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End-to-end optimized image compression with competition of prior distributions
Benoit Brummer

Christophe De Vleeschouwer

Image compression: background
➢Image compression consists of three recurring steps:

 transformation: reduce image redundancy through more efficient representation
● Eg: discrete wavelet transform, convolutional autoencoder

 quantization: use a finite set of discrete symbols
● Eg: quantization table, round

 entropy coding: use known statistics (prior info.) to encode common symbols with fewer bits
● Eg: range coding

Image compression
with competition of prior distributions; our contribution

● Many CDF tables are learned
● eg : NCDF=64
● Where each CDF table covers all (typ. 256) channels

● The best CDF table for each location
is optimized on that location (training),
or its index is stored with the bitstream (encoding)
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               implementation: https://github.com/trougnouf/Manypriors

Uncompressed       JPEG (PSNR: 29.3, 0.224 bpp)     BPG (PSNR: 32.9, 0.217 bpp)

1-prior (PSNR: 32.4, 0.252 bpp)   hyperprior (PSNR: 32.8, 0.217 bpp) 64-priors/ours (PSNR: 32.9, 0.218 bpp)

↗ Learned compression scheme with a single cumulative probability model
(ie End-to-end optimized image compression by Johannes Ballé et al.)

Learned compression scheme with competition of prior distributions (ours)↑

Results
  

   
● Rate-distortion with 64-priors is 

better than Balle2017
(1-prior), similar to Balle2018
(hyperprior w/ per-symbol CDF)

● Decoding complexity is nearly 
the same as Balle2017
● CDF generation consumes 

0.14x as much CPU  time
with 64-priors as with 
hyperprior
● Because decoder works with

static CDF tables which are 
defined channel-wide

simple and effective:
● Encode image into a latent code

(the autoencoder’s bottleneck)
● More channels, smaller spatial dimensions

● Quantize: round to nearest integer
● or add random noise for differentiable training

● Model the cumulative distribution 
function (CDF) of each channel
● CDF(x) = probability that a variable is < x

● Independent channels; each has its CDF

● Used to calculate bitcost and for entropy coding

● Decode the image back to RGB
 

Training:
minimize Loss = distortion × λ + bitrate
Encoder and probability model adapt to one other

References: Balle2017:End-to-end optimized image compression with competition of prior distributions by Johannes Ballé et al.
Balle2018: Variational image compression with a scale hyperprior by Johannes Ballé et al.

16 optimized CDF tables (1 box / CDF table; 1 line / channel) ↑

Image compressed with different schemes (visual comparison) ↓
Rate-distortion with different number of priors (PSNR on Commons Test Photographs) ↑

Prior work:“End-to-end optimized image compression” scheme by Johannes Ballé et al.
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● JPEG2000-like performance, unique autoencoder and probability model limit one other’s 
expressiveness

● A common solution is to analyze the latent code with a “hyperprior” sub-network (Balle2018), 
and parametrize the CDF s.t. it is different for each symbol to be encoded.

● But constant switches and memory accesses increase the complexity and runtime.

Cons:

Images segmented by selected prior distribution (NCDF=64) ↓

Conclusion
➢Multiple competing priors improve rate-distortion 
(RD) performance compared to the use of a single 
cumulative distribution function (CDF) per 
channel

➢Using 64 static priors reduces complexity and 
achieves similar rate-distortion performance 
compared to the use of a hyperprior

https://github.com/trougnouf/Manypriors
https://arxiv.org/abs/1611.01704
https://arxiv.org/abs/1802.01436
https://arxiv.org/abs/1611.01704
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