eloquence." (Herodot. iv. 76 ; Lucian, Scytha.)

ANACHRONISM, a neglect or falsification, whether wilful or undesigned, of chronological relation. Its commonest use restricts it (agreeably to its etymology, ává, back, and χ póvos, time) to the ante-dating of events, circumstances, or customs; in other words, to the introduction, especially in works of imagination that rest on a historical basis, of details borrowed from a later age. Anachronisms may be comrnitted in many ways, originating, for instance, in disregard of the different modes of life and thought that characterise different periods, or in ignorance of toe progress of the arts and sciences and the other ascertained facts of history, and may vary from glaring inconsistency to scarcely perceptible misrepresentation. Much of the thought entertained about the past is so deficient in historical perspective as to be little better than a continuous anachronism. It is only since the close of the 18th century that this kind of untruthfulness has jarred ou the general intelligence. Anachronisms abound in the works of Raphael and Shakespeare, as well as in those of the meanest daubers and playwrights of earlier times. In particular, the artists, on the stage and on the canvas, in story and in song, assimilated their dramatis personce to their own nationality and their own time. The Virgin way represented here as au Italian contadina, and there as a Flemish frow; Alexander the Great appeared on the French stage in the full costume of Louis Quatorze down to the time of Voltaire; and in our own country the contemporaries of Addison could behold, without any suspiciod of burlesque,
"Cato's long wig, flower'd gown, and lacquer'd chair."
Considerable difference of opinion has been expressed regarding the legitimacy of anachronism, especially when it is introduced designedly into historical novels. The safe and the just course here appears to be to "regard the writer's end," and not to hold an author responsible for historical accuracy or verisimilitude who docs not profess to write history.

ANACOLUTHON is the lack of grammatical symmetry in a sentence, either through the consequent taking an oncxpected form or being altogether suppressed, the writcr or speaker desiring to present his thought in another aspect, or feeling that he has already made his meaning sufficiently plain. In the case of a man who is full of his subject, or who is carried along by the passion of the moment, such inconsequents are very apt to occur. Of Niebuhr it is told that his oral lectures consisted almost entirely of anacolnthic constructions. To this kind of licence some languages, as Greek and English, readily lend themselves ; while the grammatical rigidity of others, 8 Latin and French admits of it hut smaringly. In Hero
dotus, Thucydides, Eschylus, P'ndar, and Plato, abundant specinens are to be found; and the same is true of the writers of the Lilizabethan ago in our own language. The following is an example:-"And he charged him to tell no mian ; but go show thyself;" de. (Luke v. 14).

ANACONDA, a gigantic snake of Seuth America, semetimes over 30 feet in length, called the water-serpent. from frequentiog swamps and rivers, and preying on water animals. Its colour is a rich brown, with bright goldeu rings on each side, and two rews of large black spots along the back. The natives kill it for an oil they obtain frem its carcase. It is not venemous, and is said to be harmless.

ANACREON, an Ionian Greek, born at Teos, on the coast of Asia Miner, probably about 562 в.c. His reputation as a lyric poet stood very high bath in his own age and in these that fellowed. "The charning"-"the heney-tongued" - "the swan of Teas"-" the glery of Ionia," are some of the epithets censtantly given him by ancient writers. "Sing us one of the sungs of Alceus or Anacreon," cries ene of the guests in a comedy of Aristophanes. "When I hear the verses of Sappho or Anacreon," says the peet to his friends, in the Symposium of Plato, "I set down my cup for very shame of my own performances." But though he has given his name to that class of iight and free lytic effusions which celebrate the joys of leve and wine, he is to us moderns little more than a name. Wé can no lenger say of him, as Horace could, that "time has net drowned his spertive lays;" and we have to judge of his merits as a poet chiefly from the warm praises of those whe had his peems in their hands. Of the five books of lyrical pieces by Anacreon which Suidas and Athenæus mention as extant in their time, we have now but the merest fragments, cellected frem the citatiuns of later writers. Those graceful little poems (most of them first printed frem the MSS. by Henry Stephens in 1554), which long passed among the learned for the sengs of Anacreen, and which are well knewn to many English readers in the translations of Cowley and Moore, are really of much later date, though pessibly here and there genuine fragments of the poet have been weven up in them. They will always retain a certain popularity from their lightness and elegance, and some of them are fair copies of Anscreon's style, which weuld lend itself readily enough to a clever imitator. But an almost cenclusive argument agaiust their genuineness lies in the fact that the peculiar forms of the Ionic Greek, in which Anacreen wrote, are not to be feund in these reputed odes, while the fragments of his poems quoted by ancient writers are full of Iunicisms. Of the poet'e life little is knern beyend a fow scattered netices, not in all cases certainly authentic. He probably shared the voluntary exile of the mass of his fellow-townsmen, whe, when Cyrus. tho Great was laying siege to the Greek cities of Asia, took ship, and founded a colony at Abdera in Thrace, rather than surrender their city to his general Harpagus. From Thrace be soon remeved to the island ef Sames, ruled at that time by Polycrates, one of the grandest of those old "tyrants" whe by ne means deserved the name in its worst sense. It is said that he acted as Pelycrates's tuter; that he stoed very high in his confidence we learn from so good an authority as Herodotus, who represents the peet as sitting in the royal chamber when audience was given to the Persian herald. In return for such favour and protection, be wrete many complimentary odes upon Polycrates and his faveurites. But if an anecdote found in Stobrus is true, he was no mercenary flatterer. On one occasion the "tyrant" presented him with the sum of five talents. Ho spent two wakeful nights in thinking of his meney, and then returned it to the giver, saying that it "was not worth the care it cost bim." A cursory remark in the writings of

Maximus of Tyre sherrs at least the high estimation in which the poet was supposed to have been held by his reyal patron. That writer says that nut even the warning' given to Polycrates by Amasis, king of Egypt, that his tou great prosperity would surely arouse the jealousy of the gods, could make a man doubt the stability of his happi ness, whe had, like Polycrates, the cenmand of the Ionian. sea, a navy so powerful, and such a friend as Anaercon The sante autherity tells us that this companionship exercised a beneficial influence over the etern temper of the tyrant. Like his fellew-lyrist, Hurace, whu was one of his great admirers, and in many respect of a kindred spirit, Anacreon seems to have been made for the society of courts. On the death of Polycrates, Hipparchus, who was then in parer at Athens, and who iuherited the literary tastes of his father Pisistratus, sent a special enbassy to fetch the pepular poet to Atbens in a galley of fifty oars. He must have fully enjoyed and contributell much to the enjoyment of the brilliant circle with which Hipparchus had surrounded binsclif, and there he nade acquaintance, amongst others, with the peet Simenides. When this circle was broken up by the assassination of Hipparchus, Auacreon seems to have returned to his native town of Teos. There, according to a netrical epitaph ascribed to his friend Simenides, he died and was buried. Lucian mentions him amongst his instancey of the longevity of eminent men, as having cempleted eighty-five years. If an anecdote given by Pliny (Nat. Hist. vii. 7) is to be trusted, he was choked at last by a grape-stone ; but the story has an air of mythical adaptation to the poet's habits, which nakes it semewhat apocryphal. Anacreon had a reputation as a compeser of bymuls, as well as of those bacchanalian and amatery lyrics which are commenly associated with his name. Two shert hymns to Diana and Bacchus, consisting of eight and eleven lines respectively, stand first amengst his ferw undisputed remains, as printed by recent editers. But pagan hymns, especially when addressed to such deities as Venus, Eros, and Bacehus, are not so very unlike what we call "Ana. creontic "poetry as to make the contrast of style se great as the word might seem to imply. The tone of Anacreen's lyric effusions bas probably led to an unjust estimate, beth by ancients and moderns, of the peet's personal character. As Homer was accused of bibulous propensities by sems. becauso he makes frequent and kindly mention of "then purple wine," so Anacreon was held to have been "t therough sensualist because he sang so persistently of wine and love. But a poet must net always be judged by. the flights of his fancy. The "triple worship" of this Muses, Wine, and Love, ascribed to him as his religion in an old Greek epigram (Anthol. iii. 25, 51), may bave been as purely prefessional in the twe last cases as in the first, and his private character on such points was probably neither much better nor werse than that of his contemporaries. Athenæus remarks acutely that he seems at least to have been sober when he wrete; and he himself strongly repudiates, as Herace does, the brutal characteristics of intoxication as fit only for "barbarians" and "Scythians" (Fragm. 64, Bergk). His own excuse, when charged with hymning the reigning beauties of the day rather than the orthodox gods and goddesses, is said to have becn mado in these words-

> "But are not these also lesser divinities?"

The best editions of Anacreon are the ${ }^{\circ}$ of J. F: Fischer, Leipsic, 1703, and I. Bergk, Leipsic, 1854. (w. I. c.)

ANADYOMENE ('Avadvou'con); an epithet ef Aphrodite (Venus), expressive of her having risen (i.e., been born) from the foam of the sea. In works of ancient art-e.g., in razay existing bronze statuettes-Venus was represented
under this title as if just emerged from the sea, ana in the act of wringing her tresses. This was the subject of a painting by A pelles, one of the most celebrated pictures of antiquity, the conception having been, it was said, suggested to him by seeing Phryne bathing. This painting belonged first to the people of Cos, from whom it was taken to Rome by Augustus in part payment of tribute levied by him. By the time of Nero it had become alnost entirely ruined by decay.
ANADYR, the name of a gulf and of a river in the north-cast of Siberia. The gulf extends from Cape Tchutotskoi, on the north, to Cape St Thadeus, on the south, forming part of the Behring Sca; while the river, taking its rise from a lake in the Stanovoi mountains, ealled Ivashki or Irachno, about $67^{\circ} \mathrm{N}$. lat., and $173^{\circ} \mathrm{E}$. long., flows through the Tchutchee country, at frst to the west and then to the east, entering the gulf of Anadyrskaia, a branch of the gulf of Anadyr, after a course of about 600 miles. Anadyrsk is the only town on its banks, and the country through which it passes is thinly populated, barren, and desolate. For nine months of the year the ground is covered with snow, and there is not sufficient pasturage for cattle. Reindeer, upon which the inhabitants feed, are found in considerable numbers.
ANESTHESLA (a privative, aicधn $\sigma \iota s$, sensation), a term in medicine used to describe a state of insensibility to external impressions, either as the result of disease or as induced artificially by the employment of certain subshances known as anæsthetics.
In diseases of the brain or spinal cord anæesthesia is an occasional symptom, but in such. cases it is usually limited in extent, involving a limb or a defnite area of the surface of the body. Complete anæesthesia has been observed in persons who were in a state of catalepsy or trance.
The artificial iñduction of anæsthesia by the use of drugs or the inkalation of vapours is a subject of great interest, both historically and from its practical application to the relief of suffering and the treatment of disease. Although it is mainly oming to the researches of distinguished chemists and physicians of the present century that the employment of anxesthesia has come to occupy a furemost place among remedies, there is abundant evidence to show that it is a practice of great antiquity. Besides the mention by Homer of the anæsthetic effects of nepenthe, and the reference by Herodotus to the practice of the Scythians of inhaling the wapours of a certain kind of hemp to produce intoxication, the employment of anesthetics in surgery by the use of mandragora is particularly alluded to by Dioscorides and Pliny. It also appears, from an old Chinese manuscript laid before the French Academy by M. Julien, that a physician named Hoa-tho, who lived in the 3 d century, gave his patients a preparation of hemp, whereby they were rendered insensible during the performance of surgical operations. Mandragora was extensively used as an anæsthetic by Hugo de Lucca, who practised in the 13 th century. The soporific effects of mandrake are alluded to by Shakespeare, who also makes frequent mention of anesthetising draughts, the composition of which is not specifed.

In the Mfedical Gazette, vol. xii. p. 515, Dr Sylvester, quoting from a German work by Meissner, published in 1782, mentions the case of Augustus, king of Poland, who underwent amputation while rendered insensible by a narcotic. But the practice of anæsthesia had never become general, and surgeons appear to have usually regarded it with disfavour. When, towards the close of last century, the brilliant discoveries of Priestley gave an iropetus to chemical research, the properties of gases and mapours began to be more closely investigated, and the Falief was then entertained that mauy of then would
become of great medicinal value. In 1800 , Sir IIumphrey Davy, experimenting on nitrous oxide gas, discovered its anæsthetic propertics, and described the effects it had on limself when inhaled, with the vicw of relieving local pain. He suggested its employment in surgery in the following words:-"As nitrous oxide, in its extensive operatiou, seens capable of destroying physical paiu, it may probably be used with advantage in surgical operations in which no great effusion of bloud-takes place." His sug. gestion, however, remained unhceded for nearly half a century. The inhalation of sulphuric ether for the relief of asthma and other lung affections had been employed by Dr Pearson, of Birmingham, as early as 1785 ; aud in 1805 Dr Warren, of Boston, U.S., used this treatmeut in the later stages of pulmonary consumption.
In 1818 Faraday showed that the inhalation of the vapour of sulphuric ether produced anæsthetic effecti similar to those of nitrous oxide gas; and this property of ether was also shown by the American physicians, Godman (1822), Jackson (1833), Wood and Buche (1834).

These observations, however, appear to have been regarded in the light of mere scientific curiosities and subjects for lecture-room experiment, rather than as facts capable of being applied practically in the treatment of disease, till December 1844, when Dr Horace Wells, a dentist of Hartford, Connecticut, underwent in his own person the operation of tooth extraction while rendercd insensible by nitrous oxide gas. Satisfied, from further experience, that teeth could be extracted in this way without pain, Dr Wells proposed to establish the practice of painless dentistry under the influence of the gas; but in consequence of an unfortunate failure in an experiment at Boston, he abandoned the project. On 30th September 1846, Dr Morton, a dentist of Boston, employed the rapour of sulphuric ether to procure general anxesthesia in a case of tooth extraction, and thereafter administered it in cases requiring surgical operation with completo success. This great achievement marked a new era in surgery. Operations were performed in America in numerous instances under ether inhalation, the result being only to establish more firmly its value as a successful anxsthetic. The news of the discovery reacbed England on 17 th December 1846. On 19 th December, Mr Robinsun, a dentist in London, and on the 21 st , Mr Liston, the eminent surgeon, operated on patients auæsthetised by ether; and the practice soon became general hoth iu Great Britain and on the Continent.
The late Sir James Y. Simpson, of Edinburgn, was the first to apply anesthesia by ether in midwifery practice. This he did on 19th January 1847, and he subsequently employed ether inhalation in numerous cases of both easy and difficult parturition, an account of which he published, containing nuch importaut information. The results of his trials showed that while the anæsthesia annulled the conscious sufferings of the patient, it in no way interfered with the muscular contractions of the uterus and the progress of the labour. and that it dia not irguriviasly affect the child.

These observations excited great interest in the medical world, and led to the extensive employment of ether inhalation till Norember 1847, when Simpson annouuced his discovery of the anxesthetic properties of chloroform (the trial of which had been suggested to him by Mr Waldie, a cbemist of Liverpool), and proposed it as a substitute for sulphuric ether. So convincingly did he demonstrate the great advantages of chloroform, that this substance speedily supcrseded the use of ether as an anasthetic, and continues to the present time probably the most widely-used of all the agents employed in medicine for the relief of huшзи sufferius.

As tho resuft of further investigations in this department of scientific research, in which the labours of Dr Snow, Mr Nunneley, and Dr Richardson bave been conspicuous, unnerous other volatilo organic fluids have been found to possess anæsthetic properties. Sereral of these bave-been used in surgical practice, but as yct none of them have been found to posscss such superiority as would entitle them to supersede chloroform. ${ }^{1}$
There are many who prefer ether as being a safer anæsthetic than chloroforin, less apt to depress the circulation, and less apt to excite romiting; but any advantage it has in these respects appears, in the estimation of surgeons, to be practically counterbalanced by the greater efficiency and facility of application of the latter substance. Ether, however, continues to be largely used in America.

When introduced by inlalation into the system, aniesthetic vapours act upon the brain and sensory nerves in such a manner as more or less completely to abolish their natural sensibility. The degree in which they do this can be in large measure regulated by the quantity administered. Thus, taking the familiar instance of chloroform, the effect of the inhalation of a small quantity (sny less than half a drachm) is a feeling of exhilaration or semi-intoxication, acconıpinied with diminished sensibility to pain, but withont entire loss of consciousness. By continuing the inhalation and increasing the quantity, profound stupor, stertorous breathing, fixing of the eyes, and muscular relaxation mark the occurrence of complete anæsthesia. In many cases it is desirable to produce merely the former of these conditions, riz., that of imperfect anæsthesia; and this is the extent to which chloroform is nsually applied in unzomplicated labour. On the other hand, in surgical operations requiring absolute stillness on the part of the patieut the inhalation must bo carried to the extent of producing total unconsciousness. The state of anxesthesia can be safely kept up for long periods by continuing to apply, with due caution, the anæsthetic vapour. Whenever the inhalation is stopped, consciousncss begins to return, and, in most cases, is soon completcly restored.
The impartance to the science of medicine of the introduction of anxsthesia can scarcely be over-estimated. By the employment of anæsthetics in surgery, not only is the work of the surgeon relieved of a source of embarrassment, and operations the most difficult and delicate undertaken which otherwise would have been impossible, but the death-rate in the worst cases has by universal testimony been greatly diminishcd. In no department of medicine has the use of anæsthetics been so extensive, or their value so manifest, as in midwifery. The power of eblooform in mitigating the pain attendant on ordinary labour, and in facilitating operative interference in cases of difficulty, is a matter of every-day experience in the practice of the accoucheur. In short, there is almost no condition of great physical suffering which may not be alleviated by the employment, under proper precautions, of anæsthetics. But if the boon has been great to medical science, it has been greater still to mankind; fur not merely is an incal. culable amount of actual pain prevented, but the dread of submitting to surgical operations is beyond measare lessened by the thought that they can be performed while the sufferer is kept in a state of tranquil sleep.
Unfortunately, there is no known method of artificially producing insensibility which is entirely free from risk, and deaths have occasionally occurred under the administration of anæsthetic vapours. Like all medicinal substances of a poisonous nature, the utmost care and watchfulness are requisite in their administration. The danger,

[^99]cateris paribus, is in proportion to the dose. It is more than probable that many of the fatal instances of anas. thetic inhalation have been the result of carelessness; and it is certain that by s. better acquaintance with the physinlogical action of the agents employed, and a closer observation of the indications of danger in their use, the deaths may be greatly diminished. The importance of this has been recognised in many large hospitals, where the administration of auxsthetics is entrusted to one individual skilled in their properties and uses.

Dut it is doubtful whether many of the deaths occurring under anæestlesia can justly be ascribed to that cause. Sudden deaths occurring in the course of operations were by 110 means unheard of before anesthetics came to be employed in surgery at c:ll. Even, however, admitting that all the reported cases of death from anesthesia au. correct, it must be acknowledged that they are insignificaut in amount, considering the enormous extent to which the use of chloroform and other anxesthetic agents prevails in all departments of medical practice.

The employment of local anesthesia in surgery has the obvious nivantace of being free fromerisk to lifc. Many means of accomplishing this have been suggested, the bcst known of which is the method of Dr Richardson, of the application of ether spray to the part of the body which it is desired to render insensible. By the rapid evaporation of the cther the tissues become frozen, and insensibility of the part is prodnced. Since, however, the anæsthesia mercly affects the superficial textures, this plan is ouly available in the minor operations of surgery: (J. O. A.)
ANAGNI, a town of Italy, in the province of Roma, situated on a bill 37 miles E.S.E. of Rome. It is ill-builk but contains a cathedral, of the 11th ceatury, and severim ruins. Anagni is the ancient Anagnia, at one time tha capital of the Hernici, and a place of considerable inlpertance both under the Empire and under tho popes. It is still the seat of a bishop. Population, 8220.
ANAGRAM, the transposition of the letters of a word or words, is derived from the Greek ávíypap μa, which was used in precisely the same sense. But the number of different ways in which even a few letters can be arranged being very great (with eight different letters, for instance, it is $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8=40,320$), the tern anagram is generally restricted to such rearrangements of the letters as form other words, and these usually words which express a meaning. Camden (Remains, 7 th ed., 1674) defines "Anagrammatisme" as "a dissulution of a name truly written into his letters, as his elements, and a new connection of it by artificial transposition, without addition, substraction, or change of any letter, into different words, making some perfect sence applyable to the person named." Considering the amount of labour that has been spent (or misspent) in transpositions of this kind,--in "torturing one poor word ten thousand ways,"-the anagrams that display a felicitous perfection of "applyable eence" are remarkably few. Among the best aro the anagramnatic answer to Pilate's question, "Quid est veritas ?"-namely, "Est vir qui adest;" and the transposition of "Horatio Nelson" into "Honor est a Nilo;" and of "Florence Night. ingale" into "Flit on, cheering angel." James I.'s courtiers discovered in "James Stuart" "A just master," and converted "Charles James Stuart" into "Claimes Arthur's scat." "Eleanor Audcley," wife of Sir John Davies, is said to have been brought before the High Commission in 1634 for extravagances, stimulated by the discovery that her name couild be transposed to "Reveale, O Daniel," and to have been laughed out of court by another anagram submitted by the Dean of the Arches, "Dame Eleanor Davies," "Ncver soe mad a ladie." There must be few names that could furnish so many anagrams as that of "Augustus d.

Morgan," who tells that a friend had constructed about s $\mathbf{8} 00$ on his name, specimens of which are given in his Budget of Paradoxes, p. 82. The pseudonyins adopted by anthors are often transposed forms, unve or less exact, of their names; thus "Calvinus" becumes "Alcuinus;" "François Rabelais," "Alcofribas Nasier;" "Bryan Waller Proctor," "Barry Cornwall, poet;"" Henry Rogers," "R. E. LI Greyson," \&c. It is to be noted that the last two are impure anagrams, an " r " being left out in both cases. "Tellianned," a simple reversal, is the fitle of a well-koown work by "De Maillet." The most remarkable pseudonym of this class is the name "Voltaire," which the celcbrated philosopher assumed instead of his family name, "François Marie Arouet," and which is nury generally allowed to be an anagram of "Arouet, l.j.," that is, Arouet the younger. Perbaps the ouly practical use to which auagrams have been turned is to be found in the transpositions in 'which sonne of the astronomers of the 17 th century embodicd their discoveries, with the desigu apparently of avoiding the risk that, while they were engaged in further venification, the credit of what they had found out might be claimed by others. Thus Galileo announced his discovery that Venus had phases like the moon in the form, "Hac immatura a me jam frustra leguntur - oy," that is, "Cynthice figuras øenzulatir Mater' Anoorum."

ANAHUAC, the name of the great central plateau of Mexico, lying between 15° and $30^{\circ} \mathrm{N}$. lat., and 95° and $110^{\circ} \mathrm{W}$. long., at an elevation of from 6000 to 9000 feet above the sea. Anahuac comprises three-fourths of the territory of Mexico, including the capital ; and although much of its surface is level, many lofty mountains rise out of the table-land, the highest of which is Popocatepetl (17,720 feet), an active velcano. The name Anahuac is also used to designate a much less extensive part of the table-land, as well as that portion of the Rocky Mountains which lies to the south of $40^{\circ} \mathrm{N}$. lat. The word itself is said to signify "near the water" in the old Dexican language, and seems to have been at one time the name of several other places in the ancient empire of Mexico.
ANALOGY is the name in logic for a mode of real or material inference, proceeding upon the resemblance between particulars: speaking generally, it is that process whereby, from the known agreement of two or more things in certain respects, we infer agreement in some other point known to be present in one or more, but not known to be present in the other or others. It was signalised already by Aristotle under the different name of Example (rapdiSac γ^{\prime} a), the word Analogy (avadoyia) having with him the special sense of mathematical proportion or resemblance (equality) of ratios. The earliest use of the name in its current logical sense is to be found apparently in Galen. While, in popular language, the word has come to be vaguely used as a synonym for resemblance, the logical authorities, though having generally the same kind of inference in view, are by no means agreed as to its exact nature and ground. It has chiefly to be distinguished from the related process of Induction, in their conception of which logicians are notoriously at variance. (See Lnduction.)

Aristotle, distinguishing Syllogism and Induction as passing the one from whole to part (any part), and the other from part (all the parts! to whole, notes under each a loose or rhetorical form-Enthymeme under Syllogism, and Paradigm, or Example, under Induction. Thas, to give his own instance, it is an inference by way of example-if a war to come of Athens against Thebes is condemned because a past war of Thebes against Phocis is known to have been disastrous. Here the reasoning, which may be eaid to pass from part to part, is esolve: by Aristotle as compounded of an imperfect in-
duction and a syllogisin; the particular cuse of Thebes against Phocis started from being first inductively widened into war between neighbuirs gencrally, and the particular case of Athens against Thebes arrived at being then drawn out hy regular syllogism from that majur. Example, or, to speak of it by its later name, the infercnce from analugy, is thus presented by Aristotle as directly related to induc tion : it differs from an inperfect induction-what is now often called real or matcrial induction from paiticulars iucompletcly enumerated-only in having its conclusion particulat instead of general, aud its datum singular instead of plural.

Kant and his followers, while maintaining a relatiun between induction and analogy, mark the difierence otherwise than Aristotle. By induction, it is said, we seek to prove that some attribute belongs (or not) to all the mennbers of a class, becanse it belongs (or not) to many of that class; by analogy, that all the attributes of a thing belong (or not) to another thing, because many of the attributes belong (or not) to this other. In this country Sir Willians Hamilton has adopted this view (Lectures on Logic, vol. ii. pp. 165-174), though he differs from Kant in understanding it only of the process called applied or modified induction, -not of the pure form of reasoning from all the parts to the whole, which, in the manner of Aristutle, he puts on a level with pure syllogistic deduction. The relation and difference of the two processes may be formulated in the short expressions : One in many, therefure one in all (Induction); Many in one, therefore all in one (Analogy). For instance, it would be an analogical inference-to conclude that a disease corresponding in many symptoms with those observed in typhus corresponds in all, or, in other words, is typhus; whereas it would be an induction-to infer that a particular symptom appearing in a munber of typhus patients will appear in all.
The view of Kant and Hamilton does not reach below the surface of the matter, if it can be maintained at all. In the first of the examples just given the inference might well be a good induction, all depending upon the kind of symptoms that are made the groind of the conclusion; nii the other hand, the second might be a case of mere analogy, not to be called induction. Neither, again, is Aristotie's view satisfactory, which practically makes the difference tu depend upon the mere quantity of the conclusion, worked out as particular for arialogy by appending to the induction involved a syllogism of application. Since the universal always carries with it the particular, and cannot be affirmed unless the particular can, the two processes become to all intents and purposes one and the same. If the particular or analogical conclusion is justifable, it is because there was ground for a good induction (only nut of the pure sort); if there was no ground for a good induction, then, upon Aristotle's resolution, there can be no ground for the particular inference cither. Should it be said, indeed, that the peculiarity of the case lies not so much in the conclusion, as in the start being made from one particular instance, whence the process gets its namo Example, that undoubtedly will distinguish it from anything that can seriously be called induction; but then what becomes of the resolution that dristotle makcs of it t That resolution can be upheld only at the cust of the character of the inductive process.
The logician who has done moat to elaberate the theory of real or material induction, John Stuart Mill, has also been able to give an interpretation of analogy, which, without in the least severing its connection with induction, leaves it as a process for which a distinct name is neces sary. According to him, the two kinds of argument, while homogencous in the type of their inference, which holds for all reasoning frum experience,-namely, that thinges
agreeng with one another in certain respects agree also jncertain other respects,-yet differ in respect of their degree of evidence. In both the argument is from kuown points of agreement to unknown; but, whereas in induction the known points of agreement are supposed by due comparison of instances to have been asecrtained as the material ones for tho ease in hand or conclusion in view,-in other roods, to be invariably connected by way of causation with the inferred properties,-it is otherwise in analogy, where it is only supposed that there is no ineompatibility between the inferred properties and the common properties, or known points of resemblance, that are taken as the ground of inference. Thus, if by comparison of instances it had been ascertained, or otherwise it were known, that organic life is dependent on the bare possession of an atmosphere in planetary bodies rotating upon an axis, then it would be an induction to infer the presence of life upon any heavenly body, known or as yet undiscovered, in which these conditions should be detected. With our actual knowledge, confined to the case of the Earth, and only enabling us to say that the absence of an atmosphere must destroy life, the inference to such a planet as Mars, where the conditions stated seem to be present, is but analogical ; while to the Moon, which seems to have no atmosphere, the inference has not even this amount of force, but there is rather ground for inductively concluding against the possibility of organic lifo. Upon this riew it ceases to be characteristic of analogy that the inference should be to a particular case only; for the inductive cooclusion, when the evidence is of a kind to admit of such being drawn, may as well bo particular; and, again, it may equally well happen that the analogical inference, where nothing stronger can be drawn, should have universal applieation. Notwithstanding, it will be found in general that, where the evidence, consisting of bare similarity of attributes in two or more particular instances, permits only of an analogical inference being made, the extension in thought takes place to particular cases only which have a epecial interest, and the mind hesitates to commit itself to a general law or rule. Mill, therefore, though he does not raise the point, is practically at one with Aristotle and all others who make example or analogy to consist in the passage from one or more particular cases to a particular new case bearing resemblance to the former. It is his peculiar merit to have determined the specific conditions under which the passage in thought, whether to a particular or a general, acquires the authority of an effective induction.

Analogy is so much resorted to in science in default of induction, either provisionally till induction can be made, or as its suostitute where the appropriate evidence cannot be obtained,-it is also much relied upon in practical life for the guidance of conduct,-that it becomes a matter of great importance to determine its conditions. Whether in ecience or in the affairs of life, the abuse of the process, or what is technically called False Analogy, is one of the most besetting snares set for the human mind. It is obvious that, as the argument from analogy proceeds upon bare resemblance, its strength inereases with the amount of similarity; so that, though no connection is, or can be, inductively made out between any of the agrecing properties and the additional property which is the subjeet of inference, yet (in Mill's words), "where the resemblance is very great, the ascertained difference very emall, and our knowledge of the subject-matter very extensive, the argument from analogy may approach in strength very near to a valid induction. If (he continues), after much observation of B , we find that it agrees with A in nine ont of ten of its known properties, we may conclude, with a probability of nine to one, that it will possess any given derivative property of Δ^{n} (Logic, b. iii, c. Ix, §3). Bat it is
equally obvious that against the resemblances the ascertain able differences should be told off. For bare analogy, the differences in the two (or more) cases must as little as the resemblances be known to hisve any cunnection, one way or the other, with the point in question; botl alike Laust only not be known to be immaterial, clse they should fall quite out of the reekoning. As regards the differences, bowever, this is what can least easily be discovered, or is, by the mind in its cagerness to bring things together, nost easily overlooked; and, accordingly, the error of false analogy arises chiefly from neglecting so to con sider them. Thus, if the inference is to the presence of urganic life of the terrestrial type on other planetary bodies, any agrecments, eves whes extending to the detaits of chemical constitution, are of small account in the positive sense, compared with the negative import of such facts as absence of atmosphere in the Moon, and excess of heat or cold in tho inmost or outermost planets. To negleet such points will not simply make the analogy loose; but, as the very point in question is concerned in them, the analogy becomes false and positively misleading. Still greater is the danger when the things analogically bronght together belong not at all to the same natural classes, but the resemblance is only in some internal relation of cach to another thing of jts own kind; as when, for example, under the name of motives, particular states of mind (feelngs, dc.) are supposed to determine the aetion of a man, as the motion of a body may be determined by a composition of forces. In such cases there may be nothing to prevent the drawing of a good analogy upon a strictly limited issue; nay, there may even sometimes, in special circumstances, be ground for drawing an inductive conclusion; but generally the clements of difference are so numerous, and their import cither so hard to appreciate, or, when appreciable, so decisive in a sense opposite to the conclusion aimed at, that to leave them out of sight and argle with. out reference to them, as the mind is tempted to do, vitiates the whole proceeding. What is not sufficient for analngy may, however, be good as metaphor, and metaphor is of no emall use for expository purposes; while (as Mill says), though it is not an argument, it may imply that an argument exists.

The sense just mentioned of a resemblance of relations suggests the question how far the common argument from analogy and mathematically determinate proportion, which was originally called by the name, are cognate processes. Undoubtedly the common argument, proceeding upon resemblance in the properties of things, can be made to assume roughly the guise of a proportion,-e.g., Earth : Mars : : Men : Mars-dwellers, or Earth : Men = Mars : Marsdwellers, the fact of planetary nature, or other resembling attributes gone upon, being regarded as common exponent. Less easy is it to interpret a determinate proportion, with numerical equality of ratios, as analogy in the common sense; for bere the very determinateness makes all the difference.

The name analogy is so suggestive to English readers of Bishop Butler's famous treatise, that a word, in conelusion, scems called for on the nature and scope of the particular application of the process made by him. His work is entitled The Analogy of Religion, Natural and Revealed, to the Constitution and Course of Nature, and consists in an attempt to convince deists that there are no difficultics urged against revelation, or the system of natural religion, which do not bear with equal force against the order of nature as determined by Providence. The argument is a perfectly fair one within the limits assigned, and Butles must be allored the credit of very well apprehending the logical conditions involved in it. In his introduction he nnderutates rather than overstates the strength of his posi
tion; fcr, on the assumption that the system of nature and the system of religion must buth spring from one causal source, bis argument acquires rather an inductive character. Accordingiy, it is interesting to see how, in connection with his sense of analcgy, he practically raises, in bis Introduction, the question which the general theory of iaductive logic, as now understood, has first to consider, -the question, namely, "whence it proceeds that likeness should beget that prcsumptive opinion and full conviction which the human mind is formed to receive from it;" though he would not take it upon him to say "how far the extent, compass, and force of analogical reasoning can be reduced to general heads and rules. and the whole be formed into a system."
(c. c. R.)

ANALOGY, in Comparative Anatonty, is equivalent to "similarity of function." See Avatomy.

ANALYSIS means literally, in the Greek, an unloosening or breaking-up, understood of anything complex in which simpler constituents or elements may thus be brought to view. It is this general sense that must be supposed to have been present to the miud of Aristotle when he gave the name of Analytica to the grcat logical work in which he sought to break up into its elements the complex process of reasoning; as, accordingly, in the body of the work (Anal. Prior. i. 32), we find him once using the verb "analyse" of arguments, when they are to be presented in "figure," or brought to the ultimate formal expression in which they can best be tested or understood. Obviously any more special sense that may be ascribed to the process of analysis must vary with the kind of complex to be resolved. Mental states, material substances, motions of bodies, relations of figures, are but a few examples of the complex things or subjects that fall to be analysed, if there is to be any scientific comprebension of them. Nor is it only that the analysis will be into constituents differing from each other as much as the complex subjects differ; for the same subject may be analysed in different ways, and with very different results, according to the particular aspect in which it is considered. Hence it becomes impossible, or at least rery difficult, to describe the process in any terms fitting equally all the variety of its applications. It is from taking stand by some particular application, and either overlooking all others, or trying to force them within the frame of the one, that different writers have given such discrepant accounts of the process-discrepant often to the extent of being mutually exclusive. The express object of the present article will, on the contrary, be to give an unprejudiced view of the different applications of analysis in science, that one being first and most prominently put forward which was earliest recognised and practised, mamely, mathematical analysis. The other applications, selected for their representative character, will, as they follow, naturally suggest the consideration how far the difference of matter in the various sciences tends to modify the nature of the process which is called analysis in all.

By the side of Analysis, at the different stages, we shall at the same time treat of the related process called, after the Greek, Synthesis, which means a potting together or compounding. If analysis and synthesis were merely related to each other as mutually inverse processes, exposiwry convenience alone might be pleaded in favour of the prarallel treatment; but the two are in practice often cm. ployed as strictly complementary processes, in support of cach other on the same occasion; or, in other words, the composition in synthesis may be a direct re-composition of the principles or elements then and there got out by analysis. As a matter of course, therefore, the foregoing general remarks apply also to synthesis, especially the remark as to the modifying effect of difference in the subject-matter worked with
I. Mathematical Analysis and Synthesis.-In the Ele. ments of Euclid, containing so many examples of geometrical propositions variously established, there is a scholion near the beginning of Book XIII. Which distinguishes two general methods for the treatment of particular questions, under the names of Analysis and Synthesis. In analysis, it is said, the thing sought is taken for granted, and consequences are deduced from it which lead to some truth recognised; synthesis, on the other hand, starts from that which is recognised, and deduces consequences therefrom, till the thing sought is arrived at. With more detail, but some wavering in his use of terms, Pappus of Alex andria (about 380 A.D.) describcs the tro processes at the beginning of Book VIL of his Mathematical Collections. He appears, however, to regard synthesis not at all as an independent process to be applied alternatively with analysis for the solution of particular questions (which is the view suggested by Euclid), but rather as a complementary process bound up with the use of analysis. These are his words: "In synthesis, putting formard as done the thing arrived at as ultimate result in the way of analysis, and disposing now in a natural order as antecedents what were consequents in the analysis, we put them together, and fnally come at the construction of the thing sought." The two processes are involved together in what he calls the тómos ávaluó μ cvos, or, as we may call it, one general Methud of Analysis, the use of which for the solution of problems, he says, has to be learned after the Elements, having been developed by Euclid himself, Apollonius of Perga, and Aristæus the elder. In a similar sense, Robert Simson, its modern editor, speaking of the Euclidean book of Data, calls it "the first in order of the books written by the ancient geometers to facilitate and promote the method of resolution or analysis." Beyond Euclid, however, the invention of the method was carried back by the tradition of antiquity to Plato. The philosopher, whom we know to have been an ardent student of geometry, and otherwise a discoverer in the science, is said by Diogenes Laertius (III. i. 19), to have devised the method for one Leodamas, and is further said by Proclus (Comm. in Eucl., ed. Basil, p. 58) to have made much use of it himself. Though the report is a loose one, it may well be that this method of analysis was first expressly formulated by the theoretic genius of Plato, especially in view of a passage (Eth. Vicom. iii. 5) in Aristotle, which has not been sufficiently noticed, showing that in his time, before Euclid was born, it was currently employed by geometricians. Aristotle there compares the gradually regressive process of thought, whereby the means of effecting a practical end is discovered, to the mathematical way of inquiry upon a diagram, remarking of both that the last stage in the analysis (avanióct) is the first in the production or construction (γ wéoct). - However surprising it may be thought that Aristotle in his logical works makes so little of a process which thus must have been familiar to him, the fact that it was familiar carries it back at least to the time of Plato. In truth it must have been practised earlier still, from the very beginnings of scientific geometry, though it may have had to wait some time to be fermulated.

Taking analysis and synthesis, thus defined, either as distinct processes or as conjoined in one method, called analytical, we have next to see how they were brought to bear by the ancients in treating gcometrical questions. Propositions such as those contained in the Elements fall into tro classes with respect to the form of their enunciation, namely, theorems and problems. The distinction was not marked by Euclid himself, nor is it in any sense radical, for either kind of proposition may easily be transformed into tne expression of the other; but, as commonly accepted, it amounts to this-that a theoren. is given out
as an assertion to be accepted, and bas to be shown true; a problem is given out as an act to ho done, and has to les shown possible. In the case of a theorem, Euclid accordingly, after enunciating the proposition, proceeds generally to show, with more or less of construction on a particular diagram, and working always with fixed definitions, that the assertion follows deductively from certain truths, either assumed as evident (axioms), or formerly proved therefrom, and seen to be applicable to the present caso by inspection of the figure as coustructed. The grounding propositions sre allowed by the reader as they are brought forward, though he may for the moment have not the least ides whither the auther is tending, and at tho end the conclusion is accepted, because the successive premises, being allowed, have been combined logically. In tho caso of a problem, after an express construction for which no reason is given, the object is to show that what has been brought to pass really supplies what was sought ; but the procedure is not cifferent from what it was in the case of a theorem, because the object is attained by showing again that certain truths allowed, in their particular application to the figure constructed, inrolre as a conclusion some relation which the figure is scen to exbibit. Now if this $1 s$ Euclid's procedure in general-there is an exception, aftermards to be noted, whero he proves his point in-directly-it is undeniably synthetic, in any meaning that can be ascribed to that term, the result being obtained by 3 massing or combining of elements or conditions. But on Euclid's part the process is one of demonstration, not of discovery. Still less is the reader's mind in the attitude of discovery: he is led on to a result which is indeed indicated, but by a way which he does not know, and, as it were, blindfold. There must, however, have teen discovery before there could be such demonstration; or how should the proposition admit of definite enunciation at the beginning? Thus there is, in the background, an earlier question of procedure or metbod, and it is this that the ancient geometricians had chiely in view when speaking of analysis and synthesis.

Now, some propositions are so simple that they must bare been seen into almost as soon as conceived, and conceived as zoon as the human mind began to be directed to the consideration of forms or figures; in which case no method of discorery, to speak of, can have been necessary. There is, again, another class of propositions, more complez though still simple, which probably were established by a process of straightforward synthesis. An inquirer must hare in bis head some knowledge in the shape of principles more or less fixed, or be would not be an inquirer; and either tho accidental combination of such principles may lead in his mind to particular results, or the first time a particular question suggests itself to him, it may be seen at once to involve, or to follow from, certain of the principles. Many propositions in the Elements, giving the most apparent properties of triangles, circles, dc., it can hardly bo doubted, were arrived at by this may of discorery, even when a more elaborate process of synthesis was omployed for their formal demonstration ; as, for example, in the case of the famous fifth proposition of Book I. But the same process of direct composition (understood almays as joined with iuspection) is no longer applicable, or is not effective, when the question is of less obrious properties, or of construction to be made under special conditions. To discover the fact or the feasibility in such cases is 80 much the real difficulty, that the question of demonstration becomes of merely secondary importance. And there is even a still prior question of discovery; for it has to be determined that some points rather than others should be made the subject of express inquiry. This, however, may be left aside. To any one engaged in geometrical inquiry, in the constant inspection of figures for the
understanding of their properties and mutund relstions, questions must incessantly be occurring-so inctssantly and inevitably that it is needless, if it were not vain, to seek out a reason for the particular suggestions. As in all discovery to the last, so moro especially at the first stages, there is an element of instinctive tact in the mind's action which eludes expression; and there is also an element of what might be called chance, were it not that those only get the benefit of it whe are consciously on the look-out, cither generally or in sume special direction. A particular question being started by rihatsoever suggestion, how shall the mind arrive at certain knowledge regarding it 3 Such, practically, is the form which is assumed by geometrical inquiry.

Besides the thing suught there is nothing elso given, or at least there is nothing else immodiately given or suggested. But the mind is suyposed to hare some knowledge pertain. ing to the matter-though not extending to the particular aspect of it-in question, also some knowledge of auch matters generally. In such circumstances the aim of the inquirer must be to bring what is sought into some definite relation with what is known. Direct composition or aynthesis of the known, with more or less of construction, if it led to that which is sought as a result, would determine the relation for the inquirer, and determine it in like manner for all who allow the principles whence the conclusion is logically deduced, being thus at one stroke both discovery and demonstration. But synthesis, arbitrarily made, as it must be where the question is at all difficult, may fail, however often it is attempted. Without a proper atart it avails nothing; and what is to determine the start? There is always one course open. Let the objective itself be made the starting-point, and let it be acen whethet thence it may not be possible by aome continuous route to get upon known ground. In other words, a thing sought, when itself assumed, may admit of being brought into relation, upon some side or other, with the body of ascertained knowledge. If it can be so brought, through whatever number of steps, there is then attained as a result what before it was impossible to light upon as a beginning; and now nothing hinders from making the start originally desired, and from reaching as a proper conclusion the assumed beginning, if the path struck out before is measured over again in the opposite direction. The course thus becomes once more synthetic, but only because of what was first accomplished. Till the point in question was mado to yield up its own secret by a process fitly called analysis or resolution, nothing certain could be determined. At the analytic stage, however, the line taken may be troofold. The proposition, assumed at starting as something definite to work frem, cither may bo held as following deductively from some other, which again is dependent on still another or others, till one is worked up to that is known to be true; or it may be taken as itself a premiss leading deductively to scme other proposition, which in turn, by one or more steps, leads to a true proposition as conclusion. In either case tho implication is that a proposition must itself be true, if by any line of formally correct logic it leads to a proposition known to be true. And though the expression must be modified for questions in the form of problems, requiring something to bo done-to which form of question, indeed, tho analytic process is peculiarly applicable-the point of logical principle remains there exactly the same.

But is the process, thus stated as it was understood by the ancient geometricians, logically valid? In the first of the two alternative forms, it is valid: the proposition assumed at starting will undoubtedly be true, if a proposition on which it is shown to be ultimately dependent is true. At the same time, there is in this case no guarastso
that the most effective line for cstabiishing it has been taken, in view of the well-known logical principle that the same conclusion may follow from different premisses. In the other form of the process, where the proposition assumed is itself used as a premiss, the case as to validity is otherwiso. As Aristotle first clearly apprehended and showed, it is quite possible to reach a (materially) true conclusion by strict logical deduction from premisses either one or both false; and thus the mere fact that the proposition assumed is found, in combination with others, to lead to a conclusion known to be true, does nuthing to establish its own character. Yet although the process of analysis thus carried out by way of deduction, as formulated by Euclid and (in one of his expressions) by Pappus, is theoretically faulty, through neglect or ignorance of Aristotle's observation, the practice of Euchid is not therefore invalidated. It was his babit, as Pappus also enjoins, to follow up the analysis by a synthesis consisting in a reversal of it, and this would effectively get rid of error ; since the result of the analysis, if it did not follow from the assumed premiss by true implication, but only accidentally, could not itself, when in turu used as a premiss for the synthesis, be made to yield the original proposition as a legitimate conclusion. In order, homever, to validate this form of analysis it is not necessary to resort to the laborious expedient of retracing the whole path synthetically. As Dubamel, in his treatise Des Méthodes dans les Sciences de Raisonnement (pt. i. c. 5), bas pointed out, it is enough if, at the different stages of the deduction, the inquirer assures himself, as he easily may do where it is the fact, that there is perfect "reciprocity" among the propositions successively obtained from the one first assumed; meaning that, in the circumstances of the deduction, each may as well follow from the one coming after as it is fitted to yield that. And the same simple expedient suffices equally to obviate the less grave defect above noted in analysis carried out by regression from consequents to conditions, or conclusions to premises; reciprocity, if it can be mado out here at the different stages, will guarantee the exclusive validity of the line of reasoning taken. So may analysis become perfectly independent as a method of discovery, and give as much insight as synthesis, where this is directly applicable, does ; while it is-what synthesis is not directly-applicable to overy kind of question, bowever complex.
It is unnecessary, for the purposes of the present article, to enter further into details respecting the methods anciently practised in geometry. Let it suffice to mention only the method of indirect proof known as reductio ad absurdum, emplosed sometimes by Euclid in the Elements. This conforms to the type of analysis in that it starts from the question to be determined, though it is peculiar in following out, not the assumption itself, but what is thereby suggested as excluded, with the final result that the point in question is established upon the ruin of every other supposition. It is a method of discorery as well as a method of demonstration ; while the previous argument has shown that analysis, directly practised, may be made a method of demonstration by itself, besides being the most potent and unfailing instrument of discovery. Also it was secn before that synthesis may be a method of discovery, though it is more frequently employed as a method of demonstration in sequence upon discorery by analysis. To insist thas upon the double character alike of analysis and synthesis, as practised in geometry, is of rital importance, becanse of the change in application which the terms bave undergone among maihematicians. In modern times analysis has come to mean the employment of the algebraical and higher calculus, and synthesis any dircet treatnient of the properties of geometrical figures, in the manner of the ancients, without the use of algebraical notation and
transformations. The excuse fur the change lies in the fact that, while the Greeks had only extremely undeveloped means of analysis, they gave the bighest possible finish and exactness to their synthetic demonstrat ons of geometrical propositions, seldom being content to let their discoveries rest upon the ground of that analysis by which they were made. But though it bas this excuse or motive, the change involves a misunderstanding, as all mathematicians allow who have turned their minds seriously to consider the rationale of their practice. It is, in the first place, clcar that only by the process described above, rightly called analysis, can anything be determined about the more com-plex-properties and relations of geometrical fgures ; haphazard syuthesis is of no avail. The ancients therefore, in their geometry, had an analysis. It is next to be remarked that the algebraical solution of problems is not so exclusively analytic in character that it may not in simpln cases assume the form of direct (algebraical) synthesis ; and in all cases, for verification, it admits of being followed up by an exposition that is truly synthetic. The moderus, therefore, in their calculus, are not without their synthesis. Furthermore, the ancients, however little progress they made, comparatively speaking, in the gencral science of calculation, and however their special methods for the resolution of geometrical questions, even as involving direct figured construction, still more as applying calculation, fell short of the variety and pliability of modern devices, yet bad their own analytical weapons, though they cannot be specified here. For our present purpose it is equally unnecessary to enter into details as regards the modern deviccs, whether belonging to the lower or higher analysis, or as regards the principle for applying them developed by Descartes and his successors ; but to arrogate for these exclusively the name of analysis, it cannot be too pointedly declared, is to lose sight of the end in the means.
II. Chemical Analysis and Synthesis.-Aiter mathematics, chemistry is the science in which application has most expressly been made of processes termed analysis and synthesis. In physics, regarded as the science of motion, whether abstractly taken or as manifested actually in natural bodies, the application is universal ; the resolution and composition of velocities, motions, and forces being fundamental processes pervading the whole science under all variety of circumstances. There is nothing, howerer, in such an cmployment of analysis and synthes's that is not easily intelligible in the light of the processes as practised either in the more general science of mathematics, dealing with relations of quantity in number and form, or in the more special science of chemistry, which deals with those characteristic qualities of actual bodies for Which no definite expression in terms of motion can be found.
The concrete substances in nature are found to be such that some by no means in our power can be brought to anything simpler, while others can be broken up into constituents di fering in character from the original substances and also among themselves. Hence a division is made of bodies into elements and compounds; elements being all such bodies, not farther reducible, as are either actually found in nature, or, though not so found, hare emerged in the manipulation of actual bodies; compounds, all such as, being actually found, are reducible to two or more different elements, or hare by artificial combination been constituted. The process of reduction to elements is called analysis; the proccss of re-combination or free combination is called synthesis. When the analysis is carricd out simply with the riew of detecting what elements are present in a substance, it is called qualitative; and quantitative, if with the further view of detcrmining the definite proportions
(by weight) in which the constituents are present in a definite quantity of the substance There aro correspouding varictics of synthesis.
Now bere the subject-matter is so manifestly different from what it is in mathomaties, that it is. idlo to look for exact correspondence in tho processes practised under the same names within the two seiences. In fact, however, the correspondence is greater than may at first sight appear. Chemical analysis of a given substance is a process of diseovery real and actual, like the analysis of a mathematical problem, and procceds similarly by taking what is given, and working with it in relation to other substances, to sce whether it can be made to yield up aught that is nlready known, or may be regarded as fixed and certain. Again, just as inathematical synthesis may be a process of invention, either generally, by way of combination of principles, or sometimes specially, in reference to particular questions, so does chemical synthesis give a knowledge of new forms of matter, or baply solve the quuestion as to the constitution of particular substances in hand. Once more, the relation of analysis and synthesis as two complementary phases of one process (instead of their being regarded as two processes) is cxhibited as plainly in ebemistry as in mathematies. It may seem to be exhibited even more impressively, when the very constituents got out by analysis of a substance are used in the synthesis to give it being again. This circumstance, however, is far from giving to the seienco of chemistry a character of evidence superior to that of mathematics: its inferiority in this respect is but too well marked, and has a reason that at the same time explains what else is peenliar in its application of analysis and synthesis. The chemist deals with things known only by experience, and connected by way of physical eausation: true, they are things with which he can freely experiment-and this gives to chemistry a prerogative character among the natural sciences-but the things are taken as they are found, and experience is constantly disclosing in each new attributes rhich have simply to be accepted, at least in the present state of our knowledge, by the aide of the others. On the contrary, the mathematician deals rith things over which he las full power of construction, and whose relations in the fact of constructing be constitutes, whetber they are internal or external relations. But positive construction carries with it an insight which is manting in experiment, be the physical conditions ever so farourable; and thus analysis and syinthesis have in mathematics, along with perfect freedom of scope, a determinateness far surpassing anything that is attainable in chemistry.
III. Psychological Analysis and Synthesis.-Passing for the nest signal application of analysis from the world of matter to mind, we bare here a subject which more perhaps than any other calls for an exercise of the process in order to be scientifically understood. Physical things in their superficial relations lie to a great extent open to direct apprehension, and, whatever deeper connections there may be to be traced out among things the most remote in their nature as apprehended, yet the fact of their separation in apace invoived in our perception of then is already anmething done, learing the acientific function (analytic and aynthetic) to be exercised chiefly in the attempt to comprehend them. Very different is the state of affairs in mind, where everything, as it were, runs or melts into everything else. Even to lay hold of paricular mental phenomena, with a view to the explanation of them, implies already an cxpress acientific attitude, which must be called analytic.

Particialar mental states being supposed to be got, with wich definiteness of apprehension (alrays more or less luperfect) as the arbject-matter admits of, the business of
the nsychologist becomes suostantially one with that of the physical inquirer. Accordingly, it is often urged that courplex mental state conform to the two types of mechanical and chemical composition, in the sense that some aro to be resolved after the manner of complex phenomena of motion, and others by a process analogous to that employed in ehemistry for the qualities of concrete substances The emalogy, howerer, especially in the sccund class of states, is decidedly loose. . Psychological phenomena of cognition or emotion, held to be develuped, under general mental laws, out of simpler states of sense, resemble chemical compounds only in having a character unlike that of any of the elements that go to make them; in particular, they do not admit of that actual resolution into their elements which lends so much evidence to the processes of chemistry. The realm of nature supplies a far apter analogy in the phenomens of organic growth, more especially as mental states do, in fact, stand in direct relation with states of the bodily organism. It is as impossible to make an actual analysis or synthesis of the physiological complex of life as of the psychological complex of mind; and it is only more difficult (the phenomena being undoubtedly more recondite and iuctuating) to practise experiments in psychology than in physiology. But, at all events, there is no new principle involved in the scientific treatment of mind; nor again in the treatmeat of moral and social questions, for an insight into which psychological knowledge is indispensable.
IV. Logical Analysis and Synthesis.-To logic, taken in its widest sense as the methodology of all seience, it belongs to appreciate the general import of all sueh applications of analysis and synthesis as have now been considered. There remains, however, a special raricty which is itself entitled logieal analysis and synthesis, and which has the more carefully to be distinguished from the other beads, because it stands in an opposition to them all.

Logical analysis is the same process as that which is otherwise called metaphysical division. (The process called logical division is different. See Logicand Division.) Given, say, a concrete subject liko man, this may be divided physically into a number of parts in space, or, as a concept, metaphysically into a number of qualities or attributes,metaphysically, because none of these has an independent subsistence or physical existence apart. They are distinguished in the way of mental consideration, or, as it is technically called, abstraction; and, this being a thoughtprocess or logical act, the resolution of the given complex into such conceptual elements gets the name also of logical analysis. The corresponding aet of synthesis proceeds by the way that is technically called determination; thus the general concept man, to take the traditional example, has the attribute of rational joined to the attributes of animal, or is determined by that addition, and much else has to be added in a similar way before the particular concrete can be determined.

Now it is evident that such analysis and synthesis have an application to any kind of thought that the mind can conceive; and thus logieians, in meaning, as they bave commonly done, nothing more by the names, have signalised processes that are in truth of no small account for knowledge in general. There is no kind of scientific inquiry, strictly so called, and whatever be its scope and method, that does not involve at all stages from the first such analysis or abstract mental consideration. Nay, it may be aaid that science, as opposed to the natural experience of things, or to the artistic interest which centres upon fully bodied-out concretes, is analysis in this present sense, everywhere breaking up to find community of character under the mask of superficial difference, and sifting ont the one from the many. But when logicians, not
disregarding the various applied methods of the real sciences, or consciously excluding them as lying beyond the province of pure logic, would seek to reduce all scientific procedure to this kind of mental action, the attempt implies a deep misapprebension. It is one thing for the mind to have its subject of inquiry clearly and sharply defined apart from what else is given therewith, or again to have its existing knowledge always well in hand and sifted out to the uttermost; it is another thing for the mind to be making adrances, to be passing out from the known to the unknown, or labouring to bring the unknown into relation with that which is known already. Condillac is the thinker whe has most expressly made the atterrpt to bring all scientific method back to the conception of mere logical analysis, repeating it everywhere throughout his works. The sixteenth chapter of his unfinished treatise, the Langue des Calculs, may especially be noted in this respect; the more because he there endeavours to justify his developed expression for the procedure of all sciencethat it consists in a continued substitution of identical pro-positions-by the actual solution of an algebraical problem. Simple, however, though the instance chosen is, be fails to make good his view, appearing to prove it only by leaving out the step of critical moment.

To analysis and synthesis in the specially logical sense is undoubtedly related the distinction that logicians have made of analytic and synthetic method. Without stepping beyond the bounds of logic conceived as a formal doctrine, a fourth department, under the name of Method or Disposing, may be added to the thrce departments regularly assigned - Conceiving (Simple Apprehension), Judging, Reasoning; and this would consider how reasonings, when employed continuously upon any matter whatever, should be set forth to produce their combined effect upon the mind. The question is formal, being one of mere exposition, and concerns the teacher in relation to the learner. How should results, attained by continuous reasoning, be set before the mind of a learner? Upon a line representing the course by which they were actually wrought out? Or always in the fixed order of following from express priuciples to which preliminary assent is required? If the latter, all teaching becomes synthetic, and follows a progressive route from principles to conclusions, even when discovery (supposing discovery foregone) was made by analysis or regression to principles; of which expository method no better illustration could be given than the practice of Euclid in the demonstrations of his Elements On the other hand, it may be said that the line of discovery is itself the line upon which the truth about any question can best be expounded or understood, for the same reason thàt was found successful in discovery, namely, that the mind (now of the learner) has before it 6omething quite definite and specific to start from; upon which view, the method of exposition should be analytic or regressive to principles, at least wherever the discovery took that route. The blending of both methods, where possible, is doubtless most effective; otherwise it depends upon circumstances-chiefly the character of the learner, but also the nature of the subject in respect of com-plexity-which should be preferred, when one alone is followed.

The question of prime logical, or general, importance remaining is to determine the relation of Analysis and Synthesis as methods of real science, to the ground-processes of all reasoning, known since the days of Aristotle under the names of Induction and Deduction. Much difference of opinion has been expressed on this subject, not only because of the want of agreement as to what should be called analysis and synthesis, but also because of more
fundamental disagreement regarding the nature cf tho inductive and deductive processes.

It was remarked befure as somewhat surprising, that Aristotle himself did not more expressly consider the relation, when we have seen that he was familiar with the process of geometrical analysis, under the very name. The distinction, however, upon which he lays so much stress throughout his rorks, betrcen knowledge from principles, prior or better known by nature, and knowledge of or from facts, prior in experience or relatively to us, has generally bcen understood to imply a conncction of synthesis with deduction, of analysis with induction; so much so indeed, that synthetic and deductive method, analytic and inductive method, have come to bo used respectively almost as interchangeable terms. Nor, although Sir William Hamilton seems to wish to reverse the usual association of the t3rms, when he calls induction a purely synthetic process, and declares it to be erroneously viewed as analytic (Metaphysics, i. p. 102), is he really at rariance with the other authorities; lis observation having a special reference which the others also might allow. But any such association seems to rest upon a misconception, not to be laid to the charge of Aristotle himself. In the sense of analysis and synthesis for which it is important to determine the relation, namely, when they are taken as the means of real discovery in science, the true view rather is that they are the different methods in which reasoning, whether inductive or deductive, must be applied for discovering truth in the form of special or particular questions. Analysis, as well as synthesis, may proceed by way of deduction, as we have seen in the process of mathematics; on the other hand, synthesis as applied in chemistry is as much an inductive act, being strictly experimental, as anything could well be. Induction and deduction are concerned about the relation of the particular and general in thought; analysis and synthesis about the relation of the known and the unknown. The two points of view are of course related to each other : analysis and synthesis, as practised by the human mind, either for purposes of science or in the affairs of life, cannot be worked except under those highest laws of the relation between the particular and general in thought which Aristotle's genius first was able to extract from the instinctive practice of human reason. .But whether the processes are applied singly, or, for greater assurance, conjointly, it depends opon the matter of the inquiry under which laws-those of induction or those of deduction-they shall be worked; and in any case there is implied a peculiar intellectual attitude different from that of mere formal reasoning. It is the difference between the act of finding out and proving. If it should ever become possible to develop a logic of Discovery, it must consist in the formulation of the processcs of Analysis and Synthesis, conceived in the general sense attributed to them in the foregoing article.
(c. c. ह.)

ANALYTIC JUDGMENTS have been distinguished under that name, in opposition to Synthetic, since the time of Kant. It was necessary, for the purposes of his critical inquiry into the principles of human knowledge, that he should carefully determine the character of those assertions , which metaphysicians had so freely made respecting the supernatural, and be found them to be such that, whils the predicate was added on to the subject, not involved in it, the connection was affirmed as necessary and universal. He therefore called them, as well as other assertions of like character in mathematics and pure physics, synthetic judg. ments a priori, and the aim of his critical inquiry came to be the determining of the conditions under which such judgments were possible. Now, as differing from these, he noted two classes of judgments: (1), such as in the predicate added indeed to the content of the subiect, but ooly
ompirically, as, for example, Bodies have weight, and these bo called synthetic.a posteriori; (2), such as were indeed necessary and universal, but added nothing to the coutent of the subject, as, for example, Bodics are extended, and these he called analytic.

The general distinction of analytic and synthetic judg ments bas a value apart from the specific character of those (synthetic) judgments in which liant was most interested, and for the sake of which mainly it was fixed by him. Trained in the metaphysics of the Leibnitzo-Wulfian school, which marked off necessary judgments from those of simple fact without considering the kinds of necessity, Kant, when be came, by the route that can be traced in his carlier works, to apprehend the difference between merely logical analysis and real synthesis in thought, applicd it almost exclusively to those judgments for which a character of necessity was claimed. He therefore noticed traces of the distinction in other thinkers, as Locke, only in so far as there was a suggestion also of this special reference. In truth, the general distinction, under a rariety of expressions, was familiar to both Hume and Locke, and it had already been dramn by the ancients. The old doctrine of the Predicables, in distinguishing the essential predication of genus, species, and difference from the non-essential predication of property and accident, plainly invulses it; making besides, as between the last two predicables, a distinction which is very closely related to that dramn by Kant between the a priori and a posteriori synthetic. From the nominalistic point of view it is expressed by the difference of Verbal and Real propositions, as in Mill's Logic, and also often in Locke.

While the synthetic judgment, as the name implies, brings together in thought two distinct concepts, each of which may be thought apart, the analytic judgment is merely the explication of a single concept in the form of a proposition. It is dispoted that may be the ground of eynthesis in diferent cases, but on all hands it is agreed that the legical Law of Contradiction is the controlling principle for the explication of concepts already in the mind, bowever they may have come there. Now the explication may be mado either completely or partially, according as the whole or part only of the intension of the concept is set furth: in other words, the aim may be to give the definition (where, in the full sense, that is possible), or simply to express any oue or more of the contained attributes. Propositions giving such partial explication are spoken of by Locke as "trifing;" and it is truc that, if the concept is supposed already in the mind, no increase of knowledge is thereby obtained. This word, however, is unfortunate. Not to say that it is equalls applicable to definitions, where the explication is only more complete, it tends to keep out of view the fact that analytic judgments, when not arbitrarily formed, are themselves-or rather the concepts, of which they are the explications, are-the permanent result or deposit of foregone real syuihesis. So much, indeed, is this the case with concepts of things in nature-what Mill calls matural kinds-that in them a constant process of accretion is going on; new attributes, as they are disenvered, being talen up into the essence, if they are at the same time characteristic and underived. Much also that is mere explication to one mind is real information to another.

The terms Analytic and Synthetic, thus applied to judgments, are so expressive in themselves that they have now come into general use. It is, however, a serious drawback to such an association of the terms, that it traverses what is otherwise the consistent use of the words analysis and bynthesis in relation to each other. As the article Anarysis bas shown, there is a synthesis which, as much as any analysis, is purely logical, and there is an analysis which, as much as any synthesis is a means of real advance in
knowledge. The tcrme Explicative (Erläuterungsurthste) aud Ampliative (Erweiterungsurtheile), also emploged by Ǩant, whilo not less cxpressive, are open to no such objection.
(c. C. R.)

ANAM, or Ansam, also called Cocmin Cuina, a large empire of Asia, forming the castern portion of the IndoCbinese peninsula Seo Cochin Cmina

ANASTASIUS I., Emperor of Constantinople, was born at Dyrrhachium not later than 430 A.D. At the time of the death of Zeno (491), Anastasius, though only one of the guards (silentiarii) in the palace, held a very bigh character, and was raised to tho throne of the Roman empire of the East, mainly through the influence of Ariadnc, Zeno's widow, whom he married shortly after his accession. His reign, though afterwards disturbed by foreign and intestine wars and religious distractions, commenced anspiciously. He gained the popular farour by a judicious remission of taxation, and displayed great rigour and energy in administering the affairs of the cmpire. The principal wars in which Anastasius was engaged were those known as the Isaurian and the Persian. The former (492-8) was stirred up by the supporters of Loaginus, the brother of Zeno, and resulted in Anastasius's favour; in the latter (502-5) be was signally defeated, but the provinces the Persians had won from him were restored on payment of a ransom. He also suffered defent at the bands of the Goths of Italy, to check whose incursions be built the "Anastasian wall," extending from the Propontis to the Euxine. For the support he gave to the Eutschians, Anastasius was anathematised by Pope Symmachus. The latter years of his reign were troubled by revolts in Con.stantinople, excited by his avarice and by his reputed heretical tendencics. He died in 518.

ANASTASIUS II., Emperor, whose original name was Artemius, was raised to the throce of Constantinople by the roice of tha senate and people in 713 A.D., on the deposition of Philippicus, whom he had served in the capacity of secretary. His territories being threatened both by sea and land, he sent an army under Leo the Isaurian, afterwards emperor, to defend Syria; adopted wise and resolute measures for the defence of his capital; and equipped and despatched a formidable naval force, with orders not only to resist the approach of the enemy, but to destroy their naval stores. The fleet mutinied at Rhodes, and proclaimed Theodosius, a person of low ex. traction, emperor. After a six months' reign, Constantinople was taken by Theodosius; and Anastasius, who had ned to Nicxa, was compelled to submit to the new emperor, and, retiring to Thessalonica, became a monk (716). In 721 be headed a revolt against Leo, who had succeeded Theodosius, and receivingaconsiderableamount of support, laid siege to Constantinople; but the enterprise failed, and Anastasius falling into Leo's hands, was put to death by his orders.

ANATHEMA (ảvá $\theta \mu$, from ávati $\eta_{\eta \mu}$, lit. anything offered up) is frequently used in classic Greek (in the form ává日 $\quad \mu a$) to denote things consecrated to the gods, and deposited in a temple. In the LXX it is the equivalent of the Hebrew $=-\frac{\pi}{r}$, which denotes an offering devoted to God absolutely, and therefore, in the case of a living creature, put to death. Tho idea of destruction or perdition thus becamo associated with the word, which gradually lost its primas sense of consecration. In the New Testament it signifes senarated from the church and accursed, and it became the technical term for a form of excommunication at an early dato.

ANATULIA (from avarodi, the cast), a name first used under the Byzantine empire for the country east of the Bosphorus. In the form Anadoli, it denotes a modern Turkish division almost coincident with Ast.s Minots \&

A N ATOMY

ANATOMY ('Аvarour) means in its literal sense the dissection or separation of parts by cutting, but in its usual acceptation it is employed to denote the science the province of which is to detennine the construction. the form, and the structure of organised bodies, i.e., of bodies which either are or have been living. It is therefore a department of the science of Biology. It resolves itself into two great divisions-Animal Anatomy or Lootoary, the object of which is to investigate the structure of animals; and Vegetable Anatony or Piryotosis. the object of which is to elucidate the structure of plants. As legctable Anatomy will be treated of in the article Botany, it does not require to be considered here. Animal AxiaTOMY, again, aaturally resolves itself into two divisions: one in which the construction, form, and structure of two or more animals are compared with each other, so as to bring out their features of resemblance or dissimilarity,-this is called Comparative Anatomy; the other, in which the construction, form, and structure of parts in a single animal are considered, which is termed Special Anatony. The special anatomy of an animal may be studied from various points of view: (a) with reference to the succession of forms which it exbibits at various periods from its first appearance as an embryo to the assumption of its adult characters; this is termed Developaental or Embryological Anatoary; (b) with reference either to its form and structure, or to the investigation of the laws by which these are detcrmined, termed Morphological Anatomy; (c) with reference to the function, use, or purpose performed by a part or stricture in an animal, termed Teleological or Physiological Anatomy ; (d) with reference merely to the relative position of different parts or structures, termed Topographical Anatony; (e) with reference to the structure and general properties of the tissues or textures which enter into the construction of the parts or organs of animals; to this branch of study hare been applied the terms Gexeral Asatomy, Avatomy of Textcres, Mistologi, and, from the microscope being so targely employed in the examination of the textures, Microscopic or Mincte ANatomi; (f) with reference to the changes induced by disease in the organs or tissues, termed Morbid or Pathological Anatomy. From its manifold aspects anatomy forms the basis of the Biological Sciences. As a knowledge of the laws of mation is essential, and must be constant] recurred to at every step before any true progress can be made in the investigation of the physical sciences, so must the structure of animal bodies be constantly appeated to by the zoologist in all attempts at classification; by the phrsiologist in all inquiries into the functions performed by the organs and textures in a state of health, and into the special adaptation of parts to particular uses; and by the physician in considerng the alterations or disturbance of the functions of parts in the course of disease. To describe the anatomy :of the multitudinous forms of animal life from these difderent points of view would require, not one, but several voluminous treatises, and would much exceed the compass of a single article. Moreover, it is advisable that the matomy of the different classes of the animal kingdom should be considered under their respective heads,-e.g., that of the Crabs under Crustacea, that of Teptiles under Reptilia, \&c. It is inteuded to devote this article more particularly to the description of the Special Anatomy of the Human Body in a state of health; in other words, to make it a short treatise on Hualis Avatoary or Anthroooromy, which, as forming a department of the geyeral
science of Comparative Λ ns bmy, is interesting not ouly to men of science generally, but, from its intimate connection with the several divisions of the art of healing, and with the study of the furctions of the human budy, possesses the highest importance to the physician, surgeou, aud physiologist.

Previous to entering on the considcration of the Anatomy of the Human Buty, it may be well to take a historical riew of the progress of the science from its origin to the present time.

HISTORY OF ANATOMY.

In tracing the history of the origin of anatomy, it may be justly said that more learniug than judguent has beeu displayed. Some writers claim for it the highest antiquity, and pretend to find its first rudimeuts alternately in the animal sacrifices of the shepherd kings, the Jews, and other ancient nations, and in the art of cmbalming af practised by the Egyptian priests. Eren the descriptions of wounds in the Iliad have been supposed adequate to prove that in the time of Homer mankind had distinct notions of the structure of the human body. Of the first it may be said that the rude information obtained by the slaughter of animals for sacrifice does not imply profound anatomical knowledge ; and those who adduce the second as eridence are deceired by the language of the poet of the Trojan war, which, distinguishing certain parts by their ordinary Greek epithets, as afterwards used by Hippocrates, Galen, and all anatomists, has been rather too easily supposed to prove that the poet had studied systematically the structure of the human frame.

With not much greater justice has the cultiration of anatomical knowledge been ascribed to Hippocrates, who, because he is unirersally allowed to be the father of medicine, has also been thought to be the creator of the science of anatomy. Of the seven indiriduals of the family of the Heracleidee who bore this celebrated name, the second. who was son of Heraclides and Phenarita, and grandson of the first Hippocrates, was indeed distinguished as a rhysician of great observation and experience, and the first who appreciated the value of studying accurately the phenomena, eflects, and terminations of disease. It dues not appear, howerer, notwithstanding the rague and general panegyrics of Riolan, Dartholin, Le Clerc, and Fortal, that the anatomical knowledge of this illustrions person was either accurate or profound. Of the works ascribed to II ppocrates, five only are genuine. Most of them were written either by subsequent authors of the same name, or ly one or other of the numerous impositors who took adrantage of the zealous munificence of the I'tolemies, by fabricating works under that illustrious name. Of the few which are gebuine, there is none expressly deroted to anatomy; and of his knowledge on this subject the only proofs are to be found in the exposition of his plysiological opinious, and his medical or surgisal instructions From those it appears that Hippocrates 1 ad some accurate notions on osteology, but that of the strut bare of the human body in general his ideas were at once superficial and crroneous In his book on injuries of the head, and in that on fractures, he shows that he knew the sutures of the cranium and the relative situation of the bones, and that he had some notion of the shape of the bones in general, and of their mutual connections. Of the muscles, of the soft parts iu general, and of the internal organs, b is ideas are confused. indistinct, and erroneuus. The term $\phi \lambda \epsilon \beta$ s be secms, in imitation of the colloquial Creek, to have uscd gencratu
to signify a Llood-vessel, withont bcing aware of the distinction of vein and artery; and the term áprnpia, or air-holder, is restricted to the windpipe. He appears to have been unaware of the existence of the nervous chords; and the term nerve is used by him, as by Grecian authors in general, to signify a sinew or tendon. On other points lis viets are so much combined with peeuliar physiological doctrines, that it is impossibte to assign them the character of anatomical facts; aud even the works in which these doctrines are contained are with little probability to be ascribed to the second Hippocrates. If, however, we overlook this difficulty, and admit what is contained in the genuine Hippocratic writings to represent at least the sum of knowledge possessed by Hippocrates and his immediate descendants, we find that he represents tho brain as a gland, from which exudes a viscid fluid; that the heart is muscular and of pyramidak shape, and has two ventricles separated by a partition, the fountains of life-and two auricles, receptacles of air ; that the lungs consist of eve ash-coloured lobes, the substance of which is cellular and spongy, naturally dry, but refreshed by the air ; and that the kidneys are glands, but possess an attractive faculty, by virtue of which the moisture of the drink is separated. and descends into the bladder. Ho distioguishes the bowels into colon and rectum (ó àpxós).

The knowledge possessed by the second Hippocrates was transmitted in various degrees of purity to the descendants and pupils, chiefly of the family of the Heracleidæ, who succeeded him. Several of these, with feelings of grateful affection, appear to have studied to preserve the written memory of his instructions, and in this manaer to Lave contributed to form part of that colleetion of treatises which have long been kuown to the learned world under the geaeral name of the Hippocratic writings. Though composed, like the genuine remains of the physician of Cos, in the Ionian dialect, all of them differ from these in being more diffuse in style, more elaborate in form, and in studying to invest their nnatomical and medical matter with the fanciful ornaments of the Platonic philosophy. Hippocrates bad the merit of early'recognising the valuo of facts apart from opinions, and of those facts especially which lead to general results; and in the few genuine writings which are now extant it is easy to perceive that ho has recourse to the simplest language, expresses himself in terms which, though short and pithy, are always precise and perspicuous, and is averse to the introduction of uhilosophical dogmas. Of the greater part of the writings collected under his name, on the contrary, the general character is verboseness, prolixity, and a great tendency to speculative opinions. For these reasons, as well as for others derived from internal evidence, while the Aphorisms, the Epidemics, and the works above mentioncd, bear distinct marks of being the genuine remains of Hippocrates, it is impossible to regard the book $\pi \epsilon \rho$ i Фv́ctos Av $\theta \rho \dot{\text { witrou }}$ as entirely the composition of that physician; and it appa ars more reasonable to viers it as the work of some one of the numerous disciples to whom the author had rommunicated the results of his observatior, which they unvisely attempted to combine with the philosophy of the Platonic school and the : own mysterious opinions.

Among those who a.med at this distinction, the most fortunate in the preservation of his name is Polybus, the son-m-law of the physician of Cos. This person, who must not be confounded with the monarch of Corinth immortalised by Sophocles in the tragie story of Edipus, is represented as a recluse, severcd from the world and its enjoyments, and devoting himself to the study of anatomy and Physiology, and to the composition of works on these subjects. To him has been ascribed the whole of the book on the Nature of the Child and most of that On Man:
both physiological treatises interspersed with anatomical akctches. His anatomical information, with which we are specially concerned, appears to have been rude and inaccurate, like that of his preceptor. He represents the large vessels of the body as consisting of four pairs; the first proceeding from the head by the back of the neck and spinal chord to the hips, lower extremities, and outer anklo ; the second, consisting of the jugular ressels (ai σ фayítif $\delta \varsigma)$, proceeding to the loins, thighs, hams, and inncr ankle; the third proceeding from the temples by the neek to the scapula and lungs, and thence by mutual intererossings to the spleen and left kidney, and tho liver and right kidaey, and finally to the rectum; and the fourth from the forepart of the neck to the upper extremities, the fore-part of the trunk, and the organs of generation.

This specimen of the anatomical knowledge of one of the most illustrious of the Hippocratic diseiples differs not essentially from that of Syennesis, the physician of Cyprus, and Diogenes, the philosopher of Apollonia, two suthors for the preservation of whose opinions wo are indebted to Aristoile. They may be admitted as representing the state of anatomical knowledge among the most enlightened men at that time, and they only show how rude and erroneous were thcir ideas on the struiture of the animal body. It may indeed, without injustice, be said that the anatomy of the Hippocratic school is not only erroneoue. but fânciful and imaginary, in often substituting mera supposition and assertion for what ought tu be matter of fact. From this censure it is impossible to exempt even the name of Plato himself, for whom some notices in the Timceus on the structure of the animal body, as taught by Hippocrates and Polybus, have procured a placo in thao history of the science.

Amidst the general obseurity in which the early history of anatomy is involved, only two leading facts may be sdmitted with certaiaty. The first is, that previous to the time of Aristotle there was no accursts knowledgo of anatomy; and the second, that all that was known was derived from the disseetion of the lower animals ouly. By the appearance of Aristotle this species of knowledgg, which was hitherto acquired in a desultory and irregulas manner, began to be cultivated aystematically and with a definite object ; and among the services which the philo sopher of Stagira rendered to mankind, one of the createst and most substantial is, that he was the founder of Comparative Anatomy, and was the first to apply its facts to the elucidation of zoology. The works of this ardent and origsual naturalist show that his zootomical krowledgo was extensive and often accurate; and from several of his descriptions it is impossible to doubt that they were derived from frequent personal dissection. Aristotle, who was born 334 years before the Christian era, or in the first year of the 99 th Olympiad, was, at the age of 39 , requested by Philip to undertake the education of his son Alezander. During this period it is said he cumposed several works on anatomy, which, bowever, are now lost The military expedition of his royal pupil into Asia, by laying open the animal stores of that vast and little known continent, furnished Aristotle with the means of extending his knowledge, not only of the animal tribes, but of their structure, and of communicating more accurate and distinct notions than were yct accessible to the world. A sum of 800 talents, and the concurrent aid of numerous intelligent assistants in Greece and Asia, were inteuded to facilitate his rescarches in composing a system of zoological know: ledge ; but it has been observed that the nember of instances in which he was thus compelled to trust to the testimony of other observers led him to cominit errors in description which personal abservation might have enablok him to avoid

The first three books of the History of Animals, a treatise consisting of ten books, and the four books on the Parts of Animals, constitute the great monument of the Aristotelian Anatomy. From these we find that Aristotle was the first who corrected the erroneous statements of Polybus, Syennesis, and Diogenes regarding the bloodvessels, which they made, as we have seen, to arise from the head and brain. These he represents to be two in number, placed before the spinal column, the larger on the right, the smaller on the left, which, he also remarks, is by some called aorta (uंopró), the first time we observe that this epithet occurs in the history. Both he represents to arise from the heart, the larger from the largest upper cavity, the smaller or aorta from the middle cavity, but in a different manner and forming a narrower canal. He also distinguishes the thick, firm, and more tendinous structure of the aurta from the thin and membranous structure of vein. In describing the distribution of the latter, however. he confounds the vena cava and pulmonary artery, and, as might bo expected, he confounds the ramifications of the former with those of the arterial tubes in general. While he represents the lung to be liberally supplied with blood, he describes the brain as an organ almost destitute of this fluid. His account of the distribution of the aorta is wonderfully correct. Though he does not notice the coeliac, and remarks that the aorta sends no direct branches to the liver and spleen, he had observed the mesenteric, the renal, and the common iliac arteries: It is nevertheless singular that though he remarks particularly that the renal branches of the aorta go to the substance and not the pelvis (кothia) of the kidney, he appears to mistake the ureters for branches of the aorta. Of the nerves (vevpá) he appears to have the most confused notions. Making them arise from the heart, which he says has nerves (tendons) in its largest cavity, he represents the aorta to be a nervous or tendinous vein (vevpéoins $\phi \lambda \epsilon \beta_{\mathrm{s}}$). By and by, afterwards saying that all the articulated bones are connected by nerves, he makes them the same as ligaments.

He distinguishes the windpipe or air-holder (áprŋpía) from the œesophagus, because it is placed before the latter, because food or drink passing into it causes distressing cough and suffocation, and because there is no passage from the lung to the stomach. He knew the situation and use of the epiglottis, seems to have had some indistinct notions of the laryux, represents the windpipe to be necessary to convey air to and from the lungs, and appears to have a tolerable understanding of the structure of the lungs. He repeatedly represents the heart, the shape and site of which he describes accurately, to be the origin of the blood-vessels, in opposition to those who made them descend from the head; yet, though be represents it as full of blood and the source and fountain of that fluid, and even speaks of the blood flowing from the heart to the veins, and thence to every part of the body, he says nothing of the circular motion of the blood. The diaphragm he distinguishes by the name $\delta \iota a ́ \xi \omega \mu a$, and $i \pi o ́ \xi \omega \mu a$. With the liver and spleen, and the whole alimentary canal, he seems well acquainted. The several parts of the quadrup!e stomach of the ruminating animals are distinguished and named; aud he even traces the relations between the teeth and the several forms of stomach, and the length or brevity, the simplicity or complication, of the intestinal tube. Upon the same principle he distinguishes the jejunum ($\dot{\eta} \eta \tilde{\eta} \sigma \tau / s$), or the empty portion of the small intestines in
 the colon ($\tau o ̀ ~ к \hat{\omega} \lambda o v$), and the sigmoid flexure (σ тcvertepov
 translation of his description of the straight progress ($\epsilon \dot{i} \theta^{\prime}$) of the bowel to the anus (π owiotos). He knew' the riasal
cavities and the jassage from the tympanal cavity of tio ear to the palate, afterwards described by Eustachius. He distinguishes as "partes similares" those structures, such as bone, cartilage, vesscls, sinews, blood, lymph, fat, flesh, which, not confined to one locality, but distributed throughout the body generally, we now term the tissues or textures, whilst he applies the term "partes dissımilares" to the regions of the head, neck, trunk, and extremitics.

Next to Aristotle occur the names of Diocles of Carystus, and Praxagoras of Cos, the last of the family of the Asclepiadæ. The latter is remarkable for being the first who distinguished the arteries frum the veins, and the author of the opinion that the former were air-vessels.

Hitherto anatomical inquiry was confined to the examination of the bodies of brute animals. We bave, indecd, no testimony of the human body being submitted to examination previous to the time of Erasistratus and Herophilus ; and it is rain to look for authentic facts on this point before the foundation of the Ptolemaic dynasty of sovereigus in Egypt. This event, which, as is generally known, succeeded the death of Alexander, 320 years before the Christian era, collected into one spot the scattered embers of literature and science, which were begenning to languish in Greece under a weak and distracted government and an Alexen unsettled state of suciety. The children of her divided drias states, whom domestic discord and the uncertainties of schooi war rendered unhappy at home, wandered into Egypt, and found, under the fostering hand of the Alexandrian monarchs, the means of cultivating the sciences, and repaying with interest to the country of Thoth and Osiris the benefits which had been conferred on the infancy of Greece by Thales and Pythageras. Alexandria became in this manner the repository of all the learning and knowledge of the civilised world? and while other nations were sinking under the effects of internal animosities and mutual dissensions, or ravaging the earth with the evils of war, the Egyptian Greeks kept alive the sacred flame of science, and preserved mankind from relapsing into their original barbarism. These happy effects are to be ascribed in an eminent degree to the enlightened government and liberal opinions of Ptolenny Soter, and his immediate successors Philadelphus and Euergetes. The two latter princes, whose authority was equalled only by the zeal with which they patronised science and its professors, were the first who enabled physicians to dissect the human body, and prevented the prejudices of ignorance and superstition from compromising the welfare of the human race. To this happy circumstance Herophilus and Erasistratus are indebted for the distinction of being known to posterity as the first anatomists who dissected and described the parts of the human body. Both these physicians flourished under Ptolemy Soter, and probably Ptolemy Philadelphus, and were indeed the principal supports of what has been named in medical history the Alexandrian School, to which their reputation scems to have attracted numerous pupils. But though the concurrent testimony of antiquity assigns to these physicians the merit of dissecting the human body, time, which wages endless war with the vanity and ambition of man, has dealt hardly with the monuments of their labours. As the works of neither have been prescred, great uncertainty prevails as to the respective merits of these ancient anatomists; and all that is now known of their anatumical researches is obtained from the occasional notices of Galen, Oribasius, and some other writers. From these it appears that Erasistratus recognised the valves of the heart, and distinguished them by the names of tricuspid and sigmoid; that he studied particularly the shape and structure of the brain, and its divisions, and cavities, and membranes, and likened the convolutions to the folds if the jejunum ; that he first formed a' distinct idea of the

Lature of the nerves, which he made issue from the brain; and that he discovered lymplatic vessels in the mesentery, first in brute animals, and afterwards, it is said, in man. He appears also to have distinguished the nerves into those of sensation and those of motion.

Of Ifcrophilus it is said that he had cxtensive anatomical knowledge, acquired by dissccting not only brutes but human budies. Of these he probably dissected more than any of his predecessors or contemporaries. Devoted to the assiduous cultivation of anatomy, he appears to lave studicd with particular attention those parts which wero least understood. He recognised the nature of the pulmonary ertery, which he denominates arterious vein; he knew the ressels of the meseotery, and showed that they did not go to the vena porta, but to certain glandular bodies; and he first applied the name of tocelve-inch or
 canal which is next to the stomach. Like Erasistratus, he appears to have studied carefully the confguration of the brain; and though, like him, he distinguishes the nerves into those of sensation and those of voluntary motion, he adds to them the ligaments and tendons. A tolerable description of the liver by this anatomist is preserved in the writings of Galen. He first applied the name of choroid or vascular membrane to that which is found in the cerebral ventricles; he knew the straight venous sinus which still bears his name; and to him the linear furrow at the bottom of the fourth ventricle is indebted for its name of calamus scriptorius.

The celebrity of these two great anatomists appears to have thrown into the shade for a long period the names of all other inquirers; for, among their numerous and rather celebrated successors in the Alezandrian school, it is impossible to recognise a name which is entitled to dis tinction in the bistory of anatomy. Io a chasm so mide it is not uninteresting to find, in one whe combined the characters of the greatest orator and pkilosopher of Rome, the most distinct traces of attention to anatomical knowledge. Cicero, in his treatise De Natura Deorum, in a short sketch of physiology, such as it was taught by Aristotle and his disciples, introduces varions anatomical notices, from which the classical reader may form some idea of the state of anatomy at that time. The Roman orator appears to have formed a pretty distinct idea of the shape and connections of the windpipe and lungs; and though he informs his readers that he knows the alimentary canal, he omits the details through motives of delicacy. In imitation of Aristotle, he talks of the blood being conveyed by tie veins (vcnce), that is, blood-vessels, through the body at large; and, like Praxagoras, of the air inhaled by the lungs being conveyed through the arteries.

Aretæus, though chiefly known as a medical author, makes some observations on the lung and the pleura, maintains the glandular structure of the kidney, and describes the anastomosis or communications of the capillary extremities of the vena cava with those of the portal vein.

The most valuable depository of the anatomical knowledge of these timcs is the work of Celsus, one of the most judicious medical authors of antiquity. He left, indeed, no express anatomical treatise; but from the introductions to the 4 th and 8th books of his work, De Medicina, with incidental remarks in the 7 th, the modern reader may form very just ideas of his anatomical attainnaents. From these it appears that Celsus was well acquainted with the windpipe and lungs and the heart; Fith the difference between the windpipe and cesophagus (stomachus), which leads to the stomach (ventriculus); and with the shape, situation, aod relations of the diaphragm. He enumerates also the principal facts relating
to the situation of the liver, the spleen, the kidneys, and the stomach. He appears, however, to have been unaware of the distinction of duodenum or twelve-inch bowel, already adunitted by Herophilus, and represents the stomach as directly connected by meaus of the pylorus with the jejunum or upper part of the small intestine.

The ith and 8th books, which are devoted to the consideration of those diseases which are treated by manual operation, contain sundry anatomical notices necessary to explain the nature of the diseascs or mode of treatment. Of these, indeed, the merit is unequal ; and it is not wonderful that the ignorance of the day prevented Celsus from understandiag rightly the mechanism of the pathology of bernia. He appears, however, to have formed a tolerably just idca of the mode of cutting into the urinary bladder; and even his obstetrical instructions show that lis knowledge of the uterus, vagina, and appendages was not cuntemptible. It is in osteology, however, that the information of Celsus is chiefly conspicnuus. He enumerates the sutures and several of the holes of the cranium, and describes at great length the superior and inferior maxillary bunes and the teeth. With a good deal of care be describes the vertebræ and the ribs, and gives very kriefly the situation and shape of the scapula, humerus, radius, and ulna, and even of the carpal and metacarpal bones, and then of the different bones of the pelvis and lower extremitics. He had forined a just idea of the articular connections, and is desirous to impress the fact that none is formed without cartilage. From his mention of many minute holes (multa et tenuia foramina), in the recess of the nasal cavities, it is evident that he was acquainted with the perforated plate of the ethmoid bone; and from saying that the straight part of the auditory canal becomes lexuous, and terminates in numerous minute cavities (multu et tenuia joramina diducitur), it is inferred by Portal that he knew the semicircular canals.

Though the writings of Celsus show that he cultivated anatomical knowledge, it does not appear that the science was much studied by the Romans ; and there is reason to believe that, after the decay of the school of Alexandria, it languished in neglect and obscurity. It is at least certain that the appearance of Marinus during the reign of Nero is mentioned by authors as an era remarkable for anatomical inquiry, and that this person is distinguished by Galen as the restorer of a branch of knowledge which had been before him suffered to fall into undeserved neglect. From Galea also we learn that Marinus gave an accurate account of the muscles, that he studied particularly the glands, and that he discovered those of the.mesentery. He fixed the number of nerves at seven; he observed the palatine nerves, which he rated as the fourth -pair ; and described as the fifth the auditory and facial, which ho regards ass one pair, and the hypoglossal as the sixth.

Not long after Marinus appeared Ruffus of Ephesus, a Rufter: Greek physician, who in the reign of Trajan was mucl attached to physiology, and as a means of cultivating this science studied Comparative Anatomy, and made sundry experiments on living animals. Of the anatomical writings of this author there remains only a list or catalogue of names of different regions and parts of the animal body. He appears, however, to have directed attention particularly to the tortuous counce of the uterine vessels, and to have recognised even at this early period the Fallopian tube. Ife distinguishes the eerves into those of sensation and those of motion. He knew the rccurrent nerve. Hia name is further associated with the ancient experiment of compressing in the situation of the carotid arteries the pneumogastric nerve, and thereby inducing insensibility and loss of voice.

Of all the authors of antiquity, however, none possessea

80 just a claim to the title of anatomist as Claudus Galeures, the celebrated physician of Pergamus, who was born about the 130 th jear of the Christian era, and lived under the reigns of Hadrian, the Antonines, Commodus, and Severus. He was trained by his father Nicon (whose memory he embalms as an eminent mathematician, architect, and astronomer) in all the learning of the day, and initiated particularly into the mysteries of the Aristotelian philosophy. In an order somewhat whimsical he afterwards atudied philosophy successively in the schools of the Stoics, the Academics, the Peripatetics, and the Epicureans. When he was seventeen years of age, his father, he informs us, was admonished by a dream to devote his son to the study of medicine; but it was fully two jears after that Galen entered on this pursuit, under the auspices of an instructor whose name be has thought proper to conceal. Shortly after he betook himself to the study of anatomy under Satyrus, a pupil of Quintus, and of medicine under Stratonicus, a Hippocratic physician, and Eschrion, an empiric. He had scarcely attained the age of twenty when he had occasion to deplore the loss of the first and most affectionate guide of his studies; and soon after he proceeded to Smyma to obtain the anatomical instructions of Pelops, who, though mystified by some of the errors of Hippocrates, is commemorated by his pupil as a skilful anatomist. After this he appears to bave visited various cities distinguished for philosophical or medical teachers; and, finally, to have gone to Alexandria with the view of cultivating more accurately and intimately the study of anatomy under Heraclianus. Here he remained till his twenty-eighth year, when he regarded himself as possessed of all the knowledge then attainable through the medium of teachers. He now returned to Pergamus to exercise the art which he had so anxiously studied, and received, in his twenty-ninth jour; an unequivocal testimony of the confidence which his fellow-citizens reposed in his skill, by being intrusted with the treatment of the wounded gladiators; and in this capacity he is said to have treated wounds with success which were fatal under former treatment. A seditious tumult appears to have cansed him to form the resolution of quitting Pergamus and proceeding to Rome, at the age of thirty-two. Here, however, he remained only five years; and returning once more to Pergamus, after travelling for some time, finally settled in Rome as physician to the Emperor Commodus. The anatomical writings ascribed to Galen, which are numerous, are to be viewed not merely as the result of personal research and information, but as the common depository of the anatomical knowledge of the day, and as combining all that he had learnt from the several teachers under whom he successively studied with whatever personal investigation enabled him to acquire. It is on this account not always easy to distinguish what Galen had himself ascertained by personal research from that which was known by other anatomists. This, however, though of moment to the history of Galen as an anatomist, is of little consequence to the science itself; and from the anatomical romains of this anthor a pretty just idea may be formed both of the progress and of the actual state of the science at that time.

The osteology of Galen is undoubtedly the most perfect of the departments of the anatomy of the ancients. He names and distinguishes the bones and satures of the cranium nearly in the same manner as at present. Thus, he notices the quadrilateral shape of he parietal bones; he distinguishes the squamous, the styloid, the mastoid, and the petrous portions of the temporal bones; and he remarks the peculiar sitnation and shape of the sphenoid bone. Of the ethmoid, which he omits at first, he afterwards speaks more at large in another treatise. The malar bo noticos under the name of zygomaticitbone; and he
describes at length the upper maxillary and nasal bones, and the connection of the former with the sphenoid. He gives the first clear account of the number and situation of the vertebræ. which he divides into cervical, dorsal, and lumbar, and distinguishes from the sacrum and cocigr Under the head Bones of the Thorax, he enumerates the sternum, the ribs ($\alpha i \pi \lambda$ oupai), and the dorsal vertebræ, the connection of which with the former he designates as a variety of diarthrosis. The description of the bones of the extremities and their articulations concludes the treatise.

Though in myology Galen appears to less advantage than in osteology, he nevertheless had carried this part of auatomical knowledge to greater perfection than any of his predecessors. He describes a frontal muscle, the six muscles of the eye, and a seventh proper to animals; a muscle to each ala nasi, four muscles of the lips, the thin cutaneous muscle of the neck, which he first termed platysma myoides, or muscular expansion, two muscles of the eyelids, and four pairs of muscles of the lowor jaw-the temporal to raise, the masseter to draw to one side, and two depressors, corresponding to the digastric and internal pterygoid muscles. After speaking of the muscles which move the head and the scapula, he adverts to those by which the windpipe is opened and shut, and the intrinsic or proper muscles of the larynx and hyoid bone. Then follow those of the tongue, pharynx, and neck, those of the npper extremities, the trunk, and the lower extremities successively; and in the course of this description he swerves so little from the actual facts that most of the names by which he distinguishes the principal muscles have been retained by the best modern anatomists. It is chiefly in the minute account of these organs, and especialiy in reference to the minuter muscles, that he appears inferior to the moderns.

