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Citoid is based on Zotero

Reference manager developed out of GMU
Mozilla based
Free and open source



Setting up your development environment

Firefox: https://www.mozilla.org/en-US/firefox/new/
Zotero: https://www.zotero.org/download/
Scaffold:
https://www.zotero.org/support/dev/translators/scaffold



Zotero translators

Zotero translator: individual file, written in javascript
Four types of translators: Web, Import, Search, Export
Some web translators, like the JSTOR one, call on an import
translators (e.g. RIS)
Other web translators “scrape” data from the page
Full list https://github.com/zotero/translators/



Tools: Xpaths are “directions” on a website

xpaths are basically “directions” to a part of a webpage
A webpage is built up from a number of nested nodes
A super-simple webpage:

<html>
<head>

<title>A Basic Webpage</title>
</head>
<body>

<div itemprop="headline">Title</div>
<div class="text">Content</div>

</body>
</html>



The most basic xpath

Give directions: at every corner/node, tell Zotero where to go:
We want to go go to “The title of the webpage”
“Take the HTLM road, take a left at ‘body’, then take the ‘div’
street, or in Xpath:

/html/body/div



Making xpaths more precise

But we’re still “lost” - which of the two “div” streets do we go
down?
Option 1: Take the first <div>

/html/body/div[1]

Option 2: Take the <div> that has “headline” as an itemprop

/html/body/div[@itemprop="headline"]



Making xpaths more efficient

Full xpath can be very long, so we’d like to shorten them.
Use // to start anywhere in html tree, e.g “the <div> with
‘headline’ as an ‘itemprop’ anywhere on the site”:

//div[@itemprop="headline"]

Match only part of an attribute using contains() as in

//div[contains(@itemprop, "head")]



Basic translators structure

Always:

Target (URL)
detectWeb(doc, url) – is there something to translate?
doWeb(do, url) – run the translator

Normally:

scrape (does the actual work)
getSearchResults (check for multiples)



Use existing structure

Common code from experienced dev:
https://github.com/zuphilip/translators/wiki/Common-code-
blocks-for-translators
Existing translators

Scrape: e.g. FAZ.NET.js
Call Metadata: e.g. PLoS Journals.js



Putting this to work

Página12 (pure scrape)
El País (call metadata, then enhance)



Getting help

Documentation:
https://www.zotero.org/support/dev/translators/coding
Help on xpaths:
http://archive.oreilly.com/pub/a/perl/excerpts/system-admin-
with-perl/ten-minute-xpath-utorial.html (mostly
xml)
javascript: you don’t need much. Codeacademy’s javascript
course is good, e.g.
regular expressions “regex”: e.g. http://regexone.com/ is one
option. There are many. . .
Zotero developer group:
https://groups.google.com/forum/#!forum/zotero-dev (make
your code available)
Or just submit your code as a pull request to
https://github.com/zotero/translators/ – we’ll work with you


