
0.775 0.800 0.825 0.850 0.875 0.900 0.925
bpp

37.4

37.5

37.6

37.7

37.8

37.9

38.0

38.1

38.2

PS
NR

1-prior
2-priors
4-priors
8-priors
16-priors
32-priors
64-priors
128-priors
hyperprior
BPG
JPEG

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
bpp

30

32

34

36

38

40

PS
NR

1-prior
2-priors
4-priors
8-priors
16-priors
32-priors
64-priors
128-priors
hyperprior
BPG
JPEG

End-to-end optimized image compression with competition of prior distributions
Benoit Brummer

Christophe De Vleeschouwer

Image compression: background
➢Image compression consists of three recurring steps:

 transformation: reduce image redundancy through more efficient representation
● Eg: discrete wavelet transform, convolutional autoencoder

 quantization: use a finite set of discrete symbols
● Eg: quantization table, round

 entropy coding: use known statistics (prior info.) to encode common symbols with fewer bits
● Eg: range coding

Image compression
with competition of prior distributions; our contribution

● Many CDF tables are learned
● eg : NCDF=64
● Where each CDF table covers all (typ. 256) channels

● The best CDF table for each location
is optimized on that location (training),
or its index is stored with the bitstream (encoding)

CDF0

...

CDFNCDF

...

Cumulative probability model

ŷk,l

In
p

ut
 im

ag
e

Encoder

Decoder

R
ec

o
ns

tr
uc

tio
n

Distortion
loss

x̂

Backpropagate

yx

ŷ

QuantizeQuantize
Noise (train),
round (test)

For all k,l

100 50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

 implementation: https://github.com/trougnouf/Manypriors

Uncompressed JPEG (PSNR: 29.3, 0.224 bpp) BPG (PSNR: 32.9, 0.217 bpp)

1-prior (PSNR: 32.4, 0.252 bpp) hyperprior (PSNR: 32.8, 0.217 bpp) 64-priors/ours (PSNR: 32.9, 0.218 bpp)

↗ Learned compression scheme with a single cumulative probability model
(ie End-to-end optimized image compression by Johannes Ballé et al.)

Learned compression scheme with competition of prior distributions (ours)↑

Results

● Rate-distortion with 64-priors is

better than Balle2017
(1-prior), similar to Balle2018
(hyperprior w/ per-symbol CDF)

● Decoding complexity is nearly
the same as Balle2017
● CDF generation consumes

0.14x as much CPU time
with 64-priors as with
hyperprior
● Because decoder works with

static CDF tables which are
defined channel-wide

simple and effective:
● Encode image into a latent code

(the autoencoder’s bottleneck)
● More channels, smaller spatial dimensions

● Quantize: round to nearest integer
● or add random noise for differentiable training

● Model the cumulative distribution
function (CDF) of each channel
● CDF(x) = probability that a variable is < x

● Independent channels; each has its CDF

● Used to calculate bitcost and for entropy coding

● Decode the image back to RGB

Training:
minimize Loss = distortion × λ + bitrate
Encoder and probability model adapt to one other

References: Balle2017:End-to-end optimized image compression with competition of prior distributions by Johannes Ballé et al.
Balle2018: Variational image compression with a scale hyperprior by Johannes Ballé et al.

16 optimized CDF tables (1 box / CDF table; 1 line / channel) ↑

Image compressed with different schemes (visual comparison) ↓
Rate-distortion with different number of priors (PSNR on Commons Test Photographs) ↑

Prior work:“End-to-end optimized image compression” scheme by Johannes Ballé et al.

bitstream[ŷk,l] ik,l

bitstream

bitCost(ŷk,l,)
Backpropagate

Entropy coder

...

CDF ik ,lCDF ik , l

CDF ik ,l

encode decode
both

enc/dec
only

training

ik,l=argminp

[bitCost(ŷk,l, CDFp)]

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

100 0 100
0.0

0.5

1.0

100 0 100 100 0 100 100 0 100

ŷk,l

In
pu

t
im

a
ge

Encoder

Decoder

R
e

co
n

st
ru

ct
io

n

Distortion
loss

x̂

Backpropagate

yx

ŷ

QuantizeQuantize
Noise (train),
round (test)

bitstream

bitstream

bitCost(ŷ,)
Backpropagate

Entropy coder

CDF

CDF

encode decode
both

enc/dec
only

training

 Cumulative
 Probability
 Model
 (CDF table)

● JPEG2000-like performance, unique autoencoder and probability model limit one other’s
expressiveness

● A common solution is to analyze the latent code with a “hyperprior” sub-network (Balle2018),
and parametrize the CDF s.t. it is different for each symbol to be encoded.

● But constant switches and memory accesses increase the complexity and runtime.

Cons:

Images segmented by selected prior distribution (NCDF=64) ↓

Conclusion
➢Multiple competing priors improve rate-distortion
(RD) performance compared to the use of a single
cumulative distribution function (CDF) per
channel

➢Using 64 static priors reduces complexity and
achieves similar rate-distortion performance
compared to the use of a hyperprior

https://github.com/trougnouf/Manypriors
https://arxiv.org/abs/1611.01704
https://arxiv.org/abs/1802.01436
https://arxiv.org/abs/1611.01704

	Page 1