The angiological knowledge of .Galen, though vitiated by the erroneous physiology of the times and ignorance of the separate uses of the arteries and veins, exhibits, nevertheless, some accurate facts which show the diligence of the anthor in dissection. Though, in opposition to the opinions of Praxagoras and Erasistratus, he proved that the arteries in the living animal contain not air but blood, it does not appear to have occurred to him to determine in what direction the blood flows, or whether it was movable or stationary. Representing the left rentricle of the heart as the common origin of all the arteries, though he is misled by the pulmonary artery, he nevertheless traces the distribution of the branches of the aorta with some accuracy. The vena azygos also, and the jugular veins, hare contributed to add to the confusion of his description, and to render his angiology the most imperfect of his works.

In neurology we find him to be the author of the dogma that the brain is the origin of the nerves of sensation, and the spinal chord of those of motion; and he distinguishes the former from the latter by their greater softness or less consistence. Though he admits only seren cerebral pairs, he has the merit of distinguishing and tracing the distribution of the greater part of both classes of nerves with great accuracy. His description of the brain is derived from dissection of the lower animals, and his distinctions of the several parts of the organ luare been retained by modern anatomists. His mode of demonstrating this organ, which indeed is clearly described, consists of five different steps. In the first the bisecting membrane-i.e. the falx $\langle\mu \hat{\eta} v i \gamma \xi$ סехото μ оै $\sigma \alpha$) - and the connecting blood-vessels are remored; and the dissector, commencing at the anterior extremity of the great fissure, separates the hemispheres gently as far as the torcular, and exposes a smooth surface ($7 \dot{\eta} \nu \chi$ đ́pav Tu入ió $\eta \pi \omega s$ ovacav), the mesolobe of the moderns, or the middle band. In the second he exposes bysuccessive sections the ventricles, the choroid plexus, and the middle partition.

The third exhibits the pineal body ($\sigma \hat{\mu} \mu a$ кнvociós) or conarium, concealed by q mémbrane with numcrous veins, meaning that part of the plexus which is now known by the name of velum interpositum, and a complete view of tho ventricles. The fourth unfolds the third ventricle (ris äll \quad тpion кoilia), the communication between the
 fornix, and the passage from the third to the fourth ventricle. In the fifth he gives an accurate description of the relations of the third and fourth ventricle, of the situation of the tro pairs of eminences, nates (γ dourá) and testes ($\delta i \delta v \mu i a$ or öpxeis), the scolecoid or worm-like process, anterior and posterior, and lastly the linear furrow, called by Heruphilns calamus scriptorizs.
In the account of the thoracic organs equal accuracy may be recognised. He distinguishes the pleura by the aame of inclosing membrane ($i \mu \eta \nu \quad i \pi \varepsilon \zeta ш к ш ́ s, ~ m e m b r a n a ~$ succingens), and remarks its similitude in structure to that of the peritoneum, and the covering which it affords to all the organs. Tho pericardium also he describes as a membranous sac with a circular basis corresponding to the base of the heart, and a conical apex ; and after an account of the tunics of the arteries and veins, he speaks shortly of the lung, and mure at length of the heart, which, however, he takes somo pains to prove not to be muscular, because it is harder, its fibres are differently arranged, and its action is incessant, whereas that of muscle alternates with the state of rest; he gives a good account of the valres and of the vessels; and notices especially the bony ring formed in the heart of the horse, elophant, and other large animals.

The description of the abdominal organs, and of the kidneys and urinary apparatus, is still more minute, and in general accurate. Our limits, however, do not permit us to give any abstract of them; and it is sufficient in general to say that Galen gives correct vicws of the arrangement of the peritoneum and omentum, and distinguishes accurately the several divisions of the alimentary canal and its component tissues. In the liver, which he allows to reccive an envelope from the peritoneum, he admits, in imitation of Erasistratus, a proper substance or parenchyma, interposed between the vessels, and capable of removal by suitable dissection. His description of the organs of generation is rather brief, and is, like most of his anatomical sketches, too much blended with physiological dogmas.
This short sketch may communicate some idea of the condition of anstomical knowledge in the days of Galen, who indeed is justly entitled to the character of rectifying and digesting, if not of creating, the science of anatomy among the ancients. Though evidently confined, perhaps entirely by the circumstances of the times, to the dissection of brute snimals, so indefatigable and judicious was he in the mode of acquiring knowledge, that many of his names and distinctions are still retained with advantage in the writings of the moderns. Galen was a practical anatomist, and not only describes the organs of the animal body from actual dissection, but gives ample instructions for the proper mode of exposition. His language is in general clear, his style as correct as in most of the duthors of the same period, and his manner is animated. Few passages in early science are indeed so interesting as the description of the process for demonstrating the brain and other internal organs which is given by this patient and onthusiastic observer of nature. To some it may appear absurd to speak of anything like good anatomical description in an author who writes in the Greek language, or anything like an interesting and correct manner in a writer who flourished at a period when taste was depraved or extinct and literature corrupted, -when the philosophy of Antoninus and the mild virtues of Aurelius could do
little to soften the iron sway of Lucius Verus and Commodus; but the habit of faithful abservation in Galen seems to have been so powerful that, in the description of material objects, his genius invariably rises above the circumstances of his age. Though not so directly connected with this subject, it is nevertheless proper to mention that he appears to have been the first anatomist who can be said, on authentic grounds, to have attempted to discover the uses of organs by vivisection aud experiments on living animals. In this manner he ascertained the position and demonstrated the action of the heart ; and he mentions two instances in which, in consequence of disease or injury, he had an opportunity of orserving the motions of this organ in the human body. In short, without eulogising an ancient anthor at the expenso of critical justice, or commending his anatomical descriptions as superior to those of the moderns, it must be admitted that the anatomical writings of the physician of Pergamus form a remarkable era in the history of the science; and that by diligence in dissection and accuracy in description he gave the science a degree of importance and stability which it has retained through the lapse of many ceuturies.

The death of Galen, which took place at Pergamus in the ninetieth year of his age and the 193d of the Christian era, may be regarded as the downfall of anatomy in ancient times. After this period we recognise only two names of any celebrity in the history of the science-those of Soranus and Oribasius, with the more obscure ones of Meletius and Theophilus, the latter the chief of the imperial guard of Heraclius.

Soranus, who was an Ephesian, and flourished under the emperors Trajan and Hadrian, distinguished himself by his researches on the female organs of gencration. He appears to have dissected the human subject; and this perhaps is one reason why his descriptions of these parts are more copions and more accurate than those of Galen, Who derived his knowledge from the bodies of the lower animals. He denies the existence of the hymen, but describes accurately the clitoris. Soranus the anatomist must be distinguished from the physician of that name, who was also a native of Ephesus.

Oribasius, who was born at Pergamus, is said to have Oribesia been at once the friend and physician of the Emperor Julian, and to have contributed to the elevation of 361-363 that apostate to the imperial throne. For this he appears to have suffered the punishment of a temporary exile under Valens and Valentinian ; but was soon recalled, and lived in great honour till the period of his death. By Le Clere, Oribasius is regarded as a compiler; and indeed his anatomical writings bear so close a correspondence with those of Galen that the character is not altogether groundless. In various points, nevertheless, be has rendered the Galenian anatomy more accurate ; and he has distinguished himself by a good account of the salivary glands, which were overlooked by Galen.

- To the same period generally is referred the Anatomical Introduction of an anonymous author, first published in 1618 by Lauremberg, and more recently by Bernard. It is to be regarded as a compilation formed on the model of Galen and Oribasius. The same character is applicable to the treatises of Meletius and Theophilus.

The decline indicated by these languid efforts soon sunk into a state of total inactivity; and the unsettled state of society during the latter ages of the Roman empire was extremely unfavourable to the successfui cultivation of science. The sanguinary conflicts in which the eouthern countries of Europe were repeatedly engaged with their nerthern neighbours, between the eecond and eighth centuries, tended gradually to estrange their minds from ecientific pursuits ; and the hordes of barbarians by which
$t^{T} \cdot 0$ Roman empire was latterly overun, while they urged tuem to the necessity of making hostile resistance, and adopting means of self-defence, introduced auch habits of ignorance and barbarism, that science was almost universally forgotten. While the art of healing was professed only by some few ecclesiastics or by itinerant practitioners, anatomy was utterly neglected; and no name of anatomical celcbrity occurs to diversify the long and uninteresting period commonly distinguished as the Dark Ages.

Anatomical learning, thus neglected by European nations, is believed to have received a temporary cultivation from the Asiatics. Of these, several nomadic tribes, knomn to Furopeaus under the general denomination of Arabs and Saracens, had gradually coalesced under various leaders; and by their habits of endurance, as well as of enthusiastic valour in successive expeditions against the eastern division of the Roman empire, had acquired such military reputation as to reader them formidable wherever they appeared. After a century and a half of foreign warfare or internal animosity, under the successive dynasties of the Ommiads and Abbassides, in which the propagation of Islamism was the pretext for the extinction of learning and civilisation, and the most remorseless system of rapine and destruction, the Saracens began, under the latter dynasty of princes, to recognise the value of science, and especially of that which prolongs life, heals disease, and alleviates the pain of wounds and injuries. The caliph Almansor combined with his official knowledge of Moslem law the successful cultivation of astronomy; but to his grandson Almamun, the seventh prince of the line of the Abbassides, belongs the merit of undertaking to render his subjects philosophers and physicians. By the directions of this prince the works of .he Greek and Roman autlors were translated into Arabic ; and the favour and munificence with which literature and ts professors were patronised speedily raised a succession of learned Arabians. The residue of the rival family of the Ommiads, already settled in Spain, was prompted by motives of rivalry or honourable ambition to adopt the same course ; and while the academy, hospitals, and library of Baghdad bore testimony to the zeal and liberality of the Abbassides, the munificence of the Ommiades was not less conspicuous in the literary institutions of Cordova, Serille, and Toledo.

Notwithstanding the efforts of the Arabian princes, however, and the diligence of the Arabian physicians, little was done for anatomy, and the science made no aubstantial acquisition. The Koran denounces as unclean the pergon who touches a corpse; the rules of Islamism forbid dissection; and whatever their instructors taught was borrowed from the Greeks. Abu-Bekr Al-Rasi, Abu-Ali Ibn-Sina, Abul-Cassem, and Abu-Walid Ibn-Roshd, the Rhazes, Avicenna, Abulcasis, and Averrhoes of European authors, are their most celebrated names in medicine; yet to none of these can the historian with justice ascribe any anatomical merit. Al-Rasi has indeed left descriptions of the eye, of the ear and its meatus, and of the heart; and lbn-Sina, Abul-Cassem, and Ibn-Roshd give anatomical descriptions of the parts of the human body. But of these the general character is, that they are copies from Galen, sometimes. not very just, and in all instances mystified with a large proportion of the fanciful and absurd imagery and inflated style of the Arabian writers. The chief reason of their obtaining a place in anatomical history is, that by the influence which their medical authority enabled them to exercise in the European schools, the nomenclature which they employed was adopted by European anatomists, and continued till the revival of ancient learning restored the original nomenclature of the Greek physicians. Thus, the cervix, or nape of the neck, is nucha; the œsophagus is meri; the umbilical region is sumen or sumac; the
abdomen is myrach; the peritoneum is siphac; and the omentum, zirbus.

From the general character now given justice requires that' we except Abdallatif, the annalist of Egyptian affairs. This author, who maintains that it is impossible to learn anatomy from books, and that the suthority of Galen must yield to personal inspection, informs us that the Moslem doctors did not neglect opportunities of studying the bones of the human body in cemeteries; and that he himself, by once examining a collection of bones in this manner, ascertained that the lower jaw is formed of one piece; that the sacrum, though sometimes composed of several, is most generally of one; and that Galen is mistaken when he asserts that these bones are not single.

The era of Saracen learning extends to the 13 th century; and after this we begin to approach happier times. The university of Bologna, which, as a school of literature and law, was already celebrated in the twelfth century, became, in the course of the following one, not less distinguished for is medical teachers. Though the misgovernment of the municipal rulers of Bologna had disgusted both teachers and studpits, and given rise to the foundation of aimilar institutions in Padua and Naples,-and though the school of Salerno, in the territory of the latter, was still in high repute,-it appears, from the testimon'y of Sarti, that medicine was in the highest esteem in Bologna, and that it was in such perfection as to require a division of its professors into physicians, surgeons, physicians for wounds, barber-surgeons, oculists, and even some others. Notwithstanding these indications of refinement, however, anatomy was manifestly cultivated rather as an appendage of surgery than a branch of medical science; and, according to the testimony of Guy de Chauliac, the cultivation of anatomical knowledge was confined to Rnger, Roland, Jamerio, Bruno, and Lanfranc ; and this they borrowed chiefly from Galen.

In this state matters appear to have proceeded with the medical school of Bologna till the commencement of the fourteenth century, when the circumstance of possessing a teacher of originality enabled this university to be the agent of as great an improvement in medical science as she had already effected in jurisprudence. This era, indeed, is distinguished for the appearance of Mondino, under whose zealous cultivation the science first began to rise from the ashes in which it iad been buried. This father of modern anatomy, who taught in Bologna about the year 1315, quickly drew the curiosity of the medical profession by well-ordered demonstrations of the different parts of the human body. In 1315 he dissected snd demonstrated the parts of the human body in tro female subjects; and in the course of the following year he accomplished the same task on the person of a single female. But while he seems in hare had sufficient original force of intellect to direct lis own route, Riolan accuses him of copying Galen; and it is certain that his descriptions are corrupted by the barbarous leaven of the Arabian schools, and his Latin defaced by the exotic nomenclature of Ibn-Sina and A1. Rasi He died, according to Tiraboschi, in 1325.
Mondino divides the body into three carities (ventres), the upper containing the animal members, as the head, the lower containing the natural members, and the middle containing the apiritual members. He first describes the anatomy of the lower cavity or the abdomen, then proceeds to the middle or thoracic organs, and concludes with the upper, comprising the head and its contents and appendases. His general manner is to notice shortly the situation and shape or distribution of textures or membranes, and then to mention the disorders to which they are subject. The peritoneum he describes under the name of siphac, in imitation of the Arabians, the omentum under that of zirbus, and the mesentery or eucharus as distinct. from
both. In speaking of the intestines he treats first of the rectum, then the colon, the left or sigmoid flexure of which, as well as the tronsverse arch and its connection with the stomach, he particularly remarks; then the ceecum or monoculus, after this the small intestines in general under the heads of ilcum and jejunum, and latterly the duodenum, making in all six bowels. The liver and its ressels are minutely, if not accurately, examined ; and the cara, under the name chilis, a corruption from the Greck кoid η, is treated at length, with the emulgents and kidneys. His anatomy of the heart is wonderfully accurate; and it is a remarkable fact, which seems to be omitted by all subsequent authors, that his description contains the rudiments of the circulation of the blood. "Postea vero versus pulmonein est aliud orificium venæ arterialis, quæ portat sanguinern ad pulmonem a corde; quia cum pulmo deserviat cordi secundum modum dietum, ut ei recompenset, cor ei trinsmittit sanguinem per hane venam, quæ vocatur vena arterialis; est vena, quia portat sanguinem, et arterialis, quia habet duas tunicas; et habet duas tunicas, primo quia vadit ad membrum quod existit in continuo motu, et secundo quia portat sangninem valde subtilem et eholericum." The merit of these distinctions, however, he afterwards destroys by repeating the old assertion that the left ventricle oughs to contain spirit or air, which it generates from the blood. His osteology of the skull is erroneous. In his aeconnt of the cerebral membranes, though short, he notices the principal characters of the dura mater. IIe describes sliwrtly the lateral ventricles, with their anterior and posterior cornua, and the choroid plexus as a blood-red substanco like a long worm. He then speaks of the third or middle ventricle, and one nosterior, which seems to correspond with the fourth; and describes the infundibulum under the names of lacuna and emboton. In the base of the organ he remarko, first, two mammillary caruncles, the optic nerves, which he reckons the first pair; the oeulomuscular, which he accounts the second ; the third, which appears to be the sixth of the moderns; the fpurth; the fifth, evidently the seventh; a sixth, the nervus vagus; and a seventh, which is the ninth of the moderns. Notwithstanding the misrepresentations into which this early anatumist was betrayed, his book is valuable, and has been illustrated by the successive commentaries of Achillini, Berenger, and Dryander.
1480.

Matthew de Gradibus, a native of Gradi, a town in Friuli, near Milan, distinguished himself by composing a series of treatises on the anatdmy of various parts of the Luman body. He is the first who represents the ovaries of the female in the correct light in which they were subsequently regarded by Steno.

Objections similar to those already urged in speaking of Mondino apply to anorher eminent anatomist of those
1495. times. Gauriel de Zerbis, who flourished at Verona towards the conclusion of the 15 th contury, is celebrated as the author of a system in which he is obviously more anxious to astonith his readers by the wonders of a verbose and complicated style than to instruct by precise and faithful description. In the vanity of his heart he assumed the title of Medicus Theoricus; but thaugh, like Mondino, he derived his information from the dissection of the human oubject, he is not entitled to the merit either of describing truly or of adding to the knowledge precriously acquired. He is superior to Mondino, however, in knowing the alfactory nerves.

Eminent in the bistory of the science, and more distinguished than any of this age in the history of cerebral anatomy, Alexander Achillini of Eologna, the pupil and commentator of Mondino, appeared at the close of the 15 th century. Though a follower of the Arabian school, the assiduity with which ho cultivated anatomy has rescued
his name from the inglurious obscurity in which the Arabian doctors have in general slumbered. Ife is known in the history of anatomical discovery as the first who described the two tympanal bones, termed malleus and incus. In 1503 he shored that the tarsus censists of seven bones; he rediscovered the fornix and the infund1. bulum; and he was fortunate enough to observe the courso of the cerebral cavitics into the inferior cornua, and to remark peculiarities to which the anatomists of a futuro age did not advert. He mentions the orifices of the ducts, afterwards described by Wharton. He knew the ileo-ceeal ralve ; aud his description of the duodenum, ilenm, and colon shows that he was better aequainted with the site and disposition of these bowels than any of his predecessurs or contemporaries

Not long after, the science boasts of one of its must distiuguished founders. James Bercuger of Carpi, in the Modenese territory, flourished at Bolorna at the begiming of the 16th century. In the annals of medicine his name will be remembered not only as the most zcalous and eminent in cultivating the amatomy of the luman body, but as the first physician who was fortunate enong ${ }_{1}$ to calm the alarms of Europe, suffering under the ravages of syphilis, then raging with uncontrollable virulence. In the former character he surpassed both predecessors and contemporaries; and it was long before the anatomists of the following age could boast of equalling him. Ilis assiduity was indefatigable; and be declares that he dissccted above one hundred human bodies. He is the author of a compendium, of several treatises which he names Introductions (Isagogce), and of commentaries on the treatise of Mundino, in which he not only rectifies the mistakes of that anatomist, but gives minute and in general accurate anatomical descriptions.

He is the first who undertakes a systematic view of the several textures of which the human body is composed; and in a preliminary commentary he treats successively of the anatomical characters and properties of fat, of membrane in general (panniculus), of flesh, of nerve, of villus on fibre (filum), of ligament, of sinew or tendon, and of muscle in general. He then proeeeds to describe with considerable preeision the muscles of the abdumen, and illustrates their site and connections by woodcuts, which, thongh rude, are spirited, and show that anatomical drawing was in that early age begimning to be understood. In his account of the peritoneum he admits only the intestinal division of that membrane, and is at some pains to prove that Gentilis, who justly admits the muscular division also, is in error. In his account of the intestines he is the first who mentions the vermiform process of the cocum; he remarks the yelluw tint communieated to the duedenum by the gall-bladder; and he recognises the opening of the common biliary duct into the duodenum (quidan porus portans choleram). In the account of the stomach be describes the several tissues of which that organ is composed, and which, after Almansor, he represents to be three, and a fourth from the peritoneum; and afterwards notices the rugce of its villous surface. He is at considerable pains to explain the organs of generation in both sexes, and gives a long account of the anatumy of the foctus. He was the first who recognised the larger proportional size of the chest in the male than in the female, and conversely the greater capacity of the female than of the male pelvis. In the larynx he dis covered the tro arytenoid cartilages. He gives the trat good description of the thymus; distinguishes the obtiqu.e situation of the beart; describes the pericardium, and maintains the uniform presence of pericardial liquor. He then describes the cavities of the heart ; but perplexes him. self, as did all the anatomists of that age, about the spirit supposed to be coutained. The aorta be properly makes
to anse from the left ventricle; but confuses himself with the arteria venalis, the pulmonary vein, and the vena arterialis, the pulnonary artery. His account of the brain is hetter. He gives a minute and clear account of the ventricles, remarks the corpus striatum, and has the sagacity to perceive that the choroid plexus consists of veins and arteries; he then describes the middle or third ventricle, the infundibulum or lacuna of Mondino, and the pituitary gland ; and lastly, the passige to the fourth ventricle, the conarium or pincal gland, and the fourth or posterior ventricle itself, the relations of which he had studied accurately. He rectifies the mistake of Mondino as to the olfactory or first pair of nerves, gives a good account of the optic and others, and is entitled to the praise of originality in being the first observer who contradicts the fiction of the wonderful net, and indicates the principal dirisions of the carotid arteries. He enumerates the tunics and * humours of the eye, and gives an account of the internal ear, in which he notices the malleus and incus.

Italy long retained the distinction of giving birth to the first eminent anatomists in Europe, and the glory she acquired in the names of Mondino, Achillini, Carpi, and Massa, was destined to become mure conspicuous in the labours of Columbus, Fallopius, and Enstachius. While Italy, however, was thus advancing the progress of science, the other nations of Europe were either in profound ignorance or in the most supine indiference to the brilliant career of their zealous neighbours. The sisteenth century had commienced before France began to acquire anatomical distinction in the names of Dubois, Fernel, and Etienne; and even these celebrated teachers were less solicitous in the personal study of the animal body than in the faithful explanation of the anatomical writings of Galen. The infancy of the French school had to contend with other difficulties. The small portion of knowledge which had been hitherto diffised in the country was so inadequate to eradicate the prejudices of ignorance, that it was either difficult or absolutely impossible to procure haman bodies for the purposes of science; and we are assured, on the testimony of Vesalius and other competent authorities, that the practical part of anatomical instruction was obtained entirely from the bodies of the lower animals. The works of the Italian anatomists were unknown; and it is a proof of the tardy communication of knowledge that, while the structure of the human body had been taught in Italy for more than a century by Mondino and his followers, these anatomists aro never mentioned by Etienne, who flourished long after.

Such was the aspect of the times at the appearance of Jacques Dobois, who, under the Romanised name of Jacobus Sylvius, according to the fashion of the day, has been fortunate in acquiring a reputation to which his researches do not entitle him. For the name of Jacques Dubois the history of anatomy, it is said, is indebted to his inordinate love of money. At the instance ' of his brother Francis, who was professor of eloquence in the college of Tournay at Paris, he devoted himself to the study of the learned languages and mathematics; but discovering that these elegant accomplishments do not invariably reward their cultivators with the goods of fortune, Dubois betook himself to medicine. After the acquisition of a medical degree in the university of Montpellier, at the ripe age of fifty-one Dubois returned to Paris to resume a course of anatomical instruction. Here he taught anatomy to a numerons audience in the college of Trinquet ; and on the departure of Vidus Vidius for Italy was appointed to succeed that plysician as professor of surgery to the Royal Collegc. His character is easily estimated. With greater coarseness in his manners and language than evea the rude state of society in his times
can palliate, with much varied learning and considerablo eloquence, be was a blind, indiscriminate, and irrationa admirer of Galen, and interpreted the anatomical and physiological writings of that author in preference to giving demonstrations from the subject. Without talent for original rescarch or discuvery hinself, his envy and jealousy made him detest every one who gave proofs of either. We are assured by Vesalius, who was some tinne his pupil, that his manner of teaching was calculated neither to advance the science nor to rectify the mistakes of his predecessors. A human body was never seen in the theatre of Dubois; the carcases of dogs and other animals were the materials from which he taught; and so difficult even was it to obtain human bones, that unless Vesalius and his fellow-students had collected assiduously from the Innocents and other cemeteries, they must have committed numerous crrors in acquiring the first principles. This assertion, however, is contradicted by Riolan, and afterwards by Sprengel and Lauth, the last of whom decidedly censures Vesalius for this ungrateful treatment of his instructor. It is certain that opportunities of inspecting the human body were by no means so frequent as to facilitate the study of the science. Though his mention of injections has led some to suppose him the discoverer of that art, he arears to have made no substantial addition to the information already acquired; and the first acknowledged professor of anatomy to the university of Paris appears in history as one who lived without true honour and died without just celebrity. He must not be confounded with' Franciscus Sylvius (De le Boe), who is mentioned by Ruysch and Malacarne as the anthor of a particular method of demonstrating the brain.

Almost coeral may be placed Charles Etienne, a younger Etienca brother of the celebrated printers, and son to Henry, who 1503-6: Hellenised the family name by the classical appellation of Stephen (Σ ré¢avos). It is uncertain whether he taught publicly. But his tranquillity was disturbed, and his pursuits interrupted, by the oppressive persecutions in which their religious opinions involved the fanily; and Charles Etienne drew the last breath of a miserable life in a dungeon in 1564. Etionne, though sprung of a farnily whose classical taste has been their principal glory, does not betray the same servile imitation of the Galenian anatony with which Dubois is charged. He appears to have been the first to detect ralres in the orifice of the hepatic reins. He was ignorant, however, of the researches of the Italiau anatomists; and his description of the brain is inferior to that given sixty years before by Achillini. His comparison of the cercbral cavities to the human ear has persuaded Portal that he knew the inferior cornua, the hippocampus, and its prolongations; but this is no reason for giving hini that honour to the detriment of the reputation of Achillini, to whom, so far as historical testimony goes, the first knowledge of this fact is due. The researches of Etionno into the structure of the nervous system are, however, neither useless nor inglarious; and the circumstance of demonstrating a canal through the entire length of the spinal chord, which had neither been suspected by contemporaries nor noticed by successors till Senac made it known, is sufficient to place him high in tbe rank of anatomical discoverers.

The French anatomy of the sixteenth century mas distinguished by two circurastances unfavourable to tho advancement of the science,-extravagant admiration of antiquity, with excessive confidence in the writings of Galen, and the general practice of dissecting principally the bodics of the lower animals. Both these crrors were much amended, if not entirely remored, by the exertions of a young llaming, whose ajpearance forms a conspicunus cra in the history of auatomy. Andrew Vesalius,
a native of Brussels, after acquiring at Louvain the ordinary classical attainments of the day, began at the age of fourteen to study anatomy under the auspices of Dubois. Though the originality of his mind soon led him to abandon the prejudices by whick he was environed, and take the most direct course for attaining a knowledge of the structure of the human frame, be neither underrated the Calenian anatomy nor was indolent in the dissection of brute animals. The difficulties, however, with which the practical pursuit of human anatomy was beset in France, and tho dangers with which he had to contend, made him look to Italy as a suitable field for the cultivation of the scienco; and in 1536 we find him at Venice, at once pursuing the study of human anatomy with the utmost zeal, and requested, ero he had attained his twenty-second year, to demonstrate publicly in tho university of Padua After remaining here about seven years, Vesalius went by express invitation to Belogna, and shortly afterwards to Pisa; and thus professor in three universities, he appears to have carried on his anatemical investigations and instructions alternately at Padua, Bologna, and Pisa, in the course of the same winter. It is on this account that Vesalius, though a Fleming by birth and trained originally in the French school, belongs, as an anatomist, to the Italian, and may be viewed as the first of an illustrious line of teachers by whom the anatomical reputation of that country was in the course of the sixteenth century raised to the greatest eminence.

Vesalius is known as the first author of a comprehensive and systeratic view of human anatomy. The knowledge with which his dissections had furnished him proved how many errors were daily taught and learned under the broad mantle of Galenian authority; and he pereeived the necessity of $a n e w$ system of anatomical instruction, divested of the omissions of ignorance and the misrepresentations of prejudiee and fancy. The early age at which he effected this object bas been to his biographers the themo of boundless commendation; and we are told that he began at the age of twenty-five to arrange the materials he had collected, and accomplished his task ere he had comploted bis 28 th year.
Soon after this period wo find him invited as imperial physician to the court of Charles V., where he was occupied in the duties of practice, and answering the various charges which were unceasingly brought against him by the diseiples of Galen. After the abdication of Charles be continued at court in great favour with his son Philip II. To this ho s^{\wedge} ?ms to have been led principally by the troublesome controversies in which his anatomical writings had involved him. It is painful to think, however, that even imperial patronaze bestowed on eminent talents does not insure imnunity from popular prejudice; and the fate of Vesalius will be a lasting example of the barbarism of the times, and of the precarious tenure of the safety even of a great plysician. On the preliminary circumstances authors are not agreed ; but the most general account states that when Vesalius was inspecting, with the consent of his kinsmen, the body of a Spanish grandee, it was observed that the heart still gave some feeble palpitations when divided by the knife. The immediate effects of this outrage to human feelings wero the denunciation of the amatomist to the Inquisition ; and Vesalius eseaped the severe treatment of that triounal only by the influence of the king, and by promising to perform a pilgrimage to the Holy Land. He forthwith proceeded to Venice, from which he Railed with the Venetian fleet, under James Malatestan, for Cyprus. When he reached Jerusalem, he received from the Venetian senate a message requesting him again to accept the Paduan professorship, whieh had become vaeant by the death of his friend'and pupil Fallopins. His
destiny, howerer, which pursucd him fast, suffered hin not again to breathe the Itahan air. After struggling for many days with adverse winds in the Ioman Sea, he was wreeked on the island of Zante, where he quiekly hreatheot his last in such penury that unless a liberal geldsmith had defrayed the funeral charges, his remams must have been devoured by beasts of prey. At the tume of his death he was scareely fifty years of age.

To form a correct estimate of the character and merito e? Yesalius, wo must not compare hum, in the opirit of codera perfection, with the anatomieal authers eather of later times or of the present cay. Whocver wou'd frame a just idea of this anatomist must imagine, not a bola innovator without aeademical learaing, -not a genius coming from a foreign country, unused to the forms and habits of Catnolic Europe,-nor a wild reformer, blaming indiseriminately everything which accordod not with his opinion; but a young student searcely cmancipated from the authority of instructors, and whose intelleet was stil! influenced by the doctrines with which it had been originally imbued, - a scholar strietly trained in the opinions of the time, living amidst men who venerated Galen as the oracle of anatomy and the divinity of medicine,-exercising his reason to estimate the soundness of the instructions then in use, and proceeding, in the way least likely to offend authority and wound prejudice, to rectify errors, and to establish on the solid basis of observation the true elements of anatomical seience. Vesalius has been denominated the founder of human anatomy ; and though we hare seen that in this career he was preceded with honour by Mondino and Berenger, still the small proportion of correct observation which their reverence for Galen and Arabian doctrines allowed them to communicate, will not in a material degree impair the original merits of Vesalius. The errors which he rectifed and the additions which he made are so numerous, that it is impossible, in such a sketeh as the present, to communicate a just idea of them.

Besides the first good description of the sphenoid bone, he showed that the sternum consists of three portions and the sacrum of five or six; and described accurately the vestibule in the interior of the temporal boue. He not only verified the observation of Etienne on tho valves of the hepatic veins, but he described well the vena azygos, and discovered the canal whiel passes in the foetus between the umbilical vein and the vena cava, since named ductus venosus. He described the omentum, and its connections with the stomach, the spleen, and the colon; gave the first correct views of the structure of the pyrorus; remarked the small size of the cxcal appendix in man; gave the first good account of the mediastinum and pleura, and the fullest description of the anatomy of the brain yet adranced. He appears, however, not to have understood well the inferior recesses; and his account of the nerves is confused by regarding the optic as ti ; first pair, the third as the fifth, and the fisth as the serenth.

The labours of Vesalius were not limited to the immediate effect produced by his own writings. His instructions and example produced a multitude of anatomical inquirers of different characters and varied celebrity, by whom the science was extended and rectified. Of these we caunot speak in detail ; but historical justice requires us to notice shortly those to whose exertions the science of anatomy has been most indebted.

The first that claims attention on this account is Bartholomeo Eustachi of San Severino, near Salerno, who though greatly less fortunate in reputation than Vesalius, divides with bin the merit of creating the seience of human anatomy. He extended the knowledge of tho internal ear by rediscovering and describing correctly the
tube which bears his name; and if we admit that Ingrassias anticipated him in the knowledge of the third bone of the tympanal cavity, the stapes, he is still the first who described the internal and auterior muscles of the mallens, as also the stapedius, and the complicated figure of the cochlea. He is the first who studied accurately the anatomy of the teeth, and the phenomena of the first and second dentition. The work, however, which dewonstrates at once the great merit and the unhappy fate of Eustachius is his Anutomical Engravings, which, though completed in 1552, nine years after the impression of the work of Vesalius, the author was unable to publish. First communicated to the world in 1714 by Lancisi, afterwards in 1744 by Cajetan Petrioli, again in 1744 by Albinus, and more recently at Bonn in 1790, the engravings show that Eustachius had dissected with the greatest care and diligence, and taken the utmost pains to give just views of the shape, size, and relative position of the organs of the human body.

The first seven plates illustrate the history of the kidneys, and some of the facts relating to the structure of the ear. The eighth represents the heart, the ramifications of the vena azygos, and the valve of the vena cava, named from the author. In the seven subsequent plates is given a succession of different views of the viscera of the chest and abdomen. The seventeenth contains the brain and spizal chord; and the eighteenth more accurate views of the origin, course, and distribution of the nerves than had been given before. Fourteen plates are devoted to the muscles.
Eustachius did not confine his researches to the study of relative anatomy. He investigated the intimate structure of organs with assiduity and success. What was too minute for unassisted vision he inspected by means of glasses. Structure which could not be understood in the recent state, he unfolded by maceration in different fluids, or rendered more distinct by injection and exsiccation. The facts unfolded in these figures are so important that it is justly remarked by Lauth, that if the author himself had been fortunate enough to publish them, anatomy would have attained the perfection of the 18 th century two centuries earlier at least. Their seclusion for that period in the papal library has given celebrity to many names which would have been known only in the verification of the discoveries of Eustachius.
Eustachius was the contemporary of Vesalius. Columbus and Fallopius were his pupils. Columbus, as his immediate successor in Padua, and afterwards as professor at Rome, distinguished himself by rectifying and improving the anatomy of the bones; by giving correct accounts of the shape and cavities of the heart, of the pulmonary artery and aorta and their valves, and tracing the course of the blood from the right to the left side of the heart; by a good description of the brain and its vessels, and by correct understanding of the internal ear, and the first good account of the ventricles of the laryux.
Fallopius, who, after being professor at Pisa in 1548 , and at Padua in 1551, died at the age of forty, studied the general anatomy of the boues; described better than heretofore the internal ear, especially the tympanum and its osscous ring, the two fenestre and their communication with the vestibule and cochlea; and gave the first good account of the stylo-mastoid hole and canal, of the ethmoid bone and cells, and of the lacrymal passages. In myology he rectified several mistakes of Vesalius. He also devoted atiention to the organs of generation in both sexes, and discovered the utero-peritoneal canal which still bears his name.

Osteology nearly at the same time found an assiduous cultivator in Joln Philip Ingrassias, a learned Sicilian physician, who, in a skilful commentary on the osteology of Galen, corrected numerous mistakes. He gave the first
distinct account of the true configuration of the sphenoid and ethmoid bones, and has the merit of Brst describing 1546. the third bone of the tympanum, called stapes, though this is also claimed by Eustachius and Fallopius.

The anatomical descriptions of. Vesalius underwent the Arant scrntiny of various inquirers. Those must distinguished 1530-88 by the importance and accuracy of their researches, as well as the temperate tone of their observations, were Julius Cæsar Aranzi, anatomical professor for thirty-two years in the university of Bologna, and Constantio Varoli, physician to Pope Gregory XIIL. To the former we are indebted for the first correct account of the anatomical peculiarities of the foetus, and be was the first to show that the muscles of the eye do not, as was falsely imagined, arise from the dura mater, but from the margin of the optic hole. He also, after considering the anatomical relations of the cavities of the heart, the valves, and the great vesuels, corroboratea the views of Columbus regarding the course which the blood follows in passing from the right to the left side of the heart. Aranzi is the first anatomist who describes distinctly the inferior cornua of the ventricles of the cerebrum, who recognises the objects by which they are distinguished, and who gives them the name by which they are still known (hippocampus) ; and his account is more minute and perspicuous than thät of the authors of the subsequent century. He speaks at large of the choroid plexus, and gives a partisular description of the fourth ventricle, under the name of cistern of the cerebellum, as a discovery of his own.
Italy, though rich in anatomical talent, has probably few Varolina greater names than that of Constantio Varoli of Bologna ${ }^{1545}$ Though he died at the early age of thirty-two, he acquired a reputation not inferior to that of the most eminent of 2is contemporaries. He is now known chiefly as the author of an epistle, inscribed to Hieronymo Mercuriali, in the optic nerves, in which he describes a new method of dissecting the brain, and communicates many interesting particulars relating to the anatomy of the organ. He observes the threefold division of the inferior surface or 5ase, defines the limits of the anterior, middle, and posteris, eminences, as marked by the compartments of the skrill, and justly remarks that the cerebral cavities are capaciuus, communicate with each other, extending first backward avd then forward, near the angle of the pyramidal portion of the temporal bone, and that they are folded on themselves, and fually lost above the middle and inferior eminence of the brain. He appears to have been aware that at this point they communicate with the exterior or convoluted surface. He recognised the impropriety of the term corpus callosum, seems to have known the communication called afterwards.foramen Monroianum, and describes the hippocampus more minutely than had been previously done.

Among the anatomists of the Italian school, as a pupil 1534.
of Fallopius, Eustachius, and Aldrorandus, is generally enumerated Volcher Coiter of Groningen. He distinguished himself by accurate researches on the cartilages, the bones, and the nerves, recognised the value of morbid anatomy, and made experiments on living animals to ascertain the action of the heart and the influence of the brain.

The Frutefull and Necessary Briefe Worke of John Halle (1565), and The Englisheman's Treasure, by Master Thomas Vicary (1586), English works published at this time, are tolerable compilations from former authors, much tinged by Galenian and Arabian distinctions. A more valuable compendium than either is, however, that of John Banister (15\%8), entitled The Historie of Man, from the mast approved Anathomistes in this Present Age.

The celebrity of the anatumical achool of Italy was worthily maintained by Hieronymo Falricio of Acquapendente, who, in imitation of his master Fallopius, laboured
to render auatomical knowledge more precise by repeated dissections, and to illustrate the obscure by researches on the structure of animals in general. In this manner he investigated the formation of the fectus, the structure of the oescphagus, stomach, and bowels, and the peculiarities of the eye, the ear, and the larynx. The discuvery, however, on which lis sureot claims to eminence rest is that of the mernbranous folds, which he names valves, in the interior of veius. Soveral of these folds had been observed by Fornel, Sylvius, and Vesalius; and in 1547 Canmani observed those of the vena azygos but no one appears to havo offercd any rational conjceture on their use, or to have traced thera througli the venous system at large, until Fabricius in 1574, upon this layputhesis, demonstrated the presence of theso valuular folds in all the veins of the extremitics.

Fabricius, though succeeded by his pupil Julius Casserius of Placenza, may be regarded as the last of that illustrious lino of anntomical teachers by whom the sciens: was so successfully studied and taught in the universities of Italy. The discoveries which cach made, and the errors which their successive labours rectified, tended gradually to give anatony the character of a uscful as well as an accurate science, and to pare the way for a discovery which, though nut anatomical but physiological, is so intimately conuected with correct knowledge of the shape and situation of parts, that it exercised the most powerful influence on the future progress of anatonical inquiry. This was the knowledge of the circular motion of the blood,-a fact which, though obscurely conjectured by Aristotle, Neniesius, Mondino, and Berenger, and partially taught by Servetus, Coluntbus, C'esalpinus, and Fabricius, it was neverthcless reserved to William Harvey fully and satisfactorily to demonstrate.

Mondino believed that the blood proceeds from the beart to the lungs through the vena arterialis or pulmonary artery, and that the aorta conveys the spirit into the blood through all parts of the body. This doctrine was adoyted with little modification by Berenger, who further demonstrated the existence and operation of the tricuspid valves in the right rentricle, and of the sigmoid valves at the beginning of the pulmonary artery and sorta, and that there were only two rentricles scparated by a solid impervious septum. These were afterwards described in greater detail by Vesalius, who nevertheless appears not to have been aware of the important use which might be made of this knowledge. It was the Spaniard Michael Servet or Scrvetus (born in 1509; burnt in 1553), who in his treatise De Trinitatis Erroribus, published at Haguenau in 1531, first maintaiued the imperviousness of the septum, and the transition of the blood by what he terms an unknown route, namely, from the right ventricle by the vena arteriosa (pulmonary artery) to the lungs, and thence into the arterice venosa or pulmonary rein and left auriclo and ventricle, from which, he adds afterwards, it is conveyed by the aorta to all parts of the body. ${ }^{1}$

[^100]Though the leading ontlines, not only of the pulmonary or small but eren of the great eirculation, were sketclicd thus carly by one who, though a philosopher, was attached to the church, it was only in his work De Re Ancitomica, published at Yenice in 1559, that Columbus fornally and distinctly announced the circular course of the blood as a discovery of his own; and maintained, in addition to the iniperriousness of the septum, the fact that the arterice veralis (pulmonary vein) contains, not air, but blood mixed with air brouglt from the lungs to the left ventricle of the heart, to be distributed through the budy at large.

Soon after, views still more complete of the small or pulmonary circulation were given by Andrew Ceesalpinus of Arezzo, who not only maintained the analogy betwecus the structure of the arterious vein or pulmonary artcry and the aorta, and that between the penous artery or pulmonary wcins and veins in general, but was the first to remark the swelling of veins below ligatures, and to infer from it a refluent motion of blood in these vessels. The discoveries of Aranzi and Eustachius in tho vessels of the fectus tended at first to perplex and afterwards to elucidate some of these notions. At length it bappened that, between IIrrees the years 1598 and 1600, a young Englishman, William Harrey, pursuing his anatomical studies at Padua under Fabricius of Acquapendente, learnt from that anatomist the existence of the valves in the veins of the extremities, and undertuok to ascertain the use of these ralves by experimental inquiry. It is uncertain whether he learnt from the writings of Cæesalpinus the fact observed by that author, of the tumescence of a vein below the ligature, but he coald not fail to be aware, and indeed he shows that he was aware, of the small circulation as taught by Servetus and Columbus. Combining these facts already known, he, by a series of well-executed experiments, demonstratcd clearly the existence, not only of the small, but of a general circulation from the left side of the heart by the aorta and its subdivisions, to the right side by the veins. This memorable truth was first announced in the year 1619.
It belongs not to this place either to consider the arguments and facts by which Harvey defended his theory, or to notice the numerous assaults to which he was exposed, and the controversies in which his opponents wished to involve him. It is sufficient to say, that after the temporary ebullitions of spleen and envy had subsided, the doctrine of the circular motion of the blood was admitted by all enlightened and unprejudiced persons, and finally was universally adopted as affording the most satisfactory explanation of many facts in anatomical structure which were either misunderstood or entircly overlooked. The inquiries to which the investigation of the doctrine gave rise produced numerous researches on the shape and structure of the heart and its divisions, of the lungs, and of tho blood-ressels and their distribution. Of this description were the researches of Nieolas Steno on the structure of the beart, the classical work of Richard Lower, the dissertation of Pechlin, the treatise of Vieussens, tho
et exspiratione a fuligine expurgatur ; atque ita tandem a sinistro cordis veatricnlo totum mixtum per diastolen attrahitur, apta supellex, ut fial spiritus vitalis. Quod ita per pulmoaes fiat communicatio et preparatio, docet conjunctio varia, et communicatio venz arteriosm cnm arteria venosa in pulmonibus. Confirnat hoc magnitudo insignis venæ arteriosæ, quæ nec talis nec tanta esset facta, nec tantam a corde ipso vim purissini sagguidis in palmones emitteret, ob solum corum nutrimentum; nec cor pulmonibus hive ratione serviret, cum prosertim nntea in embryone solerent pulmones ipsi alinndo nutriri, ob mem branulas illas seu valvulas cordis, nsque ad horum nativitstem; ut docet Galenus, \&c. Itaque illo spiritus a sinistro cordis veutriculo arterias totins corporis deinde transfunditur, ita ut qui tennior est, superiora petit, nbi magis elaboratur, precipue in plexu retiformi, sub basi cerebri sito, wbi ex vitali feri incipit gnimalis* ad propriam rationalis animo rationem accedens." - De Trinitake. iv. .
morz of iialpighi on the struciure of the lungs, several fEetches in the writings of Mayom, and other treatises of less moment. Systematic treatises of anatomy began to assume a more instructive form, and, to breathe a more philosophical spirit. The great work of Adrian Spigelius, which appeared in 1627, two years after the death of the author, contains indeed no proof that he was aware of the valuable generalisation of Harvey; but in the institutiuns of. Caspar Bartholin, as republished and improved by his son Thomas in 1651, the anatomical-descriptions and explanations are given with reference to the new doctrine. A still more unequirocal proof of the progress of correct anatomical knowledge was given in the lectures delivered by Peter Dionis, at the Jardin Royal of Paris, in 1673 and the seven following years, in which that intelligent surgeon gave most accurate demonstrations of all the parts composisy the buman frame, and especially of the heart, its aurieles, rentrieles, and valves, and the large vessels connected with it and the lungs. These demonstrations, first published in 1690 , were so much esteemed that they passed through scren editions in the space of thirty years, and were translated into English.

The progress of anatomical discovery continned in the meantime to adrance. In the course of the 16 th century Eustachius, in studying minutely the structure of the rena azygos had recognised in the horse a white ressel full of watery fluid, connected with the internal jugular vein, on the left side of the rertebral column, corresponding accurately with the vessel since named thoracic duct. Fallopius also described ressels belonging to the liver distinct from arteries and veins; and similar vessels appear to have been noticed by Nicolaus Massa. The nature and properties of these ressels were, however, entirely unknomn.. On the 23 d July 1622 Gaspar Asellius, professor of anatomy at Pavia, while engaged in demonstrating the recnrrent nerves in a living dog, first observed numerous white delicate filaments crossing the mesentery in all directions; nd though he took them at first for nerres, the opaque white fluid which they shed quickly convinced him that they were a new order of ressels. The repetition of the experiment the following day showed that these ressels were best seen iu animals recently fed; and as he traced them from the villous membrane of the intestines, and observed the ralves vith which they were liberally supplicd, he inferred that they were genuine chyliferous vessels. By confounding them with the lymphatics, he made them proceed to the pancreas and liver, -a mistahe which appears to have been first rectified by Francis De le Boo The discovery of Asellins was announced in 1627; and the following year, by means of the zealous efforts of Nicolas Peiresc, a liberal senator of $\Lambda 1 x$, the ressels were seen in the person of a felon who had eaten copiously before execution, and whose body was inspected an hour and a half after. In 1629 they were publicly demonstrated at Copenhagen by Simon Paulj, and the same year the thoracic duct was observed by Mentel for the first time since it was described by Lustachius. Five years after (1634), John Wesling, professor of anatomy and surgery at Venice, gave the first delineation of the lacteals from the human subject, and evinced more accurate knowledge than his predecessors of the thoracic duct and the lymphatics. Highmore in 1637 demonstrated unequivocally the difference betreen the lacteals and the mesenteric veins; and though somo perplexity was occasioned by the discovery of the pancreatic duct by Wirsung, this mistake was corrected by Thomas Bartholin; and the discovery by Pecquet in 1647 of the common trunk of the lacteals and lymphaties, and of the course which the chyle follows to reach the blood, may be regarded as the last of the series of isolated facts by the generalisation of which the extent, distribution, and
uses of the most important organs of the animal body were at length developed.

To complete the history of this part of anatomical science one step jet remaincd,-the distinction hetween the lacteals and lynuphatics, and the discorcry of the termination of the latter order of vessels. The honour of this discovery is divided between Jolyffe, an Euglisk anatomist, and Olaus Pudbeck, a young Swede. The former, according to the testimony of Glisson and Wharton, was arvare of the distinct existence of the lymphatics in 1650, and demonstrated them as such in 1652. It is nevertheless doubtful whether he knew them much befure the latter period; and it is certain that Rudbeck observed the lymphatics of the large intestines, and traced them to glands, on the 27 th January 1651 , after he had, in the course of 1650 , made various erroneous conjectures regarding them, and, like others, attempted to trace them to the iiver. The following year he demonstrated them in presence of Queen Christina, and traced them to the thoracic duct, and the latter to the subclavian vein. Their course and distribution were still more fully investigated by Thomas Bartholin, Wharton. Swaramerdam, and Blaes, the last two of whom recognised the existence of valves; while Antony Nuck of Leyden, by rectifying varions errors of his predeccssors, and adding several new and valuable observations, rendered this part of anatomy muck more precise than formerly.

After this period anatomists began to study more minutely the organs and textures. Francis Glisson distin- 165 e guished himself by a minute description of the liver, and a clearer account of the stomach and intestines, than bad yet been given. Thomas Wharton investigated the structure of the glands with particular care; and tliongh ratber prone to indulge in fanciful generalisaticn, he developed some interesting views of these organs; while Charleton, who appears to have been a person of great genius, thongh addicted to hypothesis, made some good remarks on the communication of the arteries with the reins, the foetal circulation, and the course of the lymphatics. But the circumstance which chiefly distinguished the history of anatomy at the beginning of the serenteenth century was the appearance of Thomas Willis, who rendered himself whte eminent not only by good researches on the brain and nerres, but by many judicious observations on the structure of the lungs, the intestines, the blood-ressels, and the glands. His anatomy of the brain and nerres is so minute and elaborate, and abounds so much in new information, that the reader is struck by the immense chasm between the vague and meagre notices of his predecessors, and the ample and correct descriptions of Willis. This excellent work, however, is not the result of his own personal and unaided exertions; and the character of Willis derives additional lustre from the candid avowal of his obligations to Wren and Millington, and, above all, to the diligent researches of his fellow-anatomist Richard Lower.

Willis was the first who numbered the cranial nerres in the order in which they are now usually enumerated by anatomists. His observation of the connection of the eighth pair with the slender nerre which issucs from the beginning of the spinal chord is known to all He remarked the parallel lines of the mesolobe, afterwards minutely doscribed by Vicq d'Azyr. He seems to have recognised the communication of the convoluted surface of the brain and that between the lateral ravities beneath the formix. He described the corpora striala and optic thalami; the four orbicular cminences, with the bridge, which h9 first named annular protuberance; and the white mammillary eminences, behind the infundibulum. In the cerebellum be femarks the arborescent arrangement of tho white and grey matter, and gives a good account of tho
internal carotids, and the communications which they make with the branches of the basilar artery.

About the middle of the 17 th century Rt. Hooke and Nehemiah Grew employed the simple microscope in the minute examination of plants and animals; and the Dutch philosopher Leeuwenhoeck with great acuteness examined microscopically the solids and fluids of the body, recognised the presence of scales in the cuticlo, and discovered the corpuscles in the blood and milk, and the spermatozoa in the seminal fluid. The researches of Malpighi also tended greatly to improve the knowledge of minute structure. Ife gave the first distinct ideas on the organisation of the lung, and the mode in which the bronchial tubes and vessels terminate in that organ. By the microscope he traced tho transition of the arteries into the veins, and saw the mevements of the blood corpuscles in the capillaries. He cndearoured to unfold, by dissection and microscopic observation, the minute structure of the brain. He studicd the atructure of bone, he traced the formation and explaincu the structure of the tecth; and his name is to this day associated with the discovery of the decper layer of the cuticle and the Malpighian bodice in the spleen and kidney. In these difficult inquiries the observations of Malpighi are in general faithful, and he may be regarded as the founder of histological anatomy.

Nicolas Steno described with accuracy the lacrymal gland and passages, and rediscovered the parotid duct. Bellini studied the structure of the kidness, and duscribed the tongue and tonsils with some care; and Drelincourt laboured to investigate the changes effected on the utcrus by impregnation, and to elucidate the formation of the foetus. The science might have derived still greater advantages from the genius of Regnier de Graaf, who investigated with accuracy the atructure of the pancreas and of the organs of generation in beth sexes, had he not been cut off at the early age of thirty-troo. Lastly, Wcpfer, though more devoted to inorbid anatomy, made, nevertheless, some just observatiens on the anatomical disposition of the ccrebral vessels, the glandular structure of the liver, and the termination of the common duct in the duodenum:

The appearance of Frederic Ruysch, who was born in 1638, and became professor of anatomy at Amsterdam in 1665, gave a new impulse to anatomical research, and teuded not only to give the science greater precision, but to extend its limits in every direction. The talents of Ruysch are said to have been developed by accident. To repel the audacious and calumnious aspersions with which De Bils attacked De le Boe and Van Horne, Ruysch published his tract on the valves of the lymphatics, which completely established his character as an anatomist of originatity and research. This, however, is the smallest of his services to the science. The art of injecting, which had been originally attempted by Eustachi and Varoli, and was afterwards rudely practised by Glisson, Bellini, and Willis, was at length carried to greater perfection by De Gral and Swammerdam, the former of whom injected the spermatic vessels with mercury and variously-coloured liquors; while the latter, by cmploying melted wax with other ingredients, made the first approach to the refinements of modarn anatomy. By improving this idea of using substances which, though solid, may be rendered fluid at the period of injecting, Ruysch carried this art to the highest perfection.

By the application of this happy contrivance he was enabled to demonstrate the arrangement of minute vessels in the interior of organs which had escaped the scrutiny of previous anatomists. Scarcely a part of the human body eluded the penctration of his syringe; and his discoveries were proportionally great. His account of the valves of the lymphatics, of the vessels of the luass, and
their minute structure; his researches on the vascular structure of the skin, of the bones, and their epiphysee, and their mode of growth and union; his observations on the splecn, the glans penis, the clitoris, and the womb impregnated and unimpregnated, were but a limited part of his anatomical labours. He studicd the minute atructuro of the brain; he demonstrated the organisation of tho choroid plexus; he described the state of the bair when affected with Polish plait; he proved the vascular structure of the teeth; be injected the dura mater, the pleura, tho pericardium, and peritoneum; he unfolded the minute structure of the conglomerate glands; he investigated that of the synovial apparatus placed in the interior of tho joints ; and he discovered several curious particulars relating to the lacteals, the lymphatics, and the lymphatic glands.

Meanwhile, Meibomius rediscovered the palpebral glands, 1670. which were known to Casserius; Swammerdam studied the action of the lungs, described tho structure of the human uterus, and made numerous valuable observations on the coce and pancreatoid organs of fishes; and Kerckringius laid the foundation of a knowledge of the process of ossification. John Conrad Brunner, in the course of 1687. experiments on the pancreas, discovered the glands of the duodenum named after him, and Conrad Peyer described 1677-81 the solitary and agminated glands of the intestinal canal. Leonard Tassin, distinguished for original observation, 1678. rendered the anatomical history of the brain more accurate than heretofore, and gave particular accounts of the intestinal tube, the pancreatic duct, and the hepatic ligarncnts.
That France might not be without participation in the glery of advancing the progress of anatomical knowledge, the names of Duverney and Vieussens are commemorated with distinction. Duverney, born in 1648, and first intro- Dnveron duced inte public life in 1676 in the Royal Academy of Sciences, decerated with the bonorary title of professor of anatomy to the Dauphin, and appointed in 1679 professor at the Jardin Royal, distinguished himself by the first accurate account of the organ of hearing, and by his dissections of several animals at the academy, supplied valuable materials for the anatomical details of the natural history of animals published by that learned body. He appears to have been the first who demonstrated the fact that the cerebral siouses open inte the jugular veins, and to have been aware that the former receive the veins of the brain, and are the venous receptacles of the organ. He understood the cerebral cavities and their rode of communication; distinguishes the posterior pillars of the vault from the pedes hippocampi; recognises the two plates of the septum lucidum; and, what is still more remarkable, he first indicates distinctly the decussation of the anterior pyramids of the medulla oblongata-a fact afterwards verified by the researches of Mistichelli, Petit, and Santorini. He studied the ganglions attentively, and gives the first distinct account of the formation, connections, and distribution of the intercostal nerve. It is interesting to remark that his statement that the veins or sinuses of the spinal chord terminate in the vena azygos was verified by the more recent researches of Dupuytren and Breschet, which show that the vertcbral veins communicate by means of the intercostal and superior lumbar veins with the azygos and demi-azygos. His account of the structure of bones, and of the progress of ossification, is valuable. IIe recognised the vascular structure of the spleen, and described the excretory ducta of the prostate gland, the verumontanum, and the anteprostates.

One of the circumstances which at this time tended considerably to the improvement of anatomical science was the attention with which Comparative Anatamy was beginning to bo cultivated. In ancient times, and at the reviva! of letters the dissection of the lower animals
was substituted for that of the human body; and the descriptions of the organs of the latter were too often derived from the former. The obloquy and contempt in which this abuse involved the study of animal anatomy caused it to be neglected, or pursued with indifference, for more than two centuries, during which anatomists confined their descript:ons, at least very much, to the parts of the human body. At this period, however, the prejudice against Comparative Anatomy began to subside; and animal dissection, though not substituted for that of the human body, was employed, as it ought always to have been, to illustrate obscurities, to determine doubts, and to explain difficulties, and, in short, to enlarge and rectify the knowledge of the structure of animal bodies generally.

For this revolution in its favour, Comparative Anatomy was in a great mpasure indebted to the learned societies which were established about this time in the different countries of Europe. Among these, the Royal Society of London, embodied by charter by Charles II. in 1663, and the Academy of Sciences of Paris, founded in 1665 by Colbert, are undoubtedly entitled to the first rank. Though later in establishment, the latter institution was distinguished by making the first great efforts in favour of Comparative Anatomy; and Perrault, Pecquet, Duverney, and Mery, by the dissections of rare animals obtained from the royal menagerie, speedily supplied valuable materials for the anatomical naturalist. In England, Nehemiah Grew, Edward Tyson, and Samuel Collins cultivated the same department with diligence and success. Grew has left an interesting account of the anatomical peculiarities of the intestinal canal in various animals; Tyson in the dissection of a porpoise, an opossum, and an ourang outang, adduces some valuable illustrations of the comparative differences between the structure of the human body and that of the lower animals; Collins has the merit of conceiving, and executing on an enlarged plan, a comprehensive system, embodying all the information then extant. With the aid of Tyson and his own researches, which were both extensive and accurate, he composed a system of anatomical knowledge in which be not only gives ample and accurate descriptions of the structure of the human body, and the various morbid changes to which the organs are liable, but illustrates the whole by accurate and interesting sketches of the peculiarities of the lower animals. The matter of this work is so excellent that it can only be ascribed to ignorance that it has received so little attention. Though regarded as a compilation, and though indeed much of the human anatomy is derived from Vesalius, it has the advantage of the works published on the Continent at that time, that it embudies most of the valuable facts derived from Malpighi, Widis, and Vieussens. The Comparative Anatomy is almost all original, the result of personal research and dissection; and the pathological observations, though occasionally tinged with the spirit of the times, show the author to have been endowed with the powers of observation and judicious reflection in no ordinary degree.

About this time also we recognise the first attempts to study the minute constitution of the tissues, by the combination of the microscope and the effects of chemical egents. Bone furnished the first instance iu which this method was put in use ; and though Gagliardi, who undertook the inquiry, had fallen into some mistakes which it reauired the observation of Malpighi to rectify, this did not deter Clopton Havers and Nesbitt, in England, and Courtial, Du Hamel, and Delasone, and afterwards Herissant, in France, from resuming the same train of investigation. The mistakes into which these anatomists fell beiong to the imperfect method of inquiry. The facts which they ascertained have been verified by recent experi-
ment, and constitute no unessential part of our knowledgo of the structure of bone.

Ten years after the publication of the work of Collins, Henry Ridley, another English anatomist, distinguished himself by a monograph on the brain, which, though not free from errors, contains, nevertheless, some valuable observations. Ridley is the first who distinguishes by name tho restiform processes, or the posterior pyramidal eminences. He recognised the figure of the four eminences in the human subject; he remarked the mammillary bodies; and he discovered the sinus which passes under his name.

Raymond Vieussens, by the publication of his great work on neurography in 1684, threw new light on the configuration and structure of the brain, the spinal chord, and the ncrves ; and gave a description of the arrangement and distribution of the latter more precise than lueretofore. Of the formation and connections of the sympathetic nerro especially he gave views which have been gencrally adopted by subsequent anatomists. His new arrangement of the vessels, published in 1705, contains several curious opinions His observations on the structure of the heart, published in 1706, and enlarged in 1715, exhibit the first correct views of the intimate structure of an organ which afterwards was most fully developed by the labnurs of Lancisi and Senac.

To the same period belong the rival publications of Godfrey Bidloo and William Cowper, the latter of whom, however, stained a reputation otherwise good by publishing as his own the engravings of the former. Cowper further distinguished himself by a minute account of the urethral glands, already known to Columbus and Mery; a good description of the intestinal glands, discovered by Brunner and Peyer ; and by demonstrating the communication of the arteries and veins of the mesentery.
The anatomical genius of Italy, which had slumbered since the death of Malpighi, was destined once more to revive in Lancisi, Valsalva, and his illustrious pupils Santorini and Morgagni. Valsalva especially distinguished himself by his description of the structure of the ear, which, in possessing still greater precision and minuteness than that of Duverney, is valuable in setting the example of rendering anatomy altogether a science of description. Santorini, who was professor at Venice, was no unworthy friend of Valsalva and Morgagni. His anatomical observations, which relate to the muscles of the face, the brain, and several of the nerves, the ducts of the lacrymal gland, the nose and its cavities, the larynx, the viscera of the chest and belly, and the organs of generation in the tro sexes, furnish beautiful models of essays, distinguished for perspicuity, precision, and novelty, above anything which had then appeared. These observations, indeed, which bear the impress of accurate observation and clear conception, may be safely compared with any anatomical writings which have appeared since. Those on the brain are particularly interesting. Morgagni, though chiefly known as a pathological anatomist, did not neglect the healthy structure. His Adversaria, which appeared between 1706 and 1719, and his Epistles, published in 1728, contain a scries of observations to rectify the mistakes of previous anatomists, and to determine the characters of the healthy structure of many parts of the human body. Many parts he describes anew, and indicates facts not previously observed. All his remarks show how well he knew what true anatomical description ought to be. In this respect, indeed, the three anatomists now mentioned may be said to have anticipated their contemporaries nearly a century ; for, while other authors were satisfied with giving loose and inaccurate or meagre notices of parts, with much fanciful supposition, Valsalva, Santorini, and Morgagni laboured to determine with precision the ans tomical characters of the parts which they describe.

The sane character is ritie to Π instow, a native of Denmark, but, ds pupil and suecessor of Duverney, as well as a convert to Catholicism, naturalised in France, and firally professor of anatomy at the Royal Gardens. Uis exposition of the structure of the human body is distinguished for bsing not only the first treatise of descriptive anatomy, divested of physiologieal details and bypothetical explanations foreign to the subject, but for being a close description derived from aetual objects, without reference to the mritings of previous anatomists. Abont the same time Cheselden in London, the first Moaro in Edinburgh, and Albinus in Leyden, contributed by their several treatises to render anatomy still more precise as a descriptive science. The Osteographia of the first-mentioned was of much use in directing attention to the study of the skelcton and the morbid changes to which it is liable. This work, however, magnificent as it was, was excelled by that of Albinus, who, in 1747, published engravings descriptive of tho bones and muscles, which perlaps will never be surpassed either in accuracy of ontline or beauty of execution. The several labours of this author, indeed, constitute an important era in the listory of the science. Ho was the first who classified and exhibited the muscles in a proper arrangement, and applied to them a nomenclature which is still retained by the consent of the best anatomists. He gives a luminons account of the arteries and reins of the intestines, represents with singular fidelity and beauty the bones of the fotus, inquires into the structure of the skin and the cause of its colour in different races; represents the changes incident to the womb in different periods of pregnancy, and describes the relations of the thoracic duct and the rena azygos with the contiguous parts. Besides these large and magnificent works, illustrated by the most beautiful engravings, six books of Academical Annotations were the fruits of his long and assiduous cultivation of anatony. These contain valuable remarks on the sound stmeture and morbid deviations of numerous parts of the human body.

Albinus found a worthy successor in his pupil Albert Von Haller, who, with a mind imbued with every department of literature and science, directed his chief attention, nevertheless, to the cultivation of anatomical and physiological knowledge. Having undertaken at an early age (twenty-one) to illustrate, with commentaries, the physiological prelections of his preceptor Boerhaave, he devoted himself assiduously to the perusal of every work which could tead to facilitate his purpose; and as he found numerous erronecus or imperfect statements, and many deficiencies to supply, he ondertook an extensive course of dissection of human and animal bodies to obtain the requisite information. During the seventeen years he was professor at Guittingen, he dissected 400 bodies, and inspected their organs with the utmost care. The result of these assiduous labours appeared at intervals in the form of dissertations by himself, or under the name of some one of his pupils, finally published in a collected shape, between 1746 and 1751 (Disputationes Anatomica Selectiores), and in eight numbers of most accurate and beautiful engravings, representing the most important parts of the human body, e.g., the diaphragm, the uterus, ovaries, and vagina, the arteries of the different regions and organs, with learned and critical explanatory observations. He verified the observations that in the foetus the testicles lie in the abdomen, and showed that their descent into the scrotum may be complicater with the formation of congenital heraia. Some years after, when he had retired frem his academical duties at Göttingen, he published, between 1757 and 1765, the large and elaborate work which, with siggular modesty, he styled Elements
of Physioloyy. This wurk, though proiessedly devoted to physiology, rendered, nevertheless, the most essential services to anatomy. Haller, drawing an accurate line of distinction between the two, gave the most elear, prccise, and complete deseriptions of the situation, position, figure, component parts, and minute structure of the different organs and their appendages. The results n^{f}. evious and coeral inquiry, obtained by extensive rear ${ }^{\text {r }}$, he sedulously verified by personal observation.... though he never rejected faets stated on eredible authorities, he in all cases laboured to ascertain their real value by experiment. The anatomical descriptions are on this account not only the most valuable part of his work, but the most valuable that had then or for a long time after appeared. It is painful, nevertheless, to think that the very form in which this work is composed, with copious and scrupulous reference to authoritics, made it be regarded as a compila. tion only ; and that the autcor was compelled to show, hy a list of his personal researehes, that the most learued work ever given to the physiologist was also the most abundant in original information.

With the researches of Haller it is proper to notice thoso of his contemporaries, John Frederick Mcekel, J. N. Lieberkühn, and his pupil John Godfrey Zinn. The first, who was professor of anatomy at Berlin, described 1748-02 the Casserian ganglion, the first pair of aerves and its distribution, and that of the facial nerves generally, and discovered the spheno-palatine ganglion. He made some original and judicious observations on the tissue of the skin and the mucous net; and above all, he recoanised the 175357 connection of the lymphatic vessels with the veins,-a doctrine which, after long negleet, was revived by Fohmann and Lippi. He also collected several valuable observations on the morbid states of the heart and brain. Lieberkühn published in 1745 a dissertation on the villi and glands of the small intestines. Zinn, who was professor of medicine at Göttingen, published a classical treatise on the cye, \mathbf{u} hich demonstrated at once the defects of previous inquiries, and how much it was pussible to elucidate, by accurate rescarch and precise description, the structure of one of the mest important organs of the human frame. It was republished after his death by Wrisberg. Abont the same time Weitbrecht gave a copious and minute account of the ligaments, and M. Lieutaud, who had already laboured to rectify many errors in anatomy, described with eare the structure and relations of the heart and its cavities, and rendered the anatomy of the bladder very precise, by describing the triangular space and the mammillary eminence at its neck.
The study of the minute anatomy of the tissues, which bad originally been commeaced hy Leeuwenhoeck, Malpighi, and Ruysch, began at this period to attract more general attention: De Bergen had already demonstrated the. general distrihution of cellular membrane, and showed that it not or:ly incloses every part of the animal frame, but forms the basis of every organ, - a doctrine which was adopted, and still more fully expanded, by his friend Haller, in opposition to. what was asserted by Albinus, who maintains that each part has a proper tissue.. William Hunter at the same time gave a clear and ingenious statement of the difference between cellular membrane and adipose tissue, in which be maintained the general distribution of the former, and represented it as forming the scrous membranes, and regulating their physiological and pathologieal pro-perties,-doctrines which were afterwards confirmed by his brother John Hunter. A few years aiter, the department of general anatomy first assumed a substantial form in tho systematic riew of the membranes and their mutual con nections traced by Andrew Born of Amsterdam. In his inaugural dissertation De Continuationibus Membrancrum,
published at Leyden in 1753 , this aathor, after some preliminary observatious, on membraoes in general and their structure, and an exposition of that of the slin, traces iss transition into the mucous membranes and their several divisions. He then explains the distribution of the cellular membrane, the aponeurotic expansions, and the periosteum and perichendrium, by either of which, he shows, every bone of the skeleton is invested and connected. He finally gives a very distinct view of the arrangement of the internal membranes of cavities, those named seruns and fibro-serons, and the nanner of their distribution over the contained organs. ' I'his essay, which is a happy example of generalisation. is remarkable for the interesting general views of the structure of the animal body which it exhibits; and to Bonn belongs the merit of sketching the first outlines of that system which it was resarved for the genius of Bichat to complete and embellish. Lastly, Burdeu, in an elaborate essay on the urucous tissue, or cellular organ, as he terms it, brought forward some interesting views of the constitution, nature, and exteot of the cellular membrane

Though anatomy was hitherto cultivated with much success as illustrating the patural history and morbid states of the human body, yet little had been done for the elucidation of local diseases, and the surgical means by which they may be successfully treated. The idea of applying anatomical knowledge directly to this purpose appears to have originated with Bernardin Genga, a Roman sorgeon, who published in 1672, at Rome, a work entitled Surgical Anatmy, or the Anatomical llistory of the Bones and Muscles of the Human Body, with the Description of the Blood-vessels. This work, which reached a second edition in 1687 , is highly creditable to the author, who appears to lave studied intimately the mutual relations of different parts. It is not inprobable that the example of Genga led Palfyn, a surgeon at Glient, to undertake a similar task about thirty years after. For this, however, he was by no means well qualified; and the work of Palfyn, though bearing the name of Surgical Anatomy, is a miserable compilation, meagre in details, inaccurate in description, and altogether unworthy of the honour of being republished, as it afterwards was by Antony Petit.

While these two authors, however, were usefully employed in showing. what was wanted for the surgeon, others were occupied in the collection of new and more accurate facts. Albimus, indeed, ever assiduous, had, in his account of the operations of Rau, given some good sketches of the relative anatomy of the bladder and urethra; and Cheselden had already, in his mnde of cutting ioto the urinary bladder, shomn the necessity of an exact knowledge of the relations of contiguous parts. The first decided application, however, of this species of anatomical research it was reserved for a Ditch anatomist of the 18 th century to make. Peter Camper, professor of anatomy at Amsterdam, published in 1760 and 1762 his anatomico-pathological demonstrations of the parts of the human arm and pelvis, of the diseases incident to them, and the mode of relieving them by operation, and explained with great clcarness the situation of the blood-vessels, nerves, and important muscles. His remarks on the lateral operation of lithotomy, which contain all that was then known on the subject, are exceedingly interesting and valuable to the surgeon. It appears, further, that he was the first who examined anatomioally the mechanism of ruptures, his delineations of which were !Mhlished in 1801 by Sömmerinģ. Camper also wrote some important memoirs on Comparative Anatomy, and he was the author of a well-known work on the Relations of Anatomy to the Fine Arts.

The attention of anatomists was now directed to the c!ucidation of the most ubscure and least explored parts
of the haman frame-the lymphatic ressels and the nerves Although, since the first discovery of the furmer by Asellius, Rudbeck, and Pecquet, much had been done, especially by Ruysch, Nuck, Meckel, and Haller, many points, notwithstanding, relating to their origin and distribution in particular organs, and in the several classes of animals, were imperfectly ascertained or entirely unknown William Hunter investigated their arrangement, and proposed the doctrine that they are absorbeots; and Julin Hunter, who undertook to demonstrate the truth of this hypothesis by experiment, discovered, in 1758 , 15muhatics in the neck in birds. As the doctrine required the existence of this order of vessels, not only in quadrupeds and birds, but in reptiles and fishes, the inquiry attracted attentioo among the pupils of Hunter; and William Hewson at length communicated, in December 176S, to the Royal Society of London, an account of the lacteals and lymplatic: in brrds, fishes, and reptiles, as he had discovered and demonstrated them. The subject was about the same time investigated by the second M anro, who indeed clamed the merit of discorering these vessels in the classes of animals now mentioned. But whatever researches this anatomst may have instituted, Herrson, by communcatiog lus observations to the Royal Society, must be allowed te possess the strongest as well as the clearest clarm to discovery. The same author, in 1774, gare the first complete account of the anatomical peculiaraties of the lymphatic system in man and other aminals, add thereby supplied an important gap in thes department. Hewsur. is the first who distingusbes the lymphatics into twe orders-the superficial and the deep-buth in the evtremthes and in the internal organs. He also studied the structure of the intestinal nill, in which he venfed the obserrations of Lieberkühn; and he made many important observations on the corpuscles of the lymph and blond. He Gnally applied his anatomical discoveries to explain many of the physiological and pathologral plenomena of the animal body. Ten jears after, John Sheldon, another pupil of Hunter, gave a second history and description of the lymphatics, which, though dirested of the charm of novelty, contains many interesting anatomical facts. He also examined the structure of the vill.

Lastly, Cruikshank, in 1786, published a raluable Cruik. history of the anatomy of the lymphatic system, in which shan be maintains the accuracy of the Hunterian doctrne, that lisn the lymphatics are the only absorbents; gave a incre minute account thas heretofore of these vessels, of their coats and valves and explained the structure of the lymphatic glands. He also injected the rilli, and examincd them microscopically, verifying most of the observations of Lieberkühn. The origin of the lymphatics he maintains rather by inference than direct demonstration. To these three works, though in other respects very excellent, it is a considerable objection that the anatomical descriptions are much mixed with hypothetical speculation and reasnnings on properties, and that the facts are by no means always distinguished from mere matters of opinion. At the same time Haase published an account of the lymphatics of the skin and intestines, and the plexiform oets of the pelvis.

To complete this sketch of the history of the anatorny of the lymphatic system, it may be added that Mascagni, who had been engaged from the year 1707 to 1781 in the same train of investigation, first demonstrated to his pupils several curious facts relating to the anatomy of the lymphatic system. When at Florence in 17 S 2 he made sereral preparations, at the request of Peter Leopold, Grand Duke of Tuscany; and when the Royal Academy of Sciences at Paris announced the anatomy of this system for their prize essay appointed for Mareh 1i8t, Mascagni resolved on communicating to the public the results of
his reserrches-the first part of his commentary, with four engravings. Anxiety, however, to complete his preparations detained him at Florence till the close of 1785 ; and from these causes his work did not appear till 1787. These delays, however, unfavourable as they were to his claims of priority to Sheldon and Cruikshank, were on the whole advantageons to the perfection of his work, which is not only the most margificent, but also the most complete that ever was published on the lymplatics. In his account of the vessels snd their valves he confirms some of Hewson's observations, and rectifies others. Their origin he proves by inference much in the same manacr as Cruikshank; but be anticipates this author in the account of the glands, and he gives the most minute deseription of the superficial and deep lymphaties, both in the members and in the internal organs.

General accounts of the nerves had been given with various degrees of aceuracy by Willis, Vicussens, Winslow, and the first Monre ; and the subject lad been much rectified and improved by the indefatigable Haller. The first example of minnte deseriptive neurography was given in 1748 by John Frederick Meckel, whose acconnt of the fifth pair, and of the nerves of the face, will long remain a lasting proof of aecuracy and research. The same subject was investigated in 1765 by Hirsch, and in 1777 by Wrisberg. In 1766 Metzger examined the crigin, distribution, and termination of the first pair, -a point which was afterwards very minutely treated by Scarpa in his anatomical disqnisitions, published in 1780 ; and the internal nerves of the nostrils were examined in 1791 by Haase. The optic nerve, which had bieen studied originally by Varoli, and afterwards by Mery, Duveraey, Henkel, Moeller, Hein, and Kaldschmid, was examined with extreme accuracy, with the other nerves of the organ of vision, by Zinn, in his elaborate treatise. The phrenic nerves and the œesophageal branches of the eighth pair were studied by Hase; the phrenic, the sblominal, and the pharyngeal nerves, by Wrisberg; thuse of the heart most minutely by Andersch; snd the origins, formation, and distribution of the intercostal nerve, by Iwanoff, Ludwig, and Girardi. The iabours of these anatumists, however, were eclipsed by the splendid works of Walter on the nerves of the chest and belly; and those of Searpa on the distribution of the 8th pair, and splanchuic nerves in general. In minuteness of description and in beauty of engraving these works have not yet been equalled, and will never perhaps be surpassed. Abont the same time, Scarpa, so distinguished in every branch of snatomical research, investigated the minute structure of the ganglions and plexuses. The anatomy of the brain itself was also studied with great attention by the second Monro, Malacarne, and Vicq d'Azyr.

Lastly, tho anatomy of the gravid uterus, which had been originally studied by Albinus, Roederer, and Smellie, was again illustrated most completely by William Hunter, whose engravings will remain a lasting memorial of scientific zeal and artistic talent.

The perfection which anatomical science attained in the last ten years of the eighteenth and during the present century is evinced not only in the improved character of the eystems published by anatomists, but in the enormous advance which has taken place in the knowledge of the minute structure of the animal tissues, of the development of the tissues and organs, and of the modifications in form and structure exhibited by various groups of animals.

The first who gave a good modern system was Sabatier ; but his work was speedily eelipsed by the superior merits of the treatises of Sömmering, Bichat, and Portal. The excellent work by Ssmuel Thomas Sömmering, originally
published in the German language, between the years 1791 and 1796 ; then in the Latin language, between the years 1794 and 1800 ; and in a sccond edition in the German language in 1800 and 1801, maintaining the high character which it first possessed for elear arrangement, accurato description, and general precision, was, between the years 1841 and 1844, republished in eight volumes at Leipsic by Bischoff, Henle, Huschke, Theile, Valentin, Vogel, and Wagner, with suitable additions, and a large amount of new and accurate information. In this edition Rudolph Wagner gives, in the first division of the first volume, tho life, correspondence, and literary writings of Sommering; and is the second volume the anatomy of the bones and ligaments. The third volume contains the anatomy of the museles and the vascular system by Theile. Valentin derotes one volume, the fonrth, to the minuto anatomy of the nervons system and its parts, as disclosed by careful examination by the micruscope ; and it must be allowed that the author has been at grcat pains to present just views of the true anatomy of the brain, the spinal cord, the nerrons branches, and the ganglia. In the fifth volume, Insehke of Jena gives the anatumical history of the viscera and the organs of the senses, a department which lad been left in some degree incomplete in the original, but for one division of which the suthor had left useful materials in his large figures already mentioned. In the sixtb volume, an entire and completo system of general anatomy, deduced from personal observation and that of other careful observers, the materials being in general new, and in all instances confirmed and rectified, is given by.Prof. Henle. The seventh volume contains the history of the process of development in mammalia and man, by Th. L. W. Bischoff. The eighth volume treats of the pathological snatomy of the human body, by Julins Vogel, but contains only the first division, relating to the generalities of the subject. This, which is probably the most accurate as it is the most elaborate system of snatomical knowledge up to the date of its publication in 1844, was translated into the French language by Jourdan, and published in 1846 under the name of Encyclopedie Anatomique. The cighth volume was translated into English in the year 1847.

The Anatomie Générale of Bichat is a monument of his Bichat philosophical genius which will last as long as the structure and functions of the human body are objects of interest. His Ańatomie Descriptive is distinguished by clear and natural arrangement, precise and accurate description, snd the general iogenuity with which the subject is treated. The physiological observations are in general correct, often novel, sad always highly interesting. It is unfortunate, however, that the ingenious suthor was cut off prematurely during the preparation of the third volume. The later volumes are, however, pervaded with the general spirit by which the others are inpressed, and are highly creditable to the learning, the judgment, and the diligence of MM. Roux and Buisson. The system of Portal is a valuable and correct digest of anatomical and patbological knowledge, which, in exact literary information, is worthy of the anthor of the Histoire de l'Anatomie et de la Chirurgie, and, in sceuracy of deseriptive details, shows that M. Portal trusts not to the labours of his predecessors only. Boyer published in 1803 a complete treatise on Descriptive Anatomy. Cloquet formed, on the model of the Anatomie Descriptive of Bichat, a system in which he avails himself of the literature and precision of Sommering and the details of Portal. An English translation of this work was prepared by Dr Knox. Cruvtilhier pablished in 1834-35 a good general treatise on Deseriptive Anatomy, which was translated into English, and published as a part of The Library of Medicine. Cnuveilhier's treatise
has passed througn several editions. About the same time Blandin published an elemeutary work on Descriptive Anatomy, and a useful treatise on Topographical Anatomy. But the most elaborate system of human anatomy which has proceeded from the Freach school is the great treatise of Bourgery, illustrated by numerous large and beautifullycoloured plates of the parts and organs. It consists of two divisions, one on Medical aud Physiological Anatomy; the other on Surgical Anatomy.
J. F. Meckel published between 1815 and 1820 a manual of Descriptive Anatomy which combines the philosophical generalisations of Bichat with the precise description and pathological knowledge of Portal. During the succeeding thirty years excellent systematic treatises in the German language were prepared by Rosenmüller, C. F. P. Krause, Frederick Hildebrand (the 4th edition of which was cdited in 1830 by the eminent anatomist E. H. Weber), and Fred. Arnold. In 1846 Joseph Hyrtl published a system of Human Anatomy, and in the following year a manual of Topographical and Surgical Anatomy, both of which, but more especially the latter, have goue through several editions. Luschka, the professor of anatomy in Tuibingen, has prepared a valuable treatise on Regional Anatomy, in which attention is particularly dirceted to the relations of the parts which are of intcrest to the physician and surgeon. The text-book by Hermana Meyer of Lurich is also worthy of mention as a work in which the mechamical construction and uses of parts are described with great care. Henle's treatise on Human Anatomy, the publication of which was commenced in 1855 , though the last volume was not completed until 1873, is, however, the most complete work on the subject which has as yet issued from the German press during the latter half of the present century. It-is remarkable not only for the elaborate description of the organs and tissiaes of the body, and the ample references to the labours of other observers, but for the number and beauty of the wood engravings.
In Great Britain systematic treatises on Human Anatomy were published in the earlier part of the present century. by Andrew Fyfe, John Bell, the third Monro, and John Gordon, all of whom were teachers in the Edinburgh school. In London, Jones Quain prepared an excellent text-book, which, under a succession of editors, who have kept each new edition on a level with the advancing tide of anatomical knowledge, has been much esteemed not only for the clearness of its descriptions, but for the soundness of its information on the various branches of human Systematic Anatomy. The 7th edition, under the editorial auperintendence of Professors Sharpey, Allen.Thomson, and Cleland, appeared between 1864 and 1867. The passing of the Anatomy Act in 1832, by affording facilities for the pursuit of practical anatomy, gave a great stimulus to its study in this country, and to facilitate the acquisition of a knowledge of the subject many text-books have been published. The most important are Harrison's Dublin Dissector, and the well-known Demonstrations of Anatomy by Prof. Ellis. The increased importance attached by surgeons to a precise acquaintance with the knowledge of those regions in which operations have most frequently to be performed, has led to the production of raluable special works on their anatomy. The treatise of Allen Burns on the head and neck, those of Sir Astley Cooper and Sir W. Lawrence on hernia, Morton's Anatomy of the Surgical Regions, the excellent plates on Surgical Anatomy by Joseph Macliso, and the beautiful drawings by Ford from the dissections of Prof. Ellis, with descriptive letterpress, are highly creditable to British anatomists ; whilst the treatise on hernia by Scarpa, and Cloquet's and Hesselbach's works on the same subject, reflect credit on the Italian, French, and German achools. : But succial treatisos have also beca written on other
departments of humas d.scriptive auaturny. snoen, Sandifort, and Barclay published works on the muscles generally; and Sir Charles Eell, in his classical treatise on the Anatomy of Expression, described with care the attachments and action of the muscles of the face. Of late jears the variations in the usually described arrangements in the muscular system in man Lave been carefully inquired into, and numerous memoirs have been written, more especially by M'Whinnic, Hallett, W. Gruber, John Wood, W. Turner, and M'Alister. F. O. Ward published a work on Human Osteology which is characterised by the minuicness and accuracy of its description; G. M. Humphry, a treatise in which the physical, physiologicai, and pathological aspects of the skeleton are dwelt upon; and Luther Holden, a pro-fusely-illustrated work on the same subject, in which the surfaces for muscular attachments are carefully delineated. Sir Charles Bell's engravings of the arteries, Tiedemann's more elaborate plates, and Harrison's admirable description of these vessels, all deserve notice. But the most complete work on the Anatomy of the Arteries which has yet appeared is that by Richard Quain, which consists of eigloty-seven large plates, with 543 pages of descriptive letterpress. It will long continue a standard work on the subject.

Numcrous treatiscs on the anatomy of the nervous system have been published. In Germany the brothers Wenzel, Reil, Tiedemann, Gall and Spurzhein, Arnold, and Reichert have prepared works on the descriptive anatomy of the great nerve centres, not only in man but in various animals; and by Ticdemana, Reichert, and Ecker, the development of the brain has been especially studied. In Italy the memoirs of Rolando on the apatomy of the brain, and of Bellingeri on the spinal cord and its acrves, are of importance. From the Freach school the writings of Serres, of Foville, of Leuret and Gratiolet, bave thrown much new light on the structure of the brain. In Great Britain, Sir Charles Bell, in his great work on the nervous system, developed and established the truth of tho separate nature of the verves of sensation and motion. In 1836, and again in 1847, Samuel Solly published an instructive treatise on the anatomy of the brain. Between 1830 and 1834 Joseph Sman published a valuable serics of engrarings in illustration of the distribution of the nerves, and Robert Lee has especially investigated the arrangement and distribution of the nerves of the heart and uterus. In the Cyclopadia of Anatomy and Physiology, under the editorial superintendence of Dr Robert B. Todd, original memoirs, not only on human but comparative anatomy, by eminent writers, have appeared, and hare done much to diffuse a knowledge of anatomical science.

The improvement which has been effected in the construction of the compound microscope during the fifty years subsequent to 1822, has contributed in no amall degree to enable anatomists to obtain more correct information on the intimate. structure of different organs and tissues of the animal body. For the first twenty. years of the ninetcenth century, opticians and instrument-makers had at intervals endearoured to reader the compound microscope at once an instrument of greater power and mure free from sources of error and optical illusion than it had hitherto been possible to obtain it. Tro defects, however, still adhered to the compound microscope. The instrument was not achromatic; anda considerable degree of spberical aberration uncorrected rendered the image indistinct.

Between 1812 and 1815 Professor Amici of Modena had attempted to construct an achromatic object-glass of ono single leas, but found that this was impracticable. M. Selligues of Paris, in 1823, after various trials, found that this could be done by making the object-glass consist of four achromatic compound ledses, each of which was composed of two single lenses. This method was carried
into practice and improred by the two M.M. Clevalier of Paris. About the same time Dr Goring in London, with the aid of Mr Tulley and Mr Pritchard, constructed compound microseopes upon a similar principle.
By the labours of these fractical opticians, and the suggestions of rarious scientific persons, as Sir John Hersehel, Sir Richard Airy, Mr Barlow, one great defect of the compound microscope was obviated. The effects of spherical aberration were in the next place overeome in a very simple manner by the experiments of Mr Joseph Jackson Lister, who had early observed that the combined aehromatic object-glasses devised by Selligues were fixed in their cells with the convex side foremost, a most improper position, as it renders the splherical errors very great. This gentloman found, after various trials, that by placing three or more achromatic glasses with their plane surfaces directed foremost, it was possible to correct completely all spherical aberration.
This fact was made known in the beginning of the year 1830; and by its application the compound microscope was brought to a high degree of perfection as an aebromatic instrument in 1831 and 1832, and became the means of affording valuable assistance in anatomical inquiries. The use of the microseope in anatomy, which had in the times of Malpighi, Leeuwenhoeck, William Comper, Baker, Fontana, Hewson, and the sceond Monro, been much cultivated, but had afterwards, from the imperfection of the instrument and the illusions to which it not unfrequently gave rise, been neglected, now became so general and so necessary, that șinee the year 1832 minute struetural anatomy has been, if not created anew, at least most thoroughly revised. The amount of knowledge has been enormously increased; that which was already possessed has been rendered greatly more accurate and precise.
It is impossible in this place to name the authors of all the valuable monographs which have appeared during the past forty years, but those who have especially advanced the progress of our knowledge of the minute structure of the tissues and organs may be referred to. Johannes Müller in 1830 published an elaborate commentary on the minute structure of the glands, the first work in which the anatony of these organs was examined and elucidated in a comprehensive and systematic manner. Ehrenberg explained the structure of numerous in fusoria, and diselosed the peculiarities of many otber structures, animal, vegctalle, and mineral, which had preriously eluded the most skilful rescarches. Francis Kiernan, in 1833, gave the first correet account of the minute anatomy of the liver. Selleiden in 1838, and Schwann in 1839, published most important generalisations on the cellular structure of vegetable and añimal organisms. Martin Barry communicated uew facts on the structure of the orum and on the structure of cells geucrally. John Goodsir laid great cmphasis on the offico of the nucleus in the nutrition, growth, aud reproduction of cells, and on the arrangement of the cells within an organism into departments or territorics. Virchow, by his researches into the connective tissues, has still further developed the idea of the cellular structure of the animal organism, and the importance of cells in the performanee of physiologieal and pathological processes. Lionel Reale attribated both to the nucleus and to the substance of the cell immediately surrounding it important functional properties. Max Schultze showed the identity in nature between the sarcode substance of the lower animal organisms and the contents of the cells in the higher animals, and applied to these substances the common term protoplasm, which had previously been introduced by Hugo von Mohl to designate a similar material in the vegetable cell.
The minute structure and development of bone hes been carefully investigated by J. Goodsir, W. Sharpey, I.

Müller, C. Gegenbaur, and A. Kölliker ; that of muscle, b.j Bomman, Külliker, and Sharpey ; of nerve by Schwann, Remnak, Stilling, Gerlach, Loekhart Clarke, and Deiters; of cartilage by Schwann and Schultze; of the blood and blood-vessels by Hlenle, Qulliver, Quekett, Paget, and Wharton Jones; of the mucous menbranes by Bowman; of the scrous membranes by Henle, Recklinghausen, Ludwig, and Rlein; of the teeth by Retzius, A. Nasmyth, J. Goodsir, J. Tomes, R. Owen, Czermak, 1luxley, and Waldeyer. The structure of the lungs has been investigated by Addison, Raincy, and Rossignol; of the kidney by Bowman, Henle, and Schweigrerseidel ; of the liver by Beale and Hering; of the splcen by Sanders, Gray, Dillroth, and W. Müller ; of the testicle by A. Cooper, Köliker, and lienle ; of the ovary by PGüger and Waldeyer; of the thymus by A . Cooper and Simon; of the stomach and intestines by Kölliker, Brinton, and Frey; of the placenta by Eschricht, Reid, Sharpey, Goodsir, Van der Kolk, Virchow, Farre, Priestley, Rolleston, Ercolani, and Turner; of the organs of senso by Henle, Borman, His, II. Müller, Schultze, Corti, Reissner, and Deiters.

The gencral results of the labours of these and other investigators have been from time to time incorporated into systenatic treatises on microscopic anatomy, of which referenee may more especially be made to those prepared by J. Berres, F. Gerber, A. Hill Hassall, A. Külliker, W. Sharpey, W. Bowman, F. Leydig, Frey, and S. Stricker. Side by side with these inquiries into the structure and development of the tissucs, the evolution of the embryo out of the fertilised orum has been carried on. Purkinje, Von Jaer, Coste, Wharton Jones, Valentin, IR. Wagner, Rathke, J. Müller, Prevost and Dumas, Martin Barry, Reichert, Bischoff, Külliker, Vogt, Allen Thomson, Owen, Von Siebold, Dujardin, Milne-Edwards, Claparède, Agassiz, Huxley, Kitchen Parker, and Kowalevsky have all contri buted important memoirs on various branches of enbryology.
Comparative Anatomy, which during the 18th century was Compara diligently cultivated by Daubenton, Pallas, Haller, Buffon, tive John Hunter, and the second Monro, has become during the anotonn present century a subject of increased interest, from its intimate connection with the sciences of zoology; physiology, and geology. It has conscquently been studied with great zeal and assiduity, and multitudes of monographs, as well as numerous systematic treatises on the anatomy both of the vertebrata and invertebrata, have been published.
To name even a tithe of the workers and authors who have added to our knowledge of the facts of comparative anatomy would occupy considerable space. It may suffice to refer to those whose writings hare contributed most materially to the adrance of the science. In France, Cuvier, Dumeril, the Saint-Hilaires, Blanchard, De Blainville, II. and Alphonse Milne-Edwards, Gervais, and Gratiolet; in Germany, Meckel, Tiedemann, Von Baer, Spix, Martius, Bujanus, Otto, Carus, J. Müller, LeucEart, Gegenbaur, and Haeckel ; in Streden and Denmark, Retzius and Escliricht ; in Holland and Belgium, Van der Kolk, Vrolik, and Van Beneden; in America, Agassiz, Wyman, and Burmeister; in Great Britain, E. Home, A. Carlisle, I. Grant, Richard Owen, J. Barclay, R. Knox, J. Goodsir, G. Busk, Rymer Jones, W. B. Carpenter, T. H. Euxley, G. J. Allman, W. H. Flower, St George Mivart, and J. Murie ase names identificd with ono or more branches of the subject.

The investigations into the form and structure of animals have led anatomists to search for parts in one animal whieh correspond with parts in other animals in their mode of development and arrangement, and to evolve from their researches general doctrines of organic forms. The conception entertained by Goethe of the presenco of a pre-maxillary element in the human uprer
jarr becanse it exists in other vertebrates, and the announcement of the theory of the vertebrate nature of the skull by Gaethe and Oken, directed anatomists into a line of inquiry which has been productive of fruitful results, and has exercised a great influence on the progress and direction of biological science. Geoffroy St Hilaire and C. Martins in France; Spix, Carus, Gegenbaur, and Haeckel in Gcrmany; and Owen, Goodsir, Humphry, Huxley, Parker, and Cleland in Great Britain, have all published important memoirs in this departmont of anatomical research.

The formation of anatomical museums in connection with universities, and elsewhere, by enabling specimens to be accumulated for observation and comparison, has contributed in no small degree to the progress of anatomical science. Prc-eminent amongst these is the collection originally formed by the genins, energy, and self-devotedness of John Hunter, which, under the fostering care of the council of the Royal College of Surgeons of England, Las been materially augmented in all its departments by a succession of curators-Clift, Owen, Quekett, and Flower. The aid which has been afforded to auatomists in the publication of their researches, more especially in providing plates and other expensive means of illnstration, by the Jearned societies of Europe, and the circulation which has been giren to their memoirs through the Transactions and Proceedings of these societies, and through the Journals devoted to anatomical and physiological science, have naterially contribnted to the diffusion of a knowledge of discoveries, and to the general advance of the science.

SPECLAL ANATOMY OF THE HUMAN BODY.

