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/Image compression: background

lImage compression consists of three recurring steps:

> transformation: reduce image redundancy through more efficient representation

* Eqg: discrete wavelet transform, convolutional autoencoder
°> quantization: use a finite set of discrete symbols

* Eg: quantization table, round
> entropy coding: use known statistics (prior info.) to encode common symbols with fewer bits

* Eg: range coding

Prior work:“End-to-end optimized image compression” scheme by Johannes Ballé et al.

wlcumulative simple and effective:
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& becoder CoF * Model the cumulative distribution
g 2 ~ ~ Entropy coder function (CDF) of each channel

é « CDF(x) = probability that a variable is < x

bitstream

Backpropagate
bitCost(y, cor)
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* Independent channels; each has its CDF
* Used to calculate bitcost and for entropy coding

* Decode the image back to RGB
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2 Learned compression scheme with a single cumulative probability model
(ie End-to-end optimized image compression by Johannes Ballé et al.)

Training:
minimize Loss = distortion x A + bitrate
Encoder and probability model adapt to one other

Cons:

* JPEG2000-like performance, unigue autoencoder and probability model limit one other’s
expressiveness

A common solution Is to analyze the latent code with a “hyperprior” sub-network (Balle2018),
and parametrize the CDF s.t. it is different for each symbol to be encoded.

* But constant switches and memory accesses increase the complexity and runtime.
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References: Balle2017:End-to-end optimized image compression with competition of prior distributions by Johannes Ballé et al.
Balle2018: Variational image compression with a scale hyperprior by Johannes Ballé et al.
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End-to-end optimized image compression with competition of prior distributions ‘*
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Image compression Results —
with competition of prior distributions; our contribution -z

* Many CDF tables are learned
*eg. Ncpr=64

* The best CDF table for each location
IS optimized on that location (training),
or its index is stored with the bitstream (encoding)
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@arned compression scheme with competition of prior distributions (ours) T

* Where each CDF table covers all (typ. 256) channels

Images segmented by selected prior distribution (Ncoe=64) 4
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Conclusion

*Multiple competing priors improve rate-distortion
(RD) performance compared to the use of a single
cumulative distribution function (CDF) per
channel

*Using 64 static priors reduces complexity and
achieves similar rate-distortion performance
compared to the use of a hyperprior

* Rate-distortion with 64-priors Is
better than Balle2017

(1-prior), similar to Balle2018
(hyperprior w/ per-symbol CDF)

the same as Balle2017

* CDF generation consumes s
0.14x as much CPU time e
—— 64-priors

with 64-priors as with

hyperprior
e Because

static CDF tables which are
defined channel-wide
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Rate-distortion with different number of priors (PSNR on Commons Test Photographs) T
Image compressed with different schemes (visual comparison) {
| PLG'(PSN\R 29.3, 0.224 bpp)  BPG (_PSNI;Q: 32.9,0.217 bpp)
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O PyTorchimplementation: https://github.com/trougnouf/Manypriors


https://github.com/trougnouf/Manypriors
https://arxiv.org/abs/1611.01704
https://arxiv.org/abs/1802.01436
https://arxiv.org/abs/1611.01704
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