B UCLouvain

iNto®» "

A Wallonie

~

/Image compression: background

lImage compression consists of three recurring steps:

> transformation: reduce image redundancy through more efficient representation

* Eqg: discrete wavelet transform, convolutional autoencoder
°> quantization: use a finite set of discrete symbols

* Eg: quantization table, round
> entropy coding: use known statistics (prior info.) to encode common symbols with fewer bits

* Eg: range coding

Prior work:“End-to-end optimized image compression” scheme by Johannes Ballé et al.

wlcumulative simple and effective:

@ ”'I'\D/Irggg‘lb"'ty * Encode image into a latent code

2 . '(CDF table) (the autoencoder’s bottleneck)

Sz /R oise (train] . . .

*g_ X e I\rlound(ztestg’ Yk * More channels, smaller spatial dimensions
i | * Quantize: round to nearest integer

_'cf; P S * or add random noise for differentiable training
& becoder CoF * Model the cumulative distribution
g 2 ~ ~ Entropy coder function (CDF) of each channel

é « CDF(x) = probability that a variable is < x

bitstream

Backpropagate
bitCost(y, cor)

—

* Independent channels; each has its CDF
* Used to calculate bitcost and for entropy coding

* Decode the image back to RGB

_) ate
{DIS'[OI"[IOI’]
loss |

2 Learned compression scheme with a single cumulative probability model
(ie End-to-end optimized image compression by Johannes Ballé et al.)

Training:
minimize Loss = distortion x A + bitrate
Encoder and probability model adapt to one other

Cons:

* JPEG2000-like performance, unigue autoencoder and probability model limit one other’s
expressiveness

A common solution Is to analyze the latent code with a “hyperprior” sub-network (Balle2018),
and parametrize the CDF s.t. it is different for each symbol to be encoded.

* But constant switches and memory accesses increase the complexity and runtime.

"

References: Balle2017:End-to-end optimized image compression with competition of prior distributions by Johannes Ballé et al.
Balle2018: Variational image compression with a scale hyperprior by Johannes Ballé et al.

Benoit Brummer

End-to-end optimized image compression with competition of prior distributions ‘*

v 5
.\a\\nte\“%eme “mmws
(;3‘(’ o/

Christophe De Vleeschouwer A
ONLINE
E D
Image compression Results —
with competition of prior distributions; our contribution -z

* Many CDF tables are learned
*eg. Ncpr=64

* The best CDF table for each location
IS optimized on that location (training),
or its index is stored with the bitstream (encoding)

1.0 -

0.5 A1

9-81

0.5 A

9-81

0.5 A1

9-81

0.5 A1

N
T
NS

0.0 -

~100 0 100 —100 O 100 —100 O 100 —100 O 100
16 optimized CDF tables (1 box / CDF table; 1 line / channel) T

For all k,/

- Cumulative probability model

Duantize

.~ Encoder Noise (train), l I _ F r
28 round (test) ykl
| CDF, e CDFNCDF

vy v oy f

: y
Ix,=argmin,
[bitCost(J«, CDF,)]

CDF,
' k,1

<

Decoder

X “ Entropy coder

bitstream

Reconstruction[Input image

BanpLQpaTate Backpropagate
DiStortion bitCOSt(yk,/,CDF,.k
loss - 7 |

@arned compression scheme with competition of prior distributions (ours) T

* Where each CDF table covers all (typ. 256) channels

Images segmented by selected prior distribution (Ncoe=64) 4

o . ".l"_.! - e L i Y i
. . 8 el B "y, g Z
e o

e T i o .
5 ik .r_‘..:l:;

ARl P, b R
AT e T

g, Lo ' oty P

Ty P

Conclusion

*Multiple competing priors improve rate-distortion
(RD) performance compared to the use of a single
cumulative distribution function (CDF) per
channel

*Using 64 static priors reduces complexity and
achieves similar rate-distortion performance
compared to the use of a hyperprior

* Rate-distortion with 64-priors Is
better than Balle2017

(1-prior), similar to Balle2018
(hyperprior w/ per-symbol CDF)

the same as Balle2017

* CDF generation consumes s
0.14x as much CPU time e
—— 64-priors

with 64-priors as with

hyperprior
e Because

static CDF tables which are
defined channel-wide

Uncompresaed

38 - —8— 8-priors
—6— 16-priors
—s— 32-priors
—9— 64-priors
128-priors
1 —— hyperprior
< —e— BPG
& JPEG

30 -

* Decoding complexity is nearly i e Wi 05 ds o7 da o5

bpp «

128-priors
—&— hyperprior
—8— BPG

JPEG

decoder works with

37.4 4 /

0.775 0.800 0.825 0.850 0.875 0.900 0.925
bpp «

Rate-distortion with different number of priors (PSNR on Commons Test Photographs) T
Image compressed with different schemes (visual comparison) {
| PLG'(PSN\R 29.3, 0.224 bpp) BPG (_PSNI;Q: 32.9,0.217 bpp)

— » 1 " o = - \\ -‘
Qa*: . . . -y g ,':g*‘a :

- - : » . \ LA
e i ale =) - -
Lo A L T2 — =
o\ a— -ru_ | S . AR 8 =
— "_;/ N 2 S ™ e _— " e o M | =
7 d : A7 >~ B

O PyTorchimplementation: https://github.com/trougnouf/Manypriors

https://github.com/trougnouf/Manypriors
https://arxiv.org/abs/1611.01704
https://arxiv.org/abs/1802.01436
https://arxiv.org/abs/1611.01704

	Page 1