Man, zoologically speaking, belongs to the Mammalian class of the Vertebrate sub-kingdom, i.e., his young are brought forth alive, and nourished during infancy on milk secreted in mammary or milk-forming glands. In common with all vertebrate organisms, he possesses a spine or vertebral column and a skull, in which are contained the brain and the spinal marrow, and on the ventral surface of the spinal column are situated the several subdivisions of the alimeutary canal.

But man possesses certain special or distinctive anatomical characters. The most noticeable, as seen on an external inspection of his body, is his erect position. He is, indeed, the only living creature that can walk or stand crect, i.e., with the axis of tho spine vertical; with the hip and knee joints capable of being fully extended, so that the leg is brought into line with the thigh; with the foot so planted on the ground that it rests on the heel behind and on the roots of the toes in front; with the upper limbs so arranged as to act, not as instruments of progression, but of prehension ; and with the head so balanced on the top of the spine that the face and eyes ioole directly to the front. His bones, joints, and muscles are constructed and arranged so as to enable him to preserve the erect attitude without fatigue. In other vertcbrata the axis of the spine is oblique or horizontal, phe lip and knee joints are perrnanently bent at a more or less acute angle, the limbs cor-
responding to the human upper extremities, are, in the form of lcgs, wings, or fins, instruments of progression, and the head is articulated with the spine at or near the hinder end of the skull. Oring to the oblique or horizontal attitude of the body in the rertebrata generally, and its erect
 position in man, the terms wis of the spine iom ol oct at atruped; the dich are employed in to the verical doted inc. (4/ikr Doodirir.) describing the relative position of different parts are not used in the same sense by the human and comparative anatomist. Thus, parts which are superior, or above other parts, in the human body, are anterior, or in front, in other vertebrata; and parts which are posterior, or behind other parts in man, are superior to them in other vertebrata. To obviate the confusion which must necessarily arise when comparing the human bods with that of other vertebrates, certain descriptive terms have been recommended which may be employed whether the position of the body be erect or non-erect. Thus, the aspect of parts directed towards the region where the atlas or first vertebra is situated is atlantal, that directed towards the sacrum is sacral, that towards the back is dorsal, that towards the front is ventral or hoemal. Quite recently
 of a bird. The asis of the splac lies obltagety to the sertical dotted the term proe-axial has been introduced un. (afier Boodsir.) atlantal, nnd post-axial to sacral.

The body may be considered as divided by an imaginary plane, the mesial plane, into two lateral and similar halves, a right and left, so that it exhibits a bilateral symmetry; and the constituent parts are described as being external or internal to each winer, according to their relative position to this plane. For descriptive purposes, also, we may subdivide the body into Axiar and Appendicular portions. The Axinc part is the stock or stem of, the body, and consists of the Head, ! the Neck, and the Trunk The '
 trunk is again subdivided into the Pra. 4-0utline dingram of n chest or Thorax, and the belly or mnnkey ${ }^{\text {Li }}$ tho 6 cml-erect Abdomen; and the abdomen is lise obliquely to the erricesl again subdivided into the' abdo- doued line (After coodsir.) men proper and the Pelvis. The asial part contains the organs essential to the preserration of life. In the head is lodged the brain, from which the spinal marrow is prolonged down the spinal canal. At the sides of the head are the cars, and opening on to the face are the eyes, nostrils, and mouth. Prolonged down the neck are the gullet and windpipe, with the latter of which is associated the regan of roice. Within the chest lie the heart, lungs, and gillet; and in the abdomen are contained the stomach, intestine, liver, spleen, pancreas, kianeys, and other organs concerncd in the urinary and generative funcrinns. The Appendicelar part forms the limbs, which do not contain organs essential to lifc. In man the limbs are called Upper and Lower-the former are instnments of prehension, the latter of progression. The subdivisions of the body arc not homogeneous in strictare, but are built ap of several sratcms of organs, cack system bcing characterised
not ouly by peculiaritics in form, appearance, and structure, but by possessing special functions and uses. Thus the bones collectively form the Osscous system; the joints the Articulatory system; the muscles, which move the bones at the joints, the Muscular system; and these several systems collectively constitute the organs of Locomotion. The blood and lymph vessels form the Vascular system; the brain, spinal marrow, and nerves, the Nersous system, with which is intimately associated the organs of Sense; the lungs and windpipe, the Respiratory system; the alimentary canal, with the glands opening into it, the Digestive system; the kidneys, bladder, and urethra, the Urinary system; the testicles, spermatic ducts, and penis in the male, with the ovaries, uterus, and clitoris in the female, the Gencrative or Reproductive system; the skin, with the bair and nails, the Tegumentary system. These various systems aro so arranged with reference to each other as to form an organic whole.

Anatomy of the Organs of Locomotion.

The organs of locomotion consist of the muscles or active organs, and the bones and joints or passive organs. The auatomy of the bones will first attract our attention.

Osseous Sistem-Osteology-Skeleton.-The word Skelcton (from $\sigma \kappa$ кé $\lambda \omega \omega$, to $d r y$) signifies literally the dry or hard parts of the body. When used in a limited sense it is applied merely to the boncs, but when used in a wider and more philosophic sense it comprises not only the bones or osseous skeleton, but the cartilages and fibrous membranes which complete the framework of the body. The first evidence of a skeleton in the embryo is the appearance of membranes in many parts of which cartilage is developed, and in course of time this cartilage is converted into bone. In some animals, however, as in the cartila. ginous fish, the osseous conversion does not take place, and the skeleton remains permanently cartilaginous; and in the very remarkable fish called Lancelet, or Amphioxus, the skeleton cousists almost entirely of fibrous membrane.
The skeleton serves as a basis of support for the soft parts, as aftording surfaces of attachment for muscles and as a protection for many delicate organs. In the -ertebrata the osseous skeleton is clothed by the muscles and skin, and is technically called an endo-skeleton. In invertebrata the skeleton is not unfrequently on the surface of the body, and is termed an exo- or dermo-skeleton. In some vertebrates (e.g., the armadillo, tortoise, and sturgeon), in aldition to the proper endo-skeleton, skeletal plates are developed in connection with the integument, so that they possess a dermoskeleton likewise. In some rertebrates, also, a partial skeleton is formed within the substance of some of the viscera-e.g., in ruminant animals a bone is situated in the heart; in the walrus and other carnivora, in rodents, bats, and some monkeys, a bone lies in the penis; and in the leopard, jackal, and other carnivora, a cartilaginous style lies in the middle of the touguc. These parts form a splanehno- or visceral skeleton. By some anatomists the teeth, which are unquestionably hard parts of the body, are also referred to the splanchno-skeleton, though they are special modifications of the papillæ of the mucous membrane of the gum. In man, the tecth being excluded, there is neither exo-nor splanchno-skeleton, but only an endo-skeleton.
In each of the great subdivisions of the body an endoskeleton exists, so that we may speak of an Axial Skeleton and au Appendicular Skeleton. The Axial Skeleton consists of the bones of the spine and head, the ribs, and the breastbone; the Appendicular Skeleton, of the bones of the limbs. The number of bones in the skeleton varies at different periods of life. In the adult there are about 200,
but in the child they are more numerous; for in the pro cess of consolidation of the skeleton certain bones originally distinct become fused together. In Plates XII., XIII., and XIV., front, back, and side views of the entire skeleton are given, together with figures of the skull aud several of its constituent bones.

We shall commence the description of the Axial Sikelerow by giving an account of the bones of the spinc.

The Spine, Spinal or Vertebral Coluan, chine, or backbone, consists of a number of superimposed lones which are named Vertebræ, bccause they can move or turn somewhat on cach other. It lies in the middle of the back of the neck and trunk; has the cranium at its summit; the ribs at its sides, which in their turn support the upper limbs; whilst the pelvis, with the lower limbs, is jointed to its lower end. The spine consists in an adult of twentysix bones, in a young child of thirty-three, certain of the bones in the spine of the child becoming ankylosed or blended with cach other in the adult. These blended bones lose their mobility, and are called false vertcbræ; whilst those which retain their mobility are the true vertebre. In the vertebrata the bones of the spine are arranged in groups, which may be named from their position - vertebre of the neck or cervical; of the chest, dorsal or thoracic; of the loins, lumlar ; of the pelvis, sacral; and of the tail, coceygeal or caudal ; and the number of vertcbre in each group may be expressed ina formula. In man the formula is as fol-

Fio. B.-The λ xial Skeleton. C_{Y}, the cervlcal veltelas: D_{12} the dorsal; L_{3}, the lumbur: S_{s}, the sacral; Coe the coccygeal; CC, the aeries of twelve rius on one side: P a the pros-al crmums Bls, the meso-sternum: Xs, the x!uhlsiemum. The dotied line VV refire scnis the vertical axis of the apine. lows: $-\mathrm{C}_{7} \mathrm{D}_{12} \mathrm{~L}_{3} \mathrm{~S}_{3} \mathrm{COC}_{4}=33$ hones, as seen in the child; but the five sacral vertebre fuse together into a single bonethe sacrum-and the four coccygcal into the single coccyz. Hence the sacrum and coccyx of the adult are the false, whilst the lumbar, dorsal, and cervical are the true vertebre.

The vertcbre are irregularly-shaped bones, but as a rule liave ecrtain characters in common. Each porsesses a body and an arch, which enclose a ring, with certain processes and notches. The Dody, or Centrum, is a short cylinder, which by its upper and lower surfaces is connected by means of fibro-cartilage with the bodies of the vertebre inmediately ahove and below. The collective scrics of vertebral bodies forms the great column of the spine. The Arch, also called Neural Arch, because it encloses the spinal marrow or nervons axis, springs from the back of the body, and consists of two symmetrical halves united behind in the middle line. Each half consists of an anterior part or pedicle, and a posterior part or lamina. The lings collectively form the spinal canal. The Procosses usually spring from the arch. The spinous process projects backwards from the junction of the two laminæ, and the collective scrics of these processes gives to the entire columa the spiny character from which bas arisen tho

Fig 1.
. ,

Fig 2

Fig. 3.

Fig. 5

ENCYCLOPEDIA BRITANNICA. NIMTH EDITION.

EYCYCLOPROLA BRITASNICA. NINTH EDITION
verm Spine, applied to it. Tine rransverse processes project outwards, one from each side of the arch. The articular processes project, two upwards and two downwards, and are for connecting adjacent vertebræ together. The Notches, situated on the upper and lower borders of the pedicles, form in the articulated spine the intervertebral foramina through which the nerves pass out of the spinal canal.
The vertebre in each group have characters which epecially distinguish them. In man and all mammals, with few exceptions, whatever be the length of the neck, the Cervical Vertebre are seven in number. The exceptions are the three-toed sloth, which has nine, and Hoffmann's sloth and the manatee, in which there are only six. In many whales the seven cervicals are fused in the adult into a single bone. In man the body of a cervical vertcbra is comparatively small, and its upper surface is traneversely concave ; the arch has long and obliquely sloping laminæ; the ring is large and triangular; the spine is short, bifid, and horizontal ; the transverse process consists of two bars of bone, the anterior springing from the side of the body, the posterior from the arch, and uniting externally to enclose a foramen, through which, as a rule, the vertebral artery passes; the articular processes are flat and oblique, and the upper pair of notches are deeper than the lower. The first, second, and seventh cervical vertebre have characters which specially distinguish them. The first, or Atlas, has no body or spine: its ring is very large, and on each side of the ring is a thick mass of bone, the lateral mass, by which it articulates with the occipital bone above and the second vertebra below. The second rertebra, Axis, or Vertebra dentata, has its body surmounted by a thick tooth-like odintoid process, which is regarded as the body of the atlas displaced from its proper vertebra and fused with the axis. This process forms a pivot round which the atlas and head move in turning the head from one side to the other; the spine is large, thick, and deeply bifid. The seventh, called Vertebra prominens, is distinguisbed by its long prominent spine, which is not bifid, and by the smail size of the foramen at the root of the transverse process. In the human spine the distinguishing character of all the cervical vertebre is the foramen at the root of the transverse process, but amongst mammals this is not an invariable character, for in the cetacea the transverse process of the atlas is imperforate, and in the horse, ruminants, and many quadrumana, the seventh cervical vertebra has no foramen at the root of its transverse process.
The Dorsal Vertebre, more appropriately called costal or thoracic, are twelve in number in the human spine; but amongst mammals they range from eleven in the armadillo to twenty-two in the Cape hyrax and Hoffmann's sloth. They are intermediate in size and position to the cervical and lumbar vertebræ, and are all distinguished by having one or two smooth surfaces on each side of the body for articulation with the head of one or two ribs. The arch is short and with imbricated lamina; the ring is nearly circular; the spine is obliquc, elongated, and bayonet-shaped; the transverse processes are directed back and out, not bifid, and with an articular surface in front for the tubercle of a rib; and the articular procesees are flat and nearly vertical. The first, twelfth, eleventh, tenth, and sometimes the ninth, dorsal vertebre are distinguished from the rest. The first is in shape like the seventh cervical, but has no foramen at the root of the transrerse process, and has two articular iacets on each side of the body; the ninth has sometimes only ope facet at the side of the body; the tenth, eleventh, and twelfth have invariably only a single facet on the side of the body, but the eleventh and twelfich have stunted transverse
processes, and the twelfth has its lower articular precesses shaped like those of a lumbar vertebra.

The Lumbar Vertebre in man are five in number, but amongst mammals they range from two in the platypus to eight in the hyrax or agouti. They are the lowest of the true vertebræ, and also the largest, especially in the body. The arch has short and deep laminæ; the ring is triangular; the spine is massive and hatchet-shaped; the transverse processes are long and pointed; the articular are thick and strong, the superior pair concave, the inferior convez; and the inferior notches, as in the dorsal vertebre, are deeper than the superior. In the lumbar vertebre and ir the lower dorsal an accessory process projects from the bass of each transverse process, and a mammillary tubercle fron each superior articular process. In man these are small anc rudimentary; but in some mammals, as the kangaroo, armadillo, and scaly ant-eater, the mammillary tubercles are large, and in the baboon, dog, cat, and beaver, the accessory processes are well developed. The fifth lumbar vertebra has its body much thicker in front than behind; its spine is less massive, and its lomer articular proces:es are flat.

The Sacrum is composed of fire originally separate vertebræ fused into a single bone. In the bandicoot it consists of a single vertebra, whilst it has as many as eight in the armadillo. The relative size and completeness of the sacrum are associated with the development of the haunch bones and of the lower limbs. In whales, where the pelvic bones are rudimentary and there are no hind limbs, there is no sacrum. It forms the posterior wall of the pelvis, is triangular in form, and possesses two surfaces, two borders, a base, and an apex. The anterior or pelvic surface is concave, and is marked by four transverse lines, which indicate its original subdivision into five bones, and by four pairs of foramina, through which are transmitted the anterior sacral nerves. Its postcrior surface is convex; in the middle line are tubercles or rudimentary spines, and on each side of these are two rows of tubercles, the inner of which are the conjoined articular and mammillary processes, the outer the transverse processes of the originaily distinct rértebræ ; in addition, four pairs of foramina are found which transmit the posterior sacral nerres from the sacral canal, which extends through the bone from base to apex, and forms the lower end of the spinal canal. By its borders the sacrum is articulated with the haunch-bonesby its base with the last lumbar rertebra, by its apex with the coccyx. The human sacrum is broader in proportion to its length than in other mammals; this great breadth gives solidity to the lower part of the spine, and, conjoined with the size of the lateral articular surfaces, it permits a more perfect junction with the haunch-bones, and is correlated with the erect position. Owing to the need is woman for a wide pelvis, the sacrum is broader than in man.

The Coccyx consists of only four vertebre in the human spine. It is the rudimentary tail, butinstead of projecting back, as in mammals generally, is curved forwards, and is not visible externally, an arrangement which is also found in the anthropoid apes and in Hoffmann's sloth. In the spider monkeys as many as thirty-three vcrtebre are found in the tail, and in the long-tailed pangolin the number reaches forty-six. Not only is the tail itself rudimentary in man, but the vertebre of which it is composed are small, and represent merely the bodies of the true vertelire. As there are no arches, the ring is not formed, and the spinal canal does not extend, therefore, beyond the aper of the sacrum. The first coccygeal rertebra, in addition to a body, possesses two processes or horns, which are jointed with two corresponding processes from the last sacral vertebra.

The IIuman Spine is more uniform in length in persons of the same race than might be supposed from the indiridual differences in stature, the variation in the height of the body in adults being due chicely to differences in the length of the lower limbs. The average length of the spino is 28 inches; its widest part is at the base of the eacrum, from which it tapers down to the tip of the coecyx. It dininishes also in breadth from the base of the sacrum upwards to the region of the neck. Owing to the pro: jection of the spincs behind and the transverse processes on each side, it presents an irregular outline on thuse aspeets; but in front it is more uniformly rounded, owing to the consex form of thio antero-lateral surfaces of the bodies of its respective rertebre. In its general contour two serics of curves may be seen, an autcro-posterior and a lateral. The antero-posterior is the more important. In the infant at the time of birth the sacro-coccygeal part of the spine is concave forwards, but the rest of the spinc, except a slight forward concavity in the series of dorsal vertebre is almost straight. When the infant begins to sit up in the arms of its uurse, a convexity forwards in the region of the neck appears, and subsequently, as the child learns to walk, a convexity forwards in the region of the loins. Hence in the adult spine a series of convexoconcare curves are found, which are alternate and mutually dependent, and are associated with the ereet attitude of man. In the buman spine alone are the lumbar vertebrea convex forward. A lateral curve, convex to the right, opposite tho third, fourth, and fifth dorsal vertebre, with compensatory curve convex to tho left immediately above and below, is due apparently to the much greater use of the muscles of the right arm over those of the left, draming the spine in that region somewhat to the right. In disease of the spine its natural curvatures are much increased, and the deformity known as humpback is produced. As the spine forms the central part of the axial skeleton, it acts as a column to support not only the weight of the body, but of all that can be carried or the head, back, and in the upper limbs: by its transverse and spinous processes it serves also to give attachment to numerous muscles, and the transverse processes of its dorsal vertebre are also for articulation with the ribs.
The Thorax, Pectus, or Chest is a cavity or enclosure the walls of which are in part formed of bone and cartilage. Its skeleton consists of the sternum in front, the twelve dorsal vertebre behind, and the twelve ribs, with their corresponding cartilages, on each side.

The Stercum or Breast Bone is an elongated bone which inelines downwards and forwards in the front wall of the chest. It consists of three frarts-an upper, called manubrium or pre-sternum ; a middle, the body or mesosternum; and al lower, the ensform process or xiphisternum. Its anterior and posterior surfaces are marked by transverse lines, vhich indirate not only the subdivision of the entire bone into three parts, but that of the mesosternum into four originally distinct segments. Each lateral border of the bone is marked by seven depressed surfaces for articulation with the seven upper ribs: at each side of the upper border of the pro-sternum is a sinuous depression, where the clavicle, a bone of the upper limb, srticulates with this bone of the axial skeleton. The xiphi-sternum remains cartilaginous up ta a late period of life, and from its pointed form has been named the ensiform cartilage.

The Ribs or Costr, twenty-four in number, twelve on each side of the thorax, consist not unly of the bony ribs, but of a bar of cartilage continuous with the anterior end of each bone, called a costal cartilage, so that they furnish examples of a cartilaginous skelcton in the adult huran
body; in aged persons these cartilages usually becume couverted into bone. The upper seven ribs are connected by their costal cartilages to the side of the sternum, and are called sternal or true ribs; the lower five do not reach the sternum, and are named a-sternal or false, and of theso the two lorrest, from being comparatively unattached in front, are called free or floating. All tho ribs are articulated behind to the dorsal vertebre, and as they are syumetrical on the two sides of the body, the ribs in any given animal are always twice as numerous as the dorsal vertebre in that animal. They form a series of osseocartilaginous arches, which extend more or less perfectly around the sides of the chest. A rib is an elongated bone, and as a rule possesses a head, a neck, a tubercle, and a shaft. The head usually possesses two articular surfaces, and is connected to the side of the body of two adjacent dorsal vertebra; the neck is a constricted part of the bone, uniting the head to the slaft; the tubercle, close to the junction of the shaft and neck, is the part which articulates with the transverse process of the vertebra. The shaft is compressed, possesses an inner and outer surface, and an upper and lower border, but from the shaft leing somewhat twisted on itself, the direction of the surfaces and horders is not uniform througbout the length of the bone. The ribs slope from their attachments to the spine, at first outwards, downwards, and backwards, then downwards and forwards, and where the curve changes from the backward to the forward direction an angle is formed on the rib. The first, tenth, eleventh, and twelfth ribs articulate each with only a siugle vertebra, so that only a single surface exists on the head: the surfaces of the shaft of the first rib are almost horizontal ; those of the second very oblique; the eleventh and twelith ribs are rudimentary, lave neither neck nor tuberele, and are pointed anteriorly. The ribs are by no means uniform in length: they increase from the first to the seventh or eighth, and then diminish to the twelfth; the first and twelfth are therefore the shortest ribs. The first and second costa. cartilages are almost horizontal, but the others are directed upwards and ịnwards.
In its general form the chest may be likened to a truncated cone. It is rounded at the sides and flattened in front and behind, so that a man ean lie cither on his back or his belly. Its truncated apex slopes downwards and forwaids, is small in size, and allows of the passage of tho windpipe, guilet, large reins, and nerves into the chest, and of several large arteries out of the chest into the neck. The base or lower boundary of the cavity is much larger than the apex, slopjes downwards and backwards, and is occupred by the diaphragm, a mescle whieh separates the chest from the cavity of the abdomen. The transverse diameter is greater than the antero-posterior, and the anteroposterior is greater laterally, where the lungs are lodged, than in the mesial plane, which is occupied by the heart.
The Mend furms the summit of the axial part of the body. It consists of two portions-the Cranium and the Face.

The Skulu, or skeleton of the head, is composed of 22 bones, 8 of which form the skeleton of the cranium, 14 that of the face. Except the lower jaw, which is morei ble, the bones are all firmly united by immovable joints. The 8 bones of the cranium are sc united together by their edges as to furm the wall: of a box or cavity, the cranial cavity, in which the brain is lodged. The box of the cranium possesses a base or floor, a vault or roof, an anterior, a posterior, and two lateral walls. The posterior wall is formed by the occipital bone, which also extends for some distance forwards along the middle of the base; in front of the basal part of the occipital is the splenoid, which also sends a process nywards on each side of the
skull; in front of the basal part of the sphenoid is the ethmoid; mounting upwards in front of the ethmoid is tho

Fig. 6.-Profle of the skull. Fr, frontal bone; Pe parictal; SO, sapra-accipital; Sq, aqnamaas-temparal: MT, mastaid-temporal? Ty, tympanic: St, atyloid temparal: $A a$, ali-sphenaid; E_{4} as planum of ethmerd: La lichrymal: N_{i} nasal; Mx, superinr maxilla; Na, matar; Mra mandible; oh biswohya; th thyro-hyal; ch cerato-nyal; cino. external meatia; es. caroas auture: ls, lambdaidal sature; es, squamaus auture.
frontal, which forms the forehead, and closes in the front of the cranial box; forming the vault and side walls are the two parictal bones; completing the side walls, and extending for a short distance along the side of the fluor, are the two temporal bones; the vertex of the skull is at the junction of the two parietal bones with each other,'

fia. 7 -Section tarong the akull Immediatcly to the right of the mesisl plane. The letteriag as in Fig. 6, with, In additian, BO, basl-accipital; EO, ex-occip.tal PS. petrons-tempara! ; BS, basl-sphenold; PS, pre-sphenaid (the letters are placed If the sphenaidal sinus); $O S$, orbito-sphenoid; MEE, mes etbmold; $S C$, sepral carthage of nose; V, vorner: PL , palate; Pt , pterykoid of aphcaoldi $/ \mathrm{s}_{\mathrm{a}}$ frantal sinus; Pf, pltultary fossa; fm, faranen magnurn; a, angla; aud $\dot{\text { a }}$, bymphysis of lawer Jaw.

The fourteen bones of the face, which are situated below and in front of the cranium, enter into the formation of the walls of cavities which open on the front of the face; thus they. complete, along with the froutal, sphenoid, and ethmoid; the walls of the two orbits in which the eye-balls are lodged; along with the ethmoid and sphenoid, the walls of the nostrils; and they form the osseous walls of the mouth. As a general rule, the cranial bones are expanded, and platelike in form. The outer surface of each bone assists in forming the exterior of the cranium, and not unfrequently is marked by ridges or processes for the attachment of muscles. The inner surface, again, is smooth, and pitted
with depressions, in which the convolutions of the brain are lodged, and also marked by grooves for the lodgment of dilated veins called blood sinuses, and of arteries termed meningeal. The two surfaces of a cranial bone, dense in structure, are called its tables, outer and inner, and are separated from each other by bone, looser and more spongy in its texture, called diploë. In some localities, more especially in certain of the bones which form the walls of the nostrils, the dipleë disappears, and comparatively wide interspaces separate the two tables which contain air, and are called air-sinuses. The margins of the bones are denticulated, and it is by the interlacking of the denticulations of adjacent bones that they are jointed together, the joints being named sutures. The bones are pierced by holes or foramina, and similar holes exist betreen the adjacent margins of some of the bones. These foramiua are mostly situated in the floor of tho skull, aud transmit arteries into the cranial cavity to supply the brain and the inner table with blood, and veins and nervcs out of the cavity. The largest of these holes is called foramen magrum. It lies in the occipital bone, immediately above the ring of the atlas; through it the spinal marrow becomes continuous with the brain, and the vertebral arteries pass to supply the brain with biood.

The Occipital, or bone of the back of the Hend (Figs. 6 Occipital and 7, and Plate XIII.), consists of four originally distinct pieces fused into a curved plate-like bone. Its snbdivisions are arranged around the foramen magnum-the basilar part; basi-occipital, in front; the condyloid parts, ex-occipitals, one on each side; and the tabular part, or supra-occipital, behind. The anterior surface of the supra-occipital is subdivided into four fosse, in the two upper of which are lodged the occipital lobes of the cerebrum, in the two lower the cerebellum; the upper and lower pairs of fosse are separated by a groove for the lodgment of the lateral venows sinus. The posterior surface is marked by a protuberance and by curved lines for tho attachment of muscles; by its margin the supra-occipital articulates with the parietai and temporal bones. Each ex-occipital has on its under surface a smooth condyle for articulation with the atlas; in front of the condyle is a foramen which transmits the last or ninth cranial nerve, called hypoglossal, and behind it a foramen for the transmission of a vein sometimes exists. The basi-occipital articulates and, in the adult skull, is fused with the body of the sphenoid (Fig. 7). The upper surface of the basi-occipital is groored for the lodgment of the medulla oblongata.
Sometimes the part of the supra-occipital situated above the protuberance and upper curved line ossifies as an indepeudent bone, called interparietal. In some mammals, as the sheep, the existence of au interparietal in the joung skull is the rule and not the exception.

The Sphenoid or Wedge-shaped bone (Fig. 7, and Plate Sphenoic XII.), lies at the baso of the skull; it articulates behind with the occipital; in front it is jointed to the ethmoid and frontal, and by its lateral processes or wings to the frontal. parictal, and temporal boncs. From its position, thercfore; it binds together all the bones of the cranium, and, more over, articulates nith many of those of the face. For con structive purposes it is the most important bone of the head. It consists of a centrum or body, with which four pairs of processes are connected. The body has a deep depression on its upper surface, compared in shape to a Turkish saddle, in which is lodged the pituitary body; hence it is called pituitary fossa. In front of this fossa is a ridge which marks the place of union of the pre- and post-sphenoidal subdivisions of the body of this bone; the body is grooved laterally for the internal carotid artery and the carernous blood sinuses, and it is hollowed out in its intcrior to form the sphenoidal air-sinuses: these air-
sinuses are partially closed in front by a pair of amall Lony plates called sphenoidal spongy bones, or bones of Bertin. Behind the pituitary fossa is a pair of processes called posterior clinoid, from which the bonc slopes back to the basi-occipital; this slope is called the dorsum sellce, and on it rests the pons Varolii. From the posterior part of each side of the body the great wings, or ali-sphenoids, pass outwards and upwards to the sides of the skull, and each seads off a plate-like process to enter into the formation of the outer wall of the orbit. From the anterior part of each side of the body the lesser wings, orbito-sphenoids, pass outrards, and assist in forming the roof of each orbit; each orbito-sphenoid ends internally in a knob-like process called anterior clinoid, and at its root is a foramen called optic, which transmits the second nerse, or nerve of sight, into the orbit. From the great wings ou each side, close to its junction with the body, a pair of pterygoid processes, called internal and cxternal, project downwards, and the internal process ends in a slender hook termed the hamular process. The ali-sphenoid is pierced by foramina called rotundum, ovale, and spinosum, the two former of which transmit divisions of the fifth cranial nerve, the last an artery to the membranes of the brain; between the orbitoand ali-sphenoids is a fissure which transmits the third, fcurth, sirth, and first divisions of the fifth cranial nerve into the orbit; and at the root of the pterygoid processes is the ridian canal, for the transmission of a nerre of the same name.

The Ethmoid, or Sierc-like bone (Fig. 7, and Plate XIII., fig. 5), is situated between the two orbital plates of the frontal, and in front of the body of the sphenoid. It is cuboidal in shape, and is composed of a central portion and two lateral masses, which are connected together by a thin horizontal plate pierced with holes like a siere, and called cribriform. This cribriform plate forms a part of the floor of the cranial cavity; on it rest the two olfactory bulbs, and the branches of the nerres of smell, called olfactory or first cranial nerves, pass from the bulbs through the holes in this plate into the nose. The central portion of the bone is a mesial perpendicular plate, mesethmoid, and forms a part of the septum which subdivides the nose into the right and left nostrils. Each lateral mass consists of an external smooth plate, os planum, which assists in forming the inner wall of the orbit; and an internal conveluted part, called superior and middle spongy bones or turbinals, which enter inte the formation of the outer wall of the nostril. These turbinals are assaciated with the distribution of the nerres of smell, in the toothed whales, where there are no olfactory nerves, the turbinals are absent, whilst in some mammals, as the crested seal, they assume a highly convoluted form. The lateral masses are hollowed out into air-sinuses, called cthmoidal cells, which communicate with the nestrils and with corresponding sinuses in the sphenoid and frontal bones.

The Frontal, or bone of the Forehead (Figs. 6 and 7, and Plate XIII.), consists originally of a right and left lateral half, united by the frontal suture in the middle line of the forehead. As a rule, this suture disappears in early life, and a single greatly curved bone is formed. The bone is convex forwards, to form the rounded forehead, and presents two eminences, the centres of ossification of the bone; at the root of the nose is an elevation called glabella, extending outwards, from which, on each side, is the supra-iliary ridge, corresponding to the position of the eycbrow. In the crania of some races, e.g., the Australian, the forward projection of the glabella and supra-ciliary ridges is considerable; and in the well-known skull from the valley of the Neander it has reached a remarkable size. These ridges and the glabella mark the position of the air-sinuses in the frontal bonc. The upper border of each orbit, which
ends intermally and extermally in a process of lone called angular, forms the lower boundary of the forchead. The cercbral surface of the bone is deeply concave, for the reception of the frontal lobes of the brain; the concavity is deepened by the backward projection of two thin plates of bone which form the roofs of the orbits, which plates are separated from each other by the deep notch in which the cthmoid bone is ludged; along the margins of this notch may be scen the openings into the froutal air-sinuses.

The Parietal boncs, two in number (Figs. 6 and 7, and Plate XIV.), form the greater part of the side wall of the skull, and mount upwards to the rertex, where they unite together along the line of the sagittal suture. Each bone possesses about the centre of its outer surface an eminence, the centre of ossification of the bone, with which a hellow on the ccrebral surface, ledging a convolution of the parietal lobe of the brain, corresponds. The bene is quadrilateral in form. Three of its margins are strongly denticulated, for junction with the occipital, frontal, and corresponding parietal; the fourth is scale-like, for union with the tenporal, and forms the squamous suture; near the upper margin on the cerebral surface is a groove for the lodgment of the superior longitudinal renous sinus. The anterior inferior angle articulates with the ali-sphenoid, ard is marked by a groove for the meningeal artery; the posterior inferior is grooved for the lateral venous sinus, and articulates with the mastoid of the temporal.

The Terpporal bones, two in number (Figs. 6 and 7, and Plate XIV.), are placed at the side and base of the skull, and are remarkable for containing in their interior the organs of hearing. Each bone consists originally of four subdirisions-a squamoso-zygomatic, a tyrupanic, a petro-mastoid, and a styloid-which in course of time fuse together to form an irregular-shaped bone. The squamous part of the squamoso-zygomatic is a thin plate which forms that part of the side of the skull familiarly known as the "temple." The zygoma extends borizontally formards as a distinct arched process, to join the malar or check-bone. At the root of the zygoma is a smooth fossa, called glenoid, which reccives the condyle of the lower jaw, and assists in forming the temporo-maxillary joint. The tympanic portion forms in the fæus a ring, which enlarges subsequently into a curved plate that forms the wall of the external auditory meatus, or passage into the tympanum or middle ear. The tympanic and squamoso-zygematic parts of the bone fuse tegether; but a fissure, called Glaserian, situated behind the glenoid fossa, marks their original separation; in this fissure the slender process of the malleus (one of the bones of the tympanum) is lodged. The petro-mastoid or periotic part of the temporal contains the organ of hearing, and is complicated in its internal anatomy. It extends formaris and inwards along the floor of the skull, and forms on tho exterior of the skull the large nipple-shaped mastrid process. This process is rough on its outer surface, for the attachment of muscles, and is hollowed out internally into the mastuid cells or air-sinuses, which communicate with the tympanum or middle car. The petrous-temporal is distinguished by its stony hardness, and has the form of a three-sided pyramid. Its apex lies in relation to the side of the body of the sphenoid; its base corresponds to the tympanic cavity and external meatus; its under surface is rough, and forms a part of the under surface of the skull: its anterior and posterior surfaces are smooth and in rela tion to certain parts of the brain. The petrous part of the bone is traversed by a canal which transmits the internal carotid artcry and sympathetic berve into the cranial cavity; in its posterior surface is a passage, initernal meatus, down which the seventh cranial nerve proceeds; at the bottom of the meatus the auditory part of that nerve caters the internal ear, whilst the part of ihe nerve
which goes to the inuscles of the face traverses a canal in the bone, called aqueduct of Fallopius, which ends externally, between the styloid and mastoid processes, in the stylo-mastoid foramen. The styloid process is a slender part of the bone which projects downrards from the tympanic plate, and is connected with the small cornu of the hyoid bone by the stylo-hyoid ligament. It does not unite with the rest of the bone until a comparatively late period. Between the petrous-temporal and ex-occipital is the jugular foramen, which transmits out of the skull the eighth cranial nerve and the internal jugular vein.

The fourteen bones of the Face are, as a rule, much smaller than those of the Cranium; some have the form of thin scales, others are more irregular in shape. They are named as follows:- Two superior maxillary, two palate, two malar, two nasal, two lachrymal, two inferior turbinal, a vomer, and an inferior maxilla.

The Superior Maxillz, or bones of the Upper Jaw (Figs. δ and 7 , and Plate XIV.), form the skeleton of a large part of the face, and cnter into the formation of the walls of the carities of the nose, mouth, and orbit; around them the other bones of the face are grouped. The facial surface of each bone presents in front a large foramen for the transmission of the infra-orbital branch of the fifth cranial nerve, and bebind, several small foramina for the transmission of nerves to the teeth in the upper jaw. On the same surface is a rough process for articulation with the malar bone. The orbital surface is smooth, forms the floor of the orbit, and possesses a canal in which the infraorbital nerve lies. The nasal surface forms a part of the onter wall and floor of the nostril, and presents a hole leading into a large bollow in the substance of the bone, called the antrum, or superior maxillary air-sinus. The nasal surface articulates with the inferior turbinal and palate bones. The nasal and facial surfaces become continuous with each other at the anterior aperture of the nose, and from them a strong process ascends to join the frontal bone close to the glabella; this process also articulates with the lachrymal and nasal bones. The palatal surface forms a.part of the bony roof of the mouth, and presents in front a small hole (the incisive foramen) which communicates with the nose. In the sheep and many other mammals this hole is of large size; the palatal surface is bounded externally by a thick elevated border, in which are the sockets, or alveoli, for the lodgment of the fangs of the teeth; internally this surface articulates by a narrow border with the other superior maxilla and with the vomer, and, posteriorly, with the palate-bone.

The Palate-bone (Fig. 7, and Plate XIV.) lies in contact with the inner surface and posterior border of the superior maxilla, and separates it from the sphenoid. It is in shape not unlike the capital letter L , the horizontal limb forming the hinder part of the bony roof of the month by its lower surface, and the back part of the floor of the nose by its upper. The ascending limb assists in forming the outer wall of the nose, and subdivides into an anterior, or orbital, and a posterior, or sphenoidal, process. At the junction of the two limbs is the pyramidal process, which articulates with the lower ends of the pterygoid processes of the sphenoid
The Vomer (Fig. 7), shaped like a ploughshare, lies vertically in the mesial plane of the nose, and forms a large part of the partition which separates one nostril from the other. It articulates above with the under surface of the body of the sphenoid and the mesethmoid; below with the palatal processes of the superior maxille and palate-bones; in front with the scptal cartilage of the nose, philst the posterior border is free, and forms the hinder edge of the nasal septum.

The Inferior Turbinated is a slightly convoluted bone
sitnated on the outer wall of the urse, where it articulates with the superior maxilla and palate a little below the middle turbinal of the ethmoid.

The Lachrymal (Fig. 6) is a small scale-like bone, in shape not unlike a finger-nail, placed at the inner wall of the orbit, and fitting betreen the ethmoid, superior maxilla, and frontal bones.- It has a groore on the outer surface, in which is lodged the lachrymal sac.

The Nasal (Fig. 6) is a thin, somewhat elongated bone, which, articulating with its fellow in the middle line, forms with it the bony bridge of the nose; abore, it articulates with the frontal, and by its outer border with the ascending process of the superior maxilla.

The Malar bone (Fig. 6), irregular in shape, forms the prominence of the chcek, and completes the outer wall of the orbit. It reste upon the superiar maxilla; by its orbital plate it articulates with the great wing of the splenoid; by its ascending process mith the external angular process of the frontal; by its posterior process with the zygomatic process of the temporal, so as to complete the zJgomatic arch.

The Inferior Maxilla, Lower Jaw, or Mandible (Figs. 6 and 7, and Plate XIV., fig. 9), is a large horse-shoe shaped bone, which has the distinction of being the only 山огable bone of the head. It consists originally of two separate halres, which unite during the first year of life into a single bone at the symphysis or chin. A characteristic feature of the human lower jaw is the formard slope of the bone at the chin, for in other mammals the symphysis inclines backwards. In the upper border of this bone are the sockets for the lower series of teeth. At the posterior end of the horse-shoe curve on each side the bone ascends almost vertically, and terminates in two processes-an anterior, or coronoid, which is for the insertion of the temporal muscle, and a posterior, or condyle, which is for articulation with the glenoid fossa of the temporal bone. Where the ascending and horizontal limbs of the bone are continuous, it forms the angle, which is almost a right angle. On the inner surface of the ascending limb is a large foramen, communicating with a canal which traverses the bone below the sockets for the teeth. In this canal are lodged the nerres and blood-vessels for these teeth.

The Hyoid bone lies in the neck, on the same plane as Hyoid the lower border of the inferior maxilla (Figs. 6 and 7). It is shaped like the letter U, and consists of a body, or basihyal, from which two long horns, or stylo-hyals, project backwards. At the junction of the body and horns two smaller cornua, or cerato-hyals, project upwards, and are connected with the styloid processes of the temporal bones, or stylo-hyals, by the stylo-hyoid ligaments, or epi-hyals. The hyoid is the bone from which the muscles of the tongue arise, and it is situated immediately abore the thyroid cartilage of the larynx, to which it is attached by ligaments.

In its general form the Skull is oroid, with the long axis extending antero-posteriorly, the frontal and occipital ends rounded, and the sides somerrhat flattened. Its arerage length in the people of the British Islands is a little more than 7 inches; its greatest breadth about $5 \frac{1}{2}$ inches; and its height, from the plane of the foramen magnum to the rertex, about $5 \frac{1}{6}$ inches. Its greatest circumference is about 21 inches. The breadth of the face across the zygomatic arches is about 5 inches. The average capacity of the brain cavity is 92 cubic inches. The British skull is dolicho-cephalic and orthognathic. (Sce Asthropology.)
The lateral regions of the skull are called the temporal fossa, and gire origin to the temporal muscles. Under corcr of each zronaitic arch is the zygomatic fossa. At the bottom of this is a hollow betrcen the superior maxills
and sphenoid, called spheno-maxillary fossa, from whieb the pterygnmaxillary fissure extends dumnards between the pterygoid and superior maxillary; and the sphenomaxillary fissure extends upwards into the orbit. The urbit is a four-walled pyramidal cavity, with tho base directed forward to the face, and tho apex backward to the brain carity. At the apes are the foramina in the sphenoid, through which the neire of sight and other nerves pass from the brain to the eyeball, muscles, and other suft structures within the orbit.

The nostrils open on the front of the face by a large opening situated between the two superior maxills, and bounded above by the tro nasals. The sides of the opening pass down almost vertically to join the floor, and are not rounded off as in the ape's skull ; from the centre of the floor a sharp process, the nasal spine of the superior maxillæ projeets forwards, and forms a characteristic feature of the human skull. Attached to the sides of the opening are the lateral eartilages of the nose, which form the wings of the nostrils, and so modify the position of their openings that in the face they look downwards. The nostrils are separated from each other by a rertieal mesial partition composed of the mes-ethmoid, vomer, and triangular nasiul cartilage, the last-named of whieh projects forward beyond the anterior surface of the opper jaw, and contributes materially to the prominence of the nose. The outer wall of each nostril presents the convoluted turbinals, whieh are separated from each other by horizontal passages extending antero-posteriorly; the superior passage or meatus lies between the superior and middle turbinals of the ethmoid, and is continued into the sphenoidal and posterior ethmoidal air-sinuses; the middle meatus lies between the middle and inferior turbinals, and is continued into the frontal, anterior ethmoidal, and maxillary air sinuses. These sinuses are therefore extersions of the nasal chamber or respiratory passaye, and correspond with the air cavities which exist in so many of the bones of birds; the inferior meatus lies between the inferior turbinal and floor of the nose; into its anterior part opens the nasal duct which conveys the tears from the froat of the eyeball The posterior openings of the nose are separated from each other by the hinder edge of the vomer, and are placed between the internal pterygoid plates of the sphenoid.
The skull varies in appearance at different periods of life. In infaney the face is small, about $\frac{1}{8}$ th of the size of the entire head, for the teeth are still rudimentary and the jaws are feeble; the centres of ossification of the cranial bones are prominent; the forehead projects; the ckull is widest at the parietal eminenees; the air-sinuses, and bony ridges corresponding to them, have not formed. In the adult the face is about half the size of the head, and its vertical diameter greatly elongated, from the growth of the antrum, the nose, and the dental borders of the jaws; and the angle of the lower jaw is almost a right angle. In old age the teeth fall out, the jaws shrink in, their dental borders become absorbed, the anglo of the lower jaw, as in infancy, is obtuse ; the vertex. and floor of the skull also beoome flattened, and the sides bulge outwards,-changes due to gravitation and the subsidence of the bones by their own weight.

The elull of a woman is smaller and lighter, with the muscular tidges and projeetions due to the air sinutes less strongly marked than in a man, but with the eminences or centres of ossification more prominent. The more feeble air sinuses imply a more restricted respiratory activity and a less active mode of life than in a man. The internal capacity is about 10 per cent. less than that of the male. The face is smaller in proportion to the cranium; the cranium is more flattened at the vertex, and the hfight is cousequently not so great in pronortion to the lengl上 as
in tho man. Ir the female skull, therefore, the infantile sharacters are less departed from than is the case in the male

Turning now to the Aprendicular Seleleton, we shall consider first that of the Superior or Thorscic or Pectoral Extremity, or Upper Limb. The Upper Limb Uppet may be subdivided into a proximal part or shoulder, a Lulub. distal part or band, and an intermediate shaft, which consists of an upper arm or brachium, and a fore-arm or antibrachium. In each of these subdirisions certain bones are found: in the shoulder, the elavicle and scapula; in the upper arn, the humerus; in the fore-arm, the radius and ula, the bone of the upper arm in man being louger than the bones of the fore-amn ; in the hand, the caryal and metacarjal bones and the phalanges. The seapula and clavicle together form an imperfect bony areh, the Scapular Arch or Shoulder Girdle; the shaft and haud form a free divergent Appendage. The shoulder girdle is the direct medium of comection between the arial skeleton and tho divergent part of the limb; its anterior segment, tho elavicle, artieulates with the upper end of the sternum, whilst its posterior segment, the seapula, approarbes, but does not reach, the dorsal spines.

Fio. 8,-Dlegrammette section to repsesent the relations of one shoulder cirdle to the trank. V, a Dorial Vertebre: C, o Dib; St, the Sternum; Sc, the Scopule ; $\mathrm{Cr}_{\text {, }}$ the Coracold: Ch, the Clavicle; M, the Heniscus ot fte ateral end; H , the lumerus.
The Clavicle, or Collar Bone (Fig. 9), is an elongated Clamcre bone which extends from the upper end of the sternum horizontally outwards, to articulate with the acromion process of the seapula. It presents a strong sigmoidal curve, whieh is associated with the transserse and horizontal direction of the axis of the buman shoulder. It is slender in the female, hut powerful in muscular males; its sternal end thick and somewhat triangular; its aeromial end, flattened fism above downwards, has an oval articular surface for the aeromion. Its shaft has four surfaces for the attachment of museles; and a strong ligament, connecting it with the coracoid, is attached to the under surfaee, near the outer end, whilst near the inner a strong ligament passes between it and the first rib. The claviele is absent in the hoofed quadrupeds, in the seals and whales, and is feeble in the carnivera; but is well formed, not only in man, but in apes, bats, and in many rodente and insectivora.

The Scapula, or Shoulder Blade (Fig. 9), is the most Scapula important boue of the shoulder girdle, and is present in all mammals. It lies at the upper and back part of the wall of the chest, reaching from the second to the seventh rib. Its form is plate-like and triangular, with three surfaces, three borders, and three angles. The fundamental form of the scapula, as seen in the mole, is that of a three-sided prismatic rod, and its assumption of the Ilate or blade-like character in man is in connection with the great development of the muscles which rotate the humerus at the shoulder joint. Its costal or ventral surface is in relation to the ribs, from which it is separated by certain mkseles: one, called subscapularis, arises from the surface itself, which is often termed subscapular fossa. The dorsum or baek of the scapula is traversed from behind forwards by a prominent spine (PL XIV., fig. I, S), whieh lies in the proper axis of the scapula, and suldivides this aspeet of the bone into a surface above the epive, the
supra- or proespinous fossa, and one below the spine, the infra- or post-spinous fossa. The spine arches forwards, to end in a broad flattened process, the acromion, which has an oval articular surface for the clavicle; both spine and acromion are largely developed in the human scapula in correlation with the great size of the trapezius and deltoid muscles, which are concerned in the elevation and abduction of the upper limb. The borders of the scapula, directed upwards, backwards, and downwards, give attachment to several muscles. The angles are inferior, supero-posterior, and supero-anterior. The supero-anterior is the most important ; it is truncated, and presents a large, shallow, oval, smooth surface, the glennid fossu, for articulation with the humerus, to form the shoulder joint. OverLanging the glenoid fossa is a curved beak-like process, the coracoid, which is of importance as corresponding with the separate coracoid bone of birds and reptiles. The line of demarcation between it and the scapula proper is marked on the upper border of the scapula by the supra-scapular notch.
The Humerus, or bone of the Upper Arm (Fig. 9), is a lung bone, and consists of a shaft and two extremities. The upper extremity of this bone possesses a convex spheroidal smooth surface, the head, for articulation with the glenoid fossa of the scapula; it is surrounded by a narrow constricted neck, and where the neck and shaft become continuous with and shaft become continuous with each other, two processes or tuberosities are found, to which are attached the rotator muscles arising from the scapular fossæ. Between the tuberosities is a groove in which the long tendon of the biceps rests. A line drawn through the head of the humerus perpendicular to the middle of its articular surface, forms with the axis of the shaft of the bone an angle of 40°. The shaft of the humerus is cylindriform above, but flattened and expanded below; about midway down the outer surface is a rough ridge for the insertion of the deltoid muscle, and on the inner surface another rough mark for the insertion of the curaco-brachialis. The demarcation between the cylindriform and expanded parts of the shaft is marked by a shallow groove minding round the back of the bone, in which the musculo-spiral nerve is lodged. The lower extremity of the humerus consists of an articular and a non-articular portion. The articular presents a small head or capitellum for the radius, and a pulley or trochlea for the moremet is of the Ulna in flexion and extension of the limb. The non-articular part consists of two condyloid eminences, internal and external. From the extcrnal, or epicondyle a ridge passes for some distance along the outer border of the bone; it gives origin to the supinator and extersor muscles in the fore-arm. From the internal emiuence, or epi-trochlea, a ridge passes up the inner border of the shaft of the bone; this emincnce fires origin to the
pronator and flexor muscles in the fore-arm. In nearly two per cent of the bodies examined in the anatony-rooms in the university of Edinburgh, a hooked process has beeu seen projecting from the shaft of the bone, abuut 2 inches above the epi-trochlea; this process is connected to the epi-trachlea by a fibrous band, so as to form a foramen, which has been called supra-condyloid. In these cases the median nerve invariably passes through the foramen, and not unfrequently is accompanied by the brachial artery. In the feline carnivora and some other mammals a foramen constantly occurs in this part of the bumerus, through which, as a rule, both nerve and artery proceed, though in the common seal it transmits only the nerve.

Before describing the two bones of the fore-arm, the anatomist should note the range of movement which can take place between them. In one position, which is called supine, they lie parallel to each other, the radius being the more external boue, and the palm of the hand being directed forwards; in the other or prone pusition the radius crosses obliqucly in front of the ulna, and the palm of the hand is directed backwards. Not only the buncs of the fore-arm, but those of the hand are supposed to be in the supine position when they are described.

The Radius (Fig. 9) is the outer bone of the Fore-arm, and Radios like all long bones possesses a shaft and two extremities. The upper extremity or head has a shallow, smooth cup for moving on the capitellum of the humerus; the outer margin of the cup is also smooth, for articulation with the ulna and annular ligament; below the cup is a constricted neck, and immediately below the neck a tuberosity for the insertion of the biceps. The shaft of the bone possesses three surfaces for the attachment of muscles, and a sharp inner border for the-interosseous membrane. The lower end of the bone is much broader than the upper, and is marked posteriorly by grooves for the lodgment of tendons passing to the back of the hand: from its outer border a pointed styloid process projects downwards; its inner border has a smooth shallow fossa for articulation with the ulna, and its broad lower surface is smooth and cencare, for articulation with the scaphoid and semilunar bones of the rrist.

The Ulna (Fig. 9) is also a long bone. Ite upper end is Clina subdirided into two strong processes by a deep fossa, the greater sigmoid cavity, which possesses a smooth surface for articulation with the trochlea of the humems. The anterior or coronoid process is marked by an obnque ridge for the insertion of the brachialis anticus, whilst the posterior or olecranon process gives insertion to the large triceps muscle of the upper arm. Immediately belor the outer border of the great sigmoid carity is the small sigmoid cavily for articulation with the side of the head of the radius. The shaft of the bone possesses three surfaces for the attachment of muscles, and a sharp outer border for the interosseous membrane. The lorser end, much smaller than the upper, has a pointed styloid process and a smooth articular surface, the outer portion of which is for the lower end of the radius, the lower part for moring on a cartilage of the wrist joint called the triangular fibrocartilage.

The Hand consists of the Carpus or wrist, of the Jetacarpus or palm, and of the free Digits, the thumb and four fingers. Anatomists describe it with the palm turned to the front, and with its axis in line with the axis of the fore-arm.

The Carpal or Wrist bones (Fig. 9) are eight in number and small in size: they are arranged in tro rows, a proximal,-i.e. a row next the fore-arm,-cunsisting of the scaphoid, semilunar, cunciform, and pisiform; and a distal, -i.e. a row next the bones of the paln,-consisting of a trapezium, trapezoid, os magnum, and unciform ; the bones in each row being named in the order they are met with
from the radial or nuter to the ulnar or inmer side of the wrist It is munecessary to give a separate description of each bone. Except the pisiform or pea-shaped bone, which articulates with the front of the cuneiform, each carpal bone is short and irregularly cuboidal in shape; its anterior (or palmar) surface and its posterior (or dorsal) being rongh, for the attachment of ligaments; its supcrior and inferior surfaces being invariably smooth, for articnlation with adjacent bones; whilst the inner and outer surfaces are also smwoth, for articulation, except the outer surfaces of the scaphoid and trapezium (the two external bones of the carpus), end the inner surfaces of the cuneiform and unciform (the two intermal bones). Occasionally a ninth or enpernumerary bone may arise from the subdivision of the scaphoid, scmilunar, or trapezoid, into two pieces; more rarely a distinct hone is found in the human wrist intercalated between the trapezoid, os magnum, semilunar, and scaphoid, which corresponds in position to the os intermedinm, found constantly in the wrist of the orang, gibbon, the tailed apes, and many rodents and insectivora.

The Mctacarpal bones, or hones of the Palm of the Hand, are five in number (Fig. 9). They are miniature long bones, and each possesses a shaft and two extremities. The metacarpal of the thumb is the shortest, and diverges outwards from the rest: its carpal extremity is saddleshaped, for articulation with the trapezium; its shaft is somewhat compressed, and its phalangeal end is smonth and rounded, for the first phalanx of the thamb. The fonr other metacarpal bones belong to the four fingers: they are almost parallel to each other, and diminish in size from the second to the fifth. Their carpal ends articulate with the trapezoid, os magnom, and unciform : their shafts are three-sided: their phalangeal ends articulate with the first phalanges of the fingers.

The number of Digits in the hand is five, which is the highest number found in the mammalia. They ore distinguished by the names of pollex or thumb, and inder, middle, ring, and little fingers. Their skelcton consists of fonrteen bones, named phalanges, of which the thumb possesses two, and each of the four fingers three. The phalanx next the metacarpal bone is the first, that which carries the nail is the terminal or ungual phalanx, whilst the intermediate bone is the second phalanx. Each is a miniature long bone, with two articular extremities and an intermediate shaft, except the terminal phalanges, which have an articular surface only at their proximal ends, the distal end being romnded and rough, to afford a surface for the lodgment of the nail.

The Inferior or Pelvic Extremity, or Lower Limb, consists of a proximal part or haunch, a distal part or fout, and an intermediate shaft subdivided into thigh and lag. Each part has its appropriate skeleton: in the haurch, the pelvic or innominate bone; in the thigh, the femur; in the leg, the

tibia and fibula Fro.10-Dhagrammate section eo renresent the relations
 in the the lillom; P the two puble bones mecting to froat in man being at the symphyatis; F, the femur.
longet than the leg-bones); in front of the knce, the patella; in the foot, the tarsal and metatarsal bones and phalanges. The bone of the haunch forms an arch or Pelvic Girdle, which articulates behind with the side of the sacrum, and arches forward to articulate with the opposite baunch-bone at the pubic symphysis. It is the direct medium of connection between the axial skeleton and the abaft and foot, which form a freo divergent Appendage.

The Os Innominatum, or ilaunch-bune, is a large irregular plate-like bune, which eorms the lateral and anterion boundary of the cavity of the pelvis. In early life it consists of three bones-ilium, ischium, and pubis-which unite about the twenty.fifth year into a single bone. These bones converge, and join to form a dcep fossa or cup, the acetabulum or cotyloid cavity, on the outer surface of the bone, which lodges the head of the thigh-bone at the hip-joint. Onc-fifth of this cup is formed by the pubes, and about two-fifths each by the ischinn and ilium. At the bottom of the acctabulum is a depression, to the sides of which the interarticular ligament of the hip-joint is attached. From the acetabulum the iliun extends opwards and backwards, the ischium downwards and backwards, the pubis forwards and inwards. In front of the acetabulum is a large hole, the obturator or thyooid foramen, which is bounded by the ischium and pubes; behind the acetabulum is the deep sciatic notch, which is bounded by the ischium and ilium.

The Mium (Fig. 10) in man is a broad plate-like bone. In its most simple form, as in the kangaroos it is a threesided, prismatic, rod-like bone, one end of which enters into the formation of the acetabulum, whilst the other is free, and forms the iliac crest. In man, notwithstauding its ex panded form, three surfaces may also be recognised, corresponding to the surfaces in the ilinm of the kangaroo; and, as in that animal, the lower end aids in forming the acetabulnm, while the upper end forms the iliac crest, which, in man, in conformity with the general expansion of the bune, is elongated into the sinuous crest of the ilium. This crest is of great importance, for it affords attachment tothe orvad muscles which form the wall of the abdominal cavity. One surface of the ilium is externul, and marked by curved lines which subdivide it into areas for the origin of the muscles of the buttock; another surface is anterior, and hollowed out to give origir to the iliacus muscle; the third, or internal, surface articulates posteriorly with the sacrum, whilst anteriorly it forms a part of the wall of the true pelvis. The cxternal is separated from the anterior surface by a border which joins the anterior end of the crest, where it forms a process, the anterior superior spinc. About the middle of this border
 of the Lef: Lower Limb. II, illum Is, ischlum, l'b, publs, the thres parts of the innominate bone: F, feinur ; \mathbf{P}, patella; Tb , tibla; Fa Ahuls; $\mathrm{Tr}_{\text {, epposite the seven taral }}$ bones; C. os ealcis, forming promsnence of heel; Mt , oppasite the five metatarsal bones; H, hallox or grat tee: II. second, 111. third iV. fourth, V. fifh ar litte tee The dotted line IIII represents the horizontal plave whilst the detred ine V is in line with the vertlea. axis of the spiae.
is the anterior inferior spine. Betwecn the externaland internal surfaces is a border on which are found the posterior superiorand inferior spinies; betweer the anterior and internal surfaces is the pectincal border, whirh forms part of the line of separation between the true and false pelvis.

The Pubis (Fig. 11) is alsu a three-sided, prismatic, rod.
like bone, the fundamental form of which is obscured by the modification in shape of its inner end. In human anatomy it is customary to regard it as consisting of a body and of two branches, à horizontal and a descending ramus. The body and horizontal ramus forin the fundamental prismatic rod, and the descending ranus is merely a special offshoot from the inner end of the rod. The outer end of the rod takes a part in the formation of the acetabulum; the inner end is expanded into the body of the pubis, and has a broad margin, or symphysis, for articulation with the corresponding bone on the opposite side of the pelvis. The three surfaces are-a superior, for the origin of the pectineus muscle; a posterior, which enters into the wall of the true pelvis; and an inferior, which forms the upper boundary of the obturator foramen. The descending ramus is merely a downward prolongation of the inner end of the bone which joins the ischium, and aids in forming the side of the pubic arch. The junction of the outer end of the pubis with the ilium is marked by the pectineal eminence. The superior and posterior surfaces are separated by the sharp pectineal line, which, starting from the spine of the pubis, runs outwards to aid in forming the brim of the true pelvis.

The Ischium (Fig. 11), like the ilium and pubis, has the fundamental form of a three-siled prismatic rod. One extremity (the upper) completes the acetabulum, whilst the lotver forms the large prominence, or tuber ischii. The surfaces of the bone are internal or pelvic, external, and anterior. The pelvic and external surfaces are separated from each other by a sharp border, on which is seen the ischial spine. The pelvic and anterior surfaces are separated by a border, which forms a part of the boundary of the obturator foramen; but the margin between the external and anterior surfaces is feebly marked. The tuberosity, a thick, rough, and strong process, gives origin to several powerful muscles: on it the body rests in the sitting posture; an offshoot, or ramus, ascends from it to join the descending ramus of the pubis, and completes both the pubic arch and the margin of the obturator foramen.

By the articulation. of the two innominate bones with each other in front at the pubic symphysis, and with the sides of the sacrum behind, the osseous walls of the cavity of the Pelvis are formed. This cavity is subdivided into a false and a true pelvis. The false pelvis lies between the expanded wing-like portions of the two ilia. The true pelvis lies below the two pectineal lines and the base of the sacrum, which surround the upper orifice or brim of the true pelvis, or pelvic inlet; whilst its lower orifice or outlet is bounded behind by the coccyz, laterally by the ischial tuberosities, and in front by the pubic arch. In the erect attitude the pelvis is so inclined that the plane of the brim forms with the horizontal plane an angle of from 60° to 65°. The axis of the cavity is curred, and is represented by a line drawn perpendicularly to the planes of the brim, the cavity, and the outlet; at the brim it is directed upwards and forwards, at the outlet downwards and a little forwards. Owing to the inclination of the pelvis, the base of the sacrun is nearly 4 inches higher than the upper border of the pubic symphysis. The female pelvis is distinguished from the male by certain sexual characters. The bones are more slender, the ridges and processes for muscular attachment more feeble, the breadth and capacity greater, the depth lesss, the ilia more expanded, giving the greater breadth to the hips of a woinan than a man; the inlet more nearly circular, the pubic arch wider, the distauce between the tuberosities greater, and the obturator foramen more triangular in the female than in the male. The greater capacity of the woman's than the man's pelvis likt afford greater room for the expansion of the uterus
during pregnancy, and fer the expulsion of the clild at the time of birth.
The Femur or Thigh-bone (Fig. Il) is the longest bone Fenal in the body, and consists of a shaft and two extremities. TLe upper extremity or head possesses a smouth convex burface, in which an oval roughened fossa, for the attachment of the inter-articular ligament of the hip, is found; from the head a strong elongated neck passes downwards and outwards to join the upper end of the shaft; the place of junction is marked by two processes or trochanters: the external is of large size, and to it are attached many muscles; the internal is much smaller, and gives attachment to the psoas and iliacus. A line drawn through the axis of the head and neck forms with a vertical line drawn through the shaft an angle of 30°; in a wornan this angle is less obtuse than in a man, and the obliquity of the shaft of the femur is greater in the former than in the latter. The shaft is almost cylindrical about its centre, but expanded above and below; its front and sides give origin to the extensor muscles of the leg; behind there is a rough ridge, which, though called linea aspera, is really a narrow surface and not a line; it gives attachment to several muscles. The lower end of the hone presents a large swooth articular surface for the knee-joint, the anterior portion of which forms a trochlea or pulley for the movements of the patella, whilst the lower and posterior part is subdivided into two convex condyles by a deep fossa which gives attachment to the crucial ligaments of the knee. The inner and outer surfaces of this end of the bone are rough, for the attachment of muscles and the lateral ligaments of the knee.
The Patella or Knee-pan (Fig. 11) is a small triangular Patellh fattened bone developed in the tendon of the great.extensor muscles of the leg. Its anterior surface and sides are rough, for the attachment of the fibres of that tendon; its posterior surface is smooth, and enters into the formation of the knee-joint.
Between the two bones of the leg there are no movements of pronation and supination as between the two bones of the fore-arm. The tibia and fibula are fixed in position; the fibula is always external, the tibia internal
The Tibia or Shin-bone (Fig. 11) is the larger and Tibie. more important of the two bones of the leg; the femur moves and rests upon its upper end, and down it the weight of the body in the erect position is transmitted to the foot. Except the femur, it is the longest bone of the skeleton, and consists of a shaft and two extremities. The upper extremity is broad, and is expanded into two tuberosities, the external of which has a small articular facet inferiorly, for the head of the fibula; superiorly, the tuberosities have two smooth surfaces, for articulation with the condyles of the fenur; they are separated, by an intermediate rough surface, from which a short spine projects, which gives attachments to the inter-articular crucial ligaments and semilunar cartilages of the knee, and lies opposite the intercondyloid fossa of the femur. The shaft of the bone is thre-sided; its inner surface is subcutaneous, and furms the shin; its outer and posterior surfaces are for the origin of muscles; the antcrior border forms the sharp ridge of the shin, and terminates superiorly in a tubercle for the insertion of the extensor tendon of the leg; the outer border of the bone gives attachment to the inter-osscous membrane of the leg. The lower end of the bone, smaller than the upper, is prolonged into a broad process, internal malleolus, which forms the inner prominence of the ankle: its under surface is smooth for articulation with the astragalus; externally it articulates with the lower end of the fibula.
The Fibula, or Splint-bone of the leg (Fig. 11), is a Fibal slender long bone with a shaft and two extremitics. The upper end os head srticulates with the outer tuberosity of
the tibia. The shaft is threc-sided, and roughened for the origins of muscles; along the inner surface is a slender ridge for the attachment of the interosseous membranc. The luwer end has a strong process (external malleolus) projecting downwards to form the outer prominence of the ankle, and possesses a smooth inner surface for articulation with the astragalus, above which is a rough surface for the attachment of ligaments which bind together the tibia and fibula.

The Foot consists of the Tarsus, the Metatarsus, and the five frce Digits or Toes, which is the maximum number found in mammals. The human foot is placed in the prone position, with the sole or plantar surface in relation to the ground; the dorsum or back of the foot directed upwards; the axis of the foot at about a right angle to the axis of the lcg ; and the great toe or ballux, which is the corresponding digit to the thumb, at the inner border of the foot. The buman foot, therefore, is a pentadactylous, plantigrade foot.

The bones of the Tarsus, or Aukle (Fig. 11, Tr ${ }^{\prime}$), are seren in number, and are arranged in two transverse rows, -a proximal, next the bones of the leg, consisting of the astragalus, os calcis, and scaphoid; a distal, next the metatarsus, consisting of the cuboid, ceto-, meso-, and ento-cuneiform. If the tarsal bones be looked at along with those of the metatarsus and toes, the bones of the ivot may be arranged in two longitudinal columns, -an outer, consisting of the os calcis, cuboid, and the metatarsal bones and phalanges of the fourth and fifth toes; an inner column consisting of the astragalus, scaphoid, three cunciform, and the metatarsal bones and phalanges of the first, second, and third toes. The tarsal, like the carpal bones, are short and irregularly cuooidal ; the dorsal and plantar surfaces are as a rule rough for ligaments, but as the astragalus is locked in between the bones of the leg and the os calcis, its dorsal and plantar surfaces, as well as the dorsum of the os calcis, are smooth for articulation; similarly, its lateral surfaces are smooth for articulation with the two malleoli. The posterior surface of the os calcis projects backwards to form the prominence of the heel. With this exception, tho bones have their anterior and posterior surfaces smooth for articulation Their lateral surfaces are also articular, except the outer surface of the os calcis and cuboid, which form the outer border; and the inner surface of the os calcis, scaphoid, and ento-cuneiform, which form the inner border of the tarsus. A supernumerary bone is sometimes found in the human tarsus, from a subdivision of either the ento-cuneiform, astrugalus, os calcis, or cuboid into two parts. In some rodents and other mammals eight is the normal number of bones in the tarsus.

The Metatarsal bones and the Phalanges of the toes agree in number and general form with the metacarpal bones and the phalanges in the hand. The bones of the great toe or hallux are more massive than those of the other digits, and this digit, unlike the thumb or pollex, does not diverge from tho other digits, but lies almost parallel to them.

Development and Homologres of the Skeleton.

It will now be advisable to consider briefly the mode of dēvelopment of the skeleton, and along with the study of its genvers w compare its several parts with each other, in order to ascertin if correspondences in their arrangement aud mode of origin exist, evez if they differ in the fuaction or ofince which they perform. When two or more parts or organs correspond with each other in structure, relative position, and mode of origin, we say they are homologous parts, or homologues; whilst parts which have the same function, Lut do not corresposd ia structure, relative position, and mode of origin, are analogous parts, or analogues. llomologons parts have therefore a morphological identity with each other, whilst analogous parts have a physiological agreement. The same parts may be toth homologous and analogous, as the fore-limbs of a bat and a
bird, both of which, with the same fundamental type oi stracture, are subservient to dight. In other cases eualogotis parts are not homologues, as is illustratril by the wing of the insect, rhich, though subservient to Hight, is fundamentally different in stracture from the wing of the bat or bird.

In the germinal area of the fertilised vertebrate orum a longitudinal groove appears which marks che beginning of the cranial carity and spinal caual of tbe young embryo. At the bottom of his craniospinal groove a aleuder rod is formed, called chords dorsalis or noiochord. Each side of the groove then becomes chevated as a thin membrane, to meet behind to eachose a canal iu which the brain and apinal marrow are developed. Small dark masses, the frimoriial or proto. vertebra, next form on each side of the chorda dorsalis. In thesa proco-vertebræ, about the sixth or seveuth week of intra-utering life of the buman ovum, littie masses of cartilage appear, which correspond in uumber and position to the fature spinal vertebra. The part of the cartilage which forms the hody of the future vertebra is developed around the chorda dorsalis, which it eveloses in its substasce, whilst the cartilaginous neural arch forms in the membrane which closes in the spinal canal. The formation of these cartilaginous vertebre is completed in the humao imbryo about the fourth mouth of intra-ntcrise life. The bodies of the cartilaginous vertebre are connected together by plates or discs of intervening fibro-cartilage, which are also developed around the chorina dorsalis. After the eaclosure of the rod-like chorda by the cartilaginous vertebrelland the inter-vertebral discs it disappears, no remaiss being found in the adult human body, or in that of the higher vertebrates, except perhaps some slight traces in the aoft pulpy ceatres of the iatcr-vertebral discs; although in the cartilaginous fish it remains as a more or less complete structure throughout life.

Is each of the cartilaginous vertebra boae hegius to form and to spread beyoud its original point of formation, which is called a centre or nucleus of ossification; the greater part of the body is formed from one of these ceutres, and each half of the neural arch from another; whilst amall ossific centres arise for the tips of the spiuous, transverse, and mammillary processes, and a special plate appears for both the upper and lower surfaces of the hody; the fusion of the various centres together to form a comjluto vertebra takes rlace between the tweaticth and twenty-ffeth ycar. The atlaa has a scparate centre for each lateral mass and one for the anterior houndary of the ring. The axis, in addition to the ossific ceatres fousd in the vertebre generally, las one or two for the odontoid process. The aeventh cervical vertebra has the anterior bar of its iransverse process developed from a separate centre. Each coccygeal vertebra possesses only a single contre, which represents the body of the bone.

At the timo wheo the cranio-spinal canal is being closed in by the development of its membranous walls, the gerininal layers of the young embryo grow towards its anterior or rentral surface, and meet in the ventral mesial line, so as to enclose the cavities in which the thoracic and abdominal viscera are developed. In the membranous wall on each side of the thorscic cavity twelve cartilaginous rods, the future ribs, are developed; and, conncesed with the anterior ends of the seven pairs of upper ribs, the cartilaginous sternum is formed Each rib ossifies from one centre for its shaft, and one each for the head and tubercle. The sternum ossifies in transverse segments, one for the pre-sternum, one or sometimes "tro for each of the four subdivisions of the meso-sternum, aad one for the xiphi-sternum. The complete ossification and fusion of the different parts of the sternum iuto a single bone does not take place until an advanced gge.
The axial part of the skeleton, formed by the vertebra, ribs, and sternum, is built up of a serics of thirty-three transverse segments, equal in number, therefore, to the boues of the spine; so that each vertebra, according is it is, or is not, articulated with a pair of ribs and a segment of the sternum, constitutes a conplete or incomplete transverse sermeat. These several scgments are aerially homologaus with each other, but the homology is not so complete in some of the segments as in the others. la the coccygeal, sacral, and lumbar rerions of man and most vertebrates, only the vertehral portion of each akeletal segment is represented, though in the abdominal wall of the crocodiles abdominal ribs and a sternum are developed. In the thoracic region the five lowest dorsal vertebre have five pairs of ribs developed in connection with them; whilst the acven highest vertebre have not only their corresponding pairs of ribs, but also a sternum, which bone, however, has only six transverse segments. In the cervical region seven vertebre are found, but the aoterior bar of the transverse process, although fused with the vertebral body, is hpmologous with a rib, for in man it sometimes develops as a distinet movable rib in connection with the seventh cervica! ; and in the crocodiles small movable ribs are regularly developed in connection with the different cervical vertebre. The bodies and neural arches of the vertebre are aerinlly homologous with each other; as a rule this is also the case with their processes, but the articular pracesses of the atlas and the superior pair of the axis, although functionally analogous, are rot homologous with the articular processes of the other vertebrex with the articular surfaces for the ribs on the bodies of the dubsa
vertebre, for they liz in front of, snd not behind, the vertebral notches through which the spinal nerves are transmitted. The development of the odontoid process of the sxis shows it to be the tody of the atlas displaced from its proper bone and fused with the body of the axis.

The development and bomology of the skall is a much more fifficult problem to solve than that of the spine. The chorda dorsalis extends aloog the floor of the skull as far formard as the posterior wall of the pituitary fossa. Cartilage is formed sround it, without, however, the previous production of proto-vertebre, and this cartilage is prolonged forward on esch side of the fossa, forming two bars, the trabecule cranii; these bars then unite, and form the mes-etbmoid cartilage; at the same time the cartilare grows outwards for some distance in the memibranous wall of the skull, but it does not mount upwards so as to close it in superiorly, so that the cartilage is limited to the floor of the skull; moreover, the cartilage is not segmented. The roof, side walls, and anterior wall of the cravium retain for a time their primordial membranous structure. This membrane is prolonged downsards into the face proper, where it forma a pair of maxiliary lobes or processes, which pass forwards beneath the eyes to form the side parts of the face, and a mid- or frontal-nasal process, into which the cartilaginous mesethmord extends. Immediately below each masillary lobe four arches, called branchial or visceral, arise in the ventral aspect of the head, and in each of the three first of these arches a rod of cartilage is formed. The arches on opposite sides pnite with each other in the veutral mesial line, but those on the same side are separated from each other by intermediate branchial clefts; these clefts all close up in course of time, except the upper part of the first, which remains as the external meatus of the ear, the tympanum, sind the Eustachian tube; whilst the interval between the first visceral arch ad the maxillary lobes forms the cavity of the mouth. The conversion of the primordial cartilaginous and membranous cranium into the bones of the hesd takes place by the formation in it of numerous centres of ossification. The basi-, ex-, and so much of the supra-occipital as lies below the superior curved line, are formed from distinct centres in the cartilaginous floor of the skull; whilst the part of the supra-occipital above the curved line arises from independent centres in the membranous cranium, the whole ultimately fusing together to form the occipital bone. The basi- or post-sphenoid, the pre-with the orbite-sphenoids, the ali-sphenoid with the external pterygoid and the internal pterygoid, also arise in the cartilaginous floor, and they, together with the sphenoidal spongy bones which are formed in the membranous cranjum, fuse into the sphenoid bone. The palate is apparently formed by ossification of cartilage continnous with the bar in which the internal pterygoid srises. The central plate and each lateral mass of the ethmoid also arise in the cartilage by distinct centres. The inferior turbinal has slso a-distinct origin in cartilage. The petro-mastoid part of the temporal arises in cartilege from st least ibree centres, peri-, pro-, and opisth-otic, sud soon blends with the squamous and tympanic elements which arise in the membranous cranium; subsequently the styloid process, which is ossified in the rod or cartilage in the second visceral arch, joins the temporal. The lower end of this same rod forms the lesser cornu of the byoid; the upper end forms two small bones, the stapes and incus, sitnated within the cavity of the tympanum. The cartilage of the third visceral arch forms the great cornu and body of the hyoid bone. The name of Meckel's cartilage is applied to the rod found in the first visceral arch; its upper end is gssified into the malleus, a small bone situatcd in the tympanic cavity; whilst in the membrane surrounding the rest of the cartilabs the lower jaw-bone is formed. The parietal and frontal bones arise altogether in the membranons Fault; and the nasal, lachrymal, malar, and superior maxilla arise in connection with the bones which form the face; the vomer is developea in the membrane investing the mes-ethmcid cartilage. The human superior maxilla represents not only the superior maxilla of otber vertebrates, but the pre-mexillary bone also; but the two bones become fused together. at so very carly a period that it is difficult to recognise their original independence. In the deformity of bare-lip and cleft palate, they are not uufrequently separated by a distinct fissure.
Since the time when Oken and Goethe propounded the theory that the skull was built up of several vertebra, the vertebral structare of the skull has led to nuch discussion amongst anatomists. Every one sdmits that the skuil is in series with the spine, thst the cranial cavity is continuous with the spinal canal, and that the cranial vault is formed in the wall of the embryonic cerebro-spinal canal. The skull also, like the spine, is transversely segmented, but whether we regard these segments us vertebre or yot will depend upon the conception wt eutertain of tha meaning of the term vertebra. If mith Owen we define a vertebra to be "one of those eegments of the endo-skeleton which constitute the axis of the body and the protective canals of the nervous and vascular trunks," then we may support the vertebral naturo of the cranial segments on the folloring grounds:-1st, The presence of a serics. of bones extending forwards from the foramon marnum along the
basis cranii, in series with the bodics of the spinal vertebræ,- e.g., the basi-occipital, basi-sphenoid, re-sphenoid, mes-ethmoid (Fig. $7 ;$; $2 d$. The presence of a series of neural arches which enclose und complete the wall of the cranial cavity, and lie in series with the neural arches of the spinal vertebre, -e.g., the ex-and supra-occi pitals, which form the neural arches of the basi-occijital segment; the ali-spibenoids snd parietala, which form the neural srches of the basi-sphenoid segment ; the orbito-sphenoids and frontal, which form the penral arches of the pre-sphenoid segment; $3 d$, The presence of a series of viscerial arches of which the mandibular and byoidean enclose the alimentary and vascular canals, just as the ribs enclose them in the thorax ; and $4 t h$, The presence of foramina between the cranial segments like the inter-vertebral foramina between the spinsl vertebre for the transmission of nerves, -c.g. the sphenoidel fissure and the jugular foramen.

But if we are to regard a vertebra as a segment of the axial skeleton, which in course of its formation passes through a definite series of developmental changes, then the cranial segments canno: be regarded as vertebre in the same sense as the spinal eegments; for, 1st, The chorda dorsalis is not co-equal in length with the casis cranii, as with the bodies of the spinal vertebra, 60 that if the basi-occipital and basi-sphenoid segrents, the bodies of which are developed around it, were to be regarded as cranial vertebre, the pre-sphenvidal and ethmoido-nasal would not be morphologically the same, as they are formed in front of the anterior end of the chorda. $2 d$, Proto:vertebra are formed in the spine, but not in the basis cranii. $3 d_{\mathrm{a}}$ The spine is tradsversely segnuented in its cartilaginous etage of development, but the skull is now $4 t h$, The transverse segmentation of the skull only appears when the bones are forned, bnt the individuality of the segments becomes again concealed by the fusion of the pre- and basi-sphenoids and the basi-occipital into a continuous bar of bone, a condition which is not found in the spine except in the sacro-coccygeal region. 5th, The newral srches in the हjpine are, like the bodirs, ossifed in cartilage, but in the cranium they are for the most part ossified in membrane. These differences in the mode of development of the spine snd basis crauil may be summarised as below:-

Spine.			
1st Stage, Unsegmented chorda.	2d Slage, Proto-vertebræ.	3d Stage, Segmented certilage.	4th Stage, Segmental bones.
Basis Cranii.			
Ist Slage,	22. Slage,	3d Slage,	4th Slage,
Unsegmented	Unsegmented	Segmented	Unsegmeuted
chorda in part.	cartilage.	bones.	Loves.

It is evident, therefore, that, although both skall and spine are developed in the walls of the cerebro-spinal groove, yet, to quote the words of Huxley, "though they are identical in general plan of construction, the two begin to diverge as soon as the one puts on the special character of s skull sud the other that of a vertebral column; the skull is no more a modified vertebral column than the vertcbral column is a modified skull."
The limbs, at their first appearance, sprout like little buds or lappets from, the sides of the trunk; cartilage forms within them, which assumes the shape of the future bones, and as the limus grow outwards, manifestations of joints appear and the subdivisiou of each limb into its several segments takes place. The clavicle, which ossifies before any of the other bones, begins to form, how: ever, in fibrons membrane; and at a much later period the ends of the bone, which are formed in cartilage, unite with the intermediate shaft. The scapula ossifes from one centre for its exjavded plate and spine, two small centres each for the acromion and vertebral border, and one for the coracoid. In many vertebratcs, more especially birds and reptiles, the coracoid is a distinct bone from the scapula, but they articulate with each other to form the glenoid fossa. Eacl: of the three rod-like bones of which the innomicate bone is composed, ossifies from one centre for the shaft of the bons; and one for each extremity; in the ilium the terminal centres are situated at the crest and acetabulum ; in the ischium, at the tuber and acetabulum ; and in the pabis, at the symphysis and acetabulum. Each of the long bones of the shafts of the limbs ossifies from a single centre for the 8 shaft , and one or more centres for esch articular extremity. Each carpal and tarsal bone ossifics from a single centre, except the os calcis, which possesses an independent centre for its postcrior surface. The metacarpal and metatarsal bones and the phalanges ossify each from two centres, one for the shaft and one for one of the extremities. In the metacarpal benes of the fingers and the four outer metatarsals, the distal end is that which ossifies independently; in the metacarpal of the thumb, in the metstarsal of the grest toe, and in all the phalanges, the proximal end is that which ossifies independently. As the nethod of ossification ol the first metacarpal and first metaisrsal cornesponds with that of the phalanges, eome anstomists hold that these bones aro really the first. phalanges of their respectire digits, and thet the boue which is absent in these digits, when compared with tho other digits, is wot ε. rhalanx. but a meta-carnal or tarsal bonc. When the extremity
of a bone ossiges from a centre distinct fron the centre from which the shaft arises, it is called an cmiphysis. The epiphysis is united to the shaft of the growing boue by an intermediate plate of cartilage, and so long as any of this cartilage remuius mossified the bone can continue to grow in lencth. She ossifieation is not completed in the ditferent bones uatif from the twenticth to the twenty-fifth year. In the case of the long boees, the epiphysis situated at the and of the bone, towards which the caoal in the shaft which trausmits the nutrient artery is directed, ossifies to the ohaft before the epiphysis at the other end. In the humerus, tibia, and fibula, where the canal is directed downwards, the epiphyses at the lower eods of the bones first unite will the shaft; whilst in the fomur, radius, and ulna, whern the canal is directed upwards, the ossification tirst takes flace between the upper epiphysis and the shaft.

All anstomists hold that the bones of the shaft and distal part of a limb belong to the appeudicular part of the skelcton, but there is a difference of opiniou as to the place in the skeleton to wath the bones of the ahoulder girdle and haunch are to be referred. Owen considers that the acapular and pelvic arches belong to the axial skeleton, and are homologous with the ribs; the scajula aad coracoid as the visceral or rib-arch of the occipital vertebra, the clavicle of the atlas, and the innomioate bone of the upper sacral vertebra. Goudsir objected to this conclusion of Owen's on the ground that the shoulder girdle was not in series with the visceral arches, but was developei outside the visceral wall, at the junction of the cervical and thoracic regions, from which region the upper limb receives its nerves, and not from the occipito-atlantal region, whence they would have proceeded had it been an apjendage of the rib-arches of those segments. Owen's chief argument for regarding the scajula and coracoid ss the costal arch of the occipital vertebra is hecause in fish the acapula is attached to the occipital bone lyy a bone wlich Cuvier called the suprs-scapula, and which be believed to be homologous with the supra-scapular cartilago of many other vertebrates. Parker, however, has receatly pointed out that the so-called supra-scapula of a fish is not homologous with the supra-scapula of a reptile or mammal, that it is not a cartilage boue, but is a splint or acale-like bone, developed as a part of the dermo-skeleton. Between the acapula and coracoid and the innominate bone, anatomists have long recognised homologics to exist; the scapula is geaerally allmitted to be the homotype of the ilium and tio coracoid of the ischium, so that if these elements of the shoulder girdle be not a costal arch, neither can those of the pelvic girdle. The clavicle has by aome been regarded as the homotype of the pubis; but in all probability the pubis is bomologous with the procoracoid bone which is found in the amphibia and some reptiles, but is absent in crocodiles, birds, and mammals; whilst the clavicle is represented in the pelvic girdle, not by a bone, but by \& fibrous band called Poupart's ligament. Between the bones of the ehafts of the limibs homologies exist : the hamerus is the homotype of the femur, the radius of the tibia, the ulna of the Gbula; whilat the patella has no represeutative in the human puper limb. The acaphoid and semiluar bones in the carpus are bomotypes of the astragalus in the tarsus, the cuneiform is the bomotype of the os calcis, the cuhoid of the unciform; the trapezium of the ento-cunciform, the trapezoid of the meso-, and the os magnum of the ecto-cunciform." The tarsal ecaphoid is not, as a rule, represented in tho human carpus, but its homotype is the os intermedium, found io many mammels. The carpal pisciform is a sessmoid bone developed in the tentlon of a muscie. The metacarpal bones and phalanges are homologous with the ractatarsal bones and phalanges ; the thumb with the great toe, and the fingers with the four outer toes. During the growth of the limbs outward, and their change from the simple lappet-like form to their elongated condition, a rotation of the proximal eegment of the shaft takes place-that of the upper limb a quarter of a circle backward, that of the lower limb a quarter of a circle forward-to produce in the former case a supine position of the fore-arm and hand, with the thumb as the outermost digit; in the latter case, a prone condition of theleg and foot, with the great toe as the ionermost digit. Tho rage of movement at the radio-ulnar joiots enables us, however, to pronste the hand and fore-srm by throwing the radius across the ulna, so as to make the thumb the innermost digit. In many quadrupeds the fore-leg is fixed in this position, so that these animals walk on the soles of both the fore and hind feet.

General Orembations on the Articulatory and Musculare Systems.

A Joint or Articulation is the junction or union of any two adjacent parts of the body. Most usually the term is employed to signify the connection established between contiguous bones. It is by the joints that the various bones are knit together to form the skeleton. Joints may be either immovuble or morable.

The inmovable joints are divided into the synchondroses
and the sulures. A synchondrosis is the junction of tro. bones by tho interpusition of an intermediate plate of cartilage, the fibrous membrane or periosteun ulich invests the bunes being prulonged from one bure to the other over the surface of the cartilage. A suture is the conncetion of two boues by the interlocking of adjacent toothed margins; the periostcal fibrous menbrane is prulunged from one bone to the other, and is also interposed between their adjacent margins. In a young skull the basi-occipital and basi-sphenoid are united by synchondrusis, but junction by sutures is the mode

Fio 12.-Verilasal sation throush, a cranial auture. b, b, the ino
 osteuns pasing bifwuen Ilio two botis wlikh ylays the Dats imo botms ulikit whys the part of a heumbint, ald ulich is
conilnurus with the filetposed fluous mimlirulie. of union which prevails in the bones of the head. In old persons the sutures become obliterated by the ossification of the intermediate fibrous membrane. and the bones are permanently fused together. The cranial sutures may conveniently be arranged in three groups : a, Median longitudinal, consisting of the frontal suture, which counects the two balves of the frontal bone, and the sagittal suture, betweer the two parietal bunes; b, Lateral longitudinal, consisting on each side of the hear of the
 fronto-nasal, fronto-maxillary, ironto-lachrymal, fronto10. 17.-Vert calern cliondrasis o. b, ilis ino bones: Sci the interjused cartil. age: h the fibrnus membrane which ginga the part of a Hgament cthinoidal, fronto-malar, fronto-sphenoidal, parieto-splenoidal, parieto-squamous, parieto-mastoid sutures; c, Vertical transverse, consisting of the coromal or fronto-parietal, the lambdoidal or parieto-occipital, the sphenoido-malar, sphenoido-squamous and occipito-mastoid sutures. As the skull grows by ossification of the cartilage of the base and the membranous vault, the direction of growth is perpendicular to the margins of the bones and the sutures and synchondroses which connect them together. The growth of the skull in length is perpendicular, therefore, to the basi-cranial synchondrosis and the vertical transverse group of sutures; its growth, in breadth, to the median longitudinal group, and in height to the lateral 7ongitudinal group. So long as any of the cartilage or membrane between the margins of the bones remains unossificd, bone may continue to form, and tho skull may in. crease in size. It sometimes happens that the cartilage or membrane is prematurely ossified in a particular locality, and the further growth of the skull
 put a stop to in that region; if the brain is still growing, the skull must increase in other directione to permit of the expansion of the cranial eavity, and deformities of the skull are thercby occasioned. One of the most usual of these deformities is due to premature closuce of the sagittal suture, causing
stoppage of the growth of the skull in breadth, and, by way of compensation, great increase in its length, so as to produce a very elongated and somewhat boat-shaped cranium.

The movable joints are divided into the amphiarthrodial and the diarthrodial joints. An amphiarthrosis or halfjoint has only a feeble range of movement. It consists of two bones, each of which has its articular surface covered by a plate of cartilage, and which plates are firmly connected together by an intermediate disc of
 fibro-cartilage. The centre of this dise is soft, or may even be hollowed out into a cavity, lined by a smooth synovial membrane, and containing a little fluid.
10. 15.-Vertical section throagh an ampharthrodial jolnt. b, b, the two bones ; c, e, the plate of cartilage on the articular surface of eacls bone; $F \mathbf{F}$, the intermediare fibro-cartilage; l_{1}, the exteroal ligaments. Ligamentous bands, continuous with the periosteum investing the obones, invest the fibro-cartilage, and assist in binding the bones together. The best examples of amphiarthrodial joints are furnished by the articulations between the bodies of the true vertebre.

A diarthrosis admits of more or less perfect movement. In it the two articular surfaces are each covered by a plate of encrusting cartilage, the free surface of which is smooth and polished; between these surfaces is a cavity containing a glairy fluil, the synovia, for lubricating the smooth surfaces of the cartilage and facilitating the movements of the joint. This cavity is enclosed by ligaments, which are attached to the bones, and the inner surface of these ligaments is lined by a synovial membrane which secretes the synovia. Sometimes a plate or meniscus of fibrocartilage is interposed between, without, however, being attached to the encrusting cartilages of a diarthrodial joint, so as more or less perfectly to aubdivide the cavity enclosed by the ligaments articular surfaces of diarthrodial apposition with each other, sometimes by investing ligaments, at nthers by surrounding muscles and tendons; at others by atmospheric pressure, aided by the adhesive character of the interposed synovia. The form of the articular or movable, surfaces varies very materially in different examples of these joints, and the modifications in form determine the direction of the movements of the joints. In some, as the carpal and tarsal joints, the surfaces are almost flat, so that they glide on each other; the movement is comparatively slight, and about an axis perpen-

Fio.16.-Verilcalsection throngh a diarthredial joint. b, b, the two bones: c, c, the plate of cartilage on the articular surrace of each bene; l, l, the inresting ligamcat, the dotted line within which represents letter s is placed lo the cavity of the joint
into two spaces. The joints are retained in

Fia.17.-Vertical sectlon tlirough a diarthrodial feint, in which the cavity is cubdivided Inte two by an interpased Abro-cartilage or meniscus, $F C$. the other letters as la Fig. 16. dicular to the moving surfaces : hesc are called planete aricular smaces may be regarded as produced by the rotation of a straight or curved line about an axis lying in the same plane; these are called rotation joints, and they present various modiffertions according to the direction and relation of the rotating line to the axis. One form of a rotation joint is the
pivot joint, in which the movement takes place about the axis of one of the bones, which is the axis of rotation of the joint ; examples of this joint are found in the joint between the atlas and odontoid process of the axis and the radio-ulnar joint. Another form is the ginglymus or hinge joint, in which the axis of rotation of the joint is perpendicular to the axis of the two bones; the movements of the hinge are called flexion when the angle between the two bones is diminished, and extension when the angle is increased. An important modification of the ginglymus is the screwed-surfuced joint, examples of which are found in the elbow and ankle; here the plane of flexion is not perpendicular, but oblique to the axis of the joint. The saddle-shaped and oblong joints are also modified hinges, but allow motion about two axes; in the oblong both axes are on the same side of the joint ; but in the saddle-shaped there is an axis of rotation on each side of the joint. The best example of the saddle-shaped is found between the metacarpal bone of the thumb and the trapezium; of the oblong between the fore-arm and the carpus. In the ball-and-socket joint a spheroidal head fits into a cup, and rotation takes place about any diameter of the sphere; the joint therefore is multi-axial ; the hip and shoulder joints are the best examples. Some joints, in which the forms of the articular surfaces are more complex, are called composite; in them the morements of a hinge and of a ball-and-socket joint may be combined; the knee may be cited as an example of this form of articulation. In a large number of movable joints only portions of the opposite articular surfaces are in contact with each other at a given time; but, as the joint describes its path of movement, different parts of the surfaces come into contact with each other successively, and it is not unusual to find the articular surface both of the cartilage and the subjacent bone mapped out into distinct areas or facets, which are adapted to corresponding racets on the opposite articular surface in particular positiens of the joint. When the corresponding facets on opposite articular surfaces break contact with each other, the space between becomes occupied by synovia, or in some joints, more especially the knee, by folds of synovial membrane enclosing clumps of fat, which have been called synovial pads. In the simple hinge, in that with screwed surfaces, in the oblong and composite joints, the principal ligaments are situated at the sides of the joint, and arc called lateral; they not only prevent lateral displacement of the bones, but, by a tightening of their fibres, check excessive movement forwards or backwards during flexion and extension. In the saddle-shaped and ball-and-socket joints, the joint is included within a bag-like ligament called capsular. In the pivot joints the cavity in which the pivot fits is completed by a transuerse or a ring-shaped ligament.

The Muscles are the organs which, by their contraction susclees or shortening, move the bones on each other at the joints. The muscles constitute the flesh of the body. They are so arranged as to be capable not only of moving the various bones on each other, but the entire body from place to place. Hence the muscles are organs both of motion and locomotion. As they can be brought into action at the will of the individual, they are called roluntary muscles. Some of the muscles are engaged in the movement of other structures than the bones, such as the eye-ball, tongue, cartilages of the larynx, \&c. About 400 muscles are usually enumerated, and the names applied to them express cither their position, or relative size, or shape, or dircction, or attachments, or mode of action. The word muscle is itself derived from the Latin musculus, a little mouse, from a fancied resemblance between that animal and some of the most simply formed muscles. It is customary to distinguish in a muscle a central part, or belly, and two ex.
tremities, one of whirh is the head or the origin, the otier the insertion. The belly is the flesby part of the muscle, and possesses a decp-red characteristic colour; it is the activn contractile structure, the suuree of motor power. The two extremities are called the tendons of the muscle, or sinews; the tendons are bluishwhite in colour, possess no power of contractility, and are merely, as it were, the ropes by which the belly of the muscle is attached to the bone or other structure which is moved by its contraction. The term tendon of origin, applied to one extremity of the muscle, signifies the fired end of the muscle, that to which it draws during its contraction; as a rule this is the end nearest the trunk, the proximal end. The term tendon of insertion is applied to the end which is mored by the contraction; as a rule this is tho end most removed from the trink, the distal end. Entering the substance of each muscle is at least one artery, which conveys blood for its nutrition; this artery ends in a network of capillary blood-vessels, from which a rein arises and conveys tho blood out of the muscle again; another small vessel, called a lymphatic, also arises within the muscle, and conreys the fluid 1 ymph out of the muscle. Each muscle also is penetrated by a nerve, through which it is brought into conneetion with tho brain, so as to be subject to the influence of the will. The will is the natural stimulus for exciting muscular action, which action is in many eases so rapid that acarcely an appreciablo interval of timo intervenes between willing and doing the action.

