
Automated citations in Wikipedia: Citoid and the
technology behind it

Sebastian Karcher

Wikimedia Tech Talk, February 29, 2016



Citoid is based on Zotero

Reference manager developed out of GMU
Mozilla based
Free and open source



Setting up your development environment

Firefox: https://www.mozilla.org/en-US/firefox/new/
Zotero: https://www.zotero.org/download/
Scaffold:
https://www.zotero.org/support/dev/translators/scaffold



Zotero translators

Zotero translator: individual file, written in javascript
Four types of translators: Web, Import, Search, Export
Some web translators, like the JSTOR one, call on an import
translators (e.g. RIS)
Other web translators “scrape” data from the page
Full list https://github.com/zotero/translators/



Tools: Xpaths are “directions” on a website

xpaths are basically “directions” to a part of a webpage
A webpage is built up from a number of nested nodes
A super-simple webpage:

<html>
<head>

<title>A Basic Webpage</title>
</head>
<body>

<div itemprop="headline">Title</div>
<div class="text">Content</div>

</body>
</html>



The most basic xpath

Give directions: at every corner/node, tell Zotero where to go:
We want to go go to “The title of the webpage”
“Take the HTLM road, take a left at ‘body’, then take the ‘div’
street, or in Xpath:

/html/body/div



Making xpaths more precise

But we’re still “lost” - which of the two “div” streets do we go
down?
Option 1: Take the first <div>

/html/body/div[1]

Option 2: Take the <div> that has “headline” as an itemprop

/html/body/div[@itemprop="headline"]



Making xpaths more efficient

Full xpath can be very long, so we’d like to shorten them.
Use // to start anywhere in html tree, e.g “the <div> with
‘headline’ as an ‘itemprop’ anywhere on the site”:

//div[@itemprop="headline"]

Match only part of an attribute using contains() as in

//div[contains(@itemprop, "head")]



Basic translators structure

Always:

Target (URL)
detectWeb(doc, url) – is there something to translate?
doWeb(do, url) – run the translator

Normally:

scrape (does the actual work)
getSearchResults (check for multiples)



Use existing structure

Common code from experienced dev:
https://github.com/zuphilip/translators/wiki/Common-code-
blocks-for-translators
Existing translators

Scrape: e.g. FAZ.NET.js
Call Metadata: e.g. PLoS Journals.js



Putting this to work

Página12 (pure scrape)
El País (call metadata, then enhance)



Getting help

Documentation:
https://www.zotero.org/support/dev/translators/coding
Help on xpaths:
http://archive.oreilly.com/pub/a/perl/excerpts/system-admin-
with-perl/ten-minute-xpath-utorial.html (mostly
xml)
javascript: you don’t need much. Codeacademy’s javascript
course is good, e.g.
regular expressions “regex”: e.g. http://regexone.com/ is one
option. There are many. . .
Zotero developer group:
https://groups.google.com/forum/#!forum/zotero-dev (make
your code available)
Or just submit your code as a pull request to
https://github.com/zotero/translators/ – we’ll work with you


