Automated citations in Wikipedia: Citoid and the
technology behind it

Sebastian Karcher

Wikimedia Tech Talk, February 29, 2016



Citoid is based on Zotero

zotero

@ Reference manager developed out of GMU
@ Mozilla based
@ Free and open source



Setting up your development environment

o Firefox: https://www.mozilla.org/en-US/firefox/new/

e Zotero: https://www.zotero.org/download/

o Scaffold:
https://www.zotero.org/support/dev/translators/scaffold



/otero translators

@ Zotero translator: individual file, written in javascript

@ Four types of translators: Web, Import, Search, Export

@ Some web translators, like the JSTOR one, call on an import
translators (e.g. RIS)

@ Other web translators “scrape” data from the page

@ Full list https://github.com /zotero/translators/



Tools: Xpaths are “directions” on a website

@ xpaths are basically “directions” to a part of a webpage
@ A webpage is built up from a number of nested nodes
@ A super-simple webpage:

<html>
<head>
<title>A Basic Webpage</title>
</head>
<body>
<div itemprop="headline">Title</div>
<div class="text">Content</div>
</body>
</html>



The most basic xpath

e Give directions: at every corner/node, tell Zotero where to go:

@ We want to go go to “The title of the webpage”

@ “Take the HTLM road, take a left at ‘body’, then take the ‘div’
street, or in Xpath:

/html/body/div



Making xpaths more precise

@ But we're still “lost” - which of the two “div” streets do we go
down?

@ Option 1: Take the first <div>
/html/body/div[1]
@ Option 2: Take the <div> that has "headline” as an itemprop

/html/body/div[@itemprop="headline"]



Making xpaths more efficient

@ Full xpath can be very long, so we'd like to shorten them.

@ Use // to start anywhere in html tree, e.g “the <div> with
‘headline’ as an ‘itemprop’ anywhere on the site":

//div[@itemprop="headline"]
@ Match only part of an attribute using contains() as in

//div[contains(@itemprop, "head")]



Basic translators structure

Always:

e Target (URL)
o detectWeb(doc, url) — is there something to translate?
e doWeb(do, url) — run the translator

Normally:

@ scrape (does the actual work)
o getSearchResults (check for multiples)



Use existing structure

@ Common code from experienced dev:
https://github.com/zuphilip /translators/wiki/Common-code-
blocks-for-translators

e Existing translators

e Scrape: e.g. FAZ.NET js
o Call Metadata: e.g. PLoS Journals.js



Putting this to work

e Paginal2 (pure scrape)
e El Pais (call metadata, then enhance)



Getting help

@ Documentation:

https://www.zotero.org/support/dev/translators/coding

Help on xpaths:
http://archive.oreilly.com/pub/a/perl/excerpts/system-admin-
with-perl/ten-minute-xpath-utorial.html (mostly

xml)

@ javascript: you don’t need much. Codeacademy's javascript
course is good, e.g.

regular expressions “regex”: e.g. http://regexone.com/ is one
option. There are many. ..

Zotero developer group:
https://groups.google.com /forum /#!forum /zotero-dev (make
your code available)

Or just submit your code as a pull request to
https://github.com /zotero/translators/ — we'll work with you