Fio. 18. - The rectus musclo of the thigh; 10 show the constituent parts of a muecle. In the fleshy belly: to, teadon of oricin: ti, tendon al Inscrthon; n, nerre of oupply; c, artery of supply ; v. veln; l, lymphatic vessel; P, the ratella

The boaes form a series of rod-like levers, and, in studying the mode of action of the muscles, the place of insertion of the muscle into the bone-that is to say, the point of application of the power which causes the movementand its relations to the joint, or fulerum, or centre of motion, and to the weight or resistance which is to be orercome, have to be kept in riew. The relative positions of fulcrum, point of application of power, and resistance, are not the same in all the bony levers. As a rule, the muscles are inscrted into bones between the fulcrum and the moveable point of resistance, and nearer the fulcrum than the movable point, as may be seen in the museles which bend the fore-arm at the elbow.joint. Although from the weightarm of the lever being in these cases much longer than the power-arm, the muscles, as regards the application of tho power, act at a disadrantage, yet the movement gains in velocity. Sometimes the muselo is inserted, os is the caso in tho great musclo which straightens or extends the fore-arm, at one end of the lever, and the fulcrum or joint is placed between it and the movable point. At other times, as in the eass of the chief depressor muscle of the lower jaw, whilst the muscle is attached to one end of the lever, the fulcrum is at the opposite end. When a muscle is so placed that its tendon of insertion is perpendicular to the bone to which it is attached, it acts to great advantage; when placed obliquely or nearly parallel, a loss of power occurs. Many muscles at the commencement of coutmation lie obliquely to the tones which they more,
but as contraction goes on they become more nearly perpendicular, so that they act with more advantage near the close than at the commencement of contraction. If a muscle passes over only onc joint, it acts on that joint only: but if it passes over two or more joints, it acts on them in suecession, beginning with the joint next the point of iusertion. A given movement may be performed by the contraction of a single muscle, but as a rule two or more muscles are associated togcther, and they are not unfrequently so arranged that one muscle initiates the morement, which is then kept up and completed by the rest. Muscles producing movement in one direction hare opposed to them museles mhich by their contraction effect the opposite movement; when both groups act simultaneously and with equal force, they antagonise each other, and no motion is produced; when a muscle is paralysed or divided, its antagonistic musele drarss and permanently retains the part to its own side. The rapidity of action of a muscle is proportioned to the length of its fasciculi, its power of contraction to their number.

Each muscle is invested by a sheath formed of connective tissue. In the limbs and in the neck not only has each muscle a sheath, but a strong fibrous membrane envelopes the whole of the muscles, and assists materially in giving form and compactness to the region. This membrane is called generally a fascia or aponeurosis, but special descriptive names are given to it in the different regions-e.g., cervical fascia, brachial aponeurosis, fascia lata, or fascia of the thigh. In some localities muscles arise from the fascia, and in others they are inserted into it. The fascia is separated from the skin by a layer of subcutaneous fatty tissue, and in this layer muscles are in some localities developed. In the fat of the inner border of the palm of the, hand a small musele, the palmaris brevis, is found, which is inserted into the skin covering the ball of the little finger; at each side of the neck, also, lies a thin muscle called platysma myoides, and the muscles on the face and scalp which move the skin of the face and head belong to the same category. These muscles form the group of subcutareous or dermal muscles which, exeept in the localitics above referred to, are not represented in the human body, but are well known in the bodies of the mammalia generally as the panniculus carnosus.

In arranging the muscles for descriptive purposes, either a morphological, a topographical, or a physiological methou may be pursued. The morphological arrangement is to be preferred when the object is to compare the muscular system in man with that in different animals, and the basis of the arrangement should be into muscles of the axiai, the appendicular, and the axi-appendicular skeletons, and sub-eutancous museles; a topographical arrangement is most suitable for the purposes of the practical surgeon;-a physiological arrangement, when the object is to study the action of the muscles in connection with the movements of the joints. In Plates XV. and XVI., a front and back ricw of the voluatary museles of the body is given.

Joints and Muscles of the Axial Skeleton.

The Jutervertebral Joints are complex in construction. The bodies of the true vertebre are connected togcther by an amphiarthrodial joint: the fibro-cartilaginous plate or intervertebral disc is tough and fibrous in its peripheral part, but soft and pulpy within. (Fig. 15.) Remains of the chorda dorsalis are said to occur in the soft pulp, and sometimes a distinet cavity, lined by a synurial membrane, is found in the centre of the dise, which in the finner whale is expanded into a large central cavity containing many ounces of synovia. A diarinrodial joint connects the superior and inferior articular processes of adjacent vertebræ on each side. Elastic jellow ligaments, the ligamenta subflava,

VOL. I.

Fig 1

pass between their laminæ. Inter-and supra-spinous liga ments connect adjacent spinous processes, and in the neck the supra-spinous ligament forms a broad band, the liga nentum nuchee. In those mammals which possess big heads or heary horns, this ligament of the back of the neck forms a powerful elastic band for the support of the head. The joints between the atlas and axis, and the atlas and occiput, are speciaily modified in connection with the morements of the head on the top of the spine. The iutervertebral dises are absent, and the range of movement cither from before backward, as in nodding the head, or from side to side, as in looking over the shoulder, are mire extensive than between any of the other true rertebre. The head rotates along with the atlas around the odontoid or pivot process of the axis, which is lodged between the antericr part of the atlas and a strong transverse ligament which lies behind the odontoid. Too great movement to one side or the other is prevented by the check ligaments, winish pass from the top of the odontoid to the occipital hone, in front of the foramen magnum. The nodding morements take place between the occiput and atlas, and are pernitted by the size and shape of the occipital condyles and hollow apper articular surfaces of the atlas. These joints are all diarthrodial. The spine is flexible and elastic ; except in the joints above referred to, the range of movement between any two true vertebre is very small, but the sum of the movement in the entire spine, owing to the number of bones, is considerable. The elasticity of the spine is partly due to the numerous diarthrodial joints between its articular processes, but more especially to the discs of fibro-cartilage interposed between the bodies of the vertebre, which act like elastic pads or buffers to prevent shock. The spine and trunk may be bent either forwards or backwards, or to the right and left side ; or without being bent, the spine may be screwed to the right or to the left, the screwing movement being permitted by the oblique direction of the articalar processes.
The muscles which move the rertebræ on each other are principally situated on the back of the trunk In the hollow on each side of the rertebral spines lies the great erector spinz muscle, the fibres of which pass longitudinally upwards. When both muscles act together, the entire epine is bent back; but when the muscle of one side only contraets, then the spine is bent to that side. These muscles also aet in raising the spine from the bent to the erect position, and they are assisted by small interspinal muscles, situated between the spines in the cervical and lumlar regions. The spine is bent forward by the psoæ and longi colli mascles; and the straight muscles of the abdomen, inserted into the lower true ribs, assist in this movement. The screwing morements of the spine are efiected by a serics of muscles, the fibres of which pass obliquely between the lamina and spines of adjacent rertebræ, and are known as the semispinales, multifidi, and rotatores spinæ muscles.

The head is balanced on the summit of the spine, and is maintained in a quiescent position without any appreciable muscular action, but it can be moved in rarious directions by the muscles inserted into its bones. The nodding morements of the head on the atlas are due to the posterior recti, the two superior obliques, the two splenii, and the two complexus muscles, which draw it backwards, and the anterior recti and sterno-cleido-mastoid muscles, which draw it forwards. When the right splen is and greater posterior rectus and inferior oblique act along with the left complesus and sterno-mastoid, the head is rotated to the right shoulder; the opposite rotation being due to the action of the corresponding muscles on the other side of the body.

In the formation of the walls of the abdomen proper,
bones and joints play but a small part. The lumbar rertebræ behind, the expanded wings of the iliac bones below, and the false ribs abore, are the only bones to bs considered. Three pairs of greatly expanded musclesthe external oblique, internal obliqne, and transverso-lia at the sides and in front, and two pairs of rauscles the recti and pyramidales-are situated wholly in front. The internal oblique and the transverse muscles are attached above to the ribs, behind to the lumbar spine, below to the iliac crest and to a strong band, Poupart's ligament, extending from the erest of the ilium to the pubic spine; the external oblique has similar connections abore and below, but is not attached behind to the lumbar spine. The mnscles all terminate in front in strong espanded tendons, called the anterior abdominal aponeuroses, wlasch blend together in the middle line anteriorly to form the band called linea alba, which stretches longitudinally from the siphi- teraum to the pubic symphysis. These expanded tendons enclose the recti muscles, which pass from the pubis upwards to the cartilages of the lower true ribs, and the pyramidal muscles, which pass from the pubis to be inserted into the lunea alba The entire arrangement is admirably adapted for completing the walls of the great abdominal chamber, and for enabling the muscles to compress the ablominal viscera, an action which takes place when the contents of the borels and bladder are being expelled during defæcation and micturition.

Bones and joints play a more important part in the formation of the walls of the thoracic than of the abdominal carity. Not only are there thoracic rertebre behind, and the sternam in front, but on each side the twelre ribs arch more or less completely forward from the enine; each rib is articulated behind to one or two rertebra, and the seven upper ribs, through their costal cartilages, a:ticulate with the sternum.

The Costo-vertebral Joints are situated between the head Costal of the rib and the rertebral body; also, except in the foat-joicts ing ribs, between the tubercle of the rib and the transrerse process of the vertebra, the joints being diarthrodial, and completed in the usual manner by ligaments and synovial membrane. The Cesto-sternal Joints are also diarthrodial (except the first costal cartilage, which is directly united to the præ-sternum), a capsular ligament, lined by a synoriat membrane, connecting the cartilages of the trae ribs to the sternum. The cartilages from the sixth to the ninth ribs are also united by ligamentous fibres.

The morements of the ribs and sternum at the costorertebral and costo-sternal joints are of the atmost importance in the process of breathing. Breathing or respiration consists of two acts-breathing in, or inspiration, and breathing out, or expiration. During inspiration, the air rushes througb the nose or mouth do:mn the mindpipe, and dilates the air-cells of the lungs; together with the expansion of the lungs the malls of the chest rise, so that the capacity both of lungs and chest at the end of a full inspiration is nearly doubled. During inspiration the following changes occur in the walls of the chest : the ribs are elevated and rotated, the lower borders of their shafts are everted, while their surfaces are at the same time rendered more oblique, and the width of the intercostal epaces is thereby increased; the elcpation and rotation of the ribs thror the sternum upwards and forwards, and make the thoracic part of the spinal column straighter; the diaphragm is depressed, and the antero-lateral walls of the abdomen are thrown forward. The muscles which cruse these more ments are as follows:-In each of the spaces between the different ribs a pair of intercostal muscles is situated; theso clerree and rotate the ribs, and the movements are assisted by the levatores costarum, and, in the case of the apper and lower ribe, by the scaleni and serrati pestici
muscles; and by these agents the transveree ana anteroposterior diametcr of the cliest is increased. The increase in its vertical diameter is due to the action of the diaphragm or midriff, the great muscle which, arising by its circumference from the xiphi-sternum, six lower ribs, and bodies of the lumbar vertebre, forms the Hoor of the thoracic and the roof of the abdomiual carity. It constitutes a great arrh, with its convexity directed to the cavity of the chest. By the contraction of its fibres the arch is rendered less conves, and the floor of the chest is thereby depressed. Uuder circumstances which require more powerful efforts of inspiration, the muscles which pass from the walls of the chest to the upper limbs may, by taking their fixed points at the limbs, act as elevators of the ribs. During expiration the ribs are depressed, their lower borders inverted, the width of the intereostal spaces diminished, the stornum depressed. the spine more curved, and the dia-

T10. 19.- The concava abdnminal surface of the daphragm, a, 4th Inmbar
 g. $A_{\text {a }}$ arched tendons of arigin of diaphragm; k, aorta; l, oesnphacus; m. Inferior vena cava; m psnas; o, quadratus mascle; gqg, central tendon of diaphrasma, into which the muscular fbres are inserted.
phragm more convex. These movements are principally due to the recoil of the elastic tissue of the lungs previously rendered tense by the inflation of the air-cells, and to the untristing of the ribs when the inspiratory muscles cease to elevate and rotate them. Muscular action plays but a small part in quiet expiration, but the expulsion of the air from the lungs may be facilitated by contracting the abdominal muscles, which, pressing the abdominal viscera against the under surface of the diaphragm, force that muscle upwards.

The Temporomaxillary Joints are the only diarthrodial articulations in the head. The condyle of the lower jaw on each side is received into the glenoid fossa of the temporal bone; each joint is enclosed by a capsular ligament, and between the articular surfaces is a meniscus, which subdivides the interior of the joint into two cavities, each lined by a synovial membrane. The movements of the lower jaw take place simultaneously at both its articulations during mastication and speech, through the action of the several muscles which are inserted into it. This bone is elevated by the temporal muscles, inserted into the coronoid processes; and by the masseterics, inserted into the outer surface, and the internal pterygoids, into the inner surface of each angle. It is depressed partly by its own weight and partly by the action of the digastrics and genio-hyoids; inserted close to the symphysis; by the platysma, inserted into the outer surface of each borizontal ramus; and the mylo-
hyoids, into their inner surfaces. The elevators of the jaw are much more powerful than the depressors, for they not only have to overcome the weight of the buue, but duriug mastication have to exercise force sufficient to cut or break down the food between the teeth. In carnivorous animals, more especially those which, like the tiger or hyrna, crack the bones of their prey, these muscles attain a great size. The lower jaw can be projected in front of the upper by the external pterygoid muscles, inserted into the neck of the bone on each side; but excessive movement forward is checked by the action of the stylo-maxillary ligaments, which pass from the styloid processes to the angles of the bone; when projected forward, the jaw is drawn back by the posterior fibres of the temporal muscles. When the elevator, depressor, protractor, and retractor muscles are successively brought into action, the lateral or grinding movements of the bone, so important in mastication, are produced.

Along with the movements of the lower jaw those of the hyoid bone and larynx must be considered, for the digastrics the genio- and mylo-hyoids, which depress the lower jaw, act, when their action is reversed, along with the stylo hyoid muscles in elevating the byoid bone and laryux, which structures can be depressed or drawn downwards by the action of the sterno-hyoids, sterno-thyroids, thyro lyoids, and omo-hyoids; the elevation of the hyoid, when drawn down by its depressor muscles, is effected by the elastic stylo-hyoid ligaments attached to its small cornua, which, by their recoil when the depressor muscles have ceased to contruct, draw the bone up to its former position.

Numerous muscles are situated immediately beneath the skin of the scalp and face. They are not of so deep red a colour as the muscles of the trunk and limbs, and whalst they arise froci one or other of the bones of the head, they are inserted into the deep surface of the skin itself. Hence when they contract they move the skin of the scalp and face, and as they are the instruments through which the various passions and emotions are expressed, they are grouped together as the Muscles of Expression (Plate XV., figs. 2 and 3). The occipito-frontalis, or great muscle of the scalp, passes from the occipital bone over the vertex to the fore head; Then it contracts, the skin of the forehead is wrinkled transversely, the eyebrows'are elevated, and an expression of amazement or surprise is produced. Some persons have a greater power over this muscle than others, and by the alternate contraction of its occipital and frontal portions can more the hairy scalo to and fro with great rapidity. A pair of muscles, the corrugatores supercilii, arises from the supraciliary ridges, on the frontal bone, to be inserted into the eyebrows: they draw the eyebrows downwards and inwards, wrinkle the skin of the forehead longitudinally, and contract with great vigour in the act of frowning. The auricle of the external ear has three small muscles inserted into it, one behind, the posterior, one above, the superior, one in front, the anterior auricular muscle: in man, as a rule, these muscles aro feeble, and have little action; but in many mammals they are large, and by them the animal pricks its ears to detect the faintest sound of danger. The eyelids are drawn together, so as to close the eje as in the act of sleep, by the orbicularis palpebrarum, the fibres of which lie in the eyelids and on the borders of the orbit, and surround the fissure between the eyelids. This muscle is a characteristic specimen of the group of sphincter muscles, i.e., muscles which surround orifices, and by their contraction close them. When the upper fibres of the muscle alone contract, the uoper eyelid is depressed,a movement which takes place almost involuntarily and with great frequency during our waking hours, so as to wash the tears over che exposed part of the eyeball and beep it moisț. In expressing a "knowing wis." tiar

10 wer fibres alone of the orbicularia contract, and the lower lid is elevated. 'the elevation of the upper lid, as in opening the eye, is due to the levator palpebrix superioris, which, arising withis the orbit, is inserted into the upper eyelid. Muscles are inserted into the framework of the nostrils so as to increase or diminish the size of their orifices, and thus to promote or impede the passage of air into the nose. The size of the orifice is increased by two elevator muscles inserted into the ala; or side of the nostril ; and when violent exercise is being performed, or respiration is from any cause impeded, the nostrils are always widely dilated. One of these elevator muscles, which also sends a slip dorn to the upper lip, and is consequently called the common elevator, is the muscle by the contraction of which a sneer is expressed. A partial closure of the nostril can be effected by small muscles which depress and compress the alæ of the nose: in man these muscles are rudimentary as compared with the seal and other aquatic mammals, in which a powerful sphincter muscle closes the nostrils in the act of diving. The lips can be elevated or depressed so as to close or open the mouth ; they can be protruded or retracted, or the corners of the mouth can be drawn to oue side or the other, by the action of various muscies which are inserted into these movable folds of the integument. The orbicularis oris is a sphincter muscle, the fibres of which lie both in the upper and lower lips; by its contraction the mouth is closed and the lips pressed against the teeth, as when a firm resolution is intended to be expressed. The mouth is opened by the elerator muscles of the upper and the depressors of the lower lip ; it is transversely elongated by the zygonatic and risorius muscles, which pass to its corners, and which are brought into action in the aets of smiling and laughing. But the muscles of the lips also play an important part in connection with the reception of food into the mouth, and with the act of articulation.
The cavity of the mouth forms the commencement of the alimentary canal, and is lined by a soft mucous membrane. In it the teeth and tongue are situated, and into it the secretion called saliva is poured. It opens behind into the pharynu. The side walls of the mouth are called the checks, and into the formation of each cheek a flattened quadrilateral muscle, the buccinator, enters. This muscle is attached above and below to the upper and lower jawbanes, behind to

Fia. 20.-Pronle of cheek and pharyax. a, buealnator; b, teusor: a levator palail; α, , f_{1} auperior, molddle, and Inferiar constrletars; g, thyro-hyald: h_{4} byoglessus; 4 mylo-hyoid; $m_{\text {, }}$ crlco-thyrold; n, atylopharyngeus; 0 atylo-glossus; q, fibrous band whlch gives origin to buecinator and auperior constricter; 1, glosso-pharyngeal nerve: 2, buperior laryngeal artery: 3, superior laryngeal nerve: 4, les branch to crico-thyrold; 8 , laferior laryageal nerve ond artery. fibrous band, to which the upper constrictor inuscle is also connected, so that the walls of
the mouth and pharynx are continuous mitn each other, whilst in front the buccinator blends with she structures in the lips. It compresses the cheeks, and drives the air out of the carity of the mouth as in playing a wind instru• ment ; hence the name, "trumpeter's muscle."

The aperture of communication between the month and pharynx is named the isthmus of the fauces. It is bounded below by the root of the tongue, on each side by the tonsils, and above by the soft palate. The soft palate is a structure which hangs pendulous from the posterior edge of the hard bony palate. From its centre depends an elongated boady, the uvela, and from each of its sides two fulds extend, one downwards and forwards to the tonguc, the other downwards and backwards to the pharynx. These folds are called the anterior and posterior pillars of the fauces or palate. Between the anterior and posterior pillar, on each side, the tonsil is seated. The soft palate and its pillars are invested by the mucous lining of the mouth and pharyna, and contain small but important muscles. The muscles of the soft palate and uvula, termed the elevators and tensors, raise and make them tense during the process of deglutition. The muscles of the posterior pillars, or palato-pharyngei, by their contraction, approximate the walls of the pharynx to the soft palate and urula, whilst the muscles of the anterior pillars, or palato-glossi, diminish the size of the fauces.

The pharynz is a tube with muscular walls, lined by a suscles d mucous membrane, which communicates above and in frout phargox with the carities of the nose, mouth, and larynx, whilst below it is continuous with the œesophagus or gullet. It serves as the chamber or passage down which the fectu goes from the mouth to the œsophagus in the act of swallowing, and through which the air is transmitted from the nose or mouth to the larynx in the act of breathing. It lies immediately behind the nose, mouth, and laryns, and in front of the five upper cervical vertebræ. Its length is from $4 \frac{1}{2}$ to $5 \frac{1}{2}$ inches ; its widest part is opposite the back of the mouth. The principal muscles in its walls are called the constrictors, and are named, from above downwards, superior, middle, and inferior. They are arranged in pairs, and arise from the cartilages of the larynx, from the hyoid bone, lower jaw, and internal pterygoid pro-cess-of the sphenoid; whilst the superior also springs from the fibrous band to which the buccinator is attached; thcir fasciculi curve backwards to the middle liue of the posterior wall of the pharynx, to be inserted into a tendinous band which extends longitudinally along this wall of the tube.
The action of the muscles of the moutn, parate, and pharyux may now be considered in connection with tha
process of deglutition or swallowing. When the food is received into the mouth, it is moistencd by the secretion of the salivary and other buccal glands, and is broken down by the grinding action of the molar tecth. The buccinator muscles press it from between the gums and the cheek, and, along with the movements of the tonguc, aid in collecting it into a bolus on the surface of that organ. During the process of mastication the palato-glossi contract so as to close the fauces. When the bolus is sufficiently triturated and moistened, the palato-glossi relax, the tip of the tongue is pressed against the roof of the mouth, and by a heave backward of that organ the bolus is pressed through the posterior orifice of the mouth into the pharynx, where it is grasped by the superior constrictor muscles, and forced downwards by them and the other constrictor muscles into the cesophagus, and thence into the stomach. As both the nose and larynx open into the pharynx, the one immediately above, the nther immediately below the orifice of the mouth, it is of great importance that none of the food should enter into these chambers, and obstruct the respiratury passages. To guard against any accident of this kind, two valvular structures are provided,-viz., the soft palate and the epiglottis,-which, whilst learing the orifices into their respective chambers open dnring breathing, may effectually close them when deglutition is being performed. As the bolus is being projected through the fauces into the pharynx, the soft palate and unula are clevated and made tense, and at the same time the wall of the pharynx is brought in contact with it by the contraction of the palatopharyogei; the part of the pharynx into which the nose opens is thus temporarily shut of from that into which the mouth opens. If laughter, however, be excited at this time, the tension of the soft palate is destroyed, and part of the food may find its way upsards into the nosc. The closure of the larynx by the epiglottis is due partly to the depression of that valve and partly to the elevation of the larynx. The backward heave of the tongue relaxes the ligaments which connect the front of the epiglottis to that orman, and enables the snall epiglottidean muscles to depress the valve. The clevation of the hyoid and larynx is due to the action of the mylo-hyoid, digastric, and genio-hyoid muscles, which pass from tho lower jaw to the hyoid, and of the thyro-hyoid, which pass from the hyoid to the thyroid cartilage of the larynx; preliminary to their action, the lower jaw must be fixed, which is done by the closure of the mouth prior to the act of swallowing. The aperture of the larynx is thus brought into contact with the depressed epiglottis, which is adapted more exactly to the opening by a change in its form due to the projection of a cusbionlike pad from its posterior surface. By these ingenious arrangements the adaptation of a single chamber to the very different functions of breathing and swallowing is effertnilly prorided for.

Joints and Muscles of the Upper Limb

The upper limb is jointed to the trunk at the sternoclavicular articulation. This is a diarthrodial joint: the boncs are retained together by investing ligaments; a meniscus is interoosed between the articular surfaces, so that the joint possesses two synovial membranes. A strong ligament, which checks too great upward movement, conrects the clavicle and first rib. The two bones of the shoulder girdle articulate with each other at the diarthrodial acromio cluvicular joint; but, in additiun, a strong ligament, which checks too great displacement of the bones, passes letween the clavicle and coracoid. The movements of the i pper limb on the trunk take place at the sterno-clavicular joint, and consist in the elevation: depression, and forward and backrard movoment of the shoulder. The movements et the acromio-clavicular joint occur when the scapula is
rotated on the clivicle in the act of elevating the ar:n above the licad. The muscles which cause these moved ments are inserted into the bones of the shoulder girdle; the trapezius into the clavicle, acromion, and spine of the seapula; the rhomboid, levator anguli scapule, and serratus marnus into the vertebral border of the scapula; the pectoralis minor into the coracoid; and the subclavius inte the clavicle. Elevation of the entire shoulder, as in shrugging the shoulders, is due to the contraction of the trapczius, levator scapulx, and rhomboideus; depression partly to the weight of the limb and partly to the action of the subclavius and pectoralis ninor; movement forward to the serratus and pectoralis; and backward to the trapezius and rhomboid. In rotation of the scapula on the clavicle, the inferior angle of the scapula is drawn forward by the serratus and lower fibres of trapezius, and backward by the levator scapulæ, rhomboid, and lesser pectoral.

The Shoulder Joint is a ball-and-sucket joint, the ball being the head of the humerus, the socket the glenoid fossa of the scapula. A large capsular ligament, which is pierced by the long tendon of the biceps muscle, and lined by a synovial membrane, encloses the articular ends of the two bones, and is so loose as to permit a range of movement greater than takes place in any other joint in the body. The muscles which cause these movements are inserted into the bumerus; the supra-spinatus, infraspinatus, and teres minor into the great tuberosity; the sub-scapularis into the small tuberosity; the latissimus dorsi and teres major into the bottom of the bicipital groove; the pectoralis major into its anterior border; the coraco-brachialis into the inner aspect, and the deltoid, which forms the fleshy prominence of the shoulder, into the outer aspect $_f$ the shaft. Abduction and clevation or extension of the arm outwards at the shoulder joint are duo to the supra-spinatus and deltoid; adduction or depression, to tho coraco-brachialis, latissimus, and tercs major, assisted by the weight of the limb; movement forwards and elevation, to tho anterior fibres of the deltoid, pectoralis, and subscapularis; backward movement to tho latissimns and teres; rotation outwards to the infra-spinatus and teres minor; rotation inwards to the subscapularis, pectoralis, latissimus, and teres. A combination of abductiun, inovement forwards, adduction, and movement backwards, produces the movement of circumduction. Certain movements of the upper limb, bowever, take place not only at the shoulder joint, but between the two boncs of the shoulder girdle; for in elevating the arm, whilst the supraspinatus and deltoid initiate the movement at the shoulder joint, the farther elcvation, as in raisung the arm above the head, takes place by the trapezius and serratus, which rotate the scapula and draw its inferior angle forward. The free range of movement of the human shoulder is one of its most striking characters, so that the arm can be moved in every direction through space, and its cfficiency as an instrument of prebension is thus greatly increased. The movement of abduction, or extension, which clevates the arm in line with the axis of the scapula, is characteristically human, and a distinct articular area is provided on the head of the bumcrus for
 this movement.

The Elbow Joint is the articulation between the Lumerus, radius, and ulna: the great sigmoid cavity of the ulna is adapted to the truchlea of the lumerus, and the cup of the radius to the capitellum. The joint in enclused by a

FOL. I.

E

copsular ligament lined by a synovial membrane, which is subdivided into anterior, posterior, intornal, and external bands of fibres. Flexion and extension are the two movements of the joint, and the range of movement is limited by the locking at the end of flexion of the coronoid process into the coronoid fossa of the humerus, and at the end of extension of the olecranon process into the olecranoid fossa. The elbow joint is a hinge with screwed surfaces; the path described by the hand and fore-arm is a spiral, so that during flexion they are thrown forwards and inwards. The muscles which cause the movements are insertcd into the bones of the fore-arm. The flexors are the brachialis anticus, inserted into the cornnoid of the ulna; the biceps, which forms the fleshy mass on the front of the upper arm, into the tuberosity of the radius; the supinator longus into the styloid process of the radius. The only extensor is the triceps anconeus, which forms the fleshy mass on the back of the upper arm, and is inserted into the olecranen.

The Radio-ulnar Joints are found between the two bones of the fore-arm. The head of the radius rolls in the lesser sigmoid cavity of the ulna, and is retained in position by a ring-like ligament which surrounds it; the shafts of the two bones are connected together by the interosseous membrane, their lower ends by a capsular ligament and a triangular fibro-cartilage or meniscus. The radius rotatec round an axis drawn through the centre of its head and the styloid process of the ulna; rotation of the fore-arm and hand forward is called pronation,-rotation backwards, supination. The supinator and pronator muscles are all inserted into the radius: the supinators are the longus and brevis and the biceps; the pronators are the teres and quadratus. Where delicate maripulation is required the fore-arm is semi-flexed on the upper arm, for the cupshaped head of the radius is then brought into contact with the capitellum of the humerus, and the rotatory movements of the bone can be performed with greater precision.

The Wrist or Radio-carpal Joint is furmed above by the lower end of the radius and the triangular meniscus, below by the upper articular surfaces of the scaphoid, semi-Iunar, and cuneiform bones. An investing ligament, lined by a synovial membrane, and subdivided into anterior, posterior, internal, and external bands of fibres, encloses the joint. It is the oblong form of hinge-joint, and possesses two axes, a long and a short; around the long axis morements occur which bend the hand forwards, or bring it in line with the fore-arm, or bend it backwards; around the short exis the hand may be moved towards the radial or ulnar margins of the fore-arm. The flexers forward are the palmaris longus, inserted into the palmar fascia; the flexor carpi radialis into the metacarpal bone of the index; the Alezor carpi ulnaris into the pisiform bone; the extensors and flexors backwards are the longer and shorter radial extensors inserted into the metacarpal bones of the index and middle fingers, and the ulnar extensor into the metacarpal bone of the.little finger; the flexors and extensors of the fingers have also a secondary action on the wrist joint. The ulnar flexor and ulnar extensor of the wrist draw the hand to the ulnar side, and the radial flexor and extensor, together with the extensors of the thumb, draw the hand towards the radial border of the fore-arm.

The Carpal and Carpo-metacarpal Joints are corsstructed. thus:-The articular surfaces are retained in contact by certain ligaments passing betwcen the dorsal surfaces of adjacent bones, by others between their palmar surfaces, and by interosseous ligaments between the semi-lunar and cuneiform, semi-lunar and scaphoid, os magnum and unciform, os magnum and trapezoid; lateral ligaments also attach the seaphoid to the trapezium, and the cunciform to the unciform. Similarly, the trapezoid, os magnum, and
unciform are connected to the metacarpal bones of the fingers by dorsal, palmar, and interosseous ligaments, and the metacarpal bones of the fingers have a like mode of union at their carpal ends; further, a transverse ligament extends between the distal ends of the metacarpal bones of the fingers, and checks too great latcral displacement. The range of movement at any one of these carpal joints is very slight, but the multiplicity of joints in this locality contributes to the mobility of the wrist, and makes the junction between the hand and fore-arm less rigid in its rature. The metacarpal bone of the thumb is not jointed to the index, and has a distinct saddle-shaped articulation with the trapezium, invested by a capsular ligament. 80 that its range of morement is extensive.

The Metacarpo-phalangeal and Inter-phalangeal Joinle are connected by lateral ligaments passing between the bones, and by an arrangement of fibres on their dorsal and palmar surfaces.

In studying the muscles which move the digits, it will be advisable, on account of the freedom and importance of the movements of the thumb, to examine its muscles indepen. dently. These muscles either pass from the fore-arm to the thumb, or are grouped together at the outer part of the palm, and form the elevation known as the ball of the thumb; they are inserted either into the metacarpal bone or the phalanges. The thumb is extended and abducted, i.e., drawn away from the index, by three extensormusclesdescending from the fore-arm, and inserted one into each of its thrce bones, and a small muscle, specially named abductor pollicis, inserted into the outer side of the first phalanx : its bones are bent on each other by a long and short flexor muscle; it is drawn back to the index by an adductor muscle; and the entire thumb is thrown across the surface of the palm by the opponens pollicis, which is inserted into the shaft of the metacarpal bone.

The four fingers can be either bent, or extended, or

Fin 23-Deep muscies of tha paim ne the band. 1, abductor poll!els exs short; 2, opponens; 3 and 4, snt divisions of ticxor breris: δ. sdductor: 6,6 , tendon of lons fernm finger; 8 , shor flezor; 9 , opponent: 10, tendon af Bexor csmpluloario: 11. tendon of long supinator; it transperse metacaspal ligameni drawn asunder, i.e., abducted; or dramn together, i.e., adducted. The unguad phalanges can be bent by the

Ft0. 24.-Tendons attached to Anger. a, the extenser tendon; b, deep Eesor, c superaclul fexor: \mathcal{A} a lumbncal muscle: \& a Interostwna maselei f teadinnas expanslon from the lumbrleal and laterosseous muscies jolalog the extersor tendon
action of the decp flexor muscle, the four tendons of which arc inserted into then ; the sccond phalanges by the superficial flexor, also inserted by four tendons, one into each phalanx ; these muscles descend from the front of the forearm into the palm in front of the wrist, where they are
enclosed in a canal by a strong band, the anterior annular ligament, and their surfaces are invested by a synovial membrane, which facilitates their movements to and fro bencath that ligament; as they pass downwards in front of the fingers they are enclosed in a strong fibrous sheath lined by a synovial membrane, and the tendon of the superficial fiexor is pierced by the deep flexor, so that the latter may reach the third phalanx into which it is inserted. Four rounded muscles, the Iumbricales, arise in the palm from the deep flexor tendons, turn round the radial borders of the first phalanges, and are inserted one into the extensor tendon on the dorsum of cach finger; these muscles bend the first phalanges on the metacarpal bones, but from their insertion into the extensor tendons they also extend the second and third phalanges on the first; as they are much used in playing stringed instruments, they have been called "fiddlers'museles." The fingers are extended or straightened by muscles inserted into the back of the second and third phalanges ; the extensor museles deseend from the back of the fore-arm,-one, the common extensor, subdivides into four tendons, one for each finger, but in addition the index and little have each a separate extensor muscle, the tendon of which joins that of the common extensor. The index finger possesses more independent morement than the other digits-henee its more frequent use as a "pointer;" the extensor tendons of the little and ring fingers are usually united together, so that these digits are associated in their movements. Abduction and adduction of the fingers are caused by seven small muscles situated in the intervals between the metacarpal bones,-hence ealled interossei; four of these lie on the back of the hand, three on its palmar surface; they are inserted into the sides of the first phalanges, and either pull the fingers away from a line drawn through the middle finger or approximate them to that line. Too great abduction is checked by the transverse metacarpal ligament. The human hand is a perfect instrument of prehension; not only can the individual fingers be bent into hooks, but the thumb can be thrown across the front of the palm. so that it can be opposed to the several fingers, and objects can therefore be grasped between it and them; but further, this power of opposing the thumb permits objects to be held in the palm of the hand, which may be hollowed into a cup or made to grasp a sphere. The movements of the joints are indicated on the surface of the palm by tegumentary folds, -an oblique fold for the thumb, and two oblique folds for the metacarpo-phalangeal joints of the fingers; the joints of the second and third phalanges are also marked on the surface by folds.

Joints and Muscles of the Lower Limb.

Stacro-liliso

 point.the sacro-iliac ligaments require to be of great strengin, because the sacrum, and with it the eutire trunk, are sus pended ly them on the two innominate bones.

The IIip Joint is a ball-and-socket joint; the ball is the head of the femur, and the socket the cup-shaped acetabulum in the hannch bons, the depth of the cup bcing in creased by a ligament which is attached around the brim. A large capsular ligament, which is especially strong in front, eneloses the articular surfaces. The ligament is lined by a synorial membrane, which also invests the neck of the thigh bone. Within the joint is the round or suspensory ligament attached to the head of the thigh bone and to the sides of the depression at the bottom of the acetabulum. Whilst the hip joint possesses considerable mobility, it has much more stability than the shoulder, orring to the acctabulum being deeper than the glenoid fossa, and the greater strength and tension of the fibres of its capsular ligament. The muscles which move the thigh at the hip joint are situated either behind the joint, where they form the fleshy mass of the buttock, or at the front and the innersile of the thigh. They are inserted either into the femur or fascia lata, and the great and small trochanters serve as their principal surfaces of attachnent. The thigh can be bent on the abdomen by the action of the psoas, iliacus, and pectineus, which lie in front of the joint; it can be extended or drawn into line with the trunk by the glutæus-maximus and medius; it can be abducted or drawn away from the opposite thigh by the glutxus maximus, medius, and minimus, which muscles are of large size, and form the fleshy mass of the buttocks. It can be adducted or drawn to touch its fellow, or, if slightly bent, drawn in front of its fellow, by the adductor longus, brevis, and magnus, which muscles arê inserted into the linea aspera, and form the fleshy mass on tho inner side of the thigh; and by the pectineus and quadratus femoris. It can be rotated outwards by the obturatur and gemelli muscles, the glutrus maximus. pfiformis, and quadratus femoris; and rotated inwards by the glutrus medius, minimus, and tensor fascire femoris. In standing crect the hip joints are fully extended, and the mechanical arrangements in and around these articulations aro such as to enable them to be retained in the extended position with but a small expenditure of muscular nower. As the weight of the body in the erect attitude falls behind the joints, the strong anterior fibres of their capsular ligaments are made tense, and the extended position of the joints is preserved. So long as the centre of gravity falls within the basis of support of the body, i.e., the space between the two feet when standing on both legs, the body will not fall. If the body is made to lean forward, then the eapsular ligament is no longer tense, and the glutzal muscles are put in action to re-extend the trank on the thigh, and prevent it from falling forward; if the body is made to lean to one side or the other, the round ligament is made tense, or the strong ilio-tibial band of the fascia lata of the thigh, which stretches from the ilium to the tibia, is put on the stretch, and falling sideways is prerented. When, in standing erect either on one or both feet, the balanee of the budy is disturbed, then various museles both of the trunk and lower limb are brought into action to assist in preserving the erect position. In the erect position the weight of the trunk is transmitted through the acetabula to the heads of the thigh-bones, but the position and connections of the round ligament enable it to suspend that portion of the trunk the weight of which is thrown upon it, and to distribute the weight orer the bead of the femur.

The linee is the largest and most complicated joint in the body. It consists of the femur, tibia, and patella. The patella moves up and down the trochlear surface of
the femur, whilst the condyles of the femur roll upon the scmilunar cartilages and articular surfaces of the tibia. A powerful investing ligament encloses the articular surfaces. This ligament is subdivided into bands, one on each side of the joint-the intemal and external lateral liga-ments-a posterior and an anterior. The anterior cxtends from the patclla to the anterior tubercle of the tibia, and scrves both as a ligament and as the tendon of insertion of the extensor muscles of the leg. Within the investing ligament two interarticular or crucial ligaments pass from the inter-condyloid fossa to the upper surface of the tibia; and interposed between the tibia and femoral condyles are two menisci, which from their shape are called the semilunar cartilages. The synovial membrane not only lines the investing ligaments, but covers the front of the femur for some distance above the trochlca, and forms folds or pads within the joint itself, which in certain movements are interposed between the articular surfaces of the bones. The movements at this joint are those of flexion and extension. The flezors are the three great muscles on the back of the thigh, called the ham-strings; they all arise from the ischial tuberosity, and are inserted-the biceps into the head of the fibula, the semi-tendinosus and semi-membranosus into the upper end of the tibia. The extensors form the fleshy mass on the front and outer side of the thigh; one muscle, the rectus, arises from the ilium-the wthers, the vasti, from the shaft of the femur; and they are all inserted by a powerful tendon into the patella, and through the anterior ligament of the knee into the tibia. The patella is indeed a sesamoid bone, developed in the tendon of these muscles (Fig. 18). The knee can be bent so that the calf can touch the back of the thigh, and in this position the patelia is drawn down in front of the joint, as in kneeling. The articular surface of the patella is divided into seven areas or facets, and in passing from the bent to the extended position of the joint, these facets come successively into contact with the articular surface of the femur, until, when the leg is fully extended on the thigh, the whole of the patella is raised above the femoral trochlea, except the lowest pair of narrow facets. It is in order to provide a smooth surface for the patella in this position that the synovial membrane of the joint covers the front of the lower end of the femur. At the commencement of flexion a slight rotation inwards of the leg and foot takes place through the action of the sartorius, gracilis, and semi-tendinosus, which are inserted close together into the tibia; whilst the extensor muscles cause, at the completion of extension, a slight rotation outwards -. the leg and foot. The movements of flexinn and extension are not simply in the antero-posterior plane, but along oblique paths which are determined by the screwed configuration of the femoral condyles. In complete extension of the leg the joint is "screwed home;" and as this position is necessary for the preservation of the erect attitude, the lateral, the posterior, and the anterior crucial ligaments are then all teuse, to prevent displacement of the bones. The muscles which rotate the leg and foot inwards initiate the act of flexion by unlocking the joint.
The Tibio-fibular Joints are found betwcen the upper land lower ends of the bones, and in addition a strong interosseous membranc fills up the interval bctween their shafts. The movement between the two bones is almost inappreciable.

The Aukle Joint is formed by the convex upper aud the lateral surfaces of the astragalns fitting into the concavity forrsed by the lower end of the tibia and the two malleoli. An investing ligament, lined by synovial mombraue, encloses the joint; the lateral portions of this ligament form distinct bands, and are much stronger than the anterior and posterior fibres. A diarthrodial joint also
exists lectween the astragalus and us calcis, betreen which buncs a powerful interosseous ligament passes. Between the astragalus and scaphoid, and the os calcis and cuboid, important diarthrodial joints are found, which are enclused by ligamentous bands. The remaining tarsal bones are connected together usually by dorsal, plantar, and interosscous ligaments, and a similar mode of union is found between the distal row of tarsal bones and the metatarsals, except between the great toe and ento-cuneiform, whero there is no interosseous ligament. The four outer metatarsals are also connected at their proximal ends by distal,' plantar, and interosscous ligaments; and further, a transverse metatarsal ligament passcs between the distal ends of all the metatarsal bones. The metatarsal bones articulate with the phalanges, and the phalanges with each other, in a similar manner to that described in the corresponding bones of the hand.

At the ankle joint movements of flexion and extension take place. The dorsum of the foot is bent towards the front of the leg by the direct action of the muscles on the front of the leg, more espeoially the tibialis anticus, inserted into the ento-cuneiform and metatarsal of great toe, and the peroneus tertius, inserted into the metatarsal of little toe ; the opposite movement, the so-called extension of the foot, is due to the action of the gastrocnemins and soleus, the great muscles of the calf of the leg, which are inserted by the Tendo Achillis into the posterior prominence of the os calcis or heel. This morement is made at every step in walking or running, and the great size of the calf-muscles is in relation to their use in the act of progression. The foot cannot, however, be drawn so far back as to be broughe into direct line with the leg. In standing erect the foot is at right angles to the axis of the leg, the astragalus is locked in hetween the two malleoli, and the fibres of the lateral ligaments are tense, so as to check movement forwards or backwards, and prevent displacement.

Between the several bones of the tarsus a certain amount of gliding is permitted, more especially between the os calcis and cuboid and the astragalus and scaphoid, so that it is possible to invert or evert the foot, i.e., to raise its inner or outer borders from the ground. The inversion is performed by the tibialis anticus and by the tibialis posticus, which latter is inserted into the scaphoid bone; the eversion by the peroneus longus and brevis muscles, situated on the outer side of the leg, the tendons of which pass behind the outer malleolus,- the brevis to be inserted into the metatarsal bone of the little toe, the longus into the plantar surface of the metatarsal bone of the great toe. The individual toes are bent on the sole by the action of the flexor muscles inserted into the plantar surface of the phalanges, and they are straightened by the extensor muscles inserted into their dorsal surfaces; the toes also can be drawn asunder or abducted, and drawn together or adducted, chiefly by the action of the interossei muscles. The hallux or great toe is the most inportant digit; a line prolonged backwards through it to the heel forms the proper axis of the foot, and the sole chiefly rests upon the pads of integument situated bencath its metatarso-phalangeal joint and the hecl. The hallux is much more restricted in its movements than the thumb: the configuration of its tarso-metatarsal joint and the attachment of the transverse netatarsal ligament prevent the great toe from being thrown across the surface of the sole as the thumb is thrown across the paln in the morcment of upposition; an object can, however, be grasped between the hallux and second toe by the action of its adductor muscles, and persuns can he trained to write with a pen or pencil held in this position.

The act of walking consists in the morenent ionrards of the trunk by the alternate adranccment of the lower
limbs. Suppose a person to be standing erect, with one leg a little in advance of the other; the body, being inelined slightly forwards, is pushed in adrance by the exteusion of the hindmust limb, so that the weight falls more and more upon the adranced leg, which at the same time is shortened by bending the knee and ankle. The heel of the hindmost limb being then raised by the action of the muscles of the calf, the toes press against the ground so as to push the trunk so far in front of the advanced limb as to be no longer safely supported by it; the hindmost limb is then raised from the ground by muscular action, and allowed to swing forward by its own weight, but guided by the museles, until the toes touch the ground in front of tho opposite limb. A step has now been made, and the limbs are in a corresponding but opposite position from that in which they were when the step commenced: a repetition of the act constitutes another step, and so the alternate action continues. At one moment in each step both feet touch the ground at the same time, i.e., when the hind foot presses against the earth. The act of running consists in a repetition of the movements of walking performed with so much greater rapidity that the feet never touch the ground at the samo moment ; tho heels also are never brought to the ground. The propulsive action is also greatly increased by the extension of the hip and knee joints, so that a succession of small leaps on to alternate feet takes pl.ce. In leaping from the standing position the joints of both lower limbs, previously flexed, aresuddenly and simultaneously extended, and the body is projected forwards with a rapid impulse.

Development and Homologics of the Toluniary Muscular Systom.

The voluntary muscles, like the bones and joints with which way are so intimately assuciated, are devcloped out of the middle of the thres layers-the meso-blast-into which the germinal area or blastoderm of the young embryo is divided. The muscles of the axial skelcton are capsble of sublivision into a group situated outside the euilo-skeleton, i.e., between it and the integumentwhich muscles have recently been called epi-skelctal-and a group lying on the ventral aurface of the vertebral bodies and within the rib arches, which have been termed the hemal or hypo-stelctal muscles. The epi-skeletal muscleq, like the vertebra themselves, are developed within the protovertebra, but it is not known if the hypo-skeletal group have the same origin. In fishes the episkeletal muscles preserve thcir fundamental srrangement with bat little modification. They are disposed in transverse segments or myotomes, which equal in number the vertebre. These myotomes are separated from eacb other by bands of fibrous tissue, the indermuscitar septe. In man and the higher vertebrates the simple transversely sermented arrangement is to a large extent lost. Traces are preserved, however, in the interspinales and intertranspersales moscles, situated in the intervals between the spines and transserse processes of some of the vertebral segments ; in the external intercostals and in the recti abdominis muscles, in the last-named of Which tendinous bands subdivide the muscle into several transverse segments. More usually, the intermuscular septa either are not formed or disappear, and adjarent myotomes become blended into a continuous mass of muscle. In some instances the fibres of this muscle run longitadinally, and the ontire mass subdivides longitudipally into separato and distinct parallel muscles, as is seen in the subdivision of the great erector spinæ into the sacro-lumbalis, musculus accessorius, cervicalis ascendens, longissimus dorsi, trausversalis cervicis, trachelo-mastoid, and spinslis dorsi muscles. In other instances the muscles run obliquely; some on the back of the boily pass obliquely from below upwards and ontwards, as the splenius and obliquus inferior; others obliquely from below, upwards and inwards, sa the complexus, obliquus superior, acmiapinalis, multifidus and rotatores spinæ ; others again, as the external and interaal oblique muscles of the abdomen, extend obliquely from behind forwards to the ventral mesial line.
Of the hypo-skeletal group of muscles, the internal intercostals display the transwerse segmentation. As a rule, however, the muscles of this group extend longitudinally, and form the pre-vertebra, group, named anterior recti, longi colli, and psox ; though the diaphragm, triangulares sterni, transversi abdominis, and levatores ani, which lie in relation to the inner surfaces of the ribs and visceral ravities, ane not longitudinal, bnt ara specially modified in arrangernent for fanctional reasons. the plane of dernareation betwreen the hypound ani-skelotal groups of muscles, where they form together the
F. Ihs of the greal visceral cnambers, - the thoras aud ahdomen. is marked ofl by tho position and courso of the intercostal surics of spinal nerves.

The muscles of the appendicnlar skeleton are eitleer limited to the limbs (purely appundicular, therefore), or pass from tle axial part of tho body to the limb (axi-appendicular). The axi-appendictular grnip are undoubtedly frolnugulinns of the axial aysu:su of muscles. They are in the ulper limb, derived from the epi-skeletal subdivision, ausl form the trapezius, rhomboisl, levator aoguli seapula, latissimus dorsi, sermtus magnus, freiter and amaller pectorals, and subelavius nuscles of uach suluerior extremity. In the lower litub they are in part derived from the hypooskeletal aubdivision, and form the psoas aml pyriformis; aud in part, as the glutens ruaximus, from the epi-skeletal suldivision it io not inprobable that the purely appendicular muscles are also prolongations of the axial system, aud that as the limbs, in their development from their fundamental bud-like lapuets, undergo both a transperse and a longitulinal segmentation, so the muscular inass, proloned into them, differentiates hoth transversely sad lougitudinuly into a motor apparatus, fitted for the performance of the apecial functions of each extremity.

Asatomy of the Textures or Tissues.

Introductory.

Befure proceeding to the description of the other organic systems of which the human budy is built up, it may be well to enter into the consideration of the minute or microscopie structure of its constituent parts. These parts may primarily be divided into tluids and sulids. The fluids are the blood, the lymph, the chyle, the seeretions of the various glands, and of the serous and synovial menbranes. The solids form the framework of the several organic systems, and assume different appearauces, in different localitics. Sometimes they are arranged in compact solid masses, as in cartilago; at others they are elongated into fine threads or fibres, as in musele, tendon, nerve; a others they are expanded into thin membranes, ns in the fascix or aponuroses, the serous, synovial, and mucous membranes; at others they are hollowed out into distinct tubes for the conveyance of fluids, as in the blood-vessels, the lymph and chyle vessels, and the ducts of glauds. To the solids of the body, whatever their form may be, the general name of Tissues or Textures is applied. Each organic system may be regarded as in the main composed of a tissue or texture peculiar to and characteristic of itself. Thus, the bones are essentially composed of the osseous tissue, the museles of the muscular tissue, the nervous system of the nervous tissue, fibrous membranes of the fibrous or connective tissue, \&e. But though the essential constituent of each organic system is a tissue peculiar to that system, yet in most localities certain other tissues are mingled with that which is to be regarded as the characteristic texture of the part. In a muscle, for example, not only is the muscular tissue present, but mingled with it are connective tissue, nerve tissue, blondressels, and lymph-vessels. A gland also not only consists of its proper tissue, the secreting cells, but of more or less connective tissue, nerves, blood and lymph vessels, and gland ducts. Indeed, there are few localities in which, along with the proper tissue of the part, blood and lymph vessels, nerves and connective tissue, are not found; and to a part built up of tro or more tissues the name of an Organ is applied. Thus the muscular system consists of the series of organs which we call the museles, the glandular system of the several organs called glands, and so on Each tissue and cach organ, into the construction of which that tissue enters as the characteristic texture, possesses not only distinctive structural, but also distinctive functional properties. Thus the muscular tissue is characterised by the property of contractility, and the museles, of which it forms the essential texture, are organs of motion or locomotion; the osseous tissue is characterised by its

Lardness and strensth, and the bones, of which it forms the essential textare, are organs of protection and support.

But the study of the textures embraces an inquiry not naly into the special, structural, and functional propertics of each tíssne and organ-into the special part which each plays in the animal economy-but the consideration of their properties as living structures. It would be out of place in this article to enter into a discussion of the meaning of the term Life, or Living, or to attempt an analysis of the variors definitions of the term which have been suggested from time to time by different philosophers, which will naturally find a place in the article Prystology. It will suffice for our present purpose to adopt the old d́ristotelian definition, and to speak of Life as the faculties of self-nourishment, self-growth, and self-decay. All the tissues, over and above the special properties which they possess, have the power of growing and of maintaining themselves in full structural perfection and functional activity for a given period of time. After a time they begin to exhibit signs of diminished perfection and activity, they degenerate or decay; ultimately they dic, and the entire orgarism of which they form the constituent parts is resolved by the outrefactive orocess into more simple forms of matter

General Considerattons on Cells.

The simplest form of organic matter capable of exhibiting the phenomena of life is called Cyto-blastema or Protoplasm. It possesses a viscous or jelly-like consistency. Under the highest po:vars of the microscone it seems to be homogencous, or dimly granulated, like a sheet of ground glass. Not oniy can it assimilate nutriment and increase in size, but it possesses the power of spontaneous movement and contractility. It enters in a very important manner into the structure of the bodies of the lower animals. The elongated processes, or pseudopodia, to which Dujardin applied the name of sarcode, which the Rhizopoda can project from their surface into the surrounding medium, and again withdraw into their substance, consist of protoplasm, and may be cited as fur-ni-hing excellent exampies of its motive and contracile power. From the receut researshes of Haeckel it would appear that protoplasm is capable of forming, xithoat the superaddition of any other structure, inde-
 pendent organisms, which stand at

Fic. 25 - Undifferentiated crode mass of proto plas… the lowest grade of organisation, and from their extreme simplicity ars named by him Moncra. To the group Monera belong the genera Protamceba, Protogenes, and Bathybius. Of these, Bathybius is that which has attracted mosi attention. It has been regarded as a layer of soft slimy undifferentiated protoplasm covering the bottora of the deep sea, and capable of exhibiting the phenomena of contractility, growth, assimilation of food, and reproduction. Doubts, howerer, have been expressed regarding the nature of this Bathybius, so that it cannot now be cited as so definite wil organism as the freely-smimming Protamoeba and Protogenes. Haeckel has referred these simple organisms to a subbingdom of Protiste, which he considers to le on the confines of both the animal

Fio. 26-A simplo form of nu cleated cell P protoplasi2 cellsubssance: N. $^{\text {por }}$ nocleus: А"\% nuciealus. and regetable kingdoms. To a mass of protoplasm, whether it forms, as in one of these Protiste, an independent orgauism or is merely a portive of the substance of the
boay of a highei organism, he has given the general nameof a Cytode. Sonutimes a cytode is a naked clump of soft protoplasm, without a trace of drferentation either on its surface or in its substance, as in the freely-moving Monera; at others the peripheral part of the cytude hardens, and differentiates into a mure or less perfect envelope, as in the gencra Protomonas and Protumyxa So far back as 1861, Lionel Eeale had describel, under the name of germinal inatter (Bionkasn), minute living particles of vegetable protoplasm, and in 1863 le demunstrated the prescnce of extremely minute particles of living matter in the blood. More recently Stric'ser has also called atteution, in the bodies of thic higher enimals, to minute detached clumps of protophasm which exhibited the phenomena of lif.
As a rule, however, in both regctable and ammal organisms the specks or clumps of protoplasm assums detinite shapes, and show evidence of an internal differentintion. In the midst of a minute clump of this substance a sharply-defined body called a nuucleus 19 found, which difiers from the surrounding protoplasm in not being contractile; and sometimes a mirute speck, or nucleolus, exists within the nucleus. When a definite clump of protoplasm contains a nucleus in its interior, whether a nucleolus be present or not, it is called a Nucleated Cell. Cells are definite anatomical and physiological units, and exhibit all the phemomens of life. Some of the lowest organisms consist mercly of a single cell, otijers of two or more cells united together, and these are called uni- or multi-cellular oryanisms. Cells also enter in the most material manner into the constitution of the textures of all the higher forms of plants and animals. Not unfrequently the peripheral part of the protoplasm of the cell differentiates foto a distinct investing envelope, technically named a cell wall or cell membrane.

In the earlier periods of investigation into the minnte structure of cells it was believed that a cell wall was constantly present, and that each cell was a minute microscopic resicle or bladder, which in its typical shape was globular or oroid, but capable of undergoing rarious modifications both in form and chemical composition. The material enclosed by the cell wall was termed the cell contents, and either in the midst of these contents or in cortact with the cell wall was the nuclens, which might or might not contain a nucleolus. Schwann believed that the cell wall was the most active constituent of the cell, i.e., posscssed the power not only of producing chemical and physical changes in its omn substance and in the cell contents, but of separating materials from the surrounding media, -of secreting them, as it were, into the interior of the cell. In this manner he accounted for the formation in some cells of fat, in othcrs of pigment, in others of the characteristic secretion of glands, and so on.

It wes then maintained by John Goodsir that the nucleus was the part of a cell which in all probability was concerned in separating and preparing its characteristic cell contents, and in its nutrition. Martin Carry and Goodsir also contended that the reprodnction and multiplication of cells mere due to self-division of the nucleus, which was thus the source of successive broods of young cells. They gave to the nucleus, therefore, an importance in the economy of the cell greater than had previously been assigned to it.
As the investigations into cell structure becane mors cxtended, it was ascertained that a ccll wall was by no means always present ; that in many of tre cells in which it had been supposed to exist it could not satisfactorily be demonstrated, and that in others, more especially in yonus actively-growing cells, no trace of an investing envelope
colld be obscrsed. Hence the imporance of the cell wall as an exsential compr nent of a cell was still further diminished; and Leydig then defined a cell to be a little mass composed of a soft substance enclosing a central nucleus.

But a most important advance in onr conceptions of the essential structure of a cell was made when Brïcke pointed out that the contents of colls not unfrequently possessed the property of spontaneous movement and contractility, and when Max Schultze determined that the contractile substance termed sarcode, which forms so large a part of tho bodies of the lower animals, was analogous and apparently homologous with the contents of young actively-growing animal and regetable cells, before a differentiation of these contents into special secretions or other materials had taken place. As the term "protoplasm" had been introduced by Von Mohl to espress the contents of the regetable cell, which undergoes changes in the process of growth, it was adopted by the animal histologist; and Max Schultze suggested that a cell should be defined to be a nucleated mass of protoplasm,-a definition which is adopted in this srticle. Now, as protoplasm, whether it occurs along with a nucleus in the form of a cell, or in independent clumps or cytodes, exhibits not merely the property of contractility, but the power of growing and maintanning itself, it is regarded as the functionally active constituent of the cell. And thus our conceptions as to the part of the cell in which its functional activity resides bave passed through three phases. In the first, the cell wall; in the second, the nucleus; in the third, the protoplasm cell contents, or cell substance, has been regarded as the active constituent, not only as regards its nutrition, but the reproduction of young cells. But though the protoplasm can of itself perform these offices, yet there can be no doubt, as Barry and Goodsir were the first to show, that the nucleus of the cell plays a part not unfrequently in the multiplication of cells by self-division.

One of the most characteristic cells is the mammalinn
orum. In it a cell wall exists, known as the zona pellucida or vitelline membrane; within this envelope is the granular yelk or cell contents, in the midst of which is imbedded the nucleusor germinal vesicle, which in its turn contains the nucleolus or germinal spot. The granules of the yelk are a special metamorphosis of the protoplasm cell substance.

Fio. 27.-Orum of a sheep. 3F, cell wall or zone pellocids: P. protnplasm of relle; N, bucleus or permiaal resicle; $N 7$, nucleolus or germolial spot.
Schwann made the important generalisation that the tissues of the animal body are composed of cells, or of materials derived from cells, "that there is one universal principle of development for the elementary part of organisms, however different, and that this principle is the formation of cells." The orum is the primordial or fundamental cell, or germ-cell, from which, after being fertilised by the male sperm, the tissues and organs of the animal body are derived. Within the fertilised orum multiplication of cells takes place with great rapidity. It is as yet an unsettled question how far the original nucleus of the orum participates in this process of multiplication; but there can be no doubt that the protoplasm cell contents divide, first into two, then four, then eight, then sixteen segments, and so on. Each of these segments of protoplasm contains a nucleus-is, in short, a nucleated cell, and the protoplasm of these cells exhibits the property of contractility. The orum or germ-cell is therefore the immediate parcnt of all the new cells which are formed within it, and mediately it is the parent of all the cells which, In the subsequent processes of development and growth,
are descended irum those produced by toe segmentation of the yclk. The process of developeneut of young cells within a parent cell, whether it occurs in the orum or in a cell derived by descent from the ovum, is called the endogenous reproduction of cells. But cells may multiply by a process of fission-i.e., a constriction, gradually deepening, may take place in a cell until it is subdivided into two; the nucleus at the same time participatirg in the constriction and subdivision. A third mode of multipli. cation of cells is by budding: little clumps of protoplasns bud out from the protoplasm of the parent cell, become detached, and assume an independent vitality. If a nucleus differentiates in the interior of such a clump, it becomes a.cell; if it remains as a mere clump of proto plasm, it is a cytode.

These various methods of multiplication are all confirmatory of Schmann's generalisation of the descent or derivation of cells from pre-existing cells. But as the nucleated cell, either with or mithout a cell wall, is not, in the present state of science, regarded as the simplest and most elementary unit capable of exhibiting vital phenomena, and as these phenomena can be displayed by indiridual clumps of protoplasm, without the presence of a nucleus, some modification of the doctrine, as regards the formation of the tissues from nucleated cells, scems to be necessary. For, although there can be no doubt that all the tissues are smediately derived from the orum or fundamental cell, and that most of the tissues are derived directly from nucleated cells, yet there is reason to think that a differentiation of a cytode clump of protoplasm into tissue may take place, so that the direct formation of such a tissue would be, not from a nucleated cell, but from the more simple cytode. Hence a more comprehensive generalisation, to which observers have gradually been led from the consideration of numerous facts, has now been arrived at,-that the tissues and organs of the body, whatever may be their form and composition, are formed of protoplasm, or produced by its differentiation; and that the protoplasm itself is derived by descent from the protoplasm substance of the primordial germ-cell. Some, indeed, have contended that protoplasm, cells, and their derivatives can arise by a process of precipitation or aggregation of minute particles or molecules in an organic infusion, and that living matter may be thus spontaneously generated But the evidence which has been advanced in support of this hypothesis is by no meaus satisfactory or conclusive, whilst the correctness of the theory of the direct descent of protoplasm from pre-existing living protoplasm is supported by thousands of observations made by the most competent inquirers.

In the process of conversion of protoplasm into the several tissues, there takes place a differentiation of form and structure (i.e., a morphological differentiation), and of composition (i.e., a chemical differentiation), as the result of which a physiological differentiation is occosioned, whereby tissues and organs are adapted to the performance of special functions. Hence arise the several forms of tissue which occur in the human body and in the higher snimals. Many of the tissues consist exclusively of cells which present in different parts of the body characteristic modifications in external confuguration, in composition, and in properties, as may be seen in the fatty tissue, pigmentary tissue, and epithelium. Other tissues, again, consist partly of cells, and partly of an intermediate material which separates the constituent cells from each other. Here also the cells present rarious modifications; and the intermediate material, termed the matris or intercellular substance, varies in structure, in composition, and in properties in the different textures, as is scen in the connective cartilaginous, osseous and muscular tisses

It is not an easy matter to devise a classification of the tissues, based on their structural characters, which shall be in all respects logically perfect; but a convenient basis of arrangement for descriptive purposes may be found by dividing them into those which consist-lst, of cells suspended in fluids; 2d, of cells placed on free surfaces; 3d, of cells imbedded in solid tissues.

1st Group.-Cells Suspended in Fluids.

The fluids of the body which have cells or other minute solid particles suspended in them are the blood, the lymph, and the chyle. Sometimes cells are found floating in the secretions of gland.

The Blood.-The blood is the well-known red fluid which circulates throughout the blood-vascular system. As its composition and general properties will be described in the article Pbysiology, the solid particles only, which are suspended in the liquor sanguinis, will be considered here. If a drop of buman blood be examined under the microscope, crowds of minute bodies, the blood corpuscles, or blood globules, may be seen in it. These present two different appearances, and are distinguished by the names of red and white blood corpuscles.

The red corpuscles, which are by far the more numerous, are minute circular dises, slightly concave on both surfaces. Their average diameter is about $3 \delta_{0}{ }^{2}$ th of an inch, and their thickness about \mathfrak{t} th of that measurement; hence they are not spheres, as the old name blood globules would imply. They are non-nucleated. Single corpuscles have a faint fawn-coloured hue, but collectively they give to the blood its characteristic red colour. This colour is due to the presence in the corpuscles of the substance termed hamoglobin. It has been estimated by Vierordt and Welcker that $5,000,000$ red corpuscles are present in every cubic millimetre of healthy human olood. The rec corpuscles in the blood of all mammals, except the tribe of camels, are circular bi-concave discs; but in these exceptional mammals they have an elliptical outline. In all mammals the red corpuscles are non-nucleated, though appearances of nucleation have been seen in exceptional individual cases; for Rolleston saw a nucleated appearance in a small proportion of the dried red blood corpuscles of a two-toed sloth; and Turner observed in a proportion of the red blood dises of a Hoffmann's sloth an appearance of a central nucleus.

In all birds, reptiles, and amphibia the red corpuscles are oval or elliptical, and in each corpuscle an oval or elliptical nucleus is situated. In all fishes they are nucleated and also elliptical in form, except in some of the Cyclostomata, which possess circular discs. In the elliptical nucleated corpuscles the surfaces are not biconcave, but hare central projections, which correspond in position to the nucleus (2, 4, 5, Fig. 23). The red corpuscles vary materially in size in different vertebrata, and these rariations have been especially studied by Gul-

Eic. $28 .-1$ red corpuscles of human blond; 2 red corpuscles of blood of conmon fowl, seeti on the aurface and edgeways: 3 , red corpuscles uf Trok: 4, of Squalus squatina; 5 , of Lopheus piscatorius; 6, corpuscles of tbe blood of a scorliver. He has found them to vary in mammals from an everage diameter of $\frac{7}{5}^{1} 5^{\text {th }}$ of an iuch in the elephant, and
 jusanicus. and he concludes that the smallest blood discs
occur in the small species of an orter or family, the largest in the large species. In birds they are larger than in mammals, and vary in length from an average of Irve inch in Casuarius javanicus to $\pi^{1} 1^{\text {th }}$ th in Linaria minor. In reptiles they are still larger, and vary in length from an arerage of $\pi^{1} \frac{1}{8}$ th in Anguis fragilis to $\mathrm{Ts}^{1} \mathrm{~s}^{\text {th }}$ in Lacerta viridis. In amphibia the largest corpuscles, according to Gulliver, are about $\frac{1}{\delta} 0$ inch in length in Protequs arul Siren, though Riddell states that in Ampliuna tridactylunt they are $\frac{1}{3} d$ larger ; whilst the smallest, as in the common frog, average in length π^{\prime} 多 inch. In cartilaginous fish the corpuscles are larger than in osseous. In Laninc cornubica Gulliver found their long diameter to be $\begin{array}{r}\frac{1}{2} \sqrt{3} \text { inch ; } \\ \text { n }\end{array}$ while in the Salmonidæ, which have the largest blood discs among osseous fish, the long diameter in the salmon anci common trout is only about $\frac{16}{160}$ inch.

The white or colourless corpuscles are comparatively few ${ }^{\prime}$ in number in the healthy human blood. Welcker has estimated the normal relative number as one white to 335 red; in pregnant and menstruating women the proportion is increased to about 1 to 280 . In some forms of disease the proportion is so very materially increased that they appear to be almost as numerous as the red. They are rounded in form, finely granulated or mulberry-like in appearance, and nucleated-the nucleus becoming more distinct after the addition of acetic acid; moreover, they are larger thar the red corpuscles, their average diameter being from $2 \delta^{2} \delta$ th to $\frac{1}{3} \frac{1}{0}$ th of an inch. Corpuscles of a similar form are found in the blood of all rertebrata They do not vary so much in size in different animals as do the red corpuscles. In Triton, according to Gulliver, their average diameter is $\frac{0}{20}$ th, whilst in Henpestes griseus they are not more than उुणुg inch. The white blood corpuscles are minute nucleated clumps of protoplasm ; they are therefore minute cells. It is very doubtful if they possess a cell wall, the evidence being against rather than in favour of its presence.

The red blood corpuscles in all vertebrata, except the mammalia, are nucleated clumps of protoplasm; they are therefore minute cells. In mammals, owing to the absence of a nucleus, they do not accord with the definition of a cell adopted in this article, and they are not therefore morphologically identical with the red corpuscles in other vertebrates. What their precise homology may be is somewhat difficult to say, owing to the obscurity which prevails as to their exact origin. If they are merely clumps of specially modified protoplasm, budded off from the white corpuscles, then they are cytodes. If, as some have supposed, they are the nuclei of the white corpuscles, speciaily modifierl in composition, then they are free nuclei. If, again, they are the white corpuscles, the cell substance of which has undergone a special differentiation, and the nucleus has disappeared, then they are potentially cells, though no nucleus is risible. Whatever may be their exact homology, there can be no doubt that the non-nucleated mammalian red corpuscle, and that part of the nucleated red corpuscle which lies outside the nucleus, are functionally identical with each other; the protoplasm haring undergone a special chemical differentiation into hremoglobin, a proximate principle characterised by containing iron as its essential constituent. The action of water. spirit, acids, alkalies, various gases, heat, cold, and electrical currents, on the red corpuscles has been studied by several observers, and the conclusion has been reached that the corpuscles consist of a "stroma," with which the colouring matter is blended, but from which it may be separated mithout the stroma affording any evidence of the presence of an investing envelope or membrane. Whes blood is drawn from the vessels the red corpuscles, in about half a minute, run together into piles, like rouleauz of coins
(Fig. 29), which arrange themselves into irreguiar meshes. In inflammatory diseases, and in the blood of pregnant wumcu, the piles of corpuscles form more readily, and at the same time sink rapidly below the surface of the fluid,

Fho. 29.-1, red corpuacles of healthy human blood; 2, red corguacles begisning to form roulesur; 3. mesh-lke ariangement in bealthy blood; 4, ntebls-like smangement to bufy blood, whero the mwhes are larger than in healthy whood.
so as to cause the "buffy coat" seen in the blood coagulum. In the healthy blood of horses a buffy coat is formed as a natural coudition of the cuagulation.

One of the most curious properties possessed by the living white blorl corpuscle is that of protruding delicate processes from its circumference, which processes may change their shape, or be again withdrawn into the substance of the corpuscle, which then resumes its former circnlar outline. These processes resemble the saicode prolongations which Amaba and other Rbizopods can project from various parts of their circumferenec; and as a white blood corpusele, like an Amaba, can by the movements of the processes change its position, the term "amœboid morements" has been applied to the phenomena in question. Like an Amaba, also, a white corpuscle can by these movements include within its substance minute particles of solid matter which it may come in contact with in its path. Thirty years ago W. Addison stated that the white blood corpuscles could pass through the walls of the blood-vessels into the .snrrounding tissue, where they formed mucus corpuseles, and, under certain pathological conditions, the corpuscles of pus or inflam matory lymplh. The passage of white blood corpuscles through the wall of the capillaries was seen in 1846 by A. Waller; aud though for many ycars his observations were ignored, yet the norę recent inquiries of Cohnheim and otbers into the subject have anew directed attention to them. It is nov generally admitted that the migration of these corpuseles from the blood through the wall of the capillaries into the tissues does take place, and that they may then "wander" to and fro, owing to the mobility of their contractile protoplasm. These migrated corpuscles a.o also believed to play an important part in many I lyysiological and pathological processes.

But the blood contains, in addition to the red and white corpuscles, still more minute particles, which are, however, iuconstant in number. Minute globnles have been described by Beale and Max Schultze, whica are probably detached fragments of protoplasm budded off from the white corpuscles; and Zimmermann has described, as elementary corpuscles, minute particles, which are apparently derived from broken-up red corpuseles.

In the very young embryo the blood corpuseles, like the capillary blood-vessels theinselves, are formed 'sy special diticrentation of certain of the cells of the embry, and these juung corpuseles seem to have the poswer of multiplying by fission. At Grst they are colourless, but afterwards nesume is rel culuur. Even in manmals the carliest red
blood corpuscles are nuelcated ana larger than the future red dises, but as developinent goes on, nou-nucleated red corpuscles appear, and as their number inereases, both absolutely and relatively with the progress of the fœtus, in course of time all the nucleated red corpuscles have disappeared, and are replaced by the non-nucleated dises. In adults. the red corpuseles are believed to be derived from the whito corpuscles, though the exact process of metamorphosis bas not been satisfactorily ascertained. It is also believed that red corpuseles may be new-formed in the spleen, and Neumann has recently stated that the red marrow of the bones may serve as a centre of origin for the red blood corpnseles. In the foetns the liver apparently serves as a centre of origin for the white corpuseles, but its blood corpusele forming function ceases at the time of birth. Throughout extra-uterine life the spleen and the lymphatic glands are without doubt organs of frrmation of the colourless corpuscles, those produced in the lymphatic glands, under the name of lympls corpuseles, being mingled with the blood-stream where the fluid lymph flows into the venous system. When mixed with the blood, the lyinph corpuseles become the white bloud corpuseles.

Corpuscles are also found in the blood of the invortobrata They are as a rule colourless, but R. Wagner pointed out that in the Cephalopods they are coloured' They are sometimes round, at others oval or fusiform, and in worms and insects have even branched processes. They are always nueleated.

Tife Lympu and Chyle.-The lymph is the fluid found in a subdivision of the vascular system named the lymph vascular system. It is transparent and colourless, and contains numerous corpuscles floating in it, which correspond, in appearance, structure, and the possession of the property of amœboid movements, to the white corpuscles of the blood. The lymph corpuscles are formed in the glands situated in the course of the lymph vessels, and are carried away fiom the glands by the etream of lymph which tlows through them.

The chyle is a milky fluid found during the period of digestion in the delicate lacteal vessels which pass from the walls of the intestine. The lacteals join the lymphatics at the back of the abdomen to form the thoracic duct in which the lymph and chyle become mingled together. The chyle contains corpuscles similar to the lymph corpuseles, which are apparently derived from the lymph glands in the mesentery, through which the clyle flows on its way to the theracic duct. The fluid of the lymph, the chyle, and the blood, in which the corpuscles are suspended, is sometimes described as a fluid intercellular substance. Corpuscles possessing the type of structure of the lymph corpuseles, are named lympbsia cells or leucocytes.

Cells are also met with floating free in the secretions formed in the interior of some of the glands. They are more particularly found in the secretion of mucus froms the mucous glands, and of saliva from the salivary giands. They are round, colourless, nucleated corpuscles, not unlike the rihite curpuscles of the blood, and have been detached from their original position in the gland follicles.

2d Group.-Cells placed on Free Surfaces.

By the term free surface is meant a surface which is not blended with or attached to adjacent structures, but is freo or separable from them without dissection. Every free surface is covered by one or more layers of cells. Sometimes these cells are named an Epithelium, at others an Endotheliunl. By the term Epithelium is meant the cells situated on free surfaces which are exposed eitker directly or indirectly to the air. By the term Endothelium is meant the cells situated on free surfaces which are nut ex poscd either directly or indirectly to the air.

玉pithelidas.-The free surfaces covered by an cpithelium are the skin and the membrancs, named, from the character of their secretion, mucous menbranes. The Sucous Membranes line interual passayes and canals, and are continuous at certain orifices with the skin,-e.g., the mucous membrane of the alinentary canal opens on the surface at the mouth and amus; the respiratory mucons membrane opens on the surface at the nostrils, and is continuous in the pharynx with the alimentary mucous membrane-it is also prolouged through the Eustachian tube into the tympanum, and is continuous through the nasal duct with the conjunctiva; the genito-urinary mucous membrane opens on the surface at the orifice of the urethra and ragina. Jucous nembranes also line the ducta of the various glands which open on the surface either of the skiu or the several mucous membrancs. The epithelial cells are as a rule arranged in layers or strata, and the shape of the cells is by no means uniform in the different layers. The cells of the deeper strata are usually smaller, softer, more rounded, and morc recently furmed than those of the superficial strata, though sometimes, as in the bladder, conjunctiva, and some other mucous surfaces, they may be irregular in form and size, or even elongated into short columns. The cells next the free surface have a tendency to be shed, and their place is then taken by the cells of the deeper layers, which hecome modified in form as they approach the surface. The form of the cells of the superficial layer varies in different localities, which has led to a division of spithelium into groups bearing appropriate names. Epithelium is distinguished further by heing devoid of bloodvessels, i.e., it is non-vascular; and also, with some exceptions, devoid of nerves, i.e., non-sensitive.

The epithelial cells, whether arranged in one or several strata, rest upon a subjacent tissue, which, from its relation to the cells, may be called sub-epithelial. The subepithelial tissue is a delicate modification of the fibrous form of connective tissue, to be subsequently described, and in it the nerves and the blood and lymph vessels of the skin and mucous membranes ramify; hence it is sometimes described as a fibro-vascular tissue or corium. It was for a long time believed that between the deeper surface of the epithelium and the corium a homogeneous continuous membrane, named by Bowman a basement membrane, intervened. Bowman, however, himself admitted that in some of the localities where this membrane was theoretically supposed to exist it could not satisfactorily be demonatrated ; and the general opinion of anatomists now is, that a distinct separable membrane docs not intervene between the epithelium and the fibro-rascular corium, hut that the cells of the former rest directly upon the surface of the latter. 'The corium is also the seat of the numerous glands, with the blood and lymph vessels and the nerves belonging to them, found in connection with both the skin and the mucous membranes; and the epithelial lining of the g'ands is continuous at their orifices with the epithelial investment of the corium. The surface both of the skin and mucous membranes is usually more or less undulated-sometimes it is thrown into strong folds or rugæ, at others it is elc vatad into ,ninute, frequently conical, processes, nemed in some locali'ties papillx, in others villi; but in all these cases the epithelium is prolonged as a continuous covering over the undulating free surface. The free surface of all mucous membranes is kept moist by the secretion or mucus which lubricates it.

Tessellated, pavement, scaly, or squamozs epithelium is dituated on the free surface of the mucous lining of the mouth, pharynx, œsophagus, vestibular entrauce to the nose, ocular conjunctiva, and entrance to the urethra and vagina. It forms, under the special name of the horny layer of the cuticle or epidermis, the superficial investnient of the skin. Its cells are nucleated fictteued scales, varying
in diancter from δ of th to $1 r^{\prime} \sigma_{0}$ th incl. Those in the asme layer, being in contact by their edges, form a tesscliated, pave-ment-like arraugement, whilst the cells in adjacent layers have their flattened surfaces in contact with each other. Sometimes the cells have jagged, serrated edges, or fluted surfaces, and
 usually they contain scattered granular particles. In the forma- $\begin{gathered}\text { Fio, } 30 \text { - Scaly epithelinm from the } \\ \text { wucons membrand }\end{gathered}$ tion of this epithelium a morphological differentiation of the protoplasm of the rounded cells of the deeper strata into flattened scales, and at the same time a chemical differentiation of their soft contents into a horny material, have occurred.

Columnar or cylindrical epithelium is situated on the free surface of the mucous lining of the alimentary canal from the cesophageal orifice of the stomach to the anus, it is prolonged into the ducts of various glands which open on the alimentary mucous membrane; it covers the mucous lining of the urethra and the mucous membrane of the gall bladder. Its cells are elongated, cylindrical columns, about $\delta \frac{1}{50}$ th inch long, placed side by side like a row of palisades, and with their long axes perpendicular to the surface on which the cells rest. Sometimes the cells are uniformly cylindrical ; at Fio, 32-Columnare eplthellam, A, stite Hew other times they are of a group of cells; B, iarrer frea end or ${ }^{3}$ compressed at the sides;
 at others they vary in circumference,--the broader end, lying next the surface, being rounded or polygonal; the deeper extremity being narrower and more pointed. The nuclei are distinct, and the cell contents are finely granular. Usually this epithelium forms only a single layer of cells. The columnar cells which cover the intestinal villi have a clear space at their broad free ends, which is often streaked with fine parallel lines. Intermingled with the cells of the columnar epithelium of the alimentary canal are small goblet-shaped cells.
Ciliated epithelium is situated on the free surface of the nasal mucous membrane, which extends into the air-sinuses within the cranial bones, into the nasal duct and lachrymal sac, into the Eustachian tube and tympanum ; on the free surface of the mucous membrane of the windpipe as far as the terminal branches of the bronchial tubes; on the mucous surface of the uterus and Fallopian tubes; on the mucous lining of the commencement of the vas deferens, and on the lining membrane of the ventricles of the brain and central canal of the spinal cord. It generally cousists of columnar cells, which have at their free ends extremely slender, soit, pellucid, hair-like processes, or cilia. These cilia are specially differentiated at the free ends of the epithelium cells from which they project. Beale states that the soft bioplasm (protoplasm) of the body of the cell is prolonged along tho axis of each cilium, whilst the peri-
 phery possesses the firmer consistence Fro.32.-Cliated eplthellam of formed or differentiated material. Daring life these processes move rapidly to and fro in the fluid which moistens the surface of the membrane on which this form of epithelium is situated. In the human body the cilia are not more than from to sorsth inch in length; but in various marine in. vertebrata they are both longer and stronger. Sometimes, as in the lining membranc of the cerebral ventricles aud coutral canal of the spinal cord, the cells carrying the cilia
are either spheroidal or cylindrical; but as the cavities lined by these cells are shut off from the air, the cells ought rather to be referred to tho endothelial than the cpithelial series of structures. Cilia oceasion currents in the fluid in which they move, and play an important part in the cconomy of mary animals; in some of the invertebrata they serve as organs of locomotion, in others they propel currents over respiratory surfaces, and in others aid in bringing food within the animal's reach.

Spheroidal or glandular epithelum is situated on the free surface of the follicles or ultimate secreting apparatus of glands, and the commencement of gland ducts. The cells are often spheroidal in form, though not unfrequently they are polyhedral. Theircontentsarespeciallydifferentiated into the secretion of the particular gland in which they are situated.

The epithelial cells of a Secreting Gland rest upon a subepithelial tissue. Not unfrequently this tissue bas the appearance of a membrane; it represents, indeed, the basement membrane of Bowman, and is called membrana propria. Deeper than this apparent membrane is a delicate connective tissue in which the bluod and lymph ressels and the nerves of the gland ramify. The anatomical structures necessary for sccretion are cells, blood-ressels, and nervesThe blood-vessels convey the blood from which the secretion has to be derived; the cells, as Goodsir showed by a variety of procfs, are the active agents in separating the secretion from the blood; the nerves regulate

Fio. 33.-A folyhedral glanc cells from the Lver; B, sulueroldal gland cells from the saisua the size of the blood-vessels, and therefore the amount of blood which circulates through the gland, and perhaps also exercise some direct influence on the activity of the cells. The connective tissue and the membrana propria are merely supporting structures for the cells, vessels, and nerves. All secreting glands hars the same general type of structure, though they differ from each other, as will be pointed out when the indiridual glands are described, in the degrec of complexity in which their constituent parts are arranged.

Transitional epithelium is the name applied to epithelial cells, situated on some free surfaces, which posess transitional forms either between the columnar and tessellated epithelia, or the columnar and spheroidal The epitlelium of the mucous lining of the bladder is transitional between the columnar and scaly varieties; and in many glands the continuity of the epithelial layer from the spheroidal epithelium of the gland follicles to the columnar epithetium of the ducts is preserved by the interposition of intermediate transitional forms of cells.

The epithelial surfaces of the upper part of the mucous lining of the nose and of the back of the tongue are specially modifed in connection with the senses of smell and taste localised in those regions, as will afterwards be considered when their anatomy is described.

Endothelicar.-The free surfaces covered by an endothelium are the serous membranes, the inner surface of the walls of the lymph and blood vessels and of the beart, the synovial membranes of the joints and of synovial bursse, the free surface of the osseous and membranous labyrinth of the internal ear, and the free surface of the ventricular cavities of the brain and central canal of the spinal cord. The tubes, canals, and cavities lined by an endothelium are shut off from all communication with the external atmosphere. The cells of the endothelium are arranged so as to give perfect smoothness to the surface which they cover. - In the blood and lymph vessels this smoothness of surface is in order to facilitate the flow of the blood and lymph in the course of the circulation. The serone and synovial membranes are found covering
the surfaces of parts pibicla more on cack other, and the smoothness of their respective surfaces, by permitting freedom of movement, diminishes the friction.

Each Serous Membrane consists of a portion which invests tho viseus or organ, named the visccral layer, and a portion which lines the walls of the cavity in which the organ is situated, named the parietal layer. Between these two laycrs is the so-called serous cavity, the wall of which is formed by the smooth surfaces of both the parictal and the visceral layers. The serous membranes are as follows:-The two pleurx situated in the cavity of the chest, one investing each lung, and kining the interior of that part of the thoracic cavity in which the lung is situated; the pericar dium, which invests the heart, and lines the bag in which the heart is rontained; the peritoneum, which invests the abdominal viscera, and lines the abdominal cavity; and the arachnoid membrane, which invests the brain and spinal cord, and is regarded by many as lining the dura mater, which encloses these important organs. The smooth free surfaces of the serous membranes are moistened by a limpid fluid, or scrum, which facilitates their movement on cach other, just as the free smooth surfaces of the synovial membranes are lubricated by the viscid synovia which they secrete.

Endothelial cells form usually only a single layer, and are, as a rule, flattened scale-like cells, arranged after the manner of a tessellated epithelium. Endothelium, like epithelium, is non-vascular, and, so far as is known, non-nervous.

The endothelial cells rest upon a sub-endothelial tissue, consisting of a delicate modification of the fibrous form of connective tissue. Here, as in the surfaces covered by epithelium, a basement membrane was at one time supposed to intervene between the cells and the connective tissue; but it is now believed that the cells are in direct cuntact, by their deeper surface, with the connective tissue itself. In the serous membranes and in the coats of the larger blood-vessels elastic fibres are present in considerable numbers in the sub-endothelial tissue, which serves as the framework of support for the blood and lymph vessels and the nerves of the part. In the serous membranes the lymph. vessels are very abundant in the sub-epithelial tissue, where they form a layer parallel to the free surface of the membrane, from which short vessels pass vertically to open by minute orifices into the serous cavity. The serous membranes are attached by the sub-endothehal connective tissua to the organs which they invest.

The endothelium of the Serous Membranes consists of irregular and squamous cells, the edges of which may be smooth or slightly serrated. The cells are closely adapted to each other by their edges, so as to form a continuous smooth layer, which forms the free surface of tho serous membrane. Scattered irregularly orer this surface are the minuteorifices, or stomata, which open into lymphatic vessels. The cells which surround the stomata differ in form and appearance from the ordinary endothelium; they are smaller, and are polyhedral, their contents are granular, and the nucleus is more distinct.

Fio. 34. - Endothelial cells from the peritoneal sernus menibrane. Thres stomata may be seen sumounded by polyhedral nueleated cells; the one to the left is closed. The light band marks the posttion of a vertical lym. phatic vessel. (Aler Etein.)

The endothelium lining the Lymphatic Vcssels consists of flattened cells,' which, instead of having an irregular shape, are elongated spindles, slightly sinuous in outline. The endothelium of the lymphatics is continuous with that of the serous membranes through the stomata, so that the cavities of the serous membranes are now regarded as great lymph-sacs.

The endothelial lining of the Blood Vessels corresponds in general characters with that of the lymphatics. In the small blood capillaries the cells are fusiform ; in those of larger size, more irregular: in the veins they are broader, more irregular, and less distinctly fusiform than in the arterics. The endothelial covering of the endocardial lining of the heart consists of a layer of tattened cells with irregular outlines. The endothelial lining of the blood-vascular system is continuous with that of the lymph-vascular system, where the thoracic duct aud other large lymph-vessels open into the great veins, and thus a continuity of surface is established between the serous membranes and the liuing membrane of the blood-vascular system through the lymphatics.
The enclothelium of the Synovial Membranes is formed of roundish, or polygonal, or tessellated cells, arranged after the manner of a stratified epithelium. Not unfrequently processes of the sub-endothelial vascular connective tissue covered by the endothelium project into the cavities of joints and synovial bursæ. They have been called synovial fringes, and contribute to the formation of the synovia which lubricates the surfaces of a synovial nembrane.

The endothelium of the Cerebral Veutricles and Central Canal of the spinal cord is, as already stated, formed of spheroidal or cylindrical cells, possesing cilia on the free surface. The enduthelial lining of the osseous labyrinth consists of flattened scales, whilst the membranous laby tinth possesses a layer of polygoual cells.

3d Group.-Cells imbedded in Solid Tissues.

The cells which are imbedded in the solid tissues are either grouped together in considerable masses, or, as not unfrequently happens, are more or less separated by an intermediate matrix or intercellular substance. The matrix substance varies in its character in different tissues, and sometimes is so abundant as to obscure the cells. The textures which are constructed on this plan are of great importance, and constitute by far the larger proportion of the tissues not only of the human body, but of the bodies of animals generally. Sometimes these tissues are elongated into delicate threads or fibres, at other times they are expanded into thin membranes, at others they form solid masses of considerable thickness.

Connective Tissue.-By the term connective tissue is ueant a group of tissues which, though the members of the group differ in various respects from each other, both in naked eye and microscopic characters, yet agree in the property of binding or connecting together other tissues or parts of the body, and in serving as a supporting framework for more delicate tissucs. This group of tissues is the most extensively diffused of all the textures, for there is no organ in the body which does not contain one or other of its forms. The fullowing varieties, based on modifications in their appearance and structure, may be recognised.
a. Neuroglia. This name, which means nerve glue, has been applied by Virchow to the delicate tissue in the central organs of the nervous system, and of the retioa, which supports the nerve cells, nerve fibres, and blood-vessels of those parts. Microscopically it consists of small round or oroid corpuscles, im. Fio. 35-Scction of the mhlte matter of the ccrubrum bedded in a soft

Glioma, is sometimes produced by the excessive growth in the brain or retina of this variety of counective tissue.
b. Retiform connective tissue constitutes the stroma or supporting framework of the lymphatic and uther glands which possess the adenoid type of tissuc. It also forms the middle subdivision of the enamel organ of the teeth. It consists of stellate branching cells, the branches of which blend with each other,
 and form a delicate anastomosing Fin. 3a- Rehurm connertiso network or reticulum. In the tissuc fromalymplatic gland lymph glands, the colourless lymph corpuscles are set in the meshes of this network. In the solitary and Peyer's glands of the alimentary canal, in the tonsils, the lack of the tongue, the posterior wall of the nasal part of the pharynx, the palpebral conjunctiva, the thymus gland, the pulp and Malpighian bodies of the spleen, coluurlcss lymph-like corpuscles arealso included in themeshes of areticulum. The name adenoid or lymphoid tissue is sometimes employed in describing this type of structure, and in some forms of discase the tissue increases in certain localities so largely Fic. 37.-Lymphoid cells, Included in in quantity as to form well- $\begin{gathered}\text { reticular menh of connective fiserne } \\ \text { tronn as }\end{gathered}$ defined lymphoid tumours.

c. Gelatinous or mucous connective tissue (Schleinegewebe), forms the connective tissue of the embryo, the vitreuls humour of the eye-ball, and the jelly of Wharton, which invests the blood-vessels of the umbilical cord. It is suft and jelly-like in consistency. Mi. croscopically it consists of rounded, or spindlelike, or stellato cells, imbedded in a soft gelatinous intercel-
 lular substance. Sometimes the intercellular substance is in part different1ated into short delicate fibres. Under some pathological conditions, this form of tissue increases largely in quantity in some parts of the body, and forms a kind of tumour named Myxoma.
d. Filrous connective tissue presents four modifications in appearance. It may be soft and delicate, with the fibres short and but faintly marked, as in the sub-epithelial tissue of the skin and mucous membranes. It may be loose, flocculent, and filamentous, and may contain small spaces or arcolæ (when it is called areolur tissue), which is well seen in the subcutancous tissuo of the adult, and in the omenta. It may be expanded in the form of a fibrous membrane, as in the fascix or aponeuroses, and the threads or fibres, strong and well markcd, sometimes run parallel, sometimes cross each other at various angles. It may be collected into rounded or flattened bands, as in tendons and ligaments, where it forms the tendinous and ligamentous tissues. Here also the threads or fibres may be distinctly recornised and scen to run in parallel bundles, so as to
connect together the two structures between which the tendon or ligament passes.

In the fibrous form of connective tissuc, both cells and interccllular substance, the latter of which is differentiated into fibres, may be recognised. The eclls are, as a rule, cither elungated, or fusifurm, or caudate, or stellate branche. 1 cells, and are familiarly known as the connective tissu? corpuscles. In these cells the nucleus is round or oval, and usually well marked. It is surrounded by granular proto1lasm, but it is very doubtful if the protoplasm is invested by a cell wall. Not unfrequently, more especially where the cells are stellate, the delicate branched protoplasin processes of adjacent cells appear to blend at their cxtremities with each other, and foim an anastomosing network. In tendons the cells are arranged in linear rows, which lie parallel to the long axis of the tendon itself. In adults thesc cells are flattened, but in younger tendons they are more polygonal in form. There seems reasor. to think, indced, as Thin has shown, that the bundles of comnective tissuc are invested by a layer of flattened cells. The wide diffusion of the connective tissue throughout the body, and the great importance of its collular elements, have been especially dwelt on by Virchow as sources of origin of the uev cell forms which arise in various pathological processes.
The intercellular substance consists of fibres, which are not uniform in shape, and are divided into the two groups of white and yellow fibres.

I'he white .fibres of connectite tissue constitute the most common iorm, and make up the great bulk of most ligaments, tendons, and fibrous membranes. They consist of excessively delicate flaments,
 thickness, which are united together in bundles or fasciculi of variable size. The bundles, as well as the filaments of which they are composed, have a wary course, and the filaments in eacls bundlo lie almost parallel to ex.ch other. The bundles also in some cases are parallel, though in others they cross at various angles. Not only the filaments in each bundle, but the bundles themselves, are cemented together; the firmness of the adhesion raries in the different Fio.39- ruscienll modifications of the fibrous connective tissuc, of whito nurea being much more decided in the tendons, tissuc. ligaments, and fascize, than in the lax areolar tissuc.

The yellow fibres of connective tissue, named elastic Gibres, from their elasticity, make up the mass of the ligamentum nuchæ, the ligamenta sub-flava, and the yellow elastic coat of the arteries. They are also found, ningled with the white fibres, in the fibrous membranes, the skin, mucous and serous membrancs, the areolar tissue, in tendons, and some ligaments. In the ligamenta sub-flara and nuchor the sellow fibres are arranged in bundles, the individual fibres of which are comparatively broad, with a distinct dark outline. They bianch, and their branches readily break across, and the broken end then curls upon itself. Their diameter is about ${ }_{2}{ }^{2}=$ th inch. In the coats of the arterics the elastic fibres form an anastomosing netrork. When mingled with the white fibres they are much finer, and sometimes
 They pessesz, however, a distinct and defaite outline; they branch and occasion-

Fio. 40.-Fasclculas of fibres of scllow
clastic clesoue from clastic clasue from
ligamentum nucha. ally anastumose; and the individual fibres, possessing a ringWke, spiral, or twisted course, are round around the bundles of the white fibres. The white fibres yield gelatine on boil.
ing, but the clastic fibres do not. The white fibres swell up and become so transpurent under the action of acetic acid as to be no longer recognisable. The ycllow fibres, again, are not affected by that reagent. Quckett pointed out that the elastic fibres of the ligamentum nuche of the giraffo were marked by transverse strix, and M. Watson has seen a similar applearance in the clastic pericardiae ligament of the elephant. These transverse strix are apparently cracks in the fibre; and, as Beale has shown, are not unfrequently scen in the elastic fibres in beef and mutton which havo passed through the alimentary canal.

Bearing on the mode of nutrition of the tendons, and other fibrous forms of conncetive tissucs, the existcnee of plasma, or juice, canals has been described, along which, not blood, but the liquor sanguinis is supposed to flow. Virchow conccived that the connective tissue corpuselcs formed an anastomosing network for this purpose. Brücke believed that delicate chanmels or lacune existed between the bundles of connective tissue, whilst Recklinghausen maintained that serous canaliculi nere situated in the homogencous snbstance which connects the fibrous faseiculi and lamellx of the conncetive tissue with cach other. These lacunæ or canaliculi are, in all probability, the rootlets of origin of the lymplatic system of vesscls. There can indeed be no doubt, as the recent injections of Ludwig and Schweigger-Seidel have shown, that tendons and fasciæ are well provided with lymph vessels, for they have injected in them a minute network, consisting in part of polygonal meshes, and in part of vessels running longitudinally and parallel to the connective tissue bundles, and the walls of these vessels were formed of endothclial cells. Recklinghausen and other: have recently described corpuscles in the connectire tissue which resemble in size and appearance the white corpuscles of the blood and

Fiu. 41. - Connectlve thasue of the omentum of tho foctus, showing the characteristic fusiform corpuscles. A capillary blood-vessel crosses the figure, and near it are sevelal blond corpuscles which have prolably migrated from the vessch Ismph. These corpuscles arc believed to move about in the juice canals already referred to, and it is possible that they may hare migrated into the tissue through the walls of its nutrinnt blood wessels.

The vascularity of the connective tissue varics in different lucalities. The periosteum and perichondrium are very vascular; but their numerous vessels are conecrned in the nutrition not merely of these fibrous inembrancs, but of the bone and cartilage which they invest. The sheath of connective tissue which invests a tendon is more vascular than the substance of the tendon itself. As a rulc, it may be stated that the fibrous conncetive tissues are not highly vascular, and that the nutritive changes which take place iu thein after their growth is completed are not very active.

The mode of development of the connective tissue has been much discussed by anatomists, and various views have been advanced as to the changes which lead to its production. It is now, howceer, generally admitted that it arises from the cmbryonic cells by a special norphological and chemical differentiation of their protoplasm, but the degree to which this differentiation may proceed varics with the particular form of the texture. In the neuroglia the tissue is apparently a simple nucleated protoplasm. In the retiform conncctive tissuc the cells have assumed a stcllate shape, and their branches anastomose. In the gelatinous and fibrous forms an intercellular matrix is cxtensively produced, and exhibits a differentiation into fibres. In these last-named forms, which are the most characteristic varieties of the tissue, the cells of the embryo change the in "urn.
and assume a fusiform, caudate, or stellate shape; and, subsequently a delicate fibrillated structure appears between them, which assumes the characters of the bundles of white fibrous tissue, and by separating the cells from each other forms the fibrous intercellular matrix. It has been much disputed whether these white fibres take their rise immediately from the peripheral portion of the cells by a direct differentiation of their protoolasm, or whetber this protoplasm is not in the first instance converted into a homogeneous matrix in which the fibrous differentiation then occurs. There can be no doubt that the fibres are formed by a metamorphosis of the protoplasm of the cells; whether the metamorphosis takes place directly, or through the intermediate stage of a homogeneous matrix, is a secondary question, aud in all probability both modes of conversion take place at different times and in different localities. As the differentiation into fibres progresses, the tissue becomes firmer and tougher, and the proportion of the cellular to the fibrous element diminishes. Hence, say in a young tendon, the sows of connectire tissue cells are not onily closer togetleer, but are much more readily seen than in an adult tendon, in which the increased production of fibres obscures the cellular element.

The mode of origin of the yellow elastic fibres bas also been 'much discussed. At one time it was beliered that they were derived from nuclei, and on this supposition they were named nuclear fibres. But from toore recent observations there is reason to believe that they are produced, bke the white fibres, by a special differentiation of the protoplasm of the embryonic cells, or of a homogeneous matrix derived from that protoplasm. In such localities as the ligamentum nuchæ, where the fibres are both large and numerous, the whole of the cell protoplasm appears to become converted into elastic tissue. In tendons, and those parts where these fibres are slender and scanty, and coil round the bundles of white fibrous tissue, they apparently arise from a differentiation of the protoplasm on the surface only of the formative embryonic cells.

Adipose Tissue.-The adipose or fatty tissue taries in its amount in different individuals. It is especially found in the marrow of the bones; as a layer beneath the skin, differing in thickness in different individuals; and collected in the carity of the abdomen in the folds of peritoneui... known as the mesentery and omenta, in which, and indec.e. in the other localities where it occurs, it is intimately associated with the connective tissne. It consists of cells, which vary in size from $\frac{1}{2} \frac{1}{0}$ th to $\frac{1}{8} \frac{1}{0}$ th inch, usually owoid or spherical in form, though when collected into masses they may be laterally compressed. These cells are sometimes isolated, thongh most isually arranged in sows or clusters to
lobules of fat. The number of cells tu is given lobule raties with the size of the lobule. The distinctive contents of these cells is a miante drop of oil, which, when examined by transmitted
 light, presents a bright appearance; but when seen by reflected light, looks, as Monro primus described it long ago, like a cluster of pearls. Each fat cell possesses a distinct wall, as can be readily demonstrated by digesting these celis in ether, when the oil is dissolred out and the membranous wall remains. The nucleus of the fat cell is more difficult to demonstrate, and when seen is found attached to the inner suriace of the cell wall. In the fat of old persons, and in specimens of this tissue which have been removed from tho body for a length of time, a stellate gronp of acicular crystals is not unfrequently to be seen in the interior of the cell, which consists either of maryarin or margaric
acid, one of the constituents of human fat. The lubules of fat cells are included betreen bundles of the areolar varicty of connective tissue, which form their supporting framework. But in addition, they are more or less perfectly surrounded by a network of capillary ressels, which not only serves to conrey to them blood for their nutrition, but aids in retaining them in position.

The close anatomical relation between the adipose and the connective tissue points to a genetic relationship between them. It has now been ascertained that the first stage in the formation of a fat cell consists in the appearance of extremely minute drops of oil in the protoplasm of the connective tissue corpuscles of the part ; as these run together larger drops are produced, a cell wall at the same time differentiates from the peripheral part of the protoplasm, and as the cell becomes distended with oil, by the conversion into fat of its substance, it swells out into a splucrical or ovoid cell. Klein has recently shomn that the fatty tissue of the omentum and mosentery is formed by the pruduction of oil drops within the branched cells, which form the reticular tissue that supports the lymphoid cells found so abundantly betreen these folds of peritoneum.

Pigmentary Tissue.- In some parts of the body a yellow, bromn, or black pigment is found in the interior of cells, which gives to the tissue and organ a characteristic colour. In the coloured races of mankind, and in certain parts of the body of the white races, pigment is produced in the cells of the cuticle or epidermis, more especially in the cells of the deeper strata or rete Malpighi. In the connective tissue corpuscles, also, more especially in the dermis of fish, amphibia, and reptiles, pigment is found in considerable abundance. The choroid coat of the eyeball owes its dark brown or black colour to the presence of pigment in the interior of the cells. The pigment cells of the choroid are usually polyhedrons, 5 or 6 -sided, and are arranged to form a mosaic
 pattern. In the centre is a nu- Fig. 43.-Grmup of 6 -5ided thos cleus, and the cell substance is occupied by numbers of minute brown granules In thy connective tissue on the outer surface of the choroid, the pigment is contained in stellate cells. In the skin of fishes and amphibia, the stellate pigment cells branch and subdivide so as to form highly complex patterns, and the cells are crowded with brown or yellow granules. The production of pigment, either in the in terior of epidermal cells, in the polyhedral cells of the choroid, or in the stellate connectire tissue corpuscles, is owing to a special metamorphosis or dif. ferentiation of the protoplasm substance of these cells

Cartilaginous Tissue.-By the term cartlage, or cartilaginous tissuc, is meant a group of tissues which, though usually found in the form of pilates or bars, yet differ in various aspects from each other, both in naked eye and microscopic claracters. They agree, Lowever, in forming solid textures, opaque when scen in mass, b, i, in than slices, translucent, pearly, or bluish white, firm in consistence, but easily ent with a knife, endowed with constderablo clasticity, and yielding chondritio un huilis. Cartilage is of greater importance in the fetus and in the immature condition of the body than in the adult, for in early life the bones are in a great measure formed of it. As derelopment and gromth proceed, a considerable pro. portion of the cartilage becomes converted into bone, and is called, therefore, temporary cartilage, whist the remaining portion continues as cartilage throughout life, and is
termed permenent. The following rarieties of cartilage, based on modifications in structure and appearance. may be recognised

$\overbrace{$| Matrix homogeneous, |
| :---: |
| (Hyaline cartulage.) |}$^{\text {Celluar cartilag }}$ Cells with matrix substance.

Tho Cellular or Parenchymatous Cartilage does not exist in the adult human body. It occurs, however, in the human embryo, in the embryos of all the rertebrata, and in the larral stage of development of the tunicata, as the elender rod named chorda dorsalis or notochord. In all the higher vertebrata the chorda dorsalis disappears as development advances, but in the loreer vertebrates it persists throughont life as a more or less pefect strusture. In the lamprey and myxine it forms a continucis rod in the vertebral region. In fish gencrally, but more especially in the cartilaginous group, it forms a jelly-liko mass, occupying the concarities betreen the bodies of the vertebre. The cells lid in contact rith each other. They are comparatively large in size, are sometimes rounded, but more usually compressed late r:3 45.-Cells of the chorde doro rally. The nucleus is often very
 distinet, though at other times more diffeult to detect, and the cell wall is well marked. Sometimes a little inter. cellular substance is found. By some anatomists the chords dorsalis is regarded as a rariety of connective tissue, and not of cartilage

The cartilaginous frametrork of the ear of some small mammals-as the mouse, the bat, and the rat-is formed of cellular cartilage, the cells of which are smaller in size than those of the chorda dorsalıs, irregularly polygomal, and closely packed together eo as to form a solid tissuo.

The IIyaline Cartilage consists of cells imbedded in a pellucid or byaline matrix, which, under some
 a dimly granulated appearance. The of the monas or twe car siphoid and costal cartilages, the encrusting cartilages at the articular ends of the bones, the cartilages of the nose, those of the mindpipe, except the epigluttis and cornicula laryngis, belong to this variety, as also the temporary cartilages. In hyaline cartilage the cells are oroid or polygonal, or even fusiform, and sometimes flattened, the flattened form of cell being found next the surface of the

Fig. 47.-IIjainae costal carthuge cartilage. They lie singly, or in groups of twn, or three, or four; sometimes they are amanged in linear series, at other times they are irregulally grouped together. The cell contents are dimly granular, with a well-defined nucleus containing a nucleolus. Not unfrequently two or more nuclei are present in a cell; and in old cartilage the contents are often coarsely granular, or even infiltrated with drops of oil. "Heideuhain has shown that powerful induction shocks cause contraction of the protoplasm of the cells towards the central nucleus. The cells lie in cavities in the matrix substance, and the part of the matrix which forms the immediate wall of the Lollow is named tho
capsulo of the cell. Tro or more cells may eometimes lio in the same hollom.

The matrix of hyaline cartilage is usually homogeneous. In some animals the matrix appears to have a concentric arrangement around the eclls, and Rollett has stated that by the use of dilute sulphuric acid or chromic acid the matrix may be male to split up into concentric layers. Sometimes the matrix appears granulated, a change rhich is very apt to oceur in sections of eartilage which have been remored for some time from the body. In the costal cartulages of old persons the matrix becomes fibrous; and it is by no means uncommon to find in adranced age these bars of cartilage converted into bone.

In the articular or encrusting cartilages the arrangement of the cells is quite distinctive. If a rertical eection be made through a plate of this cartilage, the cells next the bone are seen to be arranged in parallel rows perpendicular to the surface of the bone on which the cartilage rests; the cells are smaller than those of the custal cartilage, oblong in form, and the adjacent rows are separated by intermediate hyaline matrix. Near the free surface of the cartilage the cells are flattened, placed parallel to the plane of the surface, and so closely packed together that the proportion of matrix is much reduced. In the intermediate parts

F30. 15-VCutleat bection through an encrusting caitilage. A. the bnie
on which tho cariflage rests of the cartilage the cells lie irregularly in the matrix, and are rounded in form. It was from the study of the changes which take place in articular cartilage in disease that Goodsir was emabled to establish the production of new cells by the multiplication of the normal pre-existing cells of the cartilage,-an observation which formed the starting-point of the modern doctrine of cellular patholegy.

Fibro-cartilages are divided into white and yellow. White fibro-cartilage may form the connecting medium between the articular surfaces of an amphiarthrodial joint, as in the intervertebral dises; or it may form plates in the interior of joints, as in the semilunar cartilaces of the knce and other menisci in diarthrodial joints; or it may extend around the margin of the socket of a joint, as in the cotyloid ligament of the hip; or it may invest the surfaces of bones over which tendons have to play, as where the tentons of the peronci

> 10. $4 y$ - $W 11180$ inbro-camihge of disc. muscles play in the groove on the back of the external malleolus. In the intervertebral discs, which give the best illustrations of the structure of white fibrocartilage, the cells are ovoid in form and distinctly nucleated. Sometimes two or three are grouped together, but not mufrequently they occur singly. They are separated from each other by short fibres. In these discs the fibrous matrix is always stronger and more distinet in the peripheral than in the central part. The other forms of white fibro-cartilage are transitional between the true cartilage and comnective tissue, i.e., the cells possess the characters of cartilage cells, whilst the fibrous matrix approximates to the matrix of the connective tissuc.

The yellow elastic fibro-cartilages are the epiglottis, the cornicula laryngis, the cartilaginous framework of the auricle of the Luman car, and the cars of mammalia generally, and the cartilaginous wall of the Eustachion tube. The eells are rounded or oroid, distinctly nucleated. arí usually arranged singly or in pairs. The matrix is distinctly fibrous; the fibres, which form a close intersecting ret-
work, branch and sometiraes anastomose. They resist the action of acetic acid like the yellaw fibres of connective tissue; and Donders has described a continuity between them and the elastic fibres of the connective tissue, which forms the investing perichondrium of this form of cartilage. The yellow fibrocartilage has no tendency to ossify.

The bars and plates of cartilage,-except the encrusting hyaline cartilages, and the interarticular, marginal, and in vesting white fibro-cartilages,-are surrounded by a fibrous nembrane or perichondrium. In the adult human hody artilage is not penetrated by blood-vessels, but is nourished by the vessels which ramify in its investing perichondrium. In the fœetus, however, and in the large masses of cartilage which are found in the skelctons of the cetacea and of the cartilaginous fishes, the cartilage is permeated by canals in which blood-vessels ramify. In the encrusting cartilages, the cartilage is nourished by the blood-vessels of the synovial membrane of the joint, which, in the case of the articular cartilage, form a vascular ring around its margin and, both in it and in the forms of white fibro-cartilage that do not possess a perichondrium, by the vessels of the bone, to which these cartilages are as a rule attached. In the movable joints, after the child has begua to use its limbs, the synovial membrane is not continued over the free surface of the articular cartilage, but stops at its margin along the line of the vascular ring. In the fœtus, however, it has been stated that both blood-vessels and aynovial membrane are prolonged over the free surface of the articular cartilage.

In the development of hyaline cartilage the contents of the embryonic cells of the part, where the cartilage is to be produced, become clear, and a cell wall differentiates around the exterior of the cell. The puclei in the cells divide and subdivide, so that a multiplication of the cells by endogeaous reproduction takes place. Hyaline matrix substance then appears between the cells, and is concentrically arranged around them; it is believed to be formed by a special conversion of successive layers of the cell protoplasm into a substance which yiclds chonarine on boiling. The fibro-cartilages, both white and yellow, but especially the latter, yield but little chondrine on boiling, for the fibrous matrix of the white fibro-cartilage is a gelatineyielding substance, like the white fibres of connective tissue, whilst the fibres of the yellow fibro-cartilage partake of the nature of elastic tissue. The fibro-cartilages, therefore, form a group which liaks together the conncctive and cartilaginous tissues.

Osseous Tissue.-The osseous tissue, or bone, is that which constitutes the hard framework of the skeleton. Each bone consists of a hard, more or less dense, tough, and but slightly elastic material. The elasticity of the bones is more marked in young than in adult and aged persons. From differences in their external configuration, bones are divided into long or cylindrical, e.g., femur; short, e.g., carpal or tarsal bones; flat or plate-like, e.g., scapula; irregular bones, e.g., vertebre. These variations in shape do not, however, involve differences either in composition or miaute structure. Bone consists chemically of an earthy and an animal substance intimately blended together. The earthy matter forms about two-thirds of it, and consists chiefly of phospluate of lime, which, from its abundance in bone, is frequently called "bone earth." Carbonate of lime and a small proportion of soda and magnesia salts are also present. The hardness of bone is due to the presence of the carthy matter. The animal matter forms the remaining third, and yields gelatine on boiling; it imparts elasticity and toughness to the bone, aud binds together the particles of earthy matter.

Bone presents two different stmetural characters to the saked eye. The outer part of a bone is ita hatdest part,
and forma a dense external Shell, technically called the compact tissue. The interior of a bone is much less firm, and is made up of thin delicate plates or bars, or trabecles, which intersect each other at various angles, and form a lattice-like arrangement, technically called the spongy or cancellated tissue. The plates and bars of the spongy tissue are continuous with the inner surface of the compact tissue. In the long bonss the interior of the shaft is hollowed into a canal, named the medullary canal, the walls of which are formed by the compact tissue, and the cancellated tissue is found only at the articular ends of these bones; the thickness of the compact tissuc in a long bone is always greater at the centre of the shaft than at or near the articular ends.

If the outer surface of the compact tissue of a long bone and the wall of the medullary canal be examined with a pocket lens, they will be seen to be riddled by multitudes of minute orifices, which are the mouths of minute tubular passages or canals that traverse the compact tissue. These passages are named Ifaversian canals, and their arrange ment may be studied by making thin sections through the compact tissue, and submitting these to microscopic examination, when they will be seen to pass longitudinally or very obliquely through its substance, so as to terminate by rounded orifices either on its outer surface, or on the inner surface, which forms the wall of the medullary canal These canals are connected together at intervals by short transverse or oblique canals. Owing to these communica. tions the dense osseous tissue is perncated by an anasto mosing network of canals, which, as they contain blood vessels, may be named vascular cauals. These canals are circular in section, and vary in diameter from about $\frac{1}{2} \delta \mathrm{t}$ th to roboth inch. They aot unfrequently are dilated at the inner end, where they open into the spaces of the canccllated tissue. The compact tissue of all bones possesses a system of canals similar to those found in the long bones; Jut when bone occurs in the form of very thin plates the canals may be absent. In addition to the Harersian canals, irregular spaces, named Maversian spaces by Tomes and De Morgan, may also be scen in sections through the compact tissue. They are met with not only in young but in adult bones, and are reanarded as produced by absorption of the bone in those particular localities. In thin sections through bone, more especially when the Haversian canals are transrersely divided, the dense tissue or matrix of the bone which surrounds the canals is seen to be arranged in concentric rings, as if it were built up of a series of lamellae superimposed on each other. These lamella do not at all times form complete circles, and the number which surround a canal may vary from two or three to lalf a dozen; they are sometines called the Haversian lamellæ. Other lamellæ lie in relation to the periostcal surface of the bone, and are called peripheral lamellæ; whilst others again are, as it were, intercalated between adjacent IIaversian systems of lamelle, and are named intermediate or interstitial. It has been pointed out by Sharpeyo that a bone lamella, after the earthy matter has been dissolved out by the action of an acid, is made up of multitudes of fine transparent fibres, which intersect each otleer and form a network. But he has further shown that the lamellæ are perforated by fibres, or bundles of fibres, which pass through them either perpendicularly or obliguely, so as to bolt adjacent lamellæ together. With a little care, the perforating filues of Sharpey may be drawn out of the holes or socisets in which they are lodged.

When thin scctions through a maccrated and dried bone are examined under the higher powers of the microscope, the lamellated matrix is seen to exhibit a very peculias appearance, which is characteristic of the osseous tissua Between the surfaces of adjacent lamelliz irregularly
elongated spaces, called lacunce, aro to be seen in considerable numbers; these lacunæ, like the lamello between which they are situated, have a concentric arrangement around the Haversian canals. The lacunr, the lamellx, and the Haversian canal which they surround, aro sometimes named a Haversian system. From the endsand sides of any one of theso lacunæ very minute bmanching canals, termed
 canaliculi, proceed, which Fio. 50. -Transrerse section throogh the compenetratethe lamellæand pact tissue of the shaft of along tone. Thas anastomose with the caoalcullare shown.
canaliculi procecding from adjacent lacunx, whilst the analiculi, springing from the sides of those lacuna which Lie nearest to the Haversian canal, open on the wall of the canal itsclf. The lacunæ average in length radoth inch, and their transverse diameter is about
 iuch in diameter. When examined in a dried bone by transmitted light, the lacunæ look like solid, black bodies, and the canaliculi seem to be processes branching off from them, heuce they were erroneously called by the carlice observers bone-corpuscles. But if a little turpentine be added to the section, the fluid displaces the air which the lacunæ and canaliculi contain in the dricd bone, renders the part more transparent, and affords a satisfactory demonstration that they are, in a macerated and dry bone, not solid bodies, but a minute system of spaces and anastomosing little canals; and that all those which lic in the same Haversian system not only frecly communicate with each other, but, either directly or indirectly, with the Haversian canal which they surround.

But a macerated and dricd bonc, such as one secs in museums and in articulated skeletons, and the structure of which has just been described, is a bone which has been deprived of several soft tissucs by the process of putrefaction, which tissucsare of the utmost importance in the economy of the oonc in tho living animal. A living bone is a complex organ, and amacerated bone is only the skeleton of a living bene. It is essential, therefore, in studying the structure of bone, that the attention should not be limited to the ap.

Hic. 51. - Longliudtral iscetion through the compact tissue of a Joug bone, to show the pastace of blood-cesscls from tho pertosteum Pi lato he Haveriun canals II 11. pearances presented by the macerated bone, but that the arrangement and structure of its soft tissues should be considered. The suft tissucs of a bone are the periosteum and its prolongations, the marrow, the minute masses of nucleated protoplasm which occupy the lacunæ of the bone, the blood and lymph vessels, and the nerves.

The Periosteum is a strong Gbrous membrane which invests all the exterior of a bone, cxcept where the encrusting cartilage is continuous with its articula. end. It is subdivided into two layers: a, a firm external fibrous hayer, consisting of bundles of connective tissue, which decussate with each other in

Fia. 52.- Section rinrough the pertontcum and compast tissue of a young bone. s L , superficial filrous lager of perlusteum: is P. decrel cellular layer prolonged into II 16 . thic wive Ilaversian canals V V. a vessul of the perlosteum enterling a canal
various directions, and amidst which a network of small blond-vessels is freely distributed prior to their
passago into the Maverslan cauals; b, a softer internal layer, which is especially well marked in young growing boncs. This soft laser partly consists of very delicato connective tissue, in which rounded or oval cells are found, which give off slender processes at various points of their periphery, and partly of larger granular cells, which lie next the bono itself. Processes of the soft inner layer are prolonged into the IIaversian conals, in which, as Goodsir pointed out, a layer of cellular substance lies between tho wall of the canal and its containcd blood-vessel, so that these canals are not, as in macerated bones, empty passares, but are filled up by the blood-vessels and the cellular layer.

Tho Marrow occupies the medullary canal of a long bone and the spaces in the cancellated tissue of boncs gencrally. It occurs in two furms, red and yellow marrow. Red marrow is found in the boncs of tho foctus generally, and in the cancelli of the plate-like, short, and irregular bones at a more advanced period. It consis‘s principally of large many-nucleated masses of protoplasm, the myeloid cells of Kölliker and Robin, lying in a very delicato arcolar tissuc, and supplicd by a network of capillary blood vessels. It contains little or no fat. Yellow marrow, again, is composed of fat cells lying in a delicate areolar tissue with accompanying blood-vessels. The areolar tissuc, which supports the marrow cells, lines the medullary canal and cancelli, and is named the medullary membrane, or the endosieum.

In the fresh bone the lacunx are not emply spaces as in the maccrated bone. They are filled up by nucleated clumps of protoplasm, and are therefore, as Goodsir was the first to slow, the seats of little masses of nucleated cells, which cells are the true bone-corpuscles. The protoplasm of these cells is appareutly prolonged into the canaliculi. Heuce the bard part, of the osscous texture has within it a system of nucleated cells, some of which occupy the lacunx ard canaliculi, while others form a lining to the IIaversian canals.

The blood-vessels of a bone are abundant. It receives its arterics partly from the small arterics which ramify ic the periosteum, the fine branches of which enter the Haversian canals, and form within them an anastomosing network of capillarics; partly through a special artery which enters the nutrient canal in the bone, to be distributcd chielly to the marrow; partly through small arterius which enter openings in the compact tissue near the articular extremitics. The reins of boncs are also abundant. In the cancellated tissue they are large, and leave the interior of the bone partly through foranina situated near the articular ends, and partly by a vein which accompanics the artery that trarerses the nutrient canal. In the plate-like bones of the skull the veins lie in distinct channels in the diploe, and in the bodics of the vertebre the veins pass out through large holes in the posterior surface. Bones possess lymph-vessels, but their exact mode of arrangement has not yet been ascertained. Fine nerves have been traced into bones accompanying the arteries which enter the nutrient and Haversian canals.

It is clear, thercfore, that a bone, hard and dense though its texture scems to be, is yet hollowed out by spaces, passages, and canals which, under the several names of medullary canal, cancellated spaces, nutrient canal, llaversian canals, Ilaversian spaces, lacunæ, and canalicuii, are occupied by blood-vesscls or other soft tissucs. By the penetration of blood-vessels into the bone, blood is conveyced nut only to the medulla, but into the very substance even of the compact tissue; and there can be no doubt that the nucleated masses of protoplasm which occupy the lacunæ and canaliculi, and line the Haversian canals, are, as Goodsir long ago pointeci out, centres concerned in the nutrition of the matrix substance of the bono in their mmeaiate neighbourhood. These cellise
together with the periosteum, the medulla, and their bloodvessels, are active agents in the development, growth, and nutrition of the osseous tissue.
In the description of the development of the skeleton, it was stated that the bones are forined by ossification in cartilage and fibrous membrane, so that boncs are produced by secondary changes in a pre-existing material. The mode of production of the osseous tissue in the cartilaginous and fibrous tissues will now be considered, and it slould be clearly understood at the outset that, in normal ossification, bone is not formed by a mere calcification of the matrix of the pre-existing tissue, and a conversion of the cartilage or connective tissue corpuscles into bore corpuscles; but, as the researches of Sharpey, Bruch, H. Müller, Lovén, and Gegenbaur hare made known, is due to a development of new corpuscles, which Gegenbaur has named osteo-blasts, accompanied by an abundant formation of blood-vessels.
When the process of ossification in temporary cartilage begius, a change takes place in the arrangement of its cells at the centre, or point, or nucleus of ossification. The cells, instead of preserving their irregularly scattered arrangement in the matrix, are now collected into longitudinal parallel rows, not unlike what was described in a previous section, in the deeper cells of encrusting cartilage. In each row the cells lie with their long axes transverse, and apparently multiply by a process of fission. The cells at the end of the rows which lie nearest the centre of ossific ohange swell out and become more rounded. Calcification of the matrix substance, which separates not only the parallel rows of cells, but also the cells in the same row, from each other, then takes place, which calcification in\checkmark ludes also the capsules of the cartilage cells. A general epacity of the cartilage is the result of this calcification, and the further progress of ossification is rendered obscure. It is necessary, therefore, to dissolve out by an acid the calcareous matter, in order to follow the steps of the process.

Spaces or canals now form in the ossifying cartilage, into which blood-vessels, continuous with the vessels of the perichondrium, are prolonged. These spaces are lined by concentric layers of small rounded cells, not unlike lymphoid cells in size and appearance, and form the medullary spaces of feetal cartilage, whilst the cells and blood-ressels forn the medulla. Respecting the source of origin of the cells of this medulla, there have been difficulties in arriving at a correct conclusion. Some have believed them to be descended from the cartilage cells, though no demonstration of their derivation from this source has ever been obtained. Henke conceived that they might be blood corpuscles migrated from the blood-vessels within the spaces. But the recent observations of Stieda seem satisfactarily to show that the layers of medulla cells are continuous with similar layers beneath the perichondrium, which layers are prolonged along with the blood-vessels into the medullary spaces as they form in the ossifying cartilage. But, whatever be their derivation, there can be no doubt that these cells undergo certain modifications which are of the utmost importance in the further stages of the ossific process. A few become elongated into fusiform or stellate corpuscles, like those of connective tissue; ©thers bave oil drops forming in their interior, and become the cells of yellow marrow; others become the corpuscles of red marrori ; others, again, which form the osteo-blasts, properly so-called, are the direct agents in tae production of the osseons tissue itself.

The formation of the medullary spaces in cartilage is owing to an absorption of the calcificd cartilaginous tissue. Kolliker points out that the absorption is effceted through the agency of colossal, many-nucleated cells (mydloplaxes), which he beliercs to be derived from the osteu-blastic cells
of the medulla already deccribed, so that a destrucion of the calcified cartilage precedes the formntion of the proner osseous tissue. As the absorption of the cartilage gocs on, an irregular series of medullary spaces commnnicating more or less freely with each other is produced. But along with the destructive changes in the cartilage the production of the new osseous tissue takes place. Certain of the cells of the medulla are arranged in layers around the walls of ster medullary spaces, and undergo an important change both in composition and shape. They become granular, their protoplasm hardeus from the periphery towards the nucleated centre of the cell, so as to gire origin to the dense matrix substance of a bone lamella: but the nucleus, and the protoplasm inmedately inccsting it, do not barden, -they form the soft contents of the lacune and canaliculi. A second layer of osteo-blastic medulla cells then passes through a similar metamorphosis, and a second lamella is formed. By a repetition of this process around the walls of the several medullary spaces, the lamellæ of the bone are produced Hence it would appear that the dense solid matrix of the osseous tissue is produced by a special hardening of the protoplasm of the osteo-blastic cells in are assuming the form of Haversiac candis. the medullary spaces, and as layer after layer of these cells is ossified successive lamelire are produced. The persistence, however, of the nucleus of each osteo-blast, and of a small portion of its investing protoplasm, preserves within the hard matrix a certnin amount of soft material, which being destroyed when a bone is macerated, leaves the lacunary and canalicular system already described. The formation of successive lamellæ diminishes the size of the medullary spaces, which then form the Haversian canals. The vascular and cellular contents of these canals are therefore the remains of the contents of the medullary spaces of the feetal cartilage, and are continuous with the deeper layer of the periusteum.

So long as any cartilage remains in a fectal or young bone the process of replacement of the cartilaginous tissue by the proper osseous tissue goes on, until none of the cartilage is left, except the thin layer of encrusting cartilage at each articular extremity. Bones grow in length by an ossification in cartilage; and a provision for their longitudinal increase is furnished up to, and even beyond the age of puberty, by the plate of cartilage which separrates the epiphysis from the shaft of a bone. The ossification of this plate of cartilage marks the period when growth ceases in the long axis of the bone. But bones also grow in thickness, and this addition to their girth takes place by an ossification of material situated at their circumference. It has already been pointed out that a bone is invested by a fibrous membrane, the periosteum, which fulfils for it the same purpose as does the perichondrium for the cartilage. On the deeper surface of the periosteum, i.e., next the bone itself, are osteo-blastic cells, similar to those which lie in the medullary spaces of the foetal cartilage. These cells pass through a similar series
of changes, and produce successive layers of new bone at the periphery. The inportance of the periosteum as a centre of origin of new bono has, indeed, long been recognised by both surgeons and pathologists. The parts of this membrano in which the special bone-producing power resides is the deep layer of osteo-blastic cells, whilst the blood-vessels furnish the pabulum for their nutrition. It strips of periosteum be removed, along with the cells of the deeper osteo-blastic layer, from a bone, and transplanted to other parts of the living body, bone will continue to be produced by their ageney.

The intra-membranous ossification of bone was first recognised by Nesbitt, and has been worked out in most of its details by Sharpey, Kölliker, and Gegenbaur. The tabular bones of the skull offer the best illustration of this mode of ossification. Sharpey has pointed out that a netrork of minute spicula of bone forms in the membrane, and extends in radiating lines from the centre of ossification towards the circumference of the bone. The ossifyin! tissue consists of fibres, of multitudes of granular corpuicles or ostco-blasts, and of blood-vessels. The osteo-blasts invest the fibres, but as the investing osteo-blastic cells calcify, from the periphery towards the nucleus, they assume a stellate configuration, and pass through a serics of changes similar to those described in the intra-cartilaginous mode of ossification. The fibres, which are in the first instance suft, also calcify, and contribute to the formation of the bone. Here, however, as in the intra-cartilaginous ossification, the active agents in the ossific process are the osteoblastic cells. The lamellated structure is due to ossification of successive layers of these cells, and the formation of the lacunæ and canaliculi is owing to the persistence of their nuelei with a small proportion of unossified investing protoplasm. The increase in thiclness of a membrane bone, like that of a cartilage bone, takes place through ossification in a deep periosteal layer of osteo-blasts. Hence it follows that, though the tissue which precedes the appearance of bone in the skeleton is not uniformly the same, in some eases being membrane, in others cartilage, there is an identity in the ossific process in the two forms of pre-existing tissue, in both of which the osteo-blastic cells are the active agents in ossification. The chemical differentiation which takes place in the protoplasm of the osteo-blasts during bone-formation is not merely a calcification, but a coincident foduction of a gelatine-yielding substance, within which the minute calcarcous particles are deposited.

Stress has been laid by some anatomists, in discussing the homologies of the several bones of the skeleton, on the differences met with in the place of their formation. Thus, it has been supposed that a bone originally develuped in cartilage cannot be homologous with one originally developed in membrane, and that a fundamental morphological distinction should be drawn between cartilage bones and membrane bones. But when it is considered that, though the place of formation may vary, the method of formation is the samo in all localities, it does not appear that so much importance should be attached to the distinetion between cartilage and membrane bones as it has sometimes received. Moreover, the differences between these two varieties of bones are, during the growth of the bone, still further diminished, for in both cases increase in thickness takes place in the same kind of pre-existing tissue, and in the same way, viz., by ossification of the deve periosteal layer of osteo-blasts.

In the description of the development of bone in the foetus and young person, the formation of medullary spaces was referred to. But the production of spaces in bone is by no means limited to its early stages of growth. The redullary canal in a long bone can scarcely be said to
exist in the bones of an infant'y limbs. The hollowng out of the shaft of a long bone into a large canal, and the cnlargement of the spaces of the cancellated tissue, goes on not ouly up to the period of adult life, but even to ad. vanced years; so that in an old person the relative size of this cancl is greater than in the prime of life. The Haversian spaces also, as Tomes and De Murgan puinted out, are produced by the absorption of the lamella of the osseous tissue surrounding the Haversian canals, and the production of these spaces is coustantly going on during the life of the bone. The air-sinuses in the cranial bones are also formed by the absorption of the diploe, and consequent separation of the two tables of the skull. Bones, therefore, are organs which are continually undergoing change. During growth additions are being made to their length and thickness, and additional lamelix are being formed in the walls of the IIaversian canals. At the samo time a hollowing out of spaces in their interior is going on, so that an increase in weight commensurate with their growth does not take place. The interstitial absorptivo changes, whether occurring during growth or after growth is completed, are due, as Kölliker has shown, to the action of many-nucleated colossal cells which line the walls of the spaces where absorption is going on, which cells he has named ostco-klasts. The development and configuration of a bone is therefore, as has been well expressed by Külliker, the product of the formation of osseous tissue by the agency of the osteo-blasts, and of its absorption or destruction by the action of the osteo-klasts.

From the fact that osseous tissue may be produced either in the cartilaginous or in the fibrous tissues, and that all three contribute to the formation of the skelcton, it is evident that these tissues are closely allied. To express this alliance they have all been grouped together under the common term connective substances.

Muscular Tissue.-The muscular tissue is that which is actively cencerned either in the movement of parts of the body on each other, or in the movement of the entiro body from place to place; it is the active agent, therefore, both in motion and locomotion. It forms a large proportion of the general mass of the body, is the essential constituent of the muscles or flesh, and enters into the formation of the walls of the hollow viscera. It consists structurally of threads or fibres, some of which are distinguished by being marked with transverse stripes or striz; others have no such markings. Hence it is customary to divide the fibres of the muscular tissue into transversely striped fibres and non-striped fibres. As a rule, the striped fibres are collicted together to form those muscles which are under the influence of the will, so that both the muscles and the fibres of which they are composed are called voluntary. One important exception to this rule is, however, met with, for the muscular fibres of the heart, though transversely striped, are involuntary; the will exercises ne control over the action of the heart. The non-striped fibres, and the museles into the construction of which they enter, are in no instance, however, subject to the influence of tho will; so that, without exception, they may be named involuntary.

The Non-striped or Involuntary fibre, sometimes called pale or smooth muscular fibre, enters into the forma tion of the walls of the hollow viscera-e.g., stomach, intestines, bladder, uterus-of the walls of the air-tubes, gland-ducts, blood and lymph vessels, of the skin, and various mucous membranes. The fibres are usually callected into bundles or fasciculi, which are not aggregated together into such compact red masses as in the voluntary muscles, but are of a paler red colour, and are set farther apart, and often cross and interlace with each other in the walls of the tubes and hollow viscera, in which this form
of muscle is found. The fasciculi are separated from each other by a delicate, areolar connective tissue, or perimysium. I'the size of the faseiculi varies in different localities; in the hollow viscera they are so large that their arrangement ean be observed with the naked eye; but in the skin, the walls of glandducts, \&c., they eun only be seen with the aid of the micruscope. If a fasciculus be carefully torn up with needles it can be resolved into its constituent fibres, and the number of the fibres varics with the size of the fasciculus. The non-striped fibres are pale and almost colourless, with
 Yodoth inch in diameter; they are ruunded in form or laterally compressed, and are so casily flattened by artificial pressure, that they have crroneously been regarded as flat or ribbon-shaped fibres. When digested for a few hours in dilute nitric or hydrochloric acid, and sometimes even without any reagent, the fibres may be resolved into elongated fusiform cells-the coutractile fibro-cells of Külliker -which vary in length from $\frac{1}{8} \frac{1}{0}$ th to $\frac{1}{0}$ th inch, and which taper off usually into attenuated ends. In the middle of each cell is a characteristically elongated, rodshaped nucleus, aud sometimes the substance of the cell is finely granular, or even faintly longitudinally striped. No tell wall or sarcolemma can be distinguished. In some lucalities, as was pointed out by Lister in the minute arteries in the web of the frog's foot, isolated contractile fibro-cells are wound spirally around the wall of the vessel;

The Transversely Striped fibre is the chnracteristic tissue of the voluntary muscular system, and is found wherever energetic movements are to be performed. In these muscles the fibres are collected together in fasciculi, which bundles usually lie parallel to each other, and extend from the tenden of origin to the tendon of insertion. Each musele is invested by a membranous sheath formed of connective tissue, the perimysium externum, which sheath gives off processes that dip into the substance of the musele, so as to form delieate partitions between the fascieuli, and from these partitions still more slender prulongations of conncetive tissue, named perimysium internum, pass between the fibres. The number and size of the fiseiculi vary with the size and texture of the musele; in sunc, as the deltuid and glutæus maximus, the faseiculi are large and coarse ; whilst in others, as the gracilis and omo-hyoid, they are much finer. The number of fibres in a fasciculus varics with its length and thickness, and the fibres which are adjueent to each other in a fasciculus lie parallel. The striped fibres are cylindrical or laterally compressed; they usually taper off at their extremities, and apparently do not, even in museles with long faseiculi, exceed $1 \frac{1}{2}$ inch in length. The transverse diameter of the striped fibres varies, in different localities in the human body, from $-\frac{1}{5}$ th to $\frac{1}{21}$, th inch, according to the measuremeats of Kölliker. Much wider differences in diameter are found in the animal series, in insects the fibres being of estrome minnteness, whilst in cold-blooded animals they are much larger than in man and mammals.

If a fibre be carefully separated from a fasciculus, and examined microscopically by transmitted light, transverse stripes may be readily seen to extend across it from side to side. These transverse strix are not mere surfaco marks, but, as Bowman pointed out, pass through its cutire thickness, and lie parallel to each other. The striation is duc to the structure of the fibre, which consists of dark and light bands or dises, alteruately dark and
light. The discs differ in optical properties, for, as Brueke's observations show, the light dises refract light singly-are isotropic; whilst the dark dises refract light duubly, and consist of an anisotropic substance. Busk and Huxley described in 1853 a dark line passing across the light disc, so as to subdivide it into two halves; and this appearance has also been figured by Sharpes, lirause, and others. It is believed to be due to the presence of a strongly refracting stripe in the middle of the feebly refracting disc. More recently Hensen has directed attention to a slender, feebly refracting stripe passing transversely across the strongly refracting dise, so as to subdivide it also into two halves. In addition to the transverse strix, the fibres not unfrequently show markings which extend longitudinaily, but these are irregular in position, do not correspond to the whole length of the fibre, or necessarily pass through its entire thickness.

The transverse and longitudinal mark- Fio. 35.-A transings indicate that a muscular fibre has a muscular Abre disposition to split up transversely or longitudinally into smaller particles. The transverse subdivision of the fibre is promoted by digesting a piece of muscle for some hours in dilute hydrochloric acid. If the fibres be then examined, gaps or fissures will be seen to extend transversely into the substance of the fibre; and, if the digestion has been sufficiently frolonged, the fissures have extended completely across the fibre, and have subdivided it into a multitude of plate or disceshaped bodies-the muscular-fibre discs. These discs are tho strongly and feebly refracting discs already described, and the transverse diameter of each disc corresponds to that of the fibre from which it has been derived. The longitudinal marks in the fibre are best seen by digesting a piece of muscle in strong spirit of wine, or in a solution of chromic acid. If a fibre so treated be teased out with needles, and the thin covering glass be smartly tapped, the fibre will split up longitudinally into multitudes of minute, elongated threads-the muscular-fibre fibrillos. A fibrilla may be regarded as equalling in length the fibre of which it formed a part, and like the fibre is transwerscly striped; but its breadth is not definite, and depends upon the minuteness with which the fibre has been split up in the longitudinal direction. If in the same fibre the processes of transverse and longitudinal splitting were to go on simultancously, then the fibre would be resolved into an immense multitude of rectangular partieles-the sarcous elements of Bowman. If these particles be regarded as the ultimate subdivisions of the fibre, then the discs may be conceived to be built up of a number of these particles, possessing similar optical properties, arranged side by side, so as to occupy the entire diameter of the fibre in any trausverse plane: whilst the fibrillæ are built up of the partictes arranged end to end, so as to correspond to the entire length of tho fibre; but in this longitudinal armagement, particles with different optical properties, the one singly refracting, the other doubly refracting, alternate with eacls other with the utmost regularity.

Another view of the structure of muscular fibre has just been advanced by E. A. Schäfer. He describes the dark, or, as seen in a living fibre, the "dim dises," as traversed by multitudes of excessively fine, dark, rod-shaped particles parallel in their direction to the fibre itself, which extend into the contiguous bright dises, near the middle of which each muscle rod cnds in a knob-like extremity, and the serics of knobs form a line of minute dark dots, passing transwersely across each bright disc. The muscle rods are
imbedded in a "ground substance," that forms the alternating dim and bright dises, which substance he believes to be anisotropous, whilst the musele ruds are isotropous. He regards the ground cabstance as the true contractile part of the fibre.

Each transversely striped fibre is invested by a homogeneous membrane, the sarculemma or myolcnma, which is so transparent as to allow the characteristic transverse strix to be distinetly seen through it. The sareolemma is so elosely incorporated with the periphery of the fibre, that its isolation and demonstration as a distinet membrane are attended with some difficulty, but when water is added to a living fibre it is absorbed, and elevates the sareolemma from the sareous contractile particles. If acetie arid be added to a muscular fibre the transverse strixe become less distinct, and a number of oval bodies come into view. These are especially to be seen next the perinhery of the fibre in relation to the inner surface of the sarcolemma, though some apparently lie deeper in the substance of the fibre. These budies have long been known as the nuelei of the striped fibre. More recent investigations lave, however, shown that each nuelcus lies in a little finely-dotted protoplasm, which often extends in a fusiform manmer beyond the ends of the nucleus. These nuelei, with their investing protoplasm, bave the anatonical characters of nueleated cells, and are ealled the musele corpuscles.

Some peculiar modifications of the striped muscular fibre are met with in certain localities. As a rule, this form of fibre does not branch; but in the museles of the tongue and lip, and other muscles of the face, these fibres usually branch prior to their insertion, and the braneles taper off to finely attenuated ends. In the heart also the fibres branch ; and the branches of adjacent fibres anastomose, so that the muscular wall of this organ consists of a compact network of fibres. The individual fibres are smaller than those of the voluntary muscles, the transverse striation is mueh less distinet, and it is doubtful if an inresting sarcolemma be present.

Some diffeulty has been experienced in determining the exact mode of connection of the fibres of the belly of a musele with those of its terminal tendons. By some it has been supposed that the fibres of the one are directly continued into those of the other; whilst Weismann has deseribed the museular fibre as terminating in a sharplydefined, rounded, or pointed extremity, to which the fibres of the tendons are closely apposed.

Both the striped and non-striped forms of musclo are well provided with blood-ressels, which ramify in the substance of the muscle lying in the areolar conncetivo tissue that separates the fasciculi and fibres, from each other. The capillaries form an elongated network, the principal strands of which lie parallel to the muscular fibres, but never penetrate the sarcolernma. Henee, though the belly of a musele is a highly vascular organ, its individual fibres are extra-raseular. The vaseularity of the fleshy belly is much greater than that of the terminal tendons of attachment, and the nutritive changes are much moro active in it than in them.

The contractile fibro-cells of the non-striped museular Gbre are formed by the gradual elengation of the rounded cells of the middle germinal layer of the embryo into spindle-shaped eells, the oval nuelei at the same time becoming elongated, so as to assume a rod-shaped form. Usually the spindle cells which lie in the same linear series become eemented together into the smouth fibres of this form of musele.

The mode of development of the stripel fibre is more difficult to follow out, and various stabements have been made as to the suecessive stares of its formation. Schwann beliceed that a fibre wos built up eft tic a cabryonic celle of
the part, whieh arranged themselves in linear series, coalese ing with each other at their surfaces of contact; thet the cortents of the eells then became transversely striated, and that the cell walls formed the sarcolemma. Savory and Lockhart Clarke maintained that a formation of blastema took place around free nuclei, and that this blastema gradually assumed the esriated charaeter. Remak, Kölliker, Wilson Fox, and Frey have, however, by studying the carliest stages of development in the very young embryo, established the faet that the striped fibres are developed frum the cells of the embryo, though not in the manner described by Schwann. The process, briefly stated, is as follows: The cmbryoric cells elongate, the nuclens may remain single, but more usually it divides and subdivides, so that many nuclei appear in the interior of the elongated cell. The nuclei lie in linear scries, and may either be separated from each other, or two or more may be in contact, and they may lie cither near the periphery of the elongated cell, or in its axis. With this multiplication of the nuelei, the cell increases in length and assumes the form of a fibre. The eell protoplasm, both in the single and many-nucleated fibres, then differentiates into the sarcous partieles of the transverse strix, and as this progresses the fibre assumes its characteristic striped appearance. The whole amount of the protoplasm does not, bowever, assume the transversely striped appearance, for a small quantity remains around each nucleus and forms with it a muscle corpusele. The differentiation of the protoplasm oceasions an anatomical and chemico-physieal change in the fibre, and confers on it the property of energetie contractility. W. Engelmann has endeavoured to show that the opaque anisotropic discs of the fibre aro those in which the power of contractility resides, and that the clear isotropic dises possess only clastie properties. The mode of development of the sareolemma is still somewhat obseure. By some it is regarded as the wall of the embryonic cell, which has become metamorphosed into a museular fibre; by others it is regarded as a special differentiation of the protoplasm at the periphery of the fibre taking place at the time when the transverse striwe are being formed; whilst by others it is cunsidered to bo a special modification of connective tissue formed around the fibre. In the development of the muscular fibres of the heart, the cells of the embryo heart branch and anastomose, and the nuclei multiply. By the transverse striation of the protoplasm of these cells the branched muscular fibres of the heart are produced.

In the growth of a muscle the individual fibres increase in size, so that they are bigger in the adult than at the time of birth. The observations of Budge, Weismann, and Beale show that new fibres may also form in a muscle. Weismann believes that this increase may be duo to a longitudinal splitting of a pre-existing fibre; but Beale maintains that the new fibres are produced in the muscle in the same manner as the original fibres of the part.

Nervous System

The Nerrous System consists of a number of organs which are named respectively Nerve Centres, Nerves, and Peripheral End-organs. The largest and most important Nerve Centres are the brain and spinal cord, which logether constitute the ccrebro-spinal nervous axis, and are lodged in the eramial cavity and spinal camal. But, in addition, munerous small bodies, usually oval in form, technieally called ganglia, are situated in the axial part of the body, and form smaller nerve centres. The Nerves are white ...rds which traverse the different regions of the body, both axial and appendicular, for a greater or less distance, for the purpose of connecting together the other sub-divisions of the nerrous system. The Peripheral End-organs are
minute structures connected with the peripheral extremities of the nerves. These end-organs are situated in the skin and other organs of sense, in the glands, blood-vessels, and muscles. The nerves establish communications and conduct nervous impulses, either between different nerve centres, or between nerve centres and peripheral end-organs, so as to associate together in their action parts of the nervons system often widely separated from each other. Nerves, therefore, are internuncial structures. When a nerve conuects two nerve centres together it is intercentral. When a nerve connects a nerve centre with a peripheral endorgan, and conducts impulses from the centre to the end-organ, it is a centro-peripheral or centrifugal nerve. When a nerve connects a peripheral end-organ with a centre, and conducts impulses from the end-organ to the centre, it is a periphero-central or centripetal nerve. Owing to the different directions in which impulses are conducted by nerves, the varying nature of their endorgans, and the functional differentiation of the nerve centres, or portions of the nerve centres in which their central extremities terminate, nerves vary so. in their functions, that a classification of the nerres, based upon their functional properties, has been proposed. Of the centro-peripheral nerves, those which end in the muscles are motor nerves; those which end in the muscular cont o: the blood-vesscls are vaso-motor nerves; whilst some physiologists bave named nerves which they believe to terminate in connection with the secreting cells of a gland, secretory nerves; and others, which they believe to terminate in the tissues and to be concerned in the regulation of their autrition, trophic nerves. It should be stated, however, that it is not yet absolutely deternined that the secreting cells of glands and the cell elements of the tissucs have special nerves terminating in connection with them for the purpose of exercising a dircet influence over secretion and nutrition. Should these special norves be non-existent, then the sccretory and nutritive functions would be influeuced solely by the vaso-motor nerves, which regulate the size of the blood-vessels and the amount of blood which flows through a part in a given time. Of 'the periphero-central nerves, those which arise in the end-organs in the skin, terminate in a nerve centre, and excite in it the sense of touch, are nerves of common sensation; those which arise in the end-organs in the eyc, car, nose, and tongue, and cxcite in their appropriate nerve centres the sensations of sight, sound, smell, and taste, are nerves of special sense; whilst nerves which conduct impulses from peripheral end-organs to a nerve centre, and, instead of exciting in the latter a sensation, have the impulses reflected to motor nerves, are reflez or excito-motory verves.

The nerve centres, nerves, and peripheral cud-organs are arranged in two groups or systems-a Ccrebro-spinal and a Sympathetic. The Cerebro-spinal nervous system consists of the brain and spinal cord, the nerves which arise from or terminate in these large centres, the sniall ganglia connected with these nerves, and the end-organs at their peripheral terminations. The Sympathetic nervous system consists of the sympathetic ganglia, with their nerves and end-organs.

Nervous Tissue-The soveml parts of the nervous system arc not uniform in colour, some being white, others grey. "Tho nerres, at least thoso of the cerebrospinal systern, are iuvariably white, and white masses, variable in size, are met with in the brain and spinal cord; they constitute the white matter of the nerrous system. In the nerve centres, both of the cercbro-spinal and sympathetic systens, grey matter is found, sometimes in considerable quantities This grey colour is so characteristic,
that it may be regarded as marking the position of a.ncrve ccntre.

The nervous system possesses a characteristic form of tissue-the nervous tissue-which in part consists of fibers (Nerve Fibres), and in part of cells (Nerve Cells). The nerve cells are found in the grey matter-that is, in the ner:e centres-and sometimes also in the peripheral end-organs. The nerve fibres constitute the nerves, enter into the nerve centres, and pass into the peripheral end-organs; they form the white matter. But in addition to the characteristic nervous tissue, the nerrous system also contains a considerable quantity of connective tissue, numerous bloodvessels, and some lymph vessels.

Nerve Fibres. -Nerve fibres are of two kinds: a, the white, medullated, or dark-bordered fibres, which are the characteristic fibres of the ccrebro-spinal nervous system, though they do also sparingly occnr in the sympathetic system; b, the pale, non-medullated, or gelatinous nerve fibres, which are the characteristic fibres of the sympathetic nervous system.
Medullated Nerve Fibres.-To examine the structure of these fibres, a portion of a cerebro-spinal nerve may be selected. In the first place, it will be seen to be invested by a sheath of connective tissuc, the perineurium, which gives off processes that pass into the nerve, and subdivide it into fasciculi or fnniculi. Each fasciculus is in its turn composed of nerve fibres, which are separated from each other by bundles of delicato connective tissue, prolonged from the perineurium, in which the nutrient bloodvessels of the nerve ramify. The size of a nerre is in relation to the number and size of its fasciculi, and the size of a fasciculus is in relation to the number of its fibres. The fibres and the fasciculi lie parallel to each other in the same nerve; but as nerves branch at intervals, the more external of the fasciculi diverge from the main stom to form the branches. In the white matter of the brain and spinal cord the nerve fibres are not arranged in such definite fasciculi as in a distributory nerve, and the connective tissue between the fibres is the soft, delicate form called neuroglia.

A medullated nerve fibre is an elongated cylinder, which, when examincd in the body of a, living animal, or im. mediately after removal from the living body, consists apparently of a soft, homogeneous, or glassy-looking substance enclosed within a limiting membrane. When examined some time after death, or after the addition of re agents, such as water, spirit, ether, collodion, acetic acid, \&c, it loses its homogeneous aspect, and the following struotures can be distinguisbed in it: A (Fig. 56), a delicate transparent investing mombrane, - the so-called tubular or primitive membrane, or neurilemma; C, a delicate thread, extending along the axis of the fibre,-the axial cylinder or central band of Remak; B, a substance which lics between the primitive membrane and the axial cylin-der,-the white substance of Schwann, or the medullary sheath. Within the external outline of the fibre, formed by the investing membrane, is a sccond line, not quite parallel to the first. and the presence

Fic. 56.-1. Medulla ed nerre fbres showing tho double contour. 24 similar fibre in which A is the pri mative membrenc. B the mealullary theath, e the axial eylinder, protrading beyond the broken end ad the nore. 3. Tranaverse sectloo theough the medullated ghres of: nerre showing tbe axial cylinder in each fire. Between the fibes is the interfibrous coonective thsue. the fibre a characteristic doublc-contoured appearance. The investing membranc is a perfcetly pcllucid, homngeneou structure, with nuclei arranged at intervals in it. It. is
believed to be absent from the nerve fibres ir the prain and spinal cord, as well as at the peripheral terminations of many nerves. Tho medullary sheath is a fatty and albuminous substance, which refracts the light strongly. Not unfrequently it collects into littlo ball-like masses, and sonctimes canses irregular bulgings on the fibre, and produces a knotted, varicose appearance; at other times it becomes granular, and makes the fibre opaque. By gentle pressure it can be squeezed out of tho bsoken end of a fibre. The axial cylinder is a pale, grey, eylindriform band, usually about one-third or one-fourth the diameter of the fibre, whieh possesses more tenacity than the medullary sheath, and not unfrequently, as in Fig. 56, 2, projects for some distance beyond the broken end of a fibre. Max Schultze showed that it is not homogeneous, but exhibits a very delicate longitudinal fibrillation, and at the ends of the nerves these primitive fibrillæ may scparate from each other.

Although from its great delicacy the axial cylinder cannot be seen in the living fibre of a cerebro-spinal nerve, yet there are many reasons for regarding it as a structure existing in the living nerve, and not the product of a post mortem change. It is the part of a fibre which first appears in the course of development, the medullary sheath and primitive membrane being secondary investing structures, superadded as development proceeds. It forms not unfrequently the only constifuent of a nerve firre at its central and peripheral terminations, and is therefore the part of the fibre which is anatomically continuous with the nerve cell, or with the peripheral end-organ. As it is the solo constituent of many nerve fibres at their terminations, and of all nerve fibres in the earlier stage of development, and as it forms the medium of connection between them and the structures in which they terminate, it is obviously of primary importance, both anatomically and physiologically, and is believed to be the part of the fibre directly concerned in the conduction of impulses; whilst the investing structures serve the purpose of insulating materials. Lister and T'urner pointed out, in 1859, that essential diferences in chemical composition existed between the axial cylinder and the medullary shenth ; the former being unaffected by chromic acid, though the latter is rendered opaque and brown, and concentrically striated under its influence; while, on tho other hand, the axial cylinder is stained red by an ammoriacal solution of carmine with great facility, although the medullary sheath is unaffected by it. They further showed that these differences in the mode of action of chromic acid and carmine might advantageously be employed in the demonstration of the structure of nerve fibres. Ranke has subsequently stated that the axial cylinder possesses an acid, and the medullary sheath an alkaline reaction.

Medullated nerve fibres vary materially in diameter in different parts of the nervous system. In the brain, for instance, they are sometimes as fine as the $\mathrm{T} \frac{1}{2}$ roth inch; whilst, in the distributory nerves, fibres of Trooth of an inch in diameter may be seen; though it should be stated that, even in the nerves of distribution, fibres of great minuteness are often placed in the same bundle with those of the largest sizo. Nerve fibres do not branch in their course, but only at their central or peripheral terminations, and mueh more frequently at the latter than the former.

Nor-medullated Nerve Fibres.-These fibres, which are characterised by the absence of a medullary sheath, are chicly found in the sympathetic nervous system, but they occur also in the cerebro-spinal system. The fibres of the ulfactory nerve are non-medullated, so also are the peripheral terminations of the cerebro-spinal nerves, and indeed all uerve fibres in the first stage of their development. In Petromyzon it has been stated that all the nervo fibres are distinguished by the absence of a medullary sheath.

This form of nerve fike consitts of pale grey, translucent,
 diameter. They usually appear as if homogeneous or faintly granular ; but Schultze showed that, when carefully examined, they present a delicate fibrillated appearance, liko that scen in the axial cylinder of a medullated nerve; so that, like that eylinder, they are supposed to be composed of multitudes of extremely delicate primitive fibrillæ imbe hiled in a finely granulated material. Sometimes these fibres consist solely of this fibrillated material, at other times they are invested by a sheath similar to the primitive membrane of a medullated fibre. Nuclei are also found both in the substance of the fibre and in
 relation with the primitive membrane. The presence of multitudes of fibres in the sym- midnianel pathetic nervous system, formed either en- mirve norew tirely, or almost entirely, of a material puthelcte syo precisely similar in structure to the axial cylinder of a medullated fibre, and by which the proper function of the fibre can alone, therffore, be exercised, is, of course, an additional argument to those previonsly advanced, in favour of the existence of the axial cylinder as a normal constituent of the fibre, and of its functional importance.
Nerve Cells.-Nerve eells constitute an important division of the nervous tissue. They are the characteristic structures in the nerve centres, aresusceptible toimpressions, or nervous impolses, and are the texture in which the molecular ehanges occur that produce or disengage the special form of energy named nerve energy, the evolution of which is the distinetive mark of a nerve centre. The central extremities of the nerve fibres lie in relation to, and are often directly continous with, the nerve cells. It was at one time thought that nerve cells were globular in form ; but it is now generally understood that, though the body of the cell is not unfrequently globular, two or more processes or poles project from it, and are continuous with its substance. Nerve eells are distinctly nueleated; the nuclei are usually large, and contain one, and often two nucleoli. The cell substance is granular, and not unfrequently brown or yellow pigment is collected around the nucleus. A cell wall is sometimes apparently present, though at others it cannot be demonstrated. The nerve cells in the grey matter of the brain and spinal cord are imbedded in the neuroglia. In the sinaller nerve centres, as the sympatletic ganglia and the ganglia on the posterior roots of the spinal nerves, the nerve cells are surreunded by a capsule of connective tissue. Frïntzel, Kölliker, and others, bave described this eapsule as lined by an endotheliun formed of flattened cells; and it should be stated that Ranvier has described a similar endothelium in relation to the connective tissue investment of the cerebro-spinal nerves. It is not improbable that these endothelial cells form the walls of delicate capillary rootlets of the lymphatic vascular system.

Nerve cells from which two poles or prc cesses proceed are called bipolar. Charac. teristic specimens of these cells, as was first pointed out by Robin and R. Wagner, may be recognised without difficulty in the ganglia on the posterior roots of the spinal nerves of fishes, and it is probable that Flo_{10} s8 - B1 poipr similar cells exist in the corresponding nerve cull, witas cuo centres in other vertebrates. These cells nsually possess a globular body, though sometimes it may be clongated; and from opposite pouts
of the surface of the body a strong process is given off, which is directly continued wats a n ?r r fibre. The axial cylinder of the fibre is cont'nusus with the cell substance, and Schultze has shown that both exhibit a delicate fibrillated structure. The medullary sheath ald the primitive membrane are also usually continued frow the fibre over the nerve cell. Hence these bipolar cells seem to be, as Schultze expressed it, nucleaied cnlargemenvs of the axial cylinder.
A remarkable modification of the bipolas aerve cell, carcfully studied and described by Lionel Beale, is found in the sympathetic gangliz of the frog. The cells are pear-shaped, and from the narrow end of the pear two nerve fibres arise, one of which, called the straight fibre, forms, as it were, the stalk of the pear; whilst the other, or spiral fibre, winds spirally round the straight fibre, and then passes away from the cell in the opposite direction. Doth fibres are nucleated, and at their origin consist, apparently, of axial cylinder substance only; but in their course they may acquire both a mednllary sheath and a primitive membrane. The straight filure pases into the interior of the cell substrance, and Arnold and Courvoisier be- fir. 59. - Pyrifors Lies. that they have traced it into the nerve cell $\begin{gathered}\text { nit } \\ \text { straight }\end{gathered}$ nucleus; but the spiral fibre apparently arises nearer the periplery of the cell. The pyriform cells are invested by a distinct capsule of connective tissuc. The nerve fibres of these pyriform cells, although they both arise close together from one end of the cell, represent its poles. Should one of the polcs, either in this, or in the bipolar form of nerve cell described in the preceding paragraph, be from any cause removed or not developed, then the cell would be unipolar; and if both poles were absent it would be apolar.

In other lucalities, as in the sympathetic ganglia of man and many other vertebrates, and in the scveral subdivisions of the cerebro-spinal nervous axis, the nerve cells have more than twa.poles or processes projecting from them. Cells of this kind are called mnltipolar, and in many localities they present characteristic forms. In the grey matter of the spinal cord, more especially in its anterior horn, they give rise to numerous processes, and have a stellate or radiate form. In the grey matter on the surface of the convolutions of the cerebrum they are pyramidal in shape. The apex is directed to the surface of the convolution, the base towards the white matter. The processes arise from the base, apex, and sides of the pyramid. In the grey matter on the surface of tho ccrebellum the body of the celi is almost globular. From that aspect of the cell which is directed towards the white matter a Fio.co.- Multipolar cell a slender central process arises; from the from human syupaopposite or peripheral aspect of the cell two strong, many-branched processes cx-
 capsule of connectlve capsule
tissue. tend for a considerable distancc. In the human gympathetic ganglia, again, the stellate form of cell prevails, and the existence of a capsule of conncctive tissuc around the individual cells can be recognised. The processes which arise from a multipolar nerve cell, as a rule, divide and subdivide as they pass away from the body of the cell, until at last they give rise to branches of extreme tenuity. These branching procosses apparently consist exclusively of cell protoplasm, and have bceu called protoplasm processes. Gerlach has described the pruteplasm prucesses of the
multi-polar nerve cells of the bram and spinal cord as forming an excessively minute network, from which minute medullated nerve fibres arise; and F . Boll conceives that a similar arrangement occurs in the cells of the ccrebellum. One, at least, of the processes of a multipolar nerve cell does not branch, but becomes directly continuous with a nerve fibre, and has becn named the axial-cylinder process. This process was first recognised by Deiters in the cells of the spinal cord; but Hadlich and Kosch- Fig.61- - Buitipolar cellfrom the grey matter ennikuff have since de- of unt crior colnu in the spinal cord. A cty scribed the central process coutinuous with a nene fibte. of the cells of the cerebellum as continuous with a medullated nerve fibre; and the latter observer has pointed out, that from the base of a pyramidal nerve cell in a cerebral cunvolution a process may be traced directly into a nerve fibre. Hence it would appear that the multipolar nerve cells may have two modes of union with nerve fibres-one directly throngh the passage of the non-branched axial-cylinder process into a fibre, the other throngh the origin of fibres from the minute network in which the bronched protoplasm processes terminate. The branched processes of adjacent nerve cells may also blend with each oiner, so as to form an anastomosing cell network, though these anastomoses are, in all probability, not so frequent as was at one time supposed. Schultze has pointed out that not only the protoplasm substance of the body of a multipolar nerve cell, but both the non-branched and branched processes, possess a fibrillated structure similar to that described by him in the axial cylinder of the uerve fibres.

Per ipheral End-Organs or End Bodies.-Nerve fibres at their peripheral extremities terminate in connection with peculiar structures, named end-bodies, terninal bodies, or peripheral end-organs, which are situated in the several organs of the body. The motor nerves end in the voluntary and involuntary muscles; the vaso-motor nerves end in the muscular coat of the blood-vessels; the senscry nerves end in the skin, mucous membranes, and organs of special sensc; and it has been stated that secretory nerves terminate in connection with the ultimate cell elements of the secretin: glands. These end-organs possess ccrtain structural peculiarities, which are by no means uniform in the different parts, so that the end-body connected with the peripheral termination of a rerve is distinctive of the organ in which it is situated. It will be a matter of convenience to defur the consideration of the peripheral cnd-bodies in the skin, organs of special sense, coats of the blood-vessels, and the several glands, until these parts are described. In this place the mode of termination of the motor nerves in the voluntary and involuntary muscles, of the sensory nerves in the mucous membrancs, and of the ending of the nerves in the remarkable bodies .named Pacinian corpuseles, will alone be examined.

After a nerve has entered a voluntary muscla it ramifies in the connectire tissuc, which lies between the fasciculi, and at the same time divides and subdivides into smaller branches. These branches interlace with each other aud form plexuses, from which slender nervous twigs, often consisting of only a single medullated nerve fibre, proceed, which ramify in the connctive tissue, separating the individual muscular fibres from each other. The singlu
acree fibres in their turn bmnch, accompanied by a splitting of the axial cylinder, and these branches usually lose the medullated elaracter. The mode of termination of theso very delicate branches has been a subject of much dispute. Beale described them as forming a minute network, situated on the exterior of the sarcolemma, but in coutact with it, and the fibres of this nervous network were distinctly nucleated. Other observers have, however, described peculiar bodies, called motorial end-plates, at the extremity of theso nerres. These end-plates consist of a clump of zichly nucleated protoplasm, somerhat oval or perhaps irregular in form, into which the axial cylinder of the nerve fibre penetratis. The eaact position of these end-plates in relation to tho museular fibres is difncult to determine. Krause holds that they lie outside tho sarcolenma, but adherent to it; whilst Kühne, Margo, and Rouget maintain that the end-plate lies within the sareolemma, and that the nerve fibro has to pierce that membrano before it can enter tho end-plate. After the axial cylinder has entered the end-plato it subdivides into very minute hranches. Each muscular fibro has apparently only a single end-plate, and consequently only a single axial cylinder in connection with it.

In the non-striped muscles the nerves are distributed in the connective tissue which scparates the fasciculi from each other. Here they form plexuses, which in some locelities, as in the myenteric plexus of Auerbach in the muscular coat of the intestines, have collections of nerve cells, forming microscopic ganglia lying in them. From these plexuses fibres arise which subdivide into delicate nonmedullated fibres possessiog nuclei. These delicate fibres form still finer plexuses, which in their turn give origin to minute fibres, which pass between the muscular fibre cells to form a still more minute intra-muscular network. Frankenhäuser maintains that the delicato nerve fibrils which arise from this terminal network penctrate the muscular fibre cells, enter the nucleus, and terminate in the nucleolus; but Arnold considers that, after having entered the nucleus, the fibril again gives off a filament, which passes out of the cell to join the intra-muscular plexus; the ending of the nerve, therefore, within the nucleus is only apparent, and is rather to be regarded as the nodal point of a finc intra-nuclear plexus.

The termination of the sensory nerves in the mucous membranes has been especially studied in the conjunctiva, the mucous membrane of the soft palate, snd the glans of the penis and clitoris. In these parts Krause discovered oval or globular end-bodics, which consisted of a soft, homogeneous substance invested by a nucleated capsule of connective tissue. A nerve fibre pierecs the capsule and terminates in the interior of the end-body, which forms a bulbous cnlargement at the end of the nerve, and is called the cad-bulb. After the nerve lins entered the end-bulb, it may consist only of the axia' cylinder and terminate in a pointed extremity, or it may twist upon itself and form a coil within the end-bulb. When the structure of the skin is described, it will be seen that the ending of the nerves in the cutancous papillæ bears a general resemblance to their termination in the end-bulbs of a mucous membranc.

But in certain of the mucous membranes delicate nerves hare been traced into the layer of epithelium, situated on the free surface of the membranc. Petermöller described nerve fibres continuous with the nerves of the cornea passing into the layer of conjunctival epithelium on tho front of the cornca. Klein recognised on intra-cpithelial nervous network in the same locality. Shrschtschonovitsch traced non-medullated nerve fibres procecding from a subenithecial network into the decper epithelial layers of the vaginal mucous menberanc, and similar nerve fibres havo
been seen by Elin to end in tho epithelial investment of the mucous membrane of the mouth.

Connected with the sensory nerves in some localities aro the reuarkable bodics named the Corpuscles of Pacini, which ware the first terminal organs discovered in connection with the peripheral distribution of the nerves. These corpuscles have been found attached to tho nerves which pass to tho skin of the fingers and toes, to tho nerves which supply the skin of the neck and arm, to the iutercostal nerves, to the nerves of the joints, to the nerves of the periosteum, to the nerves of the genital organs, and to the mesenteric nerves. In eats they are often extremely abundant both in the mesentery aud omenta. 1 lacinian
 the Pacinian corpuscles aftarlied 2, a Dacinian corpuscle \times 350: a, sfalk or peduncle; b, nerve fibre in stalk: c, cxternal lojers of eapsule; d. Inner layers; e, monomedullaled nerve fibre in the central core: f. branching of Ierminal end of nerve fure (From A. Kollaier.)
corpuscie can be seen by the naked eye, and looks like : minute grain from $\frac{1}{6}$ th to $\frac{1}{2}$ th inch jong. It is elliptical in form, and may cither be sessile or attached to the nerve stem by a slender stalk. Examined microscopically, it is seen to consist of numerous layers of connective tissue concentrically arranged, which form its capsulc, and surround a central corc. Numerous connective tissue corpuscles may be seen in the concentric layers, and Hoyer has recently shown that an endothelial-like appearance exists on the inner surface of the corpuscle. Entering one pole of the corpuscle is a nerve fibre which extends along the arial core for a considerable distauce, and usuallv termi-
nates in a slight bulbous enlargement. The nerve fibre parts with its perineurial sheath after it enters the Pacinian corpuscle; and as it lies in the core it loses its medullary sub. stance, so that its terminal part consists only of the axial cylinder. Sometimes the nerve fibre divides intotwo branches within the corpuscle. Capillary blood-vessels are distributed to the concentric layers of the Pacinian cerpuscle.

The mode of origin of the nervous tissue in the course of devclopment of the embryo is still involved in some obscurity. It is, however, believed that the nerve cells are derived from the embryo cells, which multiply, and the young cells then grow and assume characteristically granular and finely fibrillated contents. Processes or poles then appear at the periphery of the cells, which, according to the observations of Beale, conncct adjacent cells together. As the growth of the part goes on, the cells are more widely scparated from each other, and the anastomosing processes in consequence become considerably elongated, and form the axial cylinder of the nerve fibre. In the course of time the medullary sheath and the primitive membrane may form around this axial cylinder so as to insulate it. The exact mode of formation of the medullary sheath is not properly understood; but it is believed that the primitive membrane, and the perineurial conncctive tissue, are derived from those surrounding embryonic cells which differentiate into connective tissue. Of the two originally contiguous cells from which the nerve fibre is, as it were, opun out, one, as Hensen conceived, may form a cell in a ucrve centre, the other may differentiate 'into a peripheral end-organ. In the tail of the tadpole the formation and growth of nerve fibres have been studied by Kölliker and uthers; and it has been seen that the terminal part of a fibre may have fusiform or tri-radiate cells connected with it, the processes of which cells gradually differentiatc into nerve fibres. The young cerebro-spinal nerve fibres are distinctly nucleated, and correspond in appearance and structural characters to the won-medullated nerve fibres of the adult. If in a young or adult person a nerve be cut across, its conductind power is destroyed; but after a time it reunites, and its function is restored. The part of the. nerve which lies between the place of section and its peripheral extremity, undergoes, as Waller pointed out, degenerative changes. To how grent an extent the degeneration affects the rarious cnnstituents of each fibre, it is difficult to determinc; for whilst some experiménts would seem to show that only the medullary sheath broke up into granular particles and was absorbed, in others both it and the axial cylinder disappeared. In process of time, however, these parts may be reproduced, and the nerve When recovers its functional activity.

Descriptive Anatomy of the Cerebro-spinal

-Nervous System.

In this section the anatomy of the Brain and Spinal Cord, and of the numerons distributory Nerves which arise froin them, will be described. The brain and spinal cord are the largest and most important of all the nerve centres. They occupy the cranial cavity and spinal canal, and are continuous with each other through the foramen magnum in the occipital bonc. As the arrangement of the structares which cempose the brain and spinal cord is extremely complex, and as the names applied to the several parts are numerous and often very arbitrary, it may bo well, before commencing a detailed description, to make a few general observations on their mode of development.
Development of the Cerebro.Spinal Nereous Axis.-The brain and epinal cord are developed in the cranio-spinal croovo of the embrye, and appenr originally as a thin band extending along the whole length of this groove. About the time when tho walls of the Groove meet posteriorly to complete the cranio-spinal cavity, the wurgins of this hand become elevated, Lend backwards, and mect,

80 that the originally simplo band becomes converted into a cyliadri- Develoy form cerebro-spinal tube. In the walls of this tube the nervous ment of structures of the brain and epinal cord are formed, whilst the axis cerelry of the tube forms a contral caual. In the part which becomes the spinal Spinal Cord the ccutral canal persists as the coniral canal of tha systina spinal cord, and around it a layer of ciliated cylindrical endothelium is developed. Outside this layer a mass of grey matter contaiuing nerve cells is formell, which is subserfuently divided is to two lateral crescent-shaped masscs. Outside the grey matter white matter is produced, which ultimately becomes arranged in the form of longitudinal columns of nerve fibres. With the formation and growth of these columns and of the internal grey matter, a longitudinal mesial fissure appears on the anterior and another on the posterior surface of the cord, which gradually increase in depth until the cord is almost completely divided into two lateral balves. At the bottom of the anterior median fissure the nerve fibres of the antation commissure are developed, and at the bottom of the posterior meditin fissure those of the posterior commissure. These comnissures units the two halves of the cord together.
The upper or cerebral end of the cerebro-spinal tuhe becomes the Encephalon, or Brain. At first the cerebral part of the tube is uniform in appearance with the opinal part, but it soon expands into three veaicular dilatations - the primary cercbral vesicles. These vesicles, naned (from before bàckwards) anterior, middle, and posterior, are separated from cach other by constrictions, and as the development progresses the vesicles bend on each other and on the cuper end of the apinal cord. As each vesicle is an expran. sion of the cercbro-spinal tube, it is necessariy boilow, and the space in ite interior is continuous with the central canal of the apinal cord. In the walls of the vesicles the nervous structures are produced, which forni the ocveral subdivisions of the euccpihalon.

The posterior cerebral vesicle bends first forwards from the upler and of the spinal cord, and then backwards; the part which bends forward becomes the medulla oblosigala; that which bends backward the cerebellum, whilst the pons is developed at the angle where these two parts are continuous with each other; the central hollow forms the central canal of the medulla oblongata and the dilated siace called the foirth ventricle. In the medulla oblongata shallow anterior and posterior median furrows then appear continuous with those in the cord, and each lateral half dilferentiates into grey matter and into a longitudinal arrangement of nervo fibres continuous with the corresponding structures in the cord. Δ large proportion of these fibres are continued upwards through the pons as its longitudinal fibres. The cerebellun consists at first of a central lobe, and in the lower vertebrates ite development does not proceed beyond this atage; but in mammals, including man, a lateral lobe or hemisphere is auperadded on each side, and with the growth of these lateral lobes numerous transverse fibres, which connect the two hemisyheres together, are developed in the pons, The certbellum is als, connected below with the miedula olvorgata by the pair of restaform bodies, or inferior poduncles, tnd abovo with the corpora quadrigerena by the pair of superior poduncles.

The middle cerebral vasicle bends forwards from the posterior resicle. In its roof the outre lobes are formacd; in its lloor the crura cercbri; whilst the dentral hollow becomes tlie aquedut. of Sylvizes. At first the optic lobes form a single structrre, but about the sixth month of embryo life a median furrow dividee this structure iuto two lateral halves (the corpora bigemina), and in tho lower vertebrates the develcpment does not proceed beyond this stage: tut in the seventh month of embryo life of the human faius each lateral half is subdivided into two ky a transverse fissure, so - that four bodies (the corpora quadrigemina) ale produced. I'he crura cerebri form the two ccrebial peduncles, which, diverging from each other, pass upwards to the bemisphere of the cerebrum. They consist almost entircly of nerve fibres continuous with the longitudinal fibres of the pons, s few of which go to the corpora quadrigemina, but the greater number ascend to the cercbrum.
The anterior cercbral vesicle beuds downwards from the middle vesicle. The posterior part of this vesicle forms at first a simplo bollow sac, but subsequently divides into the two optic thalami, ono on each side of the central hollow, which hollow becomes the third ventricle. This ventricle is prolonged downwards inte a funncl-shaped process, the infundibulum, which is connected with the piluitary body, or hypophysis cerclri, lodged in the pituitary fossa in the sphenoi 1 bone, whilst posteriorly it is continuous with the aqueduct of Sylvius. In its upper and posterior wall the pincal body, or cpiphysis cercbri, is dercloped. and from this body two white pauncles run forwards on the sides of the optic thalami. lmmediately below these peduncles the mansverse fibres of the pastcrior commissurc are developed, which pass between the two optic thaleni. Tha anterior wall of this ventricle is closed in by. the lamina cinctca or lamina lerminalis, and belind it are formed the transverse Derve fibres of tha autcrior commissure, and the vertical fibres of the anterior pillars of the fornix. These fornis fibres pass to the base of the brain, and form the corpora albionntio, prior to eniering the optic thalami. The pastcrior part of the antcrio vesicle gives off from each side a flask-shaded frolugation, tha
primary optic resicte. The stem of the prolongation, at firat hollow, becomes solid, and forms the opt ie rerve and tract, whilst the Expanded diatal ead forms the servowe eleraents of the rctina.
T'ho avtero-lateral part of the anterior cerebral vesicle is prolonged forward as two hollow processes, the hemisphere vesicles, which liccomo the cercbral hemispheres, and are separated from each other by a median longitudinal fiasure; whilst the bollow is tho interior of each forms the lateral veniricle. In the floor of each hemispliere resicle is developed a large grey mass, atrinted with bundles of acrve fibres, the corpus striatum, which lies immediately in front and to tha outer side of the optic thalamas; a curved band, tha henia semicircularis, is formed along the juaction of the thalamus with the corpus atriatum, and at the inner and anterior cod of this band, immediately behind tho anterior pillars of the fornix, the two lateral voutricles becomo continuous with cach other and with tha third ventricle through the foramen of Nonro. The roof and tide walls of eacb hemisphere vesielo form a grey expausion or mantle, Which is at first smooth, but anbsequently becomes divided into bbes and convolutions, scparated from each other by fissures. A fcep gap or fissure now appears on the inner wall of cach hemiphore vesicle, and is bounted obove by a longitudinal band of ibros, which, continuous anterionly with tho anterior pillar of tho formix, joins its fellow in the middle line to form the body of the ornix, and then again diverging from its fellow passes backwards, lowawards, and forwards as the posicrior pillar of the fornix or the honia hippocampi. A transverse arrangement of fibres then forms beach hemisphero vesicle, above the plano of the fornix, which, feacliag the mesial planc, joins its fellow, connects tho two hemiopheres together, and forms the corpus callosum. In the hiader part this corpus rests upon the upper aurface of the fornix, but more anteriorly it lics some distance abovo tho fornix, aml then bends down in front of it. Ilenca there is eaclosed betwcen the fomix and the antero-inferior part of the corpus callosum two thin layera of grey mattcr, ode belonging to the inger surface of each hemispliere vesicle, and called the scptum tucidum. Between these two layers is a barrow prace, tha fifth venuricle, which, unlike the other ventricles, is not derived from the cerebro-spinal tulue, but is merely a portion of the longitudinal median fissure alme in by tho develop. nuent of the corpus callosum and fornix. Wach hemisphere vesicle also gives off from its anterior part a hollow process, which expands is front iato a bulbous dilatation, naraed the olfactory bulb, from which the nerves of amell arise, whilst the atalk of the bulb solidifics and forms the olfactory peduncle.

Owing to the great development of the mantu of the hemisphere vesiclos in the human braia, and the size and complexity of the convolutioas, these parts of the hemispheres grow forward so as to overlpp the olfactory bulbs and peduacles, and backward, so as to conceal not only the corpora striata and optic thalami, bat also the corpora quadrigemina, crura cerebri, cerebellum, pons, and medulla obloagata, ao that when the human brain is looked at from above, uone of these structures can be seen. It is only whon the braia is turned ovar and its base exposed that the medulla, pons, ccrebellam, and crura are visibla; and before the corpora quadrigemina, optic thalami, and corpora atriata can be exposed, portions of the hemi3 phere aubstance must be removed. The great growth of the hemiophera vesicle leads also to a great expansion of the central liollow or lateval vertricle, which is proloaged forwards, backwards, and downwards as the anlerior, posterior, and desecnding cornua. In tho loscending cornu is a projection, tho hippocamus major, aloag which the tenia hippocampi of the fornix runs; in the posterior coraul is a smaller eminence, the hippocampus minor; and at the junction of thasa two coraua is a third elevation, the cminentia collateralis.

Imrocdiately investing the spinal cord and encephalon a vascular membrana, tho pia mater, is developed, processes from which dip iato the fissures between the two halves of tha cord and between tho cerobral coavolutions. A broad baad, the velum interpositum, which possegses two marginal fringes, the choroid plexuses, is grmitted into tho lateral ventricla through tha gap or fissure in the inner wall of each hemisphere vesicle. This fissure is bounded pbove by the arch-shaped fornix, with its teaia hippocampi. When He two hemispheres ara in situ, and tha two halves of the fornix are pised togother to form the body of that atructure, the fissure, with is contained velum interpositum, passes across tha mesial plane from ons hemisphere to tho other, haviag the foraix and tænix for its roof, and the optic thalami and corpora quadrigenuina for its lloor; it is known as the great transverse fissure of the cercbrum.

Mesibranes of Brain and Spinal Cord.-These netve sentres are invested by three membranes or meninges, which lie between them and the bones that form the walls of the cranial cavity and spinal canal. The membraues are named dura mater, arachnoid mater, and pia rnater. -

Dura mater. -The most external membrane, named àter from its firmness, consists oi a cranial and a spinal eubdivision. The erauial part is in contact with the inner
tablo of the cranial bones, and is adherent along the lines of the sutures and to the margins of the foramima, which transmit the nerves, noore especially to the foramen mag. num. It forms, therefore, for these bones an internal periosteum, and the meningeal arteries which ramify in it are the nutrient arteries of the inner table. As the growth of bone is more active in infancy and youth than in the adnlt, the adhesion between the dura mater and the cranial bones is greater in early life than at maturity. From the inner surface of the dura mater strong bands pass into tho cranial eavity, and form partitions between certain of the subdivisions of the brain. A vertieal longitudimal mesial band, named, from its sickle shape, falx cercbri, dips between the two hemispheres of the ecrebrum. A smaller siekleshaped vertical mesial band, the falx cerebelli, attached to the internal occipital crest, passes between the two hemispheres of the cerebellum. A large band arelies forward in the horizontal plane of the cavity, from the transverso groove in the occipital bone to the clinoid processes of tho sphenoid, and is attached laterally to the upper border of the petrous part of each temporal bone. It separates tho cerebrum from the cercbellum, and, as it forms a tentlike covering for tho latter, is named tentorium ccrelelli. Along certain lines the cranial dura mater splits into two layers, to form tubular passages for the transmission of venous blood. These passages are named the venous blood sinuses of the dura mater, and they aro lodged in the grooves on tho inner surface of the skull referred to in the description of the eranial bones. Opening into these simses are

Fio. C3.-Dors meter and cranial sinusea 1, Felx cercbri; 2, tentorlam- 3, 8 , supertor longhudinal shius; 4, tareral sinus; B, intermal jugular veln; 6, ocel-

 Guicn; 9 ald io, superior and inferior petrarel sinus; 11 , cevernous sinus: in circuinr sous, winch conocets the iwo cavernoas sinuses logether
mic velo, from 25 , the cyeball ; 14 , cribta gall of ethnold buoo.
numerous veins, which convey from the brain the blood that has been circulating through it; and two of theso sinuses, called cavernous, which lie at the sides of the body of the sphenoid bone, receive the ophthalmic veins from the eycballs situated in the orbital cavitics. These blood sinuses pass usually from before backwards: a superior longitudinal along the upper border of the falx cerebri is far as the internal occipital protuberance; an inferior longitudinal along its lower border as far as the tentorinm, where it joins the straight sinus, which passes back as far as the same protuberance. One or two small occipitol sinuses, which lie in the falx cerebelli, also pass to join the straight and longitudinal sinuses opposite this protuberance; several currents of blood meet, therefore, at this spot, and as Herophilus supposed that a sort of whirlpool was formed in the blood, the name torcular Herophili has been used to cxpress the meeting of these sinuses. From the torcular the blood is drained away by two large
sinuses, named lateral, which curve forwards and downwards to the jugular foramina to terminate in the internal jugular veins. In its course each lateral sinus receives two petrosal sinuses, which pass from the cavernous sinus backwards along the upper and lower borders of the petrous part of the temporal bone.

The spinal part of the dura mater bangs loosely in the spinal canal. It docs not form a periosteum for the vertebre, but is separated from their bony rings by loose fat and a plexus of veins. It gives off no bands from its inner surface, and it does not split into two layers for the lodgment of venous blood sinuses. The spinal dura mater forms a tubular envelope for the spinal cord and the origins of the spinal nerves, It extends from the fcramen magnum, where it is continuous with the cranial dura mater, to the lowerend of the sacral canal, ends below in a funnel-shaped prolongation, and is pierced laterally by the roots of the scveral spinal nerves in their passage outwards to the intervertebral foramina.

Both the cranial and the spinal parts of the dura mater consist of a tough, fibrous membrane; somewhat flocculent externally, but smooth, glistening, and free on its inner surface. The inner surface has the appearance of a serous uncinbrane, and when examined microscopically is seen to consist of a layer of squamous endothelial cells, similar to those drawn in fig. 34. Hence the dura mater is sometimes called a fibro-serous membrane. The dura mater is well provided with lymph vessels, which in all probability open by stomata on the free inner surface. Between the dura mater and the subjacent arachnoid membrane is a fine space containing a minute quantity of limpid serum, which moistens the smooth inner surface of the dura and the corresponding smooth outer surface of the arachnoid: It is regarded as. equivalent to the cavity of a sorous membrane, and is named the arachnoid cavity, or, more appropriately, the sub-dural space.

Arachnoid mater.-The arachnoid is a membranc of great delicacy and transparency, which loosely envelopes both the brain and spinal cord. It is separated from these organs by the pia mater; but between it and the latter membrane is a distinct space, called sub-arachnoid. The sub-arachnoid space is more distinctly marked beneath the spinal than beneath the cerebral parts of the membrane, which forms a looser investment for the cord than for the brain. At the base of the brain, and opposite the fissures between the convolutions of the cercbrum, the interval between the arachnoid and the pia matter can, howeser, always be seen, for the arachnoid does not, like the pia mater, clothe the sides of the fissures, but passes lirectly across between the summits of adjacent convolutions. The sub-arachnoid space is subdivided into numerous freely sommunicating loouli by bundles of delicate areolar tissure, which bundles are invested, as Key and Retzius have shown, by a layer of squamous endothelium. The space contains a limpid cercbrospinal fluid, which varies in quantity from 2 drachms to 2 ounces. The fluid is alkaline, of sp. gr. 1-005, conteins a little albumen, and a substance which, as Turnen pointed out, reduces blue oxide of copper to the state of yellow sub-oxide. The arachnoid membrane is made up of delicate connective tissuc. The free surface next the sub-dural space is smooth, like a scrous membrane, and covered by a layer of squamons endothelium. This layer is reflected on to the roots of the spinal and cranial nerves, and, when they picree the dura mater, it becomes continuous with the eudathelial lining of that nembrane. As the arrangement and strueture so closely correspond with what is seen in the scrous membranes, many anatomists regard the arachnoid as the visceral layer of a scrous membrane, and the endothelial lining of the dura mater as the parietal layer. whilst the rub-dural space is the intermediate cavity.

When the skull cap is removed, clustere of granular bodies aro usually to be seen imbedded in the dura mater on each side of the superior longitudinal sinus; those are named the Pacchionian bodies. When traced through the dura mater they are found to spring from the visceral or proper cerebral arachnoid. The observations of Luschka and Cleland have proved that villous processes invariably grow from the free surface of that membrane, and that whern these villi greatly increase in size they form the bodics in question. Sometimes the Pacchionian bodics greatly hypertrophy, occasion absorption of the bones of the cranial vault, and depressions on the upper surface of the brain.

Pia mater.-This membrauc closely invests the whrle outer surface of the brain. It dips into the fissurcs between tho convolutions, and a wide prolongation, named velum interpositum, lies in the interior of the cerebrum. With a little care it can be stripped off the brain without causing injury to its substance. The pia mater invests the spinal cord, and is more intimately attached to it than to the brain, for not only docs it scmi prolongations into the anterior and posterior fissures of the cord, but slender bands pass repeatedly from its inner surface into the columns of the cord. Hence it cannat lic stripped off the cord without causing injury to its subsstance. The pia miatter is prolonged on to the roots both of the cranial and spinal nerves, and on to the filum terminale. This membranc consists of a delicate connective tissuc, in which the arteries of the brain and spinal cord ramify and subdivide into small brinches before they penctrute the nervous substance, and in which the veins convcying the blood from the nerve centres lio before they open into the blood sinuses of the cranial dura mater and the extra: dural venous plexus of the spinal canal. The artcrics which pass from the pia mater into the brain and spinal cord are invested by a loose sheath, which has been described as forming the wall of a peri-vascular lymphatic vessel; but Kcy and lictzius have shown that the space between the bloud-vessel and the sheath opens into the subarachnoid space, and contains cerebro-spinal fluid. A network of lymph vessels ramifies rreely in the pia mater. It is also well provided with nerves, which orise from the posterior roots of the spinal nerves, from some of the cranial nerves, and from the carotid and vertebral plexuses of the sympathetic. The epi-cerebral and epi-spinal spaces described by His as existing between this membrane and the brain and spinal cord are in all probability artificial productions.

In the spinal canal a slender fibrous band projects from Ligamea. the pia mater covering the side of the cord, and, pushing tuin dent. the arachnoid membrane in front of it, is attached by culatum. about twenty-two pairs of denticulated processes to the inner surface of the dura mater. It is paned ligamentun denticulatum, and its teeth alternate with the successive pairs of spinal nerves.

Spinal Cord.-The Medulla Spinalis, or Spinal Cord, occupies the spinal canal, and extends from the furamen fnagnum to opposite the body of the first lumbar vertcbra. In the early foetus it cquals in length the canal itself; but as the spinal column grows at a greater proportional rate than the cord, tho latter, when growth has ceased, is several inches shorter than the column. The cord is continuous abore with the medulla oblongata, whilst it tapers off below into a slender thread, the filum terminale, which lics in the axis of the sacral canal, and is attached below to the back of the coccys, or to the fibrous mem. brane which closes in below the sacral canal. The length of the cord is from 15 to 18 inches. It approaches a cylinder in shape, but is flattened on its anterior and posterior surfaces, and presents two enlargements which have a greater girth than the rest of the cord. The upper.
called the cervical or trachial enlargement, extends from opposite the third cervical to the first dorsal vertebra, and from it arise the nerves which supply the upper limbs; the lower, called the crural or lumbar enlargement, is opposite the last dorsal vertebra, and supplies with nerves the lower limbs. The cord is almost completely divided into right and left lateral halves by two fissures, named respectively anterior and posterior median fissures, which do not quite reach the centre of the cord, for at the bottom of the anterior fissure aro the transverse filres of the anterior whitc commissure, and at the bottom of the posterior fissure he fibres of the posterior grey commissure. By these commissures the two halves of the cord aro united together. The fibres of the posterior commissure surround a canal, called the central canal, which oxtends along the whole length of the cord, and even passes into the upper end of the filum terminale. This canal is lined by a ciliated columnar endothelium, and expands superiorly into the eavity of the fourth ventricle. Each lateral half of the cord is subdivided into three columns by two depressions, which mark the points of emergence of the roots of the spinal nerves. The anterior nerve roots pass through the antero-lateral depression or fissure, and between it and the antero-median fissure is the anterior column of the cord. The posterior nerve roots pass through the postero-lateral fissure, and between it and the postero-median fissure is the posterior column, whilst between the anterior and posterior nerve roots lies the lateral column. In the cervical region, the part of the posterior column which lies next tae postero-median fissure is marked off by a fissure into a small internal or postero-median column. The subdivision of cach lateral half of the cord into the columns, and the arrangement of its nervous tissues, are well seen in transverso sections through its substance. The cord is composed of white and grey matter. The white
 matter is external, Fio. 6t,-Transserso section tiroogh tho eplinal cord. and forms the co- AF, antero-median, and PF, Posserovemedian fisures; lumns of the cord. The grey matter is surrounded by the white, and has in each lateral half of the cord a crescentic shape. The horns of the crescent are directed towards the fissures of emergence of the nerve roots; the anterior horn is rounded ; the posterior long and narrow. The proportion of grey matter to the white varies in different parts of the cord. At the commencement of the filum terminalo there is scarcely any F. Wite matter; but the white matter increases in amount from below upwards, so that its absolute quantity is greatest in the cerrical part of the cord. The grey crescents are thicker in the upper and lower enlargements than in the intermediate part:
The cord contains both nerve fibres and nerve cells. The external, columnar, white part of the cord consists of nerve fibres, with a supporting reticular framework of connective tissue and blood-vessels derived from the pia mater. Wellformed stellate connective tissue corpuscles lie in this supporting framework. The nerve fibres of the various columas cxtend Iongitudinally, and lie parallel to each other, so that in transverse sections through the columns the fibres are
transversely divided. The individual fibres rary much in diameter, but in all the axial cylinder and medullary sheath can be distinctly seen. Wherever the nervo roots enter into the cord, the fibres of these roots pass transversely or obliquely in their course inwards to the grey matter. Horizontal fibres are also found in the white anterior commissure, and a similar appearanco can be seen in the posterior commissure. Horizontal fibres have also been traced from the lateral columns into the adjacent part of the grey matter.

The grey crescentic portion of the cord contains connective tissue, blood-vessels, nerve fibres, and nerve cells. The nerve fibres in the grey matter are numerous; and whilst some possess a medullary sleath, others consist only of the axial cylinder; they divide and subdivide, and, as Gerlach "has shown, form a narrow-meshed network of extremely minute fibres. The nerve cells are multipolar, and are chiefly collected in the anterior and posterior horns of each crescent. The cells of the anterior cornu aro large, distinet, and stellate, and form a well-defined group of nerve cells. Those of the posterior cornu are smaller in size, more elongated in shape, but with stellate branched processes. They are not so distinct as in the anterior horn, owing to the connective tissue with its corpuscles being so abundant. This tissue is best marked at the tip of the posterior horn, where it forms the substantia gelatinosa of Rolando. Lockhart Clarke has described an intermedio-lateral group of nerve cells situated at the outer side of the grey matter, about midway between the anterior and posterior horns, in the upper part of the cervical portion of the cord, and in the thoracic part between the brachial and crural enlargements.
The course of the fibres in the cord and their relations to the nerve cells should now be considered. There can be no doubt that of the longitudinal fibres some ascend from below upwards, and conduct either excito-motory impulses to the regions of the spinal cord itself, or sensory impulses to the brain: Other longitudinal fibres again descend from the brain and higher regions of the cord to the lower, and conduct motor and vaso-motor impulses from above downwards. The horizontal and oblique fibres of an anterior or motor nerve root enter the grey matter of the anterior cornu, and seem to have the following arrangement: some become directly continuous with the axial cylindrical processes of the nerve cells; others pass into the anterior commissure; others extend as far as the grey matter of the posterior horn. The nerve cells of the antcrior cornu give origin, therefore, directly to nerve fibres by their unbranched processes. Gerlach's observations show that the branched processes of these cells become continuous with the network of extremely minuto fibres already described in the grey matter; from this network medullated fibres appear to arise which leave the grey matter; some enter the lateral column,"and ascend as the fibres of this structure; others pass as fibres of the anterior commissure to the opposite side of the cord, and ascend as the anterior column of that side. The anterior and lateral columns, therefore, are constantly receiving accessions of fibres from the enclosed grey matter.
The fibres of a posterior or sensory nerve root on entering the cord subdivide into two bundles; one does not enter the grey matter, but applies itself to the posterior column, of which it forms some of the rertical fibres. These fibres may aseend to the brain, or they may at some higher point in the cord enter the grey matter of the posterior horn. The other bundlo of posterior root fibres at once enters the posterior horn of grey matter. The connections and ultimate arrangement of these fibres in the grey matter have not been satisfactorily made out. Gerlach states that, as they frequectly subdivide on entering the grey matter, it
is possible they may form the fine nerve fibre plexus of the grey substance; but a direct continuity between them and the axial-cylinder processes of the cells of the pusterior hurn dues not seem to have been observed. From the plexus, formed by the much subdivided processes of these cells, fibres arise, which, forming the fibres of the posterior commissure, pass both in front of and behind the central canal to the opposite side, where they ascend towards the brain, "partly in the vertical fasciculi of the posterior cornua and partly in the posterior columns."

The structure of the spinal cord shows it to be both a nerve centre and a conductor of nervous impulses. The nerve cells in its grey matter give rise either directly, or through the delicate plexus formed by their branching processes, to nerve fibres, which may either pass out of the cord as the anterior and posterior roots of the spinal nerves, or may ascend to the brain as the columns of the cord. Heace the cord is anatomically continuous, on the one hand, through the nerves which arise from it, with the peripheral end-organs in the skin, and muscular system in which those nerves terminate; and, on the other hand, it is continuous with the brain. It serves, therefore, to conduct the impulses of touch-sonsation from the skin upwards to the brain, and the motor impulses from the brain downwards to the museles. But further, the cord is the great nerve centre concerned in reflez excito-motory actions. It must, also, be remembered that the two halves of the cord are aratomically continuous with each other through the nerve fibres of the commissures, so that it acts as a single organ, and not as tro organs. Experiments have shown that sensory impulses are conducted upwards through the cord, not by that half from which the nerves arise that have been excited, but by tho opposite half of the cord, which is obviously due to the crossing of the fibres of the posterior commissure. Motor impressions are, however, conducted downwards by that half of the cord from which the nerves arise that pass to supply the muscles to be moved.

The spinal cord is well supplied with blood by uumerous arteries, which terminate in a diffused capillary network. The capillaries are much more mumerous in the grey matter of the cord than in the white columns.

Origin, Arrangement, and Distribution of the Spinal Nerves.-The spinal cord gives origin to thirtyone pairs of Spinal nerves, which pass out of the spinal canal through the intervertebral foramina. These nerves are arranged in groups, according to the region of the spine through the foramina in which they proceed. There are eight pairs of cervical nerves; the first or sub-occipital emerges between the occipital bone and the atlas, the eighth between the seventh cervical and first dorsal vertebre. Twelve dorsal or thoracic nerres pass out on each side in relation to the dorsal vertebre: five pairs of lumbar nerves in the region of the loins; five pairs of sacral nerves through the sacral foramina; and one pair of coccygeal nerves through the lowest openings. in the spinal canal. Each spinal nerve arises by two roots, an unterior and a posterior, from the side of the cord. These roots aro distinguished from each other both anatomically and physiologically. The posterior root has a swelling or ganglion on it, whilst no ganglion exists on the anterior root. The posterior root consists of sensory nerve fibres, i.e., of fibres which conduct impulses from the periphery into the nerve centre; whilst the anterior root is composed of motor nerve fibres, i.e., of fibres which conduct impulses from the centre to the periphery. The ganglion is situated on the posterior root, as a rule, in the intervertcbral foramen; but the lower sacral nerves have the ganglia on their posterior roots in the spinal canal. These ganglia cointain bipolar nerve cells, and the ucrec fibres, sis they
pass through each gangliun, are apparcutly cunnected vith the poles of the cells. The roots of the spinal nerves vary in direction and length. Those of tho cervical nerve: are short, and run almost horizontally outwards to their respective intervertebral. foramina; those of the dorsal are longer and more oblique; whilst the roots of the lumbar and sacral nerves, owing to the cord ending much aborc the foramina through which the nerves proceed, are very long, and form a leash of nerres in the lower part of the spinal canal, which surrounds the filum terminale, and, from 3 its general resemblance in arrangement to the hairs of a horse's tail, has been named cauda equina.

The anterior nerve root joins the posterior immediately outside the ganglion, and by their junction a spinal nerve is formed. This nerve contains a mixture of both motur and sensory fibres, and is compound therefore in function. Almost immediately after its formation the nerve separates into two divisions, an anterior and a posterior, and each division, like the nerve itself, contains both motor and scusory fibres.

The Posterior Primary Divisions of the spinal nerves, smaller than the anterior, are distributed both to the muscles and skin on the back of the axial part of the budy. Their geneial arraggement is as follows: each division, with some three or four exceptions, subdivides into an internal and an external branch. In the back of the nect and the back of the upper part of the chest, the external branches of these nerves supply the deep muscles; the internal branches pieree the muscles close to the spines of the vertebræ, and end in the skin; the internal branch of the second nerve, called great occipital, and that of the third cervical, pass to the skin over the occipital bone. In the back of the lower part of the chest and of the loius, the internal branches supply the deep muscles, the external branches pass to the skin, those of some of the lumbar nerves extending as far as the skin of the buttock.

The Anterior Primary Divisions are not so uniform either in arrangement or distribution as are the pos terior. They supply the front and sides of the axial part of the neck and trunk, and the extremities. The anterior divisions of the twelve thoracic nerves have the most simple arrangement. Each nerve, called from its position an intercostal nerve, runs outwards, immediately below the lower border of a rib, and gives origin to three series of branches, named communicating, muscular, and cutaneous. By the Communicating branch each intercostal nerve is counected with an ad-

Fic. 65.- Diagram of the arrangement of 3 palr of thoracic spinal nerves. SC, spinas cord; AK, anterior nerve root; 1 'R posterlor root, with les ganglion; PD, pisterior primary division: $A D$, anteilor primary divisioo, or intercostal nerve: SG, sympatbetic gasglion, with the communicating branclies between it and the anterior division; M. muscles, with the motor branches entering them: LC, lateral coraneous, and $A C_{3}$ anicrion cutancous nersea jacent ganglion on the thoracic portion of the sympathetic system. By tho Muscular or motor branches these nerves supply the intercostal muscles, the levatores costarum, and the triangularis sterni, whilst the lower intercostal nerres run forwards and downrards into the wall of the abdomen, and supply the two oblique, the transverse, rectus, and pyramidalis muscles. The skin of the sides of the thorax and abdomen receires its nervous supply from the Lateral Cutancous branches, whilst the skin on the front of the trunk is supplied by the Anterior Cutaneous terminations of these nerres. The lateral cutaneous branches of the second and third intercostal nerres are comparatively large in size, and assist in the supply of the skin of the inner sids of
the upper arm; heuce they are called intercosto-humeral nerves.

In the regions of the neck, loins, and pelvis, the auterior divisions of the spinal nerves do not pass simply outwards to their distribution. In each region adjacent nerves interlace with each other, and form what is technically called a nervous plexus. When a branch arises from a thoracic nerve, it contains fibres derived from that nerve only; but when a branch arises from a plexus, it may contain fibres, not of one only, but of two or more of the nerves which, by their interlacement, form the plexus. Hence the parts which are supplied by these branches are brought into connection with a greater number of nerves, and consequently with a greater extent of the spinal cord or nerve centre, than are the parts which receive branches from a single uerve only. These plexuses are especially found in connection with the nerves which supply the extremities, where, owing to the complexity of the muscular movements, the co-ordination of these movernents through the nervous system is rendered necessary.

The anterior divisions of the eight cervical nerves are arranged in two plexuses, named cervical and brachial.

The Cervical plexus (Pl. XVII.) is formed of the four upper cervical nerves, which make, by interlacement with cach other, a series of loops in front of the transverse processes of the cervical vertebre. Arising either directly from these nerves, or from the plexus which they form, are communicating, muscular, and cutaneous branches. The Communicating branches connect these nerves with the large superior cervical ganglion of the sympathetic system, also with the vagus, accessory, and hypoglossal cranial nerves, and with the descending branch of the hypoglossal. 'The Afuscular branches supply the anterior recti muscles of the neek, the levator scapulæ, the posterior scalenus, the diaphragm, and in part the sterno-mastoid and trapezius. The branch to the diaphragm, or the phrcnic nerve, is the most important (Pl. XVII. φ); it springs from the third, fourth, and fifth cervical, and passes down the lower part of the neck, and through the thorax, to supply its own half of the diaphragm. The Cutaneous branches are as follows:-the occipitalis minor, to the skin of the occiput; the auriculo-parotidean, to the skin over the parotid gland and the adjacent part of the auricle; the transversalis colli, to the skin of the front of the side of the neck; the supra-clavicular nerves, to the skic of the lower part of the side of the neck, and upper part of the chest.

The Brachial plexus (Pl. XVII. 1, 2, 3, 4) is formed of the four lower cervical nerves, and of the larger portion of the first intercostal, called also first dorsal nerve. It is of large size, and is principally for the supply of the upper limb. Its exact mode of arrangement presents many variations, but the following is not unfrequently found:-The fifth and sixth nerves join to form a large nerve, which, after a short course, is joined by the seventh; in this manner the upper cord of the plexus is formed. The eighth cervical and the first dorsal then join, to form the lower cord of the plexus. These cords then pass behind the clavicle and subclavius muscle into the axilla, where they become modified in arrangement. From each a large branch arises, and these two branches then join to form a third cord. These three cords have special relations to the axillary artery: the one which lies to its outer side is anmed the outer cord; that to the inner, the inner cord; that behind, the posterior cord. These nerves and tho cords formed by them give origin to communicating, muscular, cutaneous, and mixed branohes. The Communicating branches join the middle and inferior cervical and first thoracic ganglia of the sympathetic 6yuterl Tho Muscular branches supply the scaleni, longes
colli, rhomboid, and subclavius muscles; the supra and infra-spinatus muscles, through a branch called suprascapular; the scrratus magnus, through the posterior thoracic branch; the greater and lesser pectorals, through the two anterior thoracic branches; and the subscapularis, teres major, and latissimus dorsi, through the thres subscapular branches. The Cutaneous branches arise from the inner cord, and are the lesser internal cutaneous, which ends in the skin of the inner side of the upper arm, and joins the intercosto-humeral; and tho internal culancous, which not only sends branches to the skin of the upper arm, but supplies the skin of the inner side of the forcarm, both on its anterior and posterior surfaces. The Mixed branches are large and very important:a, The Circumfex, from the posterior cord, supplies the deltoid and teres minor museles, tho skin over tho deltoid, and the shoulder joint. b, The Musculo-Spiral, also from the posterior cord, supplies the triceps and anconeus, the supinator longus and extensor carpi radialis longior muscles; and by its external cutaneous branch, the skin of the outer side of the back of the forearm. It then divides into the radial and posterior interosseous branches. The radial passes through the forearm to the hand, and supplies the skin on the back of the thumb, index and middle digits, and radial side of the ring digit. The posterior interosseous supplies the muscles on the back of the forearm and the articulations of the carpal joints. c, The Musculo-Cutancous branch of the outer cord of the plexus supplies the biceps, brachialis anticus, and coraco-brachialis museles, and ends in an external cutaneous branch, which supplics the skin of the outer side of the forearm, both in front and behind. d, The Ulnar nerve arises from the inner cord, passes through the upper arm, and enters the forearm betwoen the inner condyle and olecranon, where it supplies the elbow joint. Here it may easily be compressed, when a pricking sensation is experienced in the course of its distribution. In this spot it is popularly called the "funny bone." In the forearm the ulnar nerve supplies the flexor carpi. ulnaris and inner part of the flexor profundus digitorum muscles. In the hand it supplies the muscles of the ball of the little finger, the two inner lumbricales, the interossei muscles, and the adductor and deep part of the short flexor of the thumb. It also supplies a dorsal cutaneous branch to the back of the hand, and the back of the little and of the ulnar side of the ring digits. Palmar cutancous branches are also given to the palm and the palmar aspects of the same digits. e, The Median nerve arises by two roots, one from the inner, the other from the outer cord of the plexus. It enters the forearm in front of the elbow joint, supplies, either directly or through its anterior interosseous branch, all the flexors and pronators, except thoso supplied by the uluar; is continued to the hand, where it supplies the abductor, opponens, superficial part of the short flexor of the thumb, and two outer lumbrical muscles. It also supplies a palmer branch to the skin of the palm, and gives digital cutaneous branches to the thumb, index and middle digits, and radial side of the ring digit.

The Lumbar plexus, of large size, is situated at the back of the abdominal cavity in the region of the loins, and is formed by the four upper lumbar nerves, which form a series of loop-like intcrlacements in front of the transverse processes of the lumbar vertebre: It gives origin to communicating, muscular, cutaneous, and mixed branches. The Communicating branches join the four upper lumbar ganglia of the sympathetic sysiem. The Muscular branches supply the quadratus lumborum muscle, and give branches to the psoas. The Cutaneous branches are named-a, Ilio-hypogastric, which gives an iliac branch to the skin of the buttuck, and a hypogastrie branch to the akin of the abdomen above the pubio symphysis; i°
voz. I.

EMCYCLOPADIA BRITANNICA. NINTH EDITIOM.

Ilio-inguinal, which supplies the skin of the grein; this nerve is by some said to send a branch to the internal oblique muscle; c, External Cutaneous, which supplies the skin on the outer arject of the thigh. The Mixed branches are as follows:-a, Genito-crural, which supplies the cremaster muscle, and a cutaneous branch to the skin of the groin. b, Anterior Crural, a large nerve which enters the thigh by passing behind Poupart's ligament, and supplies the great extensor muscles of the knec-joint, and also the sartorius, the psoas-iliacus and the pectineus, which act as flesers of the hip-joint; it gives off the following cutaneous branches:-An internal cutaneous to the skin of the inner side, a middle culaneous to the skin of the middle of the front of the thigh, and the long saphenous nerve, which supplies the skin of the inner side of the-knee-joint, the inner side of the leg and the foot. c, Obturator nerve, which leaves the pelvis through the obturator foramen, and supplies the obturator externus and adductor muscles of the thigh, and sends a branch to the pectineus; it also supplies the hip and knee joints, and not unfrequently gives a branch to the skin of the lower part of the inner side of the thigh. d, An Accessory Obturator nerve is sometimes Ircsent, which goes to the pectineus, to the hip-joint, and aiso joins the olturator nerve.

FiD. 66.-Lumbar, sacral, and sacro-coccycea plextises. DXII, the lowest thoracle nerve of the intercostal series: $L I$ to $1 V$, the nerves of the lumbar plexas: V. the ffth lumbar. WIth S , the lumbo-sacral cord: SI to $I \mathrm{~V}$, sacral acrves gning to form the sacral plexus; ∇ and Cl . the sacro-coccygeal plexas; a, chalo of cangla of the symputhetic systern, showing tho communfeatlag branches with the spinal aerves; $c_{\text {a }}$ the last of these gangla, ealted enccyreal gangition. or
 ingulnal: 3 , exfernal catancous; i gcaito-crural ; b, aoterior crusal: 6 , obtuator: 7, superiur glatad.

The Lumbo-sacral Cord is formed of the fifth lumbar nerve and of a branch from the fourth lumbar. It joins the sacral plexus. Before the junction it gives origin to a communicating and a muscular branch. The Communicating joins the fifth lumbar ganglion of the sympathetic. The Muscular branch, named the superior glutwal nerve, supplies the glutæus medius and minimus and the tensor fasciæ femoris muscle.
The Sacral plexus is situated in the cavity of the pelvis, nud is the largest of all the plexuses. It is formed by the
junction of the lumbo-sacral curd, the first, second, third and part of the fourth sacral nerves, and appears as a flattened mass in front of the sacrum. It gives origin to communicating, muscular, and mixed branches. The Communicuting branches join the upper sacral ganglia of the sympathetic system. Tie Mrucular branches supply the upper fibres of the glutæus maxinus, the pyriformis, gemelli, quadratus femoris, and obturator internus muscles. The Nixed ncrves are as follows:-a, l'udic, which supplies the muscles and skin of the external organs of generation. b, Small Sciatic, whiclr supplies nut only the lower fibres of the glutæus maximus muscle, but the skin of the buttock, the back of the thigh, of the popliteal space, and of the leg; it also gives a long pulendal branch to the skin of the perineum. c, Great Sciatic; this is the largest nerve in the body. It leaves the pelvis through the great sciatic foramen, and passes down the back of the thigh, when it divides into external and internal popliteal branches. Before dividing it supplies the hamstring muscles, and gives a brançh to the adductor magnus. The external popliteal branch gives offsets to the kneejoint, passes down the outer side of the leg, supplies the peronei longus and brevis, gives off the communicuns peronei branch to the skin of the outer side of the back of the leg, and ends as the external cutaneous uerve for the dorsum of the foot and the dorsal surfaces of all the toes, except the outer side of the little and the adjacent sides of the great and sccond toes. The internal popliteal branch gives offsets to the knee-joint, and supplies the communicans tibialis nerve, which joins the communicans peronei. and forms with it the external saphenous nerve that paeses to the outer side of the foot and little toe. The iniernal popliteal also supplies the muscles of the calf and the popliteus muscle, and is prolonged downwards as the posterior tibial nerve. The anterior fibial passes to the front of the leg, supplies the tibialis anticus, peroneus tertius, and extensor muscles of the toes, and terminates as the cutaneous digital nerve for the adjacent sides of the great and second toes. The posterior tibial nerve passes duwn the back of the leg, supplies the tibialis posticus and long flexors of the toes, gives off a cutaneous branch to the skin of the heel, and terminates by dividing into the internal and external plantar nc-res. The internal plantar nerve supplies the skin of the sole and sends digital branches to the skin of the great, second, third, and tibial side of the fourth toes; it also supplies the abductor pollicis, fleser brevis digitorum, flexor breris pollicis, and two inner lumbrical muscles. The external plantar nerve supplies digital branches to the skin of the little and fibular sides of the fourth toes, and branches to all the muscles of the sole of the foot which are not supplied by the internal plantar nerve.
The Sacro-Coccygeal is the smallest plexus belonging to the anterior divisiobs of the spinal nerves. It is formed by a part of the fourth sacral, the fifth sacral, c.nd the coccygeal nerves. It lies in front of the last sacral and the first coccy. geal vertebre, and gives origin to communicating, visceral, muscular, and cutancous branches. The Communicating branches join the lower sacral and the coccygeal ganglia of the sympathetic system; the Tisceral pass to the pelvic plexus of the sympathetic, and through it to the bladder and rectum; the Muscular to the levator ani, coccygeus, and sphincter ani externus muscles; the Cutaneous to the skin about the anus and tip of the coccyx.

Tae Brais.-By the term Brain or Excepaalon is meant all that part of the central nervous axis which is contained within the carity of the skull. It is divided into severa! parts, named medulla oblongata. pons, cero belium, and cerclurun. The medulla oblengata is directly
continuoue with the spinal cord through the foramen magnum. The cercbollum lies above, and immediately behind the medulla oblongata, with which it is directly coutiuuous. The pons lies abore and in front of the medulla, with which it is directly contiuuous. The cerebrum is the highest division, and lies above buth pons and cerebelluru, with both of which it is directly continuous. Scveral figures of the brain are given in Plate XVIIL.

The Medulla Oblosgata rests upon the basi-occipital. It is somewhat pyramidal in form, about $1 \frac{1}{4}$ inch long, and l inch broad in its widest part. It is a bilateral organ, and is divided into a right and a left half by shallow anterior and posterior median fissures, continuous with the correaponding fissures in the spinal cord; the posterior fissure ends above in the 4 th rentricle. Each half is subdivided into elongated tracts of nervous matter. Next to, and parallel with the anterior fissure is the anterior pyramid (PL XVIII. figs. 1 and 2, P). This pyramid is continuous below with the cord, and the place of continuity is marked by the passage across the fissure of three or four bundles of nerve fibres, from each half of the cord to the opposite anterior pyramid; this crossing is called the decussation of the pyramids. To the side of the pyramid, and separated from-it by a faint fissure, is the olivary fasciculus, which at its upper end is elerated into the projecting oral-shaped olivary body (Pl. XVIII. figs. 1 and 2,0). Behind the olive, and separated from it by a faint groove, is the strong tract named restiform body; as it ascends from the cord it diverges from its fellow in the opposite half of the medulla oblongata By this divergence the central part of the molulla is opened up, and the lower half of the cavity of tho 4 b ventricle is formed. Internal to the restiform body is the pusterior pyramid, which is continuous with the postero-median column, and bounds the postero-median fissure. Where tho restiform bodies diverge from each other, there also the posterior pyramids diverge outwards from the sides of the postero-median fissure. At the upper part of the floor of the 4 th ventricle a longitudinal tract of nerve fibres, the fasciculus teres, ascends on each side of its median furrow (Fig. 68, 7). Slender tracts of nerre fibres, the arciform filres, arch across the side of the medulla immediately below the olive; and white slender tracts emerge from the median furrow of the 4 th veatricle, pass outwards across its floor, and form the strice medullares or acousticce, the roots of origin of the auditory nerve(Fig. 68,8).

The medulla oblongata, like the spinal cord, with which it is continuous, consists both of grey and white matter. But the exterior of the medulla is not so exclusively formed of white matter as is the outer part of the eord, for the divergence from cach other of the restiform bodies and posterior pyramids of opposite sides opens out the central part of the medulla, and allows the grey inatter to become superficial on the floor of the 4 th ventricle. The nerve Gbres which enter into the formation of the pyramids and the other tracts just described, are partly continuous below with the columns of the spinal cord, and are prolonged upwards either to the pons and cerebrum, or to the cerebellum, or they partly take their rise in the medulla oblongata itself from the cells of its grey matter. As the medulla is a bilateral organ, its two halves are united together by commissural fibres, which cross obliquely its mesial plane from one side to the other, and as they decussate in that plane, they form a well-marked mesial band or ruphe. Further, the medulla is a centre of origin for several pairs of the more posterior encephalic nerres, and for the raso-motor nerves. In the passage upwards through the medulla of the columas of the cord, a re-arrangement of their fibres takes place; just as in a great central railway station, the rails, which enter it in one direction, intersect and rre rearranged before they emerge from it in the opposite
direction. The fibres of the posterior median column of the cord are prolonged upwards as the posterior pyramid. The fibres of the posterior column of the cord are for the most part prolonged upwards into the restiform body, though some fibres pass to the front of the medulla to participate in the decussation of the anterior pyramids. Tho lateral column of the cord divides into three parts: a, the greater number of its fibres pass inwards across the anterior median fissure, to assist in forming the anterior pyramid of the opposite side, so as to produce the decussation already referred to; b, others join the restiform body; c, uthers form the fasciculus teres situated on the floor of the 4th ventricle. The anterior column of the cord also divides into three parts: a, some fibres form tho arciform fibres and join the restiform body; b, others assist in the formation of tho olivary fasciculus; c, others are prolonged upwards in the anterior pyramid of the samo side (Fig. 67).

The anterior pyramid consists partly of fibres of the anterior column of the cord of the same side, partly of decussating fibres of the anterior commissure, partly of decussating fibres from the postcrior columns and posterior cornu of grey matter, but principally of the decussating fibres of the lateral column of the opposite side of the cord. The fibres of the anterior pyramid aro prolonged through the pous to the cerebrum. Owing to the decussation of the

Fic. 67.-Diagrammatic diasectian of the medills oblangata snd pons to ahow the cour-e of the fibrea. a, ay pes ficial, σ, deeptransuersa shres of the pons; δ, δ, anterior pyramids ascendug at of through the pons; c, c, ollwaly bodics: C, ollvary lascleulus ia the pons; $d_{1} d_{1}$ anterfor columne of card: e inner part of the right columa joining the anterior pyramld: f tbe outer part going lo tha olivary fasciculas: g. lateral column of cord; h tbe part which dccussates at k, the decussa. thon of the pyramids: 1 , the part whict jolns the resliform bedy; m, that which forms the fanclevlna teres; n, arclform fibrea. 1 and 2 , aensory and motor roota of arin netve: 3, alxth nerre; 4, portlo dura; 5, portio Intermedia; 6, portlo mollis of seventh nerve; 7, glosso-plaryngeal: 8, phoumo-gastric: 9 , aplnal accessory of eighth nerve; 10 , hypon glossal nerve. lateral columns of the cord in the formation of the pyramids, the motor nerve fibres from one-half of the brain are transmitted to the opposite side of the cord, so that injuries affecting one side of the brain occasion paralysis of the motor nerves arising from the opposite half of the cord. The olivary fasciculus is formed partly of fibres of the anterior column of the same side, and partly of fibres arising from the grey matter of the olive. It is continued upwards through the pons to the cerebrum. The restiform body is formed principally of fibres of the posterior column of the same side, but partly of fibres of the lateral culumu, and also of the areiform fibres from the anterior column, and from the grey matter of the superior and inferior olives. As the restiform body is continued upwards to the cerebellum, and forms its inferior peduncles, the areiform fibres have been called by Solly the superficial cerebellar fibres of the medulla. Through the restiform body the cerebellum is connected with the posterior, lateral, and anterior columns of the cord as well as with the olivary nuclei in the grey matter of the medulla oblongata. The posterior pyramid consists of the posterior median column of the cord, and is prolonged through the pons to the cerebrum. The fasciculus teres is formed of a small part of the lateral column of the cord, and is also prolonged through the pons to the cerebrum.

ENCYCLOPAOIA BRTTANNICA NINTH EDITION.

The grey matter of the medulla oblongata，which containa aumern＇s multipolar nerve cella，is in part continuous with the grey matter of the spinal cord，and in part consista of in－ dependent masses．As the grey matter of the cord enters the medulla，it loses ita crescentic arrangement．The posterior cornca are thrown outwards towards the surface，lose their pointed form，and dilate into rounded masses named the grey tuberclea of Rolando，whilst portions are prolonged iato both the posterior pyramid and the restiform body． The grey matter of the anterior cornua and of the intermedio－ lateral tracts loses its continuity，and becomea sabdivided into numerous small masses，owing to being traversed by bundlea of nerve fibrea，which give rise to a network termed formatio reticularis，in the meshes of which the groups of nerve cells are contained．In the lower part of the medulla a central canal continuous with that of the cord exists，but when the restiform bodies and posterior pyramids on the opposite sides of the medulla diverge from each other，the central canal losea its posterior boundary，and dilatea into the carity of the 4 th ventricle．The grey matter in the interior of the medulla appears，therefore，on the floor of the ventricle；that which corresponds to the anterior cornua being situated immediately on each side of the median fur－ rom，whilst that which is contiouous with the grey tuberclea of Rolando and the posterior cornua is some distance ex－ ternal to it．This grey matter forms collections of nerve cella，which are the centres of origin of several important encephalic nerves．

Of the independent massea of grey matter of the medulla， that which forms the corpus dentatum within the olivary body is the most important，and constitutea the nucleus of the inferior olive．It is folded on itself in a zig－zag or denticulated manner，and forms a sort of capsule open on the inner aspect，through which openinga a bundle of nerve fibres from the interior of the capsule proceeda．These fibres aid in the formation of the olivary fasciculus，and as Deiters and Meynert have pointed out，in part arch across the mesial plane and join the restiform body on the opposite side， whilst some apparently join the poaterior pyramid．The nerve cells of the olive are multipolar and flask－shaped，and in all probability give origin to the nerve fibres proceeding from the interior of the capsule．Separated from the inner part of the olive by a layer of reticular substance is a smaller grey mąss，called by Stilling nucleus olivaris accessorius． Crossing the anterior surface of the medulla oblongata， immediately below the pons，in the majority of mammals is a transverse arrangement of fibrea forming the trapezium， which contains a grey nucleus，named by Van der Kols the superior olive．In the human brain the trapezium is concealed by the lower transrerse fibres of the pons，but when sections are made through it，as L．Clarke pointed out，the grey matter of the superior olive can be seen．Meynert dtatea that its nerve cella give origin to some fibres，which run straight backwards to the restiform body of the same side，and to others which pass across the mesial plane to the opposite corpua restiforme．

The Pons Varolit or Bridge（Pl．XVIII．figa． $1,2,3, \mathrm{~N}$ ） is cuboidal in form：its anterior surface resta upon the lorsum sella＇of the sphenoid，and is marked by a median longitudinal groove；its inferior surface receives the pyra－ midal and olivary tracta of the medulla oblongata；at its superior surface are the two crura cerebri；each lateral ourface is in relation to a hemisphere of the cerebellum， and a peduncle passea from the pona into the interior of each hemisphere；the posterior surface forms in part the upper portion of the floor of the 4 th ventricle，and in part is in contact with the corpora quadrigemina．

The pons consists of white and grey matter：the nerve Ebres of the white matter pass through the substance．of the nona，cither in a transverse or a longitudinal direction．

The tranaverse fibres go from one hemisphere of th3 cerebellum to that of the opoosite side；some are situated on the anterior surface of the pons，and form its superficial transverse fibres，whilst others pass through its substance and form．the deep tranaverse fibres．The transverse fibres of the poas constitute，therefore，the commissural or connecting arrangement by which the two hemispheres of the cerebellum become anatomically continuous with each other．The longitudinal fibres of the pons ascend or pass vertically upwards from the medulla oblongata，and consist of the fibres of the anterior pyramids，olivary fasciculi， fasciculi teretea，and posterior pyramids．They leave the pons by emerging from its upper surface as fibres of the two crura cerebri．The pons possesses a median raphe continuous with that of the medulla oblongata，and formed like it by a decussation of fibres in the mesial plane．

The grey matter of the poas is scattered irregularly through its substance，and appears on its posterior surface： but not on the anterior surface，which is composed exclu－ sively of the superficial transverse fibres．It is traversed both by the longitudinal and deep transverse fibrea，which form a well－defined formatio reticularis．To a portion of grey matter，containing nerve cells charged with dark pigment，the name of locus cocruleus is applied．The locas lies on the floor of the 4 th rentricle，close to the entrance to the aqueduct of Sylvius，and serres as the origin of the sensory root of the 5 th，and perhapa of the posterior root of the 4 th cranial nerve．The nerve cells of the pons are multi－ polar and stellate．The pons acts as a conductor of impressions through ita nerre fibres，and as a centre of origin of aerve fibrea from nerve cells．Meynert states that aome of the fibres of the crura cerebri end in the nerve cells of the pons，which cells again give origin to fibres that pass outwards to the cerebellum．
The Cerebellym，Little Brain，or After Braln（PL XVIII．fig． $2, c$ ），occupies the inferior pair of occipital fossæ， and，alang with the pons and medulla oblongata，lies beluw the plane of the tentorium cerebelli．It consists of two hemi－ spheres or lateral lobes，and of a median or central lobe，which in human anatomy is called the vermiform process．It is connected below with the medulla oblongata by the two resti－ form bodies which form its inferior peduncles，and above to the corpora quadrigemina of the cercbrum by two bands， which form its superior peduncles；whilst the two hemi－ spherea are counected together by the transverse fibres of the pons，which form the middle peduncles of the cerebellum． On the superior or teatorial surface of the cerebellum the median or rermiform lobe is a mere elcration，but on its inferior or occipital surface this lobe forma a well－defined inferior vermiform process，which lies at the bottom of a deep fossa or rallecula；this fossa is prolonged to the posterior border of the cerebellum，and forms there a deep notch which separatea the two hemispheres from each other；in this notch the fals cercbelli is lodged．Extending horizontally backwarda from the middle cerebral peduncle，along the outer border of．each hemisplacre is the great horizontal fissure，which divides the bemisphere into its tentorial and occipital surfacce．Each of these surfaces is again sub－ divided by fissures into smalier lobes，of which the most important are the amygdala or tonsil，which forms the lateral boundary of the anterior part of the vallecula，and the flocculus，which is situated immediately behind the middle peduncle of the cerebellum．The inferior vermiform process is subdivided into a posterior part or pyramid；an eleration or uvula，situated between the two tonsils；and an anterior pointed process or nodule．Stretching between the tro flocculi，and attached midway to the sides of the nodule；is a thin，white，scmilunar－shaped plate of nervous matter，called the posterior medullary celum．
The whole outer surface of thas erebelluro panmas
characteristic foliated or laminated appearance, due to its aubdivision. into multitudes of thin plates or lamellæ by numerous fissures. The ccrebellum consists both of grey and white matter. The grey matter forms the exterior or cortet of the lamelle, and passes from one to the other across the bottoms of the several fissures. The white matter lies in the interior of the organ, and extends into the core of each lamella. When a vertical section is made through the organ, the prolongations of white matter branching off into the interior of the several lamella give to the acction an arborescent appearance, known by the fanciful name of arbor vitx (PI. XVIII. fig. 3, c). Independent masses of groy matter are, however, found in the interior of the cerebellum. If the hemisphere be cut through a little to the cuter side of the median lobe, a zig-zag arrangement of grey matter, similar in appearance and structure to the nucitus of the olivary body in the medulla oblongata, and known as the corpus dentatum of the cerebellum, is seen; it lies in the midst of the white core of the hemisphere, and encloses white fibres, which leave the interior of the corpus at its inner and lower side. Stilling has described, in connection with the anterior end of the inferior vermiform process, which projects forwards into the valve of Vieussens, and aids in the formation of the roof of the 4 th ventricle, two grey masses, named roof nuclei. They possess flask-shaped nerve cells like those of the corpus dentatum. The white matter is more abundant in the hemispheres than in the median lobe, and is for the most part dirsctly continuous with the fibres of the peduncles of the cerebellum. Thus the restiform or inferior peduncles pass from below upwards through the white core, to end in the grey matter of the tentorial surface of the cerebellum, more especially in that of the central lobe; on their way they aro connected both with the grey matter of the corpus dentatum and of the roof nuclei. The superior peduncles, which descend from the corpora quadrigemina of the cerebrum, reach the grey cortical matter, more especially on the inferior surface of the cerebellum, though they also form connections with the corpus dentatum. The middle peduncles form a large proportion of the white core, and their fibres terminato in the grey matter of the foliated cortex of the hemisphercs. But, in addition to these peduncular fibres, which connect the cerebellum to other zubdivisions of the encephalon, its white matter contains fibres proper to the cerebellum itself. The fibra proprice have been especially deseribed by Stilling; some, which he nas termed the median fasciculi, lio near the mesial plane, and connect the grey matter on the tentorial aspect of the midule lobe with that of the inferior vermiform process, whilst others cross directly the mesial plane to unite opposite and aymmetrical regions of the hemispheres. Further, the auditory nerve was said by Foville to derive some of its fibres of origin from the cerobellum; the connection of this nerve with the cerebellum has been strongly insisted on by Meynert, arel this anatomist has also ascribed a cerebcllar origin to a portion of the sensory root of the 5th cranial nerve.

The grey saatter of the cortex is divided into two welldefined layers, an external grey, and au inner rust coloured layer of about equal thickness. The rust coloured lajer is distinguished by containing multitudes of so called "granules," the well-defined nucleus in which, as described by Strachan, is invested by a small quantity of branched protoplasm. These "granules" are, therefore, minute atellate cells. Where the rust coloured lajer joins tho grey layer the characteristic nervo cells of the cerebel. lum, named the corpuscles of Purkinje, are situated. A slender central process arising from each cell enters the rust coloured layer, and, as the observations of Hadlich and Koscheanikuf show, becomes continuous with the
axial cylinder of a medullated nerve fibre; for the nerre fibres of the white core enter this layer, divide into minnte fibres, and ramify amidst the granules. From tho opposite aspect of each cell two peripheral processes arise, and ramify in an antler-like manner in the external grey layer. Obersteiner and Hadlich maintain that the finer branches of theso processes curre back towards the rust coloured layer, where, according to Boll, they form a network of extreme minnteness, from which it is believed that nerve fibres may arise. The anbstratum of the grey layer, in which the branched processes of the cells of Purkinje lic, consists of a very delicate neuroglia, in which seattered corpuscles are imbedded; but, in the outer part of this layer, delicate aupporting connective tissue-like fibres are also met with.

The Fourth Ventricle is the dilated upper end of the cen. Fourth tral canal of the medulla oblongata. Ita shspo is like an Ventrich heraldic lozenge. Its floor is formed by the grey matter of

Fin. 6S.-Flear of the failith veniricla aud adjacent afructures. 1, pine gland; 2, the nstes, and 3, the testes of the corpera quadrigemina; 4_{4}, middle pidunclea 5,5 , superier pedunclea, 9 . 9 . Inferier poduocles of tha cercbellum; 6,6 , valve of Vieussens djvided; 7,7 , fascicull feretes; 8,8 , roolt of the andifory nerres; 9^{\prime}, curpus destatum; 10,10 , pesterior pyraulda; 1t calamus acilpierlus.
the posterior surfaces of the medulla oblongata and pons; its roof partly by the inferior vermiform process of the cerebellum, the nodule of which projects into its cavity, and partly by a thin layer, called valve of Vieussens, or anterior medullary velum; its lower lateral boundaries, by the divergent restiform bodies and posterior pyramids; its upper lateral boundaries, by the superior peduncles of the cerebellum; the reflection of the arachnoid membrano from the back of the medulla to the inferior vermiform process closee it in below, but allows of a communication between its cevity and the sub-arachnoid space; above, it communicates with the aqueduct of Sylvius, which is tunnelled through the sub. stance of the corpora quadrigemina. Along the centre of the floor is the median furrow, which terminates below in a pen-shaped form, the so-called calamus scriptorius. Situated on its floor are the fasriculi teretes, strix acousticr, and deposits of grey matter described in connection with the medulla oblongata. Its endothelial lining is continuous with that of the central canal.

The Cerebrum or Great Bran lies above the plane of the tentorium, and forms much the largest division of the encephalon. It is customary in human anatomy to include under the name of cerebrum, not only the convolutions, the corpora striata, and the optic thalami, developed in the anterior cerebral vesicle, but also the corpora quadrigemina and crura cerebri developed in the middle cerebrai vesicle. The cerebrum is ovoid in shape, and presentr superiorly, anteriorly, and posteriorly a deep median longutu-
diral fissure, which subdivides it into two hemispheres. Inferiorly there is a continuity of structure between the two hemispheres across the mesial plane, and if the two hemispheres be drawn asunder by opening out the longitudinal fissure, a broad white band, the corpus callosum, may be seen at the bottom of the fissure passing across the mesial plane from one hemisphere to the other. The outer surface of each hemisphere is convex, and adapted in shape to the concavity of the inner table of the cranial bones; i.ts inner surface, which bounds the longitudinal fissure, is flat and is scparated from the opposite hemisphere by the falx cerebri; its under surface, where it rests on the tentorium, is concave, and is separated by that membrane from the cerebellum and pons. From the front of the pons two strong white bands, the crura cerebri or cerebral peduncles, pass forwards and upwards to enter the optic thalami in their respective hemispheres. Winding round the outer side of each crus is a flat white band, the optic tract. These tracts converge in front, and join to form the optic commissure, from which the two optic nerves arise. The crura cerebri, optic tracts, and optic corumissure enclose a lozenge shaped space, which includes-a, a grey layer, called pons Tarini, which, from being perforated by several small arteries, is often called locus perforatus posticus; b, two white mammillæ, the corpora albicantia; c, a grey nodule, the tuber cinereum, from which, d, the infundibulum projects to join the pituitary body. Immediately in front of the optic commissure is a grey layer, the lamina cinerea or lamina terminalis of the 3 d ventricle; and between the optic commissure and the inner end of each Sylvian fissure is a grey spot perforated by small arteries, the locus perforatus anticus.

The peripheral part of each hemisphere, which consists of grey matter, exhibis a characteristic folded appearance, known as the convolutions or gyri of the cerebrum. These conpolutions are separated from each other by fissures or sulci, some of which are cousidered to subdivide the hemisphere into lobes, whilst others separate the convolutions in each lobe from each other. In each hemisphere of the human brain five lobes are recoggised: the temporo-sphenoidal, frontal, parietal, occipital, and the central lobe or insula. Passing obliquely on the outer face of the hemi, sphere from before, upwards-and backwards, is the wellmarked Sylvian fissure, which is the first to appear in the development of the hemisphere. Below it lics the tem-poro-sphenoidal lobe, and above and in front of it, the parietal and frontal lobes. The frontal lobe is separated from the parietal by the fissure of Rolando, which extends on the outer face of the hemisphere from the longitudinal fissure obliquely. downwards and forwards towards the Sylvian fissure. About two inches from the hinder end of the hemisphere is the parieto-occipital fissure, which, commencing at the longitudinal fissure, passes down the inner surface of the hemisphere, and transversely outwards for a shart distance on the outer surfaco of the hemisphere; it separates the parietal and occipital lobes from each other.
The Temporo-Sphenoidal Lobepresents on the outer surface of the hemisphere three convolutions, arranged in parallel tiers from above downwards, and named superior, middle, and inferior temporo-sphenoidal convolutions. The fissure which separates tho superior and middle of these convolutions is called the parallel fissure. The Occipital Lobe also consists from above downwards of three paralle! convolutions, named superior, middle, and inferior occipital. The Frontal Lobe is more complex ; immediately in front of the fissure of Rolando, and forming indeed its anterior boundary; is a convolution named ascending frontal, which ascends obliqucly backwards and upwards from the Sylvian to the longitudinal fissure. Springing from the front of this con-
volution, and passing forwarde to the anterior end of the cerebrum, are three convolutions, arranged in paallel tiers from above downwards, and named superiar, middle, and inferior frontal convotutions, which are also prolonged on to the orbital face of the frontal lobe. The Parietal Lobe is also complex; its most anterior convolution, named ascending parietal, ascends parallel to and imnediately behind the fissure of Rolando. Springing from the upper end of the back of this convolution is the postero-parictal convolution, which, forming the boundary of the longitudinal fissure, extends as far back as the parieto-occipital fissure; springing from the lower end of the back of this convolution is the supra-marginal convolution, which forms the upper boundary of the hinder vart of tho Sylvian

Fig. 69.

Fiz. 70.
Fics. 69 and 70 --Profile ond rertex vlews of cerebrain. Fr, ibe fiootal inbe: Par, poiletal; Oc, occipital; Ts, temporo-sphenoldal lobe: SS Sylvian भisoure: RR, fissura of Rolando: PO, parieto-occipltal fissure; 1P, intra-porictal Hevare: PP, Porallel fisbure; SF ead 15 , supero- end infero-frontal fiss.ntes ; $1,1,1$, loferins, 2, 2, 2, middle and 3, 3, 3, saperior frontal convolutions: 4, 4, oscending frontal convolution ; $5,3,3$, oscending parletal, 5^{\prime}, purteri-parietsí. and 6,6 , ongular convolutlons: A, sopra-marginol, or convolution of the parmeral emineace: 7, 7, superior. 8, 8, 8, mididie and 9,9.9, inferior temporosphenoidal convolutivaa: 10 , superior, 11 , middle, end 12 , Lnferlor cocipical conrolutions; a, β, γ, δ, four annectent convolutions.
fissure; as this gyrus occupies the hollow in the parietal bone, which corresponds to the eminence, it may apprepriately bo named the convolution of the parietal cminence. Continuous with the convolution of the parictal eminence is the angular convolution, which bends round the posterior extremity of the Sylvian fissure. Lying in the parietal lobe is the intra-parietal fissure, which separates the convolutiod of the parictal eminence from the postero-parietal con
volution. The occipital is connected with the parietal lobe by two annectent or bridgirg gyri, which bridge across the transverse external part of the parieto-occipital fissure; the

Fio. 71. -Side viem of the Brain in the akul. ${ }^{1}$
depth and extent of this fissure vary in different brains in proportion to the size of these bridging convolutions. The superior annectent gyrus passes between the postero-parietal and the superior occipital convolutions, whilst the second annectent gyrus connects the middle occipital with the angular gyrus. Two annectent gyri also pass from the inferior occipital convolution to the lower convolutions of the temporo-sphenoidal- lobe. These lobes of the cerebrum, though named after the bones which form the vault of the skull, are not exactly co-terminous with them. The frontal lobe not only lies under cover of the frontal bone, but extends backwards under the anterior part of the parietal ; for the fissure of Rolando, which forms its posterior boundary, lies from $1 \frac{1}{2}$ to 2 inches behind the coronal suture. The occipital lobe is not limited to the upper tabular part of the oceipital bone, but extends forwards under cover of the posterior part of the parietal, for the parieto-occipital fissure lies about $\frac{3}{4}$ inch in front of the apex of the lambdoidal fissure. The temporo-sphenoidal lobe not only lies under the squamous-temporal and great wing of the sphenoid, but passes upwards under cover of the lower part of the parietal, for the Sylvianfissure passes from below obliquely upwards and backwards across the line of the squamous suture near its middle. The area covered by the parietal bone so far,

[^101]then, from beang co-terminous with the parietal lobe of the cerebrum, is trenched on anteriorly by tho frontal, posteriorly by the occipital, and inferiorly by the temporosphenoidal lobe. The convolutions of the parietal lobe itself are grouped around the parietal eminence, and in the interval between it and the sagittal suture. The inner table of the cranial bones is an almost exact mould of the convolutions of these lobes; but this is not so with the exterior of the skull, the configuration of which is modified by the formation of ridges and processes for the attachment of muscles, by variations in the thickness of the diploë, and by the development of the frontal and mastoid airsinuses. Honce the outer surface of the skull does not correspond in shape to the outside of the brain.

The Central Lobe of the hemisphere, more usually called the insula or island of Reil. does not come to the surface of the hemisphere, but lies deeply within the Sylvian fissure, the convolutions forming the margin of which conceal it. It consists of four or five short convolutions, which radiate from the locus perforatus anticus, situated at the inner end of the fissure. This lobe is almost entirely surrpunded by a deep sulcus, which insulates it from the adjacent convolutions. It lies opposite the upper part of the alisphenoid, where it articulates with the parictal and-squa-mous-temporal.

Convolutions also exist on the inner surface of the hemisphere, and on the under surface which rests on the tentorium, but these have no relation to the bo
 be studied in comb en corpus callosum or great transverse commissure, which connects the two hemispheres, and with certain fissures situated on theso surfaces of the bemisphere. The small convolutions which lie behind the internal part of the paricto-occipital fissure form the inner convolutions of the occipital lobe, or the occipital lobule (Fig. 73). Those which lie immediately in front of the same fissure belong to the inner face of the parip* lobe, and form the qualrilateral lobule. It is customa., however, to name the convolution which extends forwards from that fissure along the margin of the longitudiral fissure to the anterior end of the hemisphere, and which then turns back to the locus perforatus anticus as the marginal convolution. This is separated by a fissure called calloso-marginal, from the callosal convolution or gyrus fornicatus; which, commencing at the locus perforatus anticus, turns round the anterior end of the corpus callosum, extends parallel to its upper surface, and then turns round its posterior end. It is separated from the corpus callosum by the callosal fissure, at the bottom of which the grey matter of the gyrus fornicatus termintes in a well-defined cdge.

The callosal convolution encloses the corpus callosum within the concarity of its arch, and from its direction is

tIG. 73.-Coovolutlons of the inner and tentorial sarfaces of the left hemlephere i, i, i, callosomarimal fissure; l, l, calcarine fissure; m, m, hippocsmpal fissure; $n_{1} n_{1}$ coltaticral fissure; PO , putcto-occlpital fissure; 17, 17, tnarginal convolution; 18,18, gyras fornicatns; $1 S^{\prime}$, quadrilateral lobule; 19, hippocaropal gyrns; 19', Its revurved end; 25, occipitat lobule; 9, 9, infe. rior temporo-splieaoidal coavolution.
appropriately called fornicatus (arch-shaped). The posterior end of the callosal convolution curves downwards and then forwards, under the name of gyrus hippocampi, to the tip of the inner surface of the temporo-sphenoidal lobe. This gyrus is separated anteriorly by a narrow curved fissure called hippocampal fissure, from a white band, the tania hippocampi, which band possesses a free curved border, round which the pis mater and choroidal artery enter the lateral ventricle through the great transverse fissure of the cerebrum. The hippocampal fissure is continuous round the posterior end of the corpus callosum with the callosal fissure, and at the bottom of the hippocampal fissure the grey matter of the gyrus hippocampi terminates in a rell-defined dentated border (fascia dentata). The hippocampal fissure un this surface of the hemisphere marks the position of an emireace in the descending cornu of the ventricle called hippocampus major. The gyrus hippocampi is separated posteriorly from the adjacent temporo-sphenoidal convolution by a fssure, named collateral, which marks the position on this surface of the bemisphere of the collateral eminence in the interior of the ventricle. From the lower end of the parieto-occipital fissure an offshoot, called the calcavine fissure, passes almost horizontally backwards in the occipital lobe, which fissure marks on this surface of the hemisphere the eminence named calcar avis, or hippocampus minor, in the posterior cornu of the rentricle.

If a horizontal slice be removed from the upper part of each hemisphere, the peripheral grey matter of the convolutions will be seen to follow their rarious mindings, whilst the core of each convolution consists of white matter continuous with a mass of white matter in the interior of the hemisphere. If a deeper slice be now made down to the plane of the corpus callosum, the white matter of that structure will be seen to be continuous with the white centre of each hemisphere. The corpus callosum does not equal the hemispheres in leagth, but approaches nearer to their anterior than their posterior ends (P1. XVIII. fig. 3, B.) It terminates behind in a free rounded end, whilst in front it forms a knee-shaped bend, and passes downwards and backwards as far as the lamina cinerea. If the dissection be performed on a brain which has been hardened in spirit, the corpus callosum is seen to consist almost cntirely of bundles of nerve fibres, passing trausrersely across the mesial plane between the two hemispheres; these fibres may be traced into the white cores and grey matter of the convolutions, and apparently connect the corresponding convolutions in the opposite hemispheres. Hence the corpus callosum is a connecting or commissural structure, which brings the convolutions of the two bemisphercs into anstamical and physiological relation with each other. On
the surtace of the corpus callosum a few fibres the strice longitudinales, run in the anteroposterior or longitudinal

Fig. 3t.-To shaw the right ventricto ond the left half of the corpus callosum a, traosverse 6 bres, and b, longitudinul sbres of corpus callosuni; c, anterior, and d, posterior cornaa of lateral ventricle; e_{0} septum lucidunt; f, curpua hiopocampl; m, lippocaonpos major ; n, lifppocanypus minor; 0, cmiventı col lateialis
direction. If the corpus callosum be now cut through on each side of jts mesial line, the large cavity or lateral ventricle in each hemisphere will be opened into.

The lateral ventricle is subdivided into a central space or body, and three bent prolougations or cornua; the anterior cornu cxtends forwards and outwards into the frontal lobe; the posterior cornu curves backwards, outrards, and inwards into the occipital lobe; the clescending cornu curves backwards, outwards, downwards, forrards, and inwards, behind and below the optic thalamus into the tempero-sphenoidal lobe. On the floor of the central space may be seen from bcfore backwards tha grey upper surface of the pear-shaped carpus striatum, aud to its inner and posterior part a small portion of the aptic thalamus, whilst between the two is the curved flat band, the tonia semicircularis. Resting on the upper surface of the thalamus is the rascular fringe of the relun interpositum, named charoid plexus, and immediately intornal to this fringe is the frce edge of the white posterior pillar of the fornix. The anterior cornu has the antcrior end of tho corpus striatum projecting into it. The posterior cormu has an eleration on its floor, the hippocampus minor, and between this cornu and the descending cornu is the cleration called eminentia collateralis.

Extending down the descending cornu and following its currature is the hippocampus najor, which terminates below in a nodular end, the pes hippocampi; on its inner border is the white lania hippocampi, continuous abore with the posterior pillar of the fornix. If the tania be dram on one side the hippocarapal fissure is exposel, at the bottom of which the grey matter of the gyrus hippocainpi may be seen to form a well-defined dentated border (the so-called fascia dentata). The choroid plexus of thu pia mater turns round the gyrus hippocampi, and enters the descending cornu through the great transverse fissure between the trenia kippocampi and optic thalamus. T?e lateral veutricle is lined by a cylindrical endotbeliur.
which is in many parta ciliatcl, aud which rests on a layer of neuroctlia. This lining is continuous through the foramen of Monro with that of the third ventricle, which eyain is continuous with the lining of the fourth ventricle through the aqueduct of Sylvius. A little fluid is contained in the cerebral ventr cles, which,' under some pathological conditiona, may increasa greatly in quantity, so as to occasion considerable dilatation of the ventricular cavitics.

If the corpus callosum be now divided about its middle

Fio. 75.-A deeper dissectigo of the lateral ventricle, end of the velum interpositarn. a, nnder surface of corpas callosam, turned back; b, b, poaterlor pillars of the formix, turned back; c, c, anterior pillara of the fornix; $d_{\text {, }}$ velam interpasitum sind reina of Galen; e, fifth veatricle; f, f corpus atriatum;
 bippocemp!; m, hlppocsmpua major io descesding cornn; n, hippocampus minor $0_{\text {, eminentia collaterala }}$
oy a transverse incision, and the posterior half of this structure be turned back, the body of the forniz on which the corpus callosum rests is exposed. If the anterior half of the corpus callosum be now turned formard, the grey partition, or septum lucidur:, betreen the two lateral rentrieles is exposed. This septum fita into the interval between the under surface of the corpus callosum and the upper surface of the anterior part of the forniz. It consista of trro layers of grey matter, between which is a narrow vertical mesial space, the fift ventricle. If the septum be now remored, the anterior part of the fornix is brought into view.

The fornix or arch is an arch-shaped band of merve fibres extending in the antero-posterior direction. Its anterior end forms the anterior piers or pillars of the arch, its posterior end the posterior piers or pillars, whilst the intermediate body of the fornix forms the summit or crown of the arch. It consista of two lateral halrea, one belonging to each hemisphere. At the summit of tha arch the two lateral balves are conjoined to form the body; but in front of the body the two balres separate from each other, and form twe anterior pillars, which descend in front of the third ventricis to the base of the ccrebrum, where they form the corpora inbicantia, and then enter the substance of the optic thalamus Depind the body the two balvea diverge much more from each other, and form the posterior pillars; each of which curres dormwardis and outwards into the dercending cornu of the rentricle, and, under the
name of tania hippocampi, forms the free border of the hippocampus major. If the body of the fornix be now divided by a transverse incision, its anterior part throm forwards, and its posterior part backwards, the great trausrerae fissure of the cercbrum is opened into, and the velum interpositum lying in that fissure is exposed.

The velum interpositum is an expanded fold of pia mater, nhich passes into the interior of the hemispheres through the great transverse fissure. It is triangular in shape; its base is in a line with the posterior end of the corpua callosum, where it is continuous with the external fia mater; its lateral margins are fringed by the choroid plexuses, which are seen in the bodies and descending cornua of the lateral ventricles, where they are invested by the endothelial lining of those cavities. Its apex, where the tro choroid plexuses blend with each other, lies just behind the anterior pillars of the fornix. The interral between the aper and these pillars is the aperture of communication between the two lateral ventricles and the third, already referred to as the foramen of Monro. The choroid plexuses contain the small choroidal arteries, which supply the corpora striata, optic thalami, and corpora çuadrigemina; and the blood from these bodies is returned by small veins, which join to form the veins of Galen (Fig. 75). These veins pass along the centre of the velum, and, as ia shown in Fig. 63 , open into the atraight cinus. If the velum interpositum be now carefully raised from before backwards, the optic thalami, thitd ventricle, pineal gland, and corpora quadrigemina are exposed.

The optic thalamus is a large, somewhat oroid body situated behind the corpus striatum, and above the crus cerebri. Its upper surface is partly seen in the floor of the body of the lateral ventricle, but is for the most part covered by tha fornix and velum interpositum. Ite posteroinferior surface forms the roof of the descending cornu of the ventricle, whilst ita inner surface forms the side wall of the third rentricle. At ita outer and posterior part are two slight elevations, placed one on each side of the optic tract, and named respectively corpus geniculatum internum and externum.

The third ventricle is a cavity situated in the mesial plane between the two optic thalami. Its roof is formed by the velum interpositum and body of fornix; its floor, by the pons Tarini, corpora albicantia, tuber cinereum, infundibulum, and optic commissure ; its anterior boundary, by the anterior pillars of the fornis, anterior commissure, and lamina cineréa; its posterior boundary, by the corpora quadrigemina and posterior commissurc. The cavity of this reutricle is of small size in the living head, for the inner surfaces of the two thalami are connected together by intermediate grey matter, named the middle or soft commissure; but in taking the brain out of the cranial cavity this commissure is usually more or less torn through, and the cavity is consequently enlarged. Immediately in front of the corpora quadrigemina, the white fibres of the posterior commissure pass across between the two optic thalami. If the anterior pillars of the fornix be separated from each other, the white fibres of the anterior commissure may be seen entering the two corpora striata.

The pineal body is a reddish cone-shaped body, enveloped by the velum interpositum, and situated upon the more anterior pair of the corpora quadrigemina. From its broad anterior end two white bands, the pcduncles of the pineal body, pass formards, one on the inner side of each optio thalamus. Each peduncle joins, along with the truia semicircularis, the anterior pillar of the fornix of its own side. In ita structure this body ronsists of a vascular stroma of connective tissue, in the meshea of which lymphoid cells are contained. Branched corpuscles are also found not uolike verve celle. Amylaceous and gritt
calcareous particles, constituting the brain sand, are also found in it. Usually it is hollowed out into two or more small cavities. The function of the pineal body is not understood, but both it and the pituitary body, which posess a certain structural correspondence, are usually referred to the type of the ductless glands.
The corpora quadrigemina or optic lobes are situated bchind and between the tro optic thalami, and rest upon the posterior surface of the crura cerebri. The division into two lateral haives is marked by a shallow longitudinal fissure, and the subdivision of each half into an antorior and a posterior cminence, by a shallow transverse fissure. The anterior pair of cminences are called nates; the posterion, testes. From each testis a strong white band, the superior peduncle of the cerebellum, passes backwards to the cercbolium, and stretching between the pair of peduncies is the valve of Vieussens or anterior medullary velum. The corpora quadrigemina are tunnelled in the antero-posterior dircction by the aqueduct of Sylvizs, which opens anteriorly into the third ventricle immediately below the posterior commissure, and posteriorly into the fourth ventricie under cover of the valve of Vieussens. It is lined by a cylindrical ciliated endothelium.

Internal Strdcture of the Cerebrum.-The cerebrum is compesed both of groy and white matter, the general relations of these two forms of nerve matter to each other may be seen by making sections through the cerebrum. The determination, however, of their minute structure, and of the relations and connections of the nerve fibres to the nerve cells is, owing to the delicacy of the organ, one of the most difficult departments of anatomical study. Several anatomists have endeavoured to trace out the course of the nerve fibres in the organ, and though our knowledge is by no means complete, yet many important facts have undoubtedly been ascertained. These facts. bave been summarised, and numerous valuable additions made to them by Meynert in a recent claborate unemoir, which has been frequently consulted and made use of in writing tiue foliowing description.
The Grey Matter of the cerebrum is disposed in three great groups: a, The grey matter of the cortex of the hemispberes; b, the grey matter of the great ganglia of the base of the cerebrum ; c, the central grey matter which forms the wall of the cerebral end of the cerebro-spinal tube.
a, The grey matter of the cortex of the hemisphere forus the superficial part of the convolutions, and is known as the great hemispherical ganglion, but in some localities, as at the loci perforati antici and the septum lucidum, it has received distinctive names. When a convolution is divided vertically the grey matter is seen to be confined to the surface and to enclose a white core. The grey matter presents a laminated appearance, and as a rule.consists of five or six layers, which are composed of the characteristic pyranidal nerve cells of the cortex of the cerebrum, of nerve fibres, of matrix or neuroglia, and of blood-vessels. The most superficial layer consists of neuroglia, in which nerve fibees extend parallel to the surface of the convolutions. In the deeper layers are found the prramidal nerve cells, which lie with their long axes vertical to the surface of the convolutions, and which contain angular nuclei. From the observations of Lockhart Clarke, Arndt, Cleland, and Meynert, there can be no doubt that the pyramidal nerve cells vary in relative size and in numbers in the different layers of the grey cortex, and that the largest sized pyramidal cells lie in the third and fourth layers. L. Clarke stated that the cells of all the layers of the posterior or occipital lobe were small and of nearly uniform size, whilst in the convolutions anterior to it numerous cells of a much larger kind were found; but though it is undoubtedly true that large pyramidal cells are found in the frontal lobe in
considerable numbers, and that the greater number of the cells of the occipital lobe are small and ncarly uniform in size, there is no difficulty in recognising in the occipital lobe a small proportion of cclls, quite cqual in magnitude to the largest cells of the frontal lobe, interspersed amongst the smaller pyramidal cells. The nerve fibres which ascend into the grey matter from the white core of the convolution radiate into its several layers, and are apparently continuous with the basal axis-cylinder processes' of the ncrve cells. According to Cleland, the elongated apices of the cells, which are directed to the surface of the convolution, are continuous with the nerve fibres situated in the superficial layer of horizontal fibres. Immediately subjacent to the large pyramidal cells numerous small, irregularly shapcd nerve corpuscles, like those of the internal granule layer of the retina, form the so-called grozule layer of the grey matter. Fusiform cells, which give off lateral processes, are found in the deepest layer of the grey matter, and form the claustral layer of Meyuert. Gerlach has described here, as in the spinal cord, a network of extremely minute nerve fibres, with which the branched lateral processes of the nerve cells are apparently continuous. The neuroglia contains multitudes of small rounded corpuscles. In it also are found small stellate cells, provided with minute branched processes, which cells, as Meynert states, are so pellucid, that in the healthy brain they seem to be only free nuclei; it is difficult to say whether these cells belong to the neuroglia, or are nerve cell elements. The grey cortex of the cerebrum is much more vascular than the white matter. The arteries derived from the pia mater pass vertically into it, and end in a close polygonal network of capillaries; but it is also traversed by the arteries, which terminate in the capillary network of supply for the white matter.

In the grey matter of the cortex of the accipital lobe eight layers have been described by Clarke and Meynert. The increase in number is due to the intercalation of two additional granule layers, which coalesce and form a distinct white band in the grey matter, owing, as Meynert states, to the absence of pigment in the cells of the granule layers.
The grey matter of the cortex of the island of Reil and of the convolutions bounding the Sylrian fissure contains a very large proportion of fusiform cells. They form the chief constituent of the grey claustrum, situated deeper than the grey matter of the island, and separated from the outer part of the corpus striatum by a thin layer of white matter. Fusiform cells also occur abundantly in the nucleus amygdalx, a grey mass situated below the corpus striatum, which in some sections seems as if iselated, but in reality is continuous with the grey matter of the inferior temporusphenoidal convolution.

The grey matter of the cortex of the gyrus hippocampi and of the hippocampus major is apparently destitute of both the granule and claustral layers of cells. Its superficial layer has been named the nuclear lamina, and contains small and scattered nerve corpuscles. Next this lamina lies the striatum reticulare, in which the apices of the numerous pyramidal celis of the third layer branch and again anite to form a delicate network. Deeper than ine pyramidal cells is a thick layer of so-called "granules," which A. B. Stirling recognised some years ago as lilio the granules of the rust coloured layer of the cerebellum ; like them they consist of a well-defined nucleus inivesiec by delicate branched protoplasm. The grey matter of the two layers of the septum lucidum, though included between the corpus callosum and formix, is yet in the same plane as the grey matter of the cortex of the inner surface of the hemispheres, but is cut off from it by the develop. ment of the transverse fibres of the corpus callosixi? The grey matter of the locus perforatus anticus contai:
clusters of minure granules and a compact arrangement of suall nerve cells.
b, The great ganglia of the base of the cerebrum are the corpora striata, the optic thalami, the corpora geniculata, the curpora quadrigemina, and the locus niger in cach crus cerebri.

The corpus striatum cerebri consists of two masses of crey matter separated from each other by numerous strix of white fibres, which ascend from below upwards through its substance. The upper mass of grey matter projects into the lateral rentricle, and is called the intra-\%entricular portion or nucleus caudatus. The lorer extri-rentricular portion or nueleus lenticularis forms the outer and lower part of the corpus striatum, and is scparated by the claustruin from the island of Reil. Multipolar nerve cells are found in buth the caudate and lenticular masses, and in the litter cells of large size have been seen. The optic thalamus forms an almost continuous mass of grey matter traversed by nerve fibres, which are not, however, collected into definite strie. The nerve cells in the grey matter are both multipolar and fusiform. The external corpus geniculatum consists of alternato layers of grey and white matter, due to the zig-zag folding of the grey matter; the nerve cells are multipolar, and contain pigment. In the internal corpus geniculatum the cells are smaller in size -and fusiform. The grey matter of the corpora quadrigemina consists of tro distinct masses. One, the zonular layer, lies near the surface, and contains small multipolar nerve cells; the other, the Sylvian or central layer, lies at the sides of the Sylvian fissure and belongs to the grey matter of the wall of the cerebro-spinal tube, and serves as a centre of origin for the roots of both the "3d and 4th cranial nerves. The grey inatter of the crus cerebri occupies the centre of the cerebral peduncle. Its cclls are multipolar, and contain dark brown or black pigment, so that the name locus niger is applied to this collection of wervo cells.
c, The contral grey matter of the cerebrum is in series with the grey matter of the floor of the 4th ventricle and the grey inatter of the spinal cord. It is situated around the Sylvian aqueduct, and at the sides and floor of the third ventricle; which form the ccrebral portion of the cerebrospinal tube. That which is situated in relation with the aqueduct of Sylrius furms the Sylvian or central layer just described in the corpora quadrigemina That which lies in rclation to the third rentricle forms the middle or soft commissure, and the well-defined grey layer which covers the inner wall of cach optic thalamus; also the grey masscs situated at the base of the brain between and in front of the crura cerebri, viz., the pons Tarini, tuber cinereum, lamina cinerca, infundibulum, and the grey matter of the pituitary body. By some anatomists the grey matter of the pincal budy is referred to the same category, but Arnold has pointed out that it is separated by its peduncle from the soft comuissure ; and Meynert is disposed to regard it as a ganglion of origin of the tegmentum. Woth the pituitary and pineal Lodies contain, besides the nervous matter, structures of the type of the glands without ducts.

The White Matter of the cerebrum consists of tracts or fasciculi of nerve fibres, of which- a, some connect the cerebrum with the lower divisions of the encephalon; l, others connect the two hemispheres together; c, others connect diferent structures in the same hemisphere; d, others serve as roots of origin for the more anterior encephalic nerres.
a, The tracts of fibres which connect the cerebrum with the lower divisions of the encephalon are called peduncular fibres. The largest of these peduncles are the tro crura corebri or cerebral peduncles. Continuous below with the longitudinal fibres of the pons they ascend into the optic thalami and corpora striata, and their fibres are named the peluncular fibres. From the corpora striata and uptic
thalami fibres radiate into the convolutions of the lubes of the hemisphere and form the corona radiata. To some extent the fibres of tho corona are directly contiisuous with those of the cercbral peduncles, but there can be no doubt that a large portion of the peduncular fibres terminate in the grey matter of the ganglia of the base of the cercbrum, and that a still larger number arise from their nerve cells to aid in the formation of the corona radiata. The direct continuity, therefore, of many of the peduncular fibres with those of the corona is broken or interrupted by the interposition of the cerebral ganglia, which Meynert has named ganglia of interruption. The peduncular fibres and those of the corona constitute the cerebral portion of the projcetion' system of fibres of Meynert, a term devised to express that they conduct upwards to the grey cortex of the hemispheres semsory impulses derived from the external world, the image of which is projected upon the cortex. But it should also not be forgotten that many of the fibres of this system conduct motor impulses downwards to be propagated along the motor cranial and spinal nerves. The peduncular fibres of the crura ccrebri are arranged in two groups, named respectively crusta and tegmentum, which are scparated from cach other by the nerve cells of the locus niger. The crusta forms the superficial or anterior part of the crus. Its fibres are in greater part continuous with the longitudial fibres of the pons derived from the anterior pyramids of the medulla; but it reccircs additional fibres from the grey matter of the locus niger, and from the cells of the Sylvian layer in the corpora quadrigemina. Some of the fibres of the crusta pass directly upwards as radiating fibres to the grey cortex of the occipital and temporal lobes, but the larger number terminato in the nucleus caudatus and nucleus lenticularis of the corpus striatum. From these nuclei a great mass of fibres radiates into the cortex of the fronto-parictal lubes, more especially the frontal, but a few also, bearing the special name of stria comea, pass to the grey matter of the apex of the temporal lobe; fibres also enter the convolutions of the insula. In addition to the raduating fibres, the grey matter of the corpus striatum gives origin to fibres of the middle root of the olfactory jicduncle, and to connecting fibres with the grcy matter of the scptum lucidum. The tegmentum forms the posterior or deejer part of the crus cerebri. Its fibres are contiuuous with the longitudinal fibres of the pons derived from the olivary fasciculi, fasciculi terctes, and posterior pyramids of the medulla. A few of the fibres of the tegmentum enter the corpora quadrigemina and corpora geniculata, but the great majority enter the optic thalami, in the grey matter of which many cvidently terminate, though some may pass through into the cortex of the hemispheres as fibres of the corona radiata. But the grey matter of the thalamus gives origin to numerous radiating fibres: those which arise in its posterior part radiate into the occipital and tempora! lobes, whilst those proceeding out of its anterior part radiate into the frontal, parietal, and temporal lobes, and the insula. In the optic thalamus the fornix arises. Its fibres cmerge from the under surfato of tile inalamus, form the corpus albicans, and then pass backwards as the upper boundary of the great transverse fissure to end as the trenia hippocampi in the gyrus hippocampi; hence this convolution has a special connection with the optic thalamus through the fornix. In the corpus albicans the fibres of the fornix aro arranged in loops, in the concavities of which nerve cells are situated. The optic thalamus also gives origin to the middle root of the optic tract. Owing to the connections of the locus niger, nucleus caudatus, and nucleus lenticularis with the crusta, Meynert has named them the ganglia of the crusta; whilst the optic thalami, corpora quadrigemina, and geniculata are the ganglia of the tegmentum. The comparisun of the human brain with those of different
mammals has shomn that the development of the hemir.pheres bears a direct relation to the size of the crusta and its gangliz, mbilst the development of the hemispheres is in inverse relation to the size of the tegmentum and its ganglia.

The superior peduncles of the cereollum connect that organ with the cerebrum. They arise in the grey matter of the vermiform process, ascend to the corpora quadrigemina, and some fibres are even prolonged apparently into the tegmentum, and through it doubtless into the optic thalamus.
b, The fibres which connect together the two hemispheres are called commissural fibres. The largest of these comunissures is the corpus callosum, which, as has already been described, connects corresponding convolutions in the opposite hemispheres. As its fibres lie on a plane superior to those of the corona radiatn, the two systems of fibres intersect with each other on their way to the convolutions. The anterior commissure, though often described as connecting the two corpora striata, yet, as Spurzheim pointed out half a century ago, passes through these bodies to the convolutions around the Sylvian fissure, and gives a root of origin to the olfactory nerve. The posterior commissure passes into the two optic thalami ; some of its fibres are aaid to extend into the tegmentum, and others into the substance of the hemisphere.
c, The tracts which connect different convolutions in the same hemisphere are named arcuate fibres, or fibrce proprice. The arcuate fibres are situated immediately beneath the inner surface of the cortex of the hemispheres, and connect together the grey matter of adjacent convolutions. In some localities they are strongly-marked, and have received special names.

The fusciculus uncinatus passes across the Sylrian fissure, traverses the claustrum and amygdala, and connects the convolutions of the frontal with those of the temporosphenoidal lobe. The fillet of the gyrus fornicatus extends longitudinally in that convolution, immediately above the corpus callosum, from its anterior to its posterior ends, and connects two different parts of its grey matter together. The longitudinal fibres of the corpus callosum- or nerves of Lancisi, also connect the anterior and posterior ends of the callosal convolution. The longitudinal inferior fasciculus connects the convolutions of the occipital with those of the temporal lobe. Longitudinal fibres lie on the inner surface of the septum lucidum, and extend into the gyrus fornicatus.

The corpora quadrigemina are connected with the optic thalami by nervous tracts called brachia, and smaller tracts also connect the thalami with the corpora geniculata The peduncles of the pineal gland connect that body with the fornix, and are probably continued into the optic thalamus. The tænia semicircularis is also at one end apparently connecied with the uptic thalamus, but its posterior termination is not well ascertained.

The great cerebral ganglia and the central masses of grey matter are centres of origin for sensori-motor nerves. The fiamispherical ganglia, again, are the parts of the brain acanciated with the intellectual processes. The question das often been put, Are not the individual convolutions cistinct organs, each endowed with special properties? and various arguments based on physiological, pathological, and anatomical grounds hare been adrayced in support of this proposition. In connection with the anatomical branch of the argument it may be stated that the convolutions possess, not only in man, but in all animals with convoluted brains, great regularity both in position and arrangement; but specialisation of form is not in itself a sufficient test of specialisation of function. Again, thuugh the convolutions lave definite furms they are not disconnested from cach
other, for the grey matter forms a continuous layer over the whole surface of the hemisphere. Hence a group of cerebral convolutions differs from a group of muscles, each member of which is undoubtedly a distinct organ, for each muscle is isolated from those around it by a definite investing sheath. As regards internal structure, evidence has already been given that all the convolutions are not constructed on prcciscly the same plan, and it has also been pointed out that the cosirolutions are not all connected in the game way with the great cerebral ganglia These structura] modifications nnquestionably point to functional differences in the several parts in which they are found. But further, special connections through the arcuate fibres are established hetween certain convolutions and not between others, and it is possible not only that particular combinations of convolutions through an interchange of internuncial fibres may condition a particular state of intellectual activity, but that these combinations associate various convolutions together in the performance of a given intellectual act, just as in the muscular system several muscles are as a rule associated together for the performance of a given movement. A clue to the special functions of the convolutions may perhaps be obtained by atudying their connections, just as the action of the members of a group of muscles is ascertained by ezamining the direction of their fibres and the attachment of their terminal tendons.

Mass and Weiget of the Brain.-The human brain is absolutely bigger and heavier than the brain of any animal, except the elephant and the larger whales. It is also heavier relatively to the bulk and weight of the body than are the brains of loreer animals, except in some small birds and mammals. Considerable variations, however, exist in the size and weight of the human brain, not only in the different races of mankind, but in individuals of the same race and in the tro sexes. The heariest brains occur in the white races. The average weight of the adult Eura pean male brain is 49 to 50 oz ., that of the adult female 44 to 45 oz . ; so that the brain of a man is on the average fully 10 per cent. heavier than that of a roman. The greater weigjt of the brain in man as compared with roman is not in relation merely to his greater bulk, but is a fundamental sexual distinctior ; for, whilst there is a difference of 10 per cent. in the brain meight, the arerage stature of women is, as Thurnam has calculated, only 8 per cent. less than that of men. Dr Boyd states that the average weight of the brain in the newly born male infant is $11 \cdot 67 \mathrm{oz}$.; in the female only 10 oz . The exact age at which the brain reaches its maximum size has been variously placed at from the $3 d$ to the Sth jears by different authors; but it continues to increase in weight to 25 or 30 , or eren, 40 . After 60 the brain begins to diminish in weight; in aged males the average weight is about 45 oz , in females about 41 oz . In some cases the adult brain considerably excecds the average weight. The brains of several men distiuguished for their intellectual attainments have been weighed: the brain of Cuvier weighed 64t oz. ; of Dr Abercrombie, 63 oz; ; Profcssor Goodsir, $5 \frac{1}{2} \frac{1}{2}$ oz; of Spurzheim, 55 oz. ; of Sir J. Y. Simpson, 54 oz ; ; of Agassiz, $53 \cdot 4 \mathrm{oz}$. ; and of Dr Chalmers, 53 oz . But high brain weights have also been found where there was no evidence of great intellectual capacity. Peacock weighed four male brains which ranged from 62.75 to 61 oz ; Boyd, a specimen of 60.75 oz ; and Turner has rccorded one of a boy aged fifteen which weighed 60 oz . In the bmins of the insane high brain weights have also been observed. Bucknill met with a brain in a male epileptic which weighed $64 \frac{1}{2}$ oz.; Thurnam, one which weighed 62 oz ; aud in the West Riding Asslum, out of 375 males examined, the weight of the brain in $3 n$ cases was 55 oz . or upwards, and the highest weights were

61 oz . in a case of senile dementia, $60 \frac{1}{2} \mathrm{oz}$. in a case of dementia, and $\mathbf{0 0} 0 \mathrm{oz}$, in one of melancholia. No case has as yet been recorded of the weight of the brain in a woman possessing intellectual cminence; but Boyd met with a woman's brain as high as 55.25 oz , and many instances of uprards of 50 oz in wonten where there was no evidence of high mental condowment. Skae, in a female monomaniac, obscrved a brain which weighed 61 $\frac{1}{2}$ oz.; and of 300 females exanined in the West Riding Asylum the weight of the brain in 26 cases was 50 oz . or upwards, the highest weights being 56 and 55 oz . in two cases of mania. The size and weight of the brain do not therefere, per se, give an exact nuthod of estimating the intellectual power of the individual, and a high brain weight and great intellectual capacity are not necessarily correlated with each other. It seems certain, if the human brain, cren amongst the most uncultivated peoples, falls below 30 oz., that this low weight is not merely incompatible with intellectual power and activity, but is inrariably associated with idiocy or imbecility; so that the buman brain has a minimum. weight below which intellectual action is impossible. Amongst the more cultirated races the minimum weight-limit of intelligence is, however, in all probability higher than 30 oz. It has been placed by Broca at 32 oz, for the female, and 37 oz for the male brain ; and Thurnam's numbers are almost the saue. To how low a weight the brain in the microcephalous idiot may fall is well shown in a case recorded by Theile, where it weighed only 10.6 oz , in Gore's case of 10 oz . $\overline{0}$ grs., and in Marshall's case, $8 \frac{1}{2}$ oz. But instances are not wanting in which the brains of idiots bave exceeded even 50 oz . Langdon Down observed the brain of a male idiot aged 22, which weighed $59 \frac{1}{2}$ oz.; and J. B. Tuke has recently met with a brain of 60 oz. in a male idiot aged 37 , the capacity of whose cranium was $110 \frac{1}{2}$ cubic inches. In the West Riding Asylum tables the brain weights in 10 idiots were not less than 340 oz, and in 5 cases exceeded 40 oz. As yet the opportunities of weighing the brain in the coloured races of men have been but scanty. But from a very extensive series of observations made by Barnard Davis, not on the brains themselves, but on the cubic capacities of crania, from which an approximate estimate of the brain weiglit may be obtained with a fair measure of accuracy, the following facts are derived:-The average weight of the male brain in the African races is $45^{\circ} 6$ oz.; of the female brain, 42.7 oz : the average weight of the male brain in the Australian races is 42.8 oz ; of the female brain, 39.2 oz.: the average weight of the male brain in the Ozanic races, 46.5 oz ; of the female brain, 43 oz . The cunclusions which may legitimately be drawn from an salalysis of Barnard Davis's observations are as follows :1 st, That the average brain weight is considerably higher in the civilised European than in the savage races; 2d, That the range of variation is much greater in the former than in the latter; 3d, That there is an absence, almost complete, of specimens heavier than 54 oz . in the exotic raccs, so that the higher terms of the series are not represented; 4th, That though the male brains are heavier than the female, there is not the same amount of difference in the average brain weight between the two sexes in the uncultivated as in the cultivated peoples.

No reliable determinations have as yet been made of the exaet proportion, as regards bulk and weight, which the convolutions bear to the corpora striata, optio thalami, and corpora quadrigemina, but data are obtainable of the relative weight of the pons, cerebellum, and medulla to the entire encephalon. Between the ages of 20 and 70 the ratio of weight of the pons, cerebellum, and medulla, to the entire brain, is as 13 to 100 , and this relative weight is mrtually the same in both sexes.

Origin. Arravocmevt, and Distribution op the

Encepralio Nerves.-Several pars of nerves, called Cranial or Excepialic, arise from the under surface or base of the cacephalon, and pass outwards through foramina situated in the floor of the cranial cavity. Continental anatomists usually enumerate twelve pairs of cranial nerves; but because in one locality two of these nerres lie together and pass through the same foramen, and in another spot three of these nerves emerge tegether from the skull, British anatomists have restricted the number to nine pairs. These nerves are numbered from before backwards, in the order in which they are scen at the base of the brain. The names applied to the individual nerves, and their numerical designations, according to both the Continental and British methods, are given in the followiog table :-

	Continental	Eritish
Olfactory Nerves,	1 st pair	1st pair
Optic Nerves,	2 d	2d
Oculo-motor Nerves,	3rd ,	3rd "
Trochlear Nerves,	4th "	4th
Trifacial or Trigeminal Neryes,...	5th ${ }^{\prime}$	Eth
Abducent Nerves,	6th "	6 th
Facial Nerves (Potio dura), $\ldots .$.	7th ${ }^{\text {e }}$ \}	7 th
Auditory Nerves (Portio mollis),	8th .,	7 th
Glosso-pharyngeal Nerves,	9th ,	
Pneumogastric Nierves (Vagus),	10th ,"	8th
Spinal Accessory Nerres,	11th ,	
Hypoglossal Nerrcs,	12th "	9th

These nerves may be arranged in three groups according to the presence or absence of motor and sensory fibres.

First group.-Sensory nerves, or nerves of special sense: a, olfactory, the nerve of smell ; b, optic, nerve of sight; c, auditory, nerve of hearing.

Second group. -Motor nerves : a, oculo-motor, the principal nerre of supply for the muscles of the eyeball; b, trochlear, the nerve for the superior oblique muscle; c, abducent, the nerve for the external rectus ; d, portio dura, the nerve for the facial muscles of expression ; e, spinal accessory, the nerve which gives a motor root to the pneumogastric, and supplies the sterno-mastoid and traperius muscles; f, hypoglossal, the nerve for the muscles of the tonguc.
Third group.-Mexed nerves : a, trifacial, distributed to the muscles of mastication, the skin of the face, various mucous membranes, and to the anterior and lateral surfaces of the tongue, where it may play the part of a nerve of the special sense of taste ; b, glosso-pharyngeal, distributed to the mucous membrane of the pharynx, to certain palatopharyngeal muscles, and to the mucous membrane of the back of the tongue, where it acts as a nerve of the special sense of taste ; c, the pneumogastric, conjoined with the internal division of the spinal accessory, is distributed to several muscles, mucous membranes, ind internal organs.
The consideration of the Ist group of cranial nerves may appropriately be deferred until the org:ins of sense, in which they terminate, are described. The anatomy of the motor nerves is as follows :-
The Oculo-motor or third nerve springs out of the inner surface of the crus cerebri. When its fibres are traced into the crus, some are seen to pass to the nerve cells of tho locus niger, whilst others sink into the corpora quadrigemina, and extend as far as the Sylvian group of large nerve cells. The nerve, after it has emerged from the crus, runs formards in the outer wall of the cavernous sinus, and enters the orbit through the sphenoidal fissure. It supplies the levator palpebre superioris, the superior, inferior, and internal recti muscles, and the inferier oblique. It contributcs the short or motor root to the ciliary ganglion, and through it influences the iris and ciliary muscles within the eyeball. It also communicates with the cavernona plexus of the sympathetic.

The Trochlearis or fourth, the smallest cranial nerre, lies at the outer side of the crus cerebri. When traced backwards to its origin it is seen to sink into the valve of Vieussens, where its fibres divide into three roots : one decussates across the valve with a root of the corresponding nerve on the opposite side; another passes backwards to the locus cærulens; the third sinks into the corpora quadrigemina and reaches the Sylvian group of nerve cells, from which the third nerve also arises. The fourth nerve runs forward in the outer wall of the cavernous sinus, enters the orbit through the sphenoidal fissure, and ends in the superior oblique muscle. It also communicates with the cavernous plexus of the sympathetic.

The Abducent or sixth nerve springs out of the groove between the lower border of the pons and the anterior pyramid of the medulla oblongata. Its roots sink deeply into the pons, and arise from a nucleus of grey matter at the floor of the fourth ventricle, common to it and the portio dura The sixth nerve runs forward in the inner wall of the cavernous sinus, enters the orbit through the sphenoidal fissure, and ends in the external rectus muscle. It communicates with the carotid plexus of the sympathetic.

The Fortio dura or motor facial portion of the seventh nerve springs out of the groove between the lower border of the pons and the restiform body. Its roots sink deeply into the pons, and whilst some of its fibres arise from a grey nucleus, at the floor of the fourth ventricle, common to it and the sixth nerve, others ascend from a nucleus which, according to Meynert, lies just on the outer side of the superior olivary body, and others again decussate across the median raphe of the pons. An accessory portion, called portio infermedia, which is said to arise from the lateral columns of the cord, joins the portio dura. The portio dura enters the internal puditory meatus in the petrous-temporal bone along with the auditory nerve; but at the bottom of the meatus it leaves that nerve and enters the aqueduct of Fallopius along which it is conducted through the bone to emerge at the stylo-mastoid foramen. Wher in the aqueduct it forms a knee-shaped bend, and expands into a small ganglion, which is joined by the great, small, and external petrosal nerves, and through the external petrosal it communicates with the sympathetic. The portio dura gives off- a, a minute branch to the stapedius muscle ; b, the chorda tympani, which, entering the tympanum, passes across that cavity, emerges through the Glaserian fissure, and joins the lingual branch of the fifth nerve, which it accompanies as far as the submaxillary ganglion; it gires a branch to the ganglion, and one to the lingualis muscle. After the portio dura has passed through the stylo-mastoid foramen it gives off-c, the posterior auricular branch to the occipital belly of the occipitofrontalis and to the retrahens aurem muscle, and d, the digastric branch to the posterior belly of the digastric and stylo-hyoid muscles ; and theri runs forwards through the parotid gland to the face, where it breaks up into numerous (e) facial branches to supply the facial muscles of expression and the buccinator muscle. The facial is also the secretory nerve for the salivary glands. Through the chorda tympani it influences the secretion of the submaxillary and sublingual glands, and through the connection between its lesser petrosal nerve and the auriculo-temporal in the otic ganglion it influences the parotid gland.

The Spinal Accessory is the lowest division of the eighth nerve. It springs out of the side of the medulla oblongata, and from the lateral column of the cervical part of the spinal cord as low as the fifth cervical nerve: its roots arise from the intermedio-lateral group of nerve cells in the cord, and from a nucleus of grey matter in the floor of the fourth ventricle. The spinal fibres of origin enter the skull through the formen magum, join the fibres from the
medulla, and leave the cranial cavity throngh the jugular foramen. This nerve, purely motor in function, is subdivided into two parts, an internal and an external. The external passes obliquely outwards across the side of the neck, pierces the sterno-mastoid, and ends in the trapezius, both of which muscles it supplies. The internal joins the pneumogastric nerre, of which it forms the mutor or accessory root, and is distributed along with it.

The Hypoglossal or ninth nerve springs out of the groove between the anterior pyramid and olivary body of the medulla oblongata, in series with the anterior roots of the spinal nerves. Its roots pass through the medulla to the floor of the fourth ventricle, to arise from the nerve cells in two nuclei of grey matter situated close to the median furrow. This grey matter is in series with the anterior cornua in the spinal cord. The nerve passes out of the skull through the anterior condyloid foramen, and arches across the side of the neck to the tongue, to end in glossal branches for the supply of the intrinsic and extrinsic muscles of the tongue. It also gives off $-a$, the descendens noni branch, which, after been joined by the communicantes noni from the cervical plexus, supplies the omo-hyoid, sterno-hyoid, and sterno-thyroid nuscles; b, the thyro-hyoid branch to the thyro-hyoid muscle; c, the genio-hyoid branch to the genio-hyoid muscle. It communicates in the neck with the sympathetic, ragus, lingual branch of the fifth, and cervical plexus.
The group of mized nerves will now be considered.
The Trifacial or fifth is the largest cranial nerve. It springs by two distinct roots out of the side of the pons. The smaller or motor root arises from the nerve cells of a nucleus of grey matter situated in the back of the pons, near the floor of the apper part of the fourth ventricle. The larger or sensory root has, according to Meynert, a complex origin- a, from a nucleus of grey matter in the pons to the outer side of the origin of the motor root ; b, by desceuding fibres which arise from nerve cells in tho substance of the corpora, quadrigemina, from the grey matter of the locus cæruleus, and from the longitudinal fibres of the pons; c, by ascending fibres which apparently arise from the grey tubercle of Rolando ; $c l$, probably by fibres which traverse and embrace the superior peduncle of the cerebellum. As the large sensory root of the fifth lics on the petrous bone it expands into the Gasserian ganglion, which resembles in structure the ganglion on the posteriot root of a spinal nerve. From this ganglion three large branches arise, named respectively the 1st, 2d, and 3d divisions of the ganglion.
The 1 st or Ophthalmic division is the upper sensory nerve of the face, and divides into three branches, which pass out of the cranial cavity through the sphenoidal fissure. By its lachrymal branch it supplies the lachrymal gland, and the outer part of the skin and conjunctiva of the upper eyelid ; by its frontal branch, the inner part of the skin and conjunctira of the upper lid, and the skin of the forehcad; by its oculo-nasal branch, it gives long ciliary nerres to the eyeball, and a nasal nerve to the mucous membrane of the nose, and the skin of the side of the nose. From the oculo-nasal nerve arises the long or sensory root of the ciliary ganglion, which lies in the carity of the -orbit, and which receives also a motor root from the third nerve, and a root from the sympathetic. This ganglion gives origin to the short ciliary nerves for the eyeball.
The $2 d$ or Superior Maxillary division is the senso y nerive for the middle part of the face. It leares the skull by the foramen rotundum, passes across the spheno-maxillary fissure, then lies in the canal in the floor of the orbit, from which it omerges on the face through the infra-urbit? foramen as the infra-orbital nerve. It gives off a small orbital branch to a small part of the skin of the telupla
and that over the cheek bone; dental branches to the teeth in the upper jaw; palpelral branches to the skin and conjunctiva of the lower eje-lid; nasal hranches to the skin and mucous membrane of the nose; labial branches to the skin and mucous membrano of the upper lip. It also gives off, when in tho spheno-maxillary fossa, spheropalatine branches, which form the sensory root of the spheno-palatine or Meckel's ganglion. This ganglion receives a motor root through the great petrosal nerve from the knee-slaped bend of the purtio duaz, and a sympathetic root from the carotid plexus, which runs along with the great petrosal, and forms with it the villian nerve. The ganglion gives origin to-a, an orbital branch, which supplies a layer of non-striped muscular fibres, described by H. Muller and Turner as developed in connection with the periosteum of the orbit, where it covers the spheno-maxillary fissure; b, apper nasal and naso-palatine branches to the mucous membrane of the nose and hard palate; c, descending palatine branches to the mucous membrane of the hard and soft palate; d, pterygo-palatine to the mucous membrane of the urper part of the pharnyx.

The $3 d$ or Iajerior Maxillary division passes out of the skull through the foramen orale, and as it does so is joined by the motor root of the 5 th. By the junction a mixed nerve is formed, which is the sensory nerve for the lower part of the facc, and the skin of tho temple, and the motor nerve for the muscles of mastication. Immediately after passing through the foramen this nerve divides into a small and large division, in each of which motor and sensory fibres are found. The small division supplies motor masticatory branches to the masseter, temporal, external, and internal pterygoid muscles; but further it gives off a long buccal branch, which, though often deseribed as the motor nerse for the buccinator muscle, is really a sensory nerve for the skin and mucous membrane of the cheek. The sensory nature of this nerve is proved, not only by physiological and pathological experiments, but by tracing its fibres throngh the buccinator muscle to the inucous membrane. Turner has also recorded two cases in which the long buceal nerve arose as a branch of the sensory superior maxillary nerve. The large division separates into three branches-a, auriculo-temporal, which ascends to supply the parotid gland, the skin of the auricle, extemal meatus, and temple, and the temporo-maxillary joint ; u, inferior dental, which enters the dental canal in the lower jaw, and supplies the lower set of teeth and the skin and mucous membranc of the lower lip; it also gives off a mylo-hyoid branch to the mylo-hyoid and anterior belly of the digastric muscle; c, lingual or gustatory, which runs forward along the side of the tongue to end in the filiform and fungiform papille of its mucous membrane. The lingua! branches are sensory nerves of touch, though some physiologists believe that they are also nerves of taste. Cunnected with the branches of the inferior maxillary division are two small ganglia, which, like the ciliary and spheno-palatine ganglia, are of a greyish colour, contain nerve cells, and receive roots from motor, sensory, and sympathetic nerves. The sulmaxillary ganglion lies under cover of the mylo-hyoid muscle, and receives a root from the motor clourda tympani nerve, a root from the sensory lingual, and a sympathetic root. It gives branches to the sub-maxillary and sublingual salivary glands. The otic ganglion lies close to the Eustachian tubc, and receipes a root from the muscular nerve to the internal pterygoid, a root from the eensory auriculo-temporal, and a sympathetic root. It also receives the sinall petrosal nerve, by which it is connected to the knee-shaped bend of the portio dura and. to the glosso-pharsngeal nerse. It supplies the tensor tympani and tensor palati muscles. The branches of the three divisious of the fifth cranial netre, which vass to the shin of
the tempte, forehead, and face, freely communicate with the branches of the portio dum, which supply the muscles situated in those regions.

The Closso-pharynyeal or uppermost division of the eighth nerve springs out of the side of the medulla oblongata between the olivary and restiform bodies; its roots arise from two small masses or nuclei of grey matter in the floop of the 4th ventricle. 'I'he nerve passes out of the skull through the jugular foramen, where it possesses two small ganglie, named juguldr and petrons. It then passes across the sille of the neck and gives off carotid branches, whicls run along the internal carotid artery; pharyngrul branches to the mucous membrane of the plarynx; tonsilitic branches to the tonsil and soft palate; glossul branches to the base of the tongue and the circumvallate papille, which branches are unquestionably nerves of tho special sense of taste; musculer branches to the stylopharyngeus and perhaps the constrictor museles. 'Ihruugh the jugular and petrous ganglia the nerve commmicates with the vagus and sympathetic. The petrons ganglion gives off the tympanic branch or nerve of Jacobson, which enters the tympanic cavity, supplies its mucous membrane, and gives off three communicating branches-one to the sympathetic; a second to the great petrosal, and through it to the knee-shaped bend of the facial ; a third to the small petrosal, and through it to the otic ganglion.

The Pueumogastric or Vagus is the middle subdivision of the eighth cranial nerve. It springs out of the side of the medulla oblongata, between the olivary and restiform bodies; its roots arise from a mucleus of grey matter in the floor of the 4th ventricle, which nuclens, along with those for the glosso-pharyngeal nerve, is in series with the posterior cornu of grey matter in the spinal cord. It goes throngh the jugular foramen, is joined by the imer division of the spinal accessory which is its motor rout, then passes down the side of the neck, enters the thomax, reaches the outer wall of the usophagus, accompanies that tube through the diaphragm, and terminates in the wall of tho stomach. The left nerve lies on a plane anterior to the right: it crosses in front of the arch of the aorta, and is distributed to the anterior wall of the stomach, whilst the right nerve supplies the posterior wall. Each uerve possesses higll in the neck two enlargements, named upper and loner ganglia. The branches of the vagus are numerous and important. Tlle upper ganglion gives origin to the auricular branch, which traversing a small canal in the petrous temporal bone, is distributed to the skin of the back of the auricle. The lower ganglion gives origin to- a, the pharyngeal branch, which forms a plexus with the glosso-pharyngeal and sympathetic nerves, from which the muscles of the pharynx are supplied; b, tho superior laryngeal, which divides into an external branch to supply the crico-thyroid muscle, and an internal, which pierces the thyro-ly yid membrane, and supplies the mucous lining of the larynx and the mucous covering of the epiglottis. The trunk of the nerve gives origin to-a, the recurrent laryngeal branch, which on the right side turns round the subclavian artery, and on the left round the areh of the aorta, and ascends to the larynx to supply its intrinsic muscles except the crico-thyroid; l, cardiac branches, which arise from the nerve partly in tho neck and partly in the chest, and join the great cardiac plexus for the hea:t ; c, pulmonary branches, which arise in the chest, pass into the substance of the lungs, and forn. along with the sympathetic an anterior plexus in front of, and a posterior plexus behind the root of the lung; d, asophageal luranches, which supply the coats of the cesophagus; e, gastri: branches, which supply the coats of the stomach, and give important offshoots to the great solar plexus of the sympathetic situated at the int of the stomach.

Descriptive Anatomy of the Sympathetic Nervous System.

The Sympathetic Nervous System consists of a pair of gangliated curds, situated one on each side of the spinal column ; of three great gangliated prevertebral plexuses situated in the thoracic and abdominal cavities; of numerous smaller ganglia lying mure especially in relation with the thoracic and abdominal visccra; of multitudes of fine distributory nerres.
Each Gangliated Cord of the sympathetic extends along the side of the spine from the base of the skull to the cocces. In the neck it lics in frunt of the transverse processes of the vertebre; in the thorax, in front of the heads of the ribs; in the abdomen, on the sides of the vertebral budies; and as it descends in front of the sacrum it approaches its fellorv, so that in front of the coccyx the two are united in a single ganglion, the ganglion impar (Fig. $66, c$. Each cord consists of a number of ganglia united into a continuous cord by intermediate nerves. As a rule, the ganglia equal in number the vertebre of the region. Thus, in the sacral region there are fire ganglia, in the lumbar five, and in the thorax twelre; but in the neck there are only three, named superior, middle, and inferior ; of these the superior is very large, and represents withont doubt several smaller ganglia. From the superior cervical ganglion the cord is prolonged uprards by an ascending or cranial offshoot through the carotid canal into the cranial cavity, and forms a plexcs around the internal carotid artery, beth in the carotid canal, named the carotid plexus, and in the inner wall of the cavernous sinus, named the cavernous plexus. Through branches derived either directly or indirectly from these plexuses the sympathetic roots for the ciliary and epheno-palatine ganglia, described in connection with the fift nerve, are derived.

From the gangliated cord and its ascending or cranial prolongation a communicaring and a distributory series of branches are derived.

By the Communicating branches this portion of the sympathetic is connected with most of the cranial and with the anterior divisions of all the spinal nerves, so as to bring the cerebro-spinal and sympathetic systems iuto close anatomical and physiological relation with cach other. It is important also to observe that each communicating branch contains not only inon-medullated nerve fibres from the sympathetic system to the cerebro-spinal nerves, but medullated fibres from the cerebro-spinal to the sympathetic, so that a double interchange takes place between the two systems. The cranial prolongation of the sympathetic and the superior cervical ganglion communicate with the 3 d and 4 th nerres, the Gasserian ganglion of the 5th, the 6 th, the purtio dura of the 7th, the glosso-pharyngeal and pneumogastric of the 8 th, and the 9 th cranial nerves, and with the anterior divisions of the four upper cervical spinal nerves. The middle cervical ganglion communicates with the 5th and 6th cervical nerves, the inferior cervical gauglion with the 7th and 8th cervical nerres, the twelve thoracic ganglia with the series of intercostal nerves, the five lumbar ganglia with the series of lumbar spinal nerves, the sacral and coccygeal ganglia with the sacral nerves and the coccygeal nerve.

The Distributory branches of the gangliated cord are as follows:- a, Pharyngeal branches from the superior cervical ganglion, which juin the pharyngeal branches of the glossopharyngeal and pneumogastric nerres, to form the pharyngeal plexus, which supplies the muscles and mucous membrane of the pharynx. $\quad b$, Articular branches from the upper thoracic and the lumbar ganglia to the articulations between the adjacent vertebra. c, Pulmonary branches from the 3 d or 4th thoracic ganglia, which jois the posterier
pulinonary plezus. d, Vaso-motor branches or nervi molles, which supply the muscular coat of the arteries : those which arise from the cranial prolongation of the superior cervical ganglion supply the internal carotid artery and its branches to the brain and eyeball: those which arise from the superior cervical. ganglia itself supply the external carotid artery and its branches; from the branch accompanying the facial artery the submaxilliary ganglion derives its sympathetic root; from that accompanying the middle meningeal artery the otic ganglion derives its sympathetic root : the raso-motor nerves which arise from the middle cervical ganglion supply the inferior thyroid artery, and pass to the thyroid gland: the vaso-motor branches of the inferior cervical ganglion supply the vertebral and basilar arteries aud their several branches, which pass to the spinal cord and the hinder part of the encephalon. Taso-motor nerves alog arise from the thoracic ganglia, which pass to the thoracic aorta, from the lumbar ganglia to the abdominal aorta, and from the sacral ganglia to the middle sacral artery; the ganglion impar gives branches to a peculiar rascular etruc. ture, named the coccygeal body, developed in connection with the end of the middle sacral artery; a body of similar structure, called intercarotic lody, situated in the angle of bifurcation of the common carotid artery, receives branches from the superior cervical ganglion. e, Cardiac branckes from the superior, middle, and inferior cervical and the 1st thoracic ganglia, which pass into the thorax to join the prevertebral cardiac plexus. f, Splunchric branches as follows: great splanchnic nerve, by the union of branches from the thoracic ganglia, the 3d to the 10 th inclusive; it pierces the crus of the diaphragm, and passes to the prevertebral solar plesus; small splanchnic nerve, also to the solar plexus from the 10 th or 11th thoracic ganglia ; smallest splanchnic nerve, from the 12 th thoracic ganglion to the renal plexus. g, Hypogastric branches, from the lumbar and sacral ganglia to the prevertebral hypogastric plexus.

The Prevertebral Curdiac plexus (Pl. XVII. c) is situated Gangliated at the base of the beart, and is divided into a superficial preverpart, which lies in the concarity of the arch of the aorta, tebral and a deep part between the aorta and trachea. It receires the cardiac branches of the pneumogastric and the cervical ganglia of the sympathetic. It contains collections of nerve cells and a dense plexiform arrangement of nerva fibres. It gives off branches to the heart, which wind around the surface of that organ and penetrate its muscular substance: on these branches minute ganglia are found which regulate its rhythmical morements. Through these branches and the cardiac plexus the heart is brought into connection with both the ccrebro-spinal and sympathetic systems of nerves. The sympathetic apparently regulates its contraction, for when this nerve is stimulated the action of the heart is accelerated. The pneumogastric again exercises an inhibitory or restraining influence on the contractions of the organ, for when this nerve is irritated the activity of contraction is diminished, but when divided it is greatly increased. The cardiac plexus also sends offsets to the anterior and posterior pulmonary plexuses for the supply of nerres to the lungs.
The Prevertebral Solar or Epigastric plexus is situated st the pit of the stomacin around the coeliac axis, a branch of the abdominal aorta. It receives the great and small splanchnic nerves from the thoracic ganglia of the sympathetic, and some of the terminal branches of the pneumogastric nerve. It contains large collections of nerre cells, Which form the two semilunar ganglia, and a dense plexiform arrangement of nerre fibres. It gives origin, either directly or indirectly, to numcrous plesiform branches, which accompany, and are named after, the abdominal aorta and its rarious branches given off to the walls snd viscera of the abdomen proper. In this manner not ouly
do the arteries which supply the abdominal viscera receivo their vaso-motor nerves, but the muscular and mucons coats of the stomach, intestines, gall bladder, bile ducts, ureters, and seminal ducts, and the glandular structures of tho liver, pancreas, kidneys, spleen, and supra-remal eapsules. It is important also to observe that these plexuseo of distribution not mufrequently eontain amall ganglia, and the branches which supply the muscular coat of the stomach and intestines have minnte microscopie ganglia, with stellate nerve cells lying amidst thern. The distribution of the preumogastric nerve to the stomach, and its cunnection with the solar plexus, enables that nerve. to stimulate its peristaltic contraction, and, according to somo experimenters, that of the small intestine also; but the precise action of the sympathetic on these organs is still a disputed question.

The Prevertebral Ilypogastric plexus is situated in front of the last lumbar vertebra. It receives branches from the lumbar ganglia of the sympathetic, and from the plexus surrounding the abdominal aorta. It divides into two parts, which lie one on each side of the rectum, and are called the pelvic plexuses; these plexuses are joined by' brancbes from the sacral ganglia of the sympathetic, and from the $3 d$ and 4 th sacral spinal nerves, and contain sman gangliform collections of nerve cells From the pelvic plexuses numerous plexiform nerves arise, which accompany the internal iliac artery and its branches to the walls and viscera of the pelvis, and are named after them. These nerves not only supply the vaso-motor nerves for these blood-vessels, but also the muscular coat and mucous membrane of the bladder, rectum, and urethra, besides the prostate gland in the male, and the futerus and vagina, and in part the ovary, in the female; in connection with their distribution to these viscera, minute ganglia are found lying amidst the nerves the nerve cells in which act undoubtedly as centres of reinforcement for the origin of additional nerve fibres.

From the distribution of the branches of the gangliated cord of the sympathetic, and of the gangliated prevertebral plexuses, it will be seen that this nerve is especially related to the blood-vessels and to the viscera.contained within the great cavities of the body. As the cerebro-spinal systom is engaged in the supply of nerves to the voluntary inuscles, the sympathetic is the medium of supply for the involuntary muscular apparatus, both in the coats of the ressels and in the walls of the hollow viscera. But though the vaso-motor nerves branch from the sympathetic ganglia, it must not be supposed that they have no connection with the cerebro-spinal system. The communicating branches between the sympathetie ganglia and the anterior divisions of the spinal nerves establisha conneetion between them and the cerebro-spinal nervous axis. By recent experiments, the tract of transmission of the vasomotor fibres has been traced along with the anterior roots of the spinal nerves, through the lateral columns of the cord to the medulla oblongata, in which the vaso-motor nerve centre lics a little to one side of the mesial plane, above the calamus scriptorius. In the distribution of the eympathetic to the glandular viscera, not only is it important to atteud to their terminations in the muscular coat of the blurd-vessels of the glands, but the termination of the nerves in connection with the secreting cells themselves must bo taken into consideration. The communications between the cerebro-spinal and sympathetic systems, not only through the spinal nerves, but also through the pneumogastric, are to be leept in mind in connectiou with the effeets produced by varying mental conditions on the secretions of the glands.

Organs of Sense.

The organs of sense aro the orgins through the interme diation of which the mind becomes cognisant of the appearance and properties of the various objeets in the external world. These organs are severally named nose, eye, ear, tongue, and skin. For the exeitation and pereeption of a sensation three sets of structures are necessary: a, a peripheral end-organ; b, a sensory nerva; c, a coutral organ. The peripheral end-organ is the part of the appasutus to which the stimulus necessary for the production of the sonsation is applied. This stimulus causes nervous impulses to be propagated from the end-organ along tho filbres of the sensory nerve to the central organ, in which that nerve terminates at its eentral extremity. These nervous impulses occasion molecular changes in the nervo cells of the brain, and the mind becomes conscious of a sensation. The shape and construction of each organ of seuse is adapted to the application of the stimulus required for the production of the particular sensation to which the organ is subservient. Each organ of sense possesses its own characteristic form of end-organ. The touch corpuscles of the skin, the end bulbs found in several mueous membranes, and the Pacinian corpuseles, are the end-organs occurring in their several localities; they have the peripheral ends of the sensory nerves terminating in their substance, and the axial eylinder of the nerve fibre ends in their interior. The rods and cones of the retina, the rods of Corti in the cochlea, the olfactory cells of the nose, and the gustatory bodies in the tongue, are the end-organs belonging to their several organs of sense; the sensory nerve fibres which terminate in relation with them bavo not yet, however, been traced into actual continuity with their substance. A stimulus, whatever may be its nature, applied to any organ of sense can excite only that kind of sensation for the production of which the orgau is subser vient. Thus a stimulus applied to the eye, whether it bo the natural stimulus of the waves of light, the mechanical stimulus of a blow, or an electric stimulus, can only excite the sensation of light. Stimuli applied to the ear can only excite the sensation of sound, and is like manner with the other senses. In studying the anatomy of the organs of sense the arrangement of numerous aecessory structures, which assist cither in conducting stimuli or in modifying their effects, the arrangement and structure of the peripheral end-organs, and the origin, course, and distribution of the sensory nerves, will have to be considered.

The Noss or organ of smell is a large cavity situated in Nose the fuee, between the orbits, above the mouth, and below the cribriform plate of the ethmoid bone. It communicates by the anterior nares, or nostrils, with the external atmosphere, by the posterior nares with the pharynx, and through it with the larynx, trachea, and lungs, It is the proper - entrance to the respiratory passage, is accessory to the production of the roice, aids in the sense of taste, and forms one of the most important features of the facc. It is subdivided into a right and a left elamber by a vertieal mesial partition, the septum nasi, so that the nose is a duuble organ in the same sense as the eyes or cars aro double. The walls of the cavity of the nose are formed partly of bone and partly of cartilage. The osscous walls are referred to on page 826. The cartilages form the puint, the alx, and a part of the septum nasi. The mesial or septal cartilage is triangular in shape, and fits into the interval between the vomer, the mesial plate of the ethmoid, and the nasal spine of the superior maxilla. Anteriorly and inferiorly its bordes is free, projects on to the face, and forms the columna of the nose. The iateral cartilages form tho tip and ale. On each aide is an upper lateral cartilage attached by ita

FOL. I.

Sppham or Tose

ANAJOMIY
organs or Sense

cikary Processes

Outer nall of jose

Eychds

outer margin to the free edge of the nasal bone and superior maxilla, whilst by its inner it is continuous with the anterior border of the septal cartilage. The lower lateral cartilage curves inwards upon itself, tonches its fellow in the mesial plane at the tip, and forms the anterior and lateral boundary of the orifice of the nostril. It is connected by fibrous membrane above to the upper lateral cartilage, and behind to the anterior edge of the superior maxilla. In this membrane two to five small cartilaginous plates, called the cpactal cartilages, are often found innbedded. The skin of the nose which covers the lower lateral cartilages contains zumerous sebaceous follicles, which open by comparatively large orifices on the surface. It is closely connected to these cartilages, and to the muscles of the alz. The lower lateral cartilage forms the wall of the vestibule or cntrance to the nasal chamber, and the vestibule is lined by a prolongation of the integument, which is studded with nuruerous short hairs or vibrissce. Hach nasal chamber is lined by a mucous membrane called the piluilary or Schneiderian. This wembrane is prolonged into the meatuses and the air sinuses which open into them; posteriorly it is continuous with the mucous lining of the pharynx, and anteriorly it blends with the cutaneous lining of the vestibule. The pituitary membrane is thick and soft, and diminishes the size of the meatuses and the openings of the air sinuses as seen in the skeleton. The mucous membrane is divided into a respiratory and an olfactory region. The respiratory region corresponds to the floor of the nose, to the inferior turbinated bone, and to the lower third of the nasal septum. It is covered by a ciliated columnar epithelium, and contains numerous racemose glands for the secretion of mucus or pituita. It is also vascular, and the veins which ramify in it have a plexiform arrangement. The mucous lining of the air sinuses is also ciliated, but almost devoid of glands, except in the antrum, in which region the glands sometimes dilate into cystic tumours.

The olfactory region is the seat of distribution of the oliactory nerve and of its peripheral end-organs. It corresponds to the roof of the nose, to the superior and middle turbinals, and the upper $\frac{2}{3}$ rds of the septum. The mucous membrane is thock, soft, easily destroyed, of a yellowish brown colour, and blended with the periosteum. When vertical section:, through this membrane are examined nicroscopically the tubular glands discovered by Bowman may be seeu in its vascular connective tissue layer. These glands contain roundish secreting cells with yellowish-brown pigment-stained contents. The epithelium is cylindrical, but not usually ciliated, though patches of ciliated epitheliun cells are said to occur in man. Long, slender, and even branched processes proceed from the deeper end of each cell towards or even into the subepithelial conncctive tissue. The colls usually contain pigment granules. Between the epithelium cells the characteristic olfactory cells of Schultze are situated. Each olfactory cell con- Fin. 76.-Section sists of a globular or fusiform body, from which orfactory motwo long processes arise: one, the peripheral branc. e, epiprocess, passes vertically between the adjacent thclum cell; cylindrical epithelium cells to the free surface ${ }_{\text {c. }}^{c_{c}}$ clli c, ills pery of the mucous membranc: in amphibia, rep- pheral, and ρ_{0} tiles, and birds it projects beyond the plane ricose process of the epithelium as a simple hair-like struc- (Afer Schultec) ture, or subdivided into several slender "olfactory hairs;" in fish and mammals, man inclusive, it ends, without forming a hair-like prolongation, on the general plane of the mucous surface. Ths sezond or central process of the olfac-
tory cell cxtends towards the sub-epithelial connective tissue: it is finer than the peripheral process, and bas not unfrequently a varicose appearance like a nerve fibre.
In the description of the development of the brain (p.864), the origin of the olfactory bulb and peduncle from the bemisphere vesicle ras referred to. In the adult brain the olfaciory peduncle is in contact with the under surface of the frontal lobe. It is a white band, which divides in front of the locus perforatus anticus into three so-called roots of the olfactory nerve. The external or long root passes outwards across the Sylvian fissure to the gyrus Lippocampi, and perhaps also to the insula: a few fibres are continuous with the anterior commissure; but in mammals, where the olfactory peduncle furms a goodsised lobe, it receives many fibres from the commissure. The middle or grey root contains white fibres which proceed from the corpus striatum. The internal or short root has been traced into the anterior end of the gyrus fornicatus; hence the inner and outer roots of the olfactory peduncle are connected with the anterior and posterior extremities of the arch-shaped gyrus. The olfactory bulbs rest on the upper surface of the cribriform plate of the ethmoid, one on each side of the crista galli. The bulb consists both of grey and white matter, and sometimes retains the central cavity lined by a ciliated epithelium. The grey matter contains fusiform and pyramidal nerve cells imbedded in neuroglia (the stratum gelatinosum of L. Clarke). Between it and the centrr? carity is the white matter formed of nerre fibres interspersed with "granules," similar to those seen iv the rust coloured layer of the cerebellum. Betreen the grey matter and the surface is the stratum glomerulosum of Meynert, which apparently consists of coils of the olfactory nerve fibres with interspersed "granules." The olfactory nerve fibres form the first pair of cranial nerves or nerres of smell; they leave these glomeruli in from 15 to 25 bundles $_{1}$ and enter the roof of the nose through the holes in the cribriform plate (Pl XIX. figs. 1, 2); they lie in grooves in the bones of the olfactory region, and form a network from whicb bundles of fine non-medullated fibres arise that enter the mucous membrane and run between the glands into the epithehal layer. These nerves have a varicose appearance, and though their terminations have not been precisely ascertained, it is believed that they are connccted with the central processes of the olfactory cells, which cells are therefore regarded as the peripheral cnd-organs of the olfactory nerve fibres. The mucous membrane of the noso also receives branches from the 1 st and 2 d divisions of the 5th cranal nerve. Their mode of termination in that nembrane is not known, but they are associated with the sense of touch, and not with the special sense of smell

The Eyeball, globe of the eye, or organ of vision, is a Eyebal complex optical apparatus situated in the cavity of the orbit, imbedded to a large extent in loose fat, and mith several muscles attached to it. Its form approximates to the spheroidal, but it actually consists of segments of two spheres, the posterior of which is the larger.

The eyeball consists of three coats or tunics, which enclose three translucent refracting media. The first or external coat consists of a posterior, white, opaque part, the sclerotic, which corresponds in its area with the posterior larger segment of the ball, and of an anterior, translucent part, the cornca, which corresponds in its area with the anterior smaller segment of the eyeball. Piercing the sclerotic coat is the optic nerve, which enters the globe about $\frac{1}{8}$ th inch to the nasal or inner side of its anteroposterior axis. The second or middle coat, or tunica rasculosa, consists of a posterior part or choroid, the area of which curiesponds almost exactly with the sclerotic;
this coat possesses anteriorly numerous fulds, the ciliury plocesses, which are continuous with the iris, a structure which lies behind the cornca. The third or internal or nervous coat is named the relina, and in it the optic nerre

Fra. 77.- Disgrammatle acction through the eyclat O. conjuncliva; co, corner, or, elebulic: ch. choold: pr, chlary processia; me, cillary muscle; 0 , optic Derve; If. reina: J, lris ; aq. otelior chamber of aqueone humour; L, leas; Y. vitreuus buty: Z zunule of Zinn, the cillary proces bedng reinoved to sbow : p, cansl on fellif gellow spot. ithe dutted line buhnd the connea re, prcsenta lia posieriof eptuclium
lerminates. The enclosed refracting media occupy the axis of the globe, and are named from before backwards the aqueous humow, crystalline lens, and vitreous body.

The Sclerotic coat, called from its white appearance the white of the cye, is a firm, unyiclding fibrous membrane, which forms the posterior fof of the outer coat of the eycball. It is thicker behind than in front, and where pierced by the optic nerve it has a cribriform structure, as the bundles of nerve fibres do not pass through one large, but several small openings. The sclerotic consists of the white fibrous form of connective tissue, intermingled with a small proportion of clastic fibres. The bundles of white fibres lie in tro directions; some pass in the meridinn of the glube from the optic nerve towards the cornca, others lie parallel to its equator. The sclerotic is joined by accessory fibres behind, derived from the perineurium of the optic nerve, where the nerve pierces it ; and in front from the tendons of the recti and obliqui muscles, which are inserted into it. In the cetacea the sclerotic possesses extraordinary thickness. In fish and amphibia it consists largely of cartilage, and in birds a ring of bone is develuped around its anterior margin. It is the protecting coat of the ejeball.

The Cornea forms the translucent anterior $\frac{1}{8}$ th of the outer coat of the eyeball. It is almost circular in form, and is blended at its circumference with the anterior border of the sclerotic. Its anterior surface is conver, and covered by the conjunctival epithclium. The forward projection of the cornea is always greater in young than in aged persons. Its pusterior surface is concave, and bounds the chamber in which the aqueous humour is contained: if the chamber be punctured, and the humour evacuated, the cornea luses its translucency, its tension, and its formard convexity, and becomes flaccid and opaque. It has considerable thickness, and can be readily split up into laminæ. When antcro-posterior sections are made through it and the epithelium on its anterior and posterior surfaces, four distinct scries of structures may be seen, viz., the anterior ryithelium, the proper tissue of the cornea, the posterior e'astic lamina, and the posterior epi-(endo)-thelium.

The anterior epithclium of the cornea, often called the con.
junctival epithelium, is stratificd. The deepest layer, which lies next the cornea, is formod of elongated cells, which lio vertically to the plane of the surface of the cornca. The more superficial layers are squamous cells, often with fluted surfaces and scrated or spinous edges. Tho intermediate layers are irregular in shape, and often possess, as Cleland pointed out, long digitate processes, which interlock mith those of the adjacent cells.

The proper tissue of the cornea is a modified form of connective tissuc. When examined fresh it apperas as if perfectly homogeneurs, but after a time, and more espe cially if hardened in alcuhol, chloride of geld, and othce reagents, it is seen to consist of cells and an intercellular matrix. The cells consist of two kinds, - those which belung to the cornea, and those which have migrated into jt. The proper cornea cells or cornea corpuscles were first seen by Toynbee, and have been carefully studied by numerous subsequent observers. They are large stellate, flattened cells, and lie with their surfaces parallel to the surfaces of the cornea; they possess many branching processes, and the processes of adjacent cells anastumose to form a cell network. I'hey consist of nucleated masses of protoplasm, which Külne showed to be centractile, and are apparently destitute of a cell wall. In vertical sections through the cornea the corpuscles seem as if shaped like. elongated spindles. Ithe migrating cells of the cornea were first seen by Von Recklinghausen. They resemble white blood corpuscles, and possess active amœboid movements, so that they can wander through the corneal tissue. In a healthy cornea they have migrated out of the marginal blood-ressels; but in an inflamed cornea, where their number is greatly increased, they are in part white corpuscles derived from the blood, and in part produced by proliferation of the proper cornca corpuscles. The intcrcellular matrix of the cornea consists of a laminated substance, the lamellæ being arranged parallel to the surfaces of the cornea. The lamellæ consist of fasciculi of extremely delicate filaments; immediately under the anterior epithelium the fasciculi decussate with each other, and at the circumference of the cornca the fasciculi run into the connective tissue of the sclerotic. Bowman described a translucent structureless layer or anterior elastic lamina between the conjunctival epithelium and the cornea proper, but it is doubtful if this layer exists as a constant arrangement. Bowman and other observers have injected tubular spaces in the cornea which are apparently situated between the lamelle. The exact nature of these spaces is somewhat doubtful, but Thin believes them to be lymph-vessels traversing its sub stance, for he has seen an endothelial lining similar to the endothelial cells of the lymphatics. It is probable that these spaces serve as the channels for the migrating corpuscles to wander through. Thin also describes the proper cornea corpuscles as lying in lacunx, which communicate with each other and with the lymph-vessels. The posterior elastic lamina forms a distinct translucent, structureless layer adherent to the back of the proper tissuc of the cornea, from which it may be stripped off without much difficulty. When torn across, the edges curl inwards towards the corncal tissue. It is from शुनo to $5 \frac{1}{50}$ th inch thick, and resists the action of various reagents. This lamina thins off at its circumforence and splits into fibres, which become continuous with the pectinate ligament of the iris.

The posterior epithelium of the cornea, also called the endothelium of the aqueous humour, forms a single layer of polygenal cells on the back of the posterior elastic lamina It is continuous with the endothelial covering of the pectinate ligament and of the anterior surface of the iris.

The cornes, is not in the adult traversed by blood-vessels, though in the fotus a layer of capillaries lies near its anterior earfacis In the adult, however, the margin of
the cornea is penetrated by a zone of capillary loops derive 3 from the arteries of the conjunctiva; these loops, according to Lightbody, are invested by perivascular lymph spaces. The venous canal of Schlemm runs round the circumference of the cornea, at the junction of its deeper layers with the sclerotic. Leber states that it is not a simple canal, but a plexiform arraggement of veins. The nerves of the cornea first seen by Schlemm hare been carefully examined by recent observers. They arise from the ciliary nerves, and enter the margin of the cornea in from twenty to forty fasciculi, which run from the circumference to the centre and to the anterior surface of the cornea, and give off numerous branches. The nerve fibres soon lose their medullary sheath, and branch; adjacent branches then communicate, and form plexuses which possess nuclei at the points of intersection of the nerves. From these plexuses delicate branches again arise, some of which penetrate between the cells of the aaterior epithelium, whilst others end in the proper tissue of the cornea. Kühne stated that the terminal fibres ended in the cornea corpuscles, but this statement has not been confirmed.
The Choroid coat forms the largest portion of the middle coat of the eyeball. It lies immediately internal to the sclerotic, and extends as far formard as the corpus ciliare, or annulus albidus, where it forms the ciliary processes; it is pierced posteriorly by the optic nerve. It has a deep black culour, from the numerous pigment cells it contains, and is abundantly provided with blood-vessels and nerves. The Corpus ciliare, or annulus albidus, is a greyish-white ring which surrounds the anterior border of the choroid close to the junction of the sclerotic and cornea. It consists of two portions-an external, the ciliary muscle, which lies next the sclerotic, and an internal, the ciliary processes (Plate XIX. fig. 4). These processes, about 80 in number, are folds, separated from each other by furrows which extend forwards in the meridional direction as far as the iris, and form collectively a zone-like plated frill around the circumference of the iris. On the one hand, they are continuous with the vasculo-pigmentary structures of the choroid; on the other, with the vasculo-pigmentary structures of the iris.
The Iris is a circular, flattened disc-shaped diaphragm, situated bebind the cornea, in front of the crystalline lens, and bathed by the aqueous humour. By its circumference or ciliary border the iris is not only continuous with the ciliary processes, but is connected by fibres, termed ligamentum pectinatum, with the posterior elastic lamina of the cornea. The iris is the strncture which gives the chamcteristic colour to the eye-blue, grey, brown, hazel, as the case may be. It is perforated at, or immediately to the inner side of, its centre by a circular apuriture, the pupil, the size of which is regulated by the contraction or relaxation of the muscular tissue of the iris.
The structure of the several divisions of the middle coat will now be considered. Tre Choroid coat has its inner or anterior surface formed by a distiuct pigmentary layer of nexagonal pigment cells (Fig 43). In the eyes of Albinos, though the cells are present, they contain no pigment. In many mammals also, the pigment is absent from the inner eurface, so that the choroid possesses a beautiful iridescent :ustre, the tapetum lucidum. In ruminant animals and in the horse the iridescence is due to the reflection of the light by the bundles of the connective tissue stroma, but in cats from polygonal nucleated cells, which Schultze states contain double refracting crystals. Next the inner pigmentary layer is the lumina vitrea, the elastic layer of Kölliker. It forms a translucent membrane, described by some as structurcless, but by Kölliker as faintly fibrous, which is intinately connected with the stroma of the choroid. The stroma consists of a plexiform arraugement of bundles
of connective tissue, in the intervals between which nume rous stellate pigment cells are situated, which give to the entire thickness of the choroid its black appearance. This stroma connects the outer surface of the choroid with the inner surface of the sclerotie, and forms the lamina fusca. Ramifying in the stroma are the blood-vessels and nerves. The vessels of the choroid are arranged in two layers. Next the lamina vitrea is a plexifurm capillary layer, the meshes of which are so minute, and the vessels so compacted to gether, as to give the appearance of a vascular membrane, long known as the membrana Ruyschiana. The capillaries radiate like minute stars from the terminal twigs of the choroidal arteries and veins. The choroidal arteries and veins form a layer external to the capillaries, i.e., next the lamina fusca The arteries are the short posterior ciliary branches of the ophthalmic artery, which pierce the sclerotic close to the entrance of the optic nerve, and, running forwards in a tor tuous manner, divide dichotomously before ending in the capillaries. The veins of the choroid are arranged in a series of remarkable whorls, named the vence vorticosce, which receive the blood not only from the capillaries of the chorcid proper, but from those of the iris and ciliary body; they discharge their blood by means of from 4 to 6 veins into the ophthalmic rein. The ciliary muscle is the greyish white structure which forms the outer part of the ciliary body. It was at one time called the ciliary ligament, but its muscular nature was discovered almost simultaneously by Bowman and Brücke. It consists of smooth involuntary muscle, the fibres of which are arranged in two layers. The outer and thicker part of the muscle consists of fasciculi, which arise close to the canal of Schlcmm, i.e., opposite the junction of the sclerotic and cornea, and radiate from before backwards in the meridian of the eyeoall, between the ciliary processes and the sclerotic. The inner part of the muscle forms a ring-like arrangement of fasciculi close to the circumference of the iris, and is often called the annular muscle of Müller. Iwanoff has shown that in long-sighted persons (hypermetropic) the annular muscle is strongly developed; whilst in short-sighted (myopic) eyes its fasciculi are very feeble. The Ciliary Processes have on their inner surface a black pigmentary layer of cells continuous with that of the choroid. The vitreous layer is also present, but according to H. Müller is no longer smooth but reticulated. The stroma does not contain so large a proportion of stellate pigment cells as in the choroid. The arteries have been carefully studied by Leber; they are the lung posterior ciliary branches of the ophthalmic, and the anterior ciliary branches of the muscular branches of the ophthalmic. They pierce the sclerotic run forwards, and at the anterior border of the ciliary muscle form by their anastomoses the circulus arteriosus, which gives origin to the arteries for the ciliary processes and the iris. The arteries for the ciliary processes ate short, and divide into tortuons branches, which frequently anastomose, and form highly cumplex rascular plexuses, from which arise veins that juin the venæ vorticose. Before the long ciliary arteries contribute to the formation of-the arterial circle they send branches to the ciliary muscle, and rccurrent branches to the anterior part of the proper choroid coat.

The iris lass its anterior surface covered by a laycr of cells coutinnous with the endothelium of the aqueous humour. This layer is continuous at the pupillary berder with a thick laycr of cells filled with black pigment granules, the urea, which covers the posterior surface of the iris, and is continuons at its ciliary border with the pigmentary layer of the ciliary processes. The counective tissue stroma of the iris also cuntains stellate pigment cells. The variations in colour of the iris in dilferent ejes depends upon the dia tribution and amount of the pigncut in the uvea and the
etellato cells: in dark-coloured ejes, both aro filled with dark pigment granules; whilst in light-coloured eyes the stellate cells of the stroma are either devoid of pigment or only faintly coloured. The iris contains numerous fasciculi of involuntary or non-striped muscular fibre arranged in two directions. Circularly arranged fibres surround the aperture of the pupil, and form the sphincter muscle, by the contraction of which the size of the pupil is diminished. Smooth muscular fibres also radiate from the pupillary to the ciliary border of the iris and form the dilatator muscle. The muscular nature of these fibres in the human iris was long disputed, but was satisfactorily demonstrated in 1852 by Lister. Jerophecf has also described circular fasciculi surrounding the ciliary border. In birds and reptiles the muscular tissue of the iris consists of transversely striped fibres. The arteries of the iris arise from the circulus arteriosus, and run radially forwards towards the pupil, where they anastomose and form the circulus iridis minor. They possess relatively thick external and muscular coats. The capillaries form a plexus not so compact as that of the choroid coat. The veins of the iris end in the rene rorticosex. In the foctus the pupil is closed in by a delicate membrane, membrana pupillaris, into which the bloodvessels of the iris are prolonged. This membrane disappears by absorption during the later months of embryo life. The nerves of the middle coat of the cyeball are the long ciliary branches of the ophthalmic division of the 5 th and the short ciliary branches of the ciliary ganglion (Pl . XIX. fig. $7, \frac{c}{5}$). They pierce the selerotic near the optic nerve, and run forward in the lamina fusea of the choroid. They give off branches to the choroid which form in it a plezus in which H. Müller found nerve cells. From this plexus delicate branches pass to the muscular coat of the choroidal arteries. The ciliary nerves then enter the ciliary muscle, and form plexuses with interspersed nerve cells, from which branches pass to the muscular fibres. Other branches of the ciliary nerves enter the iris, and form plexuses, from which branches proceed to the muscular tissue.

The Rctina is the delicate nervous coat of the eyeball which lies inmediately internal to the choroid, and extends

Flg. 78.-Dincremmatic section throogh the retina to show the sereral layers which are numbered as In the lext $C t$, the radial fibrea of the suppuring connectlye tissue.
from the place of entrance of the optic nerve as far forward as the ciliary processes, where it forms a jagged border, the ora serruta. In the living eye it is translucent and colourless, but shortly after death it becomes grey: it is soft and so easily torn that it is difficult to display it in a dissection without injury. Its inner or anterior surface, concave formards, is noulded on the vitreous body, and presents the following appearances:-Almost exactly in the anteroposterior axis of the eyeball is a transtersely oral yellow spot, about $\frac{3}{2}$ th inch in its long diameter, which amongst mammals is found only in man and apes, though, as Knos and Ifulke have shown, it exists in reptiles; in the centre of this spot is a depression, the fovea centralis; about $\frac{1}{8}$ th inch to the inner side of the yellow spot is a slight elevation, the papilla optica, which marks the disc-like entrance of the optic nerve intu the retiua; here the fibres of the ncrve radiate outwards and forwards to the ora serrata, and branches of the arteria centralis retince accompany then.
[be retina is highly complex in structure, and consists
of nerve fibres and cells, of peripheral end-organs, of cournective tissuc, and of blood-vessels, arranged in several layers. Max Schultze, who is the clief authority on the subject, recognises ten layers, Lut includes among these the layer of hexagonal pigment cells just deseribed as the inner pigmentary layer of the choroid. If this layer be omitted, nine layers may then be recognised, and, following Schultze, be named from before backwards as follows:-1. Membrana limitans interna; 2. Layer of optic nerve fibres; 3. Layer of ganglion cel!s; 4. Internal granulated (molecular' layer ; 5. Internal granule layer; 6. External granulated layer ; 7. External granulo lajer ; 8. Menbbrana limitans externa; 9. Bacillary layer (Fig. 78).

The nervous elements of the retina will first be considered. The optic nerve fibres (2), where they pierco the sclerotic, as a rule lose the medullary sheath, and radiate outwards as non-medullated fibres from the optic disc to the ora serrata immediately belind and parallel to the mentbrana limitans interna. These fibres vary greatly in size, and are frequently varicoss. When any of the optic nerve fibres retain the medullary sheath the retina is there rendered opaque. Immediately behind the nerve fibres is the layer of ganglionic nerve cells (3). These colls are either bipolar or multipolar. In the living eye the cell substance is hyaline and the nucleus transparent, but after death the substance both of the body of the cell and the processes assumes a fibrillated appearance, like the axial cylinder of an optic nerve fibre. One process, the central process, extends into the layer of optic nerve fibres; and another, the peripheral, into the internal granulated layer. The internal granulated layer (4) contains the branching processes of the nerve cells, some of which apparently become continuous with an arrangement of excessively fine fibrils, probably nervous in their nature. These fibrils are intermingled with a delicate plexus of connective tissue. The internal granule layer (5) contains numerous fusiform nucleated enlargements, the socalled internal granules, arranged in superimposed strata; from each fusiform enlargement a fibre proceeds in two directions, one centrally into the internal granulated layer, and one peripherally into the external granulated layer. These fibres passess varicosities, and resemble the optic nerre fibres. The external granulated layer (6) is very thin, and consists of an expanded network of minute fibres, with nuelei situated at the points of intersection of the fibres. Krause has called it the membrana fenestrata. The external granule layer (7) cuntains numerous fusiform nucleated enlargements, the so-called external granules, arranged in superimposed strata: from each enlargement a fibre proceeds in two directions, one centrally into the external granulated layer, and one peripherally through the membrana limitans externa to the bacillary layer, where it bccomes continuous with the anterior end of either a rod or a cone, as the case may be. Hence these fibres of the external granule layer are called by Schultze rod and cone fibres, and the external granules are nucleated cnlargements of these fibres. These filbes possess varicosities like those of the internal granule layer.

The bacillary layer (9) or membrane of Jacob consists of multitudes of elongated bodies arranged side by side like rows of palisades, and vertically to the surfaces of the retina. Some of these bodies are cylindrical, and are named the rods of the retina; others flask-shaped, and named the cones of the retina: the rods equal in length the entire thickness of the bacillary layer; the cones are shorter than the rods, and are interspersed at regular intervals between them ; the apex of each cono is directed towards, but does not reach, the plane of the posterior or choroidal surface of the retina. The posterior or outer end of each rod rests against the pigmentary layer of the choroid

The anturior or inner ends of both rods and cones are continuous with the rod and cone fibres of the external granule layer, as already described. Each rod and cone is subdivided into an outer strongly refractile and an inner feebly refractile segraent. By the action of various reagents the outer segments both of the rods and cones exhibit a transverse striation, and ultinately break up into discs. Hensen has described a longitudinal striation in the outer segments, and Ritter has stated that both in the outer and inner segments of the rods an axial fibre exists. Max Schultze has also seen the inner segments of both rods and cones longitudinally striped on the surface. Modifications in the rclative numbers and appesrances of the rods and cones have been seen in the ejes of various vertebrata. In birds, for example, the cones are much more numerous than the rads, whilst the reverse is the case in mammals generally. In the cartilaginous fishes the cones are entirely absent ; so also, as Schultze has shown, in the bat, hedge-hog, and mole; whilst in reptiles the bacillary layer is exclusively composed of cones. In all the vertebrata, except the unamalia, the twin or double cones described by Hannover probably exist. In the amphibia, lens-shaped bodies have been described in the inner segments of the cones. The rods and cones are the peripheral end-organs in connection aith the fibres of the optic nerre, and their apparent relation to these fibres is as follows:-The optic nerve fibres are continuous with the central processes of the ganglion cells of the retina, the peripheral branching processes of which pass into the internal granulated layer, where they anay possibly become continuous with the central processes of the inner granular iayer. The peripheral processes of the inner granular layer enter the external granulated layer, but it is difficult to say whether or not they become continuous with the central processes of that layer. There can, however, be no doubt that the peripheral processes of this layer are directly continuous with the rods and cones of the bacillary layer. The entire arrangement is sometimes called the radial nervous fibres of tine retina.

In addition to the nervous structures just described, the retina contains a delicate supporting connective tissue like the neuroglia of the brain and spinal cord. Not only does it lie between the fibres, cells, and so-called granules in the sereral nervous layers, aud form in them a radial arrangement of supporting fibres, but it constitutes the two limitary nembral is of the retina. The membrana limitans externa (8) is excessively thin, and appears in rertical sections through the retina as a mere line between the bacillary and external granular layers, continuous on the one hand with the connective tissue which passes for a short distance bet ween the rods and cones, and on the other with the conncctive tissue framerwork of the external granule layer.

The membrana limitans interna (1) covers the anterior surface of the retina, and lies next the ritreous body; its posterior surface blends with the radial arrangement of connective tissue between the optic nerve fibres, but its anterior or hyaloiđ surface, as J. C. Ewart has recently shown, possesses a mosaic appearance, like that of a layer of squamous endothelium.

The yellow spot exhibits some structural differences from the rest of the retina. It owes its colour to the presence of yellow pigment deposited in the more anterior layers of the retina. Except at its central depression, the forea centrulis, it is thicker than the surrounding parts of the retina; but it is much softer, a condition which is duc to the almost complete absence of the layer of optic nerve fibres, and a diminution in the amount of the supporting conncetive tissue; the membrana limitans interna is, however, relatively stronger In the fovea centralis itself the rods of the bacillary layer hare entirely disappeared, and are ruplaced by cones which are distinguisheal by their close
arrangement, and the more slender form and increased length, especially of their outer segments. The external granule layer is well marked, and the central fibres belonging to it, instead of passing vertically forwards, incline very obliquely or alimost horizontally outwards to the internal granule layer, which, together with the layers anterior to it, is so thin as almost to have disappeared. In the yellow spot surrounding the fovea the bacillary layer is also composed of cones which are not, however, so slender or so long as at the forea itself. The layer of nerve cells and the inner part of the external granule layer are thicker tban in the rest of the retina. The yellow snot is the part of the retina most sensitive to light.

At the ora serrata or anterior border of the retina the nervous layers, including the rods and concs, ccase to exist. The radial connective tissue and internal limiting membrana are present; from the radial tissue a lajer of cells is prolonged forward in contact with the deep surface of the ciliary processes as the pars ciliaris retince.

The retina is supplied mith blood by the arteria centralis, which, traversing the axis of the optic nerve, reaches the retina at the optic disc. In the retina it branches dichotomously in the nerve fibre layer, avoiding however the yellow spot, and its terminal twigs reach the ora serrata The capillaries form in the more anterior layers of the retina a distinct network, which does not enter the external granule and bacillary layers, but penetrates the jellow spot, though not the fovea centralis. The blood is conreyed from the retina by the central vein which accompanies the artery in the optic nerve, and opens either into the ophthalmic vein or directly into the cavernous sinus. The reins and capillaries of the retina have been described by His as comp!stely invested by perivascular lymphatic sheaths, whilst the arteries only possess such sheaths for a limited part of their course.

The Optic Nerve itself passes from the orbit through the Nerve of optic foramen into the cranial cavity, where it arises from sight the optic commissure. This commissure is a flattened band formed by the junction of the two optic tracts. Each tract winds backwards around the tuber cinereum and crus cerebri to arise from the optic thalamus, corpora quadrigemina, and geniculata; and some observers also state that it derives fibres from the tuber cinereum and lamina cinerea. In the commissure an interchange takes place between the fibres of opposite nerres and tracts, so that not only does an optic nerve contain fibres derived from the tract on its own side, but from the opposite tract, and it has even been stated that fibres pass across the commissure from one optic nerve to the other, and from one optic tract to the other.

The Aqueous Humour is a limpid watery fluid, containing Refracting a little common salt in solution, which occupies the space medis. between the cornea and the front of the crystalline lens In this space the iris lies, and imperfectly divides it into two chambers, an anterior and a posterior, which communicate with each other through the pupil. The anterior chamber, of some size, is situated between the iris and cornea; but as the iris is in contact with the front of the lens, the posterior chamber is reduced to a mere chink between the circumference of the iris and that of the lens.

The Crystalline Lens is situated behind the iris and pupil, and in front of tho vitreous body. It is a transparent bi-convex lens, with its antero-postcrior diameter $\frac{1}{3} \mathrm{~d}$ - less than the transverse, its posterior surface more conves than the anterior, and with its circumference rounded. It consists of a capsule and the body of the lens enclosed by the capsule. The lens capsule is a transparent, smooth, structureless, and rery clastic membraue, about twice as thick on the anterior as on the posterior surface of the lens. It is non-vascular in tho adul:, though in the foetus a brancb of the centrol artery of the retima which trarerses the
ritreous humour, ramifics in its nosterior portion. A single layer of polygonal cells lies between the body of the lens and the anterior portion of the capsule. The lens body is softer at its periphery than in its centre. It is buidt up of concentric layers, and on both the anterior and posterior surfaces lines are to be seen radiating from the central pole of each surface towards the circuinference of the body. The radiated pattern varies in different animals. In the human foctus there are usually three lines, but in the adult they are more numerous. The lines on one surface do not lie immediately opposite those on the other, but are intermediate. By the action of strong spirit and other reagents the body of the lens can be split up from the periphery tuwards the centre in the direction of these lines, so that t'ley mark the edges of apposition of its concentric lamine. tach lamina consists of numerous hexagonal fibres about ${ }_{50} \frac{1}{50}$ th inch wide, which exteud from one surface to the other over tho circumference of the lens, so that a fibre which begins at the polar end of a radius on the one surface terminates at the circumferential end of a radius on the opposite. The edges of the fibres are sinuous in man, but denticulated in many animals, especially fishes, so that the fibres, not only in the same, but in superimposed layers, are closely interlocked. The lens fibres are nucleated, a structural fact which gives a clue to their true nature, and they are now regarded as peculiarly modified elongated cells. Babuchin states that he car trace the transition from the cells of the layer between the lens-body and capsule to the proper lens fibres. The lens-body is non-rascular and non-nervous. The surfaces of the lens become more flattened in old age, and its substance hardens and is less transparent.

The Vatreous Body is much the largest of the refracting medu, and occupies the largest part of the space cnclosed by the tunics. Anteriorly it is hollowed out to receive the posterior convexity of the lens, but posteriorly it is convex, and the retina is moulded on it. It is as translucent as glass, jelly-like in consistency, and wheu punctured a watery fluid drains out. Its minute structure is difficult to ascertain, but as it, like the subcutaneous tissue of the embryo, contains rounded, stellate, and fusiform cells, it is customary to refer it to the gelatinous form of connective tissue; concentric lamellæ, and even a radiated arrangement of fibres, have also been described. It has been customary alco to consider it as invested by a delicato structureless membrane, the hyaloid membrane; but this is now regarded as belonging to the retina, where it is known as the membrana limitans intema. Almost opposite the ora serrata a membrane springs from the vitreous body, pases firwards for some distance in relation to the deep surface of the ciliary processes, but separated from them by the pars ciliaris retinæ, and then inclines inwards to become attached to the anterior surface of the capsule of the lens close to its circumference. It is so elosely connected at its origin with the membrana limitans that it is difficult to recognise it as a distinct membrane. It is named the suspensory ligament of the lens, or zonule of Zinn, and contains fibres, which run in the meridional direction. Where it leaves the vitreous body a narrow space is enclosed between it and that body, which space surrounds the circumference of the lens, and is called the canal of Petit. From the relation of the suspensory ligament to the ciliary processes it has a plicated surface, and when these processes are toru away from it a portion of the pigment of the processes is often left behind, so that the zomule is sometimes named the ciliary processes of the vitreous body.

The Eyeball is an ontical instrument, constructed on the plan of the camera obscura. The sclerotic forms the wall of the chamber. The choroid represents the black lining for absorbing the surplus rays of light. The cornea,
aqueous humour, lens, and vitreous body are the tran ${ }^{\text {a }}$ lucent media which, like the glass lens of the camern obscura, bring the rays of light to a focus. The retina is the sensitive plate on which the optical picture is thrown. In considering the relation of the retina to the visual rays, it must be kept in mind that the place of entrance of the optic nerve is inseusible to light, and that the most sensitive part of the retina is the yellow spot, with its forea centralis, where the optic nerve fibres are absent, but where the bacillary layer reaches its maximum size. It is clear, therefore, that the rods and cones of this layer, and not the optic nerve fibres, are the structures in the retina which are stimulated by the light; and it is probable, as was suggested many years ago by Goodsir, that these rods and cones are impressed by the light, not as it enters the eye directly, but as it is reflected backwards from tho chorvid along their ases. The iris is the diaphragm which, by opening or closing the pupil, adnits or cuts off the rays of light. The ciliary musclo represents the adjusting screw of the camera; through its attachment to the ciliary processes and their relation to the suspensory ligament of the lens, it is able to act upon the lens and modify the curvature of its anterior surface; for when the eye is to be accommodated to the vision of near objects the anterior surface of the lens becomes more convex than when distant objects are being examined.

It has already been stated on p. 864 that the retina is Develop formed in the primary optic vesicle, which grows forwards to the integument. By the involution and growth of the skin at this spot a hollow is produced at the front of the vesicle, whicl gradually deepening forms a pouch, the secondary optic vesicle, in which the involuted part of the skin is lodged. From the included sub-cpidermal tissuo the vitreous body is derived; from the included epidermis, the lens; whilst the cornea sclerotic and iris are produced by the subcutaneous connective tissue. The optic nerve and retina are formed from the primary optic vesicle and its peduncle, and it is probable that the bacillary layer is a special development of its internal epithelial lining. The choroid coat again is derived fiom the pia mater. Hence. the eyeball is cempounded, if structures derived partly from the integument and partly from the embryo brain.

Accessory Parts to the Efeball. - In relation to the eycball several accessory parts are found.

The Eye-Broies are projections of the integument, from which short, stiff bairs grow.

The Eyc-Lids, or palpelice, are two movable curtains, Eytida. an upper and a lower, which protect the frant of the globe. Between each pair of lids is a hurizontal fissure, the palpebral fissure. From the free margins of the two lids project short hairs, the eye-lashes or cilia; the upper set curve downwards and forwards, the lower set upwards and forwards; they also protect the front of the globe. Each eye-lid consists of skin; of the fibres of the orbicular spluncter musele; of a thin plate of fibrocartilage, the tursal cartiluge, to the inner end of which a fibrous band, the tendo palpebrarum, is attached, this tendun springing from the ascending process of the superior maxilla; and of the conjunctiva. Between the conjunctiva and the tarsal cartilage is a layer of glands, tue Meibomian glands; each gland consists of a short duct, which expands at its sides into small sacculi. The sacculi contain short columnar cells; these secrete a sebaceous materiat, which escapes through the orifice of the duct at the border of the eye-lid.
The Conjunctiva is a mucous membrane, which forms the posterior layer of the eye-lid, and is reflected on to the anterior part of the sclerotic. At the inner angle of junction of the cye-lids is a soft reddish elevation of the conjunctiva, the camuncula lachrymalis, and immediately external to it is a vertical fold, the plica semilunaris, the
rudiment of the third eye-lid, or membrana nictitans, so vell devcloped in birds. The palpebral conjunctiva has small papillæ scattered over its surface; its epithelium is stratified, with scaly cells on the free surface and elongated cells in the deepest layer. In the sub-epithelial tissue are small branched mucous glands, which are numerous in the caruncula. Little masses of adenoid tissue (p. 849) with lymphatic vessels are also found in it, and the conjunctiva of the front of the eyeball is thinner than the palpebral part. It is not glandular, and its nerres terminate in end-bulbs (p. 862). The palpebral conjunctiva, and in part that of the eyeball, receive their blood-vessels from those of the eye-lids, but the portion of the conjunctiva next the cornea is supplied by the arteries of the sclerotic coat.

The Lachrymal Apparatus is engaged in the secretion of the tears, and in conveying them amay from the front of the globe. The lachrymal gland occupies a depression in the outer part of the roof of the orbit. It is smaller than an almond, is sub-divided into lobules, and belongs to the group of compound racemose glands. It consists of the ramifications of short ducts, which terminate in small sacculi. The wall of each sacculus consists of a delicate membrana propria, and the cavity contains the polybedral secreting cells. Outside the membrana propria is a cqpillary network derived from the lachrymal artery, but (iiannuzzi and Boll have recently described a space between this network and the membrana propria which they believe to be continuous with the lymphatic system. Pfüger has described nerves as terminating in connection with the secreting cells. The excretory ducts of the gland are from six to eight, and open on the back of the upper eye-lid. The tears are washed over the surface of the globe by the involuntary wink-
ing of this lid. When the secretion is increased in quantity, in the act of crying, the tears flow over the cheek, but in ordinary circum. stances they are conveyed aray by two slender tubes, the lachrymal canals, whichopen by minute orifices, the puncta lachry. malia, one at the inner end of the free border of each eye-lid. These

Fig. 79.-Lachrymal canals and dact. Lerblealer mascle: 2, lachrymal canal: 3, puoctum; 4, caruncula; 5 , lachrymal sac; 6, lachrymal duct ; 7, aggular artery. tubes open at their opposite ends into a small reservoir, the lachrymal sac, situated in a hollow in the lachrymal boue. From this sac a duct, the nasal or lachrymal duct, proceeds which opens into the inferior meatus of the nose, and here the tears mingle with the mucous secretion of that cavity.

Muscles of the Eyeball.-The sclerotic coat of the eyeball has six muscles inserted into it. Four of the muscles are called recti, and are situated, one superior, one inferior, one cxternal to, another internal to, the globe. They all arise from the rim of bone which bounds the optic foramen; the external and internal muscles are inscrted vertically into the sides of the sclerotic, but the superior and inferior recti have oblique insertions into its upper and lower aspects. The other two muscles are called obliqui. The superior oblique arises along with the recti, passes to the inner end of the upper border of the orbit, where its tendon goes through a pulley, and is dircctcd back to bo insertcd
obliquely into the upper and outer part o! the sclerotic. The inferior oblique arises from the lower burder cf the orbit, passes outwards and upwards to be inserted obliquely into the sclerotic. These muscles roll the eycball in the orbit, and, without entering into a minute analysis of their actions, their office may be stated gencrally as follows:The internal rectus rolls it inwards, the external outwards, about its vertical axis; the superior rectus rolls it upwards, the inferior domnwards, about its transverse horizontal azis, though from the obliquity of their insertions they give it at the same time a slight inward or outward movement as the case may be; the superior and inferior oblique roll the globe around its antero-posterior or sagittal axis, the superios upwards and outwards, the inferior downwards and outwards.

Periosteal Muscle of the Orbit.-The periosteun of the orbit contains, as H . Müller and Turner have described, a layer of non-striped muscular fibre in the part which covers over the spheno-maxillary fissure. In man it is rudimentary, but in the sheep, deer, elephant, \&c., where the osseous wall of the orbit is deficient, this muscle forms a well-defined structure. It has been suggested that it acts as a protractor muscle of the globe.

The Ear, or organ of hearing, is a complex acoustic apparatus, situated in connection with the temporal boae. It is divided into three parts, named external, middle, and internal ear.
The External Ear consists of the pinna or auricle and rexterne the external auditory meatus. The auricle is the oblong ear convoluted body situated at the side of the head. Its incurved outer border is named the helix. Within this lies a curved ridge, the anti-helix, in front of which is a deep hollow, the concha, which leads into the external meatus The coneha is bounded in front by a prominence, the tragus, and behind by a smaller prominence, the anti-tragus ; below the anti-tragus is the lobule, which forms the most depending part of the auricle. The framework of the auricle is formed of yellow elastic fibro-cartilaga invested by integument, except the lobule, which consists merely of a fold of integument contaiuing fat. Attached to the cartilage are not only the three auricular muscles referred to on

 concha; \& lobole; f. mastold prncess; ρ_{1} portlo durs; h aiylold process; 4 Unternal carotld artery; h, Eustachian tube; m, tp of perrons process; $n_{\text {, ester }}$ leas; 2 , to incus; 8, to stopcs; 4 , to cochles; $8,6,7$, the thres semicirculs canals; 8 and 9 , portio dara and portio mollis.
page 836, but also certain smaller muscles called the proper muscles of the pinna. Thus the greater muscle of the helix is placed on its anterior border ; the lesser muscle of cha
helix is situated whero it arises out of the concla; the muscle of the tragus lies on the front of that prominence ; the muscle of the anti-trayus is placed on the back of that prominence; the transverse muscle on the pusterior or cranial aurface of the auricle.
The External Meatus leads from the bottorn of the concha into the temporal bone, and is separated from the tympanum or middlo ear by the membrana tympani. It is a crooked passage one and quarter inch long, inclined at first forwards and upwards, then downwards and inwards. The wall of the outer end of the passage is formed of fibro-cartilage continuous with the cartilage of the auricle, whilst that of the deeper end is formed of the plate-like tympanic part of the temporal bono. The passage is lined with integument continuous with the akin of the auricle, in which are situated numerous hairs, together with ceruminous glands which secrete the well-known yellow "wax."
The Tympanum, or Drum, or Middle Ear, is a chamber irregularly cuboidal in form, aitnated in the temporal bone between the bottom of the meatus and the internal ear. The outer wall is formed of the membrani cympani, which inclines obliquely downwards and inwards at the botton of the external meatus, at an angle of 55° to the axis of the meatus, whilst the membranes in the two ears form with each other an obtuse angle of 130° to 135°. The tympanic membrane is attached to a groove at the bottom of the meatus, and is concare on its outer, conves on its inner surface. It consists of three layers: an external tegumentary, continuous with the skin of the meatus, which contains no hairs or glands ; an internal mucous, continuous with the mucous lining of the tympanum; and an intermediate membrana propria, which consists of unyielding fibres arranged both radially and circularly. The radial fibres radiate from the point of attachment of the handle of the malleus. The membrana propria is usually said to be destitute both of nerves and vessels, but Kessel states that nerves, blood, and lymph vessels exist in it as well as in the mucous and tegumentary layers. Immediately in front of thd membrana tympani is the Glaserian fissure. The inner wall separates the tympanum from the labyrinth, and presents the following appearances: a rounded elevation or promontory caused by the first turn of the cochlea, on the surface of which promontory are grooves for the lodgment of the tympanic plexus of nerves; above tho promontory is an oral opening closed in by a membrane, the fenestra ovalis, which corresponds with the restibule ; behind and below the promontory is a round opening closed in by a membrane, the fenestra rotunda, which corresponds with the tympanic passage in the cochlea. The fioor of the tympanum is a narrow chink between the inner and outer walls; and the roof is formed by the anterior surface of the petrous-temporal bone. At its anterior wall the tympanum opens into the Eustachian tube, a canal which communicates with the nasal compartment of the pharynx immediately behind the inferior turbinal. The wall of the tympanic end of this tube is formed of bone, that of the pharyngeal end of a curved plate of hyaline cartilage, which is connected to the bone by fibro-cartilage; its pharyngeal orifice is dilated into a trumpet-shaped month ; through this tube the ciliated mucous membrane of the nasal part of the pharynx is prolonged into the tympanum. Tho cartilaginous wall of the tube does not completely surround it, but is completed by.a fibrous membrane, and a layer of . voluntary muscle, named by Rüdinger the dilatator tubæ. Above the tympanic orifice of the Eustachian tube is a fue canal, through which the tensor tympani muscle enters the tympanum. At its posterior wall the tympanum communicates with the air-siunses in the mastoid temporal; here also is found a small hollow eminence, the pyramid, through a hule at the apex of which the ten-
don of the stapedius muscle passes ; and a foramen which transmits the chorda tympani nerve.

The tympanic cavity contains thrce small bones, named mallens, incus, and stapes, arranged so as to form an irregular chain, stretching across the cavity from the outer to the inner wall.

The Malleus or hammer is the most external bone. In it may be recognised a head separated hy a constricted neck from an elongated handle. Close to tho junction of the neek and handle a long slender process projects downwards and forwards to be inserted into the Glaserian fissure, and near the root of the long process a short process projectoutwards. By its handle the malleus is intimately connected with the centre of the membrana tympani; by its head it articulates with the incus; whilst ligamentons fibres pass from it upwards, forwards, outwards, and backwards to the tympanic walls.

The Incus, or anvil-slaped bone, possesses a body and two processes; on the anterior surface of the body is a saddle-shaped hollow in which the head of the malleus fita; the short process projects almost horizontally backwards. and is attached by a ligament to the posterior wall of the tympanum; the long process extends at first downwards and then inwards, to end in a rounded projection, named os orticulare, through which it articulates with the stapes.

The Stapes, or stirrup-shaped bone, possesses a head and neck, a base and two crura ; the head articulates with the os orbiculare of the incus; from the constricted neck the two crura curve inwards to the base, which is attached to the fenestra ovalis. The joint between the malleus and incus is diarthrodial and saddle-shaped, and the articular surfacea are enclosed by a capsular ligament. The joint between tho incus and stapes is also diarthrodial, and possesses an investing capsular llgameut. Toynbeo and Rildinger have described the base of the stapes and the margin of the fenestra ovalis as each invested by hyaline cartilage. Between these plates elastic fibres extend in a plexiform manner, and the intervals between them are occupied log fluid ; the joint aeems, therefore, a modified amphiarthrosis. The bones are mored on each other at these joints by small muscles. The tensor tympani arises from the apex of the petrous temporal, and the cartilage of the Eustachian tube enters the tympanum at its anterior wall, and is inserted into the mallens near the root. The laxator tympani muscle arises from the spine of the aphenoid, and the cartilage of the Eustachian tube enters the tympanum through the Glaserian fissure, and is inserted into the neck of the malleus. The stapedius arises within the pyramid, enters the tympanum through the hole at its apex, and is inserted into the neck of the stapes. The tympanum is lined by a mucous membrane continuous with that of the Eustachian tube, which invests the tympanic ossicles, ligaments, and muscles, and is prolonged backwards so as to lino the mastoid air-sinuses. Tho epithelium covering this membrane, where it lines the floor and the adjacent part of the anterior, posterior, and interual walls, consists of ciliated columnar cells; but the epithelium covering the roof, the promontory, the membrani tympani, and the tympanic ossicles, is tessellated. In the sub-epithelial connective tissue the blood and lymph vessels and nerves of the tympanum ramify. Kessel has recently described in it certain peculiar bodies, which consist of a central axial tand with a series of capsules, possessing. a fibrillar structure, arranged concentrically around the axis ; the function of these bodies is not known.

The formation of the auriclo and external meatus is well adapted for collecting and trabsmitting sound-vibrations inwards to the middle ear and labyrinth. These vibrations strike the membrana tympani, and are propagated by tha
chain of bones across the tympanic carity to the labyrinth. The pressure of the vibrations on the tympranic membrane ferces that membrane inwards, so that its inner surface presses on the handle of the malleus, the effect of which is to rotate the hammer about its axis; but by the ligamentous attachment of the malleus to the tympanic walls and to the incus, and, as Helmholtz has shown, by the interlocking of cog-like processes connected with the articular surfaces of the troo bones, the range of morement is so limited that the pressure on the malleus is transmitted through the incus upon the stapes, which presses, therefore, on the membrane of the fenestra ovalis, so that the movements of the merabrana tympani cre thus transmitted to fluid within the labyrinth. The teusor tympani muscle tightens the tympanic membrane by drawing the handle of the mallcus inwards, and still further adapts the structures for the transmission of sound-ribrations. An antagonistic muscle, the laxator tympani, has also been described. There is some difficulty in determining the action of the stapedius, bctif, as is probable, it draws the stapes from the fenestra ovalis, it will diminish the pressure of the chain of benes on that membrane.

The Internal Ear, named the Labyrinth, from its complex construction, is the part of the euditory apparatus in which the nerve of hearing is distributed, and where the peripheral end-organs are situated. It is imbedded in the petrous bone, and is divided into three parts, viz., vestibule, semicircular canals, and cochlea, each of which consists of an osseous and a membranous pertion (PL. XIX figs. 8, 9, 10).

The Vestibule lies immediately internal to the tympanum, between it and the bottom of the internal auditery meatus; behind it are the semicircular canals, and in front is situated the cochlea. It is the part of the labyrinth which first appears in animals, and is therefore the most constant part of the organ. In the myxinoid fishes a single semicircular canal is superadded to the vestibule, in the lamprey two canals, but in other fishes and in the higher vertebrates three canals exist. In amphibia, reptiles, and birds the cochlea is small and rudimentary in comparison with its development in mammals. The osseous vestibule is an oroid chamber about $\frac{1}{8}$ th inch in diameter. In its outer or tympanic wall is the fenestra ovalis; in its inner are small auditory foramina, which transmit from the internal meatus the restibular branches of the auditory nerve; behind these holes is the opening of a minute canal, the aqueductus vestibuli; its anterior wall communicates with the scala vestibuli of the cochlea, snd into its posterior wall open the five orifices of the three semicircular canals.

The Semicircular Canals are named superior, posterior, and external. The superior and posterior are sometimes called the vertical canals, and the external the herizontal canal, but, as Crum Brown has shown, the superior and posterior lie in planes equally inclined to the mesial plane of the head, and the external is in a plane at right angles to the mesial plane. Further, the canals in the two ears have definite relations to each other; for whilst the superior canal of each ear is nearly parallel to the posterior canal of the other, the external canals in both ears lie nearly in the same plane. The canals are bent, forming nearly ${ }_{3}^{2}$ ds of a circle, and would hare had six openings into the vestibule had not the contiguous ends of the superier and posterior blended together to open by a common orifice. The opposite end of each of these canals and the outer end of the external canal dilate close to the restibule to twice their usual diameter, and form an ampulla. The osseous vestibule and semicircular canals are lined by a periosteum invested by a tessellated endothelium, and contain a little fuid, the perilyntph. In this fuid the membranous labyrinth is suspended.

The membranous vestibule is formed of two small sac-like
dilatations, the walls of which are dircetly continuous with each other, though the cavitics are separated by an intermediate partition. The upper and posterior dilatation, named utriculus, is larger than the lower and anterior, named sacculus. The sacculus is continuous with the ductus cochlcaris of the membranous cochlea, and both sacculus and utriculus communicate by slend: tubes with a short diverticulum lodged in the aqueductus vestibul, to which the name of ductus vestibuli may be given. The membranous semicircular canals are about $\frac{1}{3} \mathrm{~d}$ the diameter of the osseous. Their walls are continuous with that of the utriculus, and they open by five orifices into it. Each has an ampulla within the ampulla of the osseous canal Both the sacculus and utriculus are in places attached to the periosteal linings of the osscous restibule, and delicato ligamentous bands conncet the nembranous semicircular canals to the periosteal lining of the tubes in which they 8 re contained. The wall of the membranous restibule and canals consists of a delicate fibrous membrane lined by a tessellated endothelium. The inner part of this membrane has a vitreous or hyaline lustre, and gives origin in the canals to short papillæ which project into the lumer. The membranous restibule and canals are distended with the fluid endo. lymph. The sacculus, utriculur, and ampullæ are specially modified in connection with the peripheral termination of the vestibular branches of the auditory nerve. The membraneus wall forns in each of these dilatations a prijecting ridge, the crista acoustiar, to which-calcareous particles, the

F10 81-ch, colnmnar ceil covering the crisid acoustivac p_{0} peripheral, and c_{0} cecire processes of anditcry cells, n. nerve Bbris. (After Rud inger.) otoliths, which may be either amorphous or crystalline, are adherent. The endethelinl investment of the crista is elongated into columnar cel's, and intercalated between them are fusiform cells, the auaitory cells, each of which, as Schultze and other observers hare described, possesses a peripheral and a central process. The peripheral process projects beyond the plane of the free surface of the endothelium into the endolymph as the auditory hair, whilst the central process extends into the sub-endothelial tissue, where the nerve plexus belonging to the terminal branches of the auditory nerve ramifies, and with which it is probably continuous. Thesc suditory cells are, therefore, the peripheral end-organs of the vestibular branches of the auditory nerve, and their gencral arrangement is not unlike that of the olfactory cells of the nose.

The Cochlec is by far the most complex part of the labyrinth. It is about $\frac{1}{4}$ th inch long, and shaped like the shcll of a common snail; its base lies near the internal meatus, and its apez is directed outwards. The osseous cochlea is a tube wound spirally two and a half times round
 a central pillar or

Fio. 82.-Diagram of the membranoas lahyrit th. $D C_{\text {, ductus cochlearis ; dr, dactus reunicat: } g \text { g }}$ succulus: U, utriculus: do. ducrus restlbuli: modiolus. Both the pillar and the tube diminish rapidly in diameter from the base to the apez of the cochlea The tube is imperfectly divided into troo passages by o
plate of bone, the ossecus spiral lamina, which, springing from the modiolns, winds spirally around it, and projects into the tube. Wheu the membranous cochlea is in its place the division is completed by a membrane, the membranous spiral lanina, or basilar menbrane, which bridges neross the interval between tho free edge of the osscuns spiral lamina and the outer wall of the tube, to which it is attached by tho spiral cochlear ligament. These passages are called scala tympani and scala vestibuli. lut another membrane, the membrane of lieissner, also arises from a denticulated spiral crest, limbus or crista spiralis, attached to the vestibular border of the free cdge of the osseuns spiral lamina, and eatends to the spiral ligament at the outer mall of the tube, on the restibular aspect of the basilar membrane, so as to enclose a passage betreen it and the basilar membrane, called scala intermedia or ductus cocklearis. The menbrane of Reissner is formed of delicate vascular connective tissue, with an endothelial

Eno. 83. - Trausrerse section through the tube of the cochica m, modlolos; 0 . vuter wall of cocblea; $S V$, scala vebilunll; $S T$, ocala tympant; DC, ductus cuthluarls; mR membrans, of Rilagner; om, batalar membrace; cs, crista pita. ls: s? spiral llgament : sg, sjiral gangliad of auditory aerve; oc, organ of of Corsi
layer on each of its tro surfaces. The seala tympani or luwer passage, widest at the base of the cochlca, begins at the inner wall of the tympanum, into which it would have upened through the fenestra rotuuda, had not the fenestra been closed up by a membrane. The scala vestibuli or upjer passage, also widest at the base, communicates with the carity of the osseous restibule. At the aper of the cochlea these two scale communicate with each other through a small hole, the helicotrenta. As the scala restibuli opens into the osseous restibule, the perilymph is continued into it, and through the helicotrema into the scala tympani. The ductus cochlearis is the membranous cochlea, and its walls are formed of the basilar membrane next the ecala tympani, of the membrane of Reissuer next the scala vestibuli, and of the spiral ligament next the wall of the cochlea, which conneets the two membranes together. It fullors the spiral windings of the coch'ca, terminates at the apex of the spiral in a closed end, whilst at the base it communicates with the sacculus of the membranous vestibule by a slender tube, the canalis reuniens; hence the membranous cochlea contains endolymph. The termination of the cochlear branches of the auditory nerve and the arrangement of the peripheral end-organs in relation to
them are to be looked for in the basilar membrane. These parts have been rencatedly investigated aud described in claborate monographs, the titles of which are given as an appendix to Waldeyer's article on the cochlea in Stricker's Handbuch der Lehre von den Geweben, Leipsic, 1872. The general results only of these investigations will be given here, and the original menoirs may be referred to for further details.

On the surface of the basilar membrane directed to the ductus cochlearis a remarkable arrangement of cells exists, which presents an appearance that has been compared with the key-board of a pianoforte, and has been named the organ of Corti ; it consists of the fullowing parts:-Some of theso cells, distinguished by their elongated curved form, aro arranged in two groups, an inner and an outcr. The cells of the inner group rest by a broad foot on the inner part of the basilar membrane, close to its attachment to the spiral lamiua, project obliquely forwards and outwards, and expand into a dilated bead : tho cells of the outer group also rest by a broad foot on the same membrane, iucline forwards and inwards, and fit into a depression in the licad of the cells of the inner group: these two groups of cells form the rods or pillars of Corti, and by their juxtaposition areh over an excessively mimute canal enclosed between them and the basilar membrane, which may be named the canal of Corti. The inner rods are, however, more numerous than the outer, and Pritchard has shown that the rods incrcase in length from the base to the aprex of the cochlea Immediately internal and almost parallel to the inner group of these rods, and adjacent therefore to the crista spuralis, is a row of compressed conical cells, which possess at their antcrior ends short stiff hair-like processes; they aro the imer hair cells of Deitcrs. Inmediately external and almost parallel to the onter group of rods are four or five rows of hair cells, the outer hair cells, which are attached by their bases to the basilar membrane, whilst from the opposito extremity a brush of hairs projects through the reticular membranc. The outcr bair cells are, according to Wialdeyer, relatively of large size in man. The reticular membrane of Kölliker is a delicate frameworls perforated

Fi0.84. - Vertical trantrerse cetion throagh the basilar memirane ond orgas of Cortl. bm, cs, s? \&c., as in f g. 83 ; i, inner hals cell; ir, lincr, and or, outw rod of Corti: o, oater hair cells; $3 p$, sopporting colla: cn, cochlear serve; ce. canal of Corti; rm , retlcular membrane; mt, rombina tecturis fAdarted from Wialdeyer.)
by ronnded holes. It extends parallel to the basilar mem brane from the inacr rods of Corti to the external rorr of outer bair cells, and through the holes in it the hairs of the latter project. It obriously acts as a support for the auterior ends of these cells, and binds together these important elements of the organ of Corti. The interval between the outer hair cells and the spiral ligament is occupied by cells of a more or less columnar form, the supporting cells of Hensen. Covering over the organ of

Corti, and separating it from the endolymph of the ductus cochlearis, is the membrana tectoria, which springs from the crista spiralis close to the attachment of the membrane of Reissner, passes outwards superficial to the membrana roticularis, and ends externally at the spiral ligament.

The origin, course, and distribution of the auditory nerve in the labyrinth will now be considered. The auditory uerve is the portio mollis of the seventh cranial nerve. It appears at the base of the brain at the lower border of the pons Varolii. Traced to its origin its roots wind round the restiform body to the floor of the 4th ventricle, where they form the striæ acousticæ, and sink into the grey matter of the floor. Some of the fibres arise from an inner, others from an anterior collection of nerve cells, whilst others again are connected with the cells in the restiform body, and probably with the flocculus of the cerebellum. Where the nerve emerges at the lower border of the pons it contains a cluster of nerve cells. The auditory nerve passes down the internal meatus, and divides into a vestibular and a cochlear division. The vestibular dirision enters the restibulc, and divides into five branches for the sacculus, utriculus, and three ampulla of the membranous semicircular canals. Each branch enters a crista acoustica and forms a plexus, in the meshes of which nerve cells are imbedded. From this plexus fine nou-medullated fibres arise, which enter the layer of cells on the surface of the crista, where they anastomose and form a very delicate plexus, from which fibres spring that in all probability join the central processes of the auditory cells.

The cochlear division enters a canal in the axis of the modiolus, and gives off lateral branches, which pass into the canals situated in the osseous spiral lamina. Here they radiate outwards to the inembranous spiral lamina, and have connected with them collections of nerve cells forming the spiral ganglion. Beyond the ganglion they form a flat plexiform expansion, from which delicate nerres pass through a gap in the edge of the osseous lamina into the orgar of Corti. In this organ the nerves, as Gottstein and Waldeyer have described, are arranged in two groups of fibres; the inner group become continuous with the deep end of the inner hair cells; the outer group pass acros3 the canal of Corti and end in the outer hair cells. Hence these cells are the peripheral end-organs of the cochlear branch of the auditory nerve, or the auditory cells of the cochlea.

The perilymph of the labyrinth is set in vibration by the morements of the tympanic ossicles and the fenestra oralis; motion is thus communicated to the membranous labyrinth and the endolymph which it contains. The auditory hairs and cells would thus be set in motion, and the restibular branches of the audilory nerve would be stimulated to conduct sound-impulses to the brain. The movements of the perilymph in the scala tympani and of the endolymph in the ductus cuchlearis would set in vibration the basilar membrane, and the auditory cells resting on it, by which the cochlear branches of the auditory nerve would be stimulated to conduct sound-impulses to the brain. It has been customary for physiologists to regard the restibule as the part of the labyrinth by which sound or mere noise is determined; the cochlea, as the part which determines variations and degrees of sound, as musical notes or harmony; the semicircular canals, as determining the directions from which cound proceeds. But within the last two years experiments and arguments have been advanced almost simultancously by Crum Brown and Mach in favour of the viem that the semicircular canals act as peripheral end-organs for the sense of rotation, by which sense the aris about which rotation of the head takes place, the direction of that rotation, and its rate, are determincd.
In the account of the development of the skeicion, p.

831, it was stated that the external meatus, tympanum, and Eustachian tube are the remains of the first branchial cleft of the embryo, that the tympanic ossicles are formed in the first and second visceral arches, and that the petrous bone is ossified in the cartilaginous basis cranii. The membranous labyrinth apparently arises as an invagination of the integument at the upper end of the second branchial cleft. The invaginated fold then closes in to form a shut sac, the primary auditory vesicle. Out of this vesicle the three divisions of the labyriuth are successively produced, and become enclosed by the petrous cartilage, which when ossified forms the osseous labyrinth. The epidermal investment of the invaginated tegumentary sac becomes transformed into the special cell structures within the membranous labyrinth, and the sub-epidermal connective tissue forms its fibrous wall. The cochlear and vestibular nerves form at the same time as the labyrinth, and become connected through the trunls of the auditory nerve with the brain.

The Tongue, situated on the floor of the cavity of the mouth, is the chief organ provided for the excitation of the special sense of taste, but the under surface of the soft palate participates to some extent in this property. The tongue is also highly endowed with the sense of touch. The structures concerned in the excitation of taste and touch are situated in the mucous membrane which envelopes the tongue. The tongue is also a muscular organ, and plays an important part in articulation, mastication, and deglutition. Its shape is flattened from above downwards, so that it presents an upper surface or dorsum and a lower surface. Its posterior part is broad, forms the base or root of the organ, and is attached to the hyoid bone. Its anterior extremity or tip is more or less pointed, and its lateral margins or sides are rounded.
'lhe muscles connected with the tongue are arranged in pairs, and form three distinct groups, riz., accessory, extrinsic, and intrinsic muscles. The accessory muscles are tho stylo-hyoid, digastric, myln-hyoid, genio-hyoid, omo-hjoid, sterno-hyoid, and thyro-hyoid, already referred to on page 836, which act upon the liyoid bone, and thus indirectly are concerned in the movements of the tongue. The extrinsic muscles pass from adjacent parts into the substance of the tongue, and are as follows:- The stylo-glossus arises from the tip of the styluid prucess and the stylo-maxillary higament ; it runs forwards along the side of the tongue to the tip. The hyo-glossus is divided into three parts; a, basiglossus, which arises from the body of the hyoid; b, ceratoglossus, from the great cornu of the hyoid ; c, chondroglossus, from the small cornu of the hyoid. The fibres from these origins ascend into the side of the tongue. The genjo-hyo-glossus arises from the upper tubercle of the symphysis of the luwer jaw, its fibres radiate into the substance of the tongue alung its whole length from base to tip; this muscle is separated froin the corresponding musclo of the opposite half of the tongue by a mesial septum of fibrous tissue. The palato-glossus arises in the substance of the soft palate, and descends to the tongue in the anterior pillar of the fauces. The intrinsic muscles lie in the substance of the tongue itself, and are as follows :-The lingualis superior (noto-glussus), consisting of longitudinal fibres, which extend fron the base to the tip beneath the mucous mombrane of the dorsum; the lingualis inferior, consisting of longitndinal fibres, which extend from the base to the tip along the under surface lietween the hjo-glossus and genio-hyo-glossus; transversu inusculan fibres, which spring from the mesial fibrous septum and curre outrards and uprards to the sides ol the toogle; rertical Gbres, which pass through the substance of the tongne from the dorsum to the under surface. The extrinsin: and intrinsic musales cañ not ong
move tho entire tongue within the carity of the mouth, protrude it between the lips, and again retract it, but can modify its form ; thus the dorsum can be flattened, made convex or concarc, the margins can be raised or depressed, and the tip elevated or depressed.

The mucous membrane of the tongue forms a part of the general micous lining of the mouth; it covers the dursun, tip, sides, and under surfaco; is reflected from tho under surfaco to the floor of the mouth, where it forms the franum or bridle of the tongue, and is reflected also from the base to the epiglottis as the frana of the epigluttis, as well as over the tonsils and anterior palatine pillars. This mernbranc has its free surface elevated into multitudes of fine processes, called the papilla of the tongue, some of which are sinple, others compound. The simple papilla are situated ou the back part of the dorsum and tho under surface of the mucous membrane, as well as scattered betreen the compound papilla; they are simple conical elevations of the membrane. The compound papillo are arranged in three groups, named filiform, fungifurm, and eireumvallate papille. The filiform papillo, elongated and thread-like, a ${ }^{\prime} \theta$ tho smallest and most numerous, and cover the dorsum in front of the circumvallate papilla. The fungifinm or club-shaped aro seattered over tho anterier and middle parts of the dorsum, and at the tip and sides. The arcumpallate papilla, seven to twelve in number, form a V-shaped figure on the dorsum towards its base ; a depression in the mucous membrane, called foramen coccum, marks the apex of the V. These are the largest papillx; each is sunk in a vallum or trench-like depression of the roucous membrane, which isolates it from the surrounding surface. The compound character of these papillæ is due to each having projecting from it numerous small secondary papillæ. The epithelial covering of the filiform papillæ is characterised by the peculiar modification which the tessellated epithelium of the mouth has undergone; the cells have become cornified and elongated into dense, imbricated brush-like processes. In the carnivora the epithelium is so hardened as to form sharp spines, with the points turned backwards, which give to the tongues of these animals a rough prickly character. In the fungiform and circumallate papillæ the inequalities between the secondary papillæ, which project from them, are filled up by the tessellated epithelium, so that the surface of the compound papilla bas a smooth appearance. Buth the simple and compound

F10. 85. - Sectinn through a gustatory lamella of the rabbit's tongme 0 . grastatory bulbs sttuated in Ep, the epubellal layer of che mucous membrane : \dot{V}, caphllary blood-vessele to the sub-eplthellal cunnective tissue (From a praparation
papillæ are bighly vascular; the lingual artery not only supplies the muscular substance of the tongue, but gives off fine branches to the mucous membrane. These branches end in capillaries, which form simple loops in the simple papillx, but in the compound papillæ the capillaries are so noultiplied that each secondary papilla has a capillary loop within it. The tongue is provided with several nerves. The byyo-glossal nerre supplies its muscular structure, but
the inferior lingalis apparently receives a branch from the chorda tympani of tho facial. The lingual branch of the fifth is distributed to the mucous membrane of the anterior two-thirds of the tongue: it breaks up into minute branches, which enter the fungiform and filiform papillæ, but their exact mode of termination has not been precisely ascertained, though endobulbs and gustatory bodies are said to have been seen in connection with sume of the terminal branches. The glossal branch of the glosso-pharyngeal is distributed to the mucous membrane of the root of tho tongue and of the circumvallate papillæ. In connection with its terminal branches peculiar flask-shaped organs, called gustatory Lulbs or bodies, have recently been deseribed by Lovén, Schwalbe, and Engelmann, in the sides of the circumvallate papillat. These have been found in large numbers in lamellated folds of the mucous membrane of the posterior part of the side of the rabbit's tongue, which folds may appropriately therefore be called gustatory lamello. When sectious are made through one of theso folds, or through a circumvallate papilla sind the trench which surrounds it, numerous flask-shaped gustatory bulbs may be seen in the epithelium, which covers the side of the papilla and the opposite side of the trench. The bottom of each flask is next the sub-epithelial tissue, whilst its short neck opens on the surface by a mouth, the gustatory pore ; similar bodies, though in much smaller numbers, have also been seen in the fungiform papillz.
 Each gustatory body consists of two different forms of cells, named covering cells and gustatory cells. The covering eclls aro elongated, nucleated spindles, which, arranged in layers, form the envelope of

Fro. 86.-s. saperficias covering cetla of guatacory balbi O, custatory cell, whith p, Itis peripherat, and c, les centrial procesa each gustatory bulb, and reach from the bottom to the mouth of the flask; they enclose the gustatory cells. The gustatory cells are attenuated, homogencous, and highly refractile cells, which possess an elliptical nucleated body with two processes, a central and peripheral. These cells occupy the axis of the gustatory bulb. The peripheral process, broader than the central, sometimes ends in a short bair-like tip, which almost reaches the gustatory pore; the central process extends to the base of the flask, and often divides into small branches. This process is varicose, and not unlike the axial cylinder of a nerve fibre. The branches of the glosso-pharyngeal nerve, which are distributed to the back of the tongue, enter the circumvallate papillæ, and form a minute plexus, with groups of nerve cells interspersed in it, from which bundles both of medullated and non-medullated fibres pass to the basis of the gustatory bulbs; and it is believed that the finest non-medullated fibres are continuous with the peripheral processes of the gustatory cells, which are therefore regarded as the peripheral end-organs of the nerve of taste, and by the excitation of these bodies gustative or taste sensations are produced. As the glusso-pharyngeal is the nerve distributed to the circumvallate papillæ, where these gustatory bulbs are especially found, it is therefore the special nerve of taste; but as these bulbs have also been sparingly seen in the other papillæ, where the lingual nerve is distributed, that nerve probably acts in a minor degree as a nerve of taste, though its special function is undoubtedly that of a nerve of touch. The gustatury bulbs are not penetrated by blood-vessels, but, as Fig. 85 shows, the vascular sub-epithelial tissue is prolonged upsards along the sides of the bulbs almost as far as the plane of the gustatory pore. Key, Beale, and other observers have described special modifications of the cpithelium in connection with the terminations of the gustetory nerves in the frog. 'Ihe mucous membrane of tive
wngue contains numerous small tubular or branched glands, more especially on the dorsum near its root, which secrete mucus. Depressions also occur in this part of the raucous membrane, around the walls of which groups of lymphoid cells are collected in the sub-epithelial connective tissue, which have an arrangement closely resembling the structure of the adjacent tonsils, and form an example of adenoid tissue.

The Skrn, or Integument, invests the entire outer surface of the body, and contains structures by the excitation of which the properties of things are determined by the sense of touch. The skin also contains accessory structures, as the uails, hairs, sebaceous glands, and sweat glands. The skin consists of a non-rascular cuticle or epidermis, and of 2 vascular and sensitive corium, or cutis vera.

The Cuticle, Epidermis, or scarf skin, forms the outer covering of the skin, and protects the cutis. It is a laminated structure, and consists of numerous layers of cells superimposed on each other. As these cells cover 2 free surface exposed to the air, they belong to the epithelium group. The thickness of the cuticle varies in differont localities from $\frac{1}{1}$ th to $\frac{21}{2} \boldsymbol{\sigma}^{\text {th }}$ inch; where the skin is frequently exposed to pressure, as in the soles of the fcet, the cuticle is the thickest and hardest; and the hands of those accustomed to manual labour have a hard and horny cuticle. The increase in thickness in these lucalities is for the purpose of protecting the highly sensitive cutis from injury. The outer surface of the cuticle in many parts of the body, especially the palm of the hand and the fingers, is marked by ridges and furrows; the ridges indicate the position and arrangement of the papillæ of the cutis, whilst the furrows are due to the sinking of the cuticle into the spaces between the rows of papillæ. The mouths of the sweat glands open on the surface of these ridges. The cuticle is divided into two strata. The superficial homy stratum consists of layers of flat, polygonal scales like a tessellated epithelium; the cells in the superimposed layers firmly adhere to each other by their surfaces, and in vertical sections this stratum presents a fibrous appearance; but the cells may be readily isolated by digestion in a caustic alkali. The deeper or mucous stratum, or rete Malpighii, lies next the cutis, and closely follows the undulations of its papillary surface. The cells forming the layer next the cutis are columnar in shape, those in the layers immediately succeeding are rounded or cubical, whilst those next in order are polygonal, and not unfrequently possess pointed processes or prickles projecting from them, hence the name, prickle cells, employed by Schultze. The cells which lie next the horny stratum assume the scale-like form. It is in the cells of the mucous stratum that the colouring matter of the skin is found, which in the fair races of men forms the isolated coloured spots called freckles and moles, but in the dark races the pigment granules are uniformly distributed through the cell, of this stratum. The superficial cells of the horny stratum of the cuticle are continually being shed, so that the cells of the-deeper layers gradually approach the surface, and new cells are continually being formed in the deeper part of the rete Malpighii. The cuticle is closely adherent to the cutis in the healthy living skin, but on the application of a blister, or when putrefaction sets in after death, it separates from it.

The Cutis vera.-When the cuticle is removed the surface of the cutis is seen to be studded with multitudes of minute elevations, the papillæ of the skin. These papillæ are either simple conical structures, or compound with two or three branches. They are largest in the palm and sole, being from $\frac{1}{1} \sigma^{\text {th }}$ to $\frac{1}{2 \delta} \boldsymbol{r}^{\text {th }}$ of an inch high, and are arranged in ridyes, but more usually they are much shorter and irregularly distributed. The cutis is formed of connec-
tive tissue, in which stellate connective tissue corpuscles and elastic fibres are abundant. The deeper surface of the connective tissue of the catis is reticulated, and is continuous with the bundles of connective tissue that form the areolar subcutaneous tissue. In the papilla themselves the fibres of the connective tissue are not so well marked, and the surface of the papillæ possesses more of a homogeneous aspect, which gires rise to the appearance described as a basement membrane. The cutis is highly .vascu-

1ro. 87. - Vertlcal eectlon through the skin and sutcuts Leouatissue ha, horny stratum, and rm , rete Malplelil of cuticle; $p p$. pepllie of cutis; b, a toncli corpuscio with m a Derve fibre; bc, a blood and $k c$ a ljmin caplllary; ct, counectire snbeupsmeons tissue: $/$ fal lobule; as sweat glaud with its dact.
lar; the small arteries which go to the skin give off branches to the lobules of fat in the subcutaneous tissue, then penetrate the cutis, and form a plexus from which capillaries arise, which enter the papillw, and form vascular loops within them. The lymphatic ressels of the skin are numerous; they form a plexus in the cutis, which lies beneath the vascular plexus, forms, as Neumann'a injections show, a network around both the sebaceous and sweat glands, and gives off capillary loops into the papillæ. The nerves of the skin are the cutaneous branches both of the spinal and of certain of the cranial nerres, the origin and distribution of which have already been described. They run through the subcutaneous tissue, and enter the deep surface of the cutis, where they divide into branches. As these pass Nierve towards the papillæ they unite to form a nerve plexus, touel from which smaller branches arise to enter the papilla, and terminate, more especially in the skin of the palm of the hand, fingers, and sole, which are the surfaces most sensitive to touch impressions, in the tactile or touch corpuscles. The touch corpuscles discovered by Wagner and Meissner are the peripheral eud-organs of the nerves of touch. They may be single or coinpound; are usually ovoid in form, not unlike a minute tr cone; and are transversely marked, from the transrerse direction of the nuclej of fusiform cells which form an investing capsule. Each single corpuscle and each dirision of a compound corpuscle is penetrated by one, and, according to Thin, by never more than one, medullated nerve fibre, but the exact mode of termination of the axial cylinder of the fibre has not been ascertained. Virchow and other German observers have stated that the papillæ which contain capillaries do not contain nerres or touch corpuscles, and vice versa; but Dalzell and Thin have shown that certainly the majority of papillæ that conts in nerre fibres and touch corpuscles are also rascular papillæ. Non-medullated nerve fibres ascend to the surface of the cutis, and, according to Lan. gerhans, pass into the rete Malpighii between the cells of the mucous layer.

Nails.-On the back of the last phalans of each thumb

Anger, and toe is situated a firm horny curved plate, the nail Each nail rests on a bed, the surface of which is formed of the cutis, which also overlaps the eide and root of the nail; thus the nail fits into a groove formed of the cutis something after the manner in which a watch-glass Gits into its rim. A pail is merely a special modification of the cuticle, the cells of the superficial stratum or which are more borny, harder, and more firmly adherent to esch other than in the cuticle proper. Deeper than the horny stratum is the rete Malpighii of the nail, the cells of which are soft, as in the cuticle itself. The cutis forming the bed of the nail is etudded with papillæ, which are arranged in almost parallel rows, and sre highly vascular. Nails grow both in length and thickness : the increase in thickness is due to the formation of nerve cells on the bed of the nail ; the increase in length takes place through the formation of nail cells at its root, and ss the nail is thus alowly pushed forward it requires to bo cut at intervals. At the root, sides, and below the free border of the nail the cuticle is continuous with the substance of the nail itself.

Hair.-Projecting from the surface of the skin sre multitudes of elongated cylindrical horny structures, the hairs. In the skin of the scalp, the armpits, and the pubis, they are long snd numerous; but in the eye-brows, eye-lashes, vibrissæ of the nostrils, and surface of the body generally, they are short.. They sre stronger and thicker in the skin of man than of woman, more especially on the cheeks, lips, and chin. Hairs do not grow from the skin of the palmas and soles, the bsck of the nngual phalanges, and the surface of the upper eye-lids. Each hair is partially embedded in a depression of the akin, called a hair follicle. The deeper end of the follicle is somewhat dilated, and has in it a papilla, the hair papilla. The wall of the hair follicle is formed of the constituent structures of the skin; the oater part of the wall belongs to the cutis, sod has been described as arranged in three layers, the external, middle, sod inner layer of the hair follicle. The external snd middle layers are formed of connective tissue, with blood-vessels; whilst the inner, sometimes called the vitreous layer, is transparept and homogeneous, and continuous with the so-called basement membrane of the cutis. The inner part of the wsll of the hair follicle, or the root-sheath, belongs to the cuticle, and consists of two layers, the outer and inner root-shesths. The outer root-sheath is continuous with the rete Malpighii, snd consists of cells similar to those of that stratum. The inner rootsheath is continuous with the horny stratum of the cuticle, and consists of elongated scale-like translucent cells in which no nuclei can be seen.

A hair possesses a root, a shaft, and a tip; the root is embedded in the bair follicle, whilst the shaft and tip form the free projecting part of the hair. In the humsn hair the substance of the hair is composed of a fibrous-looking horny material, which by the action of strong sulphuric acid is resolved into elongated, closely compacted, fusiform cells, which in coloured hairs contain pigment granules. In the thicker hairs the cells in the axis of the hair are polygenal, contain air, and form \& central pith or medulla. The hair is invested by imbricated scale-like cells, which form the hair cuticle. In different animals the size and relative proportion of the cells of the caticle, medulla, and fibrous part of the hair present many modifications. The wool of the aheep has its cuticle scales, with well-defined serrated margins, so that the hair of this animal is well adspted for felting into cloth; in the bat, also, the cnticle cells are large and strongly serrated. The bristles of the pig, again, have the fibrous part of the hair largely developed. In the deor tribe the bair consists of polygonal medulla-like cells, which contain air. The root of the hair dilates at its deeper end into a bulb which embraces the hair papille it is softer in texture than the shaft, so that the cellular
structure of the hair is more essily demonstrated. Next the papilla the cells are like those of the rete Malpighii, but when traced onwards to the shaft they are seen to become differentisted, both in structure and composition, into the proper hair cells. The root is enveloped in a special sheath, termed the sheath of Huxley, composcd of nucleated cells, which sheath, in the more superficial part of the follicle, blends with the internal root-sheath. The hair papilla bears to the hair the same relation as a papilla of the cutis has to its investing cuticle, so that a hair is to be regarded as a specially modifed cuticular structure. The humsn hair papilla is vascular, but no nerves have been traced into it. In the tactile hairs of the mammalis, however, nerves have been traced into their papillw.

The bristles, feathers, claws, hoofs, the horny envelope of the horn cores in the hollow horned ruminants, and various tegumentary spines snd scales, present in msny animals, are, like hairs and nails, special modifications of the tegumentary system.
Each hair follicle has opening into it the excretory duct of a small gland, named a seboceous gland. This gland consists of the excretory duct, and of from two to twenty grape-like saccular expansions which open into the duct. The wall of the sacculi and of the duct is continuous with the vitreous layer of the outer wall of the hsir follicle. Capillary blood-vessels are distributed on the outer wall of the sacculi. The sacculi are almost entirely. filled with polygonal cells contsining drops of fat, which cells sre continnous with the epithelial lining of the gland duct and the cells of the outer root-sheath. These glands secrete s fstty msterial, which lubricates the surface of the hair. Sometimes a small parasite, called Acarus folliculorum, is found in a sebaceous gland.

Some years ago Kölliker described one or two bundles of smooth muscular fibres extending from the wall of the hsir follicle to the deep surface of the cutis; these muscles, named arrectores pili, by their contraction erect the hairs, that is, cause them to become more prominent, and produce the condition of skin, called cutis anserina or goose skin, well known to occur when cold is sprlied to the surface of the body.
Hairs are developed sbout the 4Lh month of embryo life, within depressions in the cutis, which form the future hair follicles, filled with cells similar to, and continuous with, those of the rete Malpighii. A papills forms at the bottom of this depression, sround which the cells become arranged in a bulbous expansion. The cells, in line with the balb, elongate and harden, and group themselves so as to form the ehaft of the young hair, which at this stage is completely buried within the follicle. A rapid production of new cells takes place st the bulb, the hair consequently increases in length, and is pushed outwards through the superficial horny stratum of the cuticle, which had closed in the mouth of the depression or follicle in which the hair is produced. At the same time, the more external cells within the follicle are pushed ontwards towards its wall, and form the cells of the root-sheath. When a hair is puiled out of its follicle the cells of the root-sheath are drawn out along with it. A new hair will be developed at the bottom of a follicle from which the hair has been shed as long as cells continue to bo formed around the papilla. When the growth of cells coases within the hair follicles thes permanent baldness is the result.

The sebroceous glands are developed as bud-like offshoots from the hair follicles, filled, like the follicles themselves, with cells continuous with those of thie rete Malpighii Instead of the cells in theso bude differentiating into a hair, they becomen filled with fatty particles, and the wall of the hud assumases the characteristic sscoulated form of the gland

Suceat Clunds, or suduriparous glands, are tound generally distributed throughout the skin, but are nost abundant in the palms and soles, where they number 2500 to 3000 in wach square inch. In the skin of the back, again, there are only between 400 and 500 in the square inch. Each gland consists of a ball-like body lying in the subcutancous tissue, from which a tubular duct proceeds through the skin to open on its free surface. The ball is composed of a consoluted tube continuous with the tubular duct, and terminoting in a blind end. The wall of the gland tube consists of a delicate nucleated membrane lined by columnar recreting cells. It is surrounded by connectire tissue containing capillary blood-vessels. As the gland-duct pierces the cutis it passes between the papillæ; in its course through the cuticle it pursues a spiral direction, and has its walls formed, not of a distinct mermbrane, but of the cuticle cells themselves. The epithelial lining of the duct is continuous with the cells of the rete Malpighii of the cuticle. In the axilla and groin the sweat glands are much larger than in the skin generally. The sweat glands arise as flask-shaped pouches of the rete Malpighii projecting into the cutis, which in course of time become elongated into tubes, and the cells contained in which become the secreting ells of the gland.

Vascular System.

The buman body and the bodies of all the more highly urganised animals are traversed by numerous tubes or pipes, technically called Vessels, some of which in man are nearly an inch in diameter, others so small as to require a microscope for their examination, others again of every intermediate size. In connection with the ressels is a central organ, the Heart. The heart and the ressels collectively constitute the Vascular System. Of these vessels some contain blood, and form the Blood-vascular system; others contain lymph, and form the Lymph-vascular system. The lymph-vascular system is not independent of the blood-vascular system, but communicates with it at several points. The vascular system is a bydraulic apparatus, possessing a pump, pipcs, and valves. The heart is the pump, which works, not by the movements of a piston, but by the contraction of its muscular walls; the rcssels are the pipes, which convey the contained fluid, and they are provided in certain localities with valves for modifying its How.

Blood-Vascular System.-The movement of the blood in the blood-vascular system is called the circulation of the blood. In the lower Vertebrata the heart is a single organ, and the blood flows from it through the ressels back again into the part of the heart from which it had proceeded, forming a simple circulation. In man and the higher terrebrates the heart is a double organ, i.e., it consists of a right and left portion, iutimately united to, but not directly communicating with, each nther. The blood which flows from its right side passes through vessels which traverse the lungs, and is conveyed to the left side of the heart; whilst the blood which flows from the left side passes through ressels which traverse the body generally, and is conveyed to the right side of the heart. This is called a double circulation; that which appertains to the lungs is the pulmonic circulation; that which appertains to the body generally is the systemic circulution. The vessels which carry the blood away from the heart are called arteries; those whick convey it back to the heart are vcins. The arteries and veins do not communicate directly with each other, but through the intermediation of a network of extremely minute vessels, the capilleries. Hence, both in the pulmonary and systemic circulation, the blood in its p:ssage from the arteries into the veins must go through capillaries. The blood which flows from the left side of the heart iato the systcinic arterics is pure or arterial blood;
as it traverses the systemic capillaries it parts with cortan of its constituents to nourish the organs and tissues, anu as it receives from then waste jroducts it becomes impure blood; in which condition it fluws back to the rioht side of the heart by the systemic veins as venous blood; hence the right side of the heart is often called the venous side. The blood which flows from the right side of the heart along the pulmonary artery is this impure blood; as it traverses the pulmonary capillarics it is purified by the action of the air in the lungs, and is changed iuto arterial or pure bloud, in which condition it flows back by the pulmonary veins to the left side of the heart, which conse quently is called the arterial side. The object of the pulmonary circulation, therefore, is to reconvert into pure blond the bloud which lass been rendered impure during its passage through the systemic capillaries.

The Ilcart.-The heart is a hollow muscle contained in the cavity of the chest, and enclosed within a bag called the Pericardium. The pericardium, with its enclosed heart occupies the space called mediastinum, between the twe lungs; it lies therefore behind the sternum, and in front of the spinal column, but projects more to the left than to the right side of the mesial plane. The bag of the pericardium is formed externally of a strong fibrous membrane, which is attached belew to the central tendon of the diaphragm, but blends above with the sheaths of the great ressels which pass to and from the heart. When the bag is cut open its inner surface is seen to possess a smooth glistening seruus aspect, for it is lined by a layer of squamous endothcliom, which layer is continuous with the serous membrane that invests the heart, and forms the visceral layer of the pericardium. The continuity of the serous lining of the bag with the serous investment of the heart takes place where the great blood-ressels pierce the fibrous bag.

The heart lies obliquely from abore downmards, from right to left, and from behind furwards. For descriptive

Fia. 88. -The Thomacic Viscera.

* In this diagram tho lings are torard to the side and the nerteandtum ro moved to diagiay the heart, a, upper, a^{\prime}, lower jabe of left lung: δ. uppen \forall, middle, $b^{\prime \prime}$, lower lohe of right Jung; c fraches; d arch of sorta; auperior rena casa; formonary artery; g. left and h, right auriclo; t, righs and l, left rentricle; m, inferior vena ceva; π, descending aonte; 1 innowinnit attery; 2. right and 4, left common carntid artery: 3, richt, and $\$$, len sub clavian artcry; 6,6 , right and leff lanominnto fein: 7 and 9 , len and rigat Internal jugular veins; 8 and 10 , left and right aunclostan veing: 11 , 12,13 , hefi pulmonary artery, hronchus, and vein; 14, 15,16 richt pulmonary breachy artery, and veln; 17 and 18 , Jef and right coronary arteries
purposes it may be regarded as possessing a base, un apex, an anterior añ à posterior surface, a right and left border. The base lies backwards, upwards, and to the right, oryosite
the 4th to the 8th dorsal vertebre. The apex is directed forwards, downwards, and to the left, opposite to the interval between the 5 th and 6th left ribs. The heart has on its surface grooves which indicate its division internally into four chambers, two in its right balf, two in its left half. The right chambers are the right auricle and right ventricle. The left chambers are the left auricle and left ventricle. All these chambers are lined by a smooth membrane, the endocardium, which is continuous on the one hand with the lining membrane of the veins, on the other with the lining membrane of the arteries.
The Right Auricle occupies the right part of the base of the heart. It consists of a large dilated portion, the sinus vennsus, and of a small car-shaped appendage, the auricula. Its muscular wall is smooth internally, except in the auricula and adjacent anterior wall of the sinus venosus, where it is thrown into parallel ridges like the teeth of a comb, and namod musculi pectinati. Inte the sinus venosus open the great systemic veins or venæ cevæ. The superior vena cava conveys to the auricle the systemic blood that bas becn circulating in the body above the diaphragm ; it opens by a patent mouth into the upper and back part of the sinus venosus. The inferior vena cava conveys to the auricle the blood that has been circulating in the parts of the body below the diaphragm ; it opens into the lower and back part of the auricle, and at its mouth is a rudimentary valve, the Eustachicn valve. Close to its orifice is the mouth of another large vein, the coronary venous sinus, which also possesses a small valve. Several minute openings, the foramina Thebesii, scattered over the inner wall of the auricle, are the mouths of small veins ramifying in the wall itself. Through these various orifices the venous blood pours into the auricle, and then flows into the right ventricle through a large orifice of communication between thicm. The right auricle is scparated by a partition, the auricular sepium, from the left auricle. On the surface of this septum is a depression, the fossa ovalis, surrounded by a raised border, the annulus ovalis, with which border the inner end of the Eustachian valve is continuous. Before the birth of the child the septum is perforated by a hole, called foramen ovale, through which the blood flows directly into the left auricle, but this furamen is obliterated after the birth of the child.
The Right Ventricle forms the right border, a large part of the anterior surface, but only a small pate of the posterior surface or the heart. It is shaped somewhat like a flattened cone, its apez being directed downwards torards the apex of the beart, its base to the corresponding auricle. The inner surface of its wall is very irregular, owing to the nuscular bundles being elevated into strong ridges, called columnce carnece. Two, or it may be three, of these fleshy columns project like nipples or big papillæ into the cavity of the ventricle, and are called musculi papillares. Attached to the free apex of each papillary muscle are several fibrous threads, the chordee tendinees, which, by their opposite cxtrewities, are connected to the segments of a large valve situated around the opening between the right auricle and ventricle. The right auriculo-ventricular opening, situated at the base of the ventricle, is sufficiently large to admit three fingers, and possesses a valve which consists of three large pointed segments or cusps(bence the name tricuspid given to it), between which three small intermediate cusps lie. One of the large cusps lies opposite the anterior wall of the ventricle, another opposite the posterior, whilst the third is between the auriculo-ventricular and pulmonary openings. The cusps are flattened triangular folds of membrane conpected by their bases around the opening; when the valve is not in action the apex of each cusp hangs pendulous in the rentricle: one surface is smooth, and looks to the cavity of the rentricle, the other surface is roush and directed to
its wall; to this rough eurface, to the apes, and to the edgns of the cusp, the chordæ tendince are attached. As the musculi papillares, from which the chordæ tendineæ sprin:, Lie opposite the intervals between the cusps, the chorlæ tendinex from any given papillary muscle divide themselves into two groups, one for each of the two cusps betreen which it is situated. Attention has reccntly berra

Fra. 89. - Cavities of the right side of the Heart.
a, supprlor, and b. Inferfer vena caves a arch of aoria; α polmonarr ariertic right, and f, left auricular appendage: σ, fusa ovalis: \& Eustachla. .rair k, mouth of coronary velo: $l_{1} m, n$ cusps of the tricuspld Falvo; $0,0,1 \mathrm{upl}$.
lary mascles; p, aemilunar valve; q, corpus Arantll ; lunda lary moseles; p, aemllunar valve; q, corpus Arantll; r, Junula
drawn by Rolleston to a band which passes from tho base of the anterior papillary muscle to the septal wall of the ventricle. As it prevents over-distension of the ventricle, he has named it the moderator band. The base of this ventricle forms to the left and in front of the auriculoventricular opening, a funnel-shaped prolongation, the conus arteriosus, from which the pulnonary artery arises, through the intermediation of a strong fibrons ring. Surrounding the mouth of this artery is a valve called semilunar, which consists of three semilunar segments. Each segment is attached by its convex border te the artery where it springs from the ventricle. The opposite border is free, and possesses at its centre a minute nodule, the corpus Arantii, from which slender threads curve outwards at the free border and in the substance of the ralve to strengthen it A thin lunated portion lies immediately within the free border. One surfaee of the valve is convex, and directed to the lumen (i.e., the space contained by the walls) of the artery; the other is concave, and directed to the wall of the artery, and between it and the wall is a pouch named sinus of Valsalva. The pulmonary artery extends upwards and to the left for about $1 \frac{1}{4}$ inch, and then divides into twr branches, one for each lung. The right ventricle is com pletely separated from the left by the ventricular septum, which passes obliquely from left to right, and from before back wards, 80 that it forms the posterior wall of the right ventricle and the anterier wall of the left.

The Left Auricle occupies the left part of the base of the heart, and, like the right auricle, consists of a dilated sinus venosus and an ear-shaped auricula. Its muscular wall forms a smooth surface internally, except in the auricula, where the ridge-shaped musculi pectinati occur. Opening in to the sinus are the orifices of the four pulmonary veins, two from the right, two from the left lung: thess
orifices are without valves. At the lower part of th3 auricle is the large orifice of communication between it and the base of tha left ventricle.

The Left Ventricle forms the left border, the apez, a large part of the posterior surface, but only a small part of the anterior aurface of the heart. It is conical in form, its aper is at the aper of the heart, the base at the corresponding auricle. As in the right ventricle, the inner surface of its wall is elevated into fleshy columns, two of which project like nipples into the cavity and form musculi papillares, which have chorda tendinece connected with them. The 'eft auriculo-ventricular opening is large enough to admit two fingers. It possesses a valve, which consists of two large pointed segments or cusps, between which two small intermediate cusps lie, hence it is called the bicuspid valve; and as these clusps are placed one in front of the other like the segments of a bishop's mitre, the name mitral valve is often given to it. The cusps agree in shape, general arrangement, and mode of attachment with those of the tricuspid valve, but they are stronger; and as the more anterior segment lies obliquely between the auricular and aortic orifices, both its surfaces are smooth. From the base of this ventricle the great systemic artery or aorta arises through the intermediation of a strong fibrous ring. The mouth of the aorta is surrounded by a three segmented semilunar valve, aimilar to the semilunar pulmonary valve, but with thicker and stronger segments, and possessing more strongly marked sinuses of Valsalva. Tha base of each ventricle has therefore two openings in it, one for communication with the auricle, the other with the great srtery arising from the ventricle. The auriculo-ventricular openings are the most posterior, and almost in the same plane; the aortic opening lies in front of the interval between the two auriculo-ventricular, and the pulmonary opening is in front of the aortic.

The walls of the cavities of the heart are formed of atriped muscular fibre, over the contractions of which the will exercises no control. The fibres are collected into fasciculi, which bave a reticulated arrangement, and the fores themselves branch and again unite to form a complicated network. The fibres of the walls of the auricles are distinct from those of the ventricles, so that the auricular and ventricular compartments are connected togcther, not by an interchange of muscular tissue, but by an intermediate ring-like arrangement.of fibres of connective tissue. The muscular fasciculi of the auricles are arranged in two strata. The deeper atratum consists of fibres proper to each auricle, some of which run obliquely in the wall, others form the musculi pectinati, surround the aaricula, and are prolonged in rings into the coats of tha venæ cavm and pulmonary veins, whilst fibres extend longitudinally and obliquely along the wall of the coronary venous sinus. The superficial stratum consists of fasciculi, which run obliquely from one auricle to the other on both the anterior and posterior surfaces, and are said to be prolonged into the auricular septum.

The muscular wall of the ventricles is much thicker than that of the auricles, and the wall of the left ventricle is about three times thicker than the right. The fibres vary in their direction in diffcrent parts of the thickness of the ventricular walls. The superficial external fibres run obliquely from above downwards, and from right to left, and on the anterior surface of the ventricles dip into the anterior ventricular groeve to enter the acptum, whilst on the posterior surface they extend across the posterior ventricular groove; at the apex of the heart they turn inwards in a whorl-like manner, and, as was known to Lower and Gerdy, become continuous with auperficial fibres on the inner wall of the ventricle; at the base of the ventricles they turn round the border of the
auriculu-ventricular openings, and, as Pettigrew has shown, become cuntinuous with these superficial internal fibres, which run in the reverse direction. The internal fbres are also prolonged into the musculi papillares, the chordm tendinex springing from which serve therefore as tendous of insertion for these muscles. If the substance of the wall be now dissected the fibres situated in the centre of the wall are seen to lie in the horizontal plane. Varions anatomists have described these fibres of the ventricles as arranged in layers. Lower recognised two layers spirally crossing each other ; Haller, three; Wolff, three in the right and aix in the left ventricle. Pettigrer at one time believed he could dissect nine layers, but has subsequently reduced the number to seven-three external, a fourth ir central, and three internal. He conceives that the fibres of the three external layers run in a spiral direction from left to right downwards, the first layer being more vertical than the second, and the second than the third, whilst tha fibres of the fourth or central layer are horizontal. The three internal layers also run spirally, but in the reverse direction from the external, with which they become continuous both at the base and apex. The subdivision of the ventricular wall into such precise and determinate layers as is implied in the descriptions of Pettigrew is, however, to some extent an artificial procedure. There can be no doubt, as his dissections so beautifully show; that the direction of the fibres in the ventricular wall varies at different depths; but owing to the reticulated arrangement of the fibres, not only are those connected together which lie in one of the so called layers, but they also anastomosa with the fibres in the layer contiguous to it on either aspect. Hence when one layer is peeled off, that immediately subjacent exhibits, not a smooth face, which it would bave done had the definition of the layers been distinct, but a rough appearance, due to the tearing through of intermediate connecting muscular fibres. Owing to these connections the substance of the wall of the ventricle, as Henle's dissections show, may, with tha exception of the superficial internal and external fibres, be split up into lamella, which extend either horizontally, obliquely, or in an arched manner through the wall between its two surfaces; and the surfaces of those lamellæ are not parallel to the wall of the ventricle, but are directed upwards and downwards.

Except at the fibrous rings, where both the white and yellow fibres are distinct, the connective tissue of the heart is small in quantity. The endocardial lining consists of connectiva tissue with elastic fibres, with a layer of endothelium on the free surface; and Schweigger-Seidel has also described smooth muscular fibres in it. Hence, as Luschka has atated, the endocardium represents not merely the inner coat of the blood-vessels but all the structures oi the vascular wall. Purkinje described fibres beneath the endocardium, which are now regarded as imperfectly formed striated muscular fibres. The valves are folds of the endocardium, enclosing fibres continuous with those in the fibrous rings: the cuspidate auriculo-ventricolar ralves receive fibres from the chordæ tendineæ.
The heart is well supplied with blood, not by the bloud which flows through its carities, but by two special coronary arteries which ramify in its walls, and and in numerous capillaries lying between the fibres. From these capillaries the coronary veins arise, which join to form tha coronary venous sinus. Lymphatic vessels occur both in the endocardium and pericardium, and apparently ramify in the muscular wall. The nerves of the heart have been dissected cspecially by Scarpa, Remak, Lee, and Pettigrerr, and numerous small ganglia described in connection with them (see p. 883).

The blood flows along the great veins into the auricles.
and is forced by the contraction of thelr muscular walls throngh the auriculo-ventricular openings, the valves of which open ontwards, into the ventricles. When the ventricles are distended their museular walls contract and force the blood into the arteries-the right ventricle into the pulmonary artery, the left into the aorta-the valves at the mouth of eaeh artery opening outwards to allow of the free passage of the fluid. To prevent, during the ventricular contraction, the regurgitation of blood into the auricles, the ouriculo-ventricular valves are floated away from the sides of the ventricle across their respective openings, and by the apposition and slight overlapping of their edges temporarily close the openings. The tilting upwards, of the valves into the anricles is prevented by the contraction of the museuli papillares, and their connection with the cusps of the valve through the chordx tendinex. Pettigrew has shown that casts of the ventricular cavities, more especially of the left, have the form of a double cone, spirally twisted from right to left, and has described the blood as forced in spiral streams against the under surface of the segments of the valve, which are twisted and wedged into each other so as to prevent regurgitation. The propulsion of the blood into the arteries distends the elastic walls of those tubes; but when the ventricular contraction has ceased, the elastic wall recoils, and the blood is propelled onwards in the circulation. The regurgitation of the blood into the ventricles is prevented by the closure of the seinilunar valves, the segments of which are thrown across the arterial orifices through the pressure exercised on the coluran of blood in the lumen of the artery and in the sinuses of Valsaliva.

The Arteries.-Theso ressels were named arteries by the older anatomists, on the supposition, now known to be erroneous, that they contained air. The term is now omployed to express a blood-vessel, which, arising cither directly or indirectly from the heart, conveys blood away from that organ. Arteries divide and subdivide into smaller vessels in their course, and to the individual branches descriptive names are applied. Some of these names express the position of an artery, as subclavian, axillary; others, the organ in which it is distributed, as pulmonary, hepatic: others a peculiarity in its course, as circumflex, coronary. The branehes of arteries may beeither collateral or terminal. The collateral branches arise from the sides of the parent artery either at an aeute, a right, or an obtuse angle. Terminal branches arise at an acute angle by the bifurcation of the parent artery, which is the most common form, or by the breaking up of the artery into a cluster of branches. Branches which arise either from the same artery or from different arteries may be distributed in a common locality, may there unite together, and form what is called an inosculation or anastomosis, so that the blood from one artery may thus fow from it into another. The most common amastomosis is by the formation of loops between adjacent branches, but sometimes, as when the wo vertebral arteries join to form the basilar, a convergence of two almost straight arteries takes illace; and in other cases, as where the two anterior cerebral arteries are joined torgether by the anterior communicating, a connecting branch posses transversely across the mesial plane. A more complex form of anastomosis is when an artery (and a similar arrangenent is sometimes found in veins) rapidly subdivides into numerous branches, which may again join to form a trunk either with or without the formation of a plesus. This is called a rete mirabile, an arrangement not uncommon in the cetacea, in the internal carotid arteries of ruminants, in the mesenteric arteries of the pig, in the arteries of the limbs of the sloths and lemurs, and in the arterial system of fishes. The only examples of a rete in the human body are the convoluted Malpighian tufts of the Lidney and the arterial distribution in the coccygeal body.

The distribution of the pulnonary artery will be considered in the anatorny of the lungs. That of the aorta will now be briefly described.

The Aorta (1late XX. figs. 2, 3, 1) lies in the cavities of the Aorta thorax and abdumen, and arises from the base of the left ventricle. It ascends forwards, upwards, and to the right as far as the level of the second right costal cartilage, then runs backwards and to the left to reach the left side of the body of the 4th dorsal vertebra, and then descends almost vertically to reach the left side of the body of the 5th dorsal vertebra. It forms, therefore, an arch, well known as the arch of the corta, which arches over the root of the left lung, and which has attached to its concave surface a fibrons cord, known as the obliterated ductus arteriosus, which connects it with the left branch of the pulmonary artery. The aorta continues its course downwards in close relation to tho bodies of the lower dorsal vertebre, then passes through an opening in the diaphragm, enters the abdomen, and descends in front of the bodies of the lumbar vertebre as low as the 4th, where it is usually described as dividing into the two terminal branches, tho common iliac arteries. At the angle of bifurcation, however, a long slender artery, called the middle sacral, is prulonged downwards in front of the sacrum to the end of the coccyx. In animals with long tails this artery can be recognised as a direct continuation of the aorta, prolonging it downwards in front of the candal vertebre, whilst the iliacs are seen to be collateral branches ; but in man, where the coceyx is rudimentary, and the lower limbs largely developed, the iliac arteries which supply those limbs are so big as to obscure the true signification of the middle sacral artery, and appear themselves to be the terminal branches of the aorta. The braneles which arise directly from the aorta may be arranged in four groups.-1st, Branches for the supply of the viscera of the thorax and abdomen proper ; 2 d , branches for the walls of the thorax, abdomen, and pelvis; 3d, branches for the bead, neck, and upper limbs ; 4th, branches for the lower limbs, pelvic walls, and viscera.

The branches of the aorta which supply the visecra of Visceral the thorax are the coronary, the œsophageal, the bronchial, breacles. and the pericardial The coronary arteries, two in num ber, are the first branches of the aorta, and arise opposite the right and left segments of the semilunar valve, from the wall of the aorta, where it dilates into the sinuses of Valsalva. The mouths of these arteries are closed by the opening outwards of the aortic valves during the ventricular contraction. The elastic recoil of the aorta following that contraction not only closes the aortic valves, but drives the blood into the coronary arteries. These arteries break up into branches in the muscular walls of the heart, and the sudden turgescence of its walls, which results from the filling of these vessels, is, according to Brïcke and Garrod, the cause of the dilatation of the ventricular cavities.

The lronchical arteries are two in number; one accompanies each bronchial tube, and supplies the tissues of the lung.

The cesophageal arteries, three or four in number, supply the coats of the cesophagus.

The pericardial branches are very small arteries which supply the back of the bag of the pericardium.

The branches of the aorta which supply the viscera of the abdomen arise either singly or in pairs. The single arteries are the coliac axis, the superior mesenteric, and the inferior mesenteric, which arise from the front of the aorta; the pairs are tho capsular, the two renal, and the two spermatic or ovarian, which arise from its sides. The eingle arteries supply viscera which are either completely or almost completely invested by the peritoneum, and the veins corresponding to them are the roots of the vena portan The pairs of arteries supply viscera developed
behind the peritoneum, and the veins corresponding to them are rootlets of the inferior vena cava.

The coliac axis is a thick, short artery, which almost immediately divides into the coronary, hepatic, and splenic branches. The coronary artery subdivides into an cesophageal branch for the lower end of the œsophagus, and a gastric branch for the coats of the stomach. The heputic artery ends in the substance of the liver; but gives off a eystic branch to the gall bladder, a pyloric branch to the stomach, a gastro-duodenal branch, which divides into a superior pancreatico-duodenal for the pancreas and duodenum, and a right gastroepiploic for the stomach and omentum. The splenic artery ends in the substance of the spleen; but gives off pancreatic branches to the pancreas, vasa brevia to the great end of the stomach, and a left gastroepiploic to the stomach and omentum.

The superior mesenteric artery gives off an infernor pancreatico-duodenal branch to the pancreas and duodenum ; about twelve intestinal branches to the small intestines, which form in the substance of the mesentery a series of arches before they end in the wall of the intestines; an ileocolic branch to the end of the ileum, the cæcum, and beginning of the colon; a right colic branch to the ascending colon; and a middle colic branch to the transverse colon.

The inferior mesenteric artery gives off a left colic branch to the descending colon, a sigmoid branch to the sigmoid flexure of the colon, and ends in the superior hwemorrhoidal artery which supplies the rectum. The arteries which supply the coats of the alimentary tube from the œsophagus to the rectum anastomose freely with each other in the wall of the tube, or in its mesenteric attachment, and the anastomoses are usually by the formation of arches or loops between adjacent branches.

The capsular arteries, small in size, run outwards from the aorta to end in the supra-renal capsules.

The renal arteries pass one to each kiduey, in which they for the most part end, but in the substance of the organ they give off small perforating branches, which pierce the capsule of the kidney, and are distributed in the surrounding fat.

The spermatic arteries are two long slender arteries, which descend, one in each spermatic cord, into the scrotum to supply the testicle. The corresponding arteries in the female, called the ovarian, do not leave the abdomen; they supply the ovaries.

The branches of the aorta which supply the walls of the thorax, abdomen, and pelvis, are the intercostal, the lumbar, the phrenic, and the middle sacral.

The intercostal arteries arise from the back of the thoracic aorta, and are usually ten pairs. They run down the sides of the vertebral bodies as far as the commencement of the intercostal spaces, when each divides into a dorsal and a proper intercostal branch; the dorsal branch passes to the back of the thurax to supply the deep muscles of the spine; the proper intercostal branch runs outwards in the intercostal space to supply its muscles, and the luwer pairs of intercostals also give branches to the diaphragm and wall of the abdomen.

The lumbar arteries arise from the back of the abdominal aorta, and are usually four pairs. They run down the sides of the lumbar vertebre,

Fio. 90-Diastam of a palr of later costal artcries. Ao, the aorta thansreracly divided, giving ofr at each verscly divided, fiving of at each side an laterenstal artery; PR, thu Fosterior or darsal branch; As. tho antemar or proper intercostal branch, ash, liasversa section through tho totarnal mammary artery. and divide into a dorsal branch, which supplies the deep muscles of the back of the loins. and an abdominul branch
which runs outwards to supply the wall of the abdomen The distribution of the lumbar and intercostal arterier exhibits a transversely-segmented arrangement of the vascular system, similar to the transversely-segmented arranga ment of the bones, muscles, and nerves met with in these localities, but more especially in the thoracic region.

I'ne phrenic arteries, two in number, pass to supply the under surface of the diaphragm.

The middle sacral artery, as already stated, is rather the continuation of the aorta than a branch. As it runs dowu the front of the sacrum it gives branches to the back of the delvic wall.
The statement has frequently been made that the visccral and parietal branches of the aorta do not anastomose with each other. Injections made by Turner have, however, shown that, both in the tooracic and abdomiual cavities, sleader anastomosing communications exist between the two sets of branches. In the abdominal cavity a wide mested plexus of small arteries, named by him sub- or extra peritoneal plexus, lies in the fat outside the peritoneum. It communicates, on the one hand, with the perforating branches of the renal arteries and with slender branches of the capsular, spermatic, colic, and pancreatic arteries, and in the region of the diaphragm with the hepatic artery. On the other hand, it communicates with the phrenic arteries, the lower intercostals, the lumbar branches of the aorta, and with the ilio-lumbar, circumflex ilii, and epigastric branches of tha iliac arteries, which also go to the wall of the abdomen. In the pelvis also the visceral superior hæmorrhoidal artery anastomoses with the middle and lateral sacral arteries The cxtra-peritoneal plexus supplies the fat and lymphatio glands lying outside the peritoneum, and it also gives origin to vasa vasorum for the coats of the aorta and rena cava This plexus may, when the visceral branches of the aorta are obstructed, aid in an important manner in carrying on the circulation. In a subject examined by J. Chiene, ia the dissecting room of the University of Edinburgh, where the coliac axis and the superior and inferior mesenteric arteries were obliterated at their origins, the blood flowed into these arteries and the viscera they supplied through a great enlargement of the arteries of this plexus. In the thoracio cavity a similar plexus, named the extra-pleural plexus, lies between the pleura and pericardium, which communicates on the one hand with the internal mammary arteries, and on the other passes in front of the root of the lung to juiu the bronchial system of vessels. Another portion of this plexus joins on the one hand the intercostal arteries near the dorsal vertebre, and on the other passes to the lung at the back of its root.

The branches for the head, neck, and upper limbs arise as three large arteries from the transverse part of tie aorta; they are named arteria innominata, left common carotid, and left subclarian. The arteria innominata is the largest; it passes, upwards and to the right, to the root of the neck, and then divides into the right common carotid and the right subclavian. The carotid artcries supply the two sides of the bead and neck; the subclavian arteries the two upper extremities.

The subclavian artery is the commencement of the great arterial trunk for the upper limb. It passes across the root of the neck and under the clavicle, when it enters the armpit, and becomes the axillary artery; by that name it extends as far as the posterior fold of the axilla, when it enters the upper arm, takes the name of brachial or iumeral artery, and courses as far as the bead of the elbow, where it bifurcates into the radial and ulnar arteries. From the subelavian part of the trunk the following branches arise:-a, Vertebral, which enters the foramen at the root of the transverso process of the 6th cervical rertebra, ascends through the corresponding foramina in
the vertebre above, lies in agroove on the arch of the atlas, and enters tho skull through the foramen magnum, where it joins its fellow to form the basilar artery; it bives off muscular branches to the deep muscles of the neek, spinal branches to tho spinal cord, meningeal branches to the dura mater, and an inferior cerebellar branch to the nuder surface of the cerebellum. The basilar artery, furmed by the junction of the two vertebrals, extends from the lower to the upper border of the pons Varolii; it gives off cullaterally transverse branches to the pons, auditory braaches which accompany the portio mollis to the internal ear, inferior cerebellar branches to the under surfaco of the cerebellum, whilst it breaks up into four terminal branches, viz., two superior cerebellar to the upper surface of tho cerebellum, and two posterior cerebial which supply the tentorial aspect of the temporo-sphenoidal lobes, the ocei[ital lobes, and the posterior convolutions of the parietal lubes. b, Thyroud axis, which immediately divides nto the injerior thyroid, tho supra-scapular, and the trensverse cervical branches; the inferior thyroid supplies the thyroid body, and gives off an ascending cervical branclr to the muscles of the neck ; the supra-scapular supplies tho muscles on the dorsum scapulx; the transverse cervical aupplies the trapezius and the muscles attached to the vertebral border of the scapula. c, Internal mammary, supplies the anterior surface of the walls of the chest and abdomen, and the upper aurface of the diaphragn. d, Superior intercostal bupplies the first intercostal space, and by its deep cervical branch the sigep muscles of the back of the neck.

The axillary artery supplies long and shurt thoracic branches to the wall of the chest and the pectoral museles; an alar thoracic branch to the fat and glands of the axilla; an acromial thoracic to the parts about the acromion; anterior and posterior circuntlex branches to the shoulder joint and deltoid muscle; a subscapular branch to the muscles of the posterior fold of the axilla.

The brachial artery supplies muscular branches to the muscles of the upper arm; a nutrient branch to the humerus; superior and injerior profunda branches and an anastomotic to the muscles of the upper arm and the region of the elbow joint.

The ulnar artery extends down the ulnar side of the front of the fore-arm to tho palm of the hand, where it curves outwards towards the thumb, and anastomoses with the superficial volar and radial index branches of the radial artery to form the superficial palmer arterial arch. In tho fore-arm the ulnar gives off the interosseous arteries, which supply the muscles of the fore-arm and give nutrient branches to the bones; two recurrent branches to the region of the elbow; carpal branches to the wrist joint: in the hand it gives a deep branch to tho deep nuscles of the hand, and from the superficial arch arise digital branches to the aides of the little, ring, and middle fingers, and the ulnar border of the index finger.

The radial artery extends down the radial side of the front of the fore-arm, turns round the outer side of the wrist to the back of the hand, passes betwoen the 1 st and Id metacarpal bones to the palm, where it joins the deep hranch of the ulnar, and forms the decp palmar arterial arch. In the fore-arm it gives off a recurrent branch to the elbow joint ; carpal branches to the wrist joint ; and muscular branches, one of which, named superficialis volae, supplies the muscles of the thumb and joins the ulnar artery: in the hand it gives off a digital branch to the thumb, and one to the radial side of the index, interosseous branches to the interosseous muscles, perforating branches to the back of the hand, and recurrent branches to the wrist.

Tho common carolid artery runs up the neck by the side of the windpipe, and on a level with the upper border of
the thyroid cartilage divides into the internal and external carotid arteries.

The internal carotid artery ascends through tho carotid canal in the temporal bone into the cranial cavity. It gives off an ophthatmic branch to the eyeball and other contents of the orbit, and then divides into the anterior and midule rerchral artcries. The middle cerebral artery extends outwards into the Sylvian fissura, and supplies the island of Reil, the orbital part, and the outer face of the frontal lobe, tho parietal lube, and the temporo-sphenoidal labe; it also gives a choroid branch to the choroid plexus of the velum interpositum. The anterior cerebral artery aupplies the inner face of the liemisphere from the anterior end of the frontal lobe as far back as the internal paricto-occipital fissure. At the base of the brain not only do the two internal carotids anastumose with each other through the anterior communicating artery, which passes between their anterinr cerebral branches, but the internal carotid on each side anastomoses with the posterior cerebral branch of the basilar, by a posterior communicating artery. In this manner a vascolar circle, the circle of Willis, is formed, which permits of freedom of the arterial circulation by the anastomuses between arteries not only on the same side, but on opposite aides of the mesial plane. The vertebral and internal carotid arteries, which are the arteries of supply for the brain, are distinguished by lying at some depth from the surface in their course to the organ, by having curves or twists in their course, whereby the furce of the flow of blood is retarded, and by the absence of large collateral branches. Further, as the ophthalmic artery is a branch of the internal carotid, the circulation in the eyeball is in sympathy with that in the brain.

The external carotid artery ascends through the upper part of the side of the neck, and behiud the luwer jaw inte the parotid gland, where it divides into the internal maxillary and temporal branches. This artery gives off the following branches:-a, Superior thyroid to the larynx and thyroid body; b, Lingual to the muscles and mucous membrane of the tongue, and to the sublingual gland; c, Facial to the face, palate, tonsil, and sub-maxillary glend; d, Occipital to the sterno-mastoid muscle and back of the sealp; e, Posterior auricular to the back of the ear and the adjacent part of the scalp; f, Superficial temporal to the scalp in front of the ear, and by its transverse facial branch to the back part of the face; g, Internal maxillary, giving muscular branches to the mudeles of mastication, meningcal branclues to the dura mater, dertal branches to the teeth, and other branches to the nose, palate, and tympanum ; h_{1} Ascending pharyngeal, which gives branches to the pharynx, palate, and tonsils.

The common liliac artery, after a short course, divides Ilia into the internal and external iliac arteries. The internal syst iliac enters the pelvis and divides into branches for the supply of the pelvic walls and viscera, ineluding the organs of generation, and for the great muscles of the buttack. The external iliac descends behind Poupart's ligament into the thigh, where it takes the name of femoral artery. The femoral descends along the front and inner surface of the thigh, gives off a profunda or deep branch, which, by its circumflex and perforating branches, supplies the numerous muscles of the thigh ; most of these extend to the back of the limb to carry blood to the muscles situeted there. Tho femoral artery then runs to the back of the limb in the ham, where it is called popliteal artery. The popliteal divides into two branches, of which one, called anterior tihial, passes between the bones to the front of the leg, and then downwards to the upper surface of the foot; the cther, posterior tibial, continues down the back of the leg to the sole of the foot, and divides into the internal and external plantar arteries; brancbes proceed from the external plan:
tar artcry to the sides of the tocs, and constitute the digital arteries. From the large arterial trunks in the leg many branches proceod, to carry blood to the different śtructures in the limb.

The wall of an artery consists of several coats. The outermost is the tunica adventitia, composed of connective tissue; immediately internal to this is the yellow elastic coat; within this again the muscular coat, formed of involuntary muscular tissue, the contractile fibro-cells of which are for the most part arranged transversely to the long axis of the artery; in the larger arteries the elastic $c \quad *$ is much thicker than the muscular, but in the smaller arteries the muscular coat is relatively strong; the vaso-motor nerves terminate in the muscular coat. Internal to the muscular coat is the elastic fenestrated coat, formed of a smooth elastic membrane perforated by small apertures. Most internal of

Fio. 91.-Diagram of the stroctora of an artery, A, funlca adventitia; E, elastle Coat; M, mascular coat: F, feoestrated coat; Ea, eudothellum coathinous with the eadoinclul wall of C , the capilaries.
'all is a layer of endotheial cells, which form the free surface over which the blood flows. The arteries are not nourished by the blood which flows through them, but by minute vessels, vasa vasorum, distributed in their external, elastic, and muscular coats.

The Capillaries.-These are tne minute tubes which connect together the terninal branches of the arteries and the rootlets of the veins. They vary in diameter in different
 in more or less cumpact networks, which lie in the iuterstices between the tissues of the part or organ. The vascularity

Tio. 92 -Caplilary Network in the Web of the Foot of the Frog (A. Thomson). of a tissue depends upon the relative proportion of the capillaries that it contains. Some tissues, as adult cartilage, the cornea, epithelium, and endothelium, are destitute of capillaries, i.e., are non-vascular. The capillary wall is very simple in structura; in the smallest capillaries it consists merely of a layer vi endothehial cells, continuous with the endotheiial lining of the arteries and veins; in the larger capillaries a delicate tunica adventitia is superadded. The
transition frum a capillary to a small artery or a small vein is marked by the development of a muscular and an elastic coat in the wall of the blood-conveying tube.
The Veins.-The veins convey the blood from the periphery back to the heart, and in their course inclease in size, by junction or anastomosis with each other. In most of the veins delicate valves are found, each of which consists of two semicircular segments, and a pouch-like dilatation of the wall of the vein is opposite each segment. When the blood flows along the veins, the valves lie against the wall of the vessel, but if pressure be applied to a vein so as to obstruct the onward flow of the circulation, then the blood nos, into the pouch between the wall of the vein and the valve adjacent to the seat of pressure, when the valve closes so as to stop regurgitation. The valves ard found especially in those veins where the circulation is likely to be interfered with either by the pressure of the muscles on the veins during their action, or by the pressure of blood caused by gravity, and are usually seated at the points of confluence of veins. They are absent in the veins of the lungs, of the brain, and of sereral of the abdominal viscera. Some of the veins lie in the subcutaneous fat, and are called superficial veins, others lie amidst the muscles, and form the deep veins. The deep veins accompany the arteries and are named after them; the superficial veins do not accompany arteries; frcquent anastonoses take place between the superficial and deep veins.
The veins are arranged primarily into two groups-the Pulmonary veins and the Systemic veins. The distribution of the pulmonary veins will be given in the anatomy of the lungs.

The Systemic veins consist of the coronary venous system ; of the system of the superior vena cara; of the system of the inferior vena cava; and associated with the inferior vena cava is the portal venous system. The arrangement of the coronary vein has been described in the anatomy of the heart.
The system of the Superior Vena Cava consists of both superficial and deep veins, and is arranged as follows:-
The superficial reins of the hand commence at the tips and sides of the fingers, from which they proceed along the back of the hand, beneath the skin of which they may be distinctly seen. They then ascend along the fore-arm, forming three large veins: the radial, on the outer side; the ulnar, on the inner; and the median, in the middle of the front of the fore-arm. At the bend of the elbow the median divides into two branches, of which one joins the radial to form the cephalic, the other joins the ulnar to form the basilic. Into one or other of the two branches of the median the surgeon generally makes an opening when he is desirous of drawing blood from the patient. The cephalic and basilic veins terminate by joining the deep or axillary vein. The communications between the superficial and deep veins are not, however, confined to the point of termination of the former, but occur at various parts of their course.
The deep veins of the hand commence at the tips of the fingers, and pass as digital veins uptthe sides of the fingers to the palm of the hand, where they form an arch cors responding to the arterial arch of the palm; from this they extend upwards along the front of the fore arm, as far as the bend of the elbow, closely accompanying the arteries of the fore-arm, and receiving from the muscles numerous small branches corresponding to the small arteries sent to those muscles. At the bend of the elbow. two brachial veins result from the junction of these different reins of the fore-arm, which pass up the inner side of the upper-arm, closely accompanying the brachial artery as far as the armpit, where they join to form a single large vein, the
axillary. They receive in their couse many small branches from tho muscles. The axillary vein also receives the cephalic and basilic reins. Thus, a single large trunk conveys away all the blood that has been circulating through tha upper liunb. This large vein passes as the subclavian vain behind the clavicle, and reaches the lower part of the side of the neck, where it is joined by the large veins that seturn the blood from the head and neck.
The reins that return the blood from the inner and outer parts of the head and neck are called the external and internal jugular veins. The external is the smaller, and may commonly be seen bencath the skin on the sido of the neck. It returns the blood that has been circulating on the outer part of the head, and nust be regarded as a superficial rein. The interual jugular returns the blood that has been circulating on the face, in the brain, and cranial blood-sinuses, and in the deeper parts of the neck. It accompanies the carotid artery, and must thus he regarded as a deep vein. By the junction of the jugular and subclavian reins at the root of the neck a large brachio-cephalic vein on each side is formed; these gradually converge, join, and form a single trunk, the superior vena cava, which, after a short course, enters the upper part of the right auricle of the heart. The veins corresponding to the intercostal arteries, which run between the ribs, do not open directly into either the superior or inferior vena cava, but pass to form the azygos vein, which begins in the cavity of the abdomen, then enters the cavity of the chest, and, as it courses upwards, gradually increases in size by receiving the various intercostal reins, until it finally terminates by joining the superior vena cava.

The system of the Inferior Vena Cava consists of both superficial and deep reins, and is arranged as fulluws:The superficial veins of the foot are separated from the deep veins by the strong membrane or fascia which binds down the muscles. They commence by very fine branches arising from the eapillaries of the skin. On the back of the foot the digital veins proceeding from the skin of the toes form an. areh, from tho inner side of which a vein, called the long saphena, arises. This passes upwards along the inner side of the leg and thigh, increasing considerably in size in its course, owing to the number of reins joining it from the extensive surface of the skin of the limb. It terminates, at the upper part of the thigh, by passing through a hole in the fascia, and joins the femoral vein. From the outer side of the same arch arises the external saphenous vein, which runs up the baek of the leg to the ham, and pierces the fascia to join the popliteal vein. The deep reins begin both on the back of the foot and in the sole. Those which arise on the back of the fuot form the anterior tibial veins, and accompany the auterior tibial artery; they receive a considerable number of branehes in their upward course, which proceed from the great mass of muscles lying on the outer side of the leg. The veins which begin in the sole of the foot accompany the plantar arteries, and then pass upwards, along the inner side of the ankle-joint, to reach the back of the leg, along which tiney ascend as the posterior titial veins, closely accompanying the posterior tibial artery, and receiving in their course numerous small veins that proceed from the muscles of the calf of the leg. At the upper part of the leg the anterior tibial veins pass to the back of the leg, and juin the posterior tibial veins. The large popliteal rein, formed by their junction, ascends behind the kneejoint, lying in the ham, along with the popliteal artery. It leares the upper part of this space, and, passing to the inner side of the thigh, ascends as the femoral vein along with the femoral artery as far as Poupart's ligameut, when it enters the cavity of the abdomen. At the upper part of the thigh it receives the profunda vein, correspond.
ung to the deep artery of the thigh, which conreys bach the blood that has been earried by that vessel to the numerous large and important muscles of the thigh. The femoral vein is also joined at this spot by the long saphena rein. When the femoral vein enters the carity of the abdomen it becomes the external iliac vein. The external iliac vein receives the smaller veins which ramify in tho lower part of tho walls of the abdomen, as well as the large internal iliac rein, which corresponds to the-internal iliao artery, and by their junction the common iliac rein is formed. Tho two common iliac reins gradually converge, and, about the level of the last vertebra of the loins, join to form a single large rein, the inferior vena cava. The inferior vena cava ascends at the back of the abdominal cavity lying on the right side of the aorta. Several veins open into it ; some corresponding with the parietal branches of the abdominal aorta, others with the capsular, renal, and spermatic arteries. The greater number of the veins proeeeding from the organs contained in the cavity of the abdomen do not open directily into the vena cava, but form a large vein called portal. The vena cava passes througt. the diapliragm, enters the cavity of the chest, and terminates by opening into the right auricle of the heart.

The Portal system of veins is formed by the veins which proceed from the large and small intestines, from the stomach, pancreas, and spleen; they form the inferior mesenteric, superior mesenteric, splenic, and gastric veins, which join together in the neighbourhood of the pancreas to form the portal venous trunk. The portal vein then ascends to the under surface of the liver, which it entere at the portal transverse fissure. In the substance of tho liver it subdivides into branches just like an artery, and the finest branches terminate in the lobules of the liver in a plexus of capillaries. From this plexus the rootlets of the hepatic veins arise, which joining together form the largo hepatic vein, which opens into the inferior vena cava before it pierces the diaphragm. Retzius has pointed out that an extra-peritoneal renous plexus exists in the abdominal cavity, which connects the rootlets of the portal vein with those of the reins of the parietes of the abdomen.

The wall of a vein possesses the same number of coats as that of an artery, but the coats are thinner. Veins are also extensively provided with valves, which are absent from the arteries except at the mouths of the aorta and pulmonary artery.

Lymph-Vascular System.-This subdivision of the Lymph vascular system consists partly of small tubes or vessels, tios. the lymph vessels, and partly of colleetions of lymphoid or adenoid tissue (p. 849), the lymph glands. The lymph vessels or lymphatics are tubes with delicate transparent walls, which convey the fluid called lymph and chyle. They arise in the tissues and terminate by joining the venous system, so that their contained fluid flows towards the beart. They resemble veins in having a course from periphery to centre; in possessing valves, which are generally two in uumber and semilunar in shape; in being divided into a superficial and a deep set-the superficial lymphatics being situated, like the superficial veins, in the subeutaneous tissue; the deep lymphatics accompanying the arteries and deep veins. Lymphatics differ, howerer, from veins in possessing in their course glandular enlargements, in having thinner coats, in being almost uniform in size, and not uniting into larger vessels as they pass onwards in their course. As a rule they are like fine threads, and their main trunk, the thoracic duct, is not bigger than a crow. quill. The lymph-ressels are divided into lacteal or chyle vessels and lymphatics proper.

The lacteal or chyle vissels, named from the milk-like chyle which they contain, arise in the minute processed called intestinal villi, which project from the irce ourface

or the mucous membrane of the small intestine into the lumen of the bowel. The lacteals from adjacent villi form a network in the submucous coat of the intestine, from which larger lacteals arise, which pierce the muscular coat, and then run between the folds of the mesentery to the posterior wall of the abdomen, where, opposite the body of the first lumbar vertebra, they join the deep lymplatic vessels of the abdomen to form the thoracic duct.

The lymphatic vessels proper correspond so closely in their distribution in the extremities and in the head and neck with the veins of those parts, that a special description of their arrangement is not necessary, the more so as a general representation of these ressels is given in Plate XXI. The superficial and deep lymphatics of the lower limbs enter the abdominal cavity, and are jeined by the lymphatics of the pelvis. They ascend in front of the bodies of the lumbar vertebre, join the lacteal vessels to form the thoracic duct, the place of junction being marked by a dilatation of the duct called receplaculum chayli. The thoracic duct passes through the opening in the diaphragin which transmits the aorta, ascends in front of the bodies of the dorsal vertebre, receives in its course the deep' lymplatics of the left half of the chest, reaches the rout of the neck on the left side, is joined there by the deep and superficial lymphatics of the left upper limb and left side of the head and nock, and opens into the great veins at the angle of junction between the left internal jugular and subclavian. This duet conveys, therefore, the chyle during digestion, and the lymph contained in the lymph-vessels below the diaphragm and in the lymph-vessels situated to the left side of the mesial plane in the parts of the body above the diaphragm. The lympl-vessels on the right side of the supra-aiaphragmatic parts of the mesial plane du not juin the thoracic duct, but converge to the root of the neck on the right side, where they join to form the right lymphatic duct, which opens into the angle of junction of the right internal jugular and subclavian veins.
The mode of origin of the lymph-vessels has long been E vexed question amongst anatomists. The lacteal vessels were at one time supposed to arise by open mouths on the Free suriace of the intestinal villi, and this idea has been revived in a modified form by some recent observers, whe conceive that the lacteals are continuous with a network lormed' by the anastomoses of processes proceeding from the deep ends of the goblet cells, the mouths of which cells open on the free surface of the villus. The lymph-vessels proper are in some localities coutinuous with the serous cavities (p. 848) ; in others they arise within the textures and organs. The most minute lymph-vessels, called lymphcapillaries, like the blood-capillaries, have walls formed of a single layer of elengated endothelial cells. These capillarics take their rise in the cennective tissue of a part or organ, and probably spring from spaces, or juice-canals, between the bundles of the connective tissue, which bundles are invested by an endethelial layer of cells. The juice canals are, therefore, a network of minute canals, situated outside the blood-ressels, which allow the tissues to be permeated by a nutrient juice derived from the blood.

In some localities, as the brain and cyeball, the bloedvessels have been described as enclosed in tubular spaces, called peri-vascular canals, in which cells like the corpuscles of the lymph have been seen, and which are believed to be contingous with the lymphatic system. The researches of Ludwig and some of bis pupils into the minute structure of the lachrymal gland, the glands of the skin, and the tcstis, hare shown that lymph-capillarics lic in clese relation to the secreting structures of these glands.

The coats of the lymph-vesscls resemble in structure those of the veins, but they are thinner and mere transparent. The valves are small and numerous,

The lymphatic glands are small bodies, varying in size from a pea to an almond, situated in the course of the lymph-vessels in sevcral regions of the body. They are found especially in the groin, armpit, mesentery, back of the abdomen, roots of the lungs, and side of the neck (Plate XXI.) Entering oue end of each gland are lymph-vessels, named vasa afferentia, and emerging from the opposite end of the gland are the lymph-vessels named vusa efferentia. Each gland is invested by a capsule of connective tissue, which sends processes into the substance of the gland to divide it into compartments; it consists of adenuid tissue, and the meshes of its retiform connective tissue contain multitudes of lymph corpuscles. Each gland is permeated by a network of minute canals, which are continuous with both the vasa afferentia and efferentia; the gland, therefore, is traversed by a stream of lymph which washes the lymph corpuscles out of the meshes of the reticulum, and in this manner these corpuscles find their way into the lymph. The lymph glands arc, therefore, centres of origin for the lymph corpuscles. The collections of adenoid tissue, forming the solitary and 'Peycr's glands of the intestiue, and found in the tonsils and other localities (p. 849), are also without doubt centres of furmation for the lymph corpuscles.

Blood-Vascular Glands.-Intimately associated wita Bload the vascular system are ccrtain organs to which the names vasculas of blood-vascular glands, or glands without ducts, are clands. applied. These organs are the spleen, the thyroid gland, the thymus gland, the suprarenal capsules, and portions of the pituitary and pineal glands. The Spleen is situated in the cavity of the abdomen between the stomach and the diaphragm. It is invested by peritoncum, and has a fibro elastic coat in which involuntary muscular fibro-cells are formed. This coat sends muliitudes of fine trabecula inta the interior of the organ, which subdivide it into numbers of minute compartments, in which the red, highly vascular spleen pulp is contained. This pulp consists of collections of small spherical masses of adenoid tissue, forming the Malpighian corpuscles, of the terminal branches of the splenic blood-vessels, and of the lymph-vessels, together with numerous cells, some of which are red blood corpuscles, others lymph corpuscles, others contain pigment granules or fat, others contain in their interior numerous blood con puscles. The arteries of the spleen in part end in capillaries from which the veins arise, but more frequently they open into lacunæ or blood spaces, which give origin to the veins. The Thymus gland, best seen in infancy and child. hood, lies in the cavity of the thorax near the base of the heart. It consists of two lobes, each of which is composed of lobules of adenoid tissue, to which numerous lymph: vessels may be traced. In the adult it is converted into a mass of fat. The Thyroid gland is situated in the neck al the front and sides of the windpipe. It consists of multitudes of minute closed follicles, each of which is lined by a layer of cells. The Suprarenal capsules, two in number, lie in the abdomen one abore each kidncy. They contain cells, some of which are arranged in columas, others in a reticulated manner, and are well provided with bluodressels, nerves, and lyıphatics.

Development of the Fascular System. -The vascular system is formed in the middle or mesoblast lajer of the early embryo. The cells of the mesoblact lose their original spherical form and become stellate, the processes of adjacent cells unite together and form a network, and the nuclei rapidly increase in numbers. The peripheral part of the protoplasm of the stcllate cells diferentiates into a wall of nucleated protoplasm, and forms the rall of the blood-ressels, mhilst the central part of the protoplasm liqucfies, and the nuclei contained in it become the bloodcorpuscles. If the vessel remains as a capillary, its waiH assumes merely the character of a single layer of endo-
thelial cells; but if it becomes an artery or a vein, a further differentiation of the mesoblast cells into the muscular and clastic coats and the tunica adventitia takes place. The heart appears immediately below the head in the form of a collection of cells in the splanchnopleure layer of the mesoblast. . It is believed that these cclls form in the first instance a solid mass, the ceatral part of which liquefies to form blood and blood-corpuscles, whilst the peripheral cells form the wall of a tubc. The heart tube now presents two constrictions, which indicateits division into an auricle, a ventricle, and a bulbus arteriosus. The single ventricle then subdivides into two by the gradual growth of the septum from the apex to the base, and about tho eighth week of embryo-life the right and left ventricles are cumpletely separated from each other. *A septum then begins to form in the originally single auricle, but its growth is not completed until after the birth of the child, so that during fœtal life the cavities of the right and left auricles communicate with each other through a hole in the scptum, named foramen ovale. The primitive aortie, riglit and left, arise from the ductus arteriosus, and extend upwards to the lst pair of visceral arches, into which they pass and arch backwards to the sides of the spinal column, where they form the dorsal aorta Four additional pairs of arterial arches then spring from the primitive aortec below the lst pair, and the whole are euumerated from above downtwards as the 1 st, $2 \mathrm{~d}, 3 \mathrm{~d}, 4$ th, and 5 th pairs of vascular arches. Each arch comnnuncates behind with the dorsal aorta of its own side. The two dorsal aortm then approximate and blend with each other to form the descending thoracic and the abdominal aorta. A longitudiual septum also fornis within the bulbus arteriosus itself, which divides it into two vessels: the one, tho ascending aorla, becoming continuous with the cavity of the left ventricle
and with the Ist, $2 \mathrm{~d}, 3 \mathrm{~d}$, and 4 th paurs of vascular arche the othcr, the pulmonary artery, becoming continuous with the cavity of the right ventricle and with the 5th pair of viscular arches. The 4 th left vascular arch ealarges tc form the transverse part of the arch of the aorta, and the lcft subclavian artery springs as a collateral branch from it The 4th right arch forms the innominate, and the commencement of the right subclavian artery. Tho 3d pai of arches form the two internal carotid arteries; each com mon carotid is formed from the part of the primitivo aorto which connects the 34 and 4 th arches with each other whilst the cxternal carotid is an enlargement of that part of the primitive aorta which runs upwards from the $3 d$ to the lst visceral arch. From the 5th left vascular arch, which is now continuous with the pulmonary artery, twe cullateral branches arise, which procced one to each lung, and form the right and left pulmonary arteries, whilst the terminal parc- of this arch joins the end of the transverse part of the arch of the aorta, and forms the ductus arteriosus. During foetal lifc, the lungs heing inactive, the blood of the right veatricle which passes into the pulmonary artery almost entirely flows through the ductus arteriosus into the aorta. But when the child is born, and the lungs come into play as respiratory organs, then the blood of the right ventriclo fluws into the lungs through the right and left pulmonary arteries, and the ductus arteriosus, bcing no lunger required, shrivels up into a slender fibrous cord The capillaries, veins, and lymphatics are also produced by a Listological differentiation of the cells of the mesoblast

In order to complete the exposition of the subject, The Digestive, Respiratory, Reproductive, and Urinary syatems of orgaus have still to be considered. These will be dealt witb in detail under other headings in the succeeding volumes
(w, T.)

Alphabetical Contents)

	Abdominal muscles, 833. Achllial. 806.
	Adtpose tissuc, 861.
	Altinus, 814.
	Alexandrian achool. 801.
	Amphlirthroses, 833.
	Ankle, 830, 841
	Aurta, 90\%.
	Appendicular akelcton. 826.
	Arablan schnol, 805.
	ruchnolil nister, 865.
	Arınzi, 809.
	Aretwus, 802
	Aristoflc, 800.
	Arm, 827 : Jolnts, 839
	Arterics. 90\%.
	Articulaton, 832.
	Ascllius, 811.
	Axial skelernn. 820.
	gerenger, *06.
	Hergen, 814.
	Bichat, 816
	Slood, $81 \mathrm{u}^{\circ}$, circuintion of, 899.
	Blood-vasenlar ginnda, 907 ,
	8u11, 85:
	Bonn, 814.
	Bruln. 861. SC9; welpht of, 879
	Sreast-bone. 822
	Erenthing. 83is.
	Bulugra schinul, 805
	Camper, 815.
	Capilmica, 9 ns.
	Carpal bones. 827 , Jolath 839.
	Cartlage 831.
	Cells, $8+3$.
	C+1sus, 802
	Cerebellum, 871
	Cereb:o - aploal nertes, 8 f3.
	Cercisrom, 872: Intural struzture 01, 877 -

Cirvleal vertebra. 820
Chuech. 825.
Cheschen, 815
Chest, 822
Chyle, 816
Circulatlon of blcod. 839.

Clasicle, 826.
Cacejx. 821.
Cullar bone, $8 \% 6$.
Cullos. 813 .
Columbus, 803.
Cumparstiva anatomy, 799, 813, 818. Corpuaclus, 8, Cuwper, 813. ${ }_{\text {Cinnium, }} 822$. Cruikshank, 815. Cutelc. 897. Derinitims. 399. Deglutitun. 838.
Development. 83n. 842, 853. 858, 863 9ni Dinuthroses 833. Dikits, 828: jalnts up, 839.

Dinnls, 811.

Duraal vertebrar 821. Drum of car. 842. Dubola, 807. Dura mater. 864. Duvemey, 813. Far. 891. Elbow Joluth $83 \times$ E:ndotbclium, 818. English achunt. 817 Epitheliam, 847 . Ethmold borie, 824 Etlennc. 807. Eustarhius 80. Exiression, anuscles of, ${ }_{8}^{836 .}$ Eycball, 883; muaclea
-891.

Eyellds. 890. Fabricluas sing.
Face, 825.
Falluplus, s03.
Fat, 8.51.
Femur. 8 \%9.
Flbrous ilasues, 8 inc.
Fibula, 829.
Filulera monclea 840.
fingersa sty: Joinis.
839. 830 . Jolits of 841

Furelicad. 824.
Fruch achool. Rn7, 816
Froutal thone, 824.
Galen. 802
Gaicn. 802.
Geiman school, 817
Glisson 811.
Graaf, 812 .
Gair, 898
Haller, 81 .
Hund, 827: jnints of. 832 Harvey. 810.
Haunch. 828.
Heud, 822: Jnints and musclus, 836
Fearlng. 893.
Hent, 899
Henla, 817
Hernphilis 802.
Howson. 818.
His. Julnt. 840
Hippoctaieq. 799
History. 79
Humerus, 617.
Hunter, jos 815.
Hyuld bnie 8\%s.
thlum. 8:8
Inchlum. 822.
Jиw, 825.
Jolnte, 832.
кпие 829. 840 .
Laclirymal bung 825:

- gland 891.

Lncteals, 968.
 Lleufaud, 814. Life. B43.
Limb, lower, 828: fointn
and muacles 840 : up
per, 826 ; joluss and
per, 826 ;
Lister, J. J., 818.
Locomotire organa 820
Lumbar rertebrá
Lympla, 846 .
Lymplialien. 906
Mular bone. $82{ }^{2}$
Malpigbi. 812.
Slaifinua, 802.
Martow. 854.
Slaseaknl, 81 s.

1) $101112 \quad 825$

Meckul, 814, 816, 81%.
stedulia oblunguta 870
Bletacarpua, 828.
Blicroscone \$17.
Mondina, 805.
Monro. 815.
Blorgagnl 813.
Mouth, 83%.
Mnerus membranes,
847.

Miscles, 833.
Huscular tiswue, 856.
Muscums, 819 .
Nails, 897.
Nock, 821.
Nerces, cerebro-splnal,
883.

Nervons system, 858:
aympathette, 883
Nuse, 825.851
Nastrila 820
Nuck 811 .
Occiphal bano, 823.
olfactory nerve. 885 .
Oftic nerve 889.
Oribaslus, 80L

Dsseous rysfem, 820;
Ussue, 853.
Orum, 844 practnian corpusclea 802 p'ulute, 825. Tulite, 825.
rarletal inne 824
Putcla, 829.
Poull, 811 .
P'ecquel. sil.
Pelvia, 829.
Pertostcum, 8.4.
Perspliation. 899
Pharynx. $83{ }^{\circ}$. Piu muter, 86 á Pikment, 8 sis. Plesus, nervous, 868 Polybux 800 . 1'uns Varolii. R71 l'ortal veín. 906 Protoplasm, 843 Pubix, 8:8. Pubin, 828. Rudius 827
Resplratory muscles, 833.
Retlins. 888.
Hins, 822.
Rlidicy. 813.
Hultus, $80^{\circ} \%$.
Kunning. 812
Ruysch, 812.
Sacrum. 8.2.
Santurini. x13.
Scupula 826
Secretine gianila, 848.
Scnse orguns. 884.
Sclous menturanea, 8 缺8.
Servetug 810
Slisn. $8: 9$
Slioulder. 826: Jolnt, 838
Sight, 889
Skileton, 820
Skin, 847,897
Skull, 822.
Swell, 800

Sbromering. 81E Spectal aoatomy 818 Sphenold bone $8: 33$. Splnal-cord 865; nerves 867.

Spince 820; mnscles, was Splint bone, 829 . Síno, 812. Sternum, 82. Surnurea. 83\%. Swallowink. 838 Sweat glanida, 899. Tarsus, \& 30 ., Taste, 896 .
Tumporal bone, 82 Temilunlugy, 7 Ty. Tlight, 82\%. $7 \mathrm{ibla}, 82 \mathrm{y}$ Tinsucs, 842; collaective. 11ssucs Tocs, 830 . Thngue, 895
Tonsil, 837
Touch, 897.
Tутрапий, 892.
Ulna, 827.
U'vula, 837.
Valualvas 813.
Varollus, 809
Vancular nyjem. 899
developmeat, 907
velne 905.
Vertebrs, 88a
Yceallua, 807.
Vleussens, 813
Vulunary musclea 6 at
involuntary, 886
Yomer, 825
Walkieg. 841
Walter, 816.
Wealing, 811
Wharton, 81
Winalow, 81
Wrist. 827: Jolat59x
Zang sid

For Reference

Not to be taken from this room
STACK

[^0]: ${ }^{1}$ The Archilectural IIstory of the Conventual Buildings of the Monastery of Christ Church in Canterbury. By the Rev. Robert Willis. Printed for the Kent Archaological Society, 1869.

[^1]: 1 Walworth, the fourth abbot of St Alban's, circa 930, is charged by Mattuew Paris with adopting the attire of a sportsman,

[^2]: ${ }^{1}$ The Catalorue of the Library at Abbotsford formos vol. Lxi. of the Pannatyne Club publications

[^3]: ${ }^{2}$ Characters, not properly abbreviations, are usct in the same way

 for "ounces, drachms, scruples." $\overline{3}$ is probably to be traced to the written form of the z in " oz ."
 ${ }^{2}$ These forms (as well as \&, the symbol for tho Americau dollar) are placel before their amounts.
 ${ }^{3} I t$ is given to Austrin to rule the whole earth. The device of Austria, first adopted by Frellerick III.
 " "Percent." is often sionitial by $\%_{0}$, a sorm traceable to " 100 ."

[^4]: ${ }^{1}$ Perro bad succeeded to the tbrone of Portugal in 1826 , but abdicated it at ooce is favour of his daugbter.

[^5]: 1 Three documents at least are traceable in the Pentateuch; the Globistic, the junior Elohistic, and the Jebovistic. These were put tegetber by a redactor. Nearly the miacie citice ffit book was alded by the Deuteronomist.

[^6]: ${ }^{1}$ It is usual to iuclude in Abyssinia the flat comntry which lies between it and the Red Sea, and to regard the laticr as forming its boundary on the east. This, however, is not strictly correct. Abyssinia proper comprises only the mountainous portion of this territory, the low lying portion being inhabited by distinct and bostile tribes, and claimed by the Viceroy of Egypt as part of his dominions. The low country is very unhealthy, the soil dry and arid, and with few exceptions nncultivated, whereas the bighlands are generally salubrious, well watered, and in many parts very fertile. This arid track of country is only a few miles broad at Massowah, in the north, but widens out to 200 or 300 miles at Tujurrah, in the south. It is, in a great measure, owing to Abyssinia being thus cut off from intercourse with the civilised world by this inhosnitabie region, which has for three centuries been in the hands of enemies, that it is at presedt so far sunk in ignorance and barbarism.

[^7]: ${ }^{3}$ The bye-form ixà̀nnia, which occurs in Diogenes Laertius, is probably a rationalistic attempt to interpret the word, such as wo commonly meet with in the writings of Plato.
 ${ }^{3}$ Horace, $B p$. ii. $2,45$.

[^8]: ${ }^{1}$ Archer Butler．Lect．on Anc．PkiL ii． 31 K

[^9]: ${ }^{1}$ Mr G. F. Rodmell, to the Cluemical Nens, June 21, 1867.

[^10]: ${ }^{1}$ Hallam's $7 n t$. to Lit. of Eurove, rol. i. 651, aln vul. 11. 502.

[^11]: ${ }^{1}$ A bon mot of his is worth recording. When returning thanks for

[^12]: lis pension, the carilinal remarked, "Well, Monsieur, you will not Enget the work pensinn in your dictionary." "No, Nonscigneur," replied Vaugelas, "and still less the word gratitude."

 Brileau mas elected to tho French Acudemy 168\%, La Bruyçre

[^13]: ${ }^{2}$ Several other great rolcanic cones exist in the Achin territory, and two visible from seaward rise to a beight of 11,000 feet or more in tl: 6 anexplored interior.

 - A múkim is said properly to embrace 44 bonseholds.

[^14]: \qquad

[^15]: \qquad

[^16]: - See Kölliker's Jcones IIistologica. 1866

[^17]: ${ }^{2}$ Contributions to the Natural History of the United States. : Vcl. iii. Plate x v.
 ${ }^{2}$ Ueber Generations- Wechsel bei Steinkorallen. Leipzig, 1872.
 Abhandiungen der Senkenbergischen Faturforschenden Vesell'whofth bi. vii. viii.

[^18]: ${ }^{1}$ Zoolamische Studien auf Cayri. 1873.
 Q !..acoiol, "Generelle Morphologie," ii. Is

[^19]: ${ }^{1}$ De mundi Opifcio, p. 37, vol. i. ed. Jlangey.
 ${ }^{2}$ Philocalia, eap. 1, and cantra Cels.

 - Aid's to Refection, p. 241, note (Burlington edition of 1840).

[^20]: - Gee Tuch's Kommeniar ueber die Genesis, p. 50.
 ${ }^{5}$ Suidras, s. v. Tuépnvie, vol. ii. pp. 1248-8, ed. Berohardy.
 - Kleuker, ㄹ. 19, 20; iii. 59, \&c.
 ${ }^{7}$ Eusebius's Chron. Bipartitum, vol. i. p. 24, ed. Aucher.
 ${ }^{8}$ See Sanchonizeho, trauslated by Cory, in the Phenix, p. 185, \&c. ed. New York.
 - Aselamorphos. \& 7e, \&c.; Opera ed. Burmann, tom. iL p. 20
 ${ }^{20}$ Roeth's Geschichte der Philos. i p. 131, \&c.
 ${ }^{11}$ Muir's Sanokric Texts, voL i. p. 24, 2d ed.
 18 Pbid. p. 53, \&c.
 ${ }^{13}$ See Lord's Lisplay of two Foreign Sects in the East Indies, cbap tor i, p. 1, \&c.

[^21]: ${ }^{1}$ Kleuker'a Zend-Avesta, part iii. pp. 84, 85.
 ${ }^{2}$ Ibid. iii. 62.

 - Ibid. iii. p. 105.
 ${ }^{3}$ Ibid. ii. 192.
 ${ }^{5}$ Ibid. iii. 70, 91.
 - Tbid. ii. 277, 299 ; iii. 118.

 7 Stäuđlin in Archiv, für Kirchengeschichte, 1. 3, p. 14.:

 - See Ständlin's Archiv. i. 3, p. 15.
 - Von Bohlen's Das alle Indien, i. 12; ii. 210.
 :o Wilson'a Vishnu Pwrana, pp. 586, 613: and Langlois's' translation of the Harivansa, tome ii. p. 3 .
 ${ }^{11}$ Opera et Dies, 40-105.
 15 Ibid. 506-616.

[^22]: ${ }^{13}$ See Buttmann's Mythologus, Band i. p. 48, \&c.
 14 See G. Baur in the Studien und Fritiken for $18 \$ \overline{8}$, p. 320 , et seg.
 15 Ifetamorphos. i. 89, \&c. ; vol. ii. p. 14, \&c., ed. Burmann.
 ${ }^{16}$ Cap. xv. ed. Stallhaum, 1327.
 17 The Ezour V'elam was printed at Paris in 1778. See Mr Ellis, in the Asiatick Researches, vol. xiv. p. 2, \&c., and Dr Muir in the Transactions of the Royal Society of Edinourgh, vol. xxiii part 2, p. 255, \&c.

[^23]: ${ }^{1}$ See Schelling's Jfuyisterdissertution in .vol. i. of his Summtliche Werke, p. 3, \&icu

[^24]: ${ }^{2}$ Clsenmenger's Entdekies Juulenthrun, Amsterilnm. 1700, 4to.
 ${ }^{3}$ D'Herbelot's Bibliochercue Orienlale, s. v. "Alam," p. 53. 亡ic., cd. 1697, Paris.

 * Se Dillmana in Iferzoz*is Encyklooadie, xu. p. 313.

[^25]: ${ }^{1}$ On this point, however, see Macaulay's Essay on The Life and

[^26]: ${ }^{1}$ The period in which Higi German as a written language approsched nearest perfection is, according to him, the short interral between 1710 and 1760 .

[^27]: ${ }^{3}$ There is no duty on Irertisements in the United States, Germany, or France. In France, i wever, there is a duty of 10 per cent. on the raw paper, and a furtuer duty of 20 per cent. on all newspap rs printed.

[^28]: ${ }^{3}$ Mr Tytler contributed largely to, and, indced. appears to have been rirtually editor of, the second edition (1778-83) of the Encyclo*aina Britannica.

[^29]: ${ }^{1}$ This was a thermometer witt a bulb shaped like a gridiron, so an to have a very great surface exposed to the air. It was thought that the ordinary peas-sized bulb would not permit of the thermometer being sufficiently delicate to register the raptd changes of temperature due to the quick motion of the balloon, as it requires some Little time for such a thermometer to take np the tamperature of the surrounding medium.

[^30]: \qquad

[^31]:

[^32]: ${ }^{1}$ Not to be confounded with the more easterly Safed Koh of the Kibal basin,

[^33]: ${ }^{3}$ Of one tribe, at least, of which this is told, the Afghan hlood is Houbtsul

[^34]: ${ }^{1}$ Burslen, A Peej into Turkestan, p. 125.

[^35]: ${ }^{2}$ The Uzbeks were, however, a coufeaeration of many Turk and Tartar tribes, not one race.

[^36]: ${ }^{1}$ See Flora of Tropical Africa, by Daniel Oliver, F.R.S., F.I.S. London, 1868.
 ${ }^{2}$ The Oeographical Distribution of Mammals, by Andrew Muray, London, 1860^{6}

[^37]: ${ }^{1}$ Shart Inquiry 'ren the History of Agriculture, by Chandos Tren Uoshra. Esq.

[^38]: ${ }^{2}$ The Philooophy of Hislory, by Frederick Von Schlegel. Landan 1846, p. 253.

[^39]: ${ }^{1}$ Short Inquiry into the Fistory of Agriculture, pp. 49-51, by 1 Short Inquiry into the
 Chandos Wren Hoakyn, Esq.

[^40]: ${ }^{8}$ History of ore Conquest of Mexico.

[^41]: Hisinry of Engisnd. chap. xxllt.
 Kames's Law Tracts.

[^42]: ${ }^{3}$ Bell's Treative on Leases.
 ${ }^{5}$ Sir John Cullam's Wistory and Antiguitics of LIanosted (Suffolk).
 ${ }^{5}$ Chalmers' Caledonic, book iv, c. 6.

 - Hume's IItiory of England, chap. scriil

[^43]: ${ }^{1}$ Inquiry into the Corn Laves, \&c., p. 9.
 2 The account of the Witers on Agriculture' taken from Mr Cleg. bern's Treatise in the former edition of the Encylopodia Brilansica.

[^44]: ${ }^{1}$ Sone Considerations for the promoting of Agriculture and emploss ing the Poor. Dublin, 1723.

[^45]: ${ }^{1}$ Select Remains of John Ray. Lond. 1760.
 ${ }^{2}$ Chalmers's Caledonia, vol. ii. p. 732.
 ${ }^{3}$ Annals of Agriculture, No. 270. Harte'e E.scays. Comber on National Subsistence, p. 161.

 - Houghton's Collections on Husbrnary and Tradk vol L p. 213, edit. 1728.
 - lbül. vol iv. pp. 142-144

[^46]: - Houghton's Collections on Musbandry and Traile, vol. ii. $\mu 463$.

[^47]: "I slso recommend potatoes as a very profitable root for husbandmez and others that have numerons families. And because there is a peculiar way of planting this root, not commonly known in this country, I shall here show what way it is ordinary planted or aet. The ground must he dry ; and so much the better it is if it have a good soard of grass. The beds or riggs are mado about eight foot broad, good atora' of dung being laid upon your ground; horse or sheep dung is the proper manure for them. Throw each potatoo or satt (for they were sometimes cut into setts) into a knot of dang, and afterwards dig earth out of the furrows, and cover them all over, abont soma three or four inches deep; the furrows left between your riggs must be about two foot broad, and little less will they

[^48]: ${ }^{1}$ For further information on Farm Buildings, see also Morlow' Cyclopadia of Agricullure, article "Farm Buildings," and The Book of Farm Buildings, by Henry Stephens and R Scott Burn Edis burgh, 1861.

[^49]: 'Sce Furmer's Magazine for March 1852. D. 253.

[^50]: ${ }^{1}$ The Implements of Agricullure, by J. Allen Ransome, Lond. 1843. The Ifook of Farm Implements and Jlachines, by Henry Steplens and Ru. Scott Burn, Edin.

[^51]: ${ }^{1}$ See Mr Pusey's Reporton Implements, in the Journal of the Royal Agricullural Society of Rngland, voi. xii. p. 601.
 ${ }^{3}$ Ibid., p. 607.

[^52]: 1 Seo Jorton's Cycionodia of Agriculiure. Articlo "Casriages."

[^53]: ${ }^{2} \mathrm{Mr}$ Pusey's Report on Implements. - Journal of the Roysi Agri cultural Society of England, vol. xil. p. 621.

[^54]: ${ }^{1}$ Sea article on "Comparative Advantages of Fixed and Portable Steam Power for the Purposes of a Farm," by Robert Ritchie, Esq., C.E., Edinburgh, in Transactions of IIighland Society for Merch 1852, p. 281.

[^55]: ${ }^{2}$ Journal of the Royal Agricullural Sociely of England, vol. is

[^56]: ${ }^{2}$ Article by Mr Parey. See Journal of Royal Society of England, Nol. ri. p. 409.

[^57]: ${ }^{2}$ Mfanure for the Million, by Rov. Heary Moalo, prico Id. Mis Moule has also pablished a pamplet na the same subject, entitied National Healls and Wealth

[^58]: 1 "Farming of Lincolnshire," by John Algernon Clarke; Jowrici of Royal Ajriculleral Society, x'i. 331.
 ${ }^{2}$ Sco Caird's Erglish Agricultuice $185 n$ and 1851, p. 61.

[^59]: \therefore Journal of Royal Agricultural Society, vol. riii. p. 349.

[^60]: ${ }^{1}$ Mr Lawes continnes theso experiments of growing successive crops af wheat jear after jear on tho same aite, with oo msterial change in

[^61]: ${ }^{1}$ During the unusually wet winter of $1852-53$ a large quantity of turnips and awedes intended for cattle food was stored in this way. The trimming and atoring was carried on every dry day, and the carting postponed antil the occurrence of frost or dronght admitten of its being dnne without injnry to the ladd.

[^62]: ${ }^{2}$ Cairu's Enylish Ayruculture, p. 114

[^63]: :Mortun's Cyclopadia of Agriculthre-article " Dorse."

[^64]: 1 The mercurial and arsenical salves and washes commonly in use are believed often to have a hartful effect on the health of the flocks to which they are applied, and have sometimes caused very serious losses. Having usej Mardnugall's dip (a preparation of carbolic acid) for many yaara, 7a asn testify to its efficacy and safety.

[^65]: "I willingly give you a reply to your various inquiries regarding wool, as far as I am able. As to the kinds grown in the various counties of the Uuited Kingdom, this l cannot fully answer, as there are aome counties' woola which bave not come much under my inspection; bnt generally I may remark that wherever the turnip can be cultivated and has been introduccd, the Leicester, Lincolnshire, Cotswold, and the balf-breds from Down and Cheviot, are to be found ; and in the same counties, in several instances, you have several kinds, if we except Lincolnshire and Leicestershire, which have entirely the lung-wonl sheep. The great bulk also of York, Warwick, Oxford, Cambridge, Gloucester, Northampton, and Nottingham ohirea, have this descriptiou of sheep, but they

[^66]: ${ }^{1}$ Journey in Carniola, Italy, and France, by W. 2. Cadell. Esq.

[^67]: 1 For confirmation and full illustration of the staternents and opinions in the above section on agricultural labourers, the reader is referred to the reports of, and the evidence collected by, the "Commission on the Employment of Cbildren, Young Persons, and Women in Agricalture." in 1870.

[^68]: Besides, wherever large farming prevails, large properties are its invariable concomitants; and wherever it is the fashion for proprietors to reside on their estates, many of them are sure to amnse themselves with farming. Very likely, if they were to count the cost, they might find the amuscment an expensive one. Not im. possibly they often spend on the land as much as they get back from it, or even more, the expenditure in that case at best producing only its bare equivalent. But the same expenditure, unless se applied, would as likely as not have remained atterly anproductive, being deroted to some other amusement, or to mere parade'os luxury, from which no tangible return whatever wonld be possible; so that its application to agricultural extravagance is virtally a gain, in the sense, at all events, of preventing total loss. Nor in that sense only; for rich men whe take to farming as a pastime are preciscly those most likely to be forward in putting new inventions and new processes to the test of experiment; while the experience thercby acquired, instead of being jealously concenled, is liberally published far and wide, so becoming the property of the whole body of farmers by profession, and serving them, according to circom-

[^69]: 'He was also the inventor of the "Magdeburg bemispheres."

[^70]: "Cette nymphe royale est digne qu'on lai dresse Des antels. Les Parques se disoient: Charles, qui doit venir an monde.

[^71]: " A needless Alexandrine ends the song,
 That, like a wounded snake, drags its slow length along."

[^72]: ${ }^{2}$ A Parliamentary Report on the climate of Algeria published in 1807 is of great interest, particularly as investigatiog the causes of the great reduction in the mortality of the Freach troops serving there. T'be death-rate in Algerian hospitais for the first fire years succeeding the conquest: arnounted to nearly 79 per 1000; sod for the period from 1831 to 1546 it is given as bigh as 80 per 1000. In 1860 the death. rate per 1000 was only 17.8 ; in 1861, 11.3; in 1862, 12-21; in $1863,12 \cdot 29$; and in 1864, 14.43. The canses of this remarkablo difference are stated to be-the former existence of certain unhealthy conditions in the conntry itself, and in the resde of life of both troops and colonists, which were accompanicd by a high death rate; and the sabsequent romoval to a certain extent of these conditiona, together with the introdaction of improved habits and modea of life, accompanied by improved bealth and Inwer death-rates.

[^73]: 1. "Fastos circa forum in albo momerne ut ruagde lese en menes scinetun" (ix 46).
[^74]: ${ }^{1}$ Tho suthoritios referreत to chiefly are Fndlicher (Chinesische Grammatik'), Oppert (Expedition Scientifque en MEsopotamie, tom. 2), and Banaor (Egypt's Place in Mislory, vol. v.) Frequent use has been made of De Rosny's book mentioned ahove, and still more of the Essai sur la Propagation de l'Alphabet Phenicien dans l'Ancien Monde, by M. Françis Lenormant, of which the first volume only has yot appoaje. It contains an introduction to his special subject, in which the lahours of Champollion, Young, Lepsius, Bunsen, De Rongé, in Egyptian hieroglyphics, and of Grotefend, Mawlinson, Hincke, and ${ }^{\text {1) }}$ pplert, among the caneiform characters, are ably summarisod, and set forth with muih cisargess.

[^75]: ${ }^{2}$ A patt of this trilingual inscription is printed in Do Rosnv's Ecritures Figuratives, p. 70 .
 ${ }^{3}$ For recimens, вes Oppert, vol IL, p. 63.

[^76]: ${ }^{1}$ M. Lenormant (p. 83) will have it that the Phonicians must have been "trés peu religieux, et au fond presque athée.". They may have been so, but surely not merely in oriler to borrow an alphabet from Esypt. It is enough that that alphabet could have had no sanctity for them.
 ${ }^{3}$ For evidence of this, eee plate, p. 600.

[^77]: 1 The soda alum whose specific gravity is bere given was the native, from the province of St Juan, on the north of Mendcza It containg iess water, and thenafore is probably heavier thun commen soda alom.

[^78]: "It has been found in verions parts of the greensand formation of the United States, either loosely embedded int the soil or engaged in marl or lignite, as at Gay Head or Mather's Vineyard, near Trenton, and also at Camden, in Nem Jersey, and at Capo Sable, peas Magothy rirer, in Maryland."

[^79]: Robertson was mistaken in believing that the Tencallis were in 84 cases mere masses of earth, without masoury. See Humbolde's Cescaiches, vol. i. p. 111, English Eranslation.

[^80]: ${ }^{1}$ Ses Humboldt's account of the ancient buildings of Callo and Cundar, vols. i. and ii. of Lis Researches.

[^81]: 2 Sir John Barrow is our authority for this fact, which is the more reraarkable, as the Mongols, the acighbours and conquerors of the Chinese, had the use of all the three articles immemorially.
 ${ }^{3}$ The uniformity and unchargeableaess of customs in China havo evidently been much exaggerated. The empire is formed of an assemblago of small states, conquered one after another, each of which must have had its peculiar laws, manners, and superstitions; and common sense tells us, that to blend theso into one perfectly homogeneous mass, must have roquired a much longer period than has elarsed since tho empiro attained its present magnitude. It mould be casy, too, to find instances of tho Chinese having changed their customs, both in matters of business and matters of domestio economy.

[^82]: ${ }^{1}$ In this accoust of the Perurians we have chiefly followed Garcilasso, A costa, Frezier, and Ulloa, of whose statements a copious digest is given by Prevost in the 13th volume of his Histoire Generale des Voyages. We have also taken some facts from 1Iumboldt's Researches, Balbi's Ethnographical Atlas, and W. B. Stevenson's Narrative of Twenty l'ears' Residence in South America, a useful work, althongh the author has shown rather too great an anxiety to ezalt the charactars of the Iddians.

[^83]: ${ }^{2}$ Ferussac, Bulletin des Sciences IIstoriques, Jolliet 1828.

[^84]: tianity among the natives. The announcemeot was containcd in a letter addressed to a person in Washington, and published in Nile's Register (Baltimore), in November 1823. Bnt M. Rafn afterwards found reason to coange his opinion as to the site of the Icelandic colony, and he latterly considered that it was at the mouth of the River Taunton, which falls into tha sea in Narraganset Bay, ot the north end of

[^85]: ${ }^{1}$ Bronsmiart's "Essai d'une Classification Naturel"之 des Reptiles" Fas not published in full till 1803. It appears in the vinme of the Mónoires presentes a C Irstitut par divers Savans for 1805.
 ${ }^{2}$ Nourears Dictionnaire d'Wistoire Naturelle, xriv., cited in Lan reille's Familles Naturelles du. I:Zुne Animah
 ${ }^{3}$ System der Vergleichenden Anabomie, 1321.
 "Prorlromo d"une Nouvelle Distribution da Régne Animal." Builetin des Sciences var la Socites Philomatique de Paris, 1816, D. 113.
 s Entucisbolungs-Gerehichele der Thiere. or. 2

[^86]: - Familles Naturelles du Prgnc Animal.

 7 Erptoluyic Cinirale au IIstoire Nalurelle complute des Reptiles 1830 .

[^87]: ${ }^{2}$ Diges (p. 37) etates that the pro-otic end the exoccipital almays remain distiact is Rana csculenta; but it is common to find them extensively ankylosed nod insepareble in old frogs of tbis species.

[^88]: ${ }^{1}$ Compare Mr Parker's full account of the structure of the skull of Rrna temporaria, Philosophical Transactions, 1571.
 ${ }^{3}$ This description applics esfecially to D. hxvis.

[^89]: In the remaining Uroacla, the Salamanders proper, the skull has the broaily-arched snout and the shelving posterior contour is Menonoma, but the romers and pterygoids are very ditierent.

 The structure of the skull in these animals will be best understood by commencing with that of Sircdon, which, though perennobranchiate under ordinary circumstances, is totally unlik: tho other so-called Percnnibranchiata in cranial structire, and is, in fact, to all intents and purnoses a larval Salamander.
 An ossification on each side of the occipital foramen represents the exoccipitals, epiotics, and cpisthotics. In front of cach of these
 ${ }^{1}$ Ses تु̧tl, "Cryptobranchus japonicus, Schediasms anatomicum," tab. iii.

[^90]: leccherches sup les organs sensitifs, qui sc trouvent dans l'epideras do Protic et do <'Azolot', 2v E Fagoion. Lavganne. 1873.

[^91]: 1 The etructura of the heart in the Amphibia has been recently discuased with great ability, by M. Armand Sabatier in his Etudes sur le oueur Moutpalliar, 1873.

[^92]: ${ }^{1}$ Schmidt, Goddard, and Van der Hoeven, Aanteckningen over de Anatomie van den Cryptobranchus japonicus.
 ${ }^{2}$ Accordiug to Von Wittich. "Beiträge zur morphologischen und his. tologischen Fntwickelung der Harn und Geschlechtswerkzeuge der nackten Amphibien," Zeitschrift für Wissenschaftliche Zoologí, M. iv.
 ${ }^{3}$ Anatomische Abhandlunger, P. 123, et seq.

[^93]: - According to Stannius, Hardbuch, p. 150.

[^94]: 1p.loznles. howeTt: has an extremely minute, ossified, columella

[^95]: ${ }^{2}$ See Hasse, Die vergleichende Anatomie des hautigen Cehürorganes, Leipsic, 1873.
 ${ }^{3}$ The larva: Siredon bas no such hyoidean (i) aypendage.

[^96]: ${ }^{1}$ Vogt, Contersuehungen tuber die Entwickelungsgeschichte der Geburlsketferkrote (Alytes obstetricans), 1842.
 i Yao Batn beke " Recherches sur le déreloppement d" Pelobate

[^97]: 1) Thowte frea in front
 (2) Dorsal dermal osulficutions (3) Tuogue retrac.
[^98]: "Amritsar owes its importance to a talio or rescrroir which Raro Dás, the fourth guru or spiritual guide of the Sikhs, caused to be made here in 1581, and which he termed Amrits Saras, or the Fount of Immortality. It thenceforward became a place of pilgrimage. Nearly two centuries afterwards, Ahmad Shaih, the founder of the Duraní empire, alarmed and enraged st the progrcss of the Sikhs, blew up the shrine with gunpowder, filled up the holy tank, and caused kine to be slaughtered apon the site, thus desecrating tho spnt. Ou his return to Kabul, the Sikhs repaired the shrine and reservoir, and commenced the orerthrow of Mahometan swry io Hindustan. The sacred tank is a square of 150 paces, containing a great body of water, pure as crystal, notwithstanding the multitudes that bathe in it, and supplied apparenily by natural springs. In the middle, on a small island, is a temple of Hari or Vishnu ; and on the bank a diminutive structure, where the founder, Rám Das, is said to have spent his life in a sitting posture. The temple on the island is richly adomed with gold and other costly embellish. ments, and in it sits the sovereign guru of the Sikhs to receire the presents and homage of his followers. There are five or six hundred akalis or priests attached to the tetople, who have erected for themselves good houses from the contributions of the risitors. Amritsar is a rery populous and extensive place. The streets ane narrow, but the houses in general are tolerably lofty, and boilt of burnt brick. On the whole, Amritsar may claim some little architectural

[^99]: 1 Nitroas oxide gas bas been reintroduced, and is now extensively maplosed in dentistry.

[^100]: 1 The passage of Servetus is so interesting thst onf readers may feel some curiosity in perusing it in the language of the author; and it is not unimportant to remark that Servetus appears to have been led to think of the course of the blood by the desire of explaining the rianner in which the animal spirits were supposed to be generated:"Vitalis spiritus in sioistro cordis ventriculo suan originem habct, juvantibus maxime pulmonibus ad ipsins perfectionem. Est spiritus toruis, caloris vi elaboratus, flavo colore, ignea potentia, ut sit quasi ex pariore sanguine laceas, vapor substantiam continens aqux, aeris, et ignis. Generatur ex facta in palmone commixtione inspirati aeris carn elaborato subtili sangnine, quem dexter ventriculus sinistro cornmunicat. Fit antem commouicatio hæc, non per par tem cordis mediam, at vnlgo creditur, sed magno artificio a dextro cordis ventriculo, longo per pulmones dacta agitatur sanguis subtilis ; a pulmonibns prieparatur, flavus efficitur, et a vena arteriosa in arteriam venosam traisus lutur. Deinde in ipsa arteria venosa, nomirato aes miscetar

[^101]: 1 The above vitw of the brain in situ showa the relations of the surface convolutions to the regions of the ckull. R, fissure of Rolando, which separates the frontal from the parictal lobe. PO, parieto-occipital fissure between the parietal and occlpital lobes. SS, fissure of Sylvius, which separates the tcmporo-ppheooidal from the frontal and parietal lobes. SF, MF, IF, the superoo, mid-, and iofero-frontal subdivisiona of the frontal area of the skull; the letters are placed on the superior, milddle, and inferior frontal convolutions; the inferior frontal regioo is separated from the middie frootal by the frontal part of tho corved line of the temporal ridge; the mid-from the supere-frontal by an antero-posterier line through the frootal eminence. SAP, the supero-antero-parietel area of the akull; S is placed oa the ascending parietal couvolution, AP on the asceading frontal convolution. IAP, the infero-entero-parietal ares of the skull; I is placed on the ascending parietal, AP on the ascendieg frontal convolution. SPP, the supero-peatero-parietal arca of the ekull; the lettera are placed on the angular coovolution. 1 PP, the iofero-postero-parietal area of the skull; the letters are placed ou the mid-tempero-spheooidal convolution; the temporal ridgeseparates the supero- and infero-parietal regions from each otber; a vertical line arawn through the parietal emineuce separates the antero and posteroparietal regions. X, the coavolution of the parietal emincace, or supramargioal gyrus. O, the occipital area of the skull; the letter ia placed oo the mid-occipital convolution. Sq, the squsmosotiemporal region of the skull ; the letters are placed on the mid-tempero-sphenoidal convolution. AS, the ali.sphenoid region of the skull; the lettera are placed on the tip of the supero-temporo-sphenoidal convolution. The black linee mark the boundariea of differeat cranial rogions.

